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Soft computing techniques of neural networks and genetic
algorithms are used in the design of superalloys. The cyclic
oxidation attack parameter X,, generated from tests at NASA Lewis
Research Center, is modelled as a function of the superalloy
chemistry and test temperature using a neural network. This model
is then used in conjunction with a genetic algorithm to obtain an
optimized superalloy ccmposition resulting in low K, values.

I. Introduction

In the paper we show the results of research involving
application of soft computing techniques to modelling and
optimizing alloys. In design and manufacturing of advanced
materials such as superalloys, it is required to come up with a
material possessing desired output properties. These properties can
be expressed as a function of material composition and parameters
of the fabrication prccess. Optimizing the compesition of a
material can be broken into two problems: f£inding the function
between inputs, like material composition and process parameters,
and ocutputs like strength and density, and then optimizing that
function. Such functions are wusually highly non-linear and
difficult to find. Morsover, the properties of the superalloys are
very sensitive to the process fabrication parameters such . as
temperature, pressure etc. Because of the abcve we have used neural

networks to learn the mapping function between the inputs and
outputs.

Optimization can be defined as a process that seeks to improve
performance of a system toward some optimal point or a set of
points. Local optimization techniques work well for problems that
have a relatively '‘nice’ search spaces and the user has a good feel
for the space. If that is not the case global optimization
techniques of genetic algorithms are often used.

Barret in {1] used the data generated from tests at NASA Lewis
Research Center to rank the Ni- and Co- based superalloys for their
cyclic oxidation resistance. The test results were reduced to a
single ‘“"attack parameter" K,, and -he used multiple linear
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regression analysis to derive an estimatin
parameter as a function of the alloy Chemistry and test
Cemperature. This eéquation was then used to predict the K, values

Soft computing methods of neural networks, genetic algorithms
and fuzzy sets have proven to be useful {2] where the conventional
methods have limitations. In this work we use the techniques of
neural networks and genetic algorithms for modelling and
optimization, respectively. The backpropagation neural network is
used for modelling and the GENOCOP genetic algorithm is used for
optimization, see Fig 1. It will be shown that the neural network
Network modelling of K, gives as good, or better, a fit as the
linear regression model [1], Optimization of the function learned

By the neural network using the genetic algorithm (3] achieves low
values for the X, parameter.
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Figure 1. Outline of the neuro-genetic system.

Barret’s data {1] was used to train the backpropagation

network to model the cyclic oxidation attack Darameter K, as a
function of Superalloy com i i

used as an objective functi
a genetic algorithm, Fig.

II, and genetic algorithms
Conclusions are given in Section Iv.
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II. Function Approximation

Artificial neural networks are composed of many simple non-
linear processors called neurons connected in parallel. Each neuron
performs computation of the form:

0; = £(s;) and 8; = W'X

where X=(x,, X2s..., X,) is the vector input to the neuren and W is
the weight matrix with Wi; being the weight (connection sStrength)
of the connection between jth element of the input vector and ith
neuron. The £() is g nen-linear function {usually a sigmoid), 0; 1is
the output of the ith neuron and S; is the weighted sum of the

Neural networks can learn from the input/output training data
pairs. Once the training isg completed the network can be used as
a function simulator. The learning capability is a result of the
ability of the network Lo modify the weights through usage of a
learning rule. The topology used here is the multi-layer feed-
forward network and the learning rule isg backpropagation. a neural
network with one hidden layer was used to simulate log,, (K,) as a
function of the Superalloy chemistry and test temperature. The
network had 18 nodes in the input, 36 nodes in the hidden layer and
one in the output layer. The Superalloys used in the test were Ni-
and Co- based and their composition was described by weight percent
(wt%) of the components Ni, Co, Cr, Al, Ti, Mo, W, Cb, Ta, C, B,
Zr, and Hf. This data is shown in the Appendix.

Barret’s [1] fitting of the function using linear regression
resulted in the value of Rr? equal 84.43%. We achieved an R? value
of 86.56% on the same data. Appendix shows the comparison of
regression and backpropagation results for the average values of
the K, parameter for the used Superalloys. Different results were
Obtained when multiple tests were conducted for some alloys
(experiment repeated) and hence the average wvalues for comparison
were used. The trained network was used to predict the K, value
for an alloy, not included in the training data set, being exactly
the same as used by Barret. The results shown in Table 1 are
better than the ones obtained from regression at both temperatures

(1150 & 1200 °C) . All values are log to base 10 of the Ka
parameter,
Table 1

Temperature 1150 °C 1200 °C

K., {(Observed) 0.7645 1.0865

X. (Regression) 0.2684 0.7554

K. (Neural Net) 0.8937 0.9347




IXI. timization

Optimization can be defined as a search towards some optimal.
point. In most engineering systems attainment of the optimum at any
CoSt is not required, but instead what usually suffices is a "googd™"
solution. Genetic algorithms have proved to be of considerable
help towards achieving this goal. The genetic algorithms are global
optimizers used to overcome the limitations of many conventional

methods like Bayesian/sampling, Monte Carlo, Torn's and simulated
annealing (s].

The genetic algorithm (GA) is an evolutionary computation
method, useful in performing searches and optimization. A GAa
involves a set of elements (x,,....x,), called the population X(t)
at time t. Each element X; represents a possible solution and is
reépresented by a string of variables. The standard GA is described
as the following sequence of steps [6].

Step 1: Randomly generate an initial population
X(0)=(x,,%,,...,%x,); )

Step 2: Compute the fitness f(x.) of each individual x; of the
current population;

Step 3: Generate an intermediate population X,(t) applying the
reproduction operator;

Step 4: generate X(t+l) applying other operators to X.(t);

Step 5: € = £+1; if not {end_test) goto Step 2.

where the most commonly used operators are reprocduction, crossover,
and mutation.

To improve the objective function value towards an optimum the
genetic algorithm only needs the function values at the population
points, and not the function itself. In this sense the algorithm
is said to be blind. The algorithm [3] uses probabilistic
transition rules and random choice as a tool to guide the search
Lowards a region of a search space with likely improvement. The GAs
also have the advantage of being able to optimize while avoiding
local minima unlike gradient-descent methods. The GA method of
optimization is very different from conventional methods and can be
characterized by [3, 5] these differences:

- they directly use the code i.e. the parameters

- they search from a population of points instead of a single point
- they are blind to all auxiliary information.

- they use randomized operators.

The algorithm we have used for optimization is the GENOCOP (Genetic
Algorithm for Numerical OPtimization) developed at the University
of North Carclina, by Zbigniew Michalewicz. The GENOCOD system
aims at finding a global optimum (minimum or maximum) of a function
subject to linear constraints (equations and inequalities). This
algorithm had been demonstrated to successfully optimize both
linear and non-linear functions. Even though the algorithm is
blind to the function, the functions were needed to generate the
function values. We wanted the algorithm to optimize an unknown
function, which was simulated cn a neural network. The programs
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were modified so that the function values were generated by another
program developed at the University of Toledo, using the
backpropagation network.

The problem of designing a superalloy was broken down into two
tasks: function approximation and optimization. The backpropagation
net was trained using available test data from the tests and thus
functioned as a simulator of the K, parameter. This generated K, was
then used as input to the genetic algorithm, which searched for
peints with minimum corresponding K, values. This search led to the
results shown in Table 2.

Table 2
GENOCOP solution point at 1100 °C
Element Weight %
Ni 70.0552444
Co 5.03954935
Cr . 9.97962761
Al 3.303280297
Ti 1.36296296
Mo 0.84048849
W 2.05709577
Cb 2.99739814
Ta 3.91278195
0.13449860
0.00077937
Zr 0.30375364
Bf 0.00200379
v 0.00000000
Re 0.00000000
Cu 0.00000000

The search was restricted to the temperature 1100 °C. The
constraints used in finding an alloy composition were obtained from
NASA Lewis Research Center and are listed in Table 3.
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Table 3

Constraintg used in optimization

Lower Limit I Element Upper Limit
1100 Temp, 1100

L *-
‘ 50 Ni 100.0

0 Co 10.0

0 Cr 15.0
— -

9 Al 6.0
— ]

0 Ti 2.0
0 Mo 2.0

0 W 4.0 ;
,' 0 3.0 :

0 8.0 !

0 0.5

0 0.1

0 Zr 1.0

0 HE 1.0

0 v 6.0

0 Re ¢.0

0 Cu 0.0

The obtaineg results [Table 2] indicate that the desiregd alloy

telongs to group-II alloys [1], ie, chromia/chromite formers. we
think that thig is a direct result of the given constraints. I1f 3
group-1I alloy was to be designed, we should have used a much Closer
range for Aluminum (A1) $weight . We have used the 0 tg 6. range

(%weight), but it cap be noticed from (1] that for group-1 alloys
the range ig 5 to 6. Given the latrter, the genetic algorithm
optimizatiop might have resulted in 3 group-I alloy.

The K, value for these new  (desigmned) alloy composition ig
0.90918058, which Puts the Superalloy in the category of fair

according to Barretg- [1}] classification in which the K, values are
ranked as,

0.20 excellent
0.50 good
1.00 fair

K, <
0.20 <= K, <
0.50 <= K, <

tn u




1.00 <= X, <= 5.0 poor -
5.00 <= Kk, catastrophic

- The lowest value of K, obtained in the actual tests at 1100 C, for
group-II alloys is 1.708 (U-700) [1]. Thus the soft computing

methods have come up with a design that can meet the requirement of
low the K, values,

IV, Conclusions

We have applied the soft computing methods of neural networks
and genetic algorithm to the of design of advanced superalloys.
The key feature of this apprecach is the use of the neural network
for modelling the material properties as functions of alloy
chemistry and process parameters and the use of genetic algorithm
for optimizing the function and thus obtaining a superalloy with
low Xa wvalues. The genetic algorithm used for optimization needs
only the objective function values which are provided as the
outputs of the neural network. To summarize the following results
were obtained:

1) The trained neural network (R*=86.56%) gives a better fit than
the regression (R*=84.43%) .

2) The predicted .value for NASAIR-100 alloy, is much better for
the neural net model than the linear regression model -(Table
2).

3) A new superalloy, of group-I1I, was designed using the genetic

algorithm, with K, value of 0.9091 at 1100 °C, which is
classified as fair (1]. In test results used for modelling,
none of this group Superalloys had such a low K value,

a

Given different constraints these results could be most probably
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26) MAR-M-200-+-Hf 1100 17.31210 26.54911 16.17680
27) MAR-M-200-+-Hf 1150 64.41692 74.50749 53.85680

Appendix
Neural network training results.
Alloy Temp Ka Xa Ka
Observed NN ' Regression

(1) Alloy-625 1100 28.71441 33.12075 11.27800

{ 2) Alloy-625 1150 36.42085 65.32808 17.99260

( 3) Alloy-718 1100 28.56603 30.54570 36.16710

{ 4) Alloy-718 1150 43.3%103 60.06204 69.82400

( 5) Astroloy 1100 3.23743 10.80936 9.13700

( 8) Astroloy 1150 61.72343 21.68202 21.93610

( 7) B-1500 . 1000 0.05310 0.05384 0.01870

( 8) B-1900 1100 0.19269 0.44463 0.31000 :
( 9) B-1900 1150 1.68384 1.66802 1.08980

( 10) B-1900-+-HF 1100 0.72219 0.38940 0.32770 f
(11) B-1900-+-Hf 1150 1.10083 1.87759 1.15220 1
( 12) IN-100 1093 28.49377 34.80566 1.86570 E
( 13) IN-100 1100 46.06277 39.31424 24.30670

( 14) IN-100 1150 97.48773 84.51817 76.63070

( 15) IN-713-LC 1100 0.71499 20.17901 0.94350 :
( 16) IN-713-LC 1150 1.67359 71.84557 2.g66850 j
( 17) IN-738 1000 1.69805 5.20595 3.12460 g
( 18) IN-738 1100 29.32580 30.11619 19.59870 l
( 19) IN-738 1150 37.93149 59.08810 44-.55700 }
( 20) IN-792 1100 22.54759 28.2097% 19.20340 3
{ 21) IN-792 1150 50.10717 66.91138 52.25930 3
{ 22) IN-939 1100 32.58367 40.81313 30.14130

( 23) IN-939 1150 55.37961 64.9082¢ 49.414890

( 24) MAR-M-200 1100 8.21296 20.95077 14.35090

( 25) MAR-M-200 1150 74.25060 53.29665 47.77800

(

(

( 28) MAR-M-211 1100 73.45983 17.29419 11.60070
E 29) MAR-M-211 1150 57.18736 44.17740 38.62180

30) MAR-M-246 1100 1.55292 3.21440 0.83760

e TN IS AL ons iy
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MAR-M-2456
MAR-M-247
MAR-M-247
MAR-M-247

‘MAR-M-421

MAR-M-421
NASA-TRW-VIA
NASA-TRW-VIA
Nimonic-115
Nimonic-115
NX-188
NX-188
Rene-43
Rene-80
Rene-80
Rene-120
Rene-120
Rene-125
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R-150-8X
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TAZ-8A
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U-520
U-520
U-700
U-700
U-700
U-710
U-710
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U-720
U-720
Waspaloy
Waspaloy
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WAZ-20
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MAR-M-509
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W-152
wW-152
W-152
X-40
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1150
1100
1150
1100
1150
1000
1150
1100
1150
1150
1100
1150
1100
1150
1100
1150
1000
1100
1150
1000
1100
1150
1000
1100
1150
1100
1150
1100
1150
1000
1100
1150
1100
1150
1000
1100
1150
1000
1100
1150
1100
1150
1100
1150
1093
1100
1150
1100

[
[s2]

OWUWHOHOMOUDMNOO

33

37.

60

14

45.
314.
.08700

.077389

.05250
.50699
.98482
.53126
.93413
.32934
.59019
.40851
. 64002

.44588

.21391
-14362
40245
.76452
.85409
.81077
.02273
.78363
.0013s6
00508
84732

0.56735

W
OHURWOOOO D

120
35

- 15
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