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Unsteady Aerodynamic Models for Turbomachinery
Aeroelastic and Aeroacoustic Applications

Summary

Theoretical analyses and computer codes have been developed for predicting compressible

unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such

analyses are needed to determine the impact of unsteady flow phenomena on the structural

durability and noise generation characteristics of the blading. The emphasis here has been

placed on developing analyses based on asymptotic representations of unsteady flow phenom-

ena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations in

which viscous effects are concentrated within thin layers have been considered. The resulting

analyses should apply in many practical situations and lead to a better understanding of the

relevant flow physics. In addition, they will be efficient computationally, and therefore, appro-

priate for use in aeroelastic and aeroacoustic design studies. Finally, the asymptotic analyses

will be useful for calibrating and validating the time-accurate, nonlinear, Euler/Navier-Stokes

analyses that are currently being developed for predicting unsteady flows through turboma-

chinery blade rows.

Under the present research program, the effort has been focused on formulating invis-

cid/viscid interaction and linearized inviscid unsteady flow models, and on providing inviscid

and viscid prediction capabilities for subsonic steady and unsteady cascade flows. In this

report we describe the lineaxized, inviscid, unsteady aerodynamic, analysis, LINFLO, the

steady, strong, inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous

layer analysis, UNSVIS, that have been developed under this program. The LINFLO analysis

can be applied to efficiently predict the unsteady aerodynamic response of a two-dimensional

blade row to prescribed structural, (i.e., blade) motions and external aerodynamic (acous-

tic, vortical and entropic) disturbances. The SFLOW-IVI analysis can be applied to predict

steady cascade flows, at high Reynolds numbers, in which regions of strong inviscid/viscid

interaction, including viscous layer separation, occur. The UNSVIS analysis can be applied

to predict nonlinear unsteady flows in thin boundary layers and wakes. The capabilities of

the three analyses axe demonstrated via applications to unsteady flows through compressor

and turbine cascades. The numerical results pertain to unsteady flows excited by prescribed

vortical disturbances at inlet, acoustic disturbances at inlet and exit and blade bending and

torsional vibrations. Recommendations axe also given for the future research needed for ex-

tending and improving the foregoing asymptotic analyses, and to meet the goal of providing

an efficient inviscid/viscid interaction capability for subsonic and transonic unsteady cascade

flOWS.



1. Introduction

The unsteady aerodynamic analyses intended for use in predicting the aeroelastic and

aeroacoustic responses of turbomachinery blading must be applicable over wide ranges of

blade-row geometries, mean operating conditions, and modes and frequencies of unsteady

excitation. In particular, these analyses must be capable of predicting unsteady pressure

responses of blade rows to a variety of unsteady excitations. The latter include structural

(blade) motions, variations in total temperature and total pressure (entropy and vorticity

waves) at inlet and variations in static pressure (acoustic waves) at inlet and exit. Finally,

because of the large number of controlling parameters involved, there is a stringent requirement

for computational efficiency, if an analysis is to be used successfully in the blade design process.

To sat,: rv this latter requirement a m_ :lber of restrictive assumptions must be introduced into

the de_,::opment of appropriate unsteady aerodynamic models. The analyses described in this

report have been developed to provide reliable and efficient theoretical prediction capabilities

for inviscid and viscid, steady and small-disturbance unsteady, flows, at high Reynolds number,

through two-dimensional cascades.

1.1 Background

The theoretical analyses that have been developed to predict the aeroelastic and aeroa-

coustic behavior of turbomachinery blading, i.e., the onset of blade flutter, the amplitudes

of forced blade vibration and the sound pressure levels that exist upstream and downstream

of the blade row have, for the most part, b_n based on the following geometric and aerody-

namic assumptions. The blades of an isolat: J, two-dimensional cascade are usually considered

with the aerodynamic effects associated with neighboring structures being represented via pre-

scribed nonuniform flow conditions at inlet and exit. The unsteady excitations are assumed to

be periodic in time and in the blade-to-blade direction. The flow Reynolds number is taken to

be sufficiently high so that viscous effects have a negligible impact on the unsteady pressure

field. Finally, the unsteady excitations are assumed to be sufficiently small so that a linearized

treatment of the unsteady inviscid flow is justified.

Until fairly recently, the inviscid unsteady aerodynamic analyses that have been available

for turbomachinery aeroelastic and aeroacoustic design applications have been based on clas-

sical linearized theory (see [Whi87] for a review). Here the steady and harmonic unsteady

departures of the flow variables from their uniform free-stream values are regarded as small

and of the same order of magnitude, leading to uncoupled, linear, constant coefficient, bound-

ary value problems for the steady and the complex amplitudes of the unsteady disturbances.

Thus, unsteady solutions based on the classical linearization apply essentially to cascades

of unloaded flat-plate blades. Very efficient semi-analytic solution procedures have been de-

veloped for two-dimensional attached subsonic and supersonic flows and applied with some

success in turbomachinery aeroelastic and aeroacoustic design calculations. It should also be

mentioned that extensive efforts (as reviewed by Namba [Nam87]) have been made to develop

three-dimensional unsteady aerodynamic analyses, based on the classical linearization.

Because of the limitations in physical modeling associated with the classical linearization,

more general two-dimensional inviscid linearizations have been developed. These include the

2



effectsof important design featuressuch as real blade geometry,mean blade loading, and
operation at transonic Mach numbers. Here, unsteady disturbancesare regardedas small-
amplitude harmonic fluctuations relative to a fully nonuniform, isentropic and irrotational,
mean or steadybackgroundflow. The steadyflow is determined as a solution of a nonlinear
inviscid equation set, and the unsteady flow is governedby linear equations with variable
coefficientsthat dependon the underlying steady flow. This type of analytical model is de-
scribed in [Ver92,Ver93] and is often referred to as a linearized potential model; however,
the potential-flow restriction appliesonly to the steadybackgroundflow. It has receivedcon-
siderableattention in recent years,and solution algorithms for the nonlinearsteady and the
linearized unsteadyproblem have reachedthe stagewhere they are being applied in turbo-
machinery aeroelasticand aeroacousticdesignstudies (e.g., see [Smi90, SS90,MM94]). In
particular, one such analysis, the linearized inviscid flow analysis, LINFLO, has been ex-
tendedunder the present contract for cascadegust responsepredictions. In previouswork,
this analysishasbeendevelopedand applied to predict unsteadysubsonicand transonic flows
excited by blade vibrations or acousticdisturbances[VC84,Ver89a,UV91, KV93b] and, un-
der the presentcontract, to predict unsteadysubsonicflowsexcited by entropic and vortical
gusts [VH90, HV91, VBHA91].

The unsteadyflowsof practical interestusuallyoccurat high, but finite Reynoldsnumber,
so that viscous-layerdisplacementscan have an impact on the unsteadypressureresponse.
Provided that large-scaleflow separationsfrom the blade surfacesdo not occur, the overall
flow field canbe divided conceptuallyinto "inner" viscousor dissipativeregions,consistingof
thin boundary layersandwakes,and an "outer" inviscid region. Solutions to the complete flow

problem can then be determined by an iterative procedure involving successive solutions to the

inviscid and viscid equations. If the inviscid/viscid interaction is "weak", then at each step of

the iteration process, the inviscid and viscid solutions can be determined sequentially with the

pressure being determined by the inviscid flow. However, in most flows, strong inviscid/viscid

interactions occur due, for example, to boundary-layer separations, shock/boundary-layer

interactions and trailing-edge/near-wake interactions. For such flows the pressure must be

determined by solving the inviscid and viscous layer equations simultaneously at each iteration

level.

The construction of a high Reynolds number viscous cascade solver involves first, the de-

velopment of component flow solvers, and second, the implementation of these component

solvers into an overall computational procedure to provide an analysis for the complete flow

field. Solution methods for steady, subsonic and transonic, inviscid flows through cascades and

for steady boundary-layer and wake flows have been developed to a relatively mature state.

Methods for coupling such solutions have also been developed and applied to predict steady

cascade flows, with strong inviscid/viscid interactions (e.g., see [HSS79, JH83, CH80, BV89,

BHE91, BVA93a, BVA93b]), with the work in [BVA93a, BVA93b] being performed as part

of the present effort. Similar approaches ave needed for unsteady flows. Under the present

Contract, nonlinear steady and linearized unsteady inviscid analyses have been coupled to the

unsteady viscous-layer analysis of [PVK91], but only to predict unsteady cascade flows with

weak inviscid/viscid interactions [VBHA91, BV93]. To date, there has been very little effort to

couple unsteady inviscid and viscous-layer analyses to provide a strong inviscid/viscid interac-

tion analysis for unsteady cascade flows. As steps toward this goal, the steady inviscid/viscid

interaction analysis for cascades, SFLOW-IVI, that can provide the foundation for an un-



steady procedureto be developedlater, and the unsteady viscous-layer analysis (UNSVIS)

have been developed under the present research program.

1.2 Scope of the Present Effort

The objectives of the research program conducted under Contract NAS3-25425 are to

provide efficient theoretical analyses for predicting compressible unsteady flows through two-

dimensional blade rows. Such analyses are needed to understand the impact of unsteady

aerodynamic phenomena on the aeroelastic and aeroacoustic performances of turbomachinery

blading. For this purpose, we have developed a detailed inviscid/viscid interaction formu-

lation for unsteady cascade flows, which is described in § 2 of this report. We have also

developed or extended several analyses that will form the components of an unsteady, invis-

cid/viscid interaction, solution procedure. The latter include the linearized inviscid unsteady

aerodynamic analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI,

and the unsteady viscous layer analysis, UNSVIS. The steady full potential analysis, SFLOW

[HV93, HV94], which is also considered to be a component of the overall prediction scheme,

has been developed at NASA Lewis under a separate, but related, research program. The

present work has been directed primarily towards subsonic aeroelastic applications, however,

for the most part, this work will apply, more generally, for predicting the aeroelastic and

aeroacoustic responses of turbomachinery blading operating at subsonic and tr: _sonic Mach

numbers.

In the first phase of this program [VH90, HV91] the linearized inviscid analy,_ LINFLO)

was extended to predict the responses of a cascade to entropic and vortical excitations. A

velocity decomposition introduced by Goldstein [Go178, Go179], and later modified by Atassi

and Grzedzinski [AG89], is employed to split the linearized unsteady velocity into rotational

and irrotational components. This decomposition leads to a very convenient descrip on of

the linearized unsteady perturbation -- one in which dosed form solutions can be determined

for the entropy and vorticity or rotational velocity fluctuations in terms of the drift and

stream functions of the underlying steady flow. Numerical field methods are required only

to determine the unsteady potential and from this, the unsteady pressure. The potential is

governed by an inhomogeneous wave equation in which the source term depends upon the

rotational velocity field. The potential fluctuations are determined numerically on an H-type

mesh in which the streamlines of the steady background flow are used as mesh lines. Numerical

solutions are reported in [VH90, HV91, VBHA91] for several configurations including flat-

plate cascades, a compressor exit guide vane, a high-speed compressor cascade, and a turbine

cascade. The I..INt;'LO analysis is described in § 3 of this report, with particular emphasis on

its capabilities h': predicting unsteady flows excited by vortical gusts.

An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena;

such as, viscous-layer separation, shock/boundary-layer interaction and trailing-edge/near-

wake interaction, in turbomachinery blade passages is needed as part of a comprehensive

analytical blade design prediction system. Such an analysis, called SFLOW-IVI, has been

reported in [BVA93a, BVA93b] and is described in § 4. Here, the flow in the outer or in-

viscid region is governed by the full-potential equation and that in the inner viscous region,

by Prandtl's viscous-layer equations. The non-hierarchical nature of strong interactions is

taken into account in the semi-inverse iteration procedure used to couple the two solutions.



The steady, full-potential analysis, SFLOW, [HV93, HV94] is employed in this procedure

to determine inviscid solutions. SFLOW was constructed, for use with the LINFLO analy-

sis, to provide comprehensive and compatible, steady and unsteady, inviscid, flow prediction

capabilities for cascades.

In the IVI procedure, which is referred to as SFLOW-IVI, viscous effects are incorpo-

rated by adjusting the blade and wake surface boundary conditions in SFLOW to account

for the effects of viscous displacement. Inviscid solutions are determined using an implicit,

least-squares, finite-difference approximation, viscous-layer solutions using an inverse, finite-

difference, space-marching method which is applied along the blade surfaces and wake stream-

lines. The inviscid and viscid solutions are coupled using a semi-inverse, global iteration proce-

dure, which permits the prediction of boundary-layer separation and other strong-interaction

phenomena, and allows nonlinear changes to the inviscid flow, due to viscous effects, to be

evaluated. Results are presented for three cascades, with a range of inlet flow conditions

considered for one of them, including conditions leading to large-scale flow separation. Com-

parisons with Navier-Stokes solutions and experimental data are also given.

Finally the UNSV/S analysis of IPVK91] was extended so that unsteady viscous effects

in the vicinity of leading-edge stagnation points and in blade wakes could be predicted

[VBHA91, BV93]. The nonlinear unsteady flow in a viscous layer is described by Prandtl's

equations. As in the SFLOW-IVI analysis, algebraic models are used to account for the effects

of transition and turbulence. The viscous-layer equations are solved in terms of Levy-Lees

type variables using a finite-difference technique in which solutions are advanced in time and

in the streamwise direction. Numerical solutions are determined by marching implicitly, first

in time and then in the streamwise direction, over several periods of unsteady excitation,

from an initial steady soIution, and from an approximate time-dependent, upstream flow so-

lution. This analysis, rather than one in which the results of separate nonlinear steady and

linearized unsteady viscous-layer analyses are superposed, allows an assessment to be made

of the relative importance of nonlinear unsteady effects in viscous regions.

Under the present effort, a similarity analysis was developed to predict unsteady viscous

compressible flow in the vicinity of a moving leading-edge stagnation point and incorporated

into the UNSVIS code. The stagnation region analysis provides the "initial" upstream flow

information needed to advance or march a viscous-layer calculation downstream along the

blade surfaces and into the wake. In addition, the wake analysis, used previously in UNSVIS,

was extended so that the changes or jumps in the inviscid velocity that occur across vortex-

sheet unsteady wakes could be properly accommodated. The linearized inviscid analysis,

LINFLO, and the nonlinear viscous-layer analysis, UNSVIS, were also coupled to provide a

weak viscid/inviscid interaction solution capability for unsteady cascade flows. The UNSVIS

analysis is described in § 5, where it is also applied to study the viscous-layer responses of

an unstaggered flat-plate cascade to pressure or acoustic excitations originating upstream and

downstream of the blade row. Finally, the coupled LINFLO/UNSVIS analysis is applied to a

turbine cascade subjected to a pressure excitation from upstream to demonstrate the current

weak inviscid/viscid interaction solution capability on a realistic cascade configuration.

The component analyses, described in this report, are important in their own right. They

can be applied to improve our understanding of the complex steady and unsteady flow pro-

cesses that occur in turbomachine cascades, and to provide useful aeroelastic and aeroacoustic

design information. Hopefully, along with the general inviscid/viscid interaction and inviscid
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small-disturbance formulations, presented in § 2, they will contribute to the future develop-

ment of a comprehensive inviscid/viscid interaction analysis for unsteady cascade flows. Such

an analysis will provide useful aeroelastic and aeroacoutic response information for a wide

range of blade-row geometries and operating conditions. It will also be of help in calibrat-

ing the time-accurate, nonlinear, Euler and Navier-Stokes analyses that are currently being

developed for predicting turbomachinery unsteady flow fields.



2. Physical Problem and Mathematical Models

2.1 Unsteady Flow through a Two-Dimensional Cascade

We consider time-dependent flow, at high Reynolds number (Re) and with negligible body

forces, of a perfect gas with constant specific heats and constant Prandtl number (Pr) through

a two-dimensional cascade, such as the one shown in Figure 2.1. The unsteady fluctuations

in the flow arise from one or more of the following sources: blade motions, upstream total

temperature and total pressure disturbances, and upstream and/or downstream static pres-

sure disturbances that carry energy toward the blade row. These excitations are assumed to

be of small amplitude, periodic in time, and periodic in the blade-to-blade or cascade "cir-

cumferential" direction. Also, blade shape and orientation relative to the inlet freestream

direction, the inlet to exit mean static pressure ratio and the amplitudes, modes, frequencies

and wave numbers of the unsteady excitations are such that viscous effects are confined within

thin layers, that lie along the blade surfaces and extend downstream from the blade trailing

edges. We should note that the aerodynamic models to be developed below, apply to subsonic

flows and to transonic flows containing normal shocks; however, the applications presented

throughout this report are restricted to subsonic flows.

In the following discussion all physical variables are dimensionless. Vector quantities are in

boldface type, and a tilde over a dependent variable indicates time dependence. Lengths have

been scaled with respect to blade chord (L*), time with respect to the ratio of blade chord

to upstream freestream flow speed (1/_Ioo), density with respect to the upstream freestream

density (P:-_o), velocity with respect to the upstream freestream flow speed, and stress with

respect to the product of the upstream free.stream density and the square of the upstream

freestream speed (_'_o_V_*oo2). Here the superscript * denotes a dimensional quantity and the

subscript -oo refers to the prescribed freestream conditions far upstream. The scalings for

the remaining variables can be determined from the equations that follow, which have the

same forms as their dimensional counterparts.

We will analyze the unsteady flow in a blade-row fixed coordinate frame in terms of the

Cartesian (x, y) or (_, r/) coordinates and the time t. Here, for example, _ and r/ measure

distances in the cascade axial and circumferential directions, respectively. To describe flows

in which the fluid domain varies with time it is useful to consider two sets of independent

variables, say (x, t) and (_, t). The position vector x(_, t) = _ + 7_(_, t) describes the instan-

taneous location of a moving point, say _, _ refers to the reference or steady-state position

of _, and 7_(_, t) is the displacement of :P from its reference position. The displacement

field, 7_., is usually prescribed so that the solution domain moves with solid boundaries and

is stationary far from the blade row. If we set 7_ -- 0, then the position vector x, like _¢,

describes a stationary point in the blade-row fixed reference frame.

The mean or steady-state positions of the blade chord lines coincide with the line segments

= _tan O +raG, 0 < _ < cos O, m = 0, +l, 4-2, ..., where m is a blade number index, O is

the cascade stagger angle, and G is the cascade gap vector which is directed along the _-axis

with magnitude equal to the blade spacing. The blade motions are prescribed as functions of

and t, i.e.,

7_-Sm(_+ mG, t)= Re{RB(_)exp[i(wt + ma)]}, for _ e B (or x E B). (2.1)
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Figure 2.1: Two-dimensional compressor cascade.

Here _B. is the displacement of a point on a moving blade surface (B,_) relative to its mean

or steady-state position (B,_); RB is the complex amplitude of the blade displacement; a is

the phase angle between the motions of adjacent blades; Re{ } denotes the real part of { };

and B denotes the reference (m = 0) blade surface. In the present report we will use the

notations 7_B,_ or $Z, _ E Bin, to indicate the displacement of a point on the ruth blade

surface. Similar notations, i.e., "R.w. or 7E, _ E W,,,, and "P--Sh,,. or _, i E Shin,n, will be

used to represent inviscid wake and shock displacements.

For aeroelastic and aeroacoustic applications we are usually interested in a restricted class

of unsteady flows; those in which the unsteady fluctuations can be regarded as perturbations

of a background flow that is steady in the blade-row frame of reference. Thus, we consider

situations in which the background flows far upstream (say _ < __) and far downstream (_ >

_+) from the blade-row consist of at most a small steady perturbation from a uniform flow. In

this case any arbitrary unsteady aerodynamic excitation of small amplitude can be represented

approximately as the sum of independent entropic, vortical, and acoustic disturbances that

travel towards the blade row, as indicated in Figure 2.2.

The entropic, ._-oo(_,t), vortical, __¢0(_,t), and acoustic, _5A_:,o(_,t), excitations, where

the subscripts -oo and +c¢ refer to the far upstream and far downstream flow regions,

respectively, are also prescribed functions of _ and t. However, these functions must be

solutions of the fluid-dynamic field equations that describe disturbances that travel towards
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Figure 2.2: Unsteady excitations: blade motion, incident vortical and entropic disturbances

from upstream, and incident acoustic disturbances from upstream and downstream.

the blade row. Since the unsteady aerodynamic excitations are periodic in _/and t, it is often

useful to represent them via Fourier series. In this case the complex amplitudes, temporal

frequencies and circumferential wave numbers of the various excitations are the prescribed

quantities. In the present study, the external aerodynamic excitations are small-amplitude,

harmonic perturbations of a uniform freestream flow, and therefore must be of the form

g(_,t)=g_co(yc-V_cot)=Re{s_ooexp[i(tc_co.Yc+wt)]}..., _<_-, (2.2)

_(_,t) = __oo(_- V_cot) = Re{__oo exp[i(t¢_co- _ , (< &, (2.3)

and

_i(_,t)=_z,;co(Yc, t)=Re{vI,;coexp[-13,co_+i(tc:_co'X+wt)]}..., _,&. (2.4)

Here s_co, ('-o0 and ps,_:oo are the complex amplitudes of the entropic, vortical and acoustic

excitations, w is the temporal frequency, sc:Fco is the wave number, with _n,:Fco = aG-a,

and the _:co are attenuation constants. It follows from the governing equations that the

temporal frequency and wave number of an entropic or vortical excitation are related by

o., = -t¢-oo • V-oo, where V-co is the uniform relative inlet velocity, but more complicated

relationships exist between w and t¢_:oo for pressure excitations [Ver89b].



2.2 Reynolds-Averaged Navier-Stokes Equations

The field equations that govern the fluid motion follow from the mass, momentum and

energy conservation laws. After taking ensemble averages of the resulting equations, the

so-called Reynolds-averaged Navier-Stokes equations for the (statistical) mean values of the

flow variables can be determined. The conservation law forms of these equations are usually

preferred in modern numerical simulations of steady and unsteady flows. However, for the

present purpose of developing computationally efficient aerodynamic models, we will consider

the conservative form of the mass equation and convective forms of the momentum and energy

equations, i.e.,

+ vx. = o (2.5)
X

-D'9

_-_-_- + Vx/5 = Vx. (/:/- __) (2.6)

and

Dr-IT OP I# Dt O-t x = Vx. (h- V - (_ - _h_._,') (2.7)

Here, D/Dt = 0/Otlx + _r. Vx is the material or convective derivative operator; _,V, /5

and HT are the ensemble or Reynold's-averaged values of the time-dependent fluid density,

velocity, pressure, and specific total enthalpy, respectively;/:/is the viscous stress tensor; (_

is the heat flux vector; ft' ® ¢¢' and h_,' axe statistical correlations that account for the effects

of random turbulent fluctuations on the ensemble-averaged flow; and ® denotes the tensor or

dyadic product of two vectors. To obtain a closure of the mean flow equations, the turbulent

correlations can be related to gradients in the ensemble-averaged variables via algebraic eddy

viscosity models. Note that, as is the usual practice in aerodynamic calculations, we have

only included selected turbulent correlations in equations (2.6) and (2.7). For example, we

could have also included density-velocity correlations in the mass, momentum and energy

equations. We are assuming, therefore, that the correlations omitted have a negligible impact

on the deterministic mean flows under consideration.

For a Newtonian fluid with zero coefficient of bulk viscosity, we can write

l:I = -_(Re)-a[(2Vx • V/3)I- Vx ® V - (Vx ® Vc]. (2.s)

Here, _ is the coefficient of shear viscosity, Re = p_ooV*ooL*lP*_.oo is the flow Reynolds number,

I is the unit tensor, and the subscript C denotes the conjugate dyadic. Assuming Fourier's

Law for the conduction of heat, the heat flux {_ is related to the gradient of the temperature

by

= -Tcpr-lRe-lVxI " , (2.9)

where k is the coefficient of thermal conductivity, Pr = f_'C_,/_:* is the flow Prandtl number

and C_ is the dimensional value of the specific heat at constant pressure. The coefficients _ and

in the foregoing equations are usually assumed to be known functions of the temperature.

For example, the following empirical laws relating the molecular viscosity and the thermal

10



conductivity to the temperature,

D= T_oo+ Tc (2.10)
T+Tc '

are often used in Navier-Stokes calculations. Equation (2.10) is a form of Sutherland's equa-

tion. Here T-o¢ = C_T*_oo/(V*_oo) _ is the non-dimensional reference temperature, and Tc is a

constant, which for air has a dimensional value, T_, of ll0°K [Sch60].

The pressure,/5 and temperature, T, can be expressed in terms of the dependent variables

_, V and /:/T- In particular, for a thermally and calorically perfect gas

(2.11)

and

= (/TT- Q2/2) = I-2, (2.12)

where 7 is the specific heat ratio (constant pressure to constant volume) and f-I is the specific

enthalpy of the fluid. Although enthalpy and temperature are different fluid dynamic proper-

ties, the relationship H = T applies here because of the scalings used to non-dimensionalize

the various flow variables.

We will also find it useful to introduce the fundamental thermodynamic identity

f"dS = d[-I - j-_dP, (2.13)

where S is the specific entropy of the fluid. It then follows from (2.11) through (2.13) that

/sj-_e -'D = (Pj-'_e-'ys)l_f , (2.14)

where the subscript Ref refers to a reference thermodynamic state, which is usually taken to

be the free-stream state far upstream of the blade row, i.e., at _ = _-oo. We can make use of

(2.13) and the equation of motion (2.6) to re-write the energy equation (2.7) in the form

_T-_-_-'"DS = _ _ Vx" ((_ + _h_c_') + (V. Vx)(__), (2.15)

where T = /_/ : Wx ® V is the viscous dissipation and the symbol : indicates the scalar

product of two tensors.

Boundary Conditions

For application to turbomachinery unsteady flows the foregoing field equations must be

supplemented by conditions at the vibrating blade surfaces and conditions at the inflow and

outflow boundaries. Since transient unsteady aerodynamic behaviors are usually not consid-

ered, a precise knowledge of the initial state of the fluid is not required. The no-slip condition,

i.e.,

=7_ for x e B,_ (or_ES,_), (2.16)
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where "R.B,, is prescribed, applies at blade surfaces. In addition, either the heat flux Q- n or

the temperature _F must be prescribed at such surfaces, i.e.,

Q.n = or T = _F_(x,t), x e B,,, (or _ e B,_) (2.17)

We also require conditions on the flow far upstream and far downstream from the blade

row, i.e., at the inflow and outflow boundaries of the computational domain. Typically the

circumferentially- and temporally-averaged values of the total pressure, total temperature

and the inlet flow angle are specified at the inflow boundary. At the outflow boundary, the

"circumferentially" and temporally averaged pressure is specified. In addition, total pressure

and total temperature fluctuations at inlet and pressure fluctuations at inlet and exit, that

carry energy towards the blade row, must be specified. Total pressure and total temperature

fluctuations at exit and unsteady pressure disturbances at inlet and exit, that carry energy

away from the blade row, are determined as part of the unsteady solution.

2.3 Inviscid/Viscid Interaction Model

The Reynolds-averaged Navier-Stokes equations must be considered if viscous effects axe

expected to be important throughout the fluid domain. However, for most flows of practical

interest the Reynolds number (Re) is usually sufficiently high so that such effects are concen-

trated in relatively thin layers across which the flow properties vary rapidly. Provided that

large scale flow separations do not occur, these layers generally lie adjacent to the blade sur-

faces (boundary layers) and extend downstream from the blade trailing edges (wakes). Thus,

if we assume that the Reynolds number is high and the flow remains essentially "attached" to

the blade surfaces, we can apply an inviscid/viscid interaction (IVI) analysis to determine the

unsteady flow field. The terminology "inviscid/viscid interaction" refers to all flow situations

in which viscous layers have a significant influence on the pressure field. Weak interactions

are defined as those in which viscous effects on the pressure are small, or more specifically, on

the order of the viscous-layer displacement thickness, _ ,,, O(Re-1/2). If viscous effects on the

pressure disturbance are larger than this, i.e., > O(_), the interaction is classified as strong

[Mel80].

In an IVI analysis separate sets of approximate equations, i.e., reduced forms of the Navier-

Stokes equations, are constructed, using the method of matched asymptotic expansions, to

describe the flows in "outer" inviscid and "inner" viscous-layer regions. This approach offers

the potential for providing efficient predictions of the effects of viscous layer displacement and

curvature on the unsteady aerodynamic behaviors of blade rows. The governing equations can

be derived with respect to moving, shear-layer surfaces S,_, each of which is contained entirely

within a viscous layer. These surfaces are usually taken to coincide with the suction and

pressure surfaces of the blades and lie entirely within the viscous wake, e.g., see Figure 2.3.

The curvatures of the reference shear layer surfaces are assumed to be O(1) or less, and here

we will assume that their motions, which depend on the blade motions, are also of O(1) or

less. Ultimately, we will assume that the motions of the blades and their wakes, and hence,

those of the reference shear-layer surfaces are of small amplitude. The inviscid and viscous

layer equations must be solved simultaneously, subject to appropriate matching conditions

along the blades and wakes, to determb - the flows in the inviscid and viscous-layer regions.

12
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Figure 2.3: Two-dimensional steady flow, at high Reynolds number, over a blade surface.

In the limit as Re _ oo, viscous effects become negligible, and it is sufficient to consider only

the outer or inviscid flow.

To arrive at the governing equations for the flows in the inner and outer regions the

dependent fluid variables are expanded in power series in the small parameter, _. For example,

the series expansions for the pressure have the form

p = po_+_p,_+ _P_+... and P = P0° +_po+_po+... (2.1s)

where the superscripts Z and O refer to the inner and outer regions respectively. The lead

terms in the inner-region expansions for the components of the fluid velocity, V, tangential

and normal to the shear layer surface S, i.e., in the -r- and n- directions, are assumed to

be of O(1) and of O(_), respectively. The lead terms in the remaining inner region and in

all outer region series expansions for the deterministic unsteady flow variables are assumed to

be of O(1). The turbulent correlations "_'® _' and h_' are assumed to be O(_) in viscous
_-2

regions and of higher order, i.e., O(_ ) or higher, in the inviscid region.

Scalings for the independent variables are also introduced. The thickness of the viscous

layers is assumed to be O(_), hence, in the inner region, distances, n, normal to the shear
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layer surfacesare of O(_) and partial derivatives in the normal direction are of order 6 1, i.e.,

n. Vx _ _n _ 0(6 ). (2.19)

Partial derivatives along the surface, r. Vx, and local time derivatives, O/Otlx , are assumed

to be of 0(1) in both the inner and outer regions. In the outer region, normal derivatives,

n. Vx, are also assumed to be of O(1).

Approximate field equations that describe the flows in the inner and outer regions are

determined by simply substituting the series expansions for the dependent variables and the

scalings for the independent variables into the Reynolds-averaged Navier-Stokes equations and

equating terms of like power in 6. When expressed in terms of the original variables, /5, V,

etc., the zeroth-order inviscid flow is governed by the Euler equations, i.e., equations (2.5),

(2.6) and (2.7) or (2.15) with right-hand-sides set equal to zero; the zeroth-order viscous flows,

by Prandtl's viscous-layer equations, which will be given below. The inviscid flow in the outer

region is determined as a solution of the Euler equations subject to flow tangency conditions

at the blade surfaces and jump conditions at shocks and at blade wakes. The blade and

wake conditions contain terms that account for the effects of viscous-layer displacement and

curvature, which become negligible as Re _ oo. The viscous flows in the inner regions are

determined as solutions to Prandtl's equations subject to edge conditions that depend on the

behaviors of the inviscid flow variables along the blade and wake surfaces. The specific forms

of the inviscid and viscid blade and wake conditions follow from an asymptotic matching of

the outer inviscid and the inner viscous-layer solutions, e.g., see [Mel80].

Inviscid Region

The field equations that govern continuous, inviscid, fluid motion are determined from the

Reynolds averaged Navier-Stokes equations, (2.5), (2.6) and, in this case, (2.15), and are given

by

--O_ +Vx-(9_)=0 (2.20)
X

-D9
#-_-- + _'x/5 = 0 (2.21)

D#
D--T = 0 (2.22)

For turbomachinery applications, we require solutions of these equations subject to boundary

conditions at moving blade surfaces, jump conditions at moving wake and shock surfaces, and

appropriate conditions far from the blade row.

The inviscid solution for the normal component of the fluid velocity at a moving blade

surface must match the viscous solution for this velocity at the outer edge of the viscous

layer. This is equivalent to the condition that the inviscid flow must be tangential to the

blade and wake displacement surfaces. After carrying out the asymptotic matching process

and neglecting terms of second and higher order in _, we find that the normal component of

the inviscid fluid velocity must satisfy the condition

(9 - "_)-n = _-[l[O(_6)/Otlx + O(_¢V,,_6)/Or I + ('_. Wx)6, x E Bm (2.23)
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at the ruth (m = 0,d=l,=k2,...) moving blade surface. In equation (2.23), _, and V_,, are

the inviscid values of the fluid density and streamwise velocity at the moving blade surface,

Bin, or the viscous density and streamwise velocity at the edge (e) of the viscous layer, r is

the distance measured along this surface downstream from the leading-edge, and n is a unit

vector normal to Bm and pointing into the fluid.

Two types of terms arise from the wake matching conditions, one due to the displacement

thickness effect and the other, to the wake curvature effect. The first leads to the requirement

that the inviscid solution for the normal component of the fluid velocity must be discontinuous

across a wake with jump given by

[9].n = <_'['[O(_,_)/Ot x + O(_?,-,,$)/O'r]) + ('#,..•Vx)($), x • "W,,,. (2.24)

Here I ] and ( ) denote the difference (upper minus lower) and the sum (upper plus lower),

respectively, across a wake, and n is an "upward" pointing, unit vector, normal to the moving

reference wake surface, kY. Note that (_) = _w is the displacement thickness of the complete

wake. The wake curvature effect gives rise to a pressure difference across the wake. The

requirement that the outer inviscid flow match this pressure difference leads to the condition

(2.25)

where (3) = 0w is the momentum thickness of the complete wake and Pc = r. On/Orlw is

the curvature of the reference wake surface, which is taken as positive when the curvature

is concave upwards. Since there is some ambiguity in establishing the shape and location of

a viscous wake the right-hand-side of (2.25) is usually ignored in inviscid/viscid interaction

calculations. Consequently, the pressure jump across the wake is usually set equal to zero.

In deriving the surface conditions (2.23)-(2.25), we have assumed that the viscous layer is

thin, i.e., _ << 1, and therefore, that the effects of terms of second and higher order in the

viscous displacement thickness are negligible. In the inviscid limit Re --* oo, the thicknesses

of the viscous layers, and hence, the right-hand-sides of (2.23)-(2.25) become zero.

Jump conditions must also be imposed at inviscid shock discontinuities. Such conditions

are obtained from the integral conservation laws by considering a control volume that contains

a segment of a shock surface, and taking limits, first, as the lateral extent of this volume, nor-

mal to the surface segment, approaches zero, and, then, as the area of the segment approaches

zero. The resulting jump conditions for conserving mass momentum and energy at a shock

are given by

_M_ = 0, M_IV] + _Pln = 0, and MA_I+ _PV]-n = 0, x • Sh_,, (2.26)

respectively. Here [[ ] denotes the jump in a flow quantity as experienced by an observer in

moving across the shock Sh,_,,_ in the n direction,

Mj = _(9- 7_).n, x 6 $h_,. (2.27)

is the fluid mass flux through the shock, ET = HT --/5/_ is the total specific internal energy

of the fluid and the subscripts m, n refer to the nth shock associated with the ruth blade.
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In the inviscid limit, the conditions (2.26) also apply acrossthe vortex-sheet "viscous"
layers. In this case,since_[V_] # 0, and the inviscid jump conditions (2.26) indicate that, for

vortex sheets, M I = 0, [ P] - 0, and [ V]'n = 0. At shocks, Sh,,,n, the mass flux is generally

nonzero (i.e., Mj # 0). Hence, it follows from (2.26) that the component of fluid velocity

tangent to a shock surface, V .7", must be continuous across the shock. The remaining jump

conditions, along with the thermodynamic equations of state, are then required to determine

the shock velocity, "R-sh,.,n, and the changes in the normal component of the fluid velocity and

the thermodynamic properties of the fluid as it passes through the shock.

The far-field conditions used in the inviscid approximation are the same as those indicated

in § 2.2 for Navier-Stokes simulations. In particular, averaged values of the inlet total pressure,

total temperature and flow angle and the exit static pressure are specified along with the

entropic and vortical fluctuations at inlet and the static pressure disturbances at inlet and

exit that carry energy towards the blade row. In addition, disturbances generated within the

solution domain must be allowed to pass through the inflow and outflow boundaries without
reflection.

Viscous Layers

The flows in the viscous layers are governed by Prandtl's equations and are subject to

no-slip and prescribed heat-flux or wall temperature conditions, cf. (2.16) and (2.17), at the

moving blade surfaces. In addition, the streamwise velocity and the thermodynamic properties

of the fluid at the edges of the viscous layers are determined by the values of the corresponding

inviscid quantities at the blade surfaces and along the reference wake (shear-layer) surfaces.

We describe the flow in these layers in terms of curvilinear coordinates z and n which measure

distance along and normal to, respectively, a moving, reference, shear-layer surface S. The

unit vectors T(e, t) and n(e, t), where e measures distance along the mean position of the

shear layer surface, are tangent and normal to S.

The field equations that govern the lead terms, _-'.0, V_z .n, Poz, etc., in the inner-region

series expansions, are :etermined in a m_nner similar to that used for the inviscid region. In

particular, the series expansions for the inner-region dependent variables and the scalings for

the independent variables are substituted into the Reynolds-averaged Navier-Stokes equations,

(2.5), (2.6) and (2.7), and only terms of O(1) are retained. Then, in terms of the original

variables, the zeroth-order equations for the two-dimensional flows in the thin boundary layers

that lie along the upper and lower surfaces of each blade and in the thin wake that extends

downstream from the blade trailing edge have the form

_-_ x+ (_'_) + (_Vn) = 0, (2.28)

.DV, OP [-OV, _ O(_v-_) = 0#---_- -4- _ (Re)-l_n -4-- , (2.29)

and

Dt Ot x ([t-(Pr)-'k) l:'_-_-n + (Pr)-'_ + (_h_v') =0. (2.30)
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Here

oI oo I .oD/Dt= N N , (2.31)
X X

lIT = [t + _.2/2 _ I;I + fT]/2, and 1), and I),_ are the fluid velocity components in the positive

r- and n-directions, respectively. The viscous layer equations (2.28)-(2.30) are based upon

the approximations _ << 1, V.n .-_ O(_) and O/On ,,_ O(_-1), where _ is the viscous-layer

displacement thickness. These equations are written relative to a fixed reference frame, but the

tangential and normal coordinates are measured relative to moving blade and wake surfaces.

' ' hTV,_ , appearing in equations (2.29) and (2.30), areThe turbulent correlations v,v,_ and -' '

related to gradients of the mean-flow variables, using Prandtl's mixing-length hypothesis; i.e.,

we set

OV,. phTV n + (_ -- _)V, (2.32)--,, and --" ' -1

Here _ and _ are the eddy viscosityand eddy diffusivity,respectively,and play rolessimilar

to their molecular counterparts. The eddy diffusivityis related to the eddy viscosity,i.e.,

_H = (PrT) -I_,through the introduction of the turbulent Prandtl number, PrT, which has

a value near one for the flows of interest in turbomachinery applications. Values for _ are

provided via the use of an algebraic turbulence model; e.g., see [CS74] or [SL78].

It follows from the momentum equation (2.6) and the viscous layer approximations, that

the component of the pressure gradient normal to the shear layer surface is given by

n. Vx/5 015 _n DV _l_'_ + (2.33)
- On - "-_- +"" _ ....

Since the right-hand-side of (2.33) is of O(1) and the thickness of the viscous layer is O(5), the

change in pressure across this layer must be of 0(5). Hence, in the zeroth-order approximation,

the pressure in the viscous layer can be set equal to the inviscid pressure at the shear layer

surface. Therefore, as a consequence of the high Re assumption, the pressure in thin viscous

layers is a function only of v and t. Also, the pressure within and the flow properties at the

edge of each viscous layer are equal to the inviscid values of these variables at the reference

shear layer surface.

The behaviors of the remaining flow variables in the viscous layer are determined by solving

the mass (2.28), momentum (2.29), and energy (2.30) equations subject to appropriate surface

and edge conditions. Also, since the system of viscous-layer field equations is parabolic in time

(t) and in the streamwise (r-) direction, the density, _, surface velocity, V_, and total enthalpy,

/_T, must be known for all time at some upstream location, and these variables, along with

the normal velocity, must be known throughout the solution domain at some initial time.

A no-slip condition and either a prescribed temperature or heat flux condition must be

imposed at the solid blade surfaces, i.e.,

V='_, x6B_ or n=O,r<_rTE,

and (2.34)

fit = [-IT,_,(7",t) or On -_n = -k (Re. Pr)-'(_ for x e Bin,
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and a condition on the normal componentof the fluid velocity, i.e.,

(V - _). n = 0 for x E _m or n = 0 , r > rTS (2.35)

must be enforced at the reference wake surfaces. At the edge(s) of the viscous layer we require
that

and for (2.36)

where the limit n -, c_ refers to the edges of the upper and lower surface boundary layers

and the upper and lower edges of a wake. Here the subscripts w and e denote the values

of the fluid properties at a solid wall and at the edge of the viscous layer, respectively, and

the subscript TE refers to a blade trailing-edge. The fluid velocity, V,,,, and total enthalpy,

HT.,, at the edges of the viscous layers are determined by the inviscid solution along the blade

and reference wake surfaces. Note that the exact locations of the reference wake surfaces

are unknown a priori; however, to within lowest order, the wake boundary conditions can be

referenced to any arbitrary surface emanating from a blade trailing edge and lying within the

actual viscous wake [Vel80].

The displacement, _, and momentum, 3, thicknesses of a viscous layer are needed to de-

termine the effects of viscous displacement and wake curvature, cf. (2.23)-(2.25), on the outer

inviscid flow. For the two-dimensional unsteady flows, considered herein, these parameters

are defined by

j:(1 (2.37)

and

1 dn, (23s)

where the integrations are carried out along lines normal to a moving blade or wake surface.

2.4 Linearized Inviscid Unsteady Aerodynamic Model

Even with the simplifications resulting from the assumption of a high Reynolds number,

attached flow, the unsteady aerodynamic problem still involves prohibitive computing times

and computational resources. Because of this, the traditional approach has been to assume

that the unsteady excitations are of small-amplitude, harmonic in time, and exhibit a phase-

lagged blade-to-blade periodicity, cf. (2.1)-(2.4). These assumptions lead to time-independent,

linear equations for the inviscid unsteady perturbation, that can be solved over a single,

extended, blade-passage region, for the complex amplitudes of the first-order unsteady flow

variables. Because they are governed by linear equations, the first-order unsteady motions that

arise from various Fourier modes of unsteady excitation are not coupled. Therefore, solutions

for arbitrary excitations can then be obtained by a superposition of solutions for fundamental

harmonic excitations. These features can lead to useful and efficient theoretical predictions

of the unsteady aerodynamic response information needed in turbomachinery aeroelastic and

aeroacoustic design studies.

Thus, we regard the unsteady flow in the inviscid region as a small perturbation of a non-

linear mean or steady background flow. Since the unsteady excitations are of small amplitude
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[i.e.,of O(e) << 1], the unsteady part of the inviscid flow can be approximated as a first-order

(in e) perturbation of an underlying nonlinear background flow, that is steady in the blade-

row frame of reference. In this case, the first-order unsteady fluid motions are governed by

linear equations with variable coefficients that depend upon the steady background flow. Also,

since the unsteady excitations are harmonic in time and the equations that govern the first-

order flow properties are linear, these properties will have a harmonic time-dependence. We

will take advantage of this feature by introducing complex representations for the first-order

flow variables; thereby removing explicit physical time dependence from the linear unsteady

problem.

To determine the inviscid small-disturbance equations we first expand the dependent flow

variables into asymptotic series of the form

V[x(_, t),t] = V(_) + _'[x(_, t),t] +... = V(_) + Re[v(Yc)exp(iwt)] + .... (2.39)

Here V(_) ,,- O(1) and _[x(_,, t), t] ,_ O(e) are the velocities in the steady background flow

at _ and the first-order unsteady flow at x = _ + Re{R(:_)exp(iwt)}, respectively, v is the

complex amplitude of the linearized unsteady velocity, w is the temporal frequency of the

unsteady motion, ]R] ,,_ O(e), and the dots refer to higher order terms.

The asymptotic expansion (2.39), with a field-point displacement field 7_(:_, t) that satisfies

the condition 7_(_, t) = _--s,,(:_, t) for _ E B,, has been employed in recent linearized Euler

analyses [HC93a, HC93b, KK93, MV94]. It leads to a rather complicated set of unsteady

field equations, but allows blade-surface boundary conditions to be imposed directly at the

blade surfaces. However, since the blade motions are of small amplitude, we can set x _-- _, in

(2.39), i.e., "h_ = 0, which then becomes identical to the asymptotic expansion used in earlier

linearized analyses [Whi87, Ver92, Ver93]. The latter expansion will be applied herein. It

leads to a more convenient set of linearized unsteady field equations and precludes the need

to prescribe a displacement field 7_.(R, t) over the solution domain. However, Taylor series

expansions, e.g.,

= + +...is (2.40)
must be applied to refer surface information from moving blade, wake and shock surfaces

(S) to the mean positions (S) of such surfaces. Thus, in the present linearization the spatial

coordinates x and _:, refer to the same fixed location in the cascade frame of reference.

The field equations that govern the zeroth-order steady and the first-order unsteady flows

are obtained by substituting the asymptotic expansions for the flow variables [e.g., (2.39)]

into the governing nonlinear field equations; equating terms of like power in e; and neglecting

terms of second and higher order in e. Conditions on the unsteady perturbation at the

mean blade, wake and shock surfaces are obtained by substituting the asymptotic (2.39) and

Taylor (2.40) series expansions, and the relations between the unit tangent and normal vectors

at corresponding points on the instantaneous (S) and mean surface (S) positions, i.e.,

rSm = rS,_+ ns,,- 0%" ns,_+.., and ns_ = nsm- ns,_. _TT ] rS_+-'" , (2.41)

into the full time-dependent surface conditions, subtracting out the corresponding zeroth-

order conditions and neglecting terms of higher than first order in e. These procedures lead to
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nonlinearand linear variable-coefficientequations,respectively,for the zeroth- and first-order
flows. The variable coefficientsthat appearin the linearizedunsteadyequationsdependupon
the steadybackgroundflow.

Note also,that asa consequenceof the assumptionsregardingcascadegeometry,the inlet
andexit mean-flowconditions,and the temporal andcircumferential behaviorsof the unsteady
excitations, the steadybackgroundflow will beperiodicfrom blade-to-bladeand the first-order
unsteadyflow will exhibit a phase-lagged,blade-to-bladeperiodicity. Thus, for example,we
canwrite

V(_ + mG) = V(_) and v(_ + mG) = v(Yc)exp(ima). (2.42)

Such conditions allow numerical resolutions of the steady and linearized unsteady flows to be

limited to a single extended blade-passage region.

Steady Background Flow

The field equations for the steady background flow are [cf. (2.20), (2.21) and (2.22)] are

V_-(#V) = 0, (2.43)

_(V-Vs)V + VsP = 0, (2.44)

and

V. VsS = 0. (2.45)

Here fi, V, P and S are the density, velocity, pressure and entropy, respectively, in the steady

background flow. The steady pressure can be determined in terms of the dependent variables

# and S, using the steady form of (2.14), i.e.,

P = [PF -_ exp(-TS)]r_ exp(TS) (2.46)

Surface conditions for the steady background flow follow from (2.23) through (2.25) and

are imposed at the reference or mean positions of the blade, wake and shock surfaces. Mean

blade positions are prescribed, but the mean wake and shock locations must be determined

as part of the steady flow solution.

The conditions

V. fi = _:10(_V_,_5)/0_, for _ E Bm, (2.47)

apply at the mean blade surfaces. In addition, the zeroth-order normal velocity and pressure

must satisfy the conditions

[V]- fi = (fi-_'O(_,V_,,5)lOi) and [P] = _(fi, V_,(_ +/_)) , for _ E W,_, (2.48)

along blade wakes. Note that in the limit Re _ 0¢, 5 ---, 0 and _ ---, 0; therefore, the fluid

normal velocity approaches zero at blade surfaces and the normal velocity and pressure become
continuous across blade wakes.

Finally, the requirements of mass, momentum and energy conservation provide the follow-

ing conditions on the mean flow variables at the mean shock locations, _ E Shin,,:

[MI] = 0, MI[V| + IP]fi = 0, and Ms[Er] + [PV]. fi = Ms[Hr] = 0, (2.49)
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whereMf -- _V. ft. It follows from (2.49) that the tangential component of the fluid veloc-

ity, V_, must be continuous across shocks. In principle, the shock-jump conditions must be

imposed in nonlinear inviscid calculations, but the usual practice is to capture shocks by solv-

ing conservative forms of the inviscid field equations across shocks using special differencing

techniques.

Steady-state, non-reflecting, inflow and outflow, boundary conditions (e.g., see [Gil90])

must be imposed on the steady background flow far upstream and far downstream from the

blade row. In particular, averaged values of the inlet total temperature, total pressure and

flow angle and the exit static pressure are specified, and circumferential harmonics of the mean

flow variables, caused by the interaction of the mean flow with the blade row, are determined

as part of the mean-flow solution. In addition, blade-to-blade periodicity conditions, cf. (2.42),

can be imposed to restrict the steady flow solution domain to a single extended blade passage

region. Since the inlet and exit conditions are imposed at finite distances from the blade row,

say at _ = __ and _ = _+, respectively, the numerical solution domain is further restricted to

a single extended blade passage region of finite axial extent.

Linearized Unsteady Flow

The differential equations that govern the first-order or linearized inviscid unsteady flow

in continuous regions can be written as

iwp + _. (pV + pv) = 0, (2.50)

and

_- + (v. v_)v + p(v. v_)v + v_, = 0 (2.51)

/)S

0-7+ (v. v,)s = o. (2.52)

Here p, v, p and s are the complex amplitudes of the time-dependent first-order density, ve-

locity, pressure and entropy, respectively, and D/Dt = iw + V • V is a convective derivative

operator based on the mean flow velocity. To complete this system we require an additional

equation that relates the first-order density, pressure and entropy. This is obtained by ex-

panding the thermodynamic relation (2.14) and using (2.46) to obtain

p = _[7-1p/P - s] = A-_p - _s = O, (2.53)

where A is the speed of sound propagation in the steady background flow.

The thermodynamic relation (2.53) can be used to eliminate the density p from the lin-

earized momentum (2.51) and continuity (2.50) equations, thereby expressing these equations

in useful alternative forms. After performing the necessary algebra, we find that the linearized

momentum and continuity equations can be written as

b sV/2) + [(v sV/2) Vx]V + Vx(p/#) V(v VxS)/2 + _-'pV_S_(v - _ . = . ,
(2.54)

and
D

[p/(_A 2) - s] + Z-_v,. (pv) = 0,
(2.55)
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respectively. The linearized unsteady flow can then be determined by solving the system

of convection equations (2.52), (2.54) and (2.55), subject to appropriate surface and far-field

conditions, for the complex amplitudes, s, v and p, of the first-order unsteady entropy, velocity

and pressure. Note that, if the mean flow is isentropic, the right-hand side of (2.54) is zero.

Conditions on the inviscid unsteady perturbation at the reference or mean positions of the

blade, wake and shock surfaces are obtained by substituting the asymptotic (e.g., (2.39)) and

Taylor (e.g., (2.40)) series expansions and the surface vector relations (2.41) into the full time-

dependent surface conditions (2.23)-(2.26), subtracting out the corresponding zeroth-order

conditions (2.47)-(2.49), and neglecting terms of higher than first order in e. We have also

made use of the steady field equations (2.43)-(2.45) and jump conditions (2.49) to write the

first-order surface conditions in more convenient forms. We find that the linearized unsteady

flow tangency condition can be expressed as

[v - iwR - V_OR/O_- + (R. Vx)V]- fi = - (#-ap + _. 0R/0'_) V. fi + iw#-a(p$ + _c5)

+_-1÷. v, [(_v$ + pV$ + ,_v,_+ SR. v_(_v)). ÷] , :_on B,-,,,
(2.56)

where_(x,t)= $(_)+ ae{,_(_)exp(i,o0}+...and$and6~ O([Ri$)arethesteadyandthe
complex amplitude of the first-harmonic components of the viscous displacement thickness,

respectively, and R(_), _ E B,,, is the complex amplitude of the unsteady blade displacement.

As a convenience, we have omitted the subscript e on the densities and velocities appearing

in the surface conditions (2.56) and those given below. But, it is to be understood that the

values of these inviscid fluid properties at a blade or wake surface are equal to their viscous

values at the edges of the corresponding viscous layers.

The linearized conditions on the jumps in the normal velocity and the pressure across

wakes follow from (2.24) and (2.25), and the corresponding zeroth-order conditions, and have
the form

Iv]. fi - [ [V_]0R/0_ + (R. V_)[V] ]. fi = _v]. _ + _o[V,]lO_

- 0(Rn-[V_])/0"_- R.n-I(V. V) lnfi]] - kRn-[Vn]]

= [(p_-I + _'-0'R./0_) V]. fi + (iw_-t(p$ + _6))
(2.57)

+ (_-__[(_v$ + pv$ + Zv,_+ SR.v,(_V)).÷]>, on Wm•

and

[p] + (R. Vx)[PI = [p] + _O[P]/O_- _[p(V. Vx)V] •n

= k(#V_(tS+O))+k(V_[(p+R.Vxfi)V_+2_(v_+(R.Vx)V_)]($+O)) (2.58)

+ (_V_($ + O) (xV_ - iwOP_-/O_)), Y¢on W_,

where k = q" - Ofi/O_ and x are the steady and the complex amplitude of the first-order

unsteady wake curvatures.
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As do the steady, the first-order unsteady blade and wake conditions also simplify con-
siderably in the inviscid limit Re .--* _. In particular, the right-hand-sides of (2.56)-(2.58)

become zero. Also, for Re ---* _ the left-hand-sides of the first-order wake conditions can be

simplified by making use of the inviscid forms of steady wake-jump conditions and the field

equations (2.43) and (2.44). After performing the necessary algebra, we find that

lv]._:O(_lV_l)/O_+R.-lY.O(lnj)/O_l, _, e Win, (2.59)

and

[p]=-kP_-[I_V_], Y¢ E W_. (2.60)

Equations (2.57) and (2.58) provide two independent relations for determining the jump in the

linearized unsteady normal velocity and pressure across each wake. However, since the wake

normal displacement, R- fi, _ E W,_, is unknown a priori, these relations are not sufficient

to determine [p]] and [[v] • n, unless the steady tangential velocity, V. _', and density, _, are

continuous across wakes.

The linearized equations that ensure that mass, momentum and energy are conserved

across shock discontinuities are

[rnl] = [mlc ] = [_v + pV - iw_R], fi - O(Rn-[_]Ve)/O_ = 0, _ on Sh,_,,, (2.61)

and

Mslv + [O(_Y.)lO_ + _]÷l + msolV.]_ + _l_

-_[j(Yg - W)]_- _v.lzOy.lo_]_ = 0, x on Shin,.
(2.62)

Mf_eT + P/P] + m]c[ET] + _Pv] . fi - O(Rn-V_[[P])/O_- P_-V_[_OET/O_] = 0, x on Shin,,,
(2.63)

where _ = V_ x V and er = e+V-v. Equations (2.61), (2.62) and (2.63), with the first-order

mass fluxes, ml_ and mI defined by

rn1_ = (_v + pV - iw_R) . fi - O(_Rr,-V_)/O_ ,
and (2.64)

m_ = mjo - _ZR.-V_+ _O(#y.)/O_

respectively, are the relations needed for determining the jumps in the first-order fluid prop-

erties across moving shocks and the normal component of the shock displacement R- n, x E

Sh,.,,,,. These conditions along with the zeroth-order conditions (2.49) must be enforced to

ensure that mass, momentum and energy are conserved to within first-order across moving

shocks. Again, however, there is one more unknown associated with the unsteady shock-

jump conditions, than there are independent equations. Therefore, these conditions are not

sufficient for determining the relevant unsteady shock information.

The first-order density and specific total internal energy can be eliminated from the first-

order shock jump conditions by applying the thermodynamic relations (2.53) and

e = ,6-'[7-' p + (7 -- 1) -1PSI = (7/5)-1P + 7-'('7 -- 1) -1A2s (2.65)
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to (2.61)-(2.64). By so doing, we would retain the convention, adopted in the derivation of

the field ec _tions, of regarding pressure, entropy and velocity as the dependent variables of

the lineariz, 5 unsteady flow problem. However, since the jump conditions, derived above, are

not sufficient for fitting wakes and shocks into an unsteady solution, based on the linearized

Euler equations, additional information will be required.

The foregoing equations provide linearized surface conditions, in which viscous displace-

ment and wake curvature effects are taken into account. Such conditions are needed to account

for viscous effects in a linearized inviscid analysis of the unsteady perturbation of a nonlin-

ear steady background flow. The flow tangency condition (2.56) applies at the mean blade

pos;_ions, and also on the upper and lower sides of the mean wakes; the jump conditions

on normal velocity and pressure (2.57) and (2.58) also apply at mean wake positions; and

the mass, momentum and energy conservation conditions (2.61), (2.62) and (2.63), respec-

tively, apply at the mean shock positions. Unfortunately, these surface conditions are quite

complicated and, to date, they have not been fully incorporated into a linearized unsteady

aerodynamic analysis. Indeed, as presently posed, the wake and shock conditions are not

sufficient to determine the jumps in the flow variables across a wake or shock surface and the

surface normal displacement. Inviscid forms of the flow tangency condition (2.56) have been

used successfully in linearized Euler calculations in which wake and shock effects are captured

[HC93a, KK93, MV94], but there have not been any attempts to include the viscous terms

on the right-hand-side of (2.56) in such calculations.

In addition to the foregoing surface conditions, phase-lagged periodicity [cf. (2.42)] and

far-field conditions must be imposed on the linearized unsteady flow. The latter must allow

for the prescription of incoming entropy, vorticity and pressure disturbances at the inflow

boundary and incoming pressure disturbances at the outflow boundary of the computational

domain. In addition, unsteady disturbances coming from within the solution domain must

pass through the computational inflow and outflow boundaries without distortion or reflection.

It should be noted that to be precise, we have presented the foregoing steady and linearized

unsteady equations in terms of the independent variable _, the mean-surface coordinates

and fi, and the mean-surface, unit vectors ÷ and ft. However, since the displacement field

7_ = 0 and, as a result, the surface coordinates and unit vectors in the resulting steady

and linearized unsteady equations always apply to the mean surface locations, we could have

omitted the overbars in presenting the governing equations. To simplify the nomenclature, we

will adopt the latter strategy in describing the LINFLO and SFLOW-IVI analyses in § 3 and

§ 4, respectively.

2.5 Discussion

We have presented an inviscid/viscid interaction model for two-dimensional unsteady flows,

occurring at high Reynolds numbers, in which the unsteadiness is driven by excitations of small

amplitude. Although we have not yet developed solution procedures for the complete model,

we have developed and evaluated solution procedures for several of the components needed

for a complete inviscid/viscid interaction analysis of unsteady cascade flows. In particular, we

have developed efficient flow solvers for linearized inviscid unsteady flows, for steady flows with

strong inviscid/viscid interactions, and for unsteady flows with weak inviscid/viscid interac-

tions. In constructing these analyses we have restricted our consideration to flows in which
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any shocksthat might occur are of weakto moderatestrength and in which the free-stream
flow conditions far upstreamof blade rowsareuniform. In suchcases,the steadybackground
flows in the inviscid regions can be regardedas isentropic and irrotational. For potential
meanflows, the inviscid wake-andshock-jumpconditions becomewell-posed,in that, there
area sufficientnumber of conditionsto determinethe flow propertiesat wakesand shocks.In
addition, the potential meanflow assumptionleadsto two-dimensional,steadyand unsteady,
aerodynamicanalysesthat arevery efficient computationally.

In the following sectionsof this report wewill describethe componentunsteadyaerody-
namic analysesmentionedabove. In particular, in § 3 wewill describethe linearized inviscid
analysisLINFLO, which appliesto flows in whichthe unsteadinesscanbe regardedasa small
perturbation of an isentropicand irrotational meanor steadybackgroundflow. The SFLOW-
IVI analysisfor steady flowswith strong inviscid/viscid interactionswill be describedin § 4.
Finally, the unsteady viscouslayer analysisUNSVIS, which canbe usedin conjunction with
LINFLO to predict unsteady flows with weak inviscid/viscid interactions, will be presented
in§5.

To demonstratethese analyses,we will apply them to three of the cascadesstudied in
previousinvestigations [VH90,VBHA91, BVA93a]-- a compressorexit guidevane (EGV), a
high speedcompressor(HSC) cascade,known asthe Tenth Standard CascadeConfiguration
[FS83,FV93], and a turbine cascade,known asthe Fourth Standard CascadeConfiguration
[FS83].The bladesof the EGV and HSCcascadesareconstructedby superposingthe thickness
distribution of a modified NACA four-digit seriesairfoil on a circular-arc camber line. The
thicknessdistribution is given by

T(_) - HT[2.969_ x/2 -- 1.26_ -- 3.516_ 2 + 2.843_ 3 -- 1.036_4], 0 _< _ < 1 . (2.66)

where HT is the nominal blade thickness. The coefficient of the _4 term in (2.66) differs from

that used in the standard NACA airfoil definition (i.e., -1.015) so that the example blades

close in wedge-shaped trailing edges. The camber distribution is given by

C(5:) = Hc - R -{- [R 2 - (_ - 0.5)2] '/2 , 0 < 5: _< 1, (2.67)

where Hc (> 0) is the height at midchord and R = (2Hc)-I(H_ + 0.25) is the radius of the

circular-arc camber line. Thus, the surface coordinates for the reference blade are given by

[X,Y]B,+=[_TO.5T(_)sinO, C(_):t=0.5T(_)cos0], 0<__<1, (2.68)

where 0 = tan-'(dC/d_).

The blades of the compressor exit guide vane (EGV) are constructed by setting HT = 0.12

and He = 0.13. This cascade has a stagger angle O of 15 deg, a blade spacing G of 0.6

and operates at an inlet Mach number and inlet flow angle of 0.3 and 40 deg, respectively.

The blades of the high speed compressor cascade are constructed by setting HT = 0.06 and

Hc = 0.05. This cascade operates at a high-subsonic inlet condition, i.e., M-_o = 0.7 and

fI-oo = 55 deg, and has a blade spacing and a stagger angle of unity and 45 deg, respectively.

As a representative turbine configuration we have selected the Fourth Standard Config-

uration, but for the present study we have modified the blade profiles, defined in [FS83], so

that our example blades close in sharp, wedge-shaped, trailing edges. The turbine cascade
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operatesat an inlet ). ,ch numberof 0.19 and an inlet flow angle of 45 deg. The blade spacing

G is 0.76, and the stagger angle e is 56.6 deg. In addition to the foregoing "real" blade

cascades, we will also consider unsteady flows through flat-plate cascades. Here, the blade

mean positions are aligned with the mean inlet flow direction, i.e., e = f_-oo; therefore, the

local steady Mach number, M = M-oo, and flow angle, f_ = fl-oo, are constants throughout

the flat-plate flow fields.
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3. The Linearized Inviscid Analysis: LINFLO

In this Section, we will describe the linearized inviscid unsteady aerodynamic analysis,

called LINFLO, in which unsteady disturbances are regarded as small perturbations of a

potential steady background flow. The latter assumption leads to very efficient unsteady

aerodynamic response predictions for realistic cascades and mean-flow operating conditions.

The LINFLO analysis applies to unsteady flows excited by prescribed blade vibrations and/or

external entropic, vortical and acoustic excitations. However, in the following discussion we

will emphasize the application of LINFLO to unsteady flows excited by vortical gusts, as this

was the major capability developed under contract NAS3-25425.

For more details on the development and application of LINFLO to subsonic, transonic

and supersonic unsteady flows excited by prescribed blade motions (the flutter problem) we

refer the reader to [VC84, Ver89a, UV91, MVF94]. Applications of LINFLO to unsteady

flows excited by prescribed acoustic disturbances and to controlling the noise produced by

wake/blade row interactions can be found in [KV93b] and [KV93a, KV94], respectively. Fi-

nally the LINFLO analysis has been applied recently to help validate modern, time-accurate,

Euler and Navier-Stokes analyses of unsteady cascade flows. These applications are described

in [AV94] for unsteady subsonic and transonic flows excited by blade vibrations, and in [DV94]

for subsonic flows excited by vortical and acoustic disturbances.

3.1 Unsteady Perturbations of a Potential Mean Flow

We consider inviscid unsteady flows through two-dimensional cascades in which the un-

steadiness is caused by excitations of small-amplitude. We assume that the steady background

flow far upstream of the blade row is at most a small, isentropic and irrotational, perturbation

of a uniform freestream, and any shocks that occur are at most of weak to moderate strength.

Because of these assumptions, the steady background flows will be isentropic (with S = 0)

and irrotational; i.e., V x V = 0. Thus, we can set V = V¢ and (V. XZ)V = V(X7_)2/2,

where ¢ is the steady velocity potential. We also assume that the steady flow far downstream

is a small perturbation from a uniform stream. In this case, analytical representations for

the entropic, vortical and acoustic excitations at inlet and the acoustic excitations at exit can

be provided, cf. (2.2)-(2.4). Also, closed form solutions can be determined to describe the

unsteady entropic and vortical perturbations throughout the flow field. Therefore, numerical

field methods are required only for determining the first-order unsteady pressure fluctuations.

Note that in the present development 7Z -- 0 throughout the field; therefore, the spatial

coordinates x and :_ are identical, both referring to a fixed point in the blade-row frame of

reference. Thus, as a convenience, in this and the following chapter, we will simply use Xz to

indicate the gradient operator with respect to x or N, "/_ to denote a surface (blade, wake,

or shock) motion and 1" and n to denote unit tangent and normal vectors, respectively, at a

mean surface location.

The overall procedure for determining linearized unsteady solutions is first to determine

the steady flow for a given cascade configuration, characterized by G, O, the blade shape

and the inlet and exit flow conditions; and then, to determine the unsteady flow through this

cascade for an unsteady excitation at a prescribed amplitude, frequency, w, and circumferential

wave number, _, = a/G, or interblade phase angle, a. Because of the assumptions used in
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developingthe linearized unsteady aerodynamic model the solution domains for the nonlinear

steady and the linearized unsteady problems can be restricted to a single extended blade-

passage region of finite extent in the axial flow direction.

The Steady Background Flow

For a potential steady background flow the mass conservation equation (2.43) reduces to

V- (_V¢)=0 (3.1)

and the momentum equation (2.44) can be integrated and combined with the thermodynamic

relations for a perfect gas to yield the following (Bernoulli) relations for the mean flow variables

(M_ocV/M)2 = (M_ooA)2 =/_ -y-1 = (TM_2oop)(_-l)/-y = (7 - 1)M2-oo T

=1 7 - 1M_2oo[(V¢)2 11= 2 + (7- 1)M_2oo

2 + (7- 1)M S

(3.2)

Here M and A are the local Mach number and speed of sound propagation, respectively, in

the mean or steady background flow and -_ is the specific heat ratio of the fluid.

Surface conditions for the inviscid zeroth-order or steady background flow apply at the

mean positions, B,,,, W,_ and Sh,_,,,, of the blade, wake and shock surfaces. Since, by assump-

tion, the flow remains attached to the blade surfaces, a flow tangency condition, cf. (2.48),
which for inviscid flow has the form

re.n=0, for xEB,,, (3.3)

applies at such surfaces. In addition, the steady normal velocity component and pressure must

be continuous across the blade wakes (Win), i.e.,

[V].n = 0 and [[P]-- 0, for x• W,,, , (3.4)

respectively. Since entropy and vorticity change_ across shocks (Sh=,,) are regarded as negligi-

ble, the mass, momentum and energy conservation laws cannot all be enforced at such surfaces.

The usual practice is to require only that mass and tangential momentum be conserved, i.e.,

[/_V].n = 0, and -9].r = 0, for x • Sh,,,,,, (3.5)
respectively.

Numerical procedures for determining two-dimensional, steady, potential flows through

cascades have been developed extensively, e.g., see [WN85, Cas83, HV93, HV94], particularly

for flows with subsonic relative inlet and exit Mach numbers (i.e., M:Fc¢ < 1). In such calcu-

lations far-field boundary conditions are imposed at axial stations placed at finite distances

upstream and downstream (i.e., at _ = _:F) from the blade row, where linearized solutions

describing the behavior of the steady potential can be matched to a nonlinear near-field so-

lution. In addition, a Kutta condition is usually imposed at blade trailing edges in lieu of

prescribing an exit freestream flow property. Finally, the usual practice is to solve the con-

servative form of the mass-balance equation (3.1) throughout the entire fluid domain. Thus,

the shock- and wake-jump conditions are not imposed explicitly. Instead, shock phenomena
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Figure 3.1: Mach number contours and blade surface Mach number distributions for steady

flow at M-oo = 0.3 and _-oo = 40 deg through the EGV cascade.

are captured through the use of special differencing techniques. Wake conditions are satisfied

implicitly, because, in a potential flow, the fluid properties are continuous and differentiable

across wakes. If needed, mean shock and wake (i.e., the downstream stagnation streamlines)

locations can be determined a posteriori from the resulting steady flow solutions.

Steady flows through the EGV and turbine cascades, that will be used here to demonstrate

the vortical gust prediction capabilities of the LINFLO analysis, are illustrated in Figures 3.1

and 3.2, respectively. These solutions have been determined using the methods of [Cas83].

In each case a Kutta condition has been applied at blade trailing edges; therefore, only inlet

uniform flow information, e.g., M-o_ and fl-oo, have been specified for the steady calculations.

The predicted steady Mach number field and Mach number distribution along a blade surface

for the steady flow at M__ = 0.3 and f_-oo = 40 deg through the EGV are shown in Figure 3.1.
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Figure 3.2: Mach number contours and blade surface Mach number distributions for steady

flow at M-oo = 0.19 and f_-oo = 45 deg through the turbine cascade.

The calculated exit Mach number and exit flow angle for this flow are 0.226 and -7.4 deg,

respectively, and the mean lift force, Fy, acting on each blade is 0.360. The predicted steady

Mach number contours and blade-surface Mach number distributions for the steady flow at

M-oo = 0.19 and f_-oo = 45 deg through the turbine are shown in Figure 3.2. For the turbine

cascade, the calculated exit Mach number and flow angle are 0.49 and 72.0 deg, respectively,

and the mean lift acting on each blade is -2.11.
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The Linearized Unsteady Equations

The field equations that govern the first-order unsteady perturbation of an isentropic and

irrotational steady flow can be expressed as a system of coupled differential equations for the

complex amplitudes of the first-order entropy (g), velocity (_,) and pressure (/3), respectively

(see [Go178, Ver87]). In general, we require a solution to this system subject to prescribed flow

conditions far upstream and far downstream from the blade row, flow tangency conditions at

moving blade surfaces, and, since the inviscid field equations apply only in continuous regions

of the flow, jump conditions at moving shocks and blade wakes.

As indicated by Goldstein [Go178, Go179] the system of field equations that governs the

linearized unsteady flow can be cast into a very convenient form by decomposing the unsteady

velocity into rotational (vR) and irrotational (re) parts. The rotational velocity, vn, is taken

to be divergence-free far upstream of the blade row, i.e., V .vR = 0 for _ < __, and the

unsteady pressure depends only upon the potential ¢ through the relation p = -_D¢/Dt,

where D/Dt = iw + %r¢. X7 is a convective derivative operator based on the mean flow

velocity. The unsteady vorticity is given by ¢ = V x vR. For realistic blade profiles yR. n and

hence, re. n, will be singular along the mean blade and wake surfaces. Therefore, Atassi and

Grzedzinski [AG89] introduced a modified form of the Goldstein decomposition, by setting

v = v. + V¢ = vR + _'¢. + Xr¢, (3.6)

to facilitate the numerical resolution of the velocity potential, ¢. Here, ¢. is a convected or

pressure-less potential (i.e., D¢./Dt = 0) which satisfies the condition re. • n = -vn- n at

blade and wake mean positions.

The system of field equations that governs the linearized unsteady flow variables, s, vR and

¢ is determined by substituting S = 0, V = _'¢ and the velocity decomposition, Eq. (3.6),

into the linearized Euler equations (2.52), (2.54) and (2.55) to obtain

Ds

--=0 (3.7)
Dt

and

DD_t(vR - sV_/2) + [(vR - sV¢/2). V]V¢ = 0 (3.8)

D (A_2D¢_b-/' -bb-"- -iv = -iv. [ (vR+ v¢.)] =  -lv. (3.9)

These equations are coupled only sequentially; hence, they can be solved in order to determine

the complex amplitudes, s, vn and ¢, of the unsteady entropy, rotational velocity and velocity

potential, respectively. Moreover, closed form solutions [Go178, HV91] can be determined

for the entropy and rotational velocity fluctuations in terms of the prescribed entropy and

rotational velocity fluctuations at inlet. The velocity potential, ¢, is governed by convected

wave equation with source term fi-l_, . (_v.) and depends, therefore, upon the rotational

velocity, the convected potential, the conditions imposed at wake and shock surfaces, and far

upstream and far downstream of the blade row. Phase-lagged periodicity conditions [cf. (2.42)],

e.g.,

¢(x + raG) = ¢(x) exp(imcr) (3.10)
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are also imposed on the entropy, rotational velocity and velocity potential to reduce the

computational domain to a single, extended, blade-passage region.

Surface Conditions

As a consequence of the small unsteady-disturbance approximation, conditions on the lin-

earized unsteady perturbation at moving blade, shock and wake surfaces can be transferred to

the mean positions of these surfaces (see [VerB7]), with the mean wake, i.e., the downstream

stagnation streamlines, and shock locations being determined from the nonlinear steady solu-

tion. Thus, the (inviscid) flow tangency condition, cf. (2.56), can be written as

v-n = re-n = [iwR+ (V¢- "r)(r. V)R-(R-V)V_]. n, x e B,,, (3.11)

where the complex amplitude of the blade displacement, R(x), x E Br_, is a prescribed

quantity. In addition, since the irrotational steady velocity and pressure are continuous and

have continuous derivatives across the mean-flow downstream stagnation streamlines, the wake

conditions, (2.57) and (2.58), reduce to

[v.n_= [V¢]-n=0 and _p]]=[D¢/Dt]=0, xEWm. (3.12)

Finally, if we neglect changes in entropy and rotational velocity across shocks, the con-

servation laws for mass and tangential momentum yield the following linearized shock-jump
condition for a shock that terminates in the fluid

lr% /

I[#(V¢ + vR - A-2-_t_Vq_)] .n = -[#][iw + (re. r)r. V][([V¢] • n)-X_[¢]] ]

- (re. n)-Z[¢] r. V([_]VO. r), x E Sh,_,,.

(3.13)

Equation (3.13) provides a relation for determining the jump in the unsteady potential, [¢],

at the mean position of a shock. The shock displacement normal to the mean shock locus

is then given by R. n = -([V¢]. n)-Zl[¢]. Because the mean flow is potential, the mean

flow variables are continuous across blade wakes, and we have assumed that s and vR are

continuous across shocks, the foregoing wake- and shock-jump conditions provide sufficient

information for determining the jumps in the unsteady potential, and hence, the remaining

unsteady flow variables, across wake and shock surfaces.

Far-Field Behavior

We have assumed that the mean or steady flow is at most a small (i.e., of O(e)) perturbation

from a uniform stream both far upstream (_ < __) and far downstream (_ > _+) from the

blade row. Therefore, in these regions, the first-order (in e) unsteady field equations can be

reduced to constant coefficient equations for which analytical solutions can be determined (see

[Ver89b]).

For example, it follows after replacing V_ by V-oo in (3.7) and (3.S), that far upstream

of the blade row, the complex amplitudes of the entropy and rotational velocity fluctuations

have the form (see also (2.2) and (2.3))

s(x) = s-oo exp(il¢_oo • x), _ < {_ , (3.14)
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and
vR(x) = vn,-ooexp(it¢-oo, x), _ < __ . (3.15)

Here, s-oo and vn,-¢_ are the complex amplitudes (at x = 0) and t¢-oo is the wave number of

the entropic and rotational velocity disturbances. The wave number vector has a component

t%,-oo = t¢-oo • en = eG -x in the cascade "circumferential" or r/-direction and a component

xr = _-oo • er = -wV_"_ = -w in the inlet freestream direction. Therefore, we can write

= --(wsecf__oo + aG -1 tan fhoo)e_ + aG-le,7

= -wet + (wtanfhoo + aG -1 secf_-oo)eN ,

(3.16)

where, e_ and e¢ are unit vectors pointing in the axial (_¢-) and circumferential (r/-) directions,

respectively, and eT and eN are unit vectors pointing in the inlet freestream and normal to

the inlet freestrearn directions, such that e_ = eT × eN points out from the page.

The complex amplitudes, s__ and vn,_¢_ • eN, of the entropy and the rotational velocity

component normal to the freestream direction are prescribed quantities. The component of

the gust velocity in the inlet freestream direction, vn,-oo • eT, is determined by the divergence-

free or orthogonality condition, it¢-oo •vn,_¢¢ = 0. The complex amplitude of the vorticity far

upstream of the blade row is given by

ff__ = (V × vR)-_ = it¢__ x vR,-_ = ix2_c_vR,-_ • eN/XT,-¢o , (3.17)

and, since the vectors 0¢-oo and vn,-oo are orthogonal, we can write

vR,_ = × . (3.18)

The entropy and vorticity, or rotational velocity at inlet are essentially prescribed functions;

at exit, these quantities are determined as part of the unsteady solution

The velocity potential fluctuations in the far upstream and far downstream regions depend

upon the prescribed acoustic excitation as well as the acoustic response of the cascade. To

describe these fluctuations, we can set

¢(x) = + eR(x) for (3.19)

where the potential component eE accounts for acoustic excitations, i.e., pressure disturbances

that either attenuate as they approach the blade row or propagate and carry energy towards

the blade row. In particular, it follows from (3.9) with _z¢ = V:_oo that for an acoustic

excitation at temporal frequency w, eE has the form (see [VerS9b])

eE(X) = ¢I,:F_0 exp[fl:Foo_ + itca:oo " X], _ < _:F , (3.20)

where

¢I,_oo --1= p:ro_{/3_:ooV;ooCOSf_:roo-i[w+ (t¢_:oo • V_:oo)]}-*pi,a:oo , (3.21)

the complex amplitudes pI,_:oo are prescribed, t%,_:oo = o'/G, and t3_:oo and x_,_:oo depend

upon the inlet/exit freestream conditions, and the temporal frequency (w) and interblade

phase angle (a) of the acoustic excitation. The potential component eR is associated with the
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acousticand vortical responseof the blade row and therefore, must be determined as part of

the unsteady solution.

Usually only acoustic excitations that are of propagating type are considered. For subsonic

inlet and exit conditions (M+oo < 1) the velocity potential corresponding to a propagating

acoustic excitation at temporal frequency w > 0 has the form (3.20) with/3+¢¢ = 0, and

x(-) < - aG-1 _< (+)t/,:l=oo -- /_/,=l:oo -- Nr/,:t=oo , (3.22)

where the x (+),,;00 are the circumferential wave numbers at which cut-off or acoustic resonance

occurs. These wave numbers are given by

_'(+) = wV:[_M_oo(1 2 -1 _/1 f_+oo) (3.23)_,+oo - M_oo) (M+oo sin fh_¢¢ :t= - M:_oo cos 2

It follows from (3.9), that the axial wave number of the propagating acoustic excitation is

where

and

 e,+oo = +ld+ool- M oJ+oo cos  +oo, (3.24)

2 2 2 ll/2Id+_[ - l(1 - M;¢¢ cos 2 _'_e_)--lgT/ -- M_6+¢¢ (3.25)

_+¢¢ = (wV_ + xnsinf_+¢_)/(1 - Mg_ cos2 a+_) . (3.26)

Analytic solutions to (3.9), with Vq) = V+_, for the far-field potential component CR

which satisfy the requirements that acoustic response disturbances either attenuate with in-

creasing axial distance from the blade row or propagate carrying energy away from or parallel

to the blade row, and that vorticity must be convected downstream are given in [Ver89b].

These solutions contain arbitrary constants that are determined by matching the far-field

analytic solutions for the velocity potential to a near field numerical solution.

3.2 Linearized Unsteady Solutions

At this point we have presented the linearized equations that govern a general inviscid

unsteady perturbation of a potential steady background flow, and we have indicated the

quantities, i.e., w, a, RB, s-oo, VR,-_o'eN and pI,+oo that must be prescribed to determine the

unsteady perturbation. We proceed to describe the procedures currently used in the LINFLO

analysis to determine the unsteady entropy, rotational velocity and velocity potential. Once

the unsteady potential is determined, it is a simple matter to determine response information

needed for aeroelastic and aeroacoustic design applications, i.e., the unsteady pressures acting

on the blades and in the far upstream and downstream regions of the flow.

Entropy and Rotational Velocity

Closed form solutions for the linearized entropy and rotational velocity fluctuations can be

determined in terms of independent variables that describe the steady background flow [Go178,

HV91]. For this purpose we introduce the Lagrangian coordinate vector

X = AcT + @eN . (3.27)
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Figure 3.3: Drift and stream function contours for steady flow at M_00 = 0.3 and __00 =

40 deg through the EGV cascade.

Here,

f fV-ldr_ and _ (X) =- x_ -eN -4- fi(ez×V).d'r (3.28)
A(x) ----x_.eT+ _+[_{x)-_(x-)]e_v

are the drift and stream functions, respectively, of the steady background flow. Also, x_ is the

position vector to the point of intersection (__, 77_) of the reference blade stagnation streamline

and the axial line _ = __, dz_ is a differential element of arc length along a streamline, and

dr is a differential vector tangent to the path of integration.

Drift and stream function contours for the EGV operating at M_00 = 0.3, g/_00 = 40 deg

and for the turbine operating at M_00 = 0.19, f/_00 = 45 deg are shown in Figures 3.3 and

3.4, respectively. These results have been calculated from the steady solutions depicted in

Figures 3.1 and 3.2. Far upstream of each blade row, the drift function contours are parallel

to each other and perpendicular to the inlet freestream direction, but as the flow proceeds

downstream, gradients in the steady velocity field produce distortions. For the EGV, these

distortions are mild over most of the blade passage, but severe in the immediate vicinity

of the blade and wake surfaces, where the drift function contours stretch downstream from

the leading-edge stagnation point. In addition, to the severe distortions near the blades and

wakes, the drift function contours for the turbine are highly stretched within a blade and wake

passage, because of the high steady velocities at mid passage.

To determine the closed form solutions for the entropy and rotational velocity, we first

note that JDX/Dt = (V. _7)X = V_00 = eT and X --+ x as c ._+ -0o. The solution to the

entropy transport equation (3.7), which satisfies the far upstream condition (3.14), is then

given by

s(x) = 8-00 exp(il¢_00 • X), (3.29)
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Figure 3.4: Drift and stream function contours for steady flow at M-oo - 0.19and fl-oo =
45 deg through the turbine cascade.

and the solution to the rotational velocity transport equation (3.8), which satisfiesthe far
upstream condition (3.15), is

vR(x) = [_7(X • v4.-oo) + s-o_V_/2lexp(i__oo. X), (3.30)

where

It follows from (3.30) that

,A...oo = vR,-oo - s-ooV-oo/2 . (3.31)

= V x "'R = V(i__oo. X) x [V(.*t--oo. X) + s_ooV¢/2] exp(i__¢¢. X), (3.32)

and _ -+ ¢-oo exp(it¢_oo, x) = i_-o_ x vR,-oo exp(it¢_o¢ • x) as X --+ x.

If the steady background flow stagnates in the vicinity of a blade leading edge, as it will

for realistic configurations, the drift function will have a logarithmic singularity at the meat:

blade and wake surfaces, i.e., A --+ a01nn as n --+ 0, where n is the normal distance from
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the surface and a0 is a real constant. As a result, the exponential function exp(it¢_oo • X)

will be indeterminate, and the normal component of the rotational velocity will be singular,

i.e., VR" n _ aln -1 exp(il¢_oo - X), where al is a complex constant, at such surfaces. We can

remove this singular behavior from the blade and wake surface conditions that are used to

determine the unsteady potential, _, by prescribing a convected potential of the form [AG89]

¢. ---- [-iw-lA--oo • V-oo + F(ff/)] exp(i_-oo- X), (3.33)

where

F(_) = w-l(t¢-¢¢ x A__oo).ezGcosft_oo . "2r[_(x)- _(x_)]" (3.34)
2r(1 - iaow) sm Gcos gt_oo

is a complex function that depends upon, among other things, the behavior of the mean flow

in the vicinity of a leading-edge stagnation point. This choice of ¢. ensures that v. • n =

(vn + We.) • n = 0 at blade and wake mean positions.

After combining (3.30), (3.33) and (3.34), we find that the complex amplitude of the

source-term velocity, v. = vR + _7¢., is given by

v. = FV(i___.X) + _-

(3.35)

It follows from (3.34) and (3.35) that v. behaves like s_¢¢_7(I) exp(i0c__-X)/2 in the immediate

vicinity of the mean blade and wake surfaces, i.e., as n _ 0. Thus, v.. n = 0, but, if s__ :_ 0,

the tangential component of the source-term velocity will be indeterminate at such surfaces.

It would be useful in future work to construct a convected potential, ¢., that also removes

this indeterminacy, thereby allowing more accurate numerical resolutions of unsteady flows

excited by entropic disturbances.

The velocities vR and v, depend upon A and • and the first partial derivative of these

functions. Therefore, the complex amplitudes of the unsteady vorticity, _ = V x vn =

X7 x v., and the source term, fi -iV. (_v.), in (3.9) depend also upon the second partial

derivatives of A and q. Thus, an accurate solution for the nonlinear steady background flow

is a critical prerequisite for determining the unsteady effects associated with entropic and

vortical excitations.

The complex amplitudes of the entropy, rotational velocity, vorticity, and source term

velocity are readily determined once the values of the drift and stream functions and their

spatial derivatives are specified over the single extended blade-passage solution domain. For

this purpose it is convenient to use an H-grid in which one set of mesh lines are the streamlines

of the steady background flow, for resolving unsteady flows excited by entropic and vortical

gusts. An H- grid which covers the solution domain, i.e., one which is bounded by the upstream

and downstream axial lines _ = _:F and two neighboring mean-flow stagnation streamlines,

is appropriate. The locations of the latter are determined a posteriori from the solution for

the nonlinear steady background flow. Once the boundaries of the H-grid are established,

the locations of the interior grid points can be determined using an elliptic grid generation

technique, as described in [VH90, HV91].

Because a streamline mesh is used, the drift function can be evaluated at each point in the

computational domain by a straightforward numerical integration of (3.28). The procedure
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Figure 3.5: Contours of the in-phase component of the unsteady vorticity for the E(4V cascade

subjected to vortical gusts with vn,-oo • eN -- (1, 0) and o., --- 5.

used in [VH90, HV91] is simply to specify tbe drift function along the far upstream bound-

ary _ = __, and then to evaluate this function along each streamline using a second-order

accurate difference approximation. The derivatives of the drift and stream functions at a

given grid point are determined using the finite difference operators developed by Caspar and

Verdon [CV81]. Because the drift function is singular at blade and wake surfaces, one-sided

difference approximations are used to evaluate the derivatives of this function at points on

the mesh streamlines adjacent to these surfaces.

Calculated vorticity and source term fields for unsteady flows through the example EGV

and turbine cascades excited by vortical gusts with vR,-_o • eN = (1,0), ca = 5, and a =
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Figure 3.6: Contours of the in-phase component of the source term for the EGV cascade

subjected to vortical gusts with vn,-oo • eN = (1, 0) and w = 5.

-Tr, -2_r and -3zr are shown in Figures 3.5 through 3.8. These results were determined

by performing the unsteady calculations on a (155 × 40) streamline H-mesh. Contours of

the in-phase component or real part of the unsteady vorticity and source term are shown in

Figures 3.5 and 3.6, respectively, for the EGV operating at M__o = 0.3, _-oo = 40 deg. The

wave-number magnitudes, [t¢-oo[, associated with the gusts at a = -_', -27r and -3zr are

5.65, 10.71 and 17.08, respectively, and the arguments relative to the axial flow direction,

a-oo = tan-l(_,,-oo/t_¢,-oo), are -112.2 deg, -77.8 deg and -67.0 deg, respectively. The

vortical gusts are distorted as they axe convected by the nonuniform mean flow through the

EGV. The vorticity contours in Figure 3.5 and the source term contours in Figure 3.6 indicate
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Figure 3.7: Contours of the in-phase component of the unsteady vorticity for the turbine

cascade subjected to vortical gusts with vn,-oo • eg = (1, 0) and w = 5.

that this distortion increases in severity, i.e., the vorticity and source-term contours are more

severely stretched and re-oriented within the blade and wake passages with increasing values

of Icrl. The results in Figure 3.6 reveal the rather strong variations in the source term that
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Figure 3.8: Contours of the in-phase component of the source term for the turbine cascade

subjected to vortical gusts with Vn,-oo • en = (1, 0) and a; = 5.

occur over the extended blade passage solution domain, particularly for the gust at a = -3_'.

Similar results for the turbine cascade operating at M-oo = 0.19, fl-oo = 45 deg are shown

in Figures 3.7 and 3.8 respectively. The wave number magnitudes, [t¢_oo [, and arguments with

respect to the axial-flow direction, a-oo, for the vortical excitations at a = -Tr, -27r and -3_r
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are5.07,8.35and 13.50and -125.4 deg, -81.8 deg and -66.7 deg, respectively. As indicated

in Figures 3.7 and 3.8, the vortical gusts are highly distorted as they are convected past the

thick, highly cambered turbine blades. The unsteady vorticity and source term contours for

the gusts at a = -2rr and a = -31r are quite different from those for the gust at a = -_'.

For a = -Tr the rectilinear vorticity contours far upstream of the blade row evolve into bowed

shapes as the gust is carried through the blade row by the mean flow. The vorticity contours,

within the passage and far downstream of the blade row, for the gusts at a = -2_r and

a = -37r are close to being straight lines. These lie at substantially different orientations than

the contours upstream of the blade row. The source term contours in Figure 3.8 are severely

distorted for the turbine blade row from mid-blade passage to the downstream boundary of

the solution domain, particularly for the vortical gusts at a = -2rr and a = -37r. Also, the

source terms associated with the gusts at a = -2_r and a = -37r have very large gradients

within the blade passage and downstream of the blade row. These features make it difficult

to determine an accurate numerical resolution of the unsteady potential, for these turbine

unsteady flows.

Velocity Potential

The unsteady potential (¢) is determined as a solution of the field equation (3.9) subject

to conditions at the mean blade, wake and shock surfaces, and conditions in the far field. Flow

tangency [cf. (3.11)] applies at the blade surfaces, the fluid pressure and normal velocity must

be continuous [cf. (3.12)] across blade wakes, and mass and tangential momentum must be

conserved [cf. (3.13)] across shocks. The velocity potential in the far field is given by (3.19);

the potential due to an acoustic excitation at frequency w and circumferential wave number

_,_,_=oo= o'/G, by (3.20).

A numerical resolution of the linear, variable-coefficient, boundary-value problem for ¢

is required over a single, extended, blade-passage region of finite axial extent. The field

equation must be solved in continuous regions of the flow subject to the surface and far

field conditions on the unsteady potential. In particular, the near-field numerical solution for

the potential must be matched to far-field analytical solutions at finite distances (_ = _:)

upstream and downstream from the blade row. Numerical methods for determining ¢ for

isentropic and irrotational (i.e., s -= _ = 0) unsteady, subsonic, transonic, and supersonic

flows have been reported in [CV81, VC82, VC84, UV91, MVF94]. Such solutions apply to

unsteady flows excited by prescribed blade motions and/or acoustic excitations at inlet and

exit. Numerical solution procedures for unsteady flows excited by entropic and/or vortical

gusts [VH90, HV91, VBHA91] have been developed and implemented only for subsonic flows.

The development of such procedures for transonic and supersonic flows remains, therefore, as
a subject for future research.

Because of the stringent and conflicting requirements placed on computational meshes for

cascade flows, a composite-mesh (see Figure 3.9), which is constructed by overlaying a polar-

type local mesh on an H-type cascade mesh, has been adopted for determining the unsteady

potential. The H mesh is used to resolve unsteady phenomena over the entire solution domain;

the local surface-fitted mesh, to resolve phenomena in the vicinities of rounded blade leading

edges and/or normal shocks. The cascade mesh facilitates the imposition of the phase-lagged,

periodicity conditions [cf. (3.10)] and the matching of the analytic and numerical unsteady
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Figure 3.9: Extended blade-passagesolution domain and compositemeshusedin LINFLO
unsteady transonic calculations.

solutions at the far upstream (_ = __) and far downstream (_ = (+) boundaries of the

numerical solution domain. Use of this mesh alone is often sufficient for resolving unsteady

subsonic flows, and this has been the strategy applied for calculating the unsteady subsonic

solutions for cascade/vortical gust interactions presented in this report. The local mesh allows

an accurate modeling of the unsteady flow in the vicinities of blade leading edges and normal

shocks. It is constructed so that two "radial" lines coincide with the predicted mean shock

locus to provide upstream and downstream shock mesh lines for the accurate imposition of

unsteady shock-jump conditions.

Since the cascade and local body-fitted meshes differ topologically, a zonal solution pro-

cedure for overlapping meshes has been adopted in [UV91] for determining the unsteady

potential. In the region of intersection between the two meshes, i.e., the region covered by the

local mesh, certain cascade mesh points are eliminated depending upon their location within

the local mesh domain. The discrete equations are written separately for the cascade and

local meshes and coupled implicitly through special interface conditions, resulting in a single

composite system of finite-difference equations that describe the unsteady flow over the entire
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Figure 3.10: Contours of the in-phase componentof the unsteady potential for the EGV
cascadesubjected to vortical gustswith vn,-oo• eN = (1, 0) and w = 5.

solution domain.

The finite-difference model used to approximate the unsteady equations on the cascade

and local meshes has been described in detail in [CV81]. Algebraic approximations to the

various linear operators, which make up the unsteady boundary-value problem, are obtained

using an implicit, least-squares, interpolation procedure that is applicable on arbitrary grids.

This procedure employs a nine point "centered" difference star at subsonic field points, and

a twelve point difference star at supersonic points. At a blade boundary point a nine point

one-sided difference star is used on the cascade mesh, whereas nine- or six-point one-sided

stars are used on the local mesh. Normal shocks are fitted in the local-mesh calculation

by approximating the shock-jump condition (3.13) using one-sided difference expressions to
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Figure 3.11: Contours of the in-phase component of the unsteady potential for the turbine

cascade subjected to vortical gusts with vn,-o_ "eN = (1, 0) and w = 5.

evaluate the normal derivatives of the unsteady potential on the upstream (supersonic) and

downstream (subsonic) sides of the shock. At those points along the shock mesh lines at which

the steady flow is continuous (i.e., at points lying beyond the end of the shock), the condition

_¢]] = 0 is imposed.
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The systemsof linear algebraicequationsthat approximate the unsteady boundary-value

problem on the cascade and local meshes are block-tridiagonal for subsonic flow and, because

shocks are fitted, block-pentadiagonal for transonic flow. A subsonic solution on the H-mesh

alone is determined using a direct block inversion scheme. Composite (cascade/local) mesh

solutions are determined using a different scheme. Because of the cascade/local mesh coupling

conditions, the composite system of discrete equations contains a sparse coefficient matrix of

large bandwidth. Consequently, special storage and inversion techniques must be applied to

achieve an efficient solution. Once the composite system of unsteady equations is cast into an

appropriate format, it can be solved using Gaussian elimination [UV91].

The calculated unsteady potential (¢) fields associated with the interactions of vortical

gusts with the example EGV and turbine configurations are depicted in Figures 3.10 and 3.11,

respectively. In particular, contours of the in-phase components of the unsteady potential,

Re{C}, are given for vortical gusts at vR,-_ "eN = (1, 0), w = 5, and a = -% -2_r and

-37r. Vorticity and source-term fields for the unsteady flows through the EGV are shown in

Figures 3.5 and 3.6, respectively; those for the flows through the turbine, in Figures 3.7 and

3.8. The potential solutions depicted in Figures 3.10 and 3.11 were determined on 155 × 40

streamline meshes and show variations over a blade passage that are associated primarily with

the source term on the right-hand-side of (3.9). Once the unsteady potential is determined,

the complete, linearized, inviscid, unsteady flow problem is solved.

3.3 The Inviscid Response

At this point we have provided a linearized unsteady aerodynamic formulation that de-

scribes the general first-order fluid-dynamic perturbation of an isentropic and irrotational

mean or steady background flow. We have also outlined the solution procedures used in the

LINFLO analysis to determine the unsteady entropy, rotational velocity and velocity poten-

tial. Solutions to the linearized unsteady problem are required to determine the aerodynamic

response information needed for aeroacoustic and aeroelastic applications, e.g., the unsteady

pressure fields far upstream and far downstream of the blade row, and the unsteady pres-

sures acting at the moving blade surfaces. We refer the reader to [Ver89a, Ver92] for detailed

derivations of other local and global unsteady aerodynamic response parameters that are used

in aeroelastic investigations.

Approximate solutions for the full, nonlinear, time-dependent flow properties are con-

structed by superposing the results for the steady and the linearized unsteady flow properties,

e.g., we can write

/5(x,t) = P(x) +/_(x, t) + _ Psh,,,, (x, t) + ... , (3.36)

where _5(x) = Re{p(x)exp(iwt)}. The first two terms on the right-hand-side of Eq. (3.36)

account for the steady and the first-harmonic contributions to the time-dependent fluid pres-

sure acting at the point x. The third term accounts for the anharmonic contribution to

the time-dependent pressure caused by the motions of normal shocks, and is determined by

analytically continuing the steady solution from the mean to the instantaneous shock lo-

cations [Wi179, Ver89a]. Thus, the first-order anharmonic response depends on the jumps,

e.g. [P]shm,., in the steady values of the fluid properties at the mean shock locations and the
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unsteadyshockdisplacementsnormal to the meanshockloci, 7_..n, x E Shm,n. The regions

of anharmonicity are confined to thin strips that contain the mean shock loci.

The steady background flow is described by the velocity potential, ¢, which is determined

in terms of a prescribed inlet Mach number (M-oo), flow angle (9t-oo), and cascade geometry.

The steady velocity, V = V_, is determined from this potential, as are the steady values of

the thermodynamic properties of the fluid [cf. (3.2)]. The total enthalpy, HT = T q- V2/2, in

the steady background flow is constant and is given by

1

Hr = HT,-oo = (')'-- 1)-IM--_ + _ (3.37)

The linearized unsteady flow is described by the time-dependent, first-order, dependent

flow variables _, 9., ¢ and "R.Sh • n, which are determined in terms of prescribed values of the

frequency w, interblade phase angle a, and the complex amplitudes, RB, s-oo, _-oo and P;,a:_,

of the imposed unsteady excitation. The first-harmonic unsteady velocity is 9 = 9. + _'¢,

and the first-harmonic thermodynamic properties of the fluid can be determined in terms of

the independent variables _ and ¢.

It follows from the equation of state for a perfect gas [cf. (2.11)] that

/3 = .y-1 (_,_ 1)(fib + fig) , (3.38)

where h is the linearized unsteady component of the fluid specific enthalpy. After combining

(3.38) with the fundamental thermodynamic identity relating the first-order entropy, pressure

and density [cf. (2.53)] and recalling that _5= -_D¢/Dt = -_(0/0t + V¢-V)¢, we find that

the first-harmonic flow properties are related by

_/_ + _ = 7-1_/p = (.y - 1)-l(h/H - _) = -A-2b[k/Dt. (3.39)

In addition, the first-harmonic total enthalpy, hT, is given by

hT = T_- De/Dr + V¢. [¢,. + V¢] + .... (3.40)

The Inviscid Flow Along Moving Blade and Wake Surfaces

The values of the inviscid flow quantities along the moving blade and wake surfaces (S)

must be available to perform an analysis of the unsteady flows in the viscous boundary layers

and wakes. These can be determined in terms of their values at the mean surface locations

(S) and the blade and wake displacements via Taylor series expansions, e.g.,

/hs = Ps + ihs + 7?.. VPls + _]/3shin,, + ... , (3.41)

where "R., x E S is the surface displacement vector. In addition, relations between the unit

tangent and normal vectors at the instantaneous and mean surface positions, cf. (2.41), are

needed to determine the velocity components at the moving surface from information available

at the mean surface. Here, the subscript S refers to points xs = xs+'R.s on the moving surface,

and the subscript S, to the corresponding points xs on the mean surface.

If we now restrict our consideration to continuous, i.e., shock-free steady background flows,

the unsteady velocity at a moving blade or wake surface is given by

= [v + + v)V]s + ... = [re + + + v)v¢]s + ... (3.42)
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Expressionsfor the tangential and normal components of the fluid velocity at a moving blade

and wake surface follow from (2.41), (3.42) and the conditions We- ns = 0 and 9. -ns = 0.
We find that

.,-s = [v¢ + + + v)V ls .,-s + ... (3.43)
and

c3_

¢¢s.ns = Ire + ('R.. V)V@]s • ns + ... = 0-")- .ns. (3.44)

The thermodynamic properties at the moving blade and wake surfaces are determined using

Taylor series expansions along with the thermodynamic property relations for the steady (3.2)

and linearized unsteady (3.39) flows. After performing the necessary algebra, we find that for
shock-free flows

_s+gS- _ -('y-i)-' _ss-._s =-A_ 2 -_-+7_..V[(_7¢)2/2] + .... (3.45)
S

Finally, the total enthalpy of the fluid at a moving blade or wake is given by

Hr,s = [-Fir+ hr + vgr]s + .... (3.46)

Since the total enthalpy is constant in the steady background flow, i.e., HT = HT,-oo, and

We. _. = _(V_- r)2/2 at blade and wake mean positions, we can write

/_T,8 = HT,-oo + [Tg - [D¢/Dt] + re. (re + ¢¢.)]s + ...

= [HT,-oo(1 +._)- De/Dr + V¢. V¢]s + ....

(3.47)

Expressions for the anharmonic values of the time-dependent flow properties in the field

and at moving blade and wake surfaces can be determined following the methods of [Wi179,

Ver89a]. However, for the subsonic inviscid and viscous-layer flows that are of primary concern

in the present effort, only the steady and first-harmonic values of the time-dependent inviscid

flow properties are required.

3.4 Numerical Results: Cascade/Vortical Gust Interactions

Response predictions will be given below for two-dimensional, unsteady flows excited by

prescribed vortical gusts. The intent is to demonstrate further the capabilities added to

the linearized inviscid unsteady flow analysis, LINFLO, under Contract NAS3-25425. This

analysis will be applied to predict the unsteady pressure responses of the EGV cascade, and

a flat-plate counterpart to harmonic, in time and space, vortical excitations at inlet. The

two cascades operate at a mean inlet Mach number (M-oo) and flow angle (_-oo) of 0.3 and

40 deg, respectively, and have a blade spacing (G) of 0.6. The blades of the EGV cascade

are staggered at O = 15 deg; those of the flat-plate cascade are aligned with the mean inlet

flow direction, therefore, 0 = _-oo = 40 deg. The predicted steady Mach number field and

blade-surface Mach number distribution for the steady flow through the EGV are shown in

Figure 3.1; the drift (A) and stream (@) function contours, in Figure 3.3. As noted previously,

the calculated exit Mach number, exit flow angle and mean lift force, Fy, acting on each EGV
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bladeare 0.226, -7.4 deg and 0.360, respectively. The steady background flow through the

unloaded (Fy = 0) flat plate cascade is uniform with M = 0.3 and f_ = 40 deg.

The unsteady flows are excited by vortical disturbances that are convected through the

blade row by the steady background flow. A single harmonic component of such a disturbance

is described by specifiying the temporal frequency, w, interblade phase angle, a, and either the

complex amplitude, (_o0, of the vortical excitation or, as is done here, the complex amplitude

of the normal component of the rotational velocity, i.e., vR,-o0 • eN, that is associated with

this vortical excitation. For a pure vortical excitation, the rotational velocity and vorticity

are given by (3.30) and (3.32), respectively, with 8-o0 = 0 and .A_o0 = vR,-o0. The wave

number _-oo of this excitation is given in terms of the frequency w, interblade phase angle

a, blade spacing G and inlet flow angle, _q-¢o, in equation (3.16). For the example flat-plate

cascade and far upstream of the EGV cascade, vn(x) = vR,-o0 exp(i_-oo, x) and the complex

amplitude of the gust vorticity is _-oo = ix_oovn,-oo" eN/_T,-oo.

A vortical gust at a given frequency and interblade phase angle can be regarded as a

harmonic component of a wake excitation from an upstream blade row. For example, con-

sider an upstream row that has the circumferential blade (wake) spacing GExc and moves

at circumferential velocity VExce,, where VExc is the wheel speed, relative to the reference

row, in our case the EGV or corresponding flat-plate blade row. The circumferential wave

number and temporal frequency of the first-harmonic component, i.e., the component at the

blade passing frequency (BPF), of the wake excitation are _n,-o0 = -2zr/GExc = a/G and

w = 2rVExc/GExc = -aVExc/G. Thus, a vortical gust at a = -_r and w = 5 represents

the first harmonic component of a wake excitation from an upstream blade row having twice

the gap or one-half the number of blades (NExc= NREF/2) as the reference row. The tem-

pored frequency w = 5 corresponds to an upstream flow coefficient, i.e., ratio of mean flow

axial speed to wheel speed, V-oo cos _-oo/VExc, of 0.802. In this case the vortical gusts at

a = -lrn, w = 5n, n = 2, 3,... , i.e., at n x BPF, describe the higher harmonic content of

the wake excitation. The strengths of the various harmonics are determined by their complex

amplitudes, vR,n,-oo, "eg. Alternatively, the gusts at a = -rn, w = 5n, n = 2, 3,... , can

be thought of as the first-harmonics of wake excitations associated with upstream blade rows

having blade spacings of GEXC = 2G/n or blade counts of NEXC = nNREF/2.

In general, for the example EGV and flat-plate cascades operating at an upstream flow

coefficient of 0.802, the interblade phase angle and temporal frequency of the ruth harmonic

of a wake excitation from upstream are

a = 7r(2mG/GExc) = -zcn and w = _rG-1Vw(2mG/GExc) = 5n (3.48)

Thus, the coefficient n = 2mG/GEx¢ = 2mNExc/NREF varies inversely with blade spacing,

or directly with the number of blades in the upstream row, and directly with m.

We will examine the response of the EGV and the corresponding flat-plate cascade to

vortical gusts with va,-oo • eg = (1,0), uJ = 5n and a = -_rn. The wave-numbers, _-oo,

associated with these gusts have magnitudes [__o0[ = 5.65n and arguments relative to the

axial flow direction, a = tan-*(_,,-oo/_e,-o0), of -112.2 deg. The complex amplitudes of the

vortical disturbances at inlet are ¢'-oo = (0, 6.384n). It should be noted that, with the conven-

tions adopted herein, w and a must be of opposite sign to model a realistic cascade/vortical

gust interaction. We have chosen to set w > 0, and therefore, a must be taken to be less than

zero.
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We will determine the linearized unsteady pressure responses caused by the interactions

of vortical gusts at w = 5n, a = -nlr n = 1, 2, and 3 with the EGV and flat-plate cascades.

We will also examine the behaviors of the unsteady aerodynamic lift (f_) and moment (m)

acting on the reference (m = 0) blades of the EGV and flat-plate cascades for 0.1 _< n < 5. It

is helpful in interpreting these results to recall that for subsonic flows an unsteady excitation

that produces an acoustic response in which all pressure waves attenuate with increasing axial

distance from the blade row is termed subresonant. A superresonant (m, n) excitation is one

that produces an acoustic response in which m and n pressure waves persist far upstream and

far downstream, respectively, and travel away from the blade row. Acoustic resonance occurs

if at least one acoustic response wave persists far upstream or far downstream, but travels

only circumferentially, i.e., along the blade row, relative to an observer moving at the mean

flow velocity.

The linearized unsteady solutions reported below have been determined by performing

LINFLO calculations on a global H-type mesh consisting of 40 mean-flow streamlines and

155 "axial" lines, and extending one axial chord upstream and downstream of the blade row.

The mesh streamlines were packed near the blade and wake surfaces; the axial lines, near the

blade edges. The global mesh analysis is very efficient; for example, a complete unsteady flow

calculation on a 155 x 40 global mesh requires about 2 minutes of CPU time on an IBM 370

work station. Most of the information determined from such a calculation can be saved and

re-used in subsequent unsteady flow calculations for different frequencies, interblade phase

angles, and modes of excitation, which then require only about 30 seconds of CPU time for

each unsteady case. It should be noted that LINFLO composite-mesh calculations typically

require four (4) times the CPU time required for a global mesh calculation.

As part of the present study, response predictions, i.e., unsteady pressure difference distri-

butions [Ap(x) = p(x_) -p(x +)] and unsteady lifts and moments, have also been determined

for the flat-plate cascades using the classical linearized analysis of Smith [Smi72]. Recall that

in the LINFLO formulation the unsteady potential equation (3.9) contains the source term

t5-1_ ' • (_v.), and the normal derivative of the potential, V¢. n, is zero at the mean blade

surfaces. For flat-plate blades aligned with the inlet flow direction the source term reduces

to V2¢.. In the classical linearization the potential equation is homogeneous, and the normal

derivative of the potential cancels the normal component of the gust velocity at the mean

blade surfaces. Thus, a comparison between the LINFLO and classical linear solutions is

very meaningful, because it reveals the ability of the numerical approximations used in the

former analysis, to accurately account for the strong source term variations that occur over
the solution domain.

Results for the unsteady flows arising from the interactions of vortical gusts at vn,-oo "eN _-

(1, 0), w = 5n, and a = _rn, with the EGV and flat-plate cascades are shown in Figures 3.12

through 3.18. Contours of the in-phase component or real part of the unsteady vorticity

for w = 5 and a = -_r and those for the in-phase components of the unsteady pressure

responses to the vortical gusts at n = 1, 2 and 3 are shown in Figure 3.12 for the EGV and in

Figure 3.13 for the flat-plate cascade. Surface pressure responses for the gusts at n = 1, 2 and

3 are shown in Figures 3.14-3.16, and the behaviors of the unsteady lift and moment versus

n for 0.1 _ n _< 5 are presented in Figures 3.17 and 3.18, respectively.

The contours of the real part of the unsteady vorticity for the interaction of a vor_.,ical

gust at w = 5, a = -_r, i.e., at say, the blade passing frequency (BPF), of a wake excitatir_a_
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Figure 3.12: Contours of the in-phase components of the unsteady vorticity and the unsteady

pressure responses for the EGV cascade subjected to vortical gusts with vR,-¢¢ • eN "-" (1, 0).

and the contours of the real parts of the unsteady pressure responses of the EGV to vortical

excitations at BPF, twice BPF and three times BPF are shown in Figure 3.12. Although,

the complex amplitudes _-oo and wave number magnitudes I_;_o_1 of the vortical gusts vary

linearly with n, the vorticity contours associated with the excitations at 2BPF and 3BPF

have very similar shapes to those shown in Figure 3.12 for the excitation at BPF. The vortical

gusts are convected through the EGV blade row and distorted from the rectilinear pattern

that exists far upstream by the nonuniform steady background flow.

The interactions of the vortical gusts with the EGV blading produce unsteady pressure or

acoustic responses. The vortical gust at w = 5 and a = -_r (n = 1) produces a subresonant

acoustic response, i.e., all pressure response waves attenuate with increasing axial distance

from the blade row. The vortical excitation at 2BPF (n = 2) produces a superresonant (1,1)
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Figure 3.13: Contours of the in-phase components of the unsteady vorticity and the u eady

pressure responses for the flat-plate cascade subjected to vortical gusts with vn,-oo.eN = (1, 0).

response in which a pressure response disturbance, at w = 10 and al = a + 2rr = _n,IG = 0

propagates away from the blade row in both the far upstream and far downstream directions.

The axial wave numbers, _e,1,_:¢o, of these far upstream and far downstream pressure distur-

bances are 3.895 and -2.440, respectively, and their amplitudes, [pl,_oo[ are 0.119 and 0.120.

The vortical excitation at 3BPF (n=3) produces a superresonant (1,0) response in which one.
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acoustic response wave at w = 15, a2 = a + 47r = _n,2G = rr propagates far upstream of

the blade row and all other waves attenuate with increasing distance from the EGV blade

row. The propagating wave has a wave number vector with magnitude I  ,-ool = 6.325 and

argument, a2,-oo = 55.9 deg relative to the axial flow or positive _-direction, and an amplitude

Ip2,-ool = 0.070.

Note that spurious pressure behaviors, as indicated in Figure 3.12, are predicted at the

upstream and downstream boundaries of the solution domain for the vortical gust at n = 2

and at the downstream boundary for the gust at n = 3. These behaviors can be attributed to

the nonuniform spacings between the mesh streamlines in the global H-meshes used for the

LINFLO calculations. The mesh streamlines must be packed near the blade and wake surfaces

to resolve the vortical flows near these surfaces, but this packing leads to a loss in accuracy in

matching the numerical near-field and analytical far-field solutions for the unsteady potential

at the inlet and exit boundaries, and thus, in predicting the complex amplitudes of the far-field

acoustic response waves.
The vortical excitation at w = 5 and a = -r and the unsteady pressure responses of the

flat-plate blade row to vortical excitations at w = 5n and a = -rn are shown in Figure 3.13

for n = 1, 2 and 3. Note that for fiat-plate cascades having blades aligned with the mean

flow direction, the vortical gusts are convected through the blade row, without distortion,

by the uniform steady background flow. Thus the rectilinear vorticity pattern that exists

far upstream of the blade row is maintained throughout the entire flow field. For the fiat-

plate cascade, the vortical gust at BPF (n=l) produces a subresonant pressure response.

The gusts at 2BPF and 3BPF produce superTesonant (1,1) responses. At 2BPF acoustic

waves at w = 10 and ax = a + 27r = _¢n,lG = 0 propagate away from the blade row in

the negative and positive axial directions. For the upstream propagating wave, t¢_,1,-oo =

3.895 and [pl,-oo] = 0.225; for the downstream propagating wave, _e,l,+oo = -2.439 and

Ipl,+ool = 0.167. The gust at 3BPF produces upstream and downstream propagating acoustic

response waves at to = 15, ¢r_ = a + 4r = tcn,2G = rr. For the upstream propagating

wave 1 2,-ool = 6.325, a_,-oo = 55.9deg and Ip2,-ool = 0.122, and for the relatively strong

downstream propagating wave, [_2.+oo1 = 5.308, a2,+¢o = 99.5 deg and Ip2.+ool = 0.424.

The acoustic response behaviors of the EGV and the flat plate cascades to the excitation

at to = 15, cr = -37r differ in the far-downstream region. The reason for this is that different

mean flow conditions prevail far downstream of the two blade rows, which, for the excitation

at 3BPF, lead to very different far-downstream acoustic environments. Recall that the EGV

operates at an exit Mach number and flow angle of 0.226 and -7.4 deg; the flat plate cascade,

at M+oo = M = 0.3 and ft+oo = ll = 40 deg. A vortical excitation at to = 15 and a = -37r,

is superresonant (1,0) for the EGV cascade; therefore, a propagating acoustic wave persists

far upstream, but all acoustic response waves attenuate with increasing distance downstream.

This same excitation produces a superresonant (1,1) acoustic response for the flat-plate blade

row, with a relatively strong propagating acoustic response wave in the far downstream field.

Surface pressure responses at the reference (m = 0) blades of the EGV and flat-plate

cascades are depicted in Figures 3.14-3.16. These results indicate the effects of gust distortion,

due to nonuniform mean flow phenomena, on local unsteady blade loading. The surface

pressure distributions along the EGV and flat-plate blades for the vortical gusts at BPF

(Figure 3.14) and 2BPF (Figures 3.15) show somewhat similar qualitative behaviors, but the
EGV results show a more wave-like character and there are important quantitative differences
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Figure 3.14: Unsteady surface pressure responses of the EGV and corresponding flat-plate

cascades to a vortical gust with vn,-oo • en = (1,0), co = 5 and a = -Tr.

between the unsteady loads acting on the two cascades. In contrast,because of the different

acousticresponse environments that existfar downstream of the two blade rows, the surface

pressure responses of the EGV and flat-plateblades to the vorticalgust at 3BPF (Figure 3.16)

bear littlequalitativeresemblance.
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Figure 3.15: Unsteady surface pressure responses of the EGV and corresponding flat-plate

cascades to a vortical gust with vR,-oo • eN = (1, 0), w ---- 10 and a = -2_r.

The complex amplitudes of the unsteady lift and moment acting on the reference EGV

and flat blade blades for the unsteady flows considered in Figures 3.14 through 3.16 are listed

below. The unsteady moment is taken about blade midchord.

Vortical Excitation

VR,-oo " ey ---- (1,0)

EGV Cascade Flat Plate Cascade

w = 5, a = -Tr fy = 0.827,-1.100 f_ = 0.732,-1.184

rn = -0.014, 0.142 m = -0.074, 0.197

w=10, a=-2r f_ = 0.122,-0.141 fy - 0.223,-0.268

m -- -0.036, 0.053 m - -0.108, 0.115

w=15, a=-3r fy=-0.010, 0.059 f_ =-0.406, 0.074

m = 0.013, 0.020 m = -0.066, 0.133
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Figure 3.16: Unsteady surface pressure responses of the EGV and corresponding flat-plate

cascades to a vortical gust with vR,-oo • eN = (1, 0), w = 15 and a = -3rr.

These results indicate large differences between the global unsteady airloads, due to vortical

gusts, that act on the EGV and the flat plate blades.

We should note that the blade pressure-difference distributions and the aerodynamic lifts

and moments predicted by the LINFLO and Smith (CLT) analyses for the flat-plate flows

considered in Figures 3.14-3.16 are in excellent agreement. Indeed, the pressure-difference

curves predicted by the two analyses are almost coincident for the gusts at n = 1 and n = 2,

and show only slight differences for the gust at n = 3.

Predictions for the EGV and flat-plate lift and moment responses for vortical excitations

at vR,-¢o • eN = (1, 0), w = 5n and a = -_rn are given in Figures 3.17 and 3.18. Here we

consider the behaviors of the unsteady aerodynamic lift (f_) and moment (m) about midchord

that act on the reference blades of the EGV and flat-plate cascades versus n, as n varies from

0.1 to 5. LINFLO predictions are given for the EGV and both LINFLO and classical linear

theory predictions are given for the flat-plate cascade. The LINFLO and classical linear

theory predictions for the lift and moment responses are in excellent agreement. The lift
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Figure 3.17: Unsteady lift versus n for the EGV and flat plate cascades subjected to vortical

gusts at vn,-oo .e= = (1, 0), w = 5n, a = -_rn.

forces (Figure 3.17) acting the EGV and flat-plate blades differ, but not substantially, over

the entire range 0.1 < n < 5; however, there are more significant differences between the

moments (Figure 3.18) acting on the blades of the two cascades.
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Figure 3.18: Unsteady moment about midchord versus n for the EGV and the corresponding

flat plate cascades subjected to vortical excitations at vn,-oo • ey, ca = 5n and a = -Trn.

It is helpful for interpreting the lift and moment responses indicated in Figures 3.17 and

3.18, to describe the features of the far-field acoustic response for the two cascades. The

vortical excitations at n = 1.463, 2.688, 2.926 and 4.389 produce an acoustic response dis-

turbance at a cut-off or acoustic resonance condition far upstream of the EGV and both far
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upstream and far downstreamof the flat plate cascade. The excitation at n = 2.688 pro-

duces a resonant acoustic response disturbance that travel along the blade row in the positive

q-direction; those at n =1.463, 2.926 and 4.389 produce resonant disturbances that travel

down the blade row, i.e., in the negative r/-direction. Vortical excitations at n =1.558, 2.865,

3.115 and 4.673 produce a cut-off or resonant acoustic reponse disturbance far downstream

of the EGV. The resonant response disturbance at n =2.865 travels upward along the blade

row; those at n =1.558, 3.115 and 4.673 travel downward. As is readily determined from the

curves in Figures 3.17 and 3.18, the unsteady aerodynamic lift and moment undergo abrupt

and often large changes in the vicinity of an acoustic resonance condition. Such a condition

also represents a boundary for different types of unsteady response behaviors.

For example, the responses of the flat-plate cascade to the vortical excitations in the range

0.1 < n < 5.0 are subresonant for n < 1.463 and 2.688 < n < 2.926; superresonant (1,1)

for 1.463 < n < 2.688 and 2.926 < n < 4.389; and superresonant (2,2) for n > 4.389.

Because the inlet and exit free-stream conditions for the EGV differ, this blade row has a

wider variety of far-field acoustic response behaviors than its flat plate counterpart. For

example, the acoustic responses of the EGV are superresonant (0,1) for vortical excitations

at 2.688 < n < 2.865; subresonant for 2.865 < n < 2.926; superresonant (1,0) for 2.926 < n <

3.115 and superresonant (1,1) for 3.115 < n < 4.389. The different types of far-field acoustic

response behavior seem to have a strong impact on the unsteady blade loads. In particular, the

flat plate cascade has large amplitude moment responses to vortical excitations in the range

2.688 < n < 2.926 which produce subresonant acoustic responses. The moment responses of

the EGV to vortical excitations in this range are much smaller in magnitude. The acoustic

responses of the EGV are superresonant (0,1) for 2.688 < n < 2.865 and subresonant for

2.865 < n < 2.926.

Discussion

This completes our description of the LINFLO analysis and of the capabilities of this analy-

sis, developed under Contract NAS3-25425, to describe cascade/vortical gust interactions. In

subsequent sections of this report we will describe a steady inviscid/viscid interaction analysis

and an unsteady viscous layer analysis that are being developed for use in conjunction with

LINFLO to provide efficient prediction capabilities for unsteady viscous flows. We will also

present LINFLO results for unsteady flows caused by prescribed blade motions and acoustic

excitations.

The LINFLO analysis represents a powerful analytical capability for efficiently predict-

ing the unsteady aerodynamic information needed in blade row aeroelastic and aeroacous-

tic response studies, in which many controlling parameters are involved. In recent stud-

ies [DV94, AV94] LINFLO has been applied to assist in calibrating modern, time-accurate,

Euler/Navier-Stokes analyses. Very good agreement between LINFLO predictions and non-

linear Euler and Navier-Stokes predictions has been determined for unsteady subsonic flows

excited by small-amplitude, vortical or acoustic disturbances [DV94] and for unsteady subsonic

and transonic flows excited by prescribed blade vibrations [AV94]. Based upon the limited

ranges of parametric studies that were conducted using the nonlinear analyses, it was also

found that unsteady pressure responses are linear over surprisingly wide ranges of excitation

amplitudes. Such results provide evidence on the usefulness of a linearized inviscid, unsteady,

aerodynamic analysis for aeroelastic and aeroacoustic design studies.
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4. The Steady Inviscid/Viscid Interaction Analysis: SFLOW-IVI

Efficient analyses for predicting the effects of strong inviscid/viscid interaction (IVI) phe-

nomena, due, for example, to viscous-layer separations, shock/boundary-layer interactions and

trailing-edge/near-wake interactions, on the aerodynamic, aeroelastic, and aeroacoustic per-

formances of turbomachinery blading are needed as part of a comprehensive analytical design

prediction system. The focus here will be on the development of an accurate and efficient IVI

analysis for steady cascade flows, that can provide the foundation for an unsteady procedure

to be developed later. The steady analysi_ is described below and is being developed as part of

an overall research program, which has the goal of providing reliable and efficient theoretical

prediction methods for steady and unsteady viscous flows, at high Reynolds numbers, through
subsonic and transonic cascades.

The present steady analysis uses an inviscid/viscid interaction (IVI) approach, in which

the flow in the outer inviscid region is assumed to be potential, and the flows in the inner or

viscous-layer regions are governed by Prandtl's viscous-layer equations. The inviscid equations

are solved using a Newton iteration procedure and an implicit, least-squares, finite-difference

approximation, similar to that used in LINFLO. The viscous-layer equations are solved using

a modified Levy-Lees transformation and an inverse, finite-difference, space-marching method,

which is applied along the blade surfaces and the wake streamlines. Complete details on the

inviscid and viscous solution procedures can be found in [HV93, HV94] and [BVA93a], respec-

tively. The inviscid and viscid solutions are coupled via a semi-inverse global iteration pro-

cedure that permits the prediction of boundary-layer separation and other strong-interaction

phenomena. Numerical results will be presented below for the three example cascades de-

scribed in § 2.5 with a range of inlet flow conditions considered for one of them, including

conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions

and experimental data will also be given.

4.1 General Concepts

For the flows oi :'tactical interest in either internal or external aerodynamics, the Reynolds

number is usually sufficiently high so that the flow past an airfoil or blade can be divided into

two regions: an "inner" dissipative region consisting of boundary layers and wakes, and an

"outer" inviscid region. The principal interaction between the flows in the viscid and inviscid

regions arises from the displacement thickness effect which leads to thickened semi-infinite

equivalent bodies _ : corresponding changes in surface pressures.

If the interacti s "weak," then the complete flow problem can be solved sequentially.

In this case the pr. _re distributions along the blades and wakes are first determined by a

pure inviscid soluti_a. These distributions are then imposed when solving the viscous-layer

equations to determine viscous displacement thickness, _(T), distributions along the blades

and wakes. The latter are then used to obtain a new inviscid solution, that accounts for

viscous displacement effects. The resulting changes in the blade pressure distributions and

in the downstream freestream flow properties (e.g., Mach number and flow angle) can then

be calculated. It is sometimes possible to continue this sequential solution procedure until a

converged solution for the entire flow is achieved.
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Flows over airfoils or blades, however, involve both a weak overall interaction arising from

standard displacement thickness and wake curvature effects, and local strong-displacement

interactions caused, for example, by viscous-layer separations, shock/boundary-layer interac-

tions, and trailing-edge/near-wake interactions. Viscous displacements in a strong-interaction

region can cause substantial changes in the local inviscid pressure and, in some cases, in the

overall pressure field. The concept of an inner viscous region and an outer inviscid region

still applies, but the classical hierarchical structure of the flow breaks down. In particular, for

flows with strong interactions the inviscid/viscid hierarchy changes from "direct", in which

the pressure is determined by the inviscid flow, to "interactive" in which the pressure is de-

termined by the mutual interaction between the flows in the inviscid and the viscous-layer

regions. This change must be accommodated within an inviscid/viscid interaction solution

procedure.

The construction of an IVI analysis involves, first, the development of component, i.e.,

inviscid and viscous-layer analyses, and, second, the implementation of these components into

a strong-interaction iteration procedure to produce a solution for the complete flow field.

Solution methods for steady subsonic and transonic inviscid flows through cascades (e.g.,

see [Cas83, HV94]) and for steady boundary-layer and wake flows (e.g., [VV85] and [BV87])

have been developed to a relatively mature state. Methods for coupling such solutions have

also been developed and assessed through a number of model problem studies (e.g., see [Vel80,

VV85, BV87]). Inviscid/viscid interaction procedures for predicting steady flows in cascades

have also been developed [HSS79, JH83, CH80, BV89, BHE91] and applied over a wide range

of inlet flow conditions, including conditions leading to stall [BHE91].

In the present approach we consider high Reynolds number (Re = _*_._V'_ L*/p* ) steady

flow, with negligible body forces, of a perfect gas with constant specific heats and Prandtl

number through a two-dimensional cascade (cf. Figures 2.1 and 2.3). In particular, we will
restrict our consideration to adiabatic flows at unit Prandtl number, however, it is a relatively

simple matter to extend the analysis to heat conducting flows at arbitrary Prandtl numbers.

The flow in the outer inviscid region is assumed to be isentropic and irrotational and hence,

governed by the full-potential equation; those in the inner viscous-layer regions, by Prandtl's

viscous-layer equations. The non-hierarchical nature of strong interactions is taken into ac-

count by the procedure used to couple the inviscid and viscid solutions. In addition, an inverse

viscous-layer calculation, in which the displacement thickness is specified instead of the pres-

sure, is employed to permit viscous solutions to be continued through local strong-interaction

regions, including regions of separated flow. In regions of the flow where the inviscid/viscid

interactions are weak, the pressure, as determined from the inviscid solution, can be imposed,

instead of the displacement thickness, to obtain a direct viscous-layer solution.

In the present approach, the steady, cascade, full-potential analysis (SFLOW) developed

by Hoyniak and Verdon [HV93, HV94] is employed to determine the flow in the inviscid

region. SFLOW has been constructed for use with the linearized inviscid unsteady flow anal-

ysis, LINFLO, to provide compatible and comprehensive steady and unsteady inviscid flow

prediction capabilities for cascades. In the IVI calculation procedure (which is referred to as

SFLOW-IVI), viscous effects are incorporated by modifying the blade and wake boundary

conditions used in SFLOW to account for the effects of viscous displacement. The nonlinear

inviscid analysis, coupled with the IVI iteration procedure, allows nonlinear changes to the

inviscid base flow due to viscous effects to be evaluated. The ability to treat such nonlinear
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perturbations isespeciallyimportant in transonic flowsin which shockpositionsand strengths
are significantly altered by viscousdisplacements. Althoug : the analysisdescribedbelow is
presentlyrestricted to subsonicflows, it canbeextendedto treat transonic flowsin the future.

4.2 Inviscid/Viscid Interaction Analysis

Inviscid Region

The flow in the inviscid region is determined as a solution of the field equations (3.1)

and (3.2) subject to flow tangency conditions at the blade surfaces, jump conditions on the

normal velocity and pressure across the blade wakes, and prescribed uniform flow conditions

far upstream of the blade row. Blade-to-blade periodicity conditions [cf. (2.42)] are applied

upstream and downstream of the blade row to limit the computational domain to a single,

extended, blade-passage. Kutta conditions at the blade trailing edges and a global mass
conservation condition that relates the flows at the inlet and exit boundaries and accounts for

the blockage effects of the viscous layers are enforced in lieu of specifying the uniform flow far

downstream of the blade row. For the flows considered here, the inlet and exit velocities are
subsonic.

The field equation (3.1) can be written in the form

A2V_¢ - We. V(V¢)2/2 = 0 (4.1)

where the speed of sound propagation A is given in terms of the potential q_ in (3.2). The

SFLOW inviscid analysis is based on this non-conservative form of the full potential equation.

The specific forms of the blade and wake conditions for the potential steady flow in the

inviscid region can be determined by setting V = Vq_ in (2.47) and (2.48). Thus, at each

blade surface

V¢. n = #-_ld(#_V_,,$)/dr, for x E Sm , (4.2)

where _ and V_,_ = O¢/Orl_ are the inviscid density and velocity at this surface, or the

viscous density and streamwise velocity component at the edge of the viscous layer, and _ is

the boundary-layer displacement thickness (see Figure 2.3). The quantities r and n denote

the arc distance along the blade (positive in the downstream direction and zero at the leading-

edge stagnation point) and the local unit normal vector directed outward from the surface,

respectively. At the blade wakes the inviscid solution for the normal component of the fluid

velocity and the pressure must be discontinuous with jumps given by

[V¢_.n = (_-_ld(_eV_,e$)/dr) and [[P] = _(/5¢V_(_+ 0)) , for x e Win, (4.3)

where n is the upward pointing unit normal vector to the reference wake streamline (i.e., W

in Figure 2.3), ($) = Sw and (0) = 0w are the displacement and momentum thicknesses of

the complete wake, and _ is the curvature of the wake which is taken as positive when the

reference wake streamline is concave upwards.

As mentioned in § 2.3, a complication arises in that the location of the reference wake

streamline is unknown a priori; however, to within lowest order, the wake conditions can be

referenced to any arbitrary curve emanating from the trailing edge and lying within the actual

viscous wake [Vel80]. Usually, wake curvature effects are regarded as negligible. In this case
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the inviscid pressure,density and tangential velocity are continuousacrossblade wakes,and
the wakeconditions (4.3) reduceto

[Vff_]-n = _d(_,V,.,,_w)/dT and [[P] = 0, x E W,_. (4.4)

For steady flows, the reference wake streamline is taken to be the aft stagnation streamline as

determined by a pure inviscid solution. This is adequate except in extreme cases where the

location of the stagnation streamline is significantly altered by viscous effects. In this case, it

is possible to periodically update the location of the wake streamline during the calculation,

although this has not been done in the present study.

The foregoing boundary-value problem is solved using a Newton iteration procedure. Thus,

we set

¢,+1 = ¢, + ¢,, n = 0,1,2,... (4.5)

where _P, is the estimate to the final solution at the nth iteration level and Cn is a correction

to this estimate. The quantity ¢= is determined at each step of the iteration process by solving

linear equations that are derived by substituting (4.5) into (4.1)-(4.3) and neglecting terms

that are of second and higher order in ¢,. For example, the linear field equation for the

correction, ¢,, is

2 2- -D__¢t- D2¢" V(V¢) 2.v¢/2 = -A_V2¢,+V¢,.V(WgP,)2/2 ,
A.V ¢.- 1)v2¢. Dr2 (4.6)

where A,_, the nth estimate to the speed of sound propagation, is determined from (3.2) with

¢ replaced by _n and f)/Dt = re,. _7. The right-hand side of (4.6) is known and the linear

operator on the left-hand side is readily derived from the linear unsteady operator appearing

on the left-hand side of (3.9). The various equations used to determine ¢, are approximated

using the same implicit, least-squares, finite-difference approximations as those used in the

LINFLO analysis. The resulting linear system of algebraic equations that approximate the

linear boundary value problem for Cn is solved by direct matrix inversion, as in LINFLO, using

lower-upper decomposition and Gaussian elimination. The Newton iterations are continued

until I15.11< where ]] ]l denotes a prescribed norm and _ << 1 is a user specified tolerance

level. This nonlinear steady analysis, called SFLOW, is described in detail in [HV93, HV94].

The present inviscid solutions were obtained on a "streamline" type H-mesh, rather than

on the "sheared" H-mesh described in [VC84] and [HV93]. The SFLOW analysis was modified

by Hoyniak to use the streamline H-mesh developed by Hall and Verdon [HV91]. Thus, prior

to initiating an IVI calculation, a pure inviscid solution is first obtained on a sheared H-mesh.

The resulting solution is then used to generate a streamline H-mesh, in which one set of mesh

lines corresponds to the streamlines of the inviscid flow, and the second set consists of lines

that are "nearly" orthogonal to the first set. The principal advantage of the streamline H-

mesh over the sheared mesh is an improved resolution of the flow in the vicinities of blade

leading edges.

An alternative to this procedure is available in SFLOW and was used for one of the cases

described in this report, i.e., the turbine cascade. In the turbine case, a useful streamline

H-mesh could not be determined from the solution on a sheared H-mesh, because the latter

provided an inadequate resolution of the flows at blade leading-edges. To remedy this, the

initial inviscid solution was obtained on a composite mesh constructed by overlaying a local,
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surface-fitted, C-meshon a global shearedH-mesh. A detailed description of this procedure,
as applied to linearizedunsteadyflows, canbe found in [UV91].

Viscous Layers

The flows in the inner or viscous regions are assumed to be governed by Prandtl's viscous-

layer equations [cf. (2.28)-(2.32)]. For steady flows (a/Otlx - 0 and P = P, _ = p, etc.) the

continuity and streamwise momentum equations have the form

__O(pV_.) + - 0 (4.7)
Or On

and

[v.°V" ov.] _ dv.,o { or.-_-r + V,-_n j - p,V,,,--_r = (Re)-' O _/2¢a_n ) (4.8)
1.

We assume that the flow in the viscous layer is adiabatic and occurs at unit Prandtl number.

In this case the energy equation, cf. (2.30), reduces to the requirement that the total enthalpy

of the fluid, Hr ._ T + V_/2, must be constant across the viscous layer.

In equation (4.8) the subscript e refers to fluid properties at the edge of the viscous layer,

and the effective viscosity, Pea, is defined to be

/2,fr =/2 + _, (4.9)

where/2 is the molecular viscosity, which is assumed to be a function of temperature alone,

o¢ 7T, is the turbulent eddy viscosity, and q_, is the streamwise intermittency factor. In the

present study, the molecular viscosity,/2, is determined by Sutherland's equation (2.10); the

eddy viscosity in blade boundary layers, using the Cebeci-Smith model [CS74], as modified

in [BV87] to account for flow separation; and the eddy viscosity in wakes, using the model

of Chang, et al. [CBCW86]. The specific turbulence model, used in the present study, is

described in detail in § 5.1. For the present IVI calculations, instantaneous transition, i.e.,

7Tr changes abruptly from 0 to 1, is assumed to occur at specified locations along the blade
surfaces.

The foregoing field equations govern the flow in the viscous layers along the upper and

lower surfaces of the blades and in the blade wakes. They are solved subject to conditions at

the edges of the viscous layers, on the blade surfaces, and along the reference wake streamlines,

i.e.,

V.-*V.# forn-.oo, r>_O, (4.10)

V_=V.=O forn=O, O_<r_<r_ (4.11)

and

V, = 0 for n = 0, r > r e (4.12)
TE '

respectively, where r_E are the trailing-edge values of the upper- (+) and lower-surface (-) arc-

length coordinates measured from the leading-edge stagnation point. The condition expressed

by (4.10) is also applied along a wake streamline for n --* -oo. Equations (4.11) and (4.12)

imply that the curve n = 0 corresponds to the blade surfaces and reference wake streamlines,

respectively.

64



The displacement($) and momentum (_) thicknessesof the viscouslayersare neededto
determine the effectsof viscousdisplacementand wake curvature on the outer inviscid flow.
For steady flows, thesequantitiesare determinedby [seealso (2.37)and (2.38)]

( an (4.1316(T) = fO 1 p_V_,e/

and

p-_,_ 1 _,_ dn, (4.14)

where the zero lower bound on the integrals is replaced with -oc when determining the

displacement and momentum thicknesses of a wake.

Levy-Lees Transformation

To facilitate the numerical resolution of the viscous-layer equations we introduce a modified

version [BV87] of the Levy-Lees transformation [Blo70]. Thus, we define new independent

and _ = (Re/2_)I/2V_,_ pdn, (4.15)

variables

and new dependent variables

F = V,/V_,_ and f = (Re/2_)'/:gY . (4.16)

Here _ and y are scaled streamwise and normal spatial coordinates, F is the ratio of the local

to the edge value of the streamwise velocity, and f is a scaled stream function for the flow in

the viscous layer. The quantity gCfr,_(r) in (4.15) is the effective viscosity at the edge of the

viscous layer. It is used in the definition of _ to maintain a nearly constant value of _7at the

edge of a turbulent viscous layer [VWV82]. The variable g2 in (4.16) is the stream function of

the flow; therefore, O_/(:3n = pV_ and (:3g//0r = -pVn. The Levy-Lees transformation permits

the leading-edge, stagnation-point, laminar, similarity solution to be easily recovered and leads

to a reduced truncation error in the numerical approximation to the viscous-layer equations

relative to that associated with an analysis based on the use of primitive flow variables.

After applying the transformation relations (4.15) and (4.16), we find that the continuity

(4.7) and momentum (4.8) equations can be written as

F- Of (4.17)
O_

and

0 {gOF__2_F + f+2_-_ N +fl(0-F 2)=0. (4.18)V,] ¢
Here g = PPea/(P_P¢_,_), 0 = PJP, and _ is a pressure gradient parameter, defined by

Z- 2_ dV,,, (4.19)
V_,, d_

65



Sincethe total enthalpy HT _ T + V_/2 and the pressure are constant across the viscous

layer, it follows from the Bernoulli relations (3.2) and the equation of state for a thermally

perfect gas, cf. (2.11), that

=TIT, = = 1 + -L_M_(1 - F2), (4.20)

where T/Te and fi/#e are the ratios of the local to the edge values of the fluid temperature

(or enthalpy) and density.

The following boundary conditions are applied. The stream function is constant along

the blades and the reference wake streamlines (i.e., at r/ = 0). Therefore, without loss in

generality, we can set

f=O at r/=0. (4.21)

The no-slip condition applies at a blade surface, i.e.,

F = 0 at rI = 0 for _ < _TE , (4.22)

where _TE is the trailing-edge value of _. At the edges of the blade-surface boundary layers

F0?_ ) = 1 for ( < _TE, (4.23)

since V_ ---, V_,r as r/--, yr. This condition forces the flow variables to approach their appro-

priate edge (inviscid) values as _ --_ yr.

The edge conditions for a wake are more complicated because of the jumps in the inviscid

flow variables, associated with wake curvature [cf. (4.3)]. We indicate the upper- and lower-

edge values of _ and the edge velocity, V_,_, by the superscripts + and -. If we use upper

surface flow variables to define the Levy-Lees transformation for the wake calculation, e.g., if

we set F "- V_/V_+e, then

F(rl +) = 1 and F(rl-_)= yjJy +o for ¢ > (4.24)

If the curvature effect is negligible, i.e., if _P] _ 0 for x E W, the wake-edge conditions become

F(rl_) = 1.

Solution Procedure

The viscous-layer equations are parabolic in the (-direction and therefore require initial

conditions. These are provided by determining a similarity solution which holds in the vicinity

of a leading-edge stagnation point, i.e., near _ = 0. Such a solution is obtained by solving

the Levy Lees equations with/7 = 1. Solutions for the flows along a blade surface and its

wake are then obtained using space-marching in the downstream direction. As discussed in

§ 4.1, a complete IVI calculation requires the ability to solve the viscous-layer equations in

both the "direct" mode, in which the pressure gradient parameter /3 is specified and the

displacement thickness 5 is determined, and in the "inverse" mode, in which 5 is specified

and/3 is determined. In the present study the equations are solved in the direct mode over

a forward part of the blade, that includes the leading edge stagnation point, and in the

inverse mode downstream of an axial station, whose location is either specified in advance or
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determinedduring the calculation to ensurethat the inversemode is initiated upstream of a
strong interaction region. A wakeis calculatedentirely in the inversemode. For a calculation
in the inversemode, the quantities fl and V_.,_ are unknown. Thus, a supplemental equation

relating these two variables is needed. This is obtained by discretizing (4.19), which defines

in terms of V_,e.

In the direct viscous-layer calculation, the value of fl is determined by the inviscid analysis

and the displacement thickness is obtained from the viscous analysis. In the inverse procedure,

the displacement thickness is specified, and the edge values of the flow variables, V_.,e, Me, etc.,

are obtained as part of the viscous-layer solution. This is accomplished via the introduction

of a "mass deficit parameter", _ = _V_.e_. An expression relating the value of f at the edge

of the viscous layer to _ is derived by integrating equation (4.17) across the boundary layer

and employing the definitions of _, r/and 0, cf. equations (4.13), (4.15) and (4.20). We find

that

fn TM _dr I - (Re/2_)1/2"_ . (4.25)f(r]_)

Equation (4.25) is used at blade surfaces to impose the specified value of _ through the

corresponding value of f at the outer edge of the viscous layer, i.e., at 77= r/e. The integral

term in (4.25) is determined from the previous global IVI iteration, and is therefore specified

or lagged in the current iteration.

An expression for the difference between the stream function values at the upper and lower

edges of a wake is obtained by integrating (4.17) across the entire wake (i.e., from 71[ to 77+),

to obtain

"+"Odr] - (Re)1/2[_+/(2_+) 1/2 + rh-/(2(-)1/2] • (4.26)
f(r/+) - f(r/_-) -/'j_;_

Equation (4.26) is used to impose the mass deficit parameters, m-_ = _'e=+V-q'S+_,e, in the wake.

If wake curvature effects are regarded as negligible the last term in (4.26) can be replaced by

_w/(2_w) x/2, where _w = PV_jw/(2_w) V2 and _w is the continuation of the upper surface

_-vaxiable into the wake. The integral term in (4.26) is determined from the previous iterative

solution.

The discretized field equations, boundary conditions and auxiliary conditions, equations

(4.17)-(4.26), are quasi-linearized and the resulting tridiagonal system of algebraic equations

is solved at each streamwise (i.e., r- or _-) station of the computational domain, using a

fixed-point iteration to update the nonlinear terms. The inversion algorithm used in the wake

is modified to account for the application of one boundary condition (4.21) at ,7 = 0 and

two others at the upper and lower edges of the viscous layer, as well as to account for the

application of the jump condition (4.26) on the values of f at the upper and lower edges of

the viscous wake. Finally, the so-called FLARE approximation, which prevents instabilities in

the viscous-layer solution, due to flow reversal, is applied by turning off the convective terms

in the momentum equation wherever F < 0. Further details on the viscous-layer numerical

analysis can be found in [BVA93a].

InviscidfViscid Iteration Procedure

The present IVI approach determines the complete flow field by iteratively updating the

mass deficit parameter, _(T), which affects both the inviscid and viscous solutions through
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Figure 4.1: Semi-inverse inviscid/viscid iteration procedure.

their respective boundary conditions. For an arbitrary _ distribution, two different surface

and wake streamline velocity distributions generally result: one, V_#x(r), from the inviscid

calculation and one, V_,,v(r), from the viscous-layer calculation. The objective is to deter-

mine a converged inviscid/viscid interaction solution by finding the mass deficit parameter

distribution that minimizes the differences between the V_,_, and E#v distributions.

In this investigation the "semi-inverse" iteration procedure of Carter [Car79], which is

illustrated schematically in Figure 4.1, has been used to update _ at every streamwise mesh

station on the blade and wake surfaces. Thus, we set

_-,,+a = _-_[1 + (vL,,IVT,,, I)] (4.27)

where the superscript n is the global iteration count and & is a relaxation parameter. The
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solution is consideredto be convergedwhen

maxlV_._v_-V_-,_,,I/V_.,_,,< _, i= 1,...,IE, (4.28)

where the value of _ is specified by the user and IE is the number of streamwise mesh stations.

Equation (4.28) is applied on both blade surfaces and along the wake. The viscous-layer

solution is obtained at the locations corresponding to the intersections of the inviscid mesh

lines with the blades and the reference wake streamlines. This avoids the need for interpolation

between different inviscid and viscid streamwise mesh.

During the global iterations, the independent variable _ is updated using equation (4.15),

where the current values of the variable appearing in the integrand are applied. Because a

major objective of this study has been to develop an efficient analysis, various techniques for

accelerating convergence were examined. We found that one of the most effective approaches

for reducing the CPU time needed to obtain a converged IVI solution is to use the largest

value of the relaxation parameter, &, for which the iterative procedure remains stable. It was

also observed that the inviscid velocity distribution, V_,_I, changes relatively little between the

initial purely inviscid solution and the final IVI solution. This is in contrast to the significantly

larger changes observed in the viscous velocity distribution, V,.,_v. This observation prompted

the introduction of a sub-iteration loop in which the viscous equations are solved repeatedly

during each global iteration. Thus, equation (4.27) is applied Nv times during a single global

iteration, with V_,,I being frozen at its most recent value and V_.,,v being re-calculated during

each sub-iteration by solving the viscous-layer equations using the latest _ distribution. The

value of Nv is a user-specified input, and the standard iteration procedure is recovered if

Nv = 1. This strategy is only effective in reducing the total CPU time if the number of

global iterations needed to obtain a converged IVI solution, No, can be reduced enough

to more than balance the increased computational effort needed for the additional viscous

calculations performed at each global iteration level. Of the three cascades examined in § 4.3,

the sub-iteration procedure was of benefit only for the turbine. The dashed lines in Figure 4.1

correspond to the viscous subiteration technique described above.

4.3 Numerical Examples: Steady Flows with Strong Inviscid/Viscid Interactions

The foregoing inviscid/viscid interaction analysis has been applied to the cascade configu-

rations described in § 2.5; in particular, the compressor exit guide vane (EGV), the high-speed

compressor (HSC) cascade known as the Tenth Standard Cascade, and the turbine cascade,

which is a modified version of the Fourth Standard Configuration. Surface pressure coefficient,

Cp = (P- P_¢¢)/2, or Mach number, M, displacement thickness, 6, and surface shear stress,

_ = Re-l#OV,./Onl,_=o, distributions will be presented, as functions of chordwise distance

x, for the three cascades. IVI solutions for the compressor cascades will be evaluated via

comparisons with Navier-Stokes solutions; the solution for the turbine against experimental

measurements. In addition, predicted values of the total pressure loss, the exit flow angle,

and separation point location will be presented for the EGV operating over a wide range of

inlet flow conditions. These predictions were obtained using the mixing analysis of Stewart

[Ste55]. Finally, the performance of the SFLOW-IVI analysis, i.e., its efficiency and conver-

gence properties, will be discussed.
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Figure 4.2: The EGV cascade and streamline H-mesh.

In the calculations described below, the SFLOW-IVI analysis was applied using the norm

(4.28) and a convergence tolerance, _, of 0.001. The inviscid H-meshes used for the two

compressor cascades consisted of 90 axial and 31 circumferential lines, with 24 axial lines

upstream of the blade leading edges, 41 lines intersecting the blade surfaces and 25 lines aft

of the trailing edges. The meshes used for the viscous-layer analyses employed a total of 81

and 25 streamwise grid lines along the blade and wake, respectively, with 71 normal grid

lines across a surface boundary layer and 141 normal grid lines across the wake. The inviscid

mesh used for the turbine cascade had 150 axial and 31 circumferential lines, with 39 points

upstream of the leading edge, 51 points along each blade surface and 60 points along the wake.

A total of 101 surface and 25 wake stations were used in the turbine viscous-layer analysis.

The normal mesh had the same dimensions as those used for the compressor cascades. For

the cases considered in this study, the wake curvature effect was assumed to be negligible;

thus, [P]w was set equal to zero, [cf. (4.4)].
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Compressor Exit Guide Vane (EGV)

The EGV cascade consists of highly cambered, modified NACA 0012 airfoils. It has a

stagger angle, O, of 15 deg, a gap-chord ratio, G, of 0.6 and operates at a prescribed inlet

Mach number, M-oo, and inlet flow angle, _/-oo, of 0.3 and 40 deg, respectively. Calculations

were performed for a purely inviscid flow, and for viscous flows at Reynolds numbers of l0 s

and 106 . Instantaneous transition from laminar to turbulent flow was assumed to occur at one

percent of the arc distance measured along the blade surfaces from the leading-edge stagnation

point to the trailing edge on both the suction and pressure surfaces of the blades. A streamline

H-mesh is depicted in Figure 4.2, where three adjacent EGV blade passages are shown. For the

purpose of illustration, the mesh shown in this figure has approximately one-half the number

of axial and circumferential grid lines as were used for the actual calculations.

Results of the inviscid and IVI calculations are shown in Figure 4.3. The blade and wake,

pressure coefficient and displacement thickness distributions are shown in Figures 4.3a and

4.3b, respectively; the blade-surface shear-stress distributions, in Figure 4.3c. The expected

approach of the viscous solutions to the inviscid solution as Re is increased is evident in

the pressure coefficient predictions. The rate of growth of the suction-surface displacement

thickness increases dramatically with increasing chordwise distance, x, as the viscous-layer

separation point is approached. As shown in Figure 4.3c, suction-surface separation bubbles

(_ < 0) exist and span approximately 14 percent of chord for Re = 106 and about 24

percent of chord for Re = l0 s. The decrease in the extent of the separation bubble as Re is

increased is consistent with the behavior expected for turbulent flows. Note that the suction-

surface pressure distributions in Figure 4.4a flatten after the flow separates from the blade,

but adverse pressure gradients still persist within the separation regions, because the suction

surface pressures rise to meet those on the pressure surface as the trailing edge is approached.

The blade-surface pressure coefficient, displacement thickness and shear-stress distribu-

tions, as predicted by the SFLOW-IVI analysis for Re = 10 s, are compared in Figure 4.4 with

results obtained using the Navier-Stokes analysis of Dorney, et al. [DDE92]. This Navier-

Stokes analysis uses the Baldwin-Lomax turbulence model [BL78], which is very similar to

the Cebeci-Smith model used in SFLO_h -IVI. Good agreement between the results of the two

analyses, particularly for the shear-stress distributions, has been obtained over most of the

blade surface. However, the agreement, particularly that between the displacement thickness

distributions, deteriorates in the vicinity of the trailing edge. This is due to the use of an

O-mesh around the blades in the Navier-Stokes analysis, which is not well-suited for predict-

ing flows over thin or wedge-shaped trailing edge geometries. In such cases the lines of the

O-mesh become severely skewed in the vicinity of the trailing edge, introducing inaccuracies

into the numerical solution. Also, the displacement thickness [cf. (4.13)] should be evaluated

by integrating along lines that are normal to the body surface.

the skewed "radial" lines of the O-mesh deviate significantly

surface, producing questionable results for 5 in the vicinity of

However, near the trailing edge

from lines normal to the body

a blade trailing edge. Both the

Navier-Stokes and the IVI analyses predict separation ('Yw < 0) near the trailing edge, and

give almost identical predictions for the location of the separation point (_to = 0); as indicated

in Figure 4.4c.
To test the robustness of the SFLOW-IVI analysis, additional calculations were carried

out for viscous flows at Re = 106. The inlet Mach number was held at M-oo = 0.3, but a wide
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Figure 4.3: Inviscid (_) and IVI, at Re = 105 ( ..... ) and Re = 106 ( ..... ),

solutions for the EGV cascade: (a) pressure coefficient; (b) displacement thickness; (c) surface
shear stress.

range of inlet flow angles, i.e., 36 deg < fLoo _< 54 deg was considere, £he transition point

locations were held fixed at r/rrF, = 0.01 for all values of f_-oo. This location is the same as

that reported earlier for the baseline (f/-oo = 40 deg) calculation. The results are shown in

Figure 4.5. Here, the predicted total pressure loss parameter, _ = (PT-oo -- PT+_)/(PT__ --

P-oo), where PT is the total pressure, exit flow angle, f_+oo, and suction-surface separation

point location, z,,p, are plotted as functions of inlet flow angle f_-oo. At fLoo = 54 deg,

the viscous flow is approaching stall, with the separation region spanning approximately 35

percent of chord. Above 54 deg the IVI calculations did not converge due to a numerical

instability. This is consistent wi!h the known stability properties of the semi-inverse IVI

iteration procedure when applied to flows with large-scale separations [Wig81].
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stress.

The total pressure loss parameter and the exit flow angle axe plotted versus f_-o_ in Fig-

ures 4.5a and 4.5b, respectively. There is a range of inlet flow angles over which the loss remains

relatively low, but _ increases rapidly as the inlet flow angle is increased above 50 deg. The

latter behavior corresponds to a significant increase in the extent of the separation region

with increasing f_-oo for _-oo > 50 deg, as can be seen from the results for x_p shown in Fig-

ure 4.5c. A striking similarity exists between the variations in -f_+¢¢ and x,ep with fl-oo, as is

apparent from the results shown in Figure 4.5. The streamwise growth of the separation bub-

ble, with increasing f_-oo, is accompanied by an increase in the suction-surface displacement

thickness in the vicinity of the trailing edge. This produces a thickened displacement body
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Figure 4.5: SFLOW-IVI predictions for the EGV cascade operating over a range of inlet flow

angles: (a) loss parameter; (b) exit flow angle; (c) separation point location.

(i.e., the profile made up of the viscous displacement thickness superimposed on the actual

blade), thereby reducing the effective camber of the blade, and hence, the blade loading. As

a direct consequence, there is a reduction in the turning of the flow, i.e., an increase in _+_.

The predicted streamline patterns indicating the size of the trailing-edge separation bubble

for __¢¢ = 36, 45 and 54 deg are shown in Figure 4.6. For 36 < F__¢¢ < 45 deg, the separation

bubble grows slowly, whereas a much more rapid growth occurs between 45 and 54 deg [see

Figure 4.5c]. The "decambering" effect produced by the growth of the separation bubble is

also indicated by the results in Figure 4.6. The kinks that appear in the streamlines near
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the trailing edge require some explanation. Since the blade trailing edge is wedge shaped,

the surface coordinate line formed by the blade surface and reference wake streamline has a

geometric singularity of "kink" at the trailing edge. This singularity influences the solution

throughout the trailing-edge region as shown by the streamline plots in Figure 4.6. Because

this singular behavior is highly localized, its effect on the solution for the overall flow field

appears to be negligible.

High-Speed Compressor Cascade (HSC)

The HSC cascade or Tenth Standard Configuration, consists of modified NACA 5506

airfoils. It has a blade spacing of unity and a stagger angle of 45 deg. We consider a high-

subsonic inlet operating condition, i.e., M-co = 0.7 and fl-oo = 55 deg, and viscous flows at

Reynolds numbers of l0 s and 106 . Instantaneous transition is assumed to occur at ten and at
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Figure 4.7: StreamlineH-meshfor the HSC cascade.

one percentof the surfacearc length for the flowsat Re = l0 s and 106, respectively, on both

the suction and pressure surfaces of each blade. The IVI analysis for the flow at Re = l0 s was

found to be sensitive to the specified transition location. In particular, the iterative solutions

would not converge, if transition was specified to occur at one percent of arc length, whereas

if transition was assumed to occur further downstream, the iterations converged. The cascade

along with a streamline H-mesh, which has, for the sake of clarity, a lower grid point density

than that used for the actual calculations, are shown in Figure 4.7. The results of the inviscid

and viscous calculations are presented in Figures 4.8 and 4.9.

The predicted pressure and displacement thickness distributions along the blade surfaces

and the wake are shown in Figures 4.8a and 4.8b, respectively, for pure inviscid flow and for

the viscous flows at Re = 105 and Re = 106. The behavior of both of these quantities is similar

to that observed for the EGV. The surface shear-stress distributions, shown in Figure 4.8c,
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solutions for the 10th Standard Cascade: (a) pressure coefficient; (b) displacement thickness;

(c) surface shear stress.

indicate that the streamwise extents of the suction-surface separation bubbles are smaller than

those predicted for the EGV cascade, decreasing from approximately 20 percent to about 8

percent of chord as the Reynolds number is increased from 105 to 106 . The kinks in the shear-

stress distributions for the Re = l0 s case are associated with the instantaneous transition

that occurs at T/TTE --" 0.1 on both the suction and pressure surfaces of each blade.

The surface pressure coefficient, displacement thickness and shear-stress distributions de-

termined for the flow at Re = 106 using SFLOW-IVI are compared with those obtained using

the Navier-Stokes analysis of [DDE92] in Figure 4.9. The agreement is excellent except in the

immediate vicinity of the trailing edge. Again, the differences between the two solutions are
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Standard Cascade at Re = 108: (a) pressure coefficient; (b) displacement thickness; (c)
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attributed to the use of different meshes (H- and O-) around the blade. The two analyses give

almost identical predictions for the location of the separation point.

Turbine Cascade

The turbine cascade is a modified version of the Fourth Standard Configuration described

in the study of Fransson and Suter [FS83]. The blade geometry is shown in Figure 4.10 and was

obtained by modifying the original blunt trailing-edge geometry to produce a wedge-shaped

trailing edge, while retaining the original chord length, as discussed in [HV93]. As for the

compressor solutions discussed above, the mesh shown in the figure has fewer grid lines than
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Figure 4.10: The turbine cascadeand streamlineH-mesh.

wereusedin the actual calculation. The streamlinemeshemployedfor the turbine calculation
wasobtainedfrom an inviscid solution calculatedon a compositemesh (see,e.g.,Figure 3.9).
The compositemeshsolution capability [UV91] is availablein both the SFLOW and LINFLO
analyses.

The blade spacingand staggerangle for the turbine cascadeare 0.76 and 56.6 deg, re-
spectively,and the inlet Mach number M__ and flow angle g/-_o are 0.205 and 45 deg. The

value of M-o_ has been adjusted from the experimentally measured value of 0.190 to improve
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the agreement with the measured pressure distribution. The calculation was carried out at

a Reynolds number of 5 x l0 s with instantaneous transition occurring at 10 percent of the

surface arc length downstream from the leading-edge stagnation point along both the suction

and pressure surfaces of the blades. A converged solution could not be obtained for the turbine

if the location of transition was specified to be too close to the leading edge. This is consistent
with the behavior observed for the HSC cascade for the flow at Re = l0 s.

The IVI solution was obtained in 12 global inviscid/viscid iterations. The viscous subit-

eration procedure described in § 4.2 was very effective for this case, reducing the CPU time

needed to converge the calculation from 1371 seconds without subiteration (requiring 115
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global iterations) to 224 seconds (in 12 global iterations), using four viscous subiterations

(i.e., Nv = 4) during each global IVI iteration.

The computed and measured blade surface Math number distributions are shown in Fig-

ure 4.11a. Viscous effects produce a nearly uniform decrease in the suction surface Mach

number distribution aft of x ,_ 0.4, whereas the pressure surface Mach number distribu-

tion is almost unaffected. The agreement between the IVI solution and the experimental

data is reasonable; the disagreement in the trailing-edge region can be attributed to the geo-

metric modification mentioned above. It is difficult to draw definitive conclusions regarding

the comparison between the predictions and the data because the solution for this case is

particularly sensitive to the inviscid mesh used. The predicted displacement thickess and sur-
face skin-friction coefficient distributions are shown in Figures 4.11b and 4.11c, respectively.

No separation was predicted for the flow conditions considered, however, the suction-surface

viscous-layer is close to separation at the trailing edge.

Timin# Study and Convergence Behavior

Because the development of an efficient analysis has been a major objective of this analyti-

cal investigation, a timing study was conducted for the three cascade configurations examined

herein. This study provides both a measure of the computational effort currently required to

obtain solutions using SFLOW-IVI, and benchmarks against which future efforts to improve

efficiency can be compared. The results axe summarized in Table 1. In addition to the CPU

time to, the relaxation factor _b, and the number of global iterations Na required to converge

solutions using a tolerance level _ of 0.001 are given in Table 1. The execution times were

determined using a nearly optimal value of dJ, as determined by a trial and error procedure.

The calculations were carried out on an HP-Apollo 720 workstation where SFLOW-IVI

has been compiled using an optimizing preprocessor. No attempt has been made to "tune"

the code to take advantage of special features of the optimizer. The times given in Table 1

are CPU times for the portion of the calculation associated with the IVI iteration loop. Any

overhead associated with the initialization of the data structure, the generation of the mesh

and the calculation of the initial inviscid solution is not included. However, this overhead

amounts to a small percentage of the overall CPU time required by the SFLOW-IVI analysis.

Note that each of the solutions was obtained in less than five minutes. Recent calculations on

an IBM RS/6000 3CT workstation indicate a factor of four (4) reduction in the computing

times reported in Table 1.

It is difficult to make direct comparisons with Navier-Stokes CPU times since these can

vary considerably, even by orders of magnitude, depending on numerous factors, including

whether the code is a research or a design code, the number of grid points, the grid stretching,

the convergence tolerance, and so on. An estimate based on a Navier-Stokes analysis that is

currently used in design indicates that the present IVI analysis requires one to two orders of

magnitude less CPU time to produce similar results.

The convergence behavior of two parameters of interest to compressor blade designers was

examined to determine if a different measure of convergence than that given by equation (4.28)

would be more appropriate for engineering applications. For the two compressor cascades,

the total pressure loss parameter _ and exit flow angle f_+_o were monitored during the

IVI iteration procedure. We have found that the values of _ and f_+oo could be considered
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Table 1. Summary of SFLOW-IVI CPU times, tv, for different cascade configurations.

Configuration I if; I (sew
EGV, Re- 106 1.20 24 197

EGV, Re= 10s 0.85 38 277

HSC, Re = 10s 1.20 27 203

HSC, Re = l0 s 0.80 40 296

Turbine 0.55 12 224
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Figure 4.12: Convergence history for the EGV cascade at Re = l0 s and f_-oo = 40 deg: (a)

total pressure loss parameter; (b) exit flow angle.

converged at a significantly lower iteration count than was needed to satisfy the convergence
criterion (_ = 0.001); typically about one-third fewer iterations than are shown in Table 4.3

are needed. Thus, even greater efficiency could be achieved in many cases by measuring

convergence by the degree to which the parameters of interest have approached "asymptotic"

values. This is demonstrated by the results presented in Figure 4.12, which show the behavior

of _ and _/+oo, respectively, as functions of the iteration count for the EGV cascade operating

at Re = 106 and ft-¢o = 40 deg. This behavior is typical of that observed for all of the

cases studied herein. The solution for the case illustrated in Figure 4.12 converged to within

= 0.001 in 24 iterations while the asymptotic value, indicated by the dashed horizontal line,

was determined by converging the solution to _ = 0.0001, for which 41 iterations were needed.

For engineering purposes, this solution could be considered to be converged after about 15

iterations, for which tc _, 120 seconds.
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Discussion

Existing nonlinear inviscid and inverse viscous-layer analyses have been extended and cou-

pled to provide a strong inviscid/viscid interaction analysis (SFLOW-IVI) for two-dimensional,

steady, subsonic cascade flows. This IVI solution procedure can be used to predict the ef-

fects of local strong interactions, including trailing-edge/near-wake interactions and small-

to moderate-scale viscous-layer separations, on cascade performance. The present analysis is

restricted to subsonic flows, but it can be extended to treat transonic flows in the future.

The SFLOW-IVI analysis has proven to be both efficient and robust. Converged solutions

for each of the baseline configurations examined were obtained in less than five CPU minutes

on an HP-Apollo 720 Workstation. Even lower CPU times could be obtained by basing conver-

gence on the global quantities of interest to an engine designer. Robustness was demonstrated

via application to a wide range of inlet conditions, including cases with large-scale separation,

spanning up to 35 percent of blade chord.

A number of issues still need to be addressed in order to improve the accuracy of the

SFLOW-IVI analysis and to expand its range of applicability. Among them are the inclu-

sion of quasi-three-dimensional (i.e., streamtube contraction and radius change) effects, the

incorporation of better models for transition and turbulence, and the addition of a procedure

for updating the location of the wake streamline during the global iteration process. In addi-

tion, the overall utility of this SFLOW-IVI analysis for design-system applications needs to

be explored through further testing and validation. Finally, as this effort continues, a steady

transonic capability should be developed and the focus should turn increasingly towards the

development of a strong inviscid/viscid interaction capability for subsonic and transonic un-

steady flows.

4.4 Numerical Examples: Effects of Strong Steady Inviscid/Viscid Interaction

on Unsteady Response

We have applied the SFLOW-IVI and LINFLO analyses in an effort to estimate the effects

of steady viscous displacement on the unsteady aerodynamic response of a cascade undergoing

prescribed blade motions. The calculation procedure is as follows. A strong inviscid/viscid

interaction solution is first determined by applying the SFLOW-IVI analysis using an H-type

mesh for the flow in the outer or inviscid region. The blade and wake displacement-thickness

distributions resulting from this calculation are then used in the surface conditions (4.2) and

(4.4), and the SFLOW analysis is applied on a composite-mesh to determine an accurate
solution for the inviscid component of the high Reynolds number flow. This composite-mesh

SFLOW solution is then used to provide the steady background flow information needed to

determine a linearized inviscid unsteady solution, also on a composite mesh, using LINFLO.

In this approach, the SFLOW inviscid solution accounts for the effects of steady viscous-

displacement via the imposition of the appropriate blade and wake boundary conditions. The

linearized inviscid flow is determined as a solution of the field equation (3.9), with v. -- 0, and

the blade and wake surface conditions (3.11) and (3.12). Thus, steady viscous displacement

effects are incorporated into the linearized inviscid analysis through the steady potential ¢,

which is the potential for the outer inviscid flow of a strong inviscid/viscid interaction calcu-

lation. Unsteady viscous-displacement effects are not taken into account by this procedure.
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Figure 4.13: Surface Mach-number distributions for inviscid (--) and viscous, at Re = l0 s

( ..... ) and Re = 106 (- - -), flows through the 10th Standard Cascade operating at

M_= = 0.70, fL= = 55 deg.

The foregoing approach has been applied to predict steady and unsteady flows through

the 10th Standard or HSC cascade operating at an inlet Mach number of 0.7 and inlet flow

angle of 55 deg. The blade-surface, Mach number distributions, as determined using SFLOW

on a composite mesh, for pure inviscid flow and for viscous flows are Re = 106 and Re = 10 s

are shown in Figure 4.13. The C'v, 6 and V_ distributions for the_ -_ flows, as determined by

an H-mesh IVI solution, are shown in Figure 4.8. The predict, exit Mach number, exit

flow angle, and lift force for three steady flows are 0.447, 40.2 deg, and 0.348 for Re --* oo;

0.470, 41.5 deg, and 0.321 for Re = 106; and 0.488, 42.2 deg, and 0.303 for Re = 10 s. The

viscous flows at Re = 106 and Re = 10 s separate from the suction surface at z,_p = 0.927 and

z_p = 0.808, respectively. The traihng-edge streamlines for the flow at Re = 10 s are depicted

in Figure 4.14.

Unsteady response predictions, i.e., predictions for the global and local works per cycle

[Ver89a, Ver93], are shown in Figures 4.15-4.17 for blades undergoing single-degree-of-freedom

torsional, with a = (1, 0), and bending, with h_ = (1, 0), vibrations. The torsional vibrations

occur about the blade midchords. The global work per cycle, We, is the work done by the

airstrearn on a given blade over one cycle of its motion. Therefore, a prescribed blade motion

is stable, neutrally stable, or unstable according to whether the (global) work per cycle is

less than, equal to, or greater than zero, respectively. The local work per cycle or pressure-

displacement function, we, describes the distribution of the work per cycle over a blade

surface. For subsonic flows in which the blades are undergoing small-amplitude rigid-body

motions these quantities are determined from the relations

Wc = wc( s)d , (4.29)
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Figure 4.14: Trailing-edge streamlines for 10th Standard Cascade operating at M-co = 0.70,

f_-oo = 55 deg, and Re = 105.

and

wc = --Trlm{PBaR_ . rB + pBR_ . riB} + .... (4.30)

Here RB = h + a × Rr,, Rp is the distance from the moving pitching axis to a point on the

moving blade surface, PB is the steady pressure at a point on the mean blade surface, p6 is

the complex amplitude of the unsteady pressure at the corresponding point on the moving

blade surface, and the superscript • denotes the complex conjugate.

The local work-per-cycle or pressure displacement function distributions for unit frequency

(w = 1) in- (a = 0) and out-of-phase (a = 180 deg) torsional blade motions about midchord

axe shown in Figure 4.15. For the in-phase torsional motion there are small differences between

the inviscid and the viscous solutions, and no clear trend in the behavior of wc with increasing

Reynolds number. The normalized global works per cycle lal-2Wc for the three flows at a = 0

are -0.897, -0.777 and -0.784 for Re = 105, Re = 106 and Re _ oo, respectively. For the

out-of-phase torsional motion the local work per cycle decreases with Reynolds number on

both the blade pressure and suction surfaces over approximately the first thirty (30) percent

of blade chord, indicating that the stability margin for the out-of-phase torsional blade motion

increases with decreasing Reynolds number. Here, lal-2 Wc = - 1.732, - 1.578, and - 1.252

for the flows at Re = 105, Re = 10s and Re ---* oo, respectively.

Similar results for unit frequency, in- and out-of-phase, bending vibrations are shown in

Figure 4.16. For the in-phase bending motion there are changes in the local work per cycle

with Reynolds number on both the blade suction and pressure surfaces in the vicinity of the

leading edge, and along the suction surface, where wc increases with decreasing Reynolds

number over an interval extending from 15% to 60% of blade chord. The local work per cycle

distributions for the two viscous flows at Re = 105 and Re = 106 are almost identical. The

normalized global works per cycle, ]hyl-2Wc, for these flows are -3.488 for Re _ o¢, -3.270

for Re = 10 s and -3.261 for Re = 105. Thus, for the in-phase bending vibration, the stability

margin decreases slightly with decreasing Reynolds number. For the out-of-phase bending
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vibration, viscousdisplacementeffectscausea small increasein wc on the pressure surface

over the first twenty (20) percent of blade chord and a large increase over most of the suction

surface. As a result of the latter, viscous effects, which increase with decreasing Re, are

strongly destabilizing for the out-of-phase bending motion, but this type of blade motion has

a substantial stability margin. The global works per cycle, [hy[-2Wc, for the flows analyzed

in Figure 4.16b are: = -10.14 for Re _ co, -8.812 for Re = l0 s and -8.667 for Re = l0 s.

Global work per cycle, We, predictions for fit ,is at Re = 10 s, Re = l0 s and Re _ co

through the 10th Standard Cascade are shown in Figure 4.17. Here the blades are under-

going pure torsional and pure bending vibrations at unit frequency, and the response pre-

dictions are given over an entire 360 deg range of interblade phase angle. For the inviscid

flows, the interblade phase-angles at which acoustic resonances occur are a-oo = -26.9 deg,

a+oo = 117.1 deg, a+o o = -31.8 and a+¢¢ = 59.8 deg, where the subscripts refer to the far

upstream (-co) and far downstream (+co) regions and the superscripts refer to the direction

of wave propagation. The viscous flows have the same upstream resonant conditions, but,

since the steady exit flows vary with Reynolds number, slightly different downstream condi-

tions. The results in Figure 4.17a indicate that steady viscous effects have a negligible impact

on the torsional stability margins for superresonant blade motions, i.e., the motions ocurring

between the lowest and highest resonant interblade phase angles. Also, viscous effects are sta-

bilizing for the subresonant torsional blade motions. Viscous effects are destabilizing for both

superresonant and subresonant bending vibrations (Figure 4.17b), but such motions tend to

have substantial stability margins.

We must emphasize that the foregoing parametric studies are very limited and much

more detailed studies will have to be conducted in order to understand the effects of viscous

displacement on blade flutter characteristics. Also, these results account, only partially, for

steady viscous displacement effects and neglect unsteady viscous effects. In particular, the

contributions from the right-hand-sides of the linearized surface boundary conditions (2.56)-

(2.58) have not been taken into account. That said, if the analysis described above is found to

provide useful approximations to the effects of viscous displacement on the unsteady pressure

responses of blade rows, then convenient and very efficient viscous unsteady aerodynamic

models could be applied to predict a wide range of blade-row aeroelastic and aeroacoustic

phenomena.
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Figure 4.15: Effect of steady viscous displacement on pressure-displacement function response

for subsonic flow (M-oo = 0.7, f_-oo = 55 deg) through the 10th Standard Cascade undergoing

torsional blade vibrations about midchord at w = 1: (a) in-phase (a = 0 deg) blade motion;

(b) out-of-phase (a = 180 deg) blade motion.
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Figure 4.16: Effect of steady viscous displacement on pressure-displacement function response

for subsonic flow (M_¢¢ = 0.7, __¢0 = 55 deg) through the 10th Standard Cascade undergoing

bending blade vibrations at w = 1: (a) in-phase (a = 0 deg) blade motion; (b) out-of-phase

(a = 180 deg) blade motion.
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5. The Unsteady Viscous Layer Analysis: UNSVIS

The viscous layer analysis, UNSVIS, applies to the unsteady compressible flows in blade

boundary layers and wakes. It was originally developed [DBJ+89, PVK91] to determine the ef-

fects of unsteadiness on turbine blade heat transfer. In this analysis, the equations that govern

the flows in viscous layers are transformed using an unsteady turbulent generalization of the

Levy-Lees transformation. The transformed equations are then solved using a finite difference

technique in which the solution proceeds by marching in time and in the streamwise direction.

Both laminar and turbulent flows can be studied, the latter using algebraic turbulence and

transition models. Laminar solutions for a flat plate have been shown to approach classical

asymptotic results for both high and low-frequency unsteady motions; turbulent flat-plate re-

sults, to be in qualitative agreement with earlier predictions and experimental measurements

[PVK91]. The numerical technique has also been applied to the stator and rotor of a low-

speed turbine stage to determine unsteady effects on surface heating [DBJ+89]. The results

compare reasonably well with measured heat transfer data and indicate that nonlinear effects

have minimal impact on the mean and unsteady components of the flow.

Under the present contract, the UNSVIS analysis has been extended so that the unsteady

viscous effects in the vicinity of leading-edge stagnation points and in blade wakes can be

predicted. The stagnation point analysis also provides the "initial" upstream information

needed to advance or march a numerical viscous-layer calculation downstream along the blade

and wake surfaces. In addition, a wake analysis, used previously in UNSVIS, has been extended

so that the changes or jumps in the inviscid velocity that occur across vortex-sheets unsteady
wakes could be accommodated.

The UNSVIS analysis is described in detail below and demonstrated via application to

two cascade configurations. In particular, this nonlinear unsteady viscous-layer analysis has

been applied to study the viscous-layer responses of an unstaggered flat-plate cascade and a

turbine cascade to external pressure excitations. The flat-plate results indicate that viscous-

layers respond linearly to upstream pressure excitations over a broad range of excitation

amplitudes and temporal frequencies, but the responses to downstream pressure excitations

at high amplitude and/or high temporal frequency have significant nonlinear content. The

coupled LINFLO/UNSVIS analysis has been applied to a turbine cascade subjected to a pres-

sure excitation from upstream to demonstrate the current, weak, inviscid/viscid interaction

solution capability for unsteady flows on a realistic cascade configuration.

5.1 Governing Equations

For flows through blade rows, occurring at high Reynolds number, the viscous region con-

sists of thin boundary layers that lie along the upper and lower surfaces of each blade and

thin wakes which extend downstream from the blade trailing edges, as indicated in Figure 2.3.

The equations that govern such flows have been derived in § 2.3 with respect to moving,

reference, shear-layer surfaces Sin, each of which is contained entirely within a viscous layer.

These surfaces are taken to coincide with the suction and pressure surfaces of the blades and

to lie entirely within the viscous wake. The curvatures of a reference shear layer surface are

assumed to be O(1) and, at this point, we assume that the amplitude, [77.[, of the unsteady
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blademotion and the local time derivative OlOtix are of O(1). Subsequently, we will restrict

our consideration to blades undergoing small (i.e., O(e)) amplitude motions. The exact loca-

tions of the wake shear-layer surfaces (lines) are unknown a priori; however, to within lowest

order, wake boundary conditions can be referred to any arbitrary surface emanating from the

trailing edge and lying within the actual viscous wake [Vel80]. For steady flow calculations,

the reference wake surfaces are taken to be the aft stagnation stream surfaces, as determined

from an inviscid solution.

It is convenient to use forms of the viscous-layer equations that contain the relative fluid

velocity and relative total enthalpy, i.e.,

=V-_ and _r_=D+_?2/2, (5.1)

respectively, as dependent flow variables. Here 7_(_, t) = x(_, t) - :_ is prescribed such that

7_(:_, t) = 7_B(_, t) for _ E B. Thus, the two-dimensional flows in the thin boundary layers

that lie along the upper and lower surfaces of each blade and in the thin wake that extends

downstream from the blade trailing edge are governed approximately by the following system

of field equations, cf. (2.28)-(2.30):

x + (_v_)+ (_0_)= _,(x,t), (5.2)

_[ ot j +(O.v)r2. +-_--(Re) -_ _,-g_U-ev.v_=_--'=_2(x,t), (5.a)
and

r °

= &(x,t).
(5.4)

Here, T and n measure distances along and normal to the moving shear layer surface, and

U_ and _r,_ are the fluid velocity components in the positive _'- and n-directions, respectively,

relative to the moving shear-layer surface. A distinction should be made between the inde-

pendent variables that describe the flows in the upper and lower surface boundary layers and

in the wakes, e.g., by attaching subscripts to _" and n. However, as a convenience, we are

neglecting to make this distinction explicitly.

The source terms on the right-hand-sides of (5.2)-(5.4) are given by

_1= -vx. (_), D_= -_ --_-._-+ ('_. vx)& ,
and (5.5)

_3= -_ [D(_,_, + _/2)+ (_. vx)D_] ,

where "_ = 07elOt]_. If the blade motions are of small-amplitude, i.e., on the order of the

displacement thickness, _, then to within the order of the viscous-layer approximation, the

right-hand sides of (5.2)-(5.4) can be regarded as negligible.

91



The symbols _, 0_, 0,_, /5, /_n, _ and _ in (5.2)-(5.4) refer to ensemble (or Reynolds)

' _ and h_ are the values associated withaveraged values of the fluid dynamic variables; v_, v n

random turbulent fluctuations; and the overbar indicates a turbulent correlation, which must

be determined empirically. As a consequence of the high Re and surface curvature assump-

tions, the pressure in the thin viscous layers is a function only of r and t, and _rn _ T+ 0_/2.

Also, the pressure and the flow properties at the edge of each viscous layer are equal to the in-

viscid values of these variables at the reference shear layer surface. If the interactions between

the flows in the viscous layer and the external inviscid stream are weak, then the pressure

within a viscous layer and the flow properties at its edge are determined by an inviscid solution

for these flow variables. The latter is determined subject to surface conditions that account

for the effects of viscous displacement.

In addition to the foregoing field equations, the equation of state for a perfect gas, i.e.,

(2.11), empirical laws relating the molecular viscosity and the thermal conductivity to the

temperature, e.g., (2.10), and equations relating the turbulent correlations v,.vn' ' = uru,_'' and
I I l I

hTV,_ = haul, to the ensemble-averaged flow quantities, are also required. The turbulent
I Icorrelations v,_v n' and hTV,_ are related to gradients of the mean-flow variables, using Prandtl's

mixing-length hypothesis, cf., (2.32).

Initial and Boundary Conditions

The foregoing system of field equations, (5.2)-(5.4) is parabolic in time and in the stream-

wise or r-direction. Therefore, the streamwise component of the relative velocity, 0,, and the

relative total enthalpy, HR, must be known for all time at some upstream streamwise loca-

tion, and these variables, along with the normal velocity, 0n, must be known throughout the

solution domain at some initial time. Also, conditions on the fluid properties at the edge(s)

of the viscous layer, i.e.,

Or--_O.,_(r,t) and [IR--_f-IR,_(T,t) for n--+4-c_, (5.6)

where the limits +_ and -_ refer to the edges of the upper (+) and lower (-) surface

boundary layers and the upper and lower edges of a wake, a no-slip condition and either a

prescribed temperature or heat flux condition at a solid blade surface, i.e.,

_ .pr)_ O for . = 0,0=0 and or 0.

and a condition on the fluid velocity normal to a reference wake streamline, i.e.,

lJ.n=0 for n=0, r>rTE, (5.8)

must be enforced. Here the subscripts w and e denote the values of the fluid properties at a

solid wall and at the edge of the viscous layer, respectively, and the subscript TE refers to the

airfoil trailing-edge point. The relative fluid velocity, 0_,,, and relative total enthalpy,/tnx, at

the edges of the viscous layers are determined by the inviscid solution along the blade surfaces
and the reference wake surfaces.
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Turbulenceand Transition Models

The models used here and in [PVK91] to simulate the effects of turbulence and tran-

sition on the flow in the viscous layer are the algebraic eddy-viscosity model proposed by

Cebeci and Smith [CS74], the transition length correlation model proposed by Dhawan and

Narashima [DN58], and the wake turbulence model proposed by Chang et al [CBCW86].

Also, since flows in turbomachines are known to be characterized by high freestream turbu-

lence levels, a simple modification, developed by Yuhas [Yuh81], has been incorporated into

the turbulence model to account for the effects of freestream turbulence on the viscous layer.

These models are easy to implement, and are known to be reasonably accurate for steady

flows with mild pressure gradients; however, they have only been developed for steady flows.

We have modified them here for application to unsteady flows simply by replacing steady flow

variables by their time-dependent counterparts. Thus, the ability of the models given below

to accurately represent turbulence and transition in unsteady flows is not known; therefore,

any resulting unsteady flow predictions must be interpreted with some caution.

The Cebeci-Smith algebraic model divides a solid-surface boundary layer into inner and

outer regions, where _ = _i and _ = _o, respectively. The inner model is applied from the wall

out to the point at which _i = _o; the outer model, from this point to the edge of the boundary

layer. For unsteady flows over moving blades, we set the eddy viscosity in the inner region

according to

0_ (5.9)
= _r'_(0"41n)2[1 - exp(-n/fi'r)]2ae On '

where

26DI' [--,- o&
1

3

,o t-5/- + "'° or ) tf _-_--.7 '
and _Tr is a longitudinal intermittency factor which models transitional flow.

The eddy viscosity in the outer region is given by

- -fo_2o= gr, RejU:,o_ (1 - G/&,o)d_,

(5.1o)

(5.11)

where

and

_7 = 1.55Xo(1 + _)-i , _ = 0.5511 - exp(-.243Z11/2 -.29821)],

f 1_ee/425 - 1 for l_.e0 > 425
21 =..

0 for Re0<425,

_&,orte oo& &
_ _(i )dn.

(5.12)

93



The parameter_ hasbeendefinedto accountfor low momentumthicknessReynoldsnumber.
The Clauserconstant, X0, is usually set equal to 0.0168, but following Yuhas [Yuh81] we set

m t

X0 = 0.016811.0 + 18.4(v'. v')2_oo + 99.6(v-r:_- v')_oo] , (5.13)

where (v'--r7_)_¢o is the mean-square of the inflow freestream turbulence velocity, to account

for the effects of freestream turbulence on the development of the turbulent boundary layer.

Blade boundary layers can contain transitional regions of significant extent. Therefore,

a transition model is needed to predict such flows. Several models have been proposed for

steady transitional flows, based upon correlations with experimental data. One of these is the

Dhawan-Narashima forced transition model [DN58] in which the intermittency factor in the

transition region is given by

= _ , rl < r < 7"2 , (5.14)
r2--rl

Here rl and r2 are the streamwise locations at the beginning and end of the transition re-

gion, respectively. These locations can be specified as functions of time to model unsteady

flows. The intermittency factor is set equal to 0 and 1 in laminar and fully turbulent regions,

respectively. Therefore if r2 is set equal to rl the transition is regarded as instantaneous.

The eddy viscosity in the wake is based on the model developed by Chang et al [CBCW86].

At each streamwise station in the wake equation (5.11) is evaluated twice: once for -oo <

n < nmi_, where n,m_ is the location at which the streamwise velocity reaches a minimum

value, and once for n,,m, _< n < oo. The maximum of these two values, e,,_, is then used to

set the eddy viscosity, _w, i.e., we set,

_W = _max -- [_max -- _raax,TE] exp [- T-_ rTE ]
20_TE J

(5.15)

In this equation r - VrE is the distance measured along the reference wake surface from

the trailing edge point, and _TE is the sum of the upper and lower surface boundary-layer

thicknesses at the trailing edge. The boundary-layer thickness is defined to be the normal

distance from a blade surface to the point at which V_/V_,_ = 0.995.

5.2 Transformed Equations

For laminar flows, the Levy-Lees transformation [see Blottner [BloT0]] provides indepen-

dent variables that effectively capture the growth of the viscous layer with increasing stream-

wise distance. In addition, the transformed equations reduce to similarity equations at an

airfoil leading edge. These features facilitate the determination of a numerical solution. Thus,

an extension of the Levy-Lees transformation, in which the laminar edge viscosity is replaced

by an effective turbulent viscosity [VWV82], is applied herein to accommodate unsteady tur-

bulent flows. Note that the dependent variables defined below differ from those used in § 4

for steady flows. Also, in the present implementation, we do not restrict our consideration to

adiabatic flows at unit Prandtl number.
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We definenew independentvariables_ and r/according to

][ &,,v_ [_dn (5.16)_= Qdr and rl- v/_ .to '

where Q = fi, Ur,e/5,[1 + (_//5)e] = fiU,,,#efr,, and g and/2 are the turbulent eddy and molecular

viscosities in the steady background flow. In [PVK91] the temporal mean values of the fluid

properties, _,, 0r,,, and p,, at the edge of the viscous layer were used to define Q. However,

in the present discussion we regard the unsteady inviscid flow as a small perturbation of a

nonlinear mean flow. Therefore, we can replace the temporal mean values of these variables

by their values in the steady background flow to avoid introducing additional nomenclature.

The coordinate _ in (5.16) is a function of r alone; the coordinate r/, by contrast, is a function

of r, n, and t.

We also introduce the new dependent variables

.T 0r 13 = 2( (0_,¢ 0r/ _ Re.-) /1R (5.17)- &,°' _ 0-7+ 0_ + _/-_u_ and _ - _,o,

where Q = _¢1_)_,¢_,[1 +(_/_)¢1. After substituting Eqs. (5.16) and (5.17)into the viscous-layer

field equations and performing some algebra, we find that

_O_" _.T + Ol2 2_S_ (_, r/, t) (5.18)

and

_&,o_ +2_=-oT+ _+_(_,0_+ 2-
(5.19)

2_ 0G Q 0G 120G + ,_(__ - _) + o_(,_.r_ + a=a:_ - G)
2--

(5.2o)
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where the following parameters have been introduced:

O_ 1 --- 1 "3I- r,e , _2 ---- _12 eTe--lo_l ,

CI_3 "- _I ,e , C_ 4 = 2 Q( o10.,o)-1 °0-,.
'

, = '

(5.21)

l = _j(l + S/n) and l" _ jj[l +

joD:[1+ ' - jfi,[l+ ( lj) ]er

Specialattention must be exercisedin applying the foregoing transformation to unsteady

wakes. In the present analysisallquantitieson the upper (i.e.,n > 0) and lower (n < 0) sides

of a wake are referencedto theirrespectiveedge conditions,i.e.,we set _" = f_I_/U+_for n > 0

and _" = 0,/0"_,,for n < 0. In general, the inviscidstreamwise relativevelocity,0_,_,and

relativetotalenthalpy, HR.e, willbe discontinuous across unsteady wakes. As a consequence,

the dependent variables_r and G axe discontinuous across reference(n = 0) wake streamlines.

These discontinuitiesmust be taken intoaccount in develol;ng a numerical solutionprocedure,

to ensure that the physical variables(0_, On and HR) a_ continuous across viscous wakes.

Also, the upper- and lower-surfacevalues of the independent variable _ willgenerally differ

at a blade trailingedge. In the present effort,the upper-surface _-variableisused to continue

the viscous calculationinto the wake, i.e.,we set

;_w = _T+E+ Q+dr, r > r,, (5.22)
"rTE

However, two different r/-coordinates

r/_v- _ww dn, r>rrE, n<0, (5.23)

are used for the wake calculation. Thus, at the trailing edge, the lower-surface boundary-layer

solution must be interpolated onto the wake r/-mesh before continuing the viscous calculation
into the wake.

Boundary and Initial Conditions on ;F and G

In addition to satisfying the field equations (5.18)--(5.20), the dependent variables _" and

must be prescribed functions of _ and 7/at some initial time, and prescribed functions of r/

and t at initial or upstream streamwise locations on the upper and lower surfaces of each blade.

Also, in terms of the transformed variables, the following conditions must be imposed at the

edge(s) of the viscous layer, on the blade surface, and along the reference wake streamline,

cf. (5.6), (5.7) and (5.8):

_'--*1 and G---+ 1 for Ir/I--*c¢, (5.24)
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and

= o, v = o, and G = a,off, t) = f'IR,,,,I[-IR,,or

-(2_Re)'_kPrQ_(_,'- - t) for r1 = 0, _ < _TE ,
=

(5.25)

V=0 for r/=0, (>_zs, (5.26)

respectively.

For the calculations reported herein, the condition at the initial time is the viscous-layer

solution in the absence of unsteady excitation, i.e., the solution for the steady background

flow. The calculated transients resulting from this approximation have been found to die

out with increasing time. The upstream profiles, required at each time step of the unsteady

viscous-layer calculation, are obtained from a similarity analysis of the flow in the stagnation

region, as described below.

5.3 Solution Procedure

Stagnation Region

To determine solutions for the flows in the viscous layers, we first seek a local, similarity

solution for the flow in a leading-edge stagnation region. This solution can then be used

to set the instantaneous upstream profiles, 9v(_:, r/, t) and G(_, r/, t), that are required to

initiate a space-marching, numerical, viscous-layer calculation. The overall strategy is to

develop a similarity solution for a simple flow configuration and then, to adapt this result for

application to the unsteady cascade problem. The present analysis for unsteady, compressible

flow is modeled after the incompressible analyses developed independently by Rott [Rot56] and

Glauert [Gla56]. Their analyses provided an exact solution to the Navier-Stokes equations for

incompressible flow. An exact result can not be determined for compressible flow, however,

because it is necessary to neglect the dissipation term in the energy equation to obtain a

similarity solution. Fortunately, frictional heat dissipation in the stagnation region is of limited

importance for a wide range of practical flows.

We consider two-dimensional, compressible flow around a flat plate, which is oriented

normal to the stream direction and undergoes a harmonic motion at velocity iwl_ exp(iwt)

in its own plane. As a mathematical convenience, we use complex-variable representations

for the unsteady flow properties, but it is to be understood that the real parts of the various

complex parameters represent the actual physical variables. The flow in the viscous layer

will be determined in terms of space-fixed Cartesian coordinates, rs and ns. The resulting

stagnation-region solution can then be expressed in terms of plate-fixed coordinates as a

prerequisite to its implementation into a complete unsteady viscous-layer calculation. The

rs and ns axes are directed along and normal to the plate, respectively, and the coordinate

origin lies at the point at which the dividing inviscid streamline impinges on the plate. The

fluid velocity components in the rs- and ns-directions are V_s and V,,s, respectively.

The inviscid flow is steady in the space-fixed frame, with velocity and pressure gradient at

the edge of the viscous layer (i.e., at ns = 0 in the inviscid region) given by

Q, = 9,.s,,e_. s = crse,, s , (5.27)
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and
oP o_s,_vP = =--e_s= -Lg.s,. -----e.s = -Lc _rse.s. (5.28)
Ors Ors

The constant c in these equations is determined from the behavior of the inviscid solution in

the vicinity of the mean stagnation-point location (rs = 0). The total enthalpy at the edge of

the viscous layer is constant, i.e., HT,. = T. + V_,./2 = H-oo.

The flow in the viscous layer is described by the field equations (5.2)-(5.4) or, in this

case, (2.28)-(2.30), the edge conditions (2.36) and the surface conditions (2.34). The surface

velocity components are

IP,s (rs, as, t) = iwP_ exp(iwt) and V, s = 0 for ns = 0. (5.29)

We assume that the flow in the stagnation region is laminar and that the heat generated by vis-

cous dissipation is negligible, i.e., _021P, s/On_ _ O. The streamwise velocity and temperature

can be expressed in the forms

V,s(rs,r/,t) = crsf'(r/) +iwILg(_)exp(iwt) and 2"(rs, r/,t) = L(rs, t)_(r/) , (5.30)

where crsf'(r/) and iwI_g(rl)exp(iwt) are the steady and unsteady components of the fluid

velocity in the viscous layer and

C ns

_l = fidns . (5.31)

Note that OP/Ons _ 0 and V,_s <<::_',s; therefore, in the viscous layer, _,/_ _ _/:2'__ _ and

H__ + 9_/2.
After substituting the foregoing results into the field equations that govern the flow in the

viscous layer and performing the necessary algebra, we obtain an expression for the normal

component of the fluid velocity, 17,,s, and the following set of ordinary differential equations

for f, g and 0.

f,2 _ f f, _ (l f")' - _ = 0, (5.32)

iw

( c + f')g - f g' - (/g') '= O, (5.33)

and

( l -_,
j + fO = 0, (5.34)

where l = _/]/(_d],). The conditions on f, g and _ at the plate surface (77 = 0) and at the

edge of the viscous layer (r/_ c_) are

__] -_

f(0) = f'(0) = 0, g(0) = 1 and 0 (0) = 0 or 0(0) = T_/To ; (5.35)

and

f'(_) = 1 , g(c_)= 0 and _(c¢)= 1. (5.36)

Note that for steady (g = 0), incompressible (0 - 1) flow, we recover the classical stagnation-

region problem studied by Hiemen.z. Also, equation (5.34) is identical in form to the energy
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equation that describessteady, compressible,stagnation-point flow [Whi74]. Finally, the
present analysiscan be readily extendedto considermore general unsteady plate motions,

e.g., N

9, s = crsf'(r/) + Y_ iw, rr,,g,(rl)exp(iw, t). (5.37)
r*-----1

In this case solutions for N uncoupled equations for the g,, n = 1,2, 3,..., N, are required.

The set of nonlinear ordinary differential equations for f, 0 and 9 can be solved using an

implicit finite-difference technique similar to that described in the next sub-section and used

herein to obtain solutions to the full unsteady viscous equations. The functions f and _ must

be determined simultaneously, but they are independent of 9, which can be determined once

f is known.

To provide the upstream profiles required for a complete viscous-layer calculation it is

convenient to express the stagnation-region solution in terms of body- or plate-fixed coordi-

nates. Thus, we consider plate-fixed Cartesian coordinates (T, n), where the r- and n-axes are

parallel to the spaced-fixed rs- and ns-axes, respectively, and the mean position of the r, n

coordinate origin coincides with the origin of the spaced-fixed rs, as-frame. The streamwise

positions and velocities of a fluid particle in the two coordinate frames are related by

"rs = r + R_ exp(iwt) (5.38)

and

fd, s = (Jr + iw tL exp(iwt).

After combining (5.38) and (5.39), we find that

(Jr = crf'(r]) + b)_(rl)exp(iwt) ,

(5.39)

(5.40)

where

b = c/L(1 - iw/c) and (1 - iw/c)A(_) = f'(rl) + (iw/c)[g(rl) - 1]. (5.41)

At the plate surface U, = 0, and at the edge of the viscous layer

(]r(r 1 _ oo) = (Jrx = cr + bexp(iwt) . (5.42)

The relative total enthalpy HR = Lr,2/2 + T is given by

[-IR = (crf')2/2 + cbrf'Aexp(iwt) + b2X 2 exp(2iwt)/2 + T_O . (5.43)

The locations, i.e., r = +[rx[, at which the stagnation-region solution can be applied as an

initial condition for an unsteady viscous-layer calculation are determined by two criteria. First,

the stagnation-point motion must be contained within the interval [-[rxl, Irll] and second,

to avoid stability problems in the subsequent boundary-layer calculation, those points at

which flow reversals, i.e., (O(Jr/On)_ < 0, occur must also be contained within this interval.

Reverse flow is associated with the lag in the response of the low-momentum fluid near the

wall to changes in the velocity at the edge of the viscous layer. The extent of the interval

over which the stagnation point moves, i.e., [--IrM[, IrM[], is determined from the inviscid

velocity distribution (5.42) and is given by [-c-l[b[,clbl]. The extent of the reverse-flow
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interval, i.e., [-I_RI, I_RI],is determinedby the maximum and minimum valuesof r for which

(00,/&/)_ = 0. We find that

I nl < c-llbl
1 -t- iwc-lg'(O)/f"(O)

1 - iw/c
(5.44)

Thus, tr_l _> max(lrMI, [rnl). For our application to unsteady cascade flows, we have found

that setting I xl = 2c-llbl leads to reasonable results in the stagnation region and allows us

to continue the v_scous-layer calculation along the blades and their wakes.

In applying the foregoing stagnation-region analysis to unsteady cascade flows, we use the

inviscid velocity distribution along a moving blade surface, i.e.,

_r, . _" = [V_ + v, exp(iwt) + . .. ] . 7" = [V_ + (u, + R)exp(iwt) + .. . ] . 7", (5.45)

where V,(T) and v_ = u¢ + R are the nonlinear steady velocity and the complex amplitude

of the linearized unsteady velocity, respectively, to determine the parameters c and b in (5.40)

and (5.43). In particular, these parameters are determined by matching the analytical velocity

profile (5.40) to the calculated inviscid velocities at -I-It11. Thus, with w specified as an input

quantity, the functions f _ and g determined by an implicit finite-difference procedure and

the parameters b and c determined by the inviscid solution in the vicinity of the stagnation

point, the streamwise velocity and total enthalpy profiles needed to initiate the unsteady

viscous-layer calculation can be specified.

Viscous-Layer Numerical Solution Procedure

The t ransformed viscous-layer equations (5.18)-(5.20) are solved by apply i ng finite- difference

approximations for the various partial derivatives that appear, to convert tMs system of dif-

ferential equations into a system of algebraic equations [VBHA91]. Streamwise and tempo-

ral derivatives are approximated by first-order accurate backward difference expressions and

normal derivatives, by second-order accurate central difference expressions The streamwise

momentum and energy equations contain nonlinear terms, which must be li -ized to ob

solutions a 'ach point in space and time. This is accomplished by using z: wton itera 1

procedure .._ which the initial guess for the profiles comes from the solutio_, at the pre, s

streamwise (T) station or time step. The equations are solved by using a local iteratio_J to

remove the linearization error, and by repeating this iteration until the values of tb ¢ "_,ow

variables converge to within a specified tolerance level. The finite-difference approxi_ n

results in a block tridiagonal system of linear algebraic equations at each step, which is d

using the Thomas block inversion algorithm.

The analyses for surface boundary layers and wakes are identical, except for the implemen-

tation of different boundary conditions. In addition to replacing the surface no-slip condition

with a zero normal velocity condition at the reference wake position, the possibility of jumps

in the relative tangential velocity and the relative total enthalpy across a viscous wake must be

taken into account. As discussed previously, the transformed governing equations are written

in terms of two different sets of variables, each applying on one side of the wake, and scaled to

the edge conditions for that side. For example, on the upper side of the wake, _+ = br,/0+_

and G + = HR/_r+,¢; on the lower side, _- = b',/0<,_ and _- = /-]R/H_,_. The discretized
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equations on either side of the reference wake streamline are written in terms of that side's

variables. However, at the reference wake line, (r/= 0), variables from both sides of the wake

are used in the momentum and energy equations, due to the use of central-difference approx-

imations for the q-derivatives. For consistency, the equations must be written in terms of a

single set of variables. This is accomplished by writing the equations in terms of the upper

surface quantities. Thus, whenever a lower surface variable appears in the equations at ,7 = 0,

it is rewritten in terms of the upper surface edge conditions. For example, the variable 9v- is

written in terms of upper surface variables as _'--(0_,e/0+_) = 0;-/0+,.

The finite-difference approximation is implemented on a grid that is nonuniform in both

the _- and r/- directions, but uniform in time. The grid distribution in the streamwise direction

is chosen so as to cluster points near the blade leading and trailing edges, with each mesh

interval being set equal to a constant times the previous one, according to the relation

A_t+l=K_A_t, t=l, 2, ... ,L (5.46)

where 1 is the streamwise mesh point index (l = 1 at the blade leading edge and increases with

distance downstream), Ke > 1 from the leading edge of the blade to midchord, and Ke < 1

from midchord to the trailing edge. The grid is then stretched (i.e., Ke > 1) aft of the trailing

edge, and generally extends between one and two blade chords downstream of the trailing

edge.

A stretched grid is also employed in the normal direction, with clustering near the blade

surface to capture the large velocity gradients that occur, and to ensure that, for turbulent

flow, there are enough points in the near-wall region to adequately resolve the laminar sublayer.

Geometric stretching is again employed, with

Ar/,+x=K,Ar/=, n=l, 2, ... ,N (5.47)

where n is a normal mesh point index (n = 1 at the blade surface or reference wake streamline

and increases with increasing distance into the flow). Since the resolution requirements are

a function of the solution, the normal grid stretching, Kn, and the spacing at the wall, Arh,

must be determined for each case. For turbulent flow, this is accomplished by monitoring the

value of Y+ at the first mesh point off the wall (i.e., Y+=2), where Y+ is a Reynolds number

based on the friction velocity, (_/pw) 1/2 and the normal distance from the blade surface. For

accuracy, Y+ should be close to one, which can be achieved by adjusting Az/1. The stretching

parameter K, is then adjusted to place the outer edge of the mesh, r/= r/N, far enough from

the surface to allow the edge conditions to be approached asymptotically. The number of

points used in the normal direction is chosen to allow the flow over the entire viscous layer to

be resolved accurately at all streamwise stations -- generally, between 50 and 100 points are

sufficient.

The constant value of the time-step used for the temporal discretization is chosen based

on the frequency of the imposed unsteady excitation and the number of time-steps prescribed

for each period of oscillation, generally between 20 and 50. More complete details on the

finite-difference analysis, used herein, for viscous-layer flows are given in [VBHA91].
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5.4 Numerical Results: Unsteady Flows Driven by Acoustic Disturbances

Response predictions will be given below for two-dimensional blade rows operating at

subsonic Mach numbers to demonstrate the present capabilities of the unsteady viscous-layer

analysis, UNSVIS. In particular, this analysis will be applied to predict the viscous-layer

responses of flat-plate and turbine cascades to acoustic excitations. For these applications,

the blades are assumed to be stationary in the cascade frame of reference. Hence, 7?. = 0,
0 = and = &.

Unstaggeved Flat-Plate Cascade

As a benchmark case to demonstrate the UNSVIS analysis, we consider unsteady flows

through an unstaggered flat-plate cascade. Here, the uniform inlet velocity V-o¢ is aligned

with the mean positions of the blade chord lines. Hence, the inviscid steady background flow

is uniform with velocity, pressure and total enthalpy given by V = ee, P = (_/M2) -1, and

HT = 1/2 + (-y -- 1)-IM -2, respectively. The unsteadiness is excited by incident pressure

disturbances, that carry energy toward the blade row from either far upstream (-¢x_) or far

downstream (+cx_). The acoustic excitations travel in the axial (or chordwise) direction, i.e.,

_, = t% = a/G = 0, and are therefore, described by a velocity potential of the form [cf. (3.20)

and (3.21)].

¢(x, t) = -Re{[i(_;_._oo + w)]-'pI,:,:_ exp[i(a_:,:_ + wt)]} , (5.48)

where w, _;_ = a, and pI,_:¢¢ are the temporal frequency, axial wave number and complex

amplitude of the unsteady pressure excitation, respectively. The axial wave number is related

to the temporal frequency by [of. (3.24)]

=FwM

_'_:_ - 1 4- M " (5.49)

Note that for I  ,+ool > because a downstream acoustic excitation travels upstream

against the freestream flow direction, whereas an excitation from upstream travels in the
direction of the freestream flow.

The flat-plate cascade produces no response to the pressure excitation described by (5.48);

therefore, this equation describes the first-harmonic component of the inviscid unsteady flow.

The time-dependent velocity, V, pressure, P, and total enthalpy, HT, in this flow are given

by

= V + _, + ... = [1 4- MRe{pL_ccexp[i(t_¢,;oo_ + wt)l]}e_ + ...

p
and

&

= P + i5+ ... = (7M2) -' + Re{pm:_ exp[i(t;_a:_ _ +wt)]} + ... ,

= HT q- hr q-... = HT + (1 4- M)Re{pI,_exp[i(x_,_ + wt)]} + ... ,

(5.50)

where _, = We, 15= -D¢/Dt, and hT = -D¢/Dt + W¢-e_ are the first-harmonic components

of the unsteady velocity, pressure and total enthalpy, respectively. The real and imaginary

components of the complex amplitude of the first-harmonic unsteady pressure acting along

each blade and wake surface (0 G x = _ G 2) for a flat-plate cascade operating at M = 0.5
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Figure 5.1: Unsteady pressure distributions along a blade and its wake for an unstaggered

flat-plate cascade (f_ = O = 0 deg, M-oo = 0.5 and G = 1) subjected to a unit-amplitude,

]pl,-oo I = 1, pressure excitation from upstream with _,7,-_o = aG -1 = O.

and subjected to upstream acoustic disturbances with px,-oo = (1, 0) and w = 1, 2, 5 and 10

are shown in Figure 5.1; similar results for downstream acoustic disturbances, are shown in

Figure 5.2.

The inviscid results (5.50) have been used to provide the pressure and edge-condition

information for a series of unsteady viscous-layer calculations. The latter will allow us to

examine the effects of the amplitude, temporal frequency and axial wave number of a pressure

excitation on the behavior of various viscous-layer response quantities; in particular, the dis-

placement thickness, 5(x, t), surface shear stress _r_ = (Re)-I(_OV,/0n)_, and wake centerline
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Figure 5.2: Unsteady pressure distributions along a blade and its wake for an unstaggered

flat-plate cascade (with f_ = O = 0 deg, M-oo = 0.5 and G = 1) subjected to a unit-amplitude,

[pI,+oo[ = 1, pressure excitation from downstream with _n,+oo = aG -1 = O.

velocity 1)_. We can decompose each of these quantities into Fourier series; e.g.,

where

fo [l_(x,t) = - _Q,/(_,V_,e)ldn = y_ _n(x)exp(inwt) , (5.51)

CO [27r/_
_,(x) = _jo _(x,t)exp(-inwt)dt, n = 0,=t=1,:t=2, ... , (5.52)

to examine the behavior of their Fourier components. In this way we can gain insight into

the relative importance of nonlinear effects on the flow in a viscous layer and, therefore, into

104



whetheror not a linearizedviscousanalysiscouldbeappliedto provideefficientandmeaningful
unsteadyviscous-layersolutions. Note that the lower limit on the integral in (5.51)must be
changedto -oo, if the wakedisplacementthicknessis to bedetermined.

A seriesof resultsweredeterminedfor acousticexcitationstravelling towardsthe bladerow
from upstreamor downstream. In eachcasethe steadyMach number is 0.5 and the Reynolds
number, Re, is 106.The excitations occur at the frequencies,w, listed above, and at complex

amplitudes, pI,+oo, of (0.1,0), (0.3,0), (0.5,0) and (0.75,0). The pressure, P = (7M2) -1, in the

steady background flow is 2.857. The viscous-layer numerical calculations were initiated at

(x, t) = (0.01,0). Laminar similarity solutions were used for 0 < x < 0.1 and imposed as the
initial conditions in x and t for the numerical calculations. The viscous flows were assumed

to undergo an instantaneous transition from laminar to turbulent flow at x = 0.02.

The boundary layer calculations were carried out using 51 uniformly stretched (with K, =

1.10) points across each boundary layer, with AT/---- 0.0175 at the blade surface. In the wake

the grid consisted of 101 points across the viscous layer stretched in the same manner as for the

surface boundary layers. A total of 25 uniform time steps were used per temporal period of the

unsteady excitation. Two different axial or streamwise mesh distributions were used -- one

for the excitations coming from upstream; the other, for excitations coming from downstream.

In each case the streamwise distribution was selected so that there were at least 20 axial mesh

lines per wave length, 2r/_e,:_oo, for the highest frequency considered, i.e., w = 10.

For disturbances originating upstream, a variably spaced streamwise mesh was used with

points clustered near the blade leading and trailing edges. The minimum streamwise spacing

on the blade was Ax _ 0.0177 at the blade edges, and the maximum was Ax _ 0.0611

near midchord. The stretching used in the wake was identical to that used for the forward

portion of the blade, with Ax _ 0.0177 in the first wake interval and monotonically increasing
to Ax _ 0.11 at the downstream boundary of the computational domain (x = 2.0). The

resulting grid had 29 points on the blade surface and 20 points along the wake. For the

disturbances originating downstream a nearly uniform grid was employed, with Ax _ 0.025

on the blade and 0.025 < Ax < 0.030 along the wake, where the grid was mildly stretched

in the flow direction to distribute the points throughout the interval x E (1,2]. The resulting

grid had 40 points along the blade and 36 points along the wake.

First, we consider the solution for a pressure disturbance from upstream with pl,-oo --

(0.5, 0), w = 5 and a = 0 deg. The temporal means, 60, _'_,0 and V_,0, and the magnitudes, ]_n[,

]r_,n[ and [V_,_[, of the first two harmonics (n = 1,2) of the displacement thickness, _, surface

she_r stress, _r_, and wake centerline velocity, V_, as determined by the unsteady viscous-layer

solution, are presented in Figure 5.3 along with the corresponding steady ([px,-oo[ - 0) results,

which were also determined using the UNSVIS code. The steady displacement thickness and

surface shear stress are given by

$(x) - [1 - ZV_/(p,V.,o)ldn (5.53)

and _ = (Re)-_(fiOV_./On)_, where fi and V_ are the density and streamwise velocity, respec-

tively, in the steady background flow. The differences between the steady and the temporal

mean values of the unsteady viscous quantities, and the amplitudes of the higher (n >_ 2) har-

monic unsteady quantities provide a measure of the relative importance of nonlinear effects

on the unsteady flow in the viscous layer.
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Figure 5.3: Temporal mean and Fourier magnitudes of the displacement thickness, _, wall

shear stress, _r_, and wake centerline velocity, I)£, for turbulent flow through an unstaggered

flat-plate cascade (gt = O = 0deg, G = 1, M = 0.5 and Re = 106) subjected to an incident

pressure disturbance from upstream with pl,-oo = (0.5, 0), w = 5 and a = 0 deg.

The results in Figure 5.3 indicate that nonlinear effects are relatively small for the un-

steady flow driven by the prescribed upstream pressure excitation. However, similar results

in Figure 5.4 for an acoustic excitation from downstream, with pI,+oo = (0.5, 0), w = 5 and

a = 0, indicate the nonlinear content in the viscous-layer displacement-thickness response

to be quite significant. An unexpected result of the latter calculation is the increase in the

predicted time-mean of the unsteady displacement thickness with increasing distance along

the wake (i.e., as x _ 2.0). In an attempt to determine whether this effect is physical or nu-

merical in origin, an unsteady viscous solution was calculated using a grid with twice as many

uniformly distributed streamwise points. It was found that, although slightly less pronounced,

106



10.0
60

--- I 11

.... Steady: 6 J _

Bs_ "S

__--___. ........ -,......... ,........ - ........ - ......... ,......... ,-

Rel/2_r_o

5.0
Tw,O , Y_,0

--- IY .,I
......
.... Steady: _, V_

2.5 _ ....

----._____

oo!"
• ! I0.0 0:5 1.{

X

! .... I- I

1.5 2.0

1.0

P.0

Figure 5.4: Temporal mean and Fourier magnitudes of the displacement thickness, _, wall

shear stress, r,_, and wake centerline velocity, V_, for turbulent flow through an unstaggered

flat-plate cascade (f_ = O = 0deg, G = 1, M = 0.5 and Re = 106) subjected to an incident

pressure disturbance from downstream with pI,+oo = (0.5, 0), w = 5 and a = 0 deg.

a similar behavior was also present in the fine grid calculation. This unexpected behavior of

the viscous layer solution for an upstream traveling acoustic disturbance will require some

further study to resolve.

The behaviors of the zeroth- and first-harmonic components of the viscous parameters

are illustrated in Figures 5.5 and 5.6 for upstream acoustic excitations with pI,-oo = (0.5, 0),

= 0, and w = 1, 2, 5 and 10. Corresponding results for downstream acoustic excitations

are given in Figures 5.7 and 5.8. For the upstream excitations, the time-mean values and the

magnitudes of the first-harmonic viscous-layer response quantities (Figure 5.5) are not affected

significantly by changes in excitation frequency. In addition, the first-harmonic displacement
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Figure 5.5: Fourier amplitudes of _, :_ and V_: for an unstaggered flat-plate cascade (f_ =

O = 0deg, G = 1, M = 0.5 and Re = l0 s) subjected to pressure excitations from upstream

with pI,-oo = (0.5, 0) and a = 0 deg.

thickness is essentially out-of-phase with the first-order streamwise velocity fluctuation, _3_,,,

at the edge of the viscous layer (Figure 5.6), and the first-harmonic wall shear stress and wake

centerline velocity are essentially in phase with this edge-velocity fluctuation.

The corresponding results in Figures 5.7 and 5.8 for acoustic excitations from downstream

show that frequency has a much greater impact on the temporal mean and the first-harmonic

amplitudes of the viscous-layer response quantities. In particular, the time-mean displacement

thicknesses vary significantly with w, indicating that nonlinear effects become increasingly

important with increasing frequency. As shown in Figure 5.8, the first-harmonic displacement

thickness lags the fluctuating component of the streamwise velocity at the edge of the viscous-

layer by a phase angle ranging from approximately -140 to -180 deg; the first-harmonic
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Figure 5.6: Relative phase angles of first-harmonic displacement thickness, wall shear stress,

and wake centerline velocity for an unstaggered flat-plate cascade (f_ = O = 0deg, G = 1,

M = 0.5 and Re = 106) subjected to pressure excitations from upstream with Px,-_ = (0.5, 0)

and a = 0 deg.

wall shear stress leads this fluctuating velocity by an angle ranging from 0 to 40 deg; and

the minimum wake-streamwise velocity is approximately in-phase with the wake-edge velocity

fluctuation.

As a final illustration, we consider the response of the viscous layer to acoustic excitations

at different amplitudes. Numerical results are presented in Figures 5.9 and 5.10 for excitations

at w = 5, a = 0 and pI,_ = (0.1,0), (0.3,0), (0.5,0) and (0.75,0). For disturbances from

upstream (Figure 5.9) the effects of unsteadiness on the time-mean values of _ and ¢_ are

small, except, perhaps, for the highest disturbance amplitude, IPx,-_ I = 0.75, considered. The

effects of disturbance amplitude on the time-mean wake centerline velocity are negligible. The
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Figure 5.7: Fourier amplitudes of 6 _ and VC for an unstaggered flat-plate cascade (fl =

O = 0deg, G = 1, M = 0.5 and Re = i0 6) subjected to pressure excitations from downstream

with pI,+oo = (0.5, 0) and a = 0 deg.

results for the acoustic excitations from downstream in Figure 5.10 once ag indicate that

such disturbances produce much stronger nonlinear viscous-layer response: ,articularly in

the displacement thickness. For both the upstream and downstream acoustic excitations, the

phase angles (not shown) of the first-harmonic viscous quantities relative to the edge velocity

fluctuation are almost independent of the excitation amplitude.

The foregoing results indicate that the viscous-layer response parameters _, _r_ and I_ be-

have essentially in a linear manner for acoustic excitations originating upstream of the blade

row. For excitations coming from downstream, nonlinear effects can be significant for high

temporal frequencies (say w > 5) and/or high excitation amplitudes ([pI,+¢o[ > 0.5). For

M -- 0.5, the magnitude of the axial wave number for a pressure excitation from downstream
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and wake centerline velocity for an unstaggered flat-plate cascade (fl = O = 0deg, G = 1,

M = 0.5 and Re = 106) subjected to pressure excitations from downstream with pl,+oo =

(0.5, 0) and a = 0 deg.

is three times that for an excitation from upstream. This produces a corresponding ratio in

the magnitudes of the pressure gradients that drive the viscous-layer solution, and is perhaps

responsible for the relatively strong nonlinear content in the responses of the viscous layer to

downstream disturbances. Another factor is the direction of propagation of the acoustic exci-

tation. We have performed a series of calculations to isolate these effects and have found that

the latter, i.e., direction of propagation, to be the dominant factor in promoting a nonlinear

response of the viscous layer. It should also be noted that Navier-Stokes calculations have

been performed recently for compressor cascades excited by acoustic disturbances [DV94].

The Navier-Stokes results indicate that the unsteady surface pressure responses to acoustic
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Figure 5.9: Fourier amplitudes of 2, -_ and P'E vs amplitude, IP_,-oo I, for an acoustic excitation

from upstream, with w = 5 and a = 0deg, interacting with an unstaggered flat-plate cascade

(f_ = (9 = 0 deg, G = 1, M = 0.5 and Re = 10s).

excitations from upstream are linear over a wide range of excitation amplitudes, but acoustic

excitations from downstream produce responses with significant nonlinear content.

The spurious predictions for the behavior of the displacement thickness in the far wake,

i.e., increasing with increasing z, for high frequency or high amplitude disturbances from

downstream is a somewhat disturbing aspect of the present unsteady viscous-layer solutions.

A series of laminar calculations were performed, and the results showed a similar behavior.

Thus, the increase in displacement thickness in the far wake (x --, 2) cannot be attributed to

the turbulence model used in the present study.
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tion from downstream with, w = 5 and a = 0 deg, interacting with an unstaggered flat-plate

cascade (f_ = O = 0deg, G = 1, M = 0.5 and Re = 10°).

Turbine Cascade

We proceed to consider an unsteady flow through a "real" blade cascade to demonstrate the

coupled LINFLO/UNSVIS weak, inviscid/viscid interaction, solution capability. In particular,

we consider a flow at a Reynolds number, Re, of 5.0 × 10 s, an inlet Mach number, M-oo, of

0.19 and an inlet flow angle, _-oo, of 45 deg, through the turbine cascade known as the 4th

Standard Configuration. The unsteadiness is excited by an acoustic or pressure disturbance

from upstream, characterized by pz,-oo = (0.35, 0), _n,-oo = a/G = 0 and o_ = 1.0. The
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Figure 5.11: Contours of the in-phase component (real part) of the unsteady pressure for the

turbine cascade subjected to an acoustic excitation from upstream with pI,-oo = (0.35, 0),
w=landa=0.

inviscid steady Mach number field and steady Mach number distribution along a blade surface

are shown in Figure 3.2. For the unsteady flow being considered, the unsteady pressure at

a given point in the field is essentially in phase with the acoustic excitation. The in-phase

component (real part) of the unsteady pressure field, as determined using LINFLO, is depicted

in Figure 5.11. The acoustic excitation at w = 1, a = 0 produces a superresonant (1,1)

acoustic response. Therefore, the pressure contours in Figure 5.11 indicate much different

pressure amplitudes at the fax upstream and downstream boundaries than that associated
with the acoustic excitation alone.

The temporal mean value and the upper and lower bounds (envelope) for the inviscid

surface velocity are shown in Figure 5.12. The amplitude of the first-harmonic component of

the surface velocity, which is proportional to [pI,-¢o[, is relatively small for this case. But, for

pressure excitations of higher amplitude, the viscous-layer separates from the suction surface

of a blade, just upstream of the trailing edge, thereby precluding the continuation of the direct

unsteady viscous-layer calculation into the wake.
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Figure 5.12: Temporal mean values and upper and lower bounds of the inviscid surface

(viscous-layer edge) velocity for the turbine cascade subjected to an upstream pressure exci-

tation with pI,-o_ = (0.35, 0), w = 1 and a = 0.

Since the turbine blade has a blunt leading edge, the unsteady stagnation-point analysis,

described in § 5.3, was applied at each time step to provide the upstream velocity profiles

needed to advance the viscous-layer solutions along the blade suction and pressure surfaces.

For this case, the motion of the stagnation point is confined to a small interval of length

2tTII _ 0.0037. A series of velocity profiles associated with the periodic flow within the

stagnation region at four different times, i.e., t = _'/2, _r, 3r/2 and 27r, are shown in Figures 5.13

and 5.14. Here the instantaneous streamwise-velocity profiles are presented in the blade fixed

frame of reference, and the abscissa on each plot refers to the location on the blade surface

at which the velocity profile is determined. The interval shown in Figure 5.13 is centered

about the mean location of the stagnation point; that in Figure 5.14, about the instantaneous

location, i.e., the location at which U_,e = 0 in the blade-fixed frame of reference. Note

that the velocity profiles are shown over a much narrower interval, [-0.02[rlI, 0.021_'iI], in

Figure 5.14, where the profiles indicate that reverse flow occurs in the immediate vicinity of

the instantaneous stagnation point location.

The viscous-layer calculation for the reference turbine blade and its wake was performed

assuming that instantaneous transition from laminar to turbulent flow occurs at r/_'TE = 0.05

on both the pressure and suction surfaces of each blade. Here, r is the distance along the blade

surface measured from the mean, leading-edge, stagnation point location, and the subscript
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TE refers to the values of r at the blade trailing edge. The grid used in this calculation

had 77 points along the blade surface and 54 points along the reference wake line. It was

stretched with AT _-, 0.002 at the furthest upstream point and /kT _ 0.0001 at the trailing

edge. The largest value of Ar on the blade, i.e., 0.052, occurs near midchord. The streamwise

intervals grow aft of the trailing edge from Ar _ 0.0001 to approximately 0.083 one chord

length downstream of the blade row. The viscous-layer calculation was carried out using 71

uniformly stretched points across each boundary layer, with Kn = 1.045 and A_ = 0.04 at

the blade surface. The wake grid consisted of 141 points across the viscous layer stretched

in the same manner as on the blade surface. A total of 40 uniform time steps were used per

temporal period of the unsteady excitation.
Results of the unsteady viscous-layer calculation are shown in Figures 5.15 through 5.17.

Temporal mean values and upper and lower bounds for the displacement thickness and wall

shear stress along the upper and lower surfaces of the reference (m = 0) turbine blade are

shown in Figure 5.15; corresponding results for the wake displacement thickness, _w, and

minimum streamwise velocity, V_,_in in Figure 5.16. Here, the upper and lower bounds of a

viscous-layer response quantity, say the displacement thickness, are defined by

___± oo

= + 2 16.1. (5.54)
n---_l

Wake velocity profiles at four different instants of time are depicted in Figure 5.17. The

unsteady response of the viscous layer is essentially linear for this example, i.e., the temporal

mean and the steady viscous solutions are almost identical, and the Fourier amplitudes of the

higher (n > 2) harmonic components of _, _,_ and l)_m,n are negligible.

The foregoing results demonstrate the new capabilities that have been added to the

UNSVIS code under Contract NAS3-25425, i.e., an unsteady stagnation region analysis and

an unsteady wake analysis. These results also demonstrate the present weak, inviscid/viscid

interaction, prediction capability that results from a sequential coupling of a linearized, in-

viscid, unsteady solution, determined using LINFLO, and a nonlinear unsteady viscous-layer

solution. Unfortunately, since boundary-layer separation usually occurs in realistic configu-

rations and a weak interaction analysis breaks down in such cases, the present analysis has

only a limited range of application. This is particularly true for compressor cascades where,

because of adverse mean pressure gradients, local separations almost always occur. There

is, therefore, an important need to develop a simultaneous coupling (or strong interaction)

solution procedure for unsteady cascade flows.
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and surface shear stress along a turbine blade surface for an unsteady flow excited by an

upstream pressure excitation with pI,-_ = (0.35, 0), w - 1 and a = 0.
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6. Concluding Remarks

Under the present effort, we have contributed to the development of efficient, and rea-

sonably comprehensive, unsteady fluid dynamic analyses that can be used in turbomachinery

aeroelastic and aeroacoustic design studies. In particular, we have invoked the assumptions

of high-Reynolds-number, "attached" flow and small-amplitude unsteady excitation to de-

velop asymptotic unsteady aerodynamic models that apply to realistic cascade configurations

and mean operating conditions. Based on the high Reynolds number assumption, an invis-

cid/viscid interaction model has been formulated for unsteady flows through two-dimensional

cascades. In addition, based on the small-disturbance assumption, a linearized analysis has

been formulated for the unsteady flow in the inviscid region, but at this point, the unsteady

flows in viscous layers, i.e., boundary layers and wakes, are still regarded as nonlinear. To

further expedite the unsteady flow predictions, we have assumed that the nonlinear steady

background flow in the inviscid region is isentropic and irrotational -- an assumption that

leads to considerable simplifications in the equations that describe the behavior of inviscid

unsteady perturbations. The foregoing assumptions can lead to very efficient predictions of

the unsteady pressure responses of realistic cascades to prescribed structural (blade) motions

and external unsteady aerodynamic (entropic, vortical, and acoustic) disturbances.

To provide a strong inviscid/viscid interaction analysis for unsteady cascade flows, several

component analyses must be constructed, along with methods for coupling these components

into an overall solution procedure. Here, the component analyses include a full potential

analysis to predict the isentropic and irrotational steady background flow, a linearized inviscid

analysis to predict the behaviors of unsteady entropic, vortical and acoustic perturbations,

and a nonlinear unsteady viscous layer analyses, which, in the future, might be replaced by

nonlinear steady and linearized unsteady analyses, to predict the flows in boundary layers

and wakes. In the present report, we have described and demonstrated the linearized inviscid

analysis LINFLO, the steady, strong, inviscid/viscid interaction analysis SFLOW-IVI and

the nonlinear unsteady viscous-layer analysis UNSVIS. The steady full-potential analysis,

SFLOW, developed at NASA Lewis under a related research program [HV93, HV94], serves

as the inviscid component of the steady inviscid/viscid interaction analysis, and is also used

to provide the steady background flow information needed for a LINFLO linearized inviscid

analysis. The SFLOW-IVI analysis entails the iterative coupling of SFLOW to a steady,

inverse, viscous-layer analysis.

The LINFLO analysis describes unsteady perturbations of a potential steady background

flow. It applies to unsteady flows excited by prescribed blade vibrations and external entropic,

vortical and acoustic disturbances. Applications of LINFLO to blade flutter and blade-row

aeroacoustic response predictions are described in [VerS9a, UV91, Ver93] and [KV93b, KV94],

respectively. Under the present contract, LINFLO was extended to predict the unsteady flows

excited by entropic and vortical gusts. Because the steady background flow is assumed to be

potential, closed form solutions can be determined for the entropy and vorticity or rotational

velocity fluctuations. Consequently, numerical field methods are only required to determine

the unsteady potential, and hence, the unsteady pressure. The former is governed by an

inhomogeneous wave equation in which the source term depends upon the rotational velocity

field. Since only a single partial differential equation must be solved numerically, the LINFLO
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analysisprovidesvery efficient unsteady aerodynamic response predictions. Moreover, such

predictions have been shown to be in good agreement with those based upon time-accurate,

nonlinear, Euler and Navier-Stokes solutions for subsonic unsteady flows excited by vortical

and acoustic excitations [DV94] and for subsonic and transonic unsteady flows excited by

blade vibrations [AV94].

In future work, the LINFLO vortical gust response prediction capability should be ex-

tended to transonic flows. Also, the convected potential developed in [AG89] and used herein,

cf. (3.33), should be modified to remove the indeterminacy in the unsteady velocity, associ-

ated with entropic gusts, at blade and wake surfaces. This would lead to improved resolutions

of unsteady flows excited by entropic disturbances. Finally, since we have experienced some

difficulties in providing accurate unsteady pressure responses for thick, highly-cambered, tur-

bine blades, particularly the pressure responses to high frequency vortical gusts, work should

be directed towards improving LINFLO for application to vortical gust/turbine blade-row
interactions.

The SFLOW-IVI analysis describes high Reynolds number, steady flows, containing re-

gions of strong inviscid interaction, including local separations, through turbomachine cas-

cades. Here, the flow in the outer or inviscid region is governed by the full potential equation;

that in the inner or viscous layer regions, by Prandtl's viscous layer equations. Inviscid and

viscid solutions are iteratively matched using a semi-inverse global iteration procedure until a

converged result for the complete flow field is determined. The SFLOW analysis [HV93, HV94],

with modified surface conditions to account for the effects of viscous displacement, is used

to determine the inviscid component of the flow, and an inverse viscous layer analysis, to

determine the flows in viscous-layer regions.

As part of the present effort, the SFLOW-IVI analysis has been applied to predict steady

viscous flows through compressor and turbine cascades, including flows with extensive trailing-

edge separations. Results, for selected cases, particularly those for surface shear stress, have

been shown to be in good agreement with corr,_ponding Navier-Stokes predictions. The

inviscid components of SFLOW-IVI solutions l:,::ve also been used to provide the steady

background flow information for a linearized inv:scid analysis, in an effort to determine the

effects of steady viscous displacement on blade .' '.tter margins. For the limited applications

considered here, steady viscous displacement effects tend to be stabilizing for torsional blade

motions, but destabilizing for bending vibrations.

As it stands, the SFLOW-IVI analysis is efficient and robust, but it is restricted to sub-

sonic, adiabatic flows at unit Prandtl number. In future work the viscous-component of the

SFLOW-IVI analysis could be easily extended so that heat conducting flows at arbitrary

Prandtl numbers can be considered. More importantly, the SFLOW-IVI analysis should be

extended for application to transonic flows. A steady, transonic, inviscid/viscid interaction

analysis would be of value for steady-state design applications, and could be used in conjunc-

tion with LINFLO to determine the impact of steady viscous displacements on unsteady shock

loads. Recent Navier-Stokes studies [AV94] have indicated that, for cascades operating near

design, the effects of viscous-displacement on unsteady aerodynamic response are significant

only in the vicinity of a shock, where such effects tend to weaken the shock and shift its mean

position. In this case, a steady analysis that accounted for such effects could be coupled to

LINFLO to provide useful unsteady aerodynamic response information for transonic flow._

This type of approach has been applied successfully in external aerodynamics [Edw93]. Its
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usefor internal flows could lead to very efficientunsteady aerodynamicresponsepredictions
for viscoustransonicunsteady flows.

The nonlinearunsteady viscous-layeranalysisand code,UNSVIS, hasbeendevelopedto
predict the unsteadyflows in bladeboundary layersand wakes.This analysiscan be applied
to predict the viscous-layerresponsesthat arisefrom imposedinviscid conditions at the blade
and wakesurfaces.At presentonly a direct viscous-layercalculation and a weakor sequential
coupling of inviscid and viscous-layersolutionshas beenconsidered. The developmentof a
strong inviscid/viscid interaction analysisinvolving a simultaneouscouplingof the inviscidand
viscoussolutionsshouldbe consideredin future work. Under the presenteffort, the existing
unsteadyviscouslayer analysishasbeenextended,by incorporating a similarity analysisfor
the flow in the vicinity of a moving stagnationpoint and by accountingfor the jumps in the
inviscid flow variablesacrossvortex-sheetunsteady wakes,and applied to predict unsteady
cascadeflows excited by prescribedacousticexcitations.

The coupled linearized inviscid LINFLO and nonlinear viscous-layerUNSVIS analyses
have beendemonstratedvia applications to an unstaggeredflat-plate cascadesubjected to
acousticexcitationsfrom upstreamand downstream,and to aturbine cascadeinteracting with
an upstream acousticexcitation. The flat-plate example is, perhaps, the simplest unsteady
cascadeproblem that can be analyzed,both becauseof its geometricsimplicity and because
the unsteady pressureis nonsingular at the flat-plate leading edges. The numerical results
indicate that the viscouslayerrespondslinearly, for the most part, to acousticexcitationsfrom
upstream, but significant nonlinear responsecomponentsoccur for downstreamexcitations
at high temporal frequency and/or high amplitude, which travel against the mainstream

flow velocity. A similar conclusion, based on Navier-Stokes solutions for acoustic excitations

interacting with a low-speed compressor cascade has also been reported in [DV94]. The

numerical results for the turbine demonstrate the present weak inviscid/viscid interaction

solution capability for a realistic cascade configuration.

Because of boundary-layer separation, the range of application of a weak unsteady in-

viscid/viscid interaction analysis is severely limited. For example, the mean pressure rise

produced by a compressor blade row typically causes boundary-layer separations near blade

leading edges, thereby precluding a continuation of a direct viscous-layer calculation along

the blades and into their wakes. Thus, the development of a strong inviscid/viscid interaction

analysis for unsteady flows will be needed so that the effects of steady and unsteady viscous

displacements on the unsteady aerodynamic responses of blade rows can be predicted. The

responses of viscous layers to prescribed blade vibrations and entropic and vortical excita-

tions are other issues that require further study. In particular, as an important next step,

the UNSVIS analysis should be applied to unsteady cascade flows excited by prescribed blade

motions. The viscous layer responses in such flows should be studied to understand the rela-

tive importance of nonlinearities and the potential impact of unsteady viscous displacement

on unsteady pressure response.

123



References

[AG89]

[AV941

[BHE91]

[BL78]

[Blo70]

[BV87]

[BV89]

[BV931

[BVA93a]

[BVA93b]

[Car79]

[Cas83]

H. M. Atassi and J. Grzedzinski. Unsteady Disturbances of Streaming Motions

around Bodies. Journal of Fluid Mechanics, 209:385--403, December 1989.

T. C. Ayer and J. M. Verdon. Numerical Unsteady Aerodynamic Simulator for

Vibrating Blade Rows, 1994. Final Report prepared for the GUide Consortium

under Air Force Contract F33615-92-C-2212, to be published as an Air Force

Contractor Report, 1995.

M. Barnett, D. E. Hobbs, and D. E. Edwards. Inviscid-Viscous Interaction Anal-

ysis of Compressor Cascade Performance. Transactions of the ASME: Journal

of Turbomachinery, 113(4):538-553, October 1991.

B. S. Baldwin and H. Lomax. Thin-Layer Approximation and Algebraic Model

for Separated Turbulent Flow. AIAA Paper 78-257, 16th Aerospace Sciences

Meeting, Huntsville, Alabama, January 16-18 1978.

F. G. Blottner. Finite Difference Method of Solution of the Boundary-Layer

Equations. AIAA Journal, 18:193-205, February 1970.

M. Barnett and J. M. Verdon. Viscid/Inviscid Interaction Analysis of Subsonic

Turbulent Trailing-Edge Flows. AIAA Journal, 25(9):1184-1193, September

1987.

M. Barnett and J. M. Verdon. Theoretical Prediction of High Reynolds Number

Viscid/Inviscid Interaction Phenomena in Cascades. In Proceedings of the Fourth

Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long

Beach, California, January 1989.

M. Barnett and J. M. Verdon. Analysis of Blade Unsteady Boundary Layers and

Wakes. Unsteady Aerodynamics, Aeroacoustic, and Aeroelasticity of Turboma-

chines and Propellers, pages 377-395, 1993. Springer-Verlag, New York, edited

by H. M. Atassi.

M. Barnett, J. M. Verdon, and T. C. Ayer. An Analysis for High Reynolds

Number Inviscid/Viscid Interaction in Cascades. CR 4519, NASA, May 1993.

M. Barnett, J. M. Verdon, and T. C. Ayer. Analysis for High Reynolds Number

Inviscid/Viscid Interaction in Cascades. AIAA Journal, 31(11):1969-1976, 1993.

J. E. Carter. A New Boundary Layer Inviscid Iteration Technique for Separated

Flow. P per 78-1459, AIAA Fourth Computational Fluid Dynamics Meeting,

Williamsburg, Virginia, July 23-24 1979.

J. R. Caspar. Unconditionally Stable Calculation of Transonic Potential Flow

through Cascades using an Adaptive Mesh for Shock Capture. Transactions of

the ASME: Journal of Engineering for Power, 105(3):504-513, July 1983.

124



[CBCW86]

[CH80]

[CS74]

[cv81]

[DBJ+89]

[DDE92]

[DN58]

[DV94]

[Edw93]

[FS83]

[FV93]

[Gil90]

K. C. Chang, M. N. Bui, T. Cebeci, and J. H. Whitelaw. The Calculation of

Turbulent Wakes. AIAA Journal, 24:200-201, February 1986.

W. J. Calvert and M. V. Hebert. An Inviscid-Viscous Interaction Method to Pre-

dict the Blade-to-Blade Performance of Axial Compressors. Aeronautical Quar-

terly, XXXh173-196, 1980. Part 3.

T. Cebeci and A. M. O. Smith. Analysis of Turbulent Boundary Layers, pages

211-239. Academic Press, New York, 1974.

J. R. Caspar and J. M. Verdon. Numerical Treatment of Unsteady Subsonic Flow

Past an Oscillating Cascade. AIAA Journal, 19(12):1531-1539, December 1981.

R. P. Dring, M. F. Blair, H. D. Joslyn, G. D. Power, and J. M. Verdon. The

Effects of Inlet Turbulence and Rotor/Stator Interactions in the Aerodynamics

and Heat Transfer of a Large-Scale Rotating Model. Vol. I -- Final Report CR

4079, NASA, June 30 1989.

D. J. Dorney, R. L. Davis, and D. E. Edwards. Investigation of Hot Streak

Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting

Flows. Report 91-29, UTRC, East Hartford, CT, April 1992. Prepared under

Contract N00014-88-C-0677 (Report 1).

S. Dhawan and R. Narashima. Some Properties of Boundary-Layer Flow During

the Transition from Laminar to Turbulent Motion. Journal of Fluid Mechanics,

3, 1958.

D. J. Dorney and J. M. Verdon. Numerical Simulations of Unsteady Cascade

Flows. Trans. of the ASME: Journal of Turbomachinery, 116(4):665-675, October

1994.

J. W. Edwards. Transonic Shock Oscillations Calculated with a New Interactive

Boundary Layer Coupling Method. Paper 93-0777, AIAA 31st Aerospace Sciences

Meeting and Exhibit, Reno, Nevada, January 11-14 1993.

T. H. Fransson and P. Suter. Two-Dimensional and Quasi Three-Dimen-

sional Experimental Standard Configurations for Aeroelastic Investigations in

Turbomachine-Cascades. Report LTA-TM-83-2, Ecole Polytechnique Federale

de Lausanne, Lausanne, Switzerland, September 1983.

T. H. Fransson and J. M. Verdon. Standard Configurations for Unsteady Flow

through Vibrating Axial-Flow Turbomachine Cascades. Unsteady Aerodynamics,

Aeroacoustics and Aeroelasticity of Turbomachines and Propellers, pages 859-889,

1993. Springer-Verlag, New York, edited by H. M. Atassi.

M. B. Giles. Nonreflecting Boundary Conditions for Euler Equation Calculations.

AIAA Journal, 28(12):2050-2058, December 1990.

125



[Cla56]

[Go178]

[Go179]

[HC93a]

[HC93b]

[HSS79]

[HV91]

[HV93]

[HV94]

[JH83]

[KK93]

[KV93a]

M. B. Glauert. The Laminar Boundary Layer on Oscillating Plates and Cylinders.

Journal of Fluid Mechanics, 1:97-110, 1956.

M. E. Goldstein. Unsteady Vortical and Entropic Distortions of Potential Flows

Round Arbitrary Obstacles. Journal of Fluid Mechanics, 89(Part 3):433-468,
December 1978.

M. E. Goldstein. Turbulence Generated by the Interaction of Entropy Fluctuations

with Non-uniform Mean Flows. Journal of Fluid Mechanics, 93(Part 2):209-224,

July 1979.

K. C. Hall and W. S. Clark. Linearized Euler Predictions of Unsteady Aerody-

namic Loads in Cascades. AIAA Journal, 31(3):540-550, March 1993.

D. G. Holmes and H. A. Chuang. 2D Linearized Harmonic Euler Flow Analysis

for Flutter and Forced Response. Unsteady Aerodynamics, Aeroacoustics, and

Aeroelasticity of Turbomachines and Propellers, pages 213-230, 1993. Springer-

Verlag, New York, edited by H. M. Atassi.

E. C. Hansen, G. K. Serovy, and P. M. Sockol. Axial-Flow Compressor Turn-

ing Angle and Loss by Inviscid-Viscous Interaction Blade-to-Blade Computation.

Paper 79-GT-5, ASME, 1979.

K. C. Hall and J. M. Verdon. Gust Response Analysis for Cascades Operating in

Nonuniform Mean Flows. AIAA Journal, 29(9):1463-1471, September 1991.

D. Hoyniak and J. M. Verdon. Development of a Steady Potential Solver for

Use with Linearized Unsteady Aerodynamic Analyses. Unsteady Aerodynamics,

Aeroacoustic, and Aeroelasticity of Turbomachines and Propellers, pages 177-194,

1993. Springer-Verlag, New York, edited by H. M. Atassi.

D. Hoyniak and J. M. Verdon. Steady and Linearized Unsteady Transonic Anal-

yses of Turbomachinery Blade Rows. Paper, presented at the Seventh Interna-

tional Symposium on Unsteady Aerodynamics and Aeroelasticity of Turboma-

chines, Fukuoka, Japan, September 25--29 1994. Conference Proceedings to be

published by Elsevier Press, 1995.

P. Janssens and Ch. Hirsch. A Viscid Interaction Procedure for Two-Dimensional

Cascades. Technical Report CP-351, AGARD, 1983. pp. 3-1- 3-18.

G. Kahl and A. Klose. Computation of Time Linearized Transonic Flow in Oscil-

lating Cascades. ASME Paper 93-GT-269, 38th International Gas Turbine and

Aeroengine Congress and Exposition, Cincinnati, Ohio, May 24-27 1993.

K. A. Kousen and J. M. Verdon. Active Control of Wake/Blade-Row Interaction

Noise. CR 4556, prepared under Contract NAS3-25425, for NASA Lewis Research

Center, Cleveland, Ohio, December 1993.

126



[KV93b]

[KV94]

[Mel80]

[MM941

[MV94]

[MVF94]

[Nam87]

[PVK91]

[Rot56]

[Sch60]

[Smi72]

[Smi90]

K. A. Kousenand J. M. Verdon. Aeroacousticsof Real BladeCascades.Unsteady

Aerodynamics, Aeroacoustic, and Aeroelasticity of Turbomachines and Propellers,

pages 725-742, 1993. Springer-Verlag, New York, edited by H. M. Atassi.

K. A. Kousen and J. M. Verdon. Active Control of Wake/Blade-Row Interaction

Noise. AIAA Journal, 32(10):1953-1960, October 1994.

R. E. Melnik. Turbulent Interactions on Airfoils at Transonic Speeds -- Recent

Developments. In AGARD-CP-291, February 1980. Paper No. 10.

M. M. Morel and D. V Murthy. Turbomachinery Forced Response Prediction

System: Users manual. CR 194465, NASA, March 1994. Prepared for NASA
Lewis Research Center under Contract NAS3-25266 and Grant NAG3-1669.

M. D. Montgomery and J. M. Verdon. A Linearized Unsteady Euler Analysis

for Turbomachinery Blade Rows Using an Implicit Wave-Split Scheme. Paper,

presented at Seventh International Symposium on Unsteady Aerodynamics and

Aeroelasticity of Turbomachines, Fukuoka, Japan, September 25-29 1994. Con-

ference Proceedings to be published by Elsevier Press, 1995.

M. D. Montgomery, J. M. Verdon, and S. Fleeter. A Linearized Aerodynamic Anal-

ysis for Supersonic Cascades. Paper, presented at Seventh International Sympo-

sium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Fukuoka,

Japan, September 25-29 1994. Conference Proceedings to be published by Elsevier

Press, 1995.

M. Namba. Three Dimensional Flows. In M. F. Platzer and F. O. Carta, edi-

tors, A GARD Manual on Aeroelasticity in Axial-Flow Turbomachines, chapter IV.

AGARD, March 1987. Vol. 1, Unsteady Turbomachinery Aerodynamics, AGARD-

AG-298.

G. D. Power, J. M. Verdon, and K. A. Kousen. Analysis of Unsteady Com-

pressible Viscous Layers. Transactions of the ASME: Journal of Turbomachinery,

113(4):644-653, October 1991.

N. Rott. Unsteady Viscous Flow in the Vicinity of a Stagnation Point. Quarterly

Journal of Applied Mathematics, 13:444-451, 1956.

H. Schlichting. Boundary Layer Theory, page 339. McGraw Hill Book Company,

Inc., New York, 1960.

S. N. Smith. Discrete Frequency Sound Generation in Axial Flow Turbomachines.

R&M 3709, British Aeronautical Research Council, London, England, UK, March

1972.

T. E. Smith. Aerodynamic Stability of a High-Energy Turbine Blade. Paper

90-2351, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Orlando,

Florida, July 16-18 1990.

127



[ss9o]

[Ste55]

[uv91]

[VBHA91]

[vc82]

[VC84]

[Vel80]

[Ver87]

[Ver89a]

[Ver89b]

[Ver92]

[Ver93]

A. Suddhoo and P. Stow. Simulation of Inviscid Blade-Row Interaction Using a

Linearized Potential Code. Paper 90-1916, AIAA/SAE/ASME/ASEE 26th Joint

Propulsion Conference, Orlando, Florida, July 16-18 1990.

W. L. Stewart. Analysis of two-dimensional compressible flow loss characteris-

tics downstream of turbomax:hine blade rows in terms of basic boundary-layer

characteristics, 1955. NACA TN 3515.

W. J. Usab, Jr. and J. M. Verdon. Advances in the Numerical Analysis of Lin-

earized Unsteady Cascade Flows. Transactions of the ASME: Journal of Turbo-

machinery, 113(4):633-643, October 1991.

J. M. Verdon, M. Barnett, K. C. Hall, and T. C. Ayer. Development of Un-

steady Aerodynamic Analyses for Turbomachinery Aeroelastic and Aeroacoustic

Applications. CR 4405, NASA Lewis Research Center, Cleveland, Ohio, October

1991.

J. M. Verdon and J. R. Caspar. Development of a Linear Unsteady Aerodynamic

Analysis for Finite-Deflection Subsonic Cascades. AIAA Journal, 20(9):1259-

1267, September 1982.

J. M. Verdon and J. R. Caspar. A Linearized Unsteady Aerodynamic Analysis for

Transonic Cascades. Journal of Fluid Mechanics, 149:403-429, December 1984.

A. E. P. Veldman. The Calculation of Incompressible Boundary Layers with

Strong Viscous-Inviscid Interaction. In AGARD-CP-P91, February 1980. Paper

No. 12.

J. M. Verdon. Linearized Unsteady Aerodynamic Theory. In M. F. Platzer and

F. O. Carta, editors, A GARD Manual on Aeroelasticity in Axial-Flow Turbo-

machines, chapter II. AGARD, March 1987. Vol. 1, Unsteady Turbomachinery

Aerodynamics, AGARD-AG-298.

J. M. Verdon. The Unsteady Aerodynamic Response to Arbitrary Modes of Blade

Motion. Journal of Fluids and Structures, 3(3):255-274, May 1989.

J. M. Verdon. The Unsteady Flow in the Far Field of an Isolated Blade Row.

Journal of Fluids and Structures, 3(2):123-149, March 1989.

J. M. Verdon. Linearized Unsteady Aerodynamics for Turbomachinery Aeroelastic

Applications. Journal de Physique III, 2(4):481-506, April 1992. Also presented

as Paper 90-2355, AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference,

Orlando, Florida, July 16-18, 1990.

J. M. Verdon. Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic

and Aeroacoustic Applications. AIAA Journal, 31(2):235-250, February 1993.

128



[VH90]

[vv851

[vwv82]

[Whi74]

[Whi871

[Wig81]

[Wi179]

[WN85]

[Yuh81]

J. M. Verdon and K. C. Hall. Development of a Linearized Unsteady Aerody-

namic Analysis for Cascade Gust Response Predictions. CR 4308, prepared under

Contract NAS3-25425 for NASA Lewis Research Center, Cleveland, Ohio, July

1990.

V. N. Vatsa and J. M. Verdon. Viscous/Inviscid Interaction Analysis of Separated

Trailing-Edge Flows. AIAA Journal, 23(4):481-489, 1985.

V. N. Vatsa, M. J. Werle, and J. M. Verdon. Viscid/Inviscid Interaction at

Laminar and Turbulent Symmetric Trailing Edges. Paper 82-0165, AIAA 20th

Aerospace Sciences Meeting, Orlando, Florida, January 11-14 1982.

F. M. White. Viscous Fluid Flow, page 596. McGraw Hill Book Company, Inc.,

New York, 1974.

D. S. Whitehead. Classical Two-Dimensional Methods. In M. F. Platzer and F. O.

Carta, editors, AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines,

chapter III. AGARD, March 1987. Vol. 1, Unsteady Turbomachinery Aerodynam-

ics, AGARD-AG-298.

L. B. Wigton. Viscous-inviscid interaction in transonic flow, 1981. AIAA Paper

81-1003.

M. H. Williams. Linearization of Unsteady Transonic Flows Containing Shocks.

AIAA Journal, 17(4):394-397, April 1979.

D. S. Whitehead and S. G. Newton. A Finite Element Method for the Solu-

tion of Two-Dimensional Transonic Flows in Cascades. International Journal for

Numerical Methods in Fluids, 5(2):115-132, February 1985.

L. J. Yuhas. An optimization technique for the development of a two-dimensional

turbulent boundary layer model. Master's thesis, Lehigh University, 1981.

129



I Form ApprovedREPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public reportingburdenfor this collectionof Mformation is eslimated to average 1 hourper response, includingthe timefor raviewlnginstructions, searching existing data sources,
gathering and maintainingthe data needed, and completingand reviewing the collection of inforrrmtion. Send comments regarding_is burdenestimate or any other aspect of his
collection of information,includng suggestionsfor teOucingthis burden,to WashingtonHeadquartersServices, Directoratefor InformationOperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302, and to the Office of Managementand Budget,Paperwork ReductionProject (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1995 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and

Aeroacoustic Applications

6. AUTHOR(S)

Joseph M. Verdon, Mark Barnett, and Timothy C. Ayer

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

United Technologies Research Center
411 Silver Lane, MS 129-20

East Hartford, Connecticut 06108-1049

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS{ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-505--63-5B

C-NAS3-25425

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10011

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-4698

R95-957907

11. SUPPLEMENTARY NOTES

Pr_ectrnanager, George L. Stefko, Structures Division, NASALewis Research Center, organization code 5230,
(216)433-3920.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categories 02 and 07

This publication is available from the NASA Center for Aerospace Information, (301) 621-0390.1

13. ABSTRACT (Maximum 200 words)

Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous

flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady

flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been

placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds

number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply

in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be

efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the

present effort, inviscid/viscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid

and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we

describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI,

and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows

through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by pre-

scribed blade vibrations. Recommendations are also given for the future research needed for extending and improving

the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for

subsonic and transonic unsteady cascade flows.

14. SUBJECT TERMS

Unsteady aerodynamics; Turbomachinery cascades; High Reynolds number flow; Invis-

cid/viscid interactions; Small unsteady disturbances; Linearized inviscid analysis; Un-
steady viscous layers; Aeroelastic and Aeroacoustic responses

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OFPAGES

139
16. PRICE CODE

A07
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102




