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Abstract

A technique to obtain the sensitivity of the static aeroelastic response of a three di-

mensional wing model is designed and implemented. The formulation is quite general

and accepts any aerodynamic and structural analysis capability. A program to combine

the discipline level, or local, sensitivities into global sensitivity derivatives is developed.

A variety of representations of the wing pressure field are developed and tested to de-

termine the most accurate and efficient scheme for representing the field outside of the

aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This

approach had some dit__culties in representing local variations in the field, so a variety

of local interpolation polynomial pressure representations are also implemented. These

panel based representations use a constant pressure value, a bilinearly interpolated value.

or a biquadratically interpolated value. The interpolation polynomial approaches do an

excellent job of reducing the numerical problems of the global approach for con:parable

computational effort. Regardless of the pressure representation used. sensitivity and re-

sponse results with excellent accuracy have been produced for large integrated quantities

such as wing tip deflection and trim angle of attack. The sensitivities of such things as

individual generalized displacements have been found with fair accuracy. In general, ac-

curacy is found to be proportional to the relative size of the derivatives to the quantity

itself.
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1.0 Introduction

During the design phase of an engineering system, numerous analyses are conducted to

predict changes in the characteristics of the system due to changes in design variables. Usu-

ally, this process entails perturbing each variable in turn, recalculating the characteristics,

and evaluating the sensitivities by a finite-difference calculation. These repeated analyses

can drive the cost of design very high. An approach that has found increased interest

recently in engineering design is analytical calculation of the sensitivity deri_atives 1. Typ-

ically, the analytical approach requires less computational resources than a finite-difference

approach and is less subject to numerical errors (round-off or truncation). The analytical

approach is best developed in parallel with the baseline analysis capability since it uses a

significant portion of the numerical in_formation generated during that baseline analysis.

In the design of modern aircraft, airfra.me flexibility is a concern from strength, control.

and performance standpoints. To properly account for the aerodynamic and structural im-

plications of flexibility, reliable aeroelastic sensitivity analysis is needed. Therefore. both

structural and aerodynamic sensitivity analysis capabilities are necessary.

1.1 Sensitivity Analysis

Structural sensitivity analysis methodology has been available for over two decades

for both sizing (thickness, cross-section properties) and shape (configuration) variables 2.

However, aerodynamic sensitivity analysis has been nonexistent until relatively recently.

Some limited aerodynamic sensitivity analysis capability was developed for aircraft in



subcritical compressible flow by Hawk and Bristow3, but it only handled perturbations in

the direction of the thickness of the wing (thickness, camber, or twist distribution). Yates 4

proposed a new approach that considers general geometry variations including planform

for subsonic, sonic, and supersonic unsteady, nonplanar lifting-surface theory. This work

is still under progress.

Aeroelastic sensitivity analysis methodology has also been available for more than

two decades for structural sizing variables (Haftka and YatesS). This is because changes

in sizing variables exclusively affect the structural stiffness and mass distribution of the

airfrarne and not its basic geometry. Therefore, structural sensitivity analysis capability

is sufficient. However, the lack of development in aerodynamic shape sensitivity analysis

explains why there are very few results in aeroelastic shape sensitivity analysis. In a

notable exception, Haft "ka et aP designed a sailplane wing under aeroelastic constraints

and analyzed the design model with vortex lattice and finite element methods. A finite-

difference (for GSE derivatives) aeroelastic sensitivity analysis capability is made possible

by (1) devising a reduced order model to describe the wing static aeroelastic response and

(2) using exact perturbation analysis to approximate changes in the vorticity vector with

changes in the geometry. Follow up work used semi-analytical derivatives.

Barthelemy and Bergen v demonstrated the feasibility of calculating analytically the

sensitivity of wing static aeroelastic characteristics to changes in wing shape. Of interest

also was the fact that the curvature of the _roelastic characteristics was small enough

that analytical sensitivity derivatives could be used to approximate them without costly

reanalyses for large perturbations of the design variables.

The dynamic aeroelastic phenomena is also of interest to designers and it would be

advantageous to the aircraft designers to have a tool that can be used to predict the changes

in flutter speed with the changes in basic shape parameters.

As is the case for static aeroelastic response, sensiti_dty calculations have only been

available for structural sizing parameters. For example, Rudisill and Bhatia s developed

expressions for the analytical derivatives of the eigenvalues, reduced frequency and flutter

X.O Introduction 2



speed with respect to structural parameters for use in minimizing the total mass. However,

this method is limited because the structural parameters are sizing variables such as cross-

sectional areas, plate thickness and diameters of spars.

Pedersen and Seyranian 9 examined the change in flutter load as a function of change

in stiffness, mass. boundary conditions or load distribution. They showed how sensitivity

analysis can be performed without any new eigenvalue analysis. The solution to the main

and adjoint problem provide all the necessary information for evaluating sensitivities. Their

paper mainly focuses on column and beam critical load distributions.

In a recent study, Kapania, Bergen and Barthelemy 1° obtained the sensitivity of

a wing flutter response to changes in its geometry. Specifically, the objective was to

determine the derivatives of flutter speed and frequency with respect to wing area, aspect

ratio, taper ratio, and sweep angle. The study used Giles '11'12 equivalent plate model to

represent the wing structure. The aerodynamic loads were obtained using "gates 13 modified

strip analysis to analyze flutter characteristics for finite span swept and unswept wings.

It is noted that Yates modified strip theory was used quite recently by Landsberger and

Dugundji 1_, with a modification for camber effects given by Spielberg 15. to study the flutter

and divergence of a composite plate.

Unger, Hutchison, Rais-Rohani, Haftka. and Grossman 16 recently demonstrated a

variable-complexity approach to the multidisciplinary design of a transport wing. Their

approach optimizes based on a relatively simple and inexpensive model. Then. this ap-

proximate optimal wing is reoptimized using a more complex model.

An excellent examination of various issues involved in aeroelastic analysis was re-

cently published by Borland 17 The study compares and contrasts "inte_ated" aeroelastic

systems versus "interfaced" systems. Borland refers to packages designed to produce aeroe-

lastic results from a single program as "integrated". Packages that have separate modules

for each discipline that each write as their output the input for another package are termed

"interfaced". As is discussed in section 2.1 of this dissertation, the current work's scheme

is a variation on the "interfaced" approach.

1.0 Introductioa 3



1.2 Current Work

The current work develops techniques to determine the sensitivity of the various static

aeroelastic responses to the variations in various shape parameters, namely: (i) wing area.

(ii) sweep, (iii) aspect ratio and (iv) the taper ratio. The aeroelastic responses were the

generalized aeroelastic displacements and the trim angle of attack. The sensitivities were

obtained by differentiating the constitutive equations. It was shown that the resulting sen-

sitivity equations can be reformulated into a variation of the Sobieski's Global Sensitivity

Equations 19 (G.S.E.) approach. Both schemes gave the various global sensitivities (i.e.

the sensitivity including all interdisciplinary interactions) in terms of local sensitivities

(i.e. the sensitivities obtained at the discipline level). A key feature that distinguished

this study from the study by Barthelemy and Bergen 7 is the use of a more realistic aerody-

namic model, FAST 2°, that uses a lifting surface theory as opposed to a lifting line theory

employed in the earlier study. The formulation was designed to be quite general so that

it was applicable with any aerodynamic code which, for a given geometry and structural

deformations, provides aerodynamic pressures on the wing surface. To facilitate the calcu-

lation of the shape sensitivities of various quantities (required in aeroelastic analyses), the

pressure distribution was represented as a double series of global Chebyshev polynomials.

The displacements of the wing were obtained using an iterative scheme. To _xlidate this

more general formulation, sensitivity of the static aeroelastic response of an example wing

was obtained. The results were compared with those obtained by using a purely finite

difference approach. A good agreement was obtained.

During the course of the work [Ref. 18], it was found that the generalized pressure

coefficients, due to the global nature of the interpolation polynomials, may be sensitive

to small changes in independent variables. As a result, the determination of the local

derivatives of some of the generalized aerodynamic coefficients was found to be difficult

when forward or central differences were used. A higher order finite difference scheme using

1..0 Introduetio_ •



a large step size was emplyed so that the effect of local wiggles can be reduced. Obviously,

this was an expensive option. Other more robust techniques are therefore needed to express

the aerodynamic pressure. A representation of the aerodynamic loads that is piece-wise

polynomial should be used. Some of the advantages of piece-wise representation over global

representation are discussed by Burden and gaires 21 and by de Boor 2_.

In addition, the piece-wise polynomial pressure approach will have a major application

in representing the aerodynic pressure of the High Speed Civil Transport Wing. This wing's

flow regime will be transonic, thereby having pressure discontinuities from shock waves.

A piece-wise function is often better represented by piece-wise polynomials as opposed to

globally defined polynomials.

1.0 Introduction 5



2.0 Aeroelastic Response

A scheme was developed to interface arbitrary aerodynamic and structural codes

in order to calculate the aeroelastic response of a wing. Anticipating the availability

of nonlinear aerodynamic models in the future, the formulation does not assume a linear

dependence between the lift generated and the generalized coordinates and the initial angle

of attack. This formulation needs an iterative process to calculate the angle of attack to

which the aircraft is trimmed to produce the required lift.

This analysis is performed for the wing shown in figure t. This forward swept wing

has its coordinate origin at the root quarter chord. The g-axis is perpendicular to the root

chord, in the span-wise direction. The z-axis is in the chord-wise direction, with positive

values being aft of the quarter-chord.

2.1 Overview

The combination of realistic aerodynamics and structural models in a modular man-

ner with shape sensitivity code requires a systematic approach, k scheme of calling the

aerodynamic and structural codes to produce a converged static wing loading and shape

was developed. In addition a set of "neutral format" data files were defined. Here. a

"neutral format" data file is a file that is defined to contain certain data at certain spots,

regardless of the package that originally generated the data. This scheme makes the re-

placement of analysis packages practical and relatively simple. These files include the base

geometry and initial deflection values, the intermediate pressure loading and structural

deflections, and the final converged wing loading and deflection.

2.0 Aeroelutic Response 8
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The aeroelastic problem is broken into subproblems (or blocks) by discipline. The

aerodynamic and structural blocks are called iteratively to produce a converged static wing

loading and shape. Shape sensitivity _w,lues for this converged wing are then obtained

(discussed in chapter 3). Figure 1 is a flow chart illustrating this scheme.

Each block operates completely independently of the other. It reads from several

"'neutral format" input files, performs its calculations and generates one or more neutral

format output files. Thus, any aerodynamic and structural analysis capability may be

used. Only new input and output "adapter" programs need be written to add a new

analysis package to the system. These two adapter programs must convert the neutral

format data files to and from the new package's native format.

2.11 Aerodynamics:

The aerodynamic block is responsible for generating the loads on the wing. It reads as

input the wing geometry parameters and the current wing deflections. It is able to output

the pressure on the wing at arbitrary points. Figure 2 illustrates the aerodynamic section.

Currently, the aerodynamic analysis is being performed by program FAST. This lifting

surface code was developed at NASA, Langley. It is based on a kernal-function based

theory developed by Yates, and was implemented by Desmarais and Bennett 2°. Originally

developed for a CDC Cyber computer, this program, with considerable effort, has been

ported to the VAX/VMS and IBM-CMS operating systems. Adapter programs to convert

to and from native FAST data files to the defined neutral format were also developed.

2.12 Structures:

The structural block is responsible for calculating the deflection of the wing. It is

given the wing geometry and wing loading. It calculates the deflected shape of the wing.

Figure 3 illustrates the structural section. Currently, Giles' ELAPS 12 code is being used

to perform the structural analysis. This Ritz method program was developed at NASA.

Langley. It has been adapted for use on both the VAX and IBM svstems. Adapter

programs have been developed to convert wing pressures to ELAPS generalized forces and

2.0 Aeroelamtic Response
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to convert its deflection outputs to neutral form.

2.2 Governing Equations

The governing equations of motion for the aeroelastic analysis and the lift can be

written as

[K]{C} = {Q} (2.1)

and

nw2 - p(x, u)df_ (2.2)

where

[K] is the stiffness matrix,

{C} is the vector of unknown generalized displacements.

{Q} is the vector of generalized forces.

n is the load factor.

W is the aircraft weight,

p(z, y) is the wing pressure field, and

f_ is the wing surface area.

The vector of generalized forces can be obtained as:

Qi=ffnP(z,g)Ti(X,y)dxdy
(2.3)

where 7i(x, y) is the ith nondimensional displacement function used in the displacement

2.0 Aeroe|astic lqLesponme 12



model:

with

rip

,_ z, _) = _ "r,(z, v)C,
i=l

(2.4)

"._=.v) = ( z-5--)=( Y__E__). (2.2)
X rn a x _ rrt a .r

where m ,,'aries from 0 to mw and n varies from 2 to nu,, + 2 with n _'arying more rapidly

than m. The terms mw and nw are configurable options. For this work, mw= 5 and

r'tW -- 6.

These 7's satisfy the geometric boundary conditions for a cantilever plate. The C's

in (2.4) are the generalized displacements.

To facilitate both the integration and subsequent sensitivity calculations, a coordinate

transformation was used to simplify the integration limits. This was accomplished using

the following transformation:

4

z(q._) = _ .'v,(,7,{)zj
3=1

(2.6)

4

j----1

(2.;)

where

Nj(q, _) are the shape functions, and the

zj and gj are the coordinates of the four corner points of the wing.

The shape functions are given as

N,(r/, _) = (1 + _,.,,)(1 + rv/,)/4 (2.8)

where qi and {i are the coordinates of the node i in the r/ - { system. Note that this

transformation will change the domain of the wing to a square (-1 _< r/ _< 1:-1 _< ,_ < 1).

The transformed wing is shown in figure 5.

2.0 Aeroelutie l_.esponse 13
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As a first step to obtain the generalized forces, the pressuredistribution on the wing

was represented as a seriesof either global interpolation functions or interpolation poly-

nomials that have local support over a wing panel. This can be represented in a generic

form as:

M

=
i=I

(2.9)

where aJ can be considered as the generalized pressure coefficients and ¢]J(r/, () are some

known interpolation functions of 77and (.

A large number of interpolating polynomials are available in the literature 2a'22. First,

a global tensor product of Chebyshev polynomials was used. Then, a variety of local

polynomials were studied. Details of these approaches and their results are in chapters

4-7.

Generically. the integral for a generalized force Qi, is

/_1/_1qi = p(r/,_) ",,i(rl,()IJl(q._)l dqd_
1 1

(2.10)

where IJl(rT, _)l is the Jacobian of the coordinate transformation specified by Eqs. 2.6 and

2.7. The generafized force Qi can be written as

M

Qi =ZAijaJ (2.11)

j=l

In matrix form

{Q} = [A]{a} (2.12)

Similarly, the lift equation can be written as:

M
nW

j=l

aiLJ= {L}T{a} (2.13)

2.0 Aeeoelutic Response 18



2.3 Aeroelastic Response

The aeroelastic response was obtained in an iterative fashion. In that, the pressure

distribution on the wing is first obtained by assuming the wing to be rigid and having an

angle of attack of 1° (throughout the span). The pressure distribution thus obtained is

used to obtain the vector of generalized forces (Eq. 2.9) which in turn is used to obtain the

vector of generalized displacements (Eq. 2.1). The elastic displacements are superimposed

on the rigid wing and a new pressure distribution on the wing is obtained. This pressure

distribution is then used to obtain the generalized displacements. The total lift on the wing

is calculated, and a new trim angle of attack is obtained by dividing the total required lift

by the current calculated lift and multiplying by the current trim angle of attack. This

process is repeated until a converged value of the trim angle of attack is achieved for the

wing. No relaxation is necessary to achieve convergence for the cases studied.

An alternative technique has also been developed to compute the trim angle of attack

and wing generalized deflections. This technique involves significantly more setup effort.

but gives the converged displacement and angle of attack in one step. It should be noted

that only the linearity of the two current analysis programs makes this one step solution

possible.

For the case of linear aerodynamics, one is not required to use an iterative scheme to

obtain the aeroelastic solution. For such a case the vector of aerodynamic pressures, p,, at

some discrete points can be written as

{p} = [.41{c} + { Opb-g } t2.14)

Opi

where .-iij = OC-_j"

The generalized aerodynamic coei_cients can be written as

{a} = [RI {p}



r

where R is an interpolation matrix that converts discrete p's to our generalized a's. For

our case, {p} is taken at Chebychev points. Eqn. 2.13 is substituted into eqn. 2.14. Then.

the equilibrium equations for the structure are updated from eqns. 2.1 and 2.8.

[aj {c} = [A1[al 1.4){C} + _[A]IR] { 0pb-g} (2.16)

The trim equation is adapted from eqn. 2.12.

nyW __ {L}r[R][A] {C} + a {L}r[R] {_}0P (2.17)

Note that for our case: [R] [,2t]
0{at
o{c}

The governing equations, for the case of linear aerodynamics, are:

[K]-[A] 0__ 0_molc} [.4] 0_

raA___l {z}r 0_m{L} r LOlCI] o_
n iS"

a T

(2.1S)

The left hand side matrix is identical to the sensivity matrix to be derived in the next

chapter. If linear aerodynamics are to be used and a sensitivity analysis is desired, this

result can result in a slight savings of computational effort over the iterative approach.

In order to get a feel for the performance of the aeroelastic system, the spanload was

plotted at a couple of constant chord positions for both rigid and flexible wings. Figure

6 shows the spanload along the nodes closest to the leading edge of the wing. Figure 7

shows the spanload along a spanwise line approximately along the wing quarter chord. The

differences between the flexible and rigid wings are small, indicating a rather stiff wing.

2.0 Aeroelastic Response IT
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3.0 Senstitivity Equations

A scheme for determining the global sensitivities of the aeroelastic system to changes

in shape parameters is developed. This scheme can be shown to be a variation of Sobieski's

Global Sensitivity Equations. A variety of local sensitivity data is combined to produce

global sensitivity results. Here, the term local sensitivity refers to the sensitivity of an item

within a particular discipline, such as the sensitivity of the wing stiffness matrix to a change

in wing sweep. Global sensitivities are dependent on the interaction of the disciplines. A

global sensitivity example is the variation of wing deflected shape with respect to a change

in wing taper ratio.

The goal of this analysis is to produce values for the global sensitivities dC/drl and

da/drl. Here, rt represents any of the wing shape parameters: area, aspect ratio, sweep,

or taper ratio. Equations 2.1, 2.9, and 2.12 can be used to perform the shape sensitivity

analysis of static aeroelastic response. In the following development 0()/0() indicates a

local, single discipline, term and d()/d() indicates a global or total derivative. Taking

derivatives of the equilibrium and the trim equation, with respect to the shape variable rl

(namely sweep, aspect ratio, wing area, taper ratio), we obtain

dC) dK]{C}= { ) (3.1)

d(nW/2) _ { OL r r { da
drl _r-_rl} {a}+{Z} drl} =0 (3.2)

Note that the derivative of lift is zero, because we require th.e total lift acting on the

wing to remain constant. Additionally, L is purely a function of geometry, so its partial

derivative is the same as its total derivative.

$.0 Senstitivity Equatlonm 20



where

The vector {dQ/drt} can be obtained as

da]dO_: = kt [ ]a J + .a,j
drt

j=l

da j Oa j np Oa j dCn

dr, or, + _(a-d-. < I+
n=l

and where

Oa 3 de,

Oa drt

(3.3)

(3.4)

OaJ/Ort is the local sensitivity of the aerodynamic generalized pressure coefficients

and can be obtained while performing the aerodynamic analysis;

OaJ/Oc_ is the derivative of the generalized pressure coefficient with respect to a

generalized displacement C,_, and

da/drt is the derivative of the trim angle of attack with respect to ft.

Note that the matrix [A] is also purely a function of geometry: thus its partial and

total derivative are the same.

In matrix form. the global sensitivity of generalized forces becomes

{___}=[OA .Oa} ra{_}t ac do, Oagi/]{a} + [.a]tb-_' + [A]_o{C},{_} + _[A]{U} (3.5)

It is noted that the major computational expense is the determination of O{a}/O{C}.

The sensitivity of generalized displacements, therefore, becomes (combining Eqs. 3.1

and 3.5)

[ O{a} ] dC} 04 Oa da Oa [dK]= [_r]-rt]{a } + [A]{ } + [A]{ - {C} (3.6)[A-]- [.-tl[o-_S] {_ _ _ _} d,-,

In this equation, all the terms on the right hand side are known except for da/drt.

This can be obtained by considering the sensitivity of the lift equation, Eq. 3.2. This

equation can be written as:

OL Oa ?rrO{a } l.fdC da }7" da{-v--}T{a}+{L}T{7--}+{L }+ {L { }=0 (3.7)• _o{c},_ _Ort ort
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q_

The required sensitivity derivatives can be then obtained by simultaneously solving

the sets of eqns 3.6 and 3.7. With a little rearranging they become:

[K]- [A][o(_), -[A]{ oo , dr,
{/:}r{o@} d_a77_,

0.4 a 4 o_ oh C "1
[_1{ }+[. 1{_} -[_l{ }

-- OL T T Oa
-{_} {a}-{L} {_}

(3.s)

Generating this left hand "sensitivity" matrix by finite differences is extremely com-

putationally expensive. The term O{a}/O{C} is particularly expensive. It requires calling

the aerodynamic code one time for each element in the {C} vector. The sensitivity matrix

is valid for a particular base geometry, regardless of which rt is of interest. It is only

generated once and saved for future uses. The left hand sensitivity matrix may be used

with a different right hand side to determine the converged wing aeroelastic response. This

equation is given by Eqn 2.18.

rr0{_} 1
to{c}J

o{a}_-[A]{ 0o J

r,r 0__/21{L} , 0o ) {,:,}_{,0,nw/2 } (2.18)

If a sensitivity calculation is to be performed as well. then this approach to deter-

mining the aeroelastic response is more efficient. If only the converged wing configuration

is needed, the iterative approach is slightly better. The iterative approach is also more

general; it can be directly applied to non-linear aerodynamic codes, whereas Eqn. 2.18 is

only applicable for linear aerodynamics.

3.1 Comparison Between the Present Formulation and Sobieski's Global Sen-

sitivities Equations (GSE)

In Ref. 18, Sobieski presented two different formulations (GSE1 and GSE2) to obtain

the global sensitivities of a multi-disciplfnary system in terms of the sensitivities of the
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subsystems, called local sensitivities. It is of interest to compare the present formulation

(Eq. 3.8) with Sobieski's Global Sensitivity Equations.

In terms of the Sobieski's first formulation, called GSE1, the governing equations for

the wing can be written as:

Trim:

nW
fo = zr({rt},_) {a}

2
- 0 (3.10)

Aerodynamics:

{L (_, {a}, {c})} = {0} (3.11)

Structures:

{fc} - [/<(re)]{C} - [A(re)]{a} = {0} 3.12)

Then the GSE's are:

a_ a{c} _ ar_

OlC} 4r_ ' = --

a{_} a{c} at, or,

3.13)

or

o {L} r o

ao, o{_} a{c}

0 - [.--t] [._']

do ] 0

{_ } °"-:{z}:r{a}
a{=} = -,

d{c)drt [ Oft 0
dr, 0-_ [/x']{C}- b-_-r_[A]{a}

3.14)

Note that, since {f_} is not directly accessable, the above form of the Sobieski's Global

Sensitivity Equations could not be used.

In terms of Sobieski's GSE2 formulation, the governing equations, for the system at

hand are:

$.0 Senmtitlvit¥ l_quationm 2_



Trim:

(3._5)

Aerodynamics:

{a} = {a(_, {C}, r_)} (3.16)

Structures:

{c} =

The global sensitivity equations are:

[K(rt)] -1 [A(rt)] {a} (3.17)

I ao o_
a{_} alc}

_0{_}
- °-12-]oe, I o {c }

_o(c} _arc} I
0e, o{_}

de,

dr4

dr_

Using Eqs. 3.15 - 3.17, the above set of equations becomes

Oct

O_Lal
-- 0rt

o_E]_
Ort

(3.18)

I 0e, 0
a{,_}

__ O{a}
ae, I o{ c }

0 -[A]-' [.-t] 1

de,

drt

dtc}
drt

0

O_bA

[t:] [:.t] {,_}

(3.19)

Since Oa/O{a} cannot be found easily, this formulation could not be used. The first

equation from 3.14 and the last two equations from 3.19 can be combinted to form a system

as follows:

Or I

o__(_EL
[i]

= _[KI-i[A]
-{Z} r

-[o{cIJ - d_ at,

eE E°ol da

(3.20)

For the current study, the global derivatives of {a} aren't necessary, so eliminating

the first line of 3.20 and rearranging it will give us equation 3.9. Thus, our formulation is

a mix of GSE1 and GSE2.

$.0 Seaititivity Equatioam 24



3.2 Solving the System

The terms [K],[A], {a}, {C }, and {L} are all quantities known from the converged base-

line configuration. A finite difference technique is used to calculate the terms , O(a}/aa,

O[h']/cgr_, and cg(a}/Or_. The terms a[.4]/arl and cg{L}/cgrz are computed analytically.

The terms d{C}/drl and d_/dr_ are the unknowns found by solving this system of equa-

tions.

3.3 Derivatives of [A] and {L}

These derivatives are calculated b v using the chain rule and the derivatives of each

of their elements. Each element's derivative will be reduced to derivatives of one of our

coordinates (u, q, etc.). Thus, derivatives of these coordinates will be found first, then the

derivatives of the elements will be found.

Coordinate Derivatives

u, v - Local panel coordinates. The panel based pressure interpolations discussed

in chapters 5-7 use the coordinates u and v for on-panel coordinates. They are based on the

gauss points on a particular panel. Thus. tb_ey don't change with our shape parameters.

du dv
- -0 (3.21)

dr! drt

r/,( - Transformed wing coordinates The square q, _ (-1, 1) planform doesn't

change with wing geometry changes.
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dq d_
drt drt

- 0 (3.22)

z, y - True Planform Coordinates These do change with wing geometry.

b 1
= :(l+q)= : Sv_-R.4R(I+q) (3.23)ff

Z Z

where b is the single-wing span, S is the single-wing area, and AR is the aspect ratio

of the single-wing/

dy (1 + q) A/_R
(3.24)i

VsdS 4

dy (1 + ,7) ./ 8 (3.25)
dAR - 4 VAR

dy _ dy - 0 (3.26)
dA dA

where A is the wing taper ratio.

z is a function of the local chord length, so _ and _ are derived first.
' dr_ drt

Cr=b(1+X)- l+x
3.27)

dC,. I

dS b(1 + A)
3.28)

dCr -1 I [ S

dAR ( 1 +- A ) An VAn
(3.29)
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dCr
_'-O
dA

(3.30)

dCr -2 ./ S

VdA (1 + A) 2 AR

I 1 ]c(y) = cr 1 - _(1 - A)(1+ ,7)

where C(y) is the local chord length as a function of the span-wise coordinate.

dC(_) dC_ C(y)
dS dS C_

(3.31)

(3.32)

3.33)

dC(y) dC,. C(y)

dAR dAR C,.
3.34)

dC(_) dC_C(_) _0
dA dA Cr

(3.35)

dC(y) dC_ C(y)
+ :_(i+ 7)dA dA C_ -

(3.36)

Now, back to x:

(3.37)

dC(y) + tan A
dS 2-# (3.38)

dC(y) + tan ,*t (3.39)
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dx y

dA cos _ A
(3.40)

dx (l + _ _) dC(y) dyd_ -- 5 d----_ ÷ _- tanA (3.41)

we, wy - Gauss weights. These don't change with respect to geometry.

7i(x, g) - Generalized mode shapes. As given in equation 2.5.

_i(x, g) = x g (3.42)

where rn = 0 to rrtw and n = 2 to nw + 2. N is looped over first. Thus,

)0(=)271 (Z, _/) --- (X@a _ Y (3.43)

x g ( 3.44 )

I fro = O,

d7 ng n-z dy

drt _ drl_ rrl Ot _r

(3.45)

otherwise ( m # 0 ),

-- mY-_r l + nx (3.46)dr_ x._g,_

J1 - First Jacobian. The Jacobian of the x, g to 77,( coordinate transformation is
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S I (I- A))J1- _- 1-rl_TA) (3.47)

Then_

dJt _ 1 \[1 - q(l______)-,k) S(1 - ,k) dr/ (3.4S)
dS 4 (1 _ 4 (1 + A) dS

recalling that _ = 0 we get

d J1 J1
- (3.49)

dS S

d J1
- o (3.50)

dAR

d J1
=0 (3.51)

dA

d J1 Sq

d---_ - 2(1 + A) 2 (3.52)

J2 - Second Jacobian. The panel based interpolation schemes discussed in chap-

ters 5-7 use rectangular sub-sections of the square q, _ wing defined such that the local

corrdinates (u,u) = (-1, 1) The Jacobian of the q._ to u, _ coordinate transformation is

J2 - S'7'_ (3.53)
_"_'1/,, Y

where S,,4 is the panel area measured in the (r/, _) system and S_,.o is the panel area

measured in the (u, v) system which always equals 4.

The derivatives of J2 are
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dY2
- O. (3.54)

dr_

3.4 Deflection Sensitivities

These results can be used to calculate a variety of other useful results. For instance.

equation (2.4) can be differentiated and combined with the equations in section 3.4 to

produce the sensitivity of the deflection of any point of the wing to changes in the shape

parameters. Recalling

np

W(z, y) = _ -_._(z.y)C,
i=l

(3.55)

with

_,(x, _) = (_-L-)m(J-k--)"
•,r,raaz _]rna.r

(3.56)

where m varies homO to mw and n varies _om2 to nw + 2 with n varying more rapidly

than m. Then

dW(z,_)
drl

m-1

(3.57)
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4.0 Chebyshev Pressure Representation

The wing pressure field is represented first by a tensor product of Chebyshev polyno-

mials. They were chosen for their ability to accurately fit a curve with a small number of

terms, due to their orthogonality properties. The pressure distribution can thus be written

Q P

,,(,7,e) = Z _ ap,Tp(,7)T,(_)
q--O p=O

(4.1)

Here Tp is the Chebyshev polynomial of order p.

Tp(_) = co,(_co,-1(.)) (4.2)

Thus,

To(z) = 1, (4.3)

TI(x) = x, (4.4)

and in general

Ta(x) = 2X 2 -- 1, (4.5)

T.+I = 2zT.(z) - T._:(z).

A quick comparison of Eqns. 4.1 and 2.9 shows that the generic 3J is

(4.6)

4.1 Chebyshev Results

(4.7)

The aeroelastic code does an excelIent job of calculating the converged wing loading

and deflections for a particular flight condition. The sensitivity derivative calculations do
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axl excellent job of predicting shape sensitivities. Slight difficulty has been encountered in

the exact calculation of derivatives with very small values. It was modeled structurally

using a box beam model detailed in Ref. 10. The material properties were Ell = E.,_ =

6.89 x 10 l°, GI2 = 2.65 x 10 l°, and t'12 = 0.3.

The behavior of the chebyshev aerodynamic coeffients, a, are of interest because

several perturbed runs of the program axe needed to produce finite difference derivatives

for later use by the sensitivity program. As Figures 8-9 show, the overall trend of these

aerodynamic coefficients is smooth, but with significant sharp "wiggle" in these curves.

This wiggle makes accurate finite differencing problematical on the affected a's. These

curves are the worst cases; many of the other curves are much smoother.

To overcome this problem, a higher-order finite difference scheme using a large step

size was used. This scheme

1

if(x) _ 1-i--_ [f(z - 2_.r)- Sf(z - _x) + Of(z) Jr" 8f(x + _x)- f(z + 2,Xx)] (4.s)

has an accuracy of O(Az4).

Note, these figures are for single elements of the sixty element {a} vector. These

graphs can be used to estimate the best step size for a single element, but not for the

entire vector. In an attempt to discover an optimal step size to maximize the accuracy of

the vector as a whole, the L-2 norm of the difference between two finite differences was

minimized. In this case, for each of a wide variety of step sizes, a forward and central first

derivative finite difference was calculated with the central difference used as a reference.

The logarithm of the average of the square of the difference of these two values was plotted.

The step size that produced the minimum difference was chosen as our optimal step size

for use in eqn. 4.7. Note, this is not in any way a percentage error, but instead the average

absolute squared error. Figure 10 shows th.e variation of this pseudo-error with step size

in a and aspect ratio. Similar curves were generated for the other three rz's.
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The individual deflection coefficients, C. show some wiggle, similar to the aerodynanlic

terms, but the effect is much smaller. Since these derivatives are only used to confirm the

sensitivity results, a step size study was less important. Nevertheless. one was performed

to insure that these derivatives would be as accurate as possible.

Derivatives of the stiffness matrix are also calculated by finite difference for use in the

sensitivity code. A step size study identical to the aerodynamic code study was undertaken.

While the term "L-2 Norm" is not strictly accurate for a matrix operation, the process

was the same. The difference between each term of a central and a forward differenced

derivative was squared and summed. The behavior of this pseudo-error measurement is

also plotted in Figure 10. The optimal step size was used by a central difference in the

actual sensitivity calculation.

The variation of the trim angle of attack with respect to the wing area is shown

in Figure 11. The solid line shows the converged results from the iterative aerodynamic

and structures combination. The various dashed lines show the variation predicted by the

sensitivity derivatives at the different base configurations. The prediction goes through

the converged value at the base geometry and is linear with a slope equal to the sensitivity"

derivative. The desired result is for this line to be tangent to the converged data curve.

Similarly, the sensitivity of the trim angle of attack to changes in the wing aspect ratio

is shown in Figure 12. The solid fine shows the converged iterative results and the dashed

lines show the predicted variation by having a slope equal to the calculated sensitivity

derivative.

Figures 13 and 14 show the converged and predicted values for the angle of attack

variation with respect to taper ratio and sweep. It is obvious from Fig. 7 that the obtained

value of the sensitivity of the angle of attack with respect to the taper ratio is not very

accurate corresponding to the taper ratio values of 0.5 and 0.8. However, note that the

value of the converged angle of attack is almost insensitive to the variation in taper ratio

at those values of taper ratio. The inaccuracy in the present results can be attributed to

the numerical problems associated with determining derivatives that are almost zero.

Also of interest are deflection sensitivities. Figures 15-18 show the predicted and
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actual variation of a few of the deflection expansion coefl:icients. Figure 15 is the worst

of all of the plots in this report. Note the relative scaling of the axes in this plot. The

sensitivity is very near zero. Perhaps more important is the sensitivity of the deflections

themselves. Figures 19-22show the sensitivity of the leading edgetip deflection (measured

in meters). The sensitivity of the coefficient C1 with respect to wing area is not very

accurate (see Fig. 15) as C1 is almost insensitive to the variation in the wing area. The

inaccuracies obtained in calculating this sensitivity do not however affect the sensitivity

of the tip deflection with respect to wing area. This can be observed in Fig. 17. From

Figs. 17-20 it is clear that the present formulation yields very accurate shape sensitivities

for the aeroelastic tip deflections and can be used in optimization studies. The coefficient

errors largely disappear in the integrated quantities.

Table 1" Comparison of Finite Difference and Analytic Logarithmic Derivatives

Term Finite Difference Analytic

do -1.188194 - 1.129775
dS
_ -0.366320 -0.463287

d.4 R
d,:, -1.85613x10 -2 -2.40882x10 -2

d____ 0.098611 0. 126455
dA
__ _5.83136x10 -4 -9.77324xi0 -3
dS

0.122537 0.123591
d.4 R
d___ 0.332564 0.329906
dA

0.122932 0.112007
dA

dTipDel 0.984423 0.978191
as

dTipDef 1.888806 1.916328
dAR

dTipDeI 0.273598 0.265756
dA

dTipDef 0.262560 0.258709
dA

These errors are largely numerical in origin. Variables with very small logarithmic

_'0 ErTOT

4.917

29.906

29.777

28.236

40.333

0.SSSl

-3.957

-8.887

0.2812

1.457

2.866

1.467

derivatives will be difficult to differentiate numerically regardless of the scheme used 21.

Table 1 shows a variety of variables, their logarithmic derivatives, and the error in calcu-

lating them. As can be seen from the table, some of the intermediate results with very low

logarithmic derivatives show as much as a 40% error. However, sensitivities of r,he final
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integrated tip deflection results show a maximum of a 3% error.

The results show good accuracy for integrated quantities such as tip displacements but

less accuracy for individual displacement coefficients or trim angle of attack. In general.

the accuracy decreases noticably when the size of the derivative decreases.

The global sensitivities of the aerodynamic coeffients were also studied. Equation 3.4

was used to calculate these sensitivities. As with the deflection coefficient sensitivities.

it was difficult to accurately model the sensitivities of individual coefficients. A wide

variety of coefficients were examined for each of the four shape parameters. Figures 23-30

are representative of the overall results. Figures 23-24 show the mediocre modeling of

da/dS. The similarly bad modeling of da/dAR is shown in figures 25-26. Despite more

eratic behavior in the variation of the a's with respect to sweep and taper, the modelings of

da/dA and da/d)_ are much better. These are shown in figures 27-28 and 29-30 respectively.
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5.0 Constant Local Pressure Representation

The global Chebyshev pressure representation will not adequately capture smalh lo-

cal, details in the pressure field unless a very large number of terms axe used. Thus.

an alternative scheme was employed. The pressure is represented by using interpolation

polynomials that have local support over the wing panel. It is expected that a larger

aerodynamic coefficient vector, {a}, will be necessary for similarly accurate results. This

relationship is examined.

Any number of polynomials are available for this purpose. To begin with a scheme

that represented panels each having constant pressure was used. Given a square panel

defined as (u, t,) = (-1, 1), and the values at the four corners of the panel as boo. b01. bl0.

b11. Then the interpolated value p at any point (u, v) on that panel is given by:

p(u.v)=_[1 1][ b°°bl0 b11b°l] { 1}1 (5.1)

This can be rearranged by multiplication to become:

boo }
1 [I i I i1 bo_p(u, v) = blo (5.2)

bll

In other words, the pressure on a panel is represented by the average of the pressures

at the four corners of that panel. The symbol Ri(u, v) is used in the following chapters

to represent, the interpolation polynomials used by the bilinear and biquadratic interpo-

lation. For completeness sake. the constant pressure panel representation's interpolation

polynomials are
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1

R,(u, v) = _ (5.3)

where i varies from 1 to 4.

This form is suitable for the integration of the forces. If we call the right hand side

our aerodynamic coefficients (actually true pressures), {a}, we get

p(u, v)= {R}r{a} (5.4)

This pressure representation can be used in eqns. 2.10 and 2.12. These equations

allow us to produce the [.4], aerodynamic kernal matrix, for the constant pressure panel

case. A typical term in [Ac], our constant panel aerodynamic matrix, is:

f_' f_'[Ac]= _ R(u,t')"/,(z.g)lJl(q,_)tlJ2(u,t,)ldudr
p Is 1 1

(5.5)

where J2(u, v) is the Jacobian of the transformation from the (r/, _) to (u, v) coordinate sys-

tem, and the subscript C indicates the constant pressure representation of the aerodynamic

pressure over the wing panels.

[Ac] has the following properties:

1) Each row corresponds to a particular Qi (corresponding to 7i).

2) Each column corresponds to the contribution of a particular point pressure.

3) Each wing panel will add to 4 columns in [A]. For instance, panel "'j" will add to

each element "i" in the column corresponding to the upper left node:

7!.

f_t /_1 1] _ -4 _',(rl, f)Igl(rl,_)llJ2(u.v)l du dv (5.6)

The constant-panel version of {L} is very similar. Each panel contributes to tile four

elements of the vector corresponding to its four corner nodes.

5.0 Conltanlt LocAl Pressure Representation



A Gauss integration scheme was used to perform the double integrals in the [Ac] and

{ Lc } equations.

The first step was to verify [Ac] and {Lc}. Recalling that Q, = [Ac]{a} and

Lift = {Lc}r{a} gives us an easy way to test the terms. Comparing Q, and the lift

to results earlier obtained from using global Chebyshev polynomials eventually gave very

good results.

An evenly distributed rectangular grid was first used. A computer graphics visualiza-

tion of the error field confirmed that significant error was concentrated in the region very

near the leading edge.

A revised gridding scheme was devised. This had two refinements. The inability of

FAST to produce pressure data at the wing edges was initially a problem. Under the

original locM bil_inear scheme, panels were assembled away from the edge. resulting in a

100_ error band around the boundary of the wing. The current scheme puts the panels

nearer to the wing edges and also specifies a zero pressure along the edges, allowing panels

to be placed along the wing edges.

Second, a variable spacing technique was used to put improved resolution where it

was needed. This used a modified half-Gauss-Lobatto _id. The phase and frequency of

the cosine term in the Gauss-Lobatto equation was changed to give high resolution at the

wing leading edge and tip, and low resolution along the trailing edge and wing root.

zri-1

= :v-T)+ 1 (5.s)

_j-1 =
q(j) = -2cos( _- -,- 1 (5.9t

2 N, 2 _



This schemecaptures the leading edgepeak of the pressurefield much better than

the earlier schemeemploying a uniformly distributed grid and also better than the global

chebyshevschemeemployedin Chapter 4.

Then, the derivatives of [.4] and {L}, taking into account all the zero coordinate

derivatives,are:

kgx kgy

(5.1o)

and

dL
dr--_l= E E Rw_wyJ2 dJldrt

kgx kgy

(5.11)

where kg:c and kgy are the number of gauss points in the z and g directions. (Typically,

kg:c = kgg = 2). Note that dJ2/drt = O.

Tables 4- 13 (in Chapter 8) show the results from the constant pressure panel versions

of the analysis. Comparisons with the other approaches show very close results.
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6.0 Bilinear Local Pressure Representation

Next, a bilinear scheme was used to represent the wing pressure. Given the same

square panel defined as (u, u) = (-1, 1), and the values at the four corners of the panel as

boo, b01, bx0, bxl. Then the interpolated value p at any point (u, v) is given by:

p(u,v)=_[1-u l+u][ b°°blo bllb°l] {1-V}l+v
(6.1)

This can be rearranged by multiplication to become:

1

p(u. v) = _ [(t -_,)(1 - v) boo }

b01
(l-u)(l+v) (l+u)(l-v) (l+u)(l+v)] b,o (6.2)

If we call the left hand vector R, our interpolation vector, and the right hand side is

our aerodynamic coefficients (actually true pressures), {a}, we get

p(u,v)= {R}r{a} (6.3)

where a typical term in [ABL].our bilinear aerodynamic matrix, is:

FF[ABL] = Z R(u'v)"/i(z'Y)lJ_(q"_)llJ2(u'v)ldudv
panel.9 1 1

(6.4)

where J2(u, v) is the Jacobian of the transformation from the (0, _) to (u, v) coordinate

system, and the subscript BL indicates the bilinear representation of the aerodynamic

pressure over the wing panels.
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[,4BL] has the same properties discussed for [Ac]. For instance, panel "j" will add to

each element "i" in the column corresponding to the upper left node:

I I

(6.5)

The bilinear version of {L} is very similar. Each panel contributes to the four elements

of the vector corresponding to its four corner nodes.

Lsz, = _ R(u,t,) IJ_(,7,()l]J2(u,u)] du du
p_nels -- 1

(6.6)

A Gauss integration scheme was used to perform the double integrals in the Aac and

LBl. equations.

The next thing to test was the derivatives of [Asc] and {£}. This was accomplished

by comparing the analytic derivatives to finite difference derivatives calculated bv recalling

the subroutines with slight changes to the shape parameters.

The new bilinear-interpolation versions of the terms {d{a}/da}, [d{a}/d{C}]. and

{d{a}/drt} remained. Each was calculated by appropriate finite differences. Then. the

sensitivity code had to be modified to allow easy switching between the two (and other

future) schemes.

R(u, v) - Bilinear interpolator. R has 4 different values, one at a time. depending

on which term of [A] is under consideration.

nl = o.25(1 - _,)(1 - _) : o.25(1 -4 - v + _,) (6.7)

R2 = 0.25(I+ 4)(I - u) = 0.25(i+ u - v - uv) (68)

R3 = 0.25(I - u)(1 + u) = 0.25(I- u ÷ u - uv) (6.9)
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Ra = 0.25(1 + u)(1 + t,) (6.10)

Since the derivatives du/drt and dv/drt are zero. the derivatives of R, is also zero.

6.1 Bilinear Pressure Interpolation

The moti,_'ating factor for attempted local or panel based schemes was to try to

improve the accuracy of the local, derivatives of the aerodynamic loads. A major factor in

the inaccuracy of the Chebyshev approach's aerodynamic derivatives were the "wiggles"

in the data being differentiated.

A study was undertaken to determine if the new aerodynamic coefficients, actually

point pressures, were any smoother in their behaviors. Each of the four shape parameters

was varied and pressures at three points on the wing were stored. These points were the

nodes nearest to the wing leading-edge-root, the wing center, and the wing trailing-edge-

tip. Nearly all of the data was if not linear, at least very smoothly varying. Figures 31 - 34

show the four worst cases. Only the trailing-edge-root pressure vs. Sweep ph)t indicates

a potential problem. The other sweep plots were perfectly smooth. The pressures shown

are measured in Pascals.

6.2 Bilinear Results

The variation of the trim angle of attack with respect to the wing area is shown

in Figure 35. The solid line shows the converged results from the iterative aerodynamic

and structures combination. The various dashed ].ines show the variation predicted bv the

sensitivity derivatives at the different base configurations. The prediction goes through

the converged value at the base geometry and is linear with a slope equal to the sensitivity

derivative. The desired result is for this line to be tangent to the converged data curve.
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Similarly, the sensitivity of the trim angle of attack to changes in the wing a._pect ratio

is shown in Figure 36. The solid line shows the converged iterative results and the dashed

lines show the predicted variation by having a slope equal to the calculated sensitivity

derivative.

Figures 37 and 38 show the converged and predicted values for the angle of attack

variation with respect to taper ratio and sweep. It is obvious from Fig. 38 that the

obtained value of the sensitivity of the angle of attack with respect to the taper ratio is

not as accurate as one would like. However, note that the value of the converged angle of

attack is almost insensitive to the variation in taper ratio at those values of taper ratio. The

inaccuracy in the present results can be attributed to the numerical problems associated

with determining derivatives that are almost zero.

Also of interest are deflection sensitivities. Figures 39-42 show the sensitivity of

the leading edge tip deflection. From these figures it is clear that the present formulation

yields very accurate shape sensitivities for the aeroelastic tip deflections and can be used in

optimization studies. The coefficient errors largely disappear in the integrated quantities.

These few errors are largely numerical in origin. Variables with very small logarith-

mic derivatives will be difficult to differentiate numerically regardless of the scheme used

(Haftka 2a ). The final compaxisions between the current versions of both schemes is also of

interest. The following chart. Table 2, tompares the various results. The finite difference

derivatives are all forward derivatives where the step size was decreased until the derivative

converged:

S.O Bilinear Local Pressure Representation 71



•-_ 8.5
U
t_

0 7.5

m

0') 7

•_ 6.5

g
6

-=
0 5.5

--.- Converged Angle of Attack
Sensitivity Prediction

"O

i r I

¢_ 3 4 5 6 7 8 9 10 1

Aspect Ratio
Trim Angle of Attack vs. Aspect Ratio

BiLinear Pressure Representation

Figure 36. Trim Angle of Attack vs. Wing Aspect Ratio, Bilineax Pressure Representation

• .0 Bilimeat Loctl Presaure R.epreseatation 72



Table 2: Comparison of Bilinear and Chebyshev approach Derivatives

Term Bilinear Chebyshev Bilinear Chebyshev

Analytic Analytic Fin. Dif. Fin. Dif.

air,,, 6.2686 6.0987

TD" 0.4086 0.3879

TDw/a 0.6179 0.5915

da/dS -0.]'10 -0.689 -0.686 -0.725

dTD/dS 0.040 0.038 0.040 0.038

d_/dAR -0.766 -0.775 -0.579 -0.596

dTD/dAR 0.209 0.274 0.209 0.195

d_/dA -0.056 -0.051 -0.032 -0.040

dTD/dA -7.2x10 -_ -6.7x10 -3 -7.2x10 -a -6.$x10 -a

da/d), -0.359 -0.294 -0.188 -0.226

dTD/d,k 0.213 0.266 0.227 0.212

" Tip Deflection
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7.0 Biquadratic Local Pressure Representation

A biquadratic pressure panel representation was developed next. Again. a panel was

designated as having (u.v) = (-1, 1). For this scheme, the panel has nine input pressure

nodes.

The interpolation polynomials R, were derived from Langrangian polynomials. The

two dimensional R's are products of the one dimensional quadratic Lagrangian polynomi-

Ms. These Lagrangia.n polynomials with an arbitrarily positioned middle node are:

1 (u - tl2)(u - 1)

LI(.)= _ (1 +.2) (7.1)

L2(_) = (" + 1)(_- 1) (7._0)
(u2 + 1)(u2 - 1)

L3(.) = _ (1-,,=) (7.3)

where

u is the location to be interpolated to and

u2 is the coordinate of the middle node.

Next, we define our two dimensional interpolation polynomials as follows:

Rl(u,v) = Li(u)Ll(v) (7.4)

R2(u,v) = L2(u)Ll(v) (7.5)

R3(u, v) = L3(u)L1 (v) (7.6)
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R4(u, t,) = Ll(u)L_(v) (7.7)

Rs(u, v) - L2(u)L2(v) (7.s)

R6(u,v) = L3(u)L_(v) (7.9)

Rv(u,v) = L](u)L3(v) (7.1o)

R,(u, v)= L2(u)L3(v) (7.11)

Rg(u, v) = L3(u)La(v) (7.12)

This development allows us to use the same half-Gauss-Lobatto grid scheme developed

for the constant and bilinear panels. Initially, this didn't work properly. The biquadratic

interpolation calculated a significantly higher lift for a given deflection, leading to a sig-

nificantly lower required trim angle of attack, roughly half of what was predicted by the

other methods.

Some graphical visualization revealed the problem. The pressure field calculated by

FAST is shown in figure 33. The field is heavily dominated by a huge spike along the

leading edge. The constant and bilineax fits were able to deal with what is effectively an

impulse in the field. The biquadratic representation could not. As it tried to fit a curve

through the zero pressure on the leading edge, through the huge value at the next node,

and back to a fraction of that value on the third node, it encountered numerical difficulties.

The solution to the problem was to reduce the gradient of the pressure field at the

leading edge. For this purpose, the edge values were set equal to the values at the near-

est internal node. Thus, the edge pressure gradient was set to zero. The biquadratic

interpolation then worked correctly.

To understand the magnitude of the net change in the pressure field, the bilinear and

constant convergence tests were rerun. The converged value of trim angle of attack
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Figure 43. V\'in_Pressure Field
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was reduced by about 2%. The change is small because the area of the panels effected is

extr.emely tiny.

7.1 Biquadrattc Results

Figures 44-47 show the biquadratic pressure representation results for trim angle of

attack and the sensitivity derivatives. Figures 48 - 51 show the tip deflection values and

their sensitivity derivatives. These plots are nearly identical to those produced by the

other pressure schemes.

Chapter 8 discusses the relative performance of the schemes in detail.

Equation 3.4 was also used to try to represent the global sensitivities of the point

pressures to the shape parameters. It was anticipated that as with deflection coefficients

it would be difficult to model the individual sensitivities of the 1600 coefficients. As with

the Chebyshev version of da/drt, the results were mixed. Figures 52-59 axe representative

of the large number of point pressures examined.

Figures 52-53 show da/dS at two points along the leading edge. Figures 54-55 show

da/dAR's mediocre performance. As with the chebyshev approach, da/dA and da/dA per-

form much better. Representative plots are shown in figures 56-57 and 58-59 respectively.
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8.0 Method Comparison

In this research, a variation of Sobieski's Global Sensitivity Equations is implemented

to obtain the global sensitivity of the static aeroelastic responses. The scheme is indepen-

dent of the analysis code used to obtain aerodynamic data.

8.1 CP U Time Comparison

Each method produced very similar final results. The remaining question is how well

they performed costwise. The following chart shows a comparison of CPU times on the

VAX mainframe for a complete analysis run. Here, Nx is the number of pressure nodes in

the z, or chord-wise, direction. Ny is the number of pressure nodes in the y, or span-wise,

direction.

Table 3: CPU Times

Case CPUTime

HR: MIN • SEe

Chebyshev 1:31 : 55.31

Constant Nx=Ny=15 1 : 11 : 42.02

Constant Nx=Ny=39 1 : 24 : 41.62

Bilinear Nx=Ny=15 1 : 20 : 52.99

Bilinear Nx=Ny=39 1 : 23 : 00.35

Biquadratic Nx=Ny=15 1 : 14 : 17.58

Biquadratic Nx=Ny=39 1 : 24 : 41.40

a.O Mt. thod Complrison 100
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Thus, the differences in CPU run times for the various schemes and resolutions vary

by less than 20%.

8.2 Performance Comt)arison

The next issue for the local schemes is just how much resolution is necessary. This is

not a simple issue.

Tables 4-aa show the various converged results for all three local pressure schemes.

A wide range of resolutions is investigated. The tables also list each value's percentage

difference from the highest resolution grid's value. These percentage differences give an

indication of how well a particular grid has done at producing a converged result. The

senstiviLv derivative charts also give the logarithmic derivative of the highest resolution

grid's value. This value gives some indication of how accurately it is possible to model the

derivative.

Some grid conclusions are valid across all of the cases. It is obvious that N_ has a

much more significant effect on the solution than N_. This is because the main variation in

the pressure field is in the x, or chordwise, direction. A certain minimum resolution in the

y, or spanwise, direction seems necessary, perhaps N v = 15. After that, increasing spanwise

resolution accomplishes little compared to a similar increase in chordwise resolution.

Since the difference in CPU times between high and low resolution cases is not very

large, in most cases running the program at the highest resolution available makes sense.

If however, one wishes to minimize the CPU time used, then some choices must be made.

One has to decide how close to a converged value one is willing to be. The convergence

tables give some qualitative feel for what grid spacings are necessary to be as close as you

desire to convergence for a particular technique.

For instance, assume a 10 9_' difference from the highest resolution value is permissable

8.0 Method Compariaon 101



for a certain application. A look through the Biquadratic results shows that a 15x15 grid

will provide this accuracy. The bilinear approach requires a 15x5 grid to get this result.

The constant pressure panel approach requires a 15x15 grid.

The choice of which scheme to use remains. All four schemes work well. Of the three

local schemes, the higher order schemes converge faster than the lower schemes, but the

difference isn't overwhelming. Since the CPU times for the three schemes are comparable,

the biquadratic scheme produces the best results for similar computational effort. However,

the polynomial overshoot problems encountered in this approach could be problematical

for other cases. The bilinear approach is more robust and only slightly slower to converge.
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9.0 Conclusions

The results show good accuracy for integrated quantities such as tip displacements but

less accuracy for individual displacement coefficients or trim angle of attack. In general,

the accuracy decreases noticably when the size of the logarithmic derivative decreases.

The global sensitivity approach does an excellent job of predicting global sensitivities

with the input of just local sensitivities. It does this without the expense of multiple runs

of an entire aeroelastic system.

A few of the capabilities of the current system have never been explored, and could

expand the utility of the system. The aerodynamic-code input filter code supports cam-

bered and twisted wings, for instance. The system also allows easy replacement of the

various modules with higher performance models. A non-linear aerodynamic code or a

fancier structural module could be easily integrated into the system.

The code implemented for this research can be of significant utility in the early con-

figuration determining stage of a design project. Coupled with an appropriate optimizer,

the code could produce a reasonable baseline design for a minimum effort.
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