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Abstract

Soft computing techniques of neural networks and genetic

algorithms are used in the design of superalloys. The cyclic

oxidation attack parameter K,, generated from tests at NASA Lewis

Research Center, is modelled as a function of the superalloy
chemistry and test temperature using a neural network. This model

is then used in conjunction with a genetic algorithm to obtain an

optimized superalloy composition resulting in low K, values.
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I. Introduction

In the paper we show the results of research involving

application of soft computing techniques to modelling and

optimizing alloys. In design and manufacturing of advanced

materials such as superalloys, it is required to come up with a

material possessing desired output properties. These properties can

be expressed as a function of material composition and parameters

of the fabrication process. Optimizing the composition of a
material can be broken into two problems: finding the function

between inputs, like material composition and process parameters,
and outputs like strength and density, and then optimizing that

function. Such functions are usually highly non-linear and

difficult to find. Moreover, the properties of the superalloys are

very sensitive to the process fabrication parameters such as

temperature, pressure etc. Because of the above we have used neural

networks to learn the mapping function between the inputs and

outputs.

Optimization can be defined as a process that seeks to improve

performance of a system toward some optimal point or a set of
points. Local optimization techniques work well for problems that

have a relatively 'nice' search spaces and the user has a good feel
for the space. If that is not the case global optimization

techniques of genetic algorithms are often used.

Barret in [I] used the data generated from tests at NASA Lewis

Research Center to rank the Ni- and Co- based superalloys for their

cyclic oxidation resistance. The test results were reduced to a

single "attack parameter" K,, and he used multiple linear
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regression analysis to derive an estimating equation for this

parameter as a function of the alloy chemistry and test

temperature. This equation was then used to predict the K. values

for similar alloys and also for a design of an optimal superalloy

composition.

Soft computing methods of neural networks, genetic algorithms

and fuzzy sets have proven to be useful [2] where the conventional

methods have limitations. In this work we use the techniques of

neural networks and genetic algorithms for modelling _nd

optimization, respectively. The backpropagation neural network is

used for modelling and the GENOCOP _ene_ic al@ori_hm is used for

optimization, see Fig I. It will be shown _hat the neural network

network modelling of K. gives as good, or better, a fit as the

linear regression model [i] . Optimization of the function learned

hy the neural network usin_ the genetic algorithm [3] achieves low

values for the K= parameter.

NEURAL

NETWORKS

CYCUC

VALUES

L, -- OPT_MIZA'[ION FOR A SUPER ALLOY

Figure I. Outline of the neuro-genetic system.

Barfer's data [I] was used to train the backpropagacion

network to model the cyclic oxidation attack parameter K a as a

function of superalloy composition. This trained network was then

used as an objective function (K,) generator for an optimizer using

a genetic algorithm,. Fig. i.

In the paper we shall briefly discuss the soft computing

methods of neural networks for function approximation in Section

II, and genetic algorithms for optimization in Section III.

Conclusions are given in Section IV.
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I I. F.t_n_tion Approximation

Artificial neural networks are composed of many simple non-
linear processors called neurons connected in parallel. Each neuron

perforr_s con_putation of the form:

o i = f(s_) and s i = W_X

where X=(x:, x_ ..... x_) is the vector input to the neuron and W is

the weight matrix with wij being the weight (connection strength)
of the connection between jth element of the input vector and ith

neuron. The f() is a non-linear function (usually a sigmoid), o i is

the output of the ith neuron and s_ is the weighted sum of the

inputs.

Neural networks can learn from the input/output training data

pairs. 0nee the training is completed the network can be used as

a function simulator. The learning capability is a result of the

ability of the network to modify the weights through usage of a

learning rule. The topology used here is the multi-layer feed-

forward network and the learning rule is backpropagation. A neural
network with one hidden layer was used to simulate log_0(K,) as a

function of the superalloy chemistry and test temperature. The

network had 18 nodes in the input, 36 nodes in the hidden layer and

one in the output layer. The superalloys used in the test were Ni-

and Co- based and their composition was described by weight percent

(wt%) of the components Ni, Co, Cr, AI, Ti, Mo, W, Cb, Ta, C, B,

Zr, and Hr. This data is shown in the Appendix.

Barret's [i] fitting of the function using linear regression

resulted in the value of R2 equal 84.43%. We achieved an R: value

of 86.56% on the same data. Appendix shows the comparison of

regression and backpropagation results for the average values of

the K, parameter for the used superalloys. Different results were

obtained when multiple tests were conducted for some alloys
(experiment repeated) and hence the average values for comparison

were used. The trained network was used to predict the K, value

for an alloy, not included in the training data set, being exactly

the same as used by Barret. The results shown in Table 1 are
better than the ones obtained from regression at both temperatures

(1150 & 1200 °C). All values are log to base !0 of the Ka

parameter.

T_ble 1

1150 °C

K_ (Regression)

Temperature 1200 °C

K_. (Observed) 0.7645 1.0865

0.2684 0.7554

K_ (Neural Net) 0.8937 0.9347
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!II. O_timization

Optimization can be defined as a search towards some optimal

point. In most engineering systems attainment of the optimum at any

cost is not required, but instead what usually suffices is a "good"

solution. Genetic algorithms have proved to be of considerable

help towards achieving this goal. The genetic algorithms are global

optimizers used to overcome the limitations of many conventional

methods like Bayesian/sampling, Monte Carlo, Tom's and simulated

annealing [5].

The genetic algorithm (GA) is an evolutionary computation

method, useful in performing searches and optimization. A GA
involves a set of elements (x_ ..... x_), called the population X(_)

at time t. Each element x_ represents a possible solution and is

represented by a string of variables. The standard GA is described

as the following sequence of steps [6].
Step l: Randomly generate an initial popuiation

X(0)=(x_,x_ ..... x_);
Step 2: Compute the fitness f(x_)of each individual x_ of the

current population;
Step 3: Generate an intermediate population X_(t) applying the

reproduction operator;

Step 4: generate X(t+l) applying other operators to Xr(t);

Step 5: t = t÷!; if not (end_test) goto Step 2.
where the most cc_only used operators are reproduction, crossover,
and mutation.

To improve the objective function value towards an optimum the

genetic algorithm only needs the function values at the population
points, and not the function itself. In this sense the algorithm

is said to be blind. The algorithm [3] uses probabilistic

transition rules and random choice as a tool to guide the search

towards a region of a search space with likely improvement. The GAs

also have the advantage of being able to optimize while avoiding
local minima unlike gradient-descent methods. The GA method of

optimization is very different from conventional methods and can be

characterized by [3, 5] these differences:

- they directly use the code i.e. the parameters

- they search from a population of points instead of a single point

- they are blind to all auxiliary information.

- they use randomized operators.

The algorithm we have used for optimization is the GENOCOP (Genetic

Algorithm for Numerical OPtimization) developed at the University

of North Carolina, by Zbigniew Michalewicz. The GENOCOP system

aims at finding a global optimum (minimum or maximum) of a function

subject to linear constraints (equations and inequalities). This

algorithm had been demonstrated to successfully optimize both

linear and non-linear functions. Even though the algorithm is
blind to the function, the functions were needed to generate the

function values. We wanted the algorithm to optimize an unknown
function, which was simulated on a neural network. The programs
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were modified so that the function values were generated by another

program developed" at the University of Toledo, using the

backpropagation network.

The problem of designing a superalloy was broken down into two

tasks: function approximation and optimization. The backpropagation

net was trained using available test data from the tests and thus

functioned as a simulator of the K_ parameter. This generated K, was

then used as input to the genetic algorithm, which searched for

points with minimum corresponding K, values. This search led to the

results shown in Table 2.

Table 2

GENOCOP solution point at

Element I Weight %

Ni 70.0552444

Co 5.03954935

Cr 9.97962761

A1 3.30380297

Ti 1.36296296

Mo 0.84048849

W 2.057"09577

Cb 2.99739814

Ta 3.91278195

C 0.13449860

B 0.00077937

Zr 0.30375364

Hf 0.00200379

V 0.00000000

Re 0.00000000

Cu [. 0.00000000

The search

.I00 °C

was restricted to the temperature ii00 °C. The

constraints used in finding an alloy composition were obtained from

NASA Lewis Research Center and are listed in Table 3.
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T a_ble 3

Constraints used in optimization

Lower Limit
i.,

if00

Element

Temp.

Upper Limit

1100

50 100.0

0 I0.0

0 15.0

0

0

0

6.0

2.0

2.0

4.0

3.00
,, ,,,

0 g.O

0 0.5

Ni
.. ,,.

Co

Cr

"A1

Ti

Mo

W

Cb

Ta

C

B

Zr

Hf

V

Re

Cu
,,, , .

0

0

0.I

1.0

0

0 1.0

0 0.0

0 0.0
, , , ,,,,

0.0

The obtained results [Table 2] indicate that the desired alloy

belongs to group-II alloys [I], de. chromia/chromite formers. We
_hink that this is a direct result of the given constraints. If a

group-I alloy was to be designed, we should have used a much closer

range for Aluminum (AI) %weight. We have used the 0 to 6. range

(%weight), but it can be noticed from [I] that for group-I alloys

the range is 5 to 6. Given the latter, the genetic algorithm

opnimization might have resulted in a group-I alloy.

The K a value for these new (designed) alloy composition is

0.90918058, which puts the superalloy in the category of fair

according to Barters' [i] classification in which the K_ values are
ranked as,

K, <= 0.20 excellent

0.20 <= K, <= 0.50 good

0.50 <= K, <= 1.00 fair

.i
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1.00 <= K_ <= 5.0 poor
5.00 <= K_ catastrophic

The lowes_ value of K t obtained in the actual tests at ll00 C, for

group-II alloys is 1.708 (U-700) [I]. Thus the soft computing

me_hods have come up with a design that can meet the requirement of

low the K_ values.

IV, Conclusions

We have applied the soft computing methods of neural networks

and genetic algorithm to the of design of advanced superalloys.

The key feature of this approach is the use of the neural network

for modelling the material properties as functions of alloy

chemistry and process parameters and the use of genetic algorithm

for optimizing the function and thus obtaining a superalloy with
low Ka values. The genetic algorithm used for optimization needs

only the objective function values which are provided as the

outputs of the neural network. To summarize the following results
were obtained:

I) The trained neural network (R_=86.56%) gives a better fit than

the regression (R_=84.43%).

2) The predicted.value for NASAIR-100 alloy, is much bester for

the neural net model than the linear regression model-(Table
2).

3) A new superalloy, of group-II, was designed using the genetic

algorithm, with K, value of 0.9091 at ii00 °C, which is
classified as fair [I]. In test results used for modelling,

none of this group superalloys had such a low K, value.
Given different constraints these results could be most probably

further improved.
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Neural network

I)
2)
3)
4)
5)
6)
7)

8)

9)

10)

Ii)

12)

13)

14)

15)
16)

17)

18)
19)

2O)
21)

22)

23

24

25
26

27

28

29

3O

training results.

Alloy

Alloy-625

Alloy-625

Alloy-718

Alloy-718

Astroloy

As_roloy

B-i900

B-1900

B-1900

B-1900-÷-Hf

B-i900-+-Hf

IN-100

IN-100

IN-100

IN-713-LC

IN-713-LC

IN-738

IN-738

IN-738

IN-792

IN-792

IN-939

IN-939

MAR-M-200

MAR-M-200

MAR-M-200- +-Hf

MA/_-M- 200- +-Hf

MAR-M-211

MAR-M-211

MAR-M-246

Temp Ka

Observed

1100 28.71441

1150 36.42085

Ii00 28.56603

1150 43.39103

II00 3.23743

1150 61.72343

i000 0.05310

II00 0.19269

1150 1.68384

ii00 0.72219

1150 1.10053

1093 28.49377

II00 46.06277

1150 97.48773

II00 0.71499

1150 1.67359

I000 1.69805

II00 29.32580

1150 37.93149

II00 22.54759

1150 50 10717

II00 32 58367

1150 55 37961

Ii00 8 21296

1150 74 25060

Ii00 17 31210

1150 64 41692

ii00 73 45983

1150 57 18736

II00 1.55292

Xa

NN

33.12075

65.32808

30.54570

60.06204

10.80936

21.69202

0.05354

0.44463

I._6802

0 38940

1 87759

34 80566

39 31424

84 51817

20 17901

71 84557

5 20595

30 11619

59.08810

28.20979

66.91138

40.81313

64.90826

20.95077

53.29665

26.54911

74.50749

17.29419

44.17740

3.21440

Ka

Regression

11.27800

17.99260

36.16710

69.82400

9.13700

21.93610

0.01870

0.31000

1.08980

0 32770

1 15220

I 86570

24 30670

76 63070

0 94390

2 66850

3 12460

19 59870

44..55700

19.20340

52.25930

30.14130

49.41480

14.35090

47.77800

16.17680

53.85680

11.60070

38.62180

0.83760
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31)
32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)
49)

5O)

51)

(52)
53)
54)
55)
56)
57}
58)
59)
60)
61)

62)

63)

64)

65)

66)

67)

68)
69)

7O)
71)

72)

73)

74)

75)

76)

77)

78)
79)

80}
81)

MAR-M-246

MAR-M-247

MAR-M-247

MAR-M-247

MAR-M-4_I

MAR-M-421

NASA-TRW-VIA

NASA-TRW-VIA

Nimonic-ll5

Nimonic-ll5

NX-188

NX-188

Rene-41

Rene-80

Rene-S0

Rene-120

Rene-120

Rene-125

Rene-125

R-150-SX

R-150-SX

R-150-SX

TAZ-SA

TAZ-SA

TAZ-8A

TRW-R

TRW-R

TRW-R

TRW-1800

TRW-1800

U-520

U-520

U-700

U-700

U-700

U-710

U-710

U-720

U-720

U-720

Waspaloy

Waspaloy

Waspaloy

WAZ-20

WAZ-20

MAR-M-509

MAR-M- 509

W-152

W-152

W-152

X-40

I!50

i000

Ii00

1150

ii00

1150

ii00

1150

!000

1150

1100

1150

i150

1100

1!50

!I00

1150

Ii00

1150

I000

!I00

1150

!000

ii00

1150

1000

II00

i150

II00

1150

Ii00

1150

i000

1100

1150

II00

1150

I000

!!00

1150

I000

ii00

1150

I100

1150

ii00

1150

1093

II00

I150

ii00

18.07799

0 05_50

0 50699

4 98482

9 53126

34 93413

0 32934

1 59019

0.40851

1.64002

3.44588

8.21391

33.14362

37.40245

60.76452

6.85409

14.91077

3.02273

9.78363

6.00136

45.00908

314.84732

0.09700

0.56735

4.64408

0.05600

0.10650

0.91201

0.73097

3.69020

31.64828

55.97576

1.30707

6.96226

29.63467

33.75592

48.91026

6.38851

32.33329

41.57671

4.99862

9.62941

28.89349

21,14707

89.21751

25.42729

49.77372

47.03811

45.28975

120,57302

35.57131

11.27847

0.06792

0.91254

4.22766

16.23865

34.81770

0.43451

!.86423

0.80131

15.90560

3 38532

14 63356

49 25496

33 01795

67 99076

!2 29986

30 55272

2 86913

12 35521

5.29724

66.84979

151.56540

0.07279

0.70713

2.87144

0.03252

0.26918

1.19591

1.24753

3.55140

16.21437

32.47507

0.97578

6.64431

15.18273

26.89057

48.23917

5.16179

23.74652

43.54115

3.30446

18. 38443

36.43763

32.38919

91.72762

37.99707

62.82031

16.46076

20.17901

71.84557

25.85235

2.50060

0 04770

0 77430

2 69280

8 63530

19 84710

0 35330

1.37760

0..40710

7.43090

2.28170

12.40500

38.79820

20.00150

50.70860

8.85880

24.49300

2.06020

6.85800

2.84800

68.24000

282.51901

0.02520

0.52440

2.053_0

0 03230

0 53650

1 88630

0 87460

2 34160

17 25930

33.32080

0.76570

5.42470

13.02350

20.20680

41.19590

3 92420

19 29180

39 33060

3 70670

15 17910

28 51700

15 0883O

82 03130

25 66680

38 77640

16 11080

54 95520

95 14120

24 45800
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