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Abstract

Measurements were made of the (110) and (101) face growth rates of the tetragonal ff)rm of hen egg white

lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22°C and with 3.0%, 5.0%, and 7.0% NaCl uscd as the

precipitating salt. The data were collected at supersaturation ratios ranging from ~ 4 to ~ 63. Both decreasing

temperature and increasing salt concentrations shifted plots of the growth rate versus C/C,,_, t to the right, i.e. higher

supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to

those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates

from the solution, then the observed growth data could be explained as a result of the effects of lowered

temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein

interactions in solution. The data indicate that temperature would bc a more tractable means of controlling the

growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal

growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available

range for control is dependent upon the protein concentration, with the greatest growth rate control being at the
lower concentration.

I. Introduction

Hen egg white lysozyme is currently the de

facto standard protein for studying the 16rotein

crystal nucleation and growth processes. Elec-

tron, atomic force, and interference microscopy

studies of the tetragonal lysozyme crystal surface

indicate that the overall growth mechanism is

similar to those commonly found for small

molecules [1-4]. Growth rate data for tetragonal

* Corresponding author.

lysozyme crystals are commonly obtained at very

high supersaturations compared to those used in

small crystal growth [3-7], with high (relative to

small molecules) supersaturations being required

even for the lowest growth rates measured. Re-

cent work has shown tetragonal lysozyme to have

growth curves characteristic of an impurity effect

[4], which may explain the difficulty of obtaining

low growth rates, but not the requirement for

high supersaturation ratios.

While some growth rate data have been col-

lected for tetragonal lysozyme crystals, the overall

effects of solution parameters such as pH, tem-

0022-0248/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0022-0248(93)E0781-2
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perature, salt (precipitant), and buffer concentra-

tion have not been studied. Manipulation of one

or more of these parameters has been suggested

for decoupling nucleation from crystal growth.

However, use dynamic control on the crystal

growth process requires some knowledge of the
effects of solution parameters on the growth pro-

cess. For instance, it is automatically assumed

that as the solubility decreases with lower tem-

perature, the resulting increase in supersatura-
tion ratio will result in an increased growth rate.

This has recently been shown to not be true for

the (101) face of tetragonal lysozyme [3].

A phase diagram for tetragonal lysozyme is

now available, showing the effects of tempera-
ture, salt concentration, and pH on this crystal

forms solubility [8]. The work reported herein was

directed towards an understanding of the net

effects of temperature and salt concentration on

the growth rate of tetragonal lysozyme crystals.
Small crystals were used to reduce any deleteri-

ous effects of larger size, minimize convective

flows as an experimental parameter, and to keep

the growth process in the surface kinetics con-

trolled regime. This paper presents the results of

growth rate investigations over the temperature

range of 4 to 22°C and from 3.0% to 7.0% NaCI.
The measurements were made using a computer

controlled video-microscopy system which elimi-
nated the tedium and bias inherent in methods

that rely on manual data acquisition and process-

ing techniques [9].

growth rate studies [9]. The growth cell was made

from stainless steel and based upon a previous
growth cell design [11], except that in this in-

stance temperature was controlled by passing wa-
ter from a circulating bath through a reservoir

mounted on the rear of the growth cell. The bulk

of the studies reported below were done using

growth chamber dimensions of 50 x 2 z 0.3 mm
(Hx WxD).

Seed crystals (10 to 30 tzm) were nucleated in
situ on the chamber windows at the same NaCI

concentration and temperature used for the sub-

sequent growth rate determination and growth

solutions were introduced as previously described
[6,7]. Depending upon the anticipated growth

rate, from 4 to 30 separate face growth rates were

determined during each experimental run. Data

obtained using a prior technique had indicated

that when multiple growth rate determinations
were made using the same crystal, the succeeding
rates tended to decrease. This was attributed to

cumulative flow-induced effects to the crystal

faces, caused by the re-introduction of fresh
growth solution for each new run [12]. Accord-

ingly, for all the data shown here each crystal was

used only one time. At the conclusion of each

growth rate determination the crystals were dis-
solved and a new batch of seeds nucleated for the

next experimental run. Growth rates obtained for

each crystal were linear, indicating that no signifi-

cant depletion of the bulk solution lysozyme con-

centration was occurring during the course of the
growth rate experiments.

2. Methods

Hen egg white lysozyme (Sigma Chem. Co., St.

Louis, MO) was further purified by cation ex-

change chromatography followed by crystalliza-
tion and dialysis into 0.1M sodium acetate pH 4.0

buffer [10]. Protein and precipitant solutions for

face growth rate measurements were prepared

from the dialyzed material as previously de-
scribed [6,7]. The saturation concentrations in the

solutions thus prepared were calculated from
published data [8]. Face growth rate measure-

ments were done using a computer-controlled

microscopy system assembled for protein crystal

3. Results

Fig. 1 shows the (110) and (101) growth rate
data obtained at 4 and 22°C, 5% NaCI, pH 4.0.
The 4°C (110) and (101) and 22°C (110) data

points for a given growth rate measurement were

generally close to each other. In contrast, the

22°C (101) growth rates had considerable scatter,

although they were collected concurrently with
the corresponding (110) face data. This scatter

was not present in the 22°C 3% or 7% NaCI

growth rate data, and was considerably reduced

in the data collected at 20°C 5% NaCI. Many of
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the (101) faces did not grow during the course of
the 22°C 5% NaCI experimental runs at lower

supersaturations or had erratic growth rates. Vi-

sual observations of the crystals during these runs

indicated the presence of a pronounced macro

growth step which appeared after a prolonged
delay time. Preliminary observations on this macro

step are discussed in a separate communication

[10].

Crystal growth rate data are commonly fit to

an empirical equation of the form

R = k( C/C_,,)", (1)

with R being the measured growth rate and k an

empirically derived constant. The exponential
term n, the power dependence of the growth rate

on the supersaturation ratio, is obtained from a

log-log plot and is believed to be an indicator of

the relevant growth mechanism (for example, refs.
[13-15]). The (110) growth rate data of Fig. la

are replotted in Fig. 2 as such a plot, although in

this case only one of every three data points are

shown for clarity. The data originally acquired in

E

o"
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£
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o

(o)

0 10 20 30 40 50 60

Concentration, mg/ml

Fig. 1. Face growth rate data obtained at 4°C ([]) and 22°C

(©). Panel (a) is for the (110) face growth rates, and panel (b)

gives the corresponding (101) face growth rates. Only 1 in

three of the measured rates are shown for clarity.
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Fig. 2. The (Ill)) growth rate data at 22°C, 5G NaCI (o),

shown with the data originally obtained by photographic

methods (×) at these conditions [6,7]. For clarity only every

third data point of the new data is shown.

this laboratory at 22°C, 5% NaCI, pH 4.0 using

photographic techniques [6,7] arc also shown with
the new data. The earlier data had somewhat

more scatter and were collected at higher super-

saturations, making it easier to "see" a straight

line. The newly acquired data, covering a larger
range of growth rates, in fact cannot be fit to a

straight line. This non-linearity of the log-log

plots was found in data obtained under all condi-

tions investigated, for both the (110) and the

(101) faces. Hence, this and subsequent such log-
log plots are .presented solely to enable visual

comparison of the effects of the growth condi-

tions on data covering four orders of magnitude
in growth rates.

Tetragonal lysozyme solubility decreases with

decreasing temperature and/or increasing salt
concentration [8]. Fig. 3a shows the (110) face

growth rates obtained at 4, 14, 18, and 22°C and

plotted using a linear concentration axis. As would
be expected, decreased temperatures resulted in

higher growth rates, although the available range

of growth rates is dependent upon the protein

concentration. However, when the concentration

is replaced by a supersaturation ratio, as shown in

Fig. 3b, a progressive shift in the curve to the
right with decreasing temperatures was found.
This effect was also observed with the data for

the (101) face growth rates (not shown). Note that

for clarity the data in Fig. 3a are truncated at 35

mg/ml, and those in Fig. 3b are truncated at

C/C_., <_ 20.
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Concentration, mg/ml Supersaturation. C/Csat

Fig. 3. The effects of temperature on (110) face growth rates

obtained at 5% NaCI. The averaged growth rates are shown

for clarity. Panel (a) has a linear concentration axis, showing

that with decreasing temperatures one does obtain higher

growth rates. Panel (b) shows the same data on a supersatura-

tion scale, showing that conditions which result in a lower

saturation concentration also result in higher supersaturations

being required for a given growth rate. Also note that the axes

have been truncated in both cases to emphasize the data at

the low concentration/supersaturation. Legend; 4°C ( x ); 14°C

( zx ); 18°C (e); 22°C (©).

The effect of increasing salt concentration was

similar to that for decreased temperature. Fig. 4a

shows (110) growth rate data obtained at 22°C

using 3%, 5%, and 7% NaCI concentrations.

Again, a linear concentration axis shows the ex-
pected effects of decreased solubilities on the

growth rate at a fixed protein concentration.

However, as shown in Fig. 4b, there is again a

progressive shift in the curves to the right with

_0 -2.0

E
::1.

-3.0
d

2
-4.0

f--

0 -5.0

o -6.0
4 8 12 16 20

Supersaturation, C/Csot

Fig. 5. Asymmetry in the (110) and (101) face growth rates of

tetragonal lysozyme at 22°C. Legend; (110) face, 3% NaCI (e);

(101) face, 3% NaCI (o); (110) face, 7% NaCI (A); (101) face,

7% NaCI ( zx ).

increased salt concentration (decreased solubility)
when a supersaturation ratio is used.

Previous research had shown an asymmetry in
the growth rates of the (110) and (101) faces as a

function of concentration. This results in crystals

grown at lower supersaturations being elongated

along the four-fold axis, while those grown at
high supersaturations were flattened [5]. This ef-

fect was only marginally present for crystals grown
from a 5% NaC1 solution (all temperatures) at

pH 4.0. Crystals grown at 22°C, 3% and 7%

NaC1, did show this asymmetry, as shown in Fig.
5.

-2'

" -3 _

¢'- -4

o -_

O

-J -7

8

o

o

(o)

8_°_ _

o _

o_

(b)

0 20 40 60 80 100 5 10 15 20

Concentration, mg/ml Supersaturation, C/Csot

Fig. 4. The effects of salt (precipitant) concentration on the

(110) face growth rate of tetragonal lysozyme at 22°C. As in

Fig. 3, the averaged growth rates at each concentration are

plotted for clarity. In (a) growth rate is plotted as a function

of concentration, in (b) as a function of the supersaturation

ratio (C/Q_t). As with Fig. 3, the x-axis on panel (b) has

been truncated to emphasize the low supersaturation data.

Legend; 7% (x), 5% (z_), and 3% (o) NaCI.

4. Discussion

In previous work we have proposed that the

growth of tetragonal lysozyme crystals proceeds

by addition of (unit cell-sized) ordered aggregates

which are pre-formed in the bulk solution [16].

Evidence for this comes from the high supersatu-

rations required for any appreciable growth rates
(refs. [1,3,6,7,12] and this work), the unit cell

sized growth steps found on the lysozyme crystal

faces [1], and the large degree of aggregation
which has been observed, even below the satura-

tion concentration, by light scattering intensity

and dialysis kinetics measurements [16,17]. Re-

cently, more direct support of this mechanism has

come from neutron scattering studies by Bou6 et

al. [18], who found aggregation sufficient to give a
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net molecular size of dimers by saturation. Ag-

gregation to this extent at saturation would be

much greater at the high supersaturation ranges

employed in tetragonal lysozyme crystal growth.
This means that we do not know the true growth

unit concentration, whether growth is by mono-

mer or by aggregate addition. Not knowing the

true growth unit or its concentration means in

turn that the true supersaturation is not known,

but only an apparent supersaturation based upon
assuming that all soluble protein is monomeric.

Given these uncertainties, any growth mechanism

interpretations for tetragonal lysozyme based

solely upon a supersaturation ratio and face

growth rate data fit to a model equation cannot
be valid.

It is obvious from our results that conditions

which cause a decrease in C_,_ result in a shift of

the growth rate versus supersaturation curve to-

wards lower growth rate values. Growth at the

lowest possible supersaturations can only be
achieved at conditions which give the highest

solubilities, in this case at high temperatures and

low salt concentrations. However, an upper limit

of ~ 25°C exists, varying with the salt concentra-

tion and pH, as one then enters the orthorhombic

region of the phase diagram [19].
The effects of both decreasing temperature

and increasing precipitant concentration appear
counter-intuitive. The lower solubilities suggest

an increased preference of protein-protein ver-

sus protein-solvent interactions. However, the

growth rate data imply that the reverse is true,
with higher supersaturations (the driving force for

crystal growth) required. Lower temperatures

strengthen ionic, hydrogen, and Van der Waals
interactions, while weakening hydrophobic inter-
actions. Increased salt concentrations would also

disrupt ionic interactions and strengthen hy-

drophobic bonds. However, a review of the inter-

molecular bonds in tetragonal lysozyme shows
that there are no hydrophobic interactions [20].

From the solubility data [8], and assuming that

Keq = 1/C_,t, calculated values for AG' at 22 and
4°C (5% NaC1 concentration) are -5151 and

-5963 cal/mol, respectively, which show the ex-

pected trend with temperature. Lower tempera-
tures will also lower the probability of overcom-

ing the activation energy barriers for the pro-

cesses by which the soluble monomers become

incorporated into the crystal lattice. Thus, while a

process (formation of a crystal lattice) may be
more favored at lower temperatures (i.e., has a

lower solubility), the rate at which this process

goes to equilibrium will be governed by the rate
at which the activation energy barrier can be

overcome. If tetragona[ lysozyme crystal growth

does proceed by addition of aggregates formed in

the solution, then a decrease in the rate of sur-

mounting this barrier at lower temperatures may

primarily affect one or more stages in aggregate
formation as well as the actual incorporation

step.
The effects of increased precipitant concentra-

tion mimic those of increased temperature. Bou6

et al. [18] observed that "for the same degree of

supersaturation the mean size of species in solution

are larger for a lower salt content ", the net effects
which would be expected from the processes dis-

cussed above. Thus it would appear that the

overall effects of temperature and salt concentra-

tion may be expressed the same way, through
effects on the rate and equilibrium constants of

the species in solution as well as the attachment

kinetics of the growth units.
Durbin and Feher found a lower surface en-

ergy, i.e. apparently weaker bonding of the growth
unit, for both the (110) and (101) faces with

increasing salt concentration [5]. We find that at

low solubility conditions commonly employed in

tetragonal lysozyme crystal growth, the CI- ion

apparently occupies all available sites on the solu-

ble lysozyme surface, and that the process of
crystal nucleation and growth involves the replac-

ing of protein-Cl- with protein-protein bonds

(work in progress). Increased CI- concentrations
would result in more lysozyme being driven from

solution as indicated by the solubility diagram.

However, higher salt concentrations also weaken

interactions between charged groups. Again, the

new protein-protein bonds must compete with

the large excess of CI to form, and be more

easily disrupted by it after formation.

Temperature control has been cited as a means
of dynamically decoupling protein crystal nucle-

ation from growth and of controlling the growth
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process [21,22]. However, examination of the data

in Fig. 3 shows that one must be selective about

the protein concentrations used when employing
temperature. Temperature control is more effec-

tive the lower the protein concentration. Above

~ 15-20 mg/mi one can only hope for about a

10 x or less range in growth rate control over the

14-22°C temperature range. Similar effects are
seen in the (101) growth rate data. Monaco and

Rosenberger have shown decreased (101) growth

rates at higher supersaturations [3].

Standard hanging drop type protein crystal

growth experiments involve changing both the
precipitant and the protein concentrations two-

fold by the vapor-phase removal of water. From

Fig. 4 one can clearly see the large effects this

would have on the (110)growth rate of tetragonal

lysozyme crystals. Even slight changes in the salt
concentration, with their accompanying changes

in protein concentration during a hanging drop

type of experiment, will drastically affect the

growth rates. While methods can be devised for

changing the precipitant concentration while

holding the protein concentration constant, in
this instance this is clearly the least desirable

method for controlling the crystal growth process.
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