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(ABSTRACT) 

Design for prevention of aeroelastic instability (that is, the critical speeds 

leading to aeroelastic instability lie outside the operating range) is an integral part 

of the wing design process. Availability of the sensitivity derivatives of the various 

critical speeds with respect to shape parameters of the wing could be very useful 

to a designer in the initial design phase, when several design changes are made and 

the shape of the Ed configuration is not yet frozen. These derivatives are also 

indispensable for a gradient-based optimization with aeroelastic constraints. 

In this study, flutter characteristic of a typical section in subsonic com- 

pressible flow is examined using a state-space unsteady aerodynamic represen- 

tation. The sensitivity of the flutter speed of the typical section with respect to 

its mass and stiffness parameters, namely, mass ratio, static unbalance, radius 

of gyration, bending frequency and torsional frequency is calculated analytically. 
- 

A strip-theory formulation is newly developed to represent, the unsteady aerody- 

namic forces on a wing. This is coupled with an equivalent plate structural model 

based on a Rayleigh-Ritz formulation and the aeroelastic equations ,are solved as 

an eigenvalue problem to determine the critical speed of the wing. The sensitivity 



of divergence and flutter speeds to shape parameters, namely, aspect ratio, area, 

taper ratio and sweep angle are computed analytically. The aeroelastic equations 

are also integrated with respect to time using the Wilson-6 method at different 

values of freestream speed, to observe the aeroelastic phenomena in real time. 

Flutter analysis of the wing is also carried out using a lifting-surface subsonic 

kernel function aerodynamic theory (FAST) and an equivalent plate structural 

model. The flutter speed is obtained using a V-g type of solution. The novel 

method of automatic differentiation using ADIFOR is implemented to generate 

exact derivatives of the flutter speed with respect to shape and modal parameters 

of the wing. 

Finite element modeling of the wing is done using NASTRAN so that wing 

structures made of spars and ribs and top and bottom wing skins could be analyzed. 

The free vibration modes of the wing obtained from NASTRAN are input into 

FA4ST to compute the flutter speed. The derivatives of flutter speed with respect 

to shape parameters are computed using a combination of central difference scheme 

and ADIFOR and the sensitivity to modal parameters is calculated using ADIFOR. 

An equivalent plate model which incorporates first-order shear deformation 

theory is then examined so it can be used to model thick wings, where shear 

deformations are important. The sensitivity of natural frequencies to changes 

in shape parameters is obtained using ADIFOR. -4 simple optimization effort is 

made towards obtaining a minimum weight design of the wing, subject to flutter 

constraints, lift requirement constraints for level flight and side constraints on the 

planform parameters of the wing using the IMSL subroutine NCONG, which uses 

successive quadratic programming. 
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CHAPTER 1 
INTRODUCTION 

1.1 BACKGROUND 

Since aircraft structures are flexible and they deform under the aerodynamic 

loads encountered during fight, studies on structure-fluid interactions and the re- 

sponse of the aircraft structure under these conditions are very important. The 

interaction between the elastic forces and the aerodynamic forces on a flexible 

structure in motion alters its vibration characteristics. In an aircraft structure, for 

example, the lift forces and moments on the wing are modified by the elastic defor- 

mation of the structure and the new airloads, in turn, produce a new deformation 

pattern. The aerodynamic forces causing the deformation are proportional to the 

square of the velocity, whereas the elastic restoring forces are proportional to the 

stiffness of the structure. Therefore, at speeds above the critical speeds, when 

the aerodynamic forces exceed the elastic restoring forces or when the structure 

undergoes oscillations of increasing amplitude forced by the oscillatory unsteady 

airloads, aeroelastic instabilities E1-31 like divergence and flutter occur. 

In a multidisciplinary design environment, the problems involving interac- 

tions between two or more disciplines have to be addressed. Design for aeroelastic 

stability of an aircraft is an integral part of the wing design process. It is impera- 

tive during aircraft design that the critical speeds leading to instability lie outside 

the operating range of the aircraft. The structural and aerodynamic character- 

istics of a wing are functions of its shape and hence the aeroelastic response is 
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sensitive to changes in shape parameters. Sensitivity analysis is an important tool 

which yields information about the dependence of the aeroelastic instability on the 

design parameters of the wing. 

Sensitivity derivatives of the aeroelastic response of a wing with respect to 

its shape parameters are very useful for preliminary design purposes. In concep- 

tual and preliminary design, shape variations of the airplane should be considered, 

before the shape of the configuration is frozen. The generalized unsteady aerody- 

namic forces need to be updated with changes in wing planform and have to be 

evaluated at several values of reduced frequencies before an aeroelastic analysis can 

be performed. However, if the sensitivity derivatives are computed at the baseline 

configuration, it gives a linear approximation to the aeroelastic response curve and 

can be used for small changes in the shape design parameters from the baseline, 

without having to perform a reanalysis at the new configuration. 

Sensitivity derivatives are also of great importance in multidisciplinary design 

optimization. It is very beneficial in regards to time and cost, when an integrated 

multidisciplinary design and synthesis approach is followed, where all the relevant 

disciplines are considered simultaneously [4-61. The systems that are decompos- 

able into top-down hierarchy of engineering disciplines and subsystems may be 

optimized by multilevel procedure made up of suboptimizations performed concur- 

rently at each level of the hierarchy and linked by optimum sensitivity derivative 

information [?I. In a gradient-based optimization with aeroelastic constraints, the 

sensitivity derivatives of the aeroelastic response of a wing will comprise the local 

sensitivity information at the subsystem level. 
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The sensitivity derivatives of a system can be found using either analytical 

or finite difference methods. Analytical sensitivity analysis has found increased 

interest in engineering design as it eliminates uncertainity in the choice of step size 

needed in the finite difference method. The step size if too large leads to truncation 

errors and if too small leads to ill-conditioning. 

1.2 LITERATURE REVIEW 

1.2.1 AEROELASTIC ANALYSIS 

The various methods that are used for aeroelastic analysis of a typical section 

or a wing differ in the prediction of aerodynamic loads. For many years, aeroelastic 

analysis has been performed using linearized aerodynamic and structural theories 

[8-121. To generate sensitivity derivatives for use in preliminary design or an opti- 

mization routine. reasonably quick and accurate methgds for aeroelastic analysis 

are desired. The lift and moment predictions on an airfoil undergoing harmonic 

motion have been obtained by Theodorsen [13]. Several CFD methods which are 

used to determine the transonic flowfield around two dimensional airfoils are listed 

by Ballhaus and Bridgeman [14] and used in [15-171. 

In recent years, considerable effort has been made to integrate the aerody- 

namic, structural and control aspects of the design of an aircraft. Livne e t  ad 

[ 181 comment that for integrated multidisciplinary wing synthesis, where design 

for aeroservoelastic stability is an objective, it is required to represent the aeroe- 

lastic equations of motion in Linear Time Invariant (LTI) state-space form. The 

unsteady aerodynamic loads on the wing can be represented in a state-space form, 
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thereby adding only a small number of states to the mathematical model of the 

aeroservoelastic system. 

The unsteady aerodynamic loads on a typical section in response to an arbi- 

trary forcing can be represented through the use of indicial (step) response func- 

tions [19]. The indicial response method is a fundamental approach to the problem, 

and affords considerable insight into the physical aspects of unsteady airfoil flow. 

One main advantage of the approach is that when the indicial response to a par- 

ticular forcing mode is known, e.g., that due to angle of attack or pitch rate, the 

cumulative response to an arbitrary forcing can be obtained in the time-domain 

by means of Duhamel superposition. Indicia1 response for an incompressible flow 

was obtained theoretically by Wagner [20]. Jones [21] used a two-pole exponential 

approximation to the Wagner function. Venkatesan and Friedmann [22] have given 

a three-pole indicial response function that can express the Theodorsen’s function 
-_ . 

over the entire reduced frequency range. 

Leishman and Nguyen [23] have represented the aerodynamic indicial re- 

sponse functions for compressible flow by upto three-pole approsimations, the 

response consisting of two parts, one due to non-circulatory loading and the other 

due to circulatory loading. This has advantages over the CFD-based methods 

in the sense that the CFD methods are in general computationally very expen- 

sive. The state equations describing the unsteady aerodynamic response can be 

obtained by direct application of Laplace transforms to these indicial response 

functions 124,251. State-space representation of aerodynamic characteristics of an 

aircraft at high angles of attack considering flow separation arid flow with vortex 

breakdown has been presented by Goman and Khrabrov [26]. 
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Aerodynamic methods based on strip-theory formulations [27,28] and ad- 

vanced codes such as XTRAN3S [29] and CAP-TSD 1301, which use the transonic 

small disturbance equation are currently being used for aeroelastic analysis. Lin- 

ear lifting-surface theories such as the Doublet Lattice method [31,32] and Kernel 

function methods [33,34] give adequate prediction of aerodynamic loads required 

for aeroelastic analysis in the subsonic and supersonic regimes. 

1.2.2 SENSITIVITY ANALYSIS 

Sensitivity analysis is becoming an important design tool in engineering de- 

sign applications. It was first recognized as a useful tool for assessing the effects 

of changing parameters in mathematical models of control systems. The gradient 

based mathematical programming method used in optimal control and structural 

optimization furthered the development of sensitivity derivatives, because sen- 

sitivity derivatives are used in search directions to find optimum solution [35]. 

Sensitivity analysis has also become a versatile design tool, rather than just an 

instrument of optimization programs [36], Sobieski [37] discusses in detail about 

the System Design Derivatives which help in understanding the effect a particular 

design variable would have on the desired performance of the system, if it were 

perturbed by a small percentage from its original value. 

Adelman and Haftka [36] have shown that structural sensitivity analysis has 

been available for over two decades. Rudisill and Bhatia [38] developed expressions 

for the analytical derivatives of the eigenvalues, reduced frequency and flutter speed 

with respect to structural parameters for use in minimizing the total mass. Nlurthy 
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and Haftka 1391 have presented a survey of methods for calculating sensitivity of 

general eigenproblems. Eigenvalue and eigenvector derivatives for general matrices 

are discussed and various approximation methods for eigenvalues are proposed and 

evaluated by Murthy [40]. Pedersen and Seyranian [41] examined the change in 

flutter load as a function of change in stiffness, mass, boundary conditions or load 

distribution. They performed sensitivity analysis without resorting to any new 

eigenvalue analysis. The solution to the main and a adjoint problem provide all 

the necessary information for evaluating sensitivities. Their paper mainly focused 

on column and beam critical load distributions. 

Hawk and Bristow [42] developed aerodynamic sensitivity analysis capabili- 

ties in subcritical compressible flow. They first analyzed a baseline configuration, 

and then calculated a matrix containing partial derivatives of the potential at each 

control point with respect to each known geometric parameter by applying a first 

order expansion to the baseline configuration. The matrix of partial derivatives is 

used in each iteration cycle to analyze the perturbed geometry. However, this anal- 

ysis only handles chordwise perturbation distributions, such as changes in camber, 

thickness and twist. Another approach has been presented by Yates [43] that con- 

siders general geometric variations, including planform, and subsonic, sonic and 

supersonic unsteady, nonplanar lifting-surface theory. 

Recently, Livne e t  al [44] applied an equivalent plate structural modeling, 

which includes transverse shear, to an HSCT wing. Simple polynomials were used 

for Ritz functions and depth and thickness distributions. The derivatives of the 

stiffness and mass matrices were obtained analytically with respect to the shape 
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variables of the wing. Livne [45] observed that as higher order polynomials are 

used for better modeling of the structure, the more sensitive is the finite difference 

derivative to the step-size used and in some cases, it is impossible to obtain any 

valuable information by h i t e  differences. 

Barthelemy and Bergen [46] explored the analytical shape sensitivity deriva- 

tives of the wing’s aeroelastic characteristics, such as section lift, angle of attack, 

rolling moment, induced drag and divergence dynamic pressure, for subsonic sub- 

critical flow, with respect to geometric parameters. Results showed the charac- 

teristics nonlinearity to be small enough to be well approximated by sensitivity 

based linear approximations. These approximations are valid within a range that 

is useful to designers in the initial design phase. 

Kapania [471 has obtained sensitivity derivatives of the flutter speed of a two 

dimensional airfoil in incompressible flow with respect to the mass and stiffness 

parameters. Kapania, Bergen and Barthelemy [%] have obtained the shape sen- 

sitivity derivatives of the flutter response of a laminated wing in incompressible 

flow. In this work, Yates’ modified strip analysis [48] was used for the aerodynamic 

model in conjunction with Giles’ equivalent plate analysis [49,50] for the structural 

model. 

1.2.3 MULTIDISCIPLINARY OPTIMIZATION 

Research carried out on structural design optimization under various static 

and dynamic behavior constraints including flutter and static aeroelastic con- 

straints has been presented in [51-651. Rudisill and Bhatia [38] used projected 
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gradient search to arrive at a relative optimum design of the structure for a speci- 

fied minimum flutter velocity. Further, they made use of second derivatives of the 

flutter velocity with respect to structural design parameters to reduce design cycles 

[66]. Haftka E671 has written a survey paper on application of structural optimiza- 

tion techniques to problems of design under aeroelastic constraints. Haftlca and 

Yates [68] adopted a method of avoiding repetition of calculations which do not 

depend on the structural sizes, when repeated flutter calculations have to be made. 

Haftka and Prasad 1691 resorted to computing vibration modes only periodically. 

For intermediate calculations, old modes were used as generalized coordinates to 

calculate approximate new modes, thus mostly avoiding the expensive direct vi- 

bration modes calculation. 

Sensitivity derivatives are of great importance in integrated multidisciplinary 

design optimization of aircrafts. More attention is directed towards multidisci- 

plinary structural/aerodynamic synthesis of wings [70-721. Karpel [73] used a 

gradient-based constrained optimization on a composite active-flexible wing to 

achieve aircraft performance requirements and sufficient flutter and control sta- 

bility margins with a minimum weight penalty and without violating the design 

constraints. The sensitivity derivatives of the flutter dynamic pressure, control 

stability margins and control effectiveness with respect to structural and control 

design variables were obtained analytically. 

Hajela et  a2 [74] applied Sobieski’s Global Sensitivity Equations (GSE) in an 

aircraft synthesis problem where the constraints involved the coupled disciplines 

of structures, aerodynamics and flight mechanics. The coupled system was repre- 

sented by smaller subsystems and the total behavior sensitivities were determined 
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by applying the GSE method. Barthelemy e t  a2 [75] discuss a multidisciplinary 

design optimization method applied to a supersonic transport wing. Aerodynamic 

and structural disciplines are integrated for a minimum weight design under static 

aeroelastic constraints. The authors point out that as the number of dependent 

variables in each discipline becomes large, the calculation of the finite difference 

derivatives contributes substantially to the total optimization cost. 

1.3 OBJECTIVES 

The primary objective of this research is to calculate sensitivity derivatives 

of aeroelastic responses at the critical condition (Le., flutter and divergence) of a 

wing for use in preliminary design or a multidisciplinary optimization with aeroe- 

lastic constraints. Though advanced finite element structural modefs and com- 

putational fluid dynamics (CFD) models can be adopted for a detailed analysis, 

simpler structural and aerodynamic models are desired for aeroelastic analysis at 

the preliminary stages of design. Both equivalent plate and finite element models 

are used in this study for structural modeling and strip-theory and lifting-surface 

theory are used for the unsteady aerodynamics. Since analytic expressions exist for 

computing the derivatives of the eigenvalues of a general matrix, if the aeroelastic 

stability problem is solved as an eigenvalue problem, then sensitivities of the criti- 

cal speeds with respect to various wing parameters must be computed analytically 

whenever possible so that finite difference methods do not have to be resorted to. 

With this objective in mind, the sensitivity derivatives of the critical speeds have 

been calculated analytically as well as using automatic differentiation. 
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In Chapter 2, the onset of aeroelastic instability of a typical section in sub- 

sonic compressible flow is determined using a state-space unsteady aerodynamics 

representation. The sensitivity of flutter speed with respect to the mass and stiff- 

ness parameters are calculated analytically. A strip-theory aerodynamic formula- 

tion based on this state-space model is coupled with an equivalent plate structural 

model to determine the critical speed of a wing in Chapter 3. The sensitivity 

of divergence and flutter speeds to shape parameters, namely, aspect ratio, area, 

taper ratio and sweep angle are computed analytically. The aeroelastic equations 

are also integrated with respect to time using the Wilson-6 method. Flutter anal- 

ysis is carried out using a lifting-surface aerodynamic theory in Chapter 4, and 

the sensitivity of flutter speed to shape and modal parameters is computed using 

automatic differentiation (ADIFOR). Finite element modeling of wings is resorted 

to in Chapter 5 for structural modeling to generate the free vibration mode shapes 

required for aeroelastic analysis. The derivatives of flutter speed with respect to 

shape parameters are computed using a combination of central difference scheme 

and ADIFOR and the sensitivity to modal parameters are calculated using ADI- 

FOR. An equivalent plate model incorporating first-order shear deformation theory 

is used in Chapter 6 for structural modeling and the natural frequencies and flut- 

ter speeds obtained using the first-order shear deformation theory are compared 

with those obtained using the classical laminated plate theory. The sensitivity of 

natural frequencies to changes in shape parameters is obtained using 4DIFOR. 

In order to demonstrate the use of shape sensitivities, an optimization problem of 

minimum weight design of a wing subject to flutter constraints is also presented. 
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CHAPTER 2 
SENSITIVITY OF AEROELASTIC RESPONSE 

OF A TYPICAL SECTION 

2.1 OVERVIEW 

In recent years, considerable effort has been made to integrate the aerody- 

namic, structural and control aspects of the design of an aircraft. Since the control 

and the structural dynamic behaviors can easily be expressed in the state-space 

form (i.e., in terms of a set of first order ordinary differential equations in time), it 

is desirable that the unsteady aerodynamic airloads be also expressed in the same 

form. 

The state-space approach has the advantage that any system of differential 

equations can be represented by a set of first order ordinary differential equations 

of the form 

k = AX + Bu 

with the output equations given by 

y = C x + D u  (2.1) 

where x are the aerodynamic state variables, u are the system inputs and y are 

the system outputs. If the unsteady aerodynamic behavior can be represented 

by state equations, then they can be easily coupled to the structurzl equations of 

motion and the resulting system can be examined for aeroelastic stability. 
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The unsteady aerodynamic loads on a typical section in response to an arbi- 

trary forcing can be represented through the use of indicial (step) response func- 

tions. By definition, an indicial function is the response to a disturbance that is 

applied instantaneously at time zero and held constant thereafter, i.e., a distur- 

bance given by a step function. A main advantage of the approach is that when 

the indicial response to a particular forcing mode is known, (e.g., that due to angle 

of attack or pitch rate) the cumulative response to an arbitrary forcing function 

can be obtained in the time-domain by means of Duhamel superposition. For in- 

compressible flow, the indicial lift response was first derived by Wagner [20] and 

is known exactly in terms of Bessel functions. However, since it is impractical 

in several applications to repetitively evaluate the Bessel functions, the Wagner 

function is usually approximated using sum of exponential functions. For example, 

Jones [21] used a two-pole exponential approximation to the Wagner function [20] 

given by 

$(S) = 1 - 0.165exp( -0.0455s) - 0.335ezp( -0.35) { 2.2 j 

where S = 2Vt/c, V is the freestream velocity, t is the time and c is the chord. 

The state equations describing the unsteady aerodynamic response can then be 

obtained by the application of Laplace transforms to these indicial functions. The 

resulting state equations are 

- 

(2.3) 0 
-0.01375( F)2 

with the output equation given by 

2V 2V 
Cru(t) = 271.[0.006825( --j2 C O.lOSOS( -)I C { :i } + 0 . 5 ~ 3 / 4 ( t )  (2.4) 
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where CN is the normal force coefficient and a ! 3 / 4 ( t )  is the quasisteady angle of 

attack at 3/4 chord. 

2.2 AERODYNAMIC MODEL 

In this analysis, the state-space representation given by Leishman and 

Nguyen [23] has been used to represent the compressible unsteady aerodynamics. 

They have represented the aerodynamic indicial response functions for compress- 

ible flow by up to three-pole approximations, the response consisting of two parts, 

one due to non-circulatory loading and the other due to circulatory loading. The 

indicial normal force and quarter chord pitching moment responses for a typical 

section to a step change in angle of attack a! and a step change in pitch rate q can 

be written as [23] 

(2.5) 

where d,, C I  d , ,  d L M l  4, c r c  , $,, d q M ,  4iM axe exponential functions of S and M .  Here, 

lL.f is the Mach number, q = &c/V is the pitch rate, CN is the normal force 

coefficient, CM is the pitching moment coefficient about the quarter chord and 

CN, is the normal force curve slope. The superscripts C and I refer to circulatory 

and non-circulatory components of the indicia1 response functions. 'Note that 

(where p = I/- is the compressibility factor) in [23] has been replaced by 
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CN, ( M ) 7  so that experimental values of CN, obtained as functions of Mach number 

can be used. 

The aerodynamic state equations have been shown by Leishman and Nguyen 

1231 to be given by 

i = A x + B {  ;} 
where 

A = diag[ all a22 a33 a44 a55 a66 a77 a88 ] 

I' 1 1  1 0 1 1 0 0  
B = [  0.5 0.5 0 1 0 0 1 1 

The output equations are given by 

(2.7) 

where 

The nonzero terms of the a;j's and ci j 's  are given in the Appendix. 

2.3 AEROELASTIC MODEL 

The aerodynamic equations in state-space form can be coupled to the struc- 

tural equations of motion of an airfoil section with bending and torsional degrees 

of freedom. The equations of motion for the airfoil section shown in Fig. 2.1 can 
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where m = rpp(c /2 ) '  is the mass per unit length, ,Y is the mass ratio, p is the air 

density, IO = r n ( ~ / 2 ) ~ r ;  is the polar moment of inertia about the quarter chord 

per unit length, re is the radius of gyration about elastic axis, SO = m(c/2)se 

is the static mass moment, is the nondimensional distance in semichords from 

elastic axis to center of mass, c is the chord length, lz is the plunge displacement 

(positive downward), 6' is the pitch angle, wh and we are the bending and torsion 

frequencies respectively, gh and are the structural damping coefficients in plung- 

ing and pitching respectively and &h and &e are generalized aerodynamic forces 

in plunging and pitching respectively. 

By defining the states 

the above equations can be written as 

where 

(2.9) 

(2.10) 

In order to couple the structural and aerodynamic equations, the input vector 

can be expressed in terms of the z states as given below 

(2.11) 
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The aerodynamic state equations and the output equations then respectively be- 

come 
2 = Ax + [Bi B!Jz 

Q = C’x + [Di D ~ ] z  
(2.12) 

where A is a diagonal 8x8 matrix, B: and Bb are 8x2 matrices, C‘ is a 2x8 matrix 

and D: and Db are 2x2 matrices. 

The resulting set of first-order differential equations in terms of the z and x 

states are given by 

which is a 12x12 system of linear equations. The stability of the system could be 

determined at different free-stream speeds by an eigenanalysis of the above system 

of equations. The flutter speed is that particular value of the free-stream speed at 
- -~ 

which the real part of the eigenvalue approaches zero. 

2.4 SENSITIVITY EQUATIONS 

The aeroelastic equations obtained as a set of first order ODES is of the form 

which could be written as 

w = [ E ] w  (2.15) 

where [E] = [P]-l[Q] 

Since the flutter speed is determined by solving the eigenvalue problem, the 

derivatives of the eigenvalues have to be calculated for obtaining the flutter speed 
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derivatives. A number of papers [76-SO] have been published on calculation of the 

derivatives of eigenvalues and eigenvectors of red, symmetric matrices as well as 

general matrices . 

The derivative of the ith eigenvalue for the eigenproblern in equation (2.15) 

with respect to the flutter speed is given by [Sl] 

(2.16) 

where { e t }  and {e;} are the ith left and right eigenvectors respectively, and is 

calculated analytically by differentiating the elements of the matrix with respect 

a Vf 

to Vf. 

Similarly, the derivative of the ith eigenvalue with respect to any parameter 

p is given by 

can be conveniently written as aP 

and can be computed analytically, where 

(2.17) 

(2. IS) 

(2.19) 

The ith eigenvalue X i  is a function of the speed V and the parameter p which 

are varied. That is, 

x i  = Xi(V,p)  (2.20) 
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Therefore, 

dXi = -dV dXi + -dp dXi 
dV a P  

(2.21) 

At the critical condition (V = V f ) ,  the real part of the eigenvalue goes to zero. 

Therefore, 

Real(Xi) = 0 ,  ReaE(dXi) = 0 (2.22) 

Thus we have, 
a?; dXi 
avf 8 P  

0 = Real( -)dVf + Real( -)dp (2.23) 

The analytical derivative of the flutter speed with respect to parameter p is 

then given by 

(2.24) 

The [E] matrix is composed of mass, stiffness and aerodynamic matrices. 

Obtaining the analytical derivatives of the mass, stiffness and aerodynamic terms 
__. 

with respect to any parameter p is straightforward for the typical section. This 

is done by computing analytically the derivatives of those terms that are explicit 

functions of the desired parameters. 

2.5 AEROELASTIC ANALYSIS 

An aeroelastic formulation in the time-domain leads to a set of first-order 

ordinary differential equations (ODES) which can be solved by time-integration or 

as an eigenvalue problem to examine the stability of the system. 
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2.5.1 EIGENVALUE SOLUTION OF THE AEROELASTIC EQUATIONS 

The flutter characteristics of the airfoil are found by calculating the complex 

eig€!nVdUeS x k  = a k  + iwk at Various d u e s  of free stream velocity. Flutter occurs 

at the lowest speed for which any ak becomes positive. 

The flutter speed was determined for the following case, the results for which 

have been presented by Leishman and Crouse [82]. The parameters used are p = 

100, xg = 0.25, re = 0.5, wh = 10 radls., we = 50 rad/s. ,  ah = -0.5,b = 

5 in., CN, = 14.65, x,, = 0.286, P!. = 0.85. Flutter was found to occur at 92.34 

ft/s., Le., a non-dimensional speed of V/bw0=4.43 which agrees well with the value 

of V/bwg=4.4 reported in [82]. 

The damping ratio for each of the aeroelastic modes is given by 

(2.25) < k = - d n  ak 
a]E + Wk _ _  

A plot of the variation of the damping ratio ( with non-dimensional speed V/bwe 

is given in Fig. 2.2. Fig. 2.3 shows the variation of flutter speed predicted by this 

method for different values of wh/wg. 

2.5.2 TIME INTEGRATION OF THE AEROELASTIC EQUATIONS 

Several numerical integration techniques [83-851 exist for step-by-step solu- 

- 

tion of these equations. The aeroelastic equations are integrated with respect to 

time using a time-integration scheme. The Wilson4 method [85] was used for this 

purpose. A set of first order ODES can be represented as 

[ R W I  = [Sib) (2.26) 
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In the Wilson-6 method, it is assumed that the variation of velocity from time t 

to t + BAt, where 6 2 1.37, is linear. At time ( t  + BAt), then 

Then equation (2.26) becomes 

Using the starting values of {ut}  axid {u:} at time t ,  {u{+eat) 

(2.27) 

(2.28) 

is computed from 

equation (2.28). The vector {ut+ent} is then calculated from equation (2.27). The 

new values of {ut+eat) and { u ~ + ~ ~ ~ }  are then used in equation (2.28) to update 

the {ui+eat} vector. The step-by-step integration of the equations is done in this 

manner with respect to time by repeating the above process. The amplitudes of 

displacements are then monitored as time progresses. 

Flutter for the typical section (see section 2.5.1) was found to occur at 92.34 

ft/s., i.e., a non-dimensional speed of V/bwg=4.43. A time-integration of the 

first order ODES representing the aeroelastic system was done using the Wilson-6' 

method. The plunge and pitch amplitudes of motion are plotted with respect to 

time in Figs. 2.4 and 2.5 respectively, at three different non-dimensional speeds, 
- 

including the-flutter speed. It can be seen that at speeds below the flutter speed, 

the oscillations that are set in due to any initial disturbance given to the airfoil die 

out as time progresses, whereas, at speeds above the flutter speed, the displace- 

ment amplitudes increase with time, leading to instability. At the flutter speed, 

the oscillations are able to maintain a constant amplitude, denoting a neutrally 

stable condition. 
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2.6 SENSITIVITY RESULTS 

The sensitivity of flutter speed with various parameters namely p,  .re, rg, wh 

and wg was calculated by both analytical and finite difference methods. In the an- 

alytical method, the derivatives of the [E] matrix (see section 2.4) with respect 

to the above mentioned parameters were calculated analytically. The finite dif- 

ference derivatives were calculated for step sizes of 1%, 0.1% and 0.01%. The 

parameters were perturbed one at. a time using these step sizes and the flutter 

speed recomputed. A forward difference scheme was then applied to compute the 

derivatives. It can be seen from the results shown in Table 2.1 that the forward 

difference derivatives obtained using a step size of 0.01% have good agreement with 

the analytical values. 

Figs. 2.6-2.10 show the variation of flutter speed obtained by eigenanal- 

ysis with respect to various parameters. In each case, the sensitivity derivative 

computed at the baseline configuration is also shown. The sensitivity derivative 

computed forms a tangent to the flutter speed curve at the baseline, and in some 

cases, the linear approximation given by the sensitivity analysis approximates the 

flutter speed curve very closely, over the entire range of the parameter that is 

varied. 
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Fig. 2.1 Two degree of freedom airfoil 
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Table 2.1 Sensitivity of flutter speed with respect to various 
parameters at M=0.85 (Logarithmic derivatives) 

( p  = 100, xg = 0.25, re = 0.5, wh = 10 rad/sec., wg = 50 rad/sec., 
b = 5 in., ah = -0.5, Vf = 92.34 ft/sec) 

Parameter 

P 
XO 

re 

wh 

W e  

0.01% 

Analytic Finite Difference 

derivative derivative 

1%" 0.1% 

0.42556 0.42016 0.42499 

-0.68661 . -0.67349 -0.68525 

1.29638 1.28080 1.29474 

-0.471 10 -0.46741 -0.47071 

1.47113 1.45548 1.46948 

0.42548 

-0.68644 

1.29615 

-0.47104 

1.47089 

" indicates step size 
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CHAPTER 3 
SENSITIVITY OF AEROELASTIC RESPONSE OF A WING 

USING TIME DOMAIN APPROACH 

3.1 OVERVIEW 

In the previous chapter, a state-space model for the unsteady aerodynamics 

was used for aeroelastic analysis of a typical section and the sensitivity of flutter 

response to airfoil parameters were computed analytically. An aircraft during flight 

is subjected to unsteady airloads and the unsteady lift forces and moments at any 

spanwise station of the wing can be represented by the state-space formulation for 

the typical section presented earlier. A strip-theory formulation is thus developed 

in this chapter, to represent the unsteady aerodynamic forces on the wing. The 

wing structure is modeled using classical plate theory and is based on a Rayleigh- 
- _ _  

Ritz formulation using Chebyshev polynomials for the wing displacements. The 

structural equations are coupled with the aerodynamic state equations and the 

resulting aeroelastic equations are solved as an eigenvalue problem to examine the 

onset of aeroelastic instability. The equations are also integrated with respect to 

time to observe the aeroelastic phenomena in real time, at speeds close to the 

critical speed. The structural and aerodynamic characteristics of the wing are 

functions of its shape and hence the flutter response is sensitive to changes in 

shape parameters. In this chapter, the sensitivity of aeroelastic response of the 

wing with respect to the shape parameters, namely, aspect ratio, area, taper ratio 

and sweep angle are calculated analytically. 

33 



3.2 STRUCTURAL MODEL FOR THE WING 

The structural formulation is based on a Ritz solution technique using the 

energy functionals for a laminated plate which includes the bending and stretch- 

ing of the reference surface. The planform geometry can be represented by any 

generally tapered skewed configuration. The original rectangular (z, y) coordinate 

system and the transformed (?,[) coordinate system of the wing are shown in 

Fig. 3.1. The z-y plane is the mid-plane of the wing and the z &xis is normal 

to the wing. For an unswept wing the fiber angle is measured counterclockwise 

from the positive y axis. As the wing is swept, the fiber angle is also rotated 

correspondingly. 

In the Rayleigh-Ritz formulation, Chebyshev polynomials T; are used to rep- 

resent the displacements at any point on the wing [86]. The Chebyshev polynomials 

are given by 

The displacements are expressed in terms of the Chebyshev polynomials as shown 

I J  

K L 

h=O I=O 
M N  

(3.2) 

m=O n=O 
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It has been shown by Singhvi and Iiapania [86] that for free vibrations of 

the laminated composite wing (ie., in the absence of aerodynamic forces) the 

equations of motion can be derived using classical plate theory in the form 

where [I?] and [MI are the stiffness and mass matrices, respectively. The vector 

{ q }  is defined as 

Linear and rotational springs of large magnitude are placed at the wing root to 

approximately satisfy the clamped boundary conditions. The stiffness matrix for 

the plate alone (i. e., excluding the springs) is 

where [B] is the matrix whose elements consist of the partial derivatives of the 

Chebyshev polynomials with respect to the natural coordinates q and and is 

defined by 

where 

(3.6) 

The [TI in equation(3.5) is the transformation matrix that relates the strain and 

curvature vector in the (z, y) coordinate system to the strain and curvature vector 
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in the ( q , J )  coordinate system and J is the Jacobian of the transformation. The 

strain transformation is given by 

where 

The details of the [TI and [B] matrices and J axe given in [87]. A typical element 

of the mass matrix [MI is given by . 

J-1 J-1 

The coefficients &j and Ski  in { q }  corresponding to the inplane displace- 

ments in equation(3.3) are condensed out using static condensation to the form 

where [&I] is the mass matrix and [IC] is the stiffness matrix of order (Mfl)x(N+l) 

(see equation(3.2)) with generalized coefficients (I'm,}. In the present work, a 

value of 5 is chosen for both &I and N .  

3.3 AEROELASTIC MODEL FOR THE WING 

The aerodynamic state space model which was used for the aeroelastic anal- 

ysis of a typical section is extended to represent the unsteady aerodynamic forces 

acting on a wing. The lift and moment forces on a typical section acting at the 

quarter chord are given by equation(2.10) as 
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When extending this compressible aerodynamic theory to a finite span wing, 

the lift forces are assumed to be distributed along the quarter chord line (reference 

line) and the moments act about the reference line. Since the lift and moment 

forces are non-conservative forces, using the principle of virtual work, we get 

(3.10) 

where I is the length of the quarter chord line, Sh and SO are virtual displacements 

and i j  is the coordinate along the reference line. 

The displacement at any location i j  is given by 

where 9 and f are the natural coordinates corresponding to the (5, y) coordinates 

of the point at distance ij from the origin. 

The rotation about the reference line (positive wing leading edge up) is given 

6(g) = w,, cos11 - w , ~  sinh (3.12) 

To facilitate numerical integration using Gaussian quadrature, the limits of in- 

tegration along the reference line are transformed in the range of -1 to 1 by 

ij = Z(1f $)/2, where -1 5 111 5 1 

Substituting the expressions for the lift and moment on the wing and the 

wing deflection, we have 
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(3.13) 

where m and n represent the order of the Chebyshev polynomial used in the 

displacement function. The row vectors [Cl,] and [C2,] are the elements of the [C] 

matrix (see section 2.2) where p = 1 ,2 , .  . . ,8. The row vectors [Dlpl]  and [D2pt] 

are the elements of the matrix given by 

wherep'= 1, ..., 4. 

(3.14) 

The variables wlij  and wZij in equation(3.13) are given by 

[Hij] in equation(3.13) is a matrix of order 2xN where N = (rn + l ) (n  + 1). 

A typical coIumn of the matrix is given by 

where L = 1,2,. . . , N. 

The column vector {z} in equation(3.13) is the vector of aerodynamic state 

variables and {P;j P i j } T  is the vector of generalized displacements. 
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Using equations (3.11), (3.12) and (3.13), equation(3.10) can be written as 

N 
SVV,, = QiSPi , N = ( m  + l)(n + 1) (3.17) 

i= 1 

where 

The aerodynamic state equations( 2.6) for a typical section perpendicular to 

the quarter chord line were in the form 

An integration of these state equations along the quarter chord line to consider 

the effect of finite span yields 

(3.19) 

Equations(3.9) can be written as a set of first order ODE'S in {P; j}  and 

{ j i j }  which will be represented by (pi} and { q i } ,  respectively. It can be coupled 

with equations(3.18) and (3.19) to generate the aeroelastic equations of the wing 

in the form 

r o o  I O  
(3.20) 

0 0 1  l3; A' 

Since a Chebyshev polynomial of order 5 is chosen for the displacement function 

in q and E ,  we have 36 generalized coefficients { p i ) ,  their 36 time derivatives (yi) 

and the 8 aerodynamic state variables (z}. The stability of this system can be 

determined by solving this 80x80 eigenvalue problem. 
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3.4 NUMERICAL EXAMPLES 

The natural frequencies and flutter speeds predicted by this aeroelastic state- 

space formulation are compared with previously published results. The aeroelastic 

equations are solved as an eigenvalue problem and also using a time-integration 

scheme. 

3.4.1 EIGENVALUE SOLUTION OF THE AEROELASTIC EQUATIONS 

Before performing the sensitivity calculations of the flutter speed of the wing 

with respect to shape parameters, comparison of natural frequencies and predicted 

flutter speeds was made with other results. The first three natural frequencies of 

an unswept wing and its flutter speed in subsonic flow were compared with results 

reported by Landsberger and Dugundji [88] for different laminate sequences in 

Table 3.1 and Table 3.2. The material used €or the wing is Hercules Graphite 

Epoxy (AS1/3501-6) with properties: El = 98 s lo9 Pa, E2 = 7.9 s lo9 Pa, 

1/12 = 0.28, G12 = 5.6 x lo9 Pa and p = 1520 k9/m3. The thickness of each ply 

is 0.134 x loe3 m. The flutter data used for comparison [88] are the experimental 

results from the wind tunnel tests performed in the MIT Acoustic wind tunnel. 

The results agree fairly well. - 

3.4.2 TIME INTEGRATION OF THE AEROELASTIC EQUATIONS 

The aeroelastic equations are integrated with respect to time to examine the 

effect of time-dependent airloads on the vibration characteristics of the structure. 

This gives insight into the type of response that can be expected from a flexible 
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structure operating at conditions on the verge of instability. One of the features 

of time-integration is that one can observe the aeroelastic response in real time 

(important for studying fatigue) at different airspeeds (i. e., at different freestream 

velocities), than just determining the critical speed at the onset of instability. 

The aeroelastic response of the wing shown in Fig. 3.2 is examined. The 

wing skins are made of 0 deg. laminated Graphite/Epoxy (T300/N5208) with 

the following material properties: El = 181 x lo9 Pa,  E2 = 10.3 x lo9 Pa,  

v12 = 0.28, G12 = 7.17 x lo9 Pa and p = 1600 kg/m3. The aeroelastic analysis 

is carried out at Mach number of 0.7 and pair  = 0.6 kg/m3. In order to observe 

the aeroelastic phenomena in real time, one of the coefficients of the displacement 

function was perturbed and the system of equations was integrated with respect 

to time using the Wilson-8 method, described in Section 2.5.2. The wing tip 

displacement is plotted as a function of time at different speeds in Figs. 3.3-3.9. 

The tip displacement of the 5" swept wing at the divergence speed is shown in 

Fig. 3.3. It can be seen that the displacement approaches a constant amplitude 

at this speed and does not decrease to the zero mean value. Above this speed, the 

displacement increases with time as shown in Fig. 3.4. This is characteristic of 

divergence which is a static instability, and hence of a non-oscillatory nature. The 

small wiggles in the response are due to the dynamic effects. For the '30" swept 

wing, the displacement slowly approaches a constant value at the divergence speed 

as shown in Fig. 3.5. The oscillatory nature is due to the fact that the flutter 

and divergence speeds are close enough. It can be seen that the oscillations die 

clown since the dynamic instability has not yet set in. Fig. 3.6 shows the flutter 
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condition for the 20" swept wing. Since the wing has already diverged at a lower 

speed, we see the constant amplitude oscillations about a diverging mean position. 

This is the condition when a static mode has become unstable and the oscillatory 

mode is neutrally stable. Figs. 3.7, 3.8 and 3.9 show the tip displacement of the 

30" swept wing below the flutter speed, at the flutter speed and above the flutter 

speed, respectively. The oscillations are damped out at low speeds, but at the 

critical speed the structure is able to maintain self-sustained oscillations, and at 

higher speeds, the amplitudes of oscillations rapidly increase with time. 

3.5 SENSITIVITY RESULTS 

The aeroelastic equations (3.20) are a set of first-order ordinary differential 

equations and the procedure for analytically determining the sensitivity of the flut- 

ter speed is described in section 2.4. The expressions for the analytical derivatives 

of the [I?] and [Ad] matrices (equations(3.5) and (3.8)) are given in [87]. Since the 

reduced stiffness matrix [K]  is obtained from [E] by static condensation the ana- 

lytical derivative is obtained by a, succession of differentiations using the chain 

rule. The derivatives of the aerodynamic terms are obtained by taking the analyt- 

ical derivatives of those terms that are explicit functions of the shape parameters, 

given in Appendix A. 

Sensitivity analysis of the flutter speed of the wing with respect to shape 

parameters is carried out for the wing shown in Fig. 3.2. The wing skins are 

made of 0" laminated Graphite/Epoxy (T300/N5208) with the following material 

properties: El = 181 x log Pa, E2 = 10.3 x log  Pa, v12 = 0.28, GI2 = 7.17 s 
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I O 9  Pa and p = 1600 kg/m3. The flutter speed calculated using this strip-theory 

formulation is compared with the flutter speed obtained using a lifting-surface 

unsteady aerodynamic theory (FAST) in Fig. 3.10 for the wing at Mach 0.7 and a 

range of values of aspect ratio. The results agree fairly well, with the strip-theory 

predicting higher values for the flutter speed. The critical airspeed of the wing is 

shown in Fig. 3.11 as a function of the quarter-chord sweep angle. As seen from 

the graph, divergence (zero frequency flutter) instability is critical upto a sweep 

angle of about 20" and for higher sweep angles, the flutter mode is the unstable 

mode. The shape sensitivity derivatives of the divergence speeds and flutter speeds 

of the wing at Mach 0.7 and pair = 0.6 kg/m3 are computed analytically. 

The critical speeds of the wing obtained by perturbing one shape parameter 

at a time from the baseline configuration are shown in Figs. 3.12-3.19. The 

prediction of critical speed by analytical sensitivity calculations is also superposed. 

The sensitivity derivative obtained forms a tangent to the critical speed curve at 

the value of the shape parameter at which it is computed. 

_. . 

It is observed from Fig. 3.12 and Fig. 3.16 that the divergence and flutter 

speeds, respectively, drop as the aspect ratio increases. Physically, as the wing 

is made more slender, the instability sets in at a lower speed. As the area of 

the wing is increased, the divergence and flutter speeds are found to decrease as 

shown in Fig. 3.13 and Fig. 3.17, respectively. The greater the area of the wing, 

the greater the unsteady aerodynamic forces acting on it: causing the aeroelastic 

instability to occur at a lower speed. The analytical sensitivity gives a good linear 

approximation of the critical speeds over the range the aspect rati'o and area of 

the wing are varied. 
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The divergence speed of' the wing is not afTected much as the taper ratio is 

increased from 0.4 to 0.6 as seen from Fig. 3.14. The flutter speed of the wing 

decreases as the taper ratio is increased as shown in Fig. 3.18. The flutter speed 

curve can be approximated linearly as indicated by the sensitivity prediction. 

It can be seen from Fig. 3.15 that the divergence speed increases as the wing 

is swept backwards. The flutter speed does not vary much with increasing sweep 

angle about the 15' swept configuration as seen from Fig. 3.19. By performing 

one sensitivity calculation at the baseline analytically, this method gives a linear 

approximation to the critical speeds of the wing for changes in the wing shape 

parameters about the baseline. This information is useful for preliminary design 

purposes, as it avoids the necessity of a reanalysis for small changes in any of the 

shape parameters. 
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Table 3.1 Comparison of natural frequencies of an unswept wing 
(Area  = 0.02318 m2, Aspect ratio = 4.0132, Taper ratio = 1.0) 

for different laminate sequences 

Laminate Natural frequencies (Hz.) 
I 

sequence 

First Second Third 

39.30 69.06 

42.62 63.25 

48.9 . 64.94 

37.57 57.78 

48.76 64.42 

First 

10.8 

8.5 

9.9 

6.0 

7.8 

Present 1 Laqdsberger and Dugundji I881 

[02/90], 

[ 152 /013 

[k15/0]3 

[f30/0], 

[+302/0]3 

11.03 

8.86 

10.12 

6.21 

7.73 

Second 

39 

48 

50 

41 

50 

Present 

Third 

Experiment a1 [SS] 

67 

58 

63 

60 

65 

Table 3.2 Comparison of flutter speed of an unswept wing 
( A r e a  = 0.02318 m2, Aspect ratio = 4.0132, Taper ratio = 1.0) 

in subsonic flow 

24.9 

23.2 

28.1 

18.9 

28.8 

26 

25 

28 

21 

29 
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CHAPTER 4 
SENSITIVITY OF AEROELASTIC RESPONSE OF A WING 

USING FREQUENCY DOMAIN APPROACH 

4.1 OVERVIEW 

The problem of flutter instability was studied in Chapter 3 using a state-space 

unsteady aerodynamic representation and a Rayleigh-Ritz structural formulation. 

The sensitivity of flutter speed to shape parameters of the wing were obtained 

analytically. In this Chapter, the same Rayleigh-Ritz structural formulation is 

adopted, but the aeroelastic analysis is carried out using lifting-surface unsteady 

aerodynamics using modules from a system of prog-rams [89] called FAST (Flutter 

A4nalysis System). Flutter speeds are obtained using a V-g type of solution. The 

derivatives of the flutter speed with respect to shape parameters of the wing are 

calculated using automatic differentiation (ADIFOR). In order to determine the 

importance of a particular mode to flutter, derivatives of the flutter speed with re- 

spect to natural frequencies, generalized mass and generalized aerodynamic forces 

are computed using ADIFOR. 

Automatic differentiation is emerging as a valuable tool for sensitivity cal- 

culations. ADIFOR, GRESS, PADRE-2, Power Calculus and ODYSEE are some 

of the automatic differentiation packages [90] developed for differentiating FOR- 

TRAN77 codes, ADIFOR (Automatic DIfferentiation of FORtran) is a joint ven- 

ture of Rice University and Argonne National Laboratory. ADIFOR processes a 

given Fortran code and generates a Fortran code for computing the derivatives 
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of the desired output variables with respect to the independent variables by ap- 

plying the chain rule of differentiation. Differentiating large codes by hand is 

cumbersome, divided differences are dependent on choice of step size and sym- 

bolic programs may be infeasible for large codes. Automatic differentiation, on 

the other hand, can handle codes of arbitrary size and produce exact derivatives 

of the discrete system with no truncation error. 

4.2 AEROELASTIC MODEL 

The equivalent plate model described in section (3.2) based on a Rayleigh- 

Ritz formulation using Chebyshev polynomials for the wing displacements is used 

for structural modeling. Flutter calculations are performed using FAST [89], a 

system of programs based on the subsonic kernel function lifting-surface aerody- 

namic theory. A free vibration analysis of the wing is performed and the vibration 

modes from this analysis are fed into the modes processing module from FAST. 

The subsonic kernel function matrix program then solves the subsonic downwash 

integral equation for the oscillating planar wing lifting surface. The generalized 

force module from FAST then computes the aerodynamic forces from the subsonic 

kernel matrices. The flutter speed of the wing is obtained using a V-g type of 

_ _  

solution. The generalized aerodynamic forces are determined for a specific Mach 

number and for a range of values of the reduced frequency for the specified down- 
- 

wash distribution. These values are then interpolated to get aerodynamic forces 

for closely spaced values of the reduced frequency. The flutter equation solved by 
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where w is the vibration frequency, wi is the frequency of the ith natural vibration 

mode, Mi is the generalized mass associated with the ith natural vibration mode. 

g is the incremental damping, A;j axe the generalized aerodynamic forces resulting 

from the pressure induced by the j t h  mode acting through the displacements of 

the ith mode and q; is the ith component of the flutter eigenvector. 

In terms of the non-dimensional generalized aerodynamic forces & j ,  the 

above equation can be written as an eigenvalue problem in the form, 

where the eigenvalue is given by 

2 R =  (u) wobo ( 1 + i g )  

and 

(4.2) 

(4.3) 

(4.4) 

where wo is a reference frequency, bo is the reference length, usually root semichord, 

k is the reduced frequency, p is the air density and V is the airspeed. 

The above eigenvalue problem is solved for a range of values of the reduced 

frequency and monitored for crossings on the V-g plane when the incremental 

clamping g goes to zero. At each of these crossings, the values of the airspeed and 

the frequency are noted. The critical flutter speed is the lowest speed at which the 

damping of the structure goes to zero. 
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4.3 SENSITMTY ANALYSIS USING AUTOMATIC DIFFERENTI- 

ATION 

The sensitivity of flutter speed of the wing to shape parameters namely 

aspect ratio, area, taper ratio and sweep angle is computed using ADIFOR. In 

order to examine the importance of a particular mode to flutter, the sensitivity 

of flutter speed with respect to the modal parameters, namely, natural frequency, 

generalized mass and generalized aerodynamic forces is calculated using ADIFOR. 

4.3.1 AUTOMATIC DIFFERENTIATION 

Once the input variables and output variables of interest are identified, AD- 

IFOR can be used to differentiate FORTRAN codes. ADIFOR propagates deriva- 

tive values rather than formulas as in an analytic derivation. Only those inter- 

mediate variables that are functions of the input variables and arerequired in the 

computation of the output variables are identified and differentiated by ADIFOR. 

A small example of an ADIFOR-generated FORTRAN code to compute the 

derivatives from a simple program main.f with one call made to the subroutine 

func.f is given in Appendix B. ADIFOR generates the code g-func.f which has 

statements to compute the derivatives of the output variable y with respect to the 

input variable array x( 3) .  

4.3.2 SENSITIVITY TO SHAPE PARAMETERS 

For all the results presented, the wing shown in Fig. 3.2 is used with the 

wing skins made of 0 deg. laminated Graphite/Epoxy (T300/N5208) with the 
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following material properties: El = 181 x lo9 Pa, E2 = 10.3 x lo9 Pa, u12 = 0.28, 

G12 = 7.17 x lo9 Pa and p = 1600 kg / rn3 .  

The sensitivity derivatives of the flutter speed with respect to shape pxarne- 

ters are calculated using ADIFOR. The sensitivity results and the results from re- 

analysis are shown in Figs. 4.1-4.4 for the wing at &! = 0.6 and pair = 0.8 kg/m3.  

The decrease in flutter speed due to increasing aspect ratio is seen to be gradual 

from AR = 8 to AB = 10 in Fig. 4.1. Then, a more sharper drop is flutter speed 

is seen as the AR is increased to 12. The sensitivity derivative however predicts 

the trend seen at the baseline configuration. The flutter speed decreases with in- 

crease in area and taper ratio as shown in Figs. 4.2 and 4.3. Increasing the sweep 

angle has the effect of increasing the flutter speed about the 30' swept-back con- 

figuration as shown in Fig. 4.4. By performing one sensitivity calculation at the 

baseline, this meth6d gives a linear approximation to the flutter speeds of the wing 

for changes in the wing shape parameters about the baseline. This information is 

useful for preliminary design purposes, as it avoids the necessity of a reanalysis for 

small changes in any of the shape parameters. 

4.3.3 SENSITIVITY TO MODAL PARAMETERS 
- 

Complex wing structures are often modeled with a large number of degrees of 

freedom and a vibration analysis yields a large number of free vibration modes. A 

certain number of these modes have to be fed into FAST to generate the generalized 

aerodynamic forces required for flutter analysis. Some of these modes do not 

actively participate in the flutter and using several modes to determine flutter 
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instability leads to larger computational cost. In situations, where the natural 

frequencies and mode shapes of the wing are measured from experiments, one has 

large amount of modal data and has to determine the number of modes that are 

required for reasonably estimating the flutter speed. One could make a judicious 

choice of the number of modes that are required for flutter analysis, based on the 

sensitivity derivatives of the flutter speed with respect to the modal parameters of 

the wing. 

The sensitivity of flutter speed to modal parameters were obtained using 

ADIFOR. The derivatives of the flutter speed with respect to natural frequencies 

of the wing are shown in Fig. 4.5. Nine modes were used for the flutter analysis. 

It can be seen that if the third natural frequency is increased by 1 rad l s ,  then 

the flutter speed increases by 1.5 m/s.  It is also seen that higher modes do not 

contribute much to the flutter. The derivatives of the flutter speed with respect 

to generalized mass are given in Fig. 4.6 and the flutter speed sensitivity to the 

real and imaginary parts of the generalized aerodynamic forces (GAF) is given in 

Fig. 4.7. The ( i , j )  term in Fig. 4.7 stands for the non-dimensional generalized 

aerodynamic force resulting from the pressure induced by the j t h  mode acting 

through the displacements of the ith mode. The sensitivities of flutter speed with 

respect to modal parameters give an estimate of the importance of a particular 

mode to flutter. 

In order to obtain a quantitative estimate of the contribution of a particular 

mode to flutter, one can use the sensitivity information which gives the variation 

of flutter speed with the natural frequency, generalized mass and real and imagi- 

nary parts of the generalized aerodynamic forces associated with that mode. It is 
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possible to construct a logarithmic derivative and sum up the absolute values of 

these derivatives, which reflects the change in flutter speed due to changes in modal 

parameters associated with a particular mode. Having obtained all the derivatives 

one could construct a parameter Pi for each mode i given by 

where Vf is the flutter speed, w; is the natural frequency, Mi is the generalized 

mass and Re(&;j) and Im(&ij) are the red and imaginary parts of the generalized 

aerodynamic forces for an aeroelastic analysis using fV vibration modes. The values 

of this parameter Pi for the nine modes used in the analysis are given in Table 

4.1. It can be seen that the higher modes do not contribute significantly to the 

flutter phenomenon. Based on this information, flutter analysis of the same wing 

was carried out using fewer modes (5 modes) and the flutter speed obtained was- 

100.338 m/s compared to a value of 100.404 m/s using 9 modes, which is not a 

significant drop in flutter speed. The differences in the values of the derivatives 

of the flutter speed computed using fewer modes are found to be insignificant 

compared to the derivative values using more number of modes. 
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Table 4.1 Sum of the absolute values of the logarithmic derivatives 
(Parameter Pi for each mode i) 

Parameter P; 
0.6035275794390 + 00 

0.423090289768.D + 00 

0.2323644891230 + 01 

0.6896051022710 - 02 

0.1758143354570 - 01 

0.3391290367500 - 02 

0.5186700362260 - 04 

0.1768623404520 - 03 

0.432725654009.D - 03 
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CHAPTER 5 

FINITE ELEMENT WING MODELLNG USING NASTRAN 
FOR AEROELASTIC SENSITIVITY CALCULATIONS 

5.1 OVERVIEW 

In previous chapters, to o,tain sensitivity of aeroelastic response of a wing 

to shape and modal parameters, a Rayleigh-Ritz based equivalent plate model was 

used for analyzing the wing structure. Though equivalent plate representation 

in conjunction with global Ritz analysis techniques are relatively inexpensive for 

mathematical modeling of wings to study aeroelasticity, finite element methods 

[91-931 are being used in the industry for structural modeling of aircraft wings. 

Several commercial finite element codes like ABAQUS, ANSYS, EAL, IDEAS 

and NASTRAN exist for finite element analysis of structures. The current work 

focusses on modeling the wing structure using NASTRAN [94]. One of the features 

of using FEM is that any planform shape and wing cross-section could be analyzed 

as opposed to the Rayleigh-Ritz formulation based equivalent plate model used 

in Chapters 3 and 4, where only a trapezoidal skewed configuration of uniform 

thickness and layerwise construction could be analyzed. The wing skins, spars 

and ribs of an airplane wing can be modeled using shell and beam elements in 

NASTRAN. The free vibration modes of the wing can be fed into the unsteady 

aerodynamics code to generate the aerodynamic forces for aeroelastic analysis. 

The sensitivity of flutter speed of the wing to shape and modal parameters is 
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computed using a combination of the central difference scheme and the automatic 

differentiation software ADIFOR. 

5.2 NASTRAN ELEMENTS USED IN THIS STUDY 

In this study, the CQUAD4 and CTRIA3 shell elements, the CBAR beam 

elements and the CSHEAR shear panel elements are used. A description of these 

elements is given below. 

5.2.1 CQUAD4 SHELL ELEMENT 

The CQUAD4 element is one of the isoparametric quadrilateral shell elements 

in NASTRAN with optional coupling of bending and membrane stiffness. The 

element coordinate system for quadrilateral shell element is shown in Fig. 5.1. 

The integers 1, 2, 3 and 4 refer to the order of the connected grid points on the 

connection entries defining the elements. The angle, THETA, is the orientation 

angle for material properties. The CQUAD4 element is a 4-noded, 24 degrees of 

freedom element with 6 degrees of freedom per node (u, v, w, e,, B y ,  0,). 

5.2.2 CTRIA3 SHELL ELEMXNT 

The CTRIA3 element is one of the isoparametric triangular shell elements 

in NASTRAN with optional coupling of bending and membrane stiffness. The 

element coordinate system for triangular shell element is shown in Fig. 5.2. The 

integers 1, 2 and 3 refer to the order of the connected grid points on the connection 

entries defining the elements. The angle, THETA, is the orientation angle for 

material properties. The CTRIA3 element is a 3-noded, 18 degrees of freedom 

element with 6 degrees of freedom per node (u, v, 20, 6,, 6,, 6,). 
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5.2.3 CBAR BEAM ELEMENT 

The CBAR element is a one-dimensional bending element which is pris- 

matic, and for which the elastic a-xis, gravity axis, and shear center all coincide. 

The bar element coordinate system is shown in Fig. 5.3. The CBAR element 

is a 2-noded, 12 degree of freedom element with 6 degrees of freedom per node 

5.2.4 CSHEAR SHEAR PANEL ELEMENTS 

The CSHEAR shear panel element is a two-dimensional structural element 

that resists the action of tangential forces applied to its edges, and the action 

of normal forces if effectiveness factors are used. The use of proper effectiveness 

factors to account for the normal forces on the elements are described in section 

5.3.2 where shear panels are used to model the spar and rib webs. The structural 

and non-structural mass of the shear panel is lumped at the connected grid points. 

The element coordinate system for a shear panel is shown in Fig. 5.4a. The labels 

G1, G2, G3 and G4 refer the order of the connected grid points. The element 

forces are shown in Fig. 5.4b, which consist of the forces applied to the element 

at the corners in the direction of the sides, kick forces at the corners in a direction 
- 

normal to the plane formed by the two adjacent edges, and shear flows (force per 

unit length) along the four edges. 
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5.3 NUMERICAL EXAMPLES 

In order to validate the finite element modeling, static analysis of a box-beam 

is performed using NASTRAN and the results compared with Euler-Bernoulli solu- 

tion. Both static and dynamic analysis of a swept-back wing are carried out using 

NASTRAN and the wing deflections and frequencies are compared with previously 

published results. 

5.3.1 FINITE ELEMENT BOX-BEAM MODEL USING NASTRAN 

As a first example, a cantilevered box-beam shown in Fig. 5.5 was analyzed. 

The box-beam is modeled with CQUAD4 shell elements and CBAR beam elements. 

A total of 70 plate elements and 60 beam elements were used for the discretization. 

The dimensions of the box-beam are as follows: 
I_ 

Thickness of the plate elements, t = 5mm 
Length of the beam, L = 4m 
Width of the beam, b = O.8m 
Height of the beam, h = 0.4m 
Area of the beam elements, Ab = 900rnm2 
Young’s Modulus, E = 210GPa 
Poisson’s ratio, I/ = 0.3 
Moment of inertia, I = 586 x 10-6m4 

The box-beam was subjected to two loadings: (i) a tip load of P = 3OOfV, 

and (ii) a distributed load of q = 80N/m (corresponding to a uniform pressure load 

of 100N/m2 on the beam 0.8m wide). The tip deflection results from NASTRAN, 

at nodes 1 to 6 (see Fig. 5.5) on the tip of the beam, were compared with Euler- 

Bernoulli beam-theory solution for a beam given below: 
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For a tip load, 
P L3 
3EI 

w=- 

For a distributed load, 

qL4 w=- 
8EI (5.2) 

The results are shown in Fig. 5.6. There is good agreement between the finite 

element solution and the beam-theory solution. 

5.3.2 STATIC AND DYNAMIC ANALYSIS OF A SWEPT WING 

In order to validate the modeling, a swept back wing model reported in Ref. 

95 published for AGARD is analyzed. It is an all aluminum wing, swept back 

by 30 deg. and has 5 identical spars and 3 identical ribs bonded to the top and 

bottom cover skins. The dimensions of the wing and its cross-section properties 

are given in Fig. 5.7. The finite element discrefization of the wing is given in Fig. 

5.5. 

The wing is subjected to a tip load of 1 lb. at the trailing edge as shown 

The wing skins are modeled using CQUAD4 and CTRIA3 shell in Fig. 5.9. 

membrane-bending elements. The spar and rib webs are modeled using CSHEAR 

panel elements and the spar and rib caps are modeled using CBAR beam elements. 

The computed deflections from NASTRAN of the front and rear spars along the 

span are plotted in Fig. 5.0. The measured deflection from Ref. 95 is also shown. 

The results agree fairly well. 

Next, the natural frequencies of the wing are calculated using NASTRAN. 

The wing skins are modeled using CQUAD4 and CTRIA3 shell membrane-bending 
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elements and the spar and rib caps are modeled using CBAR beam elements as 

before. However, the spar and rib webs are modeled in two different ways: (i) 

using CSHEAR shear panel elements and (ii) CQUAD4 shell membrane-bending 

elements. The natural frequencies of the wing me compared in Table 5.1 to the 

results reported in Ref. 96 which were computed using ELFINI finite element 

package. It should be noted that in the finite element model reported in Ref. 96, 

the webs act only in shear. The results obtained using shear panels for the webs 

compare well with ELFINI results. When shear panels are used to model the webs, 

it is assumed that the webs act only in shear and the required axial stiffness at 

the edges are provided to support the corner forces. However, these webs also 

contribute to the stiffness of the structure in a small way. Hence, the spar and 

rib webs are modeled using CQUAD4 shell membrane-bending elements and the 

first five frequencies are given in Table 5.1. The CQUA4D4 element for the webs 

gives stiffer solutions as can be seen from Table 5.1 (the frequencies of transverse 

vibration are about 2-3 % higher, especially in the bending modes, and the inplane 

frequency is also higher). 

-. 

When using the CSHEAR element in NASTRAN (see Fig. 5.4), appropriate 

factors F1 and FZ have to be specified for providing extensional stiffness along 

the sides of the element to handle the corner forces which are parallel to the 

sides of the element. Factor F1 is the effectiveness factor for extensional stiffness 

along edges 1-2 and 3-4 and FZ is the effectiveness factor for extensional stiffness 

along edges 2-3 and 1-4. The effective extensional area is defined' by means of 

extensional rods on the perimeter of the element. Thus, if Fl = 1.0, the panel 
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is fully effective for estension in the 1-2 and 3-4 direction. The areas of the rods 

on the edges 1-2 and 3-4 are set equal to (0.5 5’1 T ZQ), where L U ~  is the average 

width of the panel and T is the thickness of the panel. Proper selection of the 

effectiveness factors is important when using the shear panel elements. Three 

different cases were examined using the effectiveness factors. If the defadt values 

of F1 = F2 = 0.0 are used, then the computed frequencies are very small, since 

the shear panel elements have no axial stiffness along the edges. If the panels are 

made fully effective for extension in both directions, then the solution obtained is 

much stiffer than that obtained using CQUAD4 shell membrane-bending elements 

for the webs. The proper choice is to make the panel (for spar and rib webs) fully 

effective for extension in the transverse direction of the wing and let the spar and 

rib caps carry the load in the other direction. This gives frequencies which agree 

well with the frequencies reported in Ref. 96 using ELFINI. 

5.4 SENSITIVITY OF FLUTTER SPEED 

The structural modeling of the wing is done using NASTRAN. The airfoil 

shape is generated by transforming a circle into an airfoil using the Joukowski 

transformation, so that shapes of varying thickness and camber can be obtained 

by varying the parameters. Finite element discretization of the wing skins, spars - 

and ribs is done and a free vibration analysis of the wing is performed. The 

natural frequencies and mode shapes obtained are used to generate the generalized 

aerodynamic forces required for flutter analysis using FAST. The sensitivity of 

flutter speed to shape and modal parameters is computed using a combination of 

central difference scheme and ADIFOR. 
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5.4.1 AIRFOIL COORDINATES FOR THE WING 

It is beneficial if the airfoil shape generation for the wing cross-section is 

parameterized so that shapes of varying thickness and camber can be generated. 

In order to generate the co-ordinates of the wing cross-section, a transformation 

of a circle into an airfoil using the Joukowski transformation is carried out. The 

equation of the circle in the (-plane shown in Fig. 5.10 is 

with center at p = p + iq and radius a. 

For points on the circle, 

Therefore, 

( = t + iq = ( p  + acos8) + z(q + as ine)  (5.5) 

The circle 

transformation 

Substituting for 

we have 

is transformed into an airfoil in the z-plane using the Joukowski 

c2 
z = ( + -  c 

< from equation(5.5) and denoting 
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A number of different airfoil shapes can be generated by varying the d u e s  

of p and q. Choosing p = -c/12 and q = 0, the airfoil generated is shown in Fig. 

5.10. 

5.4.2 FREE VIBRATION MODES OF THE WING 

Before performing a flutter analysis using the lifting-surface unsteady aero- 

dynamic program FAST, the free vibration analysis of the wing structure has to 

be performed. The finite element discretization of the wing is shown in Fig. 5.11, 

with the coordinates of the upper and lower skins of the wing obtained from equa- 

tion (5.8). The airfoil thickness at any chord location varies linearly from the root 

of the wing to the tip. The wing is modeled using 4 spars (placed at O.O5c, O ~ C ,  

0 . 5 ~  and 0 . 8 ~  location) and 10 ribs (placed equidistant along the span). A total 

of 190 CQUAD4 and CTRIA3 shell elements and 200 CBAR beam elements were 

used to model the wing structure. The dimensions of the wing are as follows: 

Wing span, L = 5m 
Area, A = 7.5m2 
Root chord, C, = 2m 
Tip chord, Ct = lrn 
Wing skin thickness, t = 3mm 
Area of beam elements, Ab = 75mm2 
Young’s Modulus, E = 70GPa 
Poisson’s ratio, u = 0.3 
Material density, p = 2’iOOLg/m3 

The natural frequencies and the mode shapes of the wing are obtained from 

NASTRAN and the &st six frequencies and the corresponding free vibration modes 

of the wing are given in Fig. 5.12. 
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5.4.3 SENSITIVITY TO SHAPE AND MODAL PARAMETERS 

In order to perform the aeroelastic analysis using FAST, six vibration modes 

of the wing are used. The modal information from NASTRAN finite element 

analysis is input into FAST to generate the flutter speed. The sensitivity analysis 

is carried out in two steps - a finite difference calculation followed by automatic 

differentiation. Since the new coordinates of the finite element nodal points are 

generated by perturbing the value of the shape parameter and these are input 

into NASTRAN in an 8-column format, it was observed that the precision of the 

numbers was not good enough which could lead to errors during finite differencing. 

So the central difference method was preferred over the forward finite difference 

method. One of the shape parameters of the wing is peturbed by a small positive 

value and the free vibration modes of the new wing configuration are obtained from 

NASTRAN. Again, the shape parameter is perturbed by a small negative value - 

from its nominal value and modal analysis is carried out. It should be notecl that 

the repeated finite element calculation is not very expensive, because the analysis 

can be performed to yield only a certain number of modes which are required for 

the flutter analysis, rather than compute all the frequencies. The derivatives of the 

modal frequency and mode shapes are calculated using a central difference scheme 

af 
d X  2AX 

f(z + Ax) - f(.: - Ax> - -  - (5.9) 

When the modal information is read into FAST for flutter analysis, the corre- 

sponding derivative information is also read in. These derivative values are then 

propagated and the derivatives of the subsequent active variables are calculated 

using automatic differentiat ion. 
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The sensitivity of flutter speed to shape parameters is plotted in Figs. 5.13- 

5.16 for Ad = 0.6 and pair = 0.8 k g / m 3  along with the flutter speed calculated 

from a reanalysis by changing one shape parameter at a time, The shape sensitiv- 

ity derivatives give the trend that can be expected in the flutter speed variation for 

small changes in shape parameters about the baseline configuration. The deriva- 

tives of the flutter speed with respect to modal parameters are also calculated using 

ADIFOR, and the results we given in Figs. 5.17-5.19. It can be seen that the 

higher modes do not actively participate in flutter as evidenced by the sensitivity 

of the flutter speed to the modal parameters of the higher modes. 
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Table 5.1 Natural frequencies of the AGARD Swept Wing Model 

Mode 

Number 

1 (1st Bending) 

2 (Inplane) 

3 (1st Torsion) 

4 (2nd Bending) 

5 (2nd Torsion) 

Frequencies (Hz.) 

Present (CSHEAR) Livne[96] Present (CQUAD4) 

116.8 115.6 120.8 

318.0 317.6 353.0 

415.4 418.4 416.9 

579.5 576.4 593.1 

1082.3 1086.0 1094.3 

108 



CHAPTER 6 
SHAPE SENSITIVITY FOR OPTIMIZATION 

WITH AEROELASTIC CONSTRAINTS 

6.1 OVERYEW 

An equivalent plate model which incorporates fist-order shear deformation 

theory is examined so it can be used to model thick wings, where shear deforma- 

tions are important. The natural frequencies of a thick laminated composite plate 

obtained using first-order shear deformation theory are compared to those obtained 

using classical plate theory. The sensitivity of natural frequencies to changes in 

shape parameters is obtained using ADIFOR. 

The use of shape sensitivity derivatives in a gradient-based design optimiza- 

tion subjected to aeroelastic constraints is demonstrated. A simple optimization 

effort is made towards obtaining a minimum weight design of the wing, subject to 

flutter constraints, lift requirement constraints for level flight and side constraints 

on the planform parameters of the wing. The IMSL subroutine NCONG, which is 

an implementation of successive quadratic programming is used for this purpose. 

6.2 STRUCTURAL MODEL 

In the previous chapters, equivalent plate models based on classical plate 

theory and finite element models were used for structural modeling. The first- 

order shear deformation theory which incorporates transverse shear developed by 

Kapania and Lovejoy 1971 is used for structural modeling in this chapter. 
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The plate displacements u,  v and w are given by 

u = u0(2, y, t )  + Z q L ( 2 ,  y, t )  

2, = v0(x, Y, t )  + z4&, Y, t> 

w = wO(x ,  y, t )  

where uo, v o  and w o  are midplane displacements and 4z and dU are rotations about 

the y and x axes, respectively. 

The original (x, y) coordinate system is transformed to the ( q ,  e )  coordinate 

system, and a Rayleigh-Rit z formulation using Chebyshev polynomials to represent 

the plate displacements is adopted. The mid-plane displacements and rotations 

are represented in a series as 

I J  

k=O I=O 
hi N 

m=O n=O 

P Q  

p=o q=o 

R S  

(6.2) 

r=O s=O 

and the Chebyshev polynomials 2'; are given in equations(3.1). 

It has been shown by Kapania and Lovejoy [97] that for free vibration of the 

plate, the eigenvalue problem can be obtained as 

[K - X&I] { x} = 0 (6 .3)  
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where [ I - ]  and [Ad] are the stiffness and mass matrices and the eigenvector {x} 

contains coefficients of the polynomial representing the displacement functions, 

i.e., 

The plate boundary conditions are handled by using springs of appropriate 

magnitude at the boundaries. For modeling cantilever wings, linear and rotational 

springs of large magnitude are placed at the root to satisfy the clamped wing 

boundary condition. Details of the formulation are given in [97]. 

Both inplane modes of vibration and rotary inertia terms are included in [97]. 

However) in this study, considering only transverse vibrations and neglecting the 

rotary inertia) the coefficients corresponding to the uo ,  vo, dZ and & displacements 

are condensed out using a static condensation. 

6.3 EFFECT OF TRANSVERSE SHEAR ON VIBRATION AND 

AEROELASTIC CHARACTERISTICS 

The natural frequencies of a laminated composite plate clamped at one end 

and free at the other three edges, are computed using this structural model in- 

corporating transverse shear and compared with the classical plate model used 

in the earlier studies. The sensitivity of natural frequencies to changes in shape 

parameters of the plate is studied. The influence of transverse shear on the flutter 

characterisitics of a wing is also examined. 
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6.3.1 EFFECT OF TRANSVERSE SHEAR ON NATURAL FREQUENCY 

In order to get an estimate of the effect of transverse shear on the free vi- 

bration characteristics, the plate vibrations are analyzed using both the classical 

plate theory and the first-order shear deformation theory. The results for sym- 

metrically laminated, skew, cantilever plates made of Glass/Epoxy are presented 

in Tables 6.1 and 6.2. The properties for Glass/Epoxy are El = 38.61 GPa, 

E2 = E3 = 8.27 GPa, G12 = G13 = 4.14 GPa, G23 = 3.35 GPa, ~ 1 2  = ~ 1 3  = 0.26, 

V23 = 0.49 and p = 2546.54 bg/m3. The results are given for a plate with a 

sweep angle of A = 15O, aspect ratio of 3.111, taper ratio of 0.5 and area of 

63 in2 (406.45 cm2).  The thickness of the plate is varied from 0.14 in. (3.556 mm.) 

for the thin [302/0], laminate to 0.84 in. (21.336 mm.) for the thick [302/0]6, lami- 

nate. It is seen from Tables 6.1 and 6.2 that the frequencies predicted by including 

shear deformations are lower than those predicted by classical plate theory. As the 

thickness of the plate is increased, notable differences can be seen in frequencies 

obtained by the two theories. 

6.3.2 SHAPE SENSITIVITY RESULTS 

The sensitivity of the natural frequencies of the plate to shape parameters, 

namely aspect ratio, area, taper ratio and sweep angle was computed using au- 

tomatic differentiation (ADIFOR). The [302/0]10s laminated plate with 60 plies, 

made of Glass/Epoxy is used for the study. The sensitivity of the first three nat- 

ural frequencies of the plate with respect to shape parameters is shown in Figs. 

6.1-6.4. The free vibration frequencies obtained by perturbing one shape parame- 

ter at a time from the baseline configuration are shown by the solid line curve. The 
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dotted line gives the sensitivity prediction at the baseline configuration. The sen- 

sitivity derivative obtained forms a tangent to the frequency curve at the baseline 

configuration. 

It is seen that there is a drop in the vibration frequencies of the first three 

modes as the aspect ratio, area and taper ratio of the plate are increased. The 

first two natural frequencies decrease with increasing sweep angle as seen from 

Fig. 6.4, but the third natural frequency first increases with sweep angle and then 

decreases, about the baseline value of 15" sweep. By performing one sensitivity 

calculation at the baseline analytically, this method gives a linear approximation to 

the frequency curve for changes in the wing shape parameters about the baseline. 

These shape sensitivity derivatives could be very useful for a gradient-based design 

optimization of thick plates with frequency constraints. 

6.3.3 EFFECT OF TRANSVERSE SHEAR ON FLUTTER SPEED 

Studies on the effect of transverse shear on flutter speed of a wing is of 

great interest, especially when dealing with thick composite wings for which shear 

deformation effects are not negligible (see Karpouzian and Librescu [98]). In this 

study, the first-order shear deformation theory (FSDT) is used for the structural 

model and a lifting-surface unsteady aerodynamics (FAST) is used for generating 

the generalized aerodynamic forces required for the flutter calculation. The flutter 

characteristics of the wing shown in Figure 3.2 which has previously been analyzed 

in Chapter 4 using a classical laminated plate theory (CLPT), is studied here by 

including the effects of transverse shear. Figures 6.5-63 show the variation of 
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the flutter speed with respect to aspect ratio, =ea, taper ratio and sweep angle 

of the wing, as predicted by CLPT and FSDT. It is evident that the inclusion of 

transverse shear in the structural model has an effect of reducing the flutter speed 

of the wing. 

6.4 OPTIMIZATION WITH AEROELASTIC CONSTRAINTS 

Multidisciplinary optimization is of great interest in the aerospace industry 

and efforts are being made towards integrated wing synthesis to produce better 

designs. The designs have to satisfy a number of constraints of which flutter con- 

straints form an important subset. The changes in shape of the wing affect both its 

structural and aerodynamic response. This is an effort to obtain a minimum weight 

design of the wing, subject to flutter constraints, lift requirement constraints and 

constraints on the planform parameters of the wing. It should be noted that more 

constraints can be added to this optimization problem if required. The gradients 

required for the optimization are computed through a sensitivity analysis of the 

aeroelastic response of the wing using automatic differentiation (using ADIFOR). 

-_ 

6.4.1 FORMULATION OF THE OPTIMIZATION PROBLEM 

The optimization problem can be stated as follows: 

Minimize 

subject to the constraints 

Vflutter 2 1.2 Vflight 
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AR 2 5.0 

0.5 5 T R  5 1.0 

0" 5 11 5 30" (6.5) 

where VVw is the weight of the wing, ,om is the density of the material, S is the 

area of the wing, C is the thickness, g is the acceleration due to gravity, V is the 

velocity, L is the lift, p is the density of air, CL is the lift coefficient, Wac is the 

weight of the aircraft, AR is the aspect ratio, T R  is the taper ratio and 11 is the 

quarter-chord sweep angle. 

The wing is designed so that the flutter speed is atleast 20% more than the 

maximum flight speed. -4!so the wing is capable of producing sufficient lift required 

for cruise. The constraint on the aspect ratio ensures that wings with short spans 

and long chords are not an outcome of the optimization. The constraints on taper 

ratio and sweep angle ensure that wings that conform to practical designs are 

generated. 

6.4.2 METHOD OF SOLUTION 

There are several methods to perform this nonlinear constrained optimization 

[99]. The gradient projection method is based on projecting the search direction 

into the subspace tangent to the active constraints. In the method of feasible 

directions, the concept is to stay in the feasible domain, move in a direction which 

reduces the objective function and stay away from the constraint boundaries. The 
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program by Vanderplaats, CONIL'IIN [loo] is an implementation of the method of 

feasible directions. Another method which uses successive quadratic programming 

is implemented in the IMSL subroutine, NCONG [loll .  The method, based on the 

iterative formulation and solution of quadratic programming subproblems, uses a 

quadratic approximation of the Lagrangian and linearization of the constraints. 

Though the solution of the quadratic programming direction seeking problem is 

cumbersome, it often leads to faster convergence. 

The optimization problem can be written as 

subject to gj(x) = 0, 

gj(x) 2 0, 

f o r  j = 1,. . . ,me 

f o r  j = me + 1,. . . , m 
(6.6) 

We seek the direction d as the solution of the following quadratic program- 
_. 

ming problem: 

Min Id'Bkd + Vf(xk)Td 
2 

subject to Vgj(xh)Td + gj(xk) = 0, j = 1,. . . ,me 

Vgj(Xk)Td + gj(xk) 2 0, j = me + 1,. . . , m 
(6.7) 

where Bk is a positive definite approximation of the Hessian, and xk is the current 

iterate. If dh is the solution to the subproblem, a line search is used to find the 

new point xk+l, 

Bk is updated according to the modified BFGS formula [102]. It should be noted 

that this algorithm can have infeasible points during the solution process. 
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6.4.3 OPTIMIZATION RESULTS 

The optimization problem described in equations( 6.5) was solved using the 

IMSL routine NCONG. The wing is shown in Fig. 3.2. The wing skins are made 

of 0 deg. laminated Graphite/Epoxy (T300/N5208) with the following material 

properties: El = 181 x lo9 Pa, E2 = 10.3 x lo9 Pa, E3 = 10.3 x lo9 Pa, 

~ 1 2  = 0.28, ~ 1 3  = 0.28, ~ 2 3  = 0.49, GI2 = 7.17 x lo9 Pa, GI3 = 7.17 x lo9 Pa, 

G23 = 5.82 x lo9 Pa and p m  = 1600 kg/m3. The analysis is carried out at a Mach 

number of 0.6. The problem was further simplified by fixing the taper ratio and 

sweep angle of the wing at 0.5 and 30°, respectively, so the design variables are 

the aspect ratio and the area of the wing. The following values were chosen: 

Vflight = 100 m/s 

p = 0.8 kg/m3 

CL = 0.7 
(6.9) 

Wac = 100000 N 

The gradients of the aeroelastic constraints are obtained by performing sensi- 

tivity analysis of the aeroelastic response with respect to the planform parameters 

using the automatic differentiation package, ADIFOR. The results of the optimiza- 

tion for each iteration are given in Table 6.3. Since the material and thickness of 

the wing are not changing, the wing weight is proportional to the area of the wing. 

It can be seen that at the 3rd iteration, AR = 5.3913 and Area = 17.857 m2, 

corresponding to V’lzLtter = 134.19 m/s. This value of the wing area satisfies the 

equality constraint, which means it is not possible to obtain a reduction in the 

value of the objective function by reducing the area since the equality constraint 
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will then be violated. The minimum weight of the wing, subject to the applied 

constraints is VVw = [l’i.857pmtg] N .  

In this optimization, the equality constraint appears to be the driving con- 

straint and the inequality constraint on the flutter speed is not active. Even though 

both the constraints are satisfied and the minimum weight as desired by the ob- 

jective function is achieved, there is a big margin on the flutter speed constraint 

(134.19 - 120.00 = 14.19 rn/s), which suggests that we could have other designs 

with higher aspect ratio which will have the same optimum weight value and make 

both the constraints active. Since the objective function is only a function of area, 

once its minimum is attained by the satisfaction of the equality constraint, the 

optimization algorithm does not find a direction in which further minimization of 

the objective function can be accomplished. This either results in the inequality 

constraint being satisfied with a wider margin as in this case, or in the case of 

a violated constraint, it becomes necessary to optimize on the single design vari- 

able namely the aspect ratio to meet the inequality constraint. This is avoided 

by defining a composite objective function by adding to the area of the wing the 

reciprocal of the difference between the aspect ratio and its lower bound, weighed 

with a parameter p as shown. 

(6.10) 

where f is the new objective function, S is the wing area, AR is the aspect ratio 

and is its lower bound. With this newly defined objective function, the 

results from the optimization are given in Table 6.4 for a value of p = 10.0. It 
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can be seen from Table 6.4 that from the 3rd iteration on, the Area = 17.857 m2, 

which is driven by the equality constraint. However, the optimization algorithm is 

successful in its search for a direction which minimizes the objective function and 

proceeds until both the constraints are active, giving a final value of AR = 6.5994 

and Area = 17.857 m2 with VflzLtter = 120.00 m/s. The minimum weight of the 

wing is W, = [17.857pmtg] N .  

This is a simple two constraint optimization problem. with two design vari- 

ables. It should be noted that the material properties and skin thicknesses of the 

wing could also be used as design variables for a full-scale optimization with aeroe- 

lastic constraints; however a much simpler problem was chosen here to demonstrate 

the use of shape sensitivity derivatives in optimization. 
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Table 6.1 Comparison of natural frequencies predicted by the two theories 
for the 6-ply, 12-ply and 18-ply laminates 

1 

2 

3 

4 

5 

Mode 

Number 

71.08 

349.77 

468.91 

914.84 

1270.76 

CLPT" 

528.86 

701.67 

16.16 

80.19 

118.30 

209.92 

316.95 

501.06 

640.29 

FSDT~ 

1902.68 

16.14 

79.95 

117.30 

208.80 

313.86 

1658.03 

Natural frequencies (Hz.) 

[302 /o 
CLPT 

34.49 

170.23 

235.47 

445.04 

636.14 

1 (12-PlY) 

FSDT 

a CLPT (Classical laminated plate theory) 
FSDT (First-order shear deformation theory) 

34.42 

168.58 

230.45 

437.82 

619.30 

CLPT 

52.76 

259.90 

351.96 

679.59 

952.52 

FSDT 

52.57 

255.22 

339.61 

658.99 

908.13 

Table 6.2 Comparison of natural frequencies predicted by the two theories 
for the 24-ply and 36-ply laminates 

-. . 

Natural frequencies (Hz.) 

Number 1 CLPT FSDT 

70.61 

339.71 

444.58 

870.50 

1178.56 

CLPT 1 FSDT 

107.57 1 106.30 

1383.71 1259.17 
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Table 6.3 Optimization results for the minimum weight wing design 

It eration 

1 

Aspect ratio Area (m2) Flutter speed (m/s )  

10.000 20.000 94.30 

2 

3 

Table 6.4 Optimization results for the minimum weight wing design 
(Composite objective function) 

5.3913 18.551 130.90 

5.3913 17.857 134.19 

Iter at ion Aspect ratio Area (m2)  

1 10.000 20.000 

2 7.7882 19.304 

3 6.1784 17.857 

4 6.5694 -17.857 

5 6.5994 17.857 
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Flutter speed ( m / s )  

94.30 

105.56 

124.21 

120.28 

120.00 



CHAPTER 7 
CONCLUDING REMARKS 

This study has examined the flutter characteristic of a typical section in 

subsonic compressible flow. Indicia1 response functions are used for the normal 

force and pitching moment coefficients of the two degree of freedom airfoil and 

the unsteady aerodynamics is represented by a state-space model. The aeroelastic 

equations are solved as an eigenvalue problem to determine the onset of aeroelastic 

instability. The sensitivity of the flutter speed of the typical section with respect 

to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius 

of gyration, bending frequency and torsional frequency are calculated analytically. 

The sensitivity derivatives show good agreement with finite difference derivatives. 

The aeroelastic equations are also integrated with respect to time at different 

values of freestream speed, to observe the aeroelastic phenomena in real time. The 

stable, neutrally stable and unstable nature of the aeroelastic response can be 

seen at speeds below, at and above the flutter speeds, respectively, for the typical 

- 

section. 

The above aerodynamics for a typical section was extended to develop a strip- 

theory formulation representing the unsteady aerodynamic forces OR a wing. The 

structural modeling is done using classical plate theory and is based on a Rayleigh- 

Ritz formulation using Chebyshev polynomials for the wing displacements. The 

structural equations are coupled with the time-domain aerodynamic equations to 

formulate the aeroelastic equations as a set of first-order ordinary differential equa- 

tions. These equations are solved as an eigenvalue problem to determine the critical 
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speed of the wing. The natural frequencies and flutter speeds are compared with 

previously published experiment a1 values obtained from wind tunnel tests and the 

results agree fairly well. The sensitivity of divergence and flutter speeds to shape 

parameters, namely, aspect ratio, area, taper ratio and sweep angle are computed 

analytically. These derivatives have been accurately evaluated and they form a 

tangent to the critical speed curve at the baseline configuration. These shape sen- 

sitivity derivatives give a linear approximation to the critical speed curve about 

the baseline configuration and will be useful for preliminary design or an optimiza- 

tion with aeroelastic constraints. The time integration of the aeroelastic equations 

shows the real-time aeroelastic response (tip deflection as a function of time) of the 

wing when operating at speeds at the verge of instability. Particularly notable is 

the response of the wing configuration where the divergence speed and the flutter 

speed are close to each other. 

Flutter analysis of the wing is also carried out using a lifting-surface subsonic 

kernel function aerodynamic theory (FAST) and an equivalent plate structural 

model. The generalized aerodynamic forces are obtained for a fixed number of 

free vibraton modes of the wing, for the specified Mach number and spanning the 

range of reduced frequencies. The flutter speed is obtained using a V-g type of 

solution. The novel method of automatic differentiation using ADIFOR was suc- 

cessfully implemented to generate exact derivatives of the flutter speed as obtained 

from the discrete system, with respect to shape parameters of the wing. A good 

sensitivity prediction is obtained using ADIFOR. Also, based on the sensitivity 

of flutter speed to modal parameters, namely, natural frequency. generalized mass 
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and generalized aerodynamic forces, computed using -4DIFOR, one could malie 

a judicious choice of the number of modes to be used in the aeroelastic analysis 

for reasonably estimating the flutter speed. These derivatives give a qualitative 

estimate of the modes that actively participate in flutter. In order to obtain a 

quantitative estimate of the contribution of a particular mode to flutter, a pa- 

rameter was formed by constructing a logarithmic derivative of the sensitivity to 

modal parameters and summing up the absolute values of these derivatives for each 

mode. The finitely vanishing value of the. parameter for higher modes indicates 

that even if these modes are not used for the flutter calculation, the results would 

be affected only to an insignificant amount. 

Finite element modeling of the wing is done using NASTRAN so that wing 

structures made of spars and ribs and top and bottom wing skins could be analyzed. 

The modeling is validated for static and dynamic analysis using a box-beam and 

an AGARD swept-back wing model. A good agreement with previously published 

results is obtained. The airfoil shape for the wing cross-section was generated by 

transformation from a circle using the Joukowski transformation, so it could be 

parameterized. The free vibration modes of the wing obtained from NASTRAN are 

input into FAST to compute the flutter speed. The derivatives of flutter speed with 

respect to shape parameters are computed using a combination of central difference 

scheme and ADIFOR and the sensitivity to modal parameters are calculated using 

ADIFOR. -4 fairly good sensitivity prediction is obtained. It is seen that the higher 

vibration modes of the wing do not actively participate in flutter. 

An equivalent plate model which incorporates first-order shear deforma'tion 

theory is then examined so it can be used to model thick wings, where shear de- 

132 



formations are important. The sensitivity of natural frequencies to changes in 

shape parameters is obtained using ADIFOR which would be useful in optimiza- 

tion with frequency constraints. The natural frequencies and the flutter speeds 

calculated using the first-order shear deformation theory are compared with those 

obtained using a classical laminated plate theory. It is seen that the frequencies 

and the flutter speeds drop as the transverse shear effects come into play. The 

shape sensitivity derivatives of the flutter speed are indispensable in a gradient- 

based optimization with aeroelastic constraints. A simple optimization effort is 

made towards obtaining a minimum weight design of the wing, subject to flutter 

constraints, lift requirement constraints for level flight and side constraints on the 

planform parameters of the wing. The nonlinear constrained optimization problem 

is solved using the IMSL subroutine NCONG, which uses successive quadratic pro- 

gramming. An optimum design which satisfies all the constraints is obtained. It 

should be noted that more constraints can be added to this optimization problem 

as desired. 

__ - 

Further research in this area could be to incorporate a control model so it can 

be coupled with the structural and aerodynamic model already in the time-domain 

to perform aeroservoelastic studies. Supersonic kernel function aerodynamics could 

be implemented to perform sensitivity analysis in the supersonic regime. So far, 

wings with a general trapezoidal skewed planform have been analyzed. However, 

some wings have discontinuities along the leading and trailing edges and can be 

considered to be made up of multiple trapezoidal segments. Shape sensitivities of 

flutter speed of wings made up of multiple trapezoidal segments, a good example 

of which is the High Speed Civil Transport (HSCT) wing, can be analyzed. 
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APPENDIX A 

The a; j ’ s  are given by 
2 v  

all = -(-)P2b1 C 

2 v  
a22 = -(-)P2b2 C 

where 

1 
a33 = -- 

IG  T I  
1 

a44 = -- 
&TI 

2 v  
a77 = - b 5 P 2 ( 7 )  

1 
a g g  = - 

lcq M T I  

r 7 1 
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The c;j7s are given by 

1 7 1 
12M I<,MTI C28  = --( 

The constants are given by A1 = 0.3, A2 = 0.7, A 3  = 1.5, A4 = -0.5: bl  = 0.14, bz = 

0.53,  b3 = 0.25, b4 = 0.1, b5 = 0.5.  
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Analytical derivatives 

Aspect ratio (AR),  Area (S), Taper ratio ( tr) ,  Sweep (A> 

The wing coordinates itre ( 2 1 ,  yl), ( 2 2 ,  yz), (z3, y3) and  (24, y4). 

span = LE3 
2s 

span( 1 i- t r )  
cr = 

ct = tr cr 

x1 = 0.75 cr 

x2 = span t a n A  + 0.75 ct 

x3 = span t a n A  - 0.25 ct 

24 = -0.25 cr 

yi = y4 = 0 .0~2  = y3 = spanp = ( 2 1  + x2 + x 3  + x4) 

PP=(x : !+x3) - ( x I+x4)  

crct = cr + ct 

rt = cr - ct 

For any point $I on the quarter chord line (-1 5 $J 5 1) 

y = 0.5 span (1 + $J) 

x = y t an i i  

2y E = - -  1 
span 
(t PP - 42 + P )  
(t rt - crct)  'I= 

c = [cr + (c t  - cr ) ( I  + $) 0.4 cosri 
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Local chord ( c )  

dc S0*5[l - (1 - t r ) ( 1  + $) 0.51 cosA 
AR1a5(1 + t r )  

-- 
dAR - - 

dc  
dS - dX23(1+ t r )  
dc  cr ?,b cosil 
%r (1 + t r )  

[I - (1 - t r ) ( l  + $) 0.51 cosA -- 

-= 

d C  - = -c tanil 
dfl 

d p  0.5 p 
dS S 
dP - = 0.0 
dtr 

-=- 

I 2 tan11 (I - t r )  
ARO.5 + ( 1  + t r )  AI3l-j 

-- - 0.5 So.5 
BAR 

8PP 0.5 PP -=- 
BS S 
dPP cr 
dtr (1 + t r )  
dpp 2 span 
dA C O S ~ ~ ~  

-=  

-- -- 

crct = cr + ct 
dcrct s0.5 - = -- 
BAR AR1+’ 
dcrct 0.5 crct -- - 
dS S 

dcrct 
dtr 
-- - 0.0 

dcr ct 
an 
-- - 0.0 
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rt = cr - ct 
drt Soa5 (I - tr )  

dAR - - AR1.5 (1 + t r )  
-- 

dr t  0.5 rt 
dS S 
-=- 

drt 2 cr 
atr (I + t r )  
- = -  

dr t - = 0.0 an 

dz tanA(1 + 4 )  -= 
dAR . 4 AR0.5 

- 0.5 (1 + $) spun tunrl 
d X  

dS 
-- 

d X  - = 0.0 
dtr 
dx 
d A  cos"1 

0.5 span (1 + $) -=  

For any parameter v,  

- = 0.0 
dV 
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APPENDIX B 

Main program: mainf 

program main 

real x(31,y 
x( 1)= 1 .o 
x(2)=2.0 
x(3)=3.0 
call func(x,y) 
write(*,*)x( 1),~(2),~(3),y 
end 

C 

Subroutine: func.f 

subroutine func(x,y) 
real x(3)7y 
y=x( 1)+2.*x(2) **2+3. *x( 3)**3 
return 
end 
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