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Abstract

A technique to obtain the sensitivity of the static aeroelastic response of a three di-
mensional wing model is designed and implemented. The formulation is quite general
and accepts any aerodynamic and structural analysis capability. A program to combine
the discipline level, or local. sensitivities into global sensitivity derivatives is developed.
A variety of representations of the wing pressure field are developed and tested to de-
termine the most accurate and efficient scheme for representing the field outside of the
aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This
approach had some difficulties in representing local variations in the field, so a variety
of local interpolation polynomial pressure representations are also implemented. These
panel based representations use a constant pressure value. a bilinearly interpolated value.
or a biquadratically interpolated value. The interpolation polynomial approaches do an
excellent job of reducing the numerical problems of the global approach for comparable
computational effort. Regardless of the pressure representation used. sensitivity and re-
sponse results with excellent accuracy have been produced for large integrated quantities
such as wing tip deflection and trim angle of attack. The sensitivities of such things as
individual generalized displacements have been found with fair accuracy. In general. ac-
curacy is found to be proportional to the relative size of the derivatives to the quantity

itself.
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1.0 Introduction

During the design phase of an engineering system, numerous analyses are conducted to
predict changes in the characteristics of the system due to changes in design variables. Usu-
ally, this process entails perturbing each variable in turn, recalculating the characteristics,
and evaluating the sensitivities by a finite-difference calculation. These repeated analyses
can drive the cost of design very high. An approach that has found increased interest
recently in engineering design is analytical calculation of the sensitivity derivatives!. Tvp-
ically, the analytical approach requires less computational resources than a finite-difference
approach and is less subject to numerical errors (round-off or truncation). The analytical
approach is best developed in parallel with the baseline analysis capability since it uses a
significant portion of the numerical information generated during that baseline analysis.
In the design of modern aircraft, airframe flexibility is a concern from strength. control.
and performance standpoints. To properly account for the aerodynamic and structural im-
plications of flexibility. reliable aeroelastic sensitivity analysis is needed. Therefore. both

structural and aerodynamic sensitivity analysis capabilities are necessary.

1.1 Sensitivity Analysis

Structural sensitivity analysis methodology has been available for over two decades
for both sizing (thickness, cross-section properties) and shape (configuration) variables?.
However, aerodynamic sensitivity analysis has been nonexistent until relatively recently.

Some limited aerodynamic sensitivity analysis capability was developed for aircraft in
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subcritical compressible flow by Hawk and Bristow?, but it only handled perturbations in
the direction of the thickness of the wing (thickness, camber. or twist distribution). Yates®
proposed a new approach that considers general geometry variations including planform
for subsonic, sonic, and supersonic unsteady, nonplanar lifting-surface theory. This work
is still under progress.

Aeroelastic sensitivity analysis methodology has also been available for more than
two decades for structural sizing variables (Haftka and Yates®). This is because changes
in sizing variables exclusively affect the structural stiffness and mass distribution of the
airframe and not its basic geometry. Therefore, structural sensitivity analysis capability
is sufficient. However, the lack of development in aerodynamic shape sensitivity analysis
explains why there are very few results in aeroelastic shape sensitivity analysis. In a
notable exception, Haftka et al® designed a sailplane wing under aeroelastic constraints
and analyzed the design model with vortex lattice and finite element methods. A finite-
difference (for GSE derivatives) aeroelastic sensitivity analyvsis capability is made possible
by (1) devising a reduced order model to describe the wing static aeroelastic response and
(2) using exact perturbation analysis to approximate changes in the vorticity vector with

changes in the geometry. Follow up work used semi-analytical derivatives.

Barthelemy and Bergen’ demonstrated the feasibility of calculating analvtically the
sensitivity of wing static aeroelastic characteristics to changes in wing shape. Of interest
also was the fact that the curvature of the aeroelastic characteristics was small enough
that analytical sensitivity derivatives could be used to approximate them without costly
reanalyses for large perturbations of the design variables.

The dynamic aeroelastic phenomena is also of interest to designers and it would be
advantageous to the aircraft designers to have a tool that can be used to predict the changes
in flutter speed with the changes in basic shape parameters.

As is the case for static aeroelastic response, sensitivity calculations have only been
available for structural sizing parameters. For example, Rudisill and Bhatia® developed

expressions for the analytical derivatives of the eigenvalues. reduced frequency and flutter

1.0 Introduction 2



speed with respect to structural parameters for use in minimizing the total mass. However,
this method is limited because the structural parameters are sizing variables such as cross-

sectional areas, plate thickness and diameters of spars.

Pedersen and Seyranian® examined the change in flutter load as a function of change
in stiffness, mass. boundary conditions or load distribution. They showed how sensitivity
analysis can be performed without any new eigenvalue analysis. The solution to the main
and adjoint problem provide all the necessary information for evaluating sensitivities. Their

paper mainly focuses on column and beam critical load distributions.

In a recent study, Kapania, Bergen and Barthelemy'® obtained the sensitivity of
a wing flutter response to changes in its geometry. Specifically, the objective was to
determine the derivatives of flutter speed and frequency with respect to wing area, aspect
ratio, taper ratio, and sweep angle. The study used Giles'!*!? equivalent plate model to
represent the wing structure. The aerodynamic loads were obtained using Yates'® modified
strip analysis to analyze fAutter characteristics for finite span swept and unswept wings.
It is noted that Yates modified strip theory was used quite recently by Landsberger and
Dugundji'?, with a modification for camber effects given by Spielberg!®. to study the flutter

and divergence of a composite plate.

Unger, Hutchison, Rais-Rohani, Haftka. and Grossman'® recently demonstrated a
variable-complexity approach to the multidisciplinary design of a transport wing. Their
approach optimizes based on a relatively simple and inexpensive model. Then. this ap-
proximate optimal wing is reoptimized using a more complex model.

An excellent examination of various issues involved in aeroelastic analysis was re-
cently published by Borland!”. The study compares and contrasts “integrated” aeroelastic
systems versus “interfaced” systems. Borland refers to packages designed to produce aeroe-
lastic results from a single program as “integrated”. Packages that have separate modules
for each discipline that each write as their output the input for another package are termed
“interfaced”. As is discussed in section 2.1 of this dissertation, the current work's scheme

is a variation on the “interfaced” approach.
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1.2 Current Work

The current work develops techniques to determine the sensitivity of the various static
aeroelastic responses to the variations in various shape parameters, namely: (i) wing area.
(ii) sweep, (iil) aspect ratio and (iv) the taper ratio. The aeroelastic responses were the
generalized aeroelastic displacements and the trim angle of attack. The sensitivities were
obtained by differentiating the constitutive equations. It was shown that the resulting sen-
sitivity equations can be reformulated into a variation of the Sobieski’s Global Sensitivity
Equations'® (G.S.E.) approach. Both schemes gave the various global sensitivities (i.e.
the sensitivity including all interdisciplinary interactions) in terms of local sensitivities
(i.e. the sensitivities obtained at the discipline level). A key feature that distinguished
this study from the study by Barthelemy and Bergen’ is the use of a more realistic aerody-
namic model, FAST2% that uses a lifting surface theory as opposed to a lifting line theory
employed in the earlier study. The formulation was designed to be quite general so that
it was applicable with any aerodynamic code which, for a given geometry and structural
deformations, provides aerodynamic pressures on the wing surface. To facilitate the calcu-
lation of the shape sensitivities of various quantities (required in aeroelastic analyses). the
pressure distribution was represented as a double series of global Chebyshev polynomials.
The displacements of the wing were obtained using an iterative scheme. To validate this
more general formulation. sensitivity of the static aeroelastic response of an example wing
was obtained. The results were compared with those obtained by using a purely finite

difference approach. A good agreement was obtained.

During the course of the work [Ref. 18], it was found that the generalized pressure
coefficients. due to the global nature of the interpolation polynomials. may be sensitive
to small changes in independent variables. As a result. the determination of the local
derivatives of some of the generalized aerodynamic coefficients was found to be difficult

when forward or central differences were used. A higher order finite difference scheme using
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a large step size was emplyed so that the effect of local wiggles can be reduced. Obviously,
this was an expensive option. Other more robust techniques are therefore needed to express
the aerodynamic pressure. A representation of the aerodynamic loads that is piece-wise
polynomial should be used. Some of the advantages of piece-wise representation over global
representation are discussed by Burden and Faires?! and by de Boor?*2.

In addition, the piece-wise polynomial pressure approach will have a major application
in representing the aerodynic pressure of the High Speed Civil Transport Wing. This wing's
flow regime will be transonic, thereby having pressure discontinuities from shock waves.
A piece-wise function is often better represented by piece-wise polynomials as opposed to

globally defined polynomials.
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2.0 Aeroelastic Response

A scheme was developed to interface arbitrary aerodynamic and structural codes
in order to calculate the aeroelastic response of a wing. Anticipating the availability
of nonlinear aerodynamic models in the future, the formulation does not assume a linear
dependence between the lift generated and the generalized coordinates and the initial angle
of attack. This formulation needs an iterative process to calculate the angle of attack to
which the aircraft is trimmed to produce the required lift.

This analysis is performed for the wing shown in figure 1. This forward swept wing
has its coordinate origin at the root quarter chord. The y-axis is perpendicular to the root
chord. in the span-wise direction. The z-axis is in the chord-wise direction. with positive

values being aft of the quarter-chord.

2.1 Overview

The combination of realistic aerodynamics and structural models in a modular man-
ner with shape sensitivity code requires a systematic approach. A scheme of calling the
aerodynamic and structural codes to produce a converged static wing loading and shape
was developed. In addition a set of “neutral format” data files were defined. Here. a
speutral format” data file is a file that is defined to contain certain data at certain spots.
regardless of the package that originally generated the data. This scheme makes the re-
placement of analysis packages practical and relatively simple. These files include the base
geometry and initial deflection values, the intermediate pressure loading and structural

deflections, and the final converged wing loading and deflection.
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The aeroelastic problem is broken into subproblems (or blocks) by discipline. The
aerodynamic and structural blocks are called iteratively to produce a converged static wing
loading and shape. Shape sensitivity values for this converged wing are then obtained
(discussed in chapter 3). Figure 1 is a flow chart illustrating this scheme.

Each block operates completely independently of the other. It reads from several
~neutral format” input files, performs its calculations and generates one or more neutral
format output files. Thus, any aerodynamic and structural analysis capability may be
used. Only new input and output “adapter” programs need be written to add a new
analysis package to the system. These two adapter programs must convert the neutral

format data files to and from the new package's native format.

2.11 Aerodynamics:

The aerodynamic block is responsible for generating the loads on the wing. It reads as
input the wing geometry parameters and the current wing deflections. It is able to output
the pressure on the wing at arbitrary points. Figure 2 illustrates the aerodynamic section.
Currently. the aerodynamic analysis is being performed by program FAST. This lifting
surface code was developed at NASA, Langley. It is based on a kernal-function based
theory developed by Yates, and was implemented by Desmarais and Bennett??. Originally
developed for a CDC Cyber computer. this program., with considerable effort. has been
ported to the VAX/VMS and IBM-CMS operating systems. Adapter programs to convert

to and from native FAST data files to the defined neutral format were also developed.

2.12 Structures:

The structural block is responsible for calculating the deflection of the wing. It 1s
given the wing geometry and wing loading. It calculates the deflected shape of the wing.
Figure 3 illustrates the structural section. Currently, Giles” ELAPS'? code is being used
to perform the structural analysis. This Ritz method program was developed at NASA.
Langley. It has been adapted for use on both the VAX and IBM systems. Adapter

programs have been developed to convert wing pressures to ELAPS generalized forces and

2.0 Aeroelastic Response s



Loop to find

converged

optimal design.

2.0 Aeroelastic Response

Initial Design Variables

‘uunun

Aero
Section

+

Structural
Section

onverged?

Y

Sensitivity
Section

1

Optimization
Section

No
Converged?

Stop

Figure 2. Overall Flow Chart

Loop to find

converged

static deflection.



Geometry

Geometric
Adaptor

Deflections
Neutral ->Aero. Code

Aerodynamic Code

Load

Adaptor
Aero. Code ->Neutral

Figure 3. Aerodynamic Section



Geometry

Geometric

Load

Adaptor
Neutral ->Struct. Code

Structural Code

Deflection

Adaptor

Neutral ->Struct. Code

Adaptor
Struct. Code ->Neutral

Deflections

Figure 4. Structural Section



to convert its deflection outputs to neutral form.

2.2 Governing Equations

The governing equations of motion for the aeroelastic analysis and the lift can be

written as
(K1(C) = (Q) 2.1)
and
= [ [ e (22)
where

[K] is the stiffness matrix,

{C} is the vector of unknown generalized displacements.
{Q} is the vector of generalized forces.

n is the load factor.

W is the aircraft weight,

p(z,y) is the wing pressure field, and

Q is the wing surface area.

The vector of generalized forces can be obtained as:

Qi =//Qp(r-y)7i(r‘y)d:rdy (2.3)

where 7i(z,y) is the 1th nondimensional displacement function used in the displacement

2.0 Aeroelastic Response 12



o - -

model:

np
wiry) =3 nl(z.y)C (2.4)
=1
with
TEy) = (=) (=) (2:5)
Tmacr Ymar

where m varies from 0 to mw anc n varies from 2 to nw + 2 with n varying more rapidly
than m. The terms mw and nw are configurable options. For this work, mw = 5 and

nw = 6.

These ¥'s satisfy the geometric boundary conditions for a cantilever plate. The C's
in (2.4) are the generalized displacements.

To facilitate both the integration and subsequent sensitivity calculations, a coordinate
transformation was used to simplify the integration limits. This was accomplished using

the following transformation:

4

r(r;,f)—_—ZNJ(ry,f)rj (2.6)
=1
4

&) = Ny(n.Ely; (2.7)
j=1

where

N;{(n.,§) are the shape functions, and the

r; and y; are the coordinates of the four corner points of the wing.

The shape functions are given as
Ni(n. &) = (1 + €601 + nma)/4 (2.8)

where n; and £; are the coordinates of the node : in the n — £ system. Note that this
transformation will change the domain of the wing to a square (-1 <n < 1:-1<¢<1).

The transformed wing is shown in figure 3.

2.0 Aeroelastic Response 13
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As a first step to obtain the generalized forces. the pressure distribution on the wing
was represented as a series of either global interpolation functions or interpolation poly-
nomials that have local support over a wing panel. This can be represented in a generic

form as:

M
p(n,&) =) F(n.&)a’ (2.9)
=1

where a’ can be considered as the generalized pressure coefficients and 3/(n, £) are some
known interpolation functions of n and &.

A large number of interpolating polynomials are available in the literature?!?2. First,
a global tensor product of Chebyshev polynomials was used. Then, a variety of local
polynomials were studied. Details of these approaches and their results are in chapters
4-7.

Generically. the integral for a generalized force Q;. is

1 1
Qi = / /_lp(n,f) i(0-€) 11, )] dnde (2.10)

where |J1(n,£)| is the Jacobian of the coordinate transformation specified by Eqs. 2.6 and

2.7. The generalized force ); can be written as
M '
Qi=ZAija’ (2.11)
j=1

In matrix form

{Q} =[ANa} (2.12)

Similarly, the lift equation can be written as:

nw X s -
— =Y oL’ = (L}7{a) (2.13)
2~ L
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2.9 Aeroelastic Response

The aeroelastic response was obtained in an iterative fashion. In that, the pressure
distribution on the wing is first obtained by assuming the wing to be rigid and having an
angle of attack of 1° (throughout the span). The pressure distribution thus obtained is
used to obtain the vector of generalized forces (Eq. 2.9) which in turn is used to obtain the
vector of generalized displacements (Eq. 2.1). The elastic displacements are superimposed
on the rigid wing and a new pressure distribution on the wing is obtained. This pressure
distribution is then used to obtain the generalized displacements. The total lift on the wing
is calculated, and a new trim angle of attack is obtained by dividing the total required lift
by the current calculated lift and multiplying by the current trim angle of attack. This
process is repeated until a converged value of the trim angle of attack 1s achieved for the
wing. No relaxation is necessary to achieve convergence for the cases studied.

An alternative technique has also been developed to compute the trim angle of attack
and wing generalized deflections. This technique involves significantly more setup effort.
but gives the converged displacement and angle of attack in one step. It should be noted
that only the linearity of the two current analysis programs makes this one step solution
possible.

For the case of linear aerodynamics, one is not required to use an iterative scheme to
obtain the aeroelastic solution. For such a case the vector of aerodynamic pressures, p. at

some discrete points can be written as

() = 1€} + o {22} (2.14)

The generalized aerodynamic coefficients can be written as

[S™)
—
n
e

{a} = [R]{p} (2.

2.0 Aeroelastic Response 10



where R is an interpolation matrix that converts discrete p's to our generalized a’s. For
our case, {p} is taken at Chebychev points. Eqn. 2.13 is substituted into eqn. 2.14. Then.

the equilibrium equations for the structure are updated from eqns. 2.1 and 2.8.

(K] {C} = (4] [R] (4] (C) + of4) (RI {3} (2.16)

The trim equation is adapted from eqn. 2.12.

v T 7 T dp -
s = (DT RIA(C) + o (TR {5} (2.17)
: . o - Ola}
Note that for our case: [R] [4] = 3(C)
The governing equations, for the case of linear aerodynamics, are:

(K] -4 g8 %] (c 0

= ' (2.18)
T [#g] wm g e iy

The left hand side matrix is identical to the sensivity matrix to be derived in the next
chapter. If linear aerodynamics are to be used and a sensitivity analysis is desired, this
result can result in a slight savings of computational effort over the iterative approach.

In order to get a feel for the performance of the aeroelastic system, the spanload was
plotted at a couple of constant chord positions for both rigid and flexible wings. Figure
6 shows the spanload along the nodes closest to the leading edge of the wing. Figure 7
shows the spanload along a spanwise line approximately along the wing quarter chord. The

differences between the flexible and rigid wings are small, indicating a rather stiff wing.
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3.0 Senstitivity Equations

A scheme for determining the global sensitivities of the aeroelastic system to changes
in shape parameters is developed. This scheme can be shown to be a variation of Sobieski’s
Global Sensitivity Equations. A variety of local sensitivity data is combined to produce
global sensitivity results. Here, the term local sensitivity refers to the sensitivity of an item
within a particular discipline, such as the sensitivity of the wing stiffness matrix to a change
in wing sweep. Global sensitivities are dependent on the interaction of the disciplines. A
global sensitivity example is the variation of wing deflected shape with respect to a change
in wing taper ratio.

The goal of this analysis is to produce values for the global sensitivities dC/dr; and
da/dr;. Here, ri represents any of the wing shape parameters: area, aspect ratio, sweep,
or taper ratio. Equations 2.1, 2.9, and 2.12 can be used to perform the shape sensitivity
analysis of static aeroelastic response. In the following development 0()/d() indicates a
local. single discipline. term and d()/d() indicates a global or total derivative. Taking
derivatives of the equilibrium and the trim equation, with respect to the shape variable

(namely sweep, aspect ratio, wing area, taper ratio), we obtain

dC dK d
KIS+ ey =15 (3.1)
dnW/2) _ (OL,r reda, _ .
W) - (GEyrap+ (g =0 (3.2)

Note that the derivative of lift is zero, because we require the total lift acting on the
wing to remain constant. Additionally, L is purely a function of geometry, so its partial

derivative is the same as its total derivative.
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The vector {dQ/dr;} can be obtained as

dQi <=, 04y, ,  , da’
@~ LG ) 93)
where
da’ Oa’ ~P 8a’ dC, da’ da
= om T lae @) T G (3-4)
and where

da’ /Or; is the local sensitivity of the aerodynamic generalized pressure coefficients
and can be obtained while performing the aerodynamic analysis;

da’ /8C, is the derivative of the generalized pressure coefficient with respect to a
generalized displacement Cy, and

da/dr; is the derivative of the trim angle of attack with respect to ry.

Note that the matrix [4] is also purely a function of geometry: thus its partial and

total derivative are the same.

In matrix form. the global sensitivity of generalized forces becomes

() = Py + (G + IS - LG 6

It is noted that the major computational expense is the determination of d{a}/3{C}.
The sensitivity of generalized displacements, therefore, becomes (combining Eqgs. 3.1

and 3.5)

51 - WIS (550 = (5 = LG5 + TG - (Ge) 139

In this equation, all the terms on the right hand side are known except for da/dr;.
This can be obtained by considering the sensitivity of the lift equation, Eq. 3.2. This

equation can be written as:

(CEV () + TR + (DG G+ DT R =0 37)
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The required sensitivity derivatives can be then obtained by simultaneously solving

the sets of eqns 3.6 and 3.7. With a little rearranging they become:

K] - [Mam] -5 }H"C }={[ 1{a}+{41{a,,}—[a,,1{c}} 35)
PAUEE ISR (317 (a) = {L}T{(50) |

Generating this left hand “sensitivity” matrix by finite differences is extremely com-
putationally expensive. The term 8{a}/3{C} is particularly expensive. It requires calling
the aerodynamic code one time for each element in the {C'} vector. The sensitivity matrix
is valid for a particular base geometry, regardless of which r is of interest. It is only
generated once and saved for future uses. The left hand sensitivity matrix may be used
with a different right hand side to determine the converged wing aeroelastic response. This

equation is given by Eqn 2.18.

[ (V]
o
oo
—

K] - (AR -~ }M{S}}z{ {0} } o

{L}T[g}gl)-] {L}T{_g;l} nW/2

If a sensitivity calculation is to be performed as well. then this approach to deter-
mining the aeroelastic response is more efficient. If only the converged wing configuration
is needed, the iterative approach 1s slightly better. The iterative approach is also more
general; it can be directly applied to non-linear aerodynamic codes, whereas Eqn. 2.18 is

only applicable for linear aerodynamics.

9.1 Comparison Between the Present Formulation and Sobieski’s Global Sen-

sitivities Equations (GSE)

In Ref. 18, Sobieski presented two different formulations (GSE1 and GSE2) to obtain

the global sensitivities of a multi-disciplinary system in terms of the sensitivities of the
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subsystems, called local sensitivities. [t is of interest to compare the present formulation

(Eq. 3.8) with Sobieski's Global Sensitivity Equations.

In terms of the Sobieski’s first formulation, called GSE1, the governing equations for

the wing can be written as:

Trim:
fo = LT({re},a) {a} — %V_ =0 (3.10)
Aerodynamics:
{fa (a, {a}, {CH)} = {0} (3.11)
Structures:
{fc} = [K(ro{C}—[A(re)l{a} = {0} (3.12)
Then the GSE’s are:
r 9fa Ofa  8fa 7 da 8fa
da d{a} a{C} dry ar,
3{fa) Olfa) BOlfal ia) | _ ) ats) 113
da 3{a}  9{C} dr, = Bre (3.13)
alfec)  Blfe} olfc) d(c) a{fc}
L Oda 0{a} a{C} dr, are
or
0 LT 0 ] (b 2-(L)T{a)
aaf; &:9({:} ?3{@} d—d{;‘il)- = - aaij (3.14)
HC} .
0 -4 [K] dre 2 (K{C} - 5= [Al{a}

Note that, since {fs} is not directly accessable, the above form of the Sobieski's Global

Sensitivity Equations could not be used.
In terms of Sobieski’s GSE2 formulation, the governing equations, for the system at

hand are:
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Trim:

a = a({a}, re (3.15)
Aerodynamics:
{a} = {a(a. {C}, ro)} (3.16)
Structures:
{C} = [K(rO]™" [A(re)] {a} (3.17)
The global sensitivity equations are:
r I _ _Oa _ _Oa da da
8{a} 8{C} e dre
3{a d{a d{a d{a
_ofedp 2l fodel B ( 2al (3.18)
_3{cy _8{cy I d{C} 3{C)
- da B{u) . dr4 6r¢

a do
I —6%1} 0 dre 0
a a a d{a
‘%Lal I —g{C) d_d{ﬁl = _3if—zl 13.19)
) e 1
0 —(R]7'4] I el o (K17 [A]j{a}

Since da/d{a} cannot be found easily, this formulation could not be used. The first
equation from 3.14 and the last two equations from 3.19 can be combinted to form a system

as follows:

KN da)y _dfa)q ( Hel
8(C) 7] —l5tey] —da g
o= ET m o | (3.20)
o) {a) —{L)T 0 0 dor

For the current studv. the global derivatives of {a} aren’t necessary. so eliminating
the first line of 3.20 and rearranging it will give us equation 3.9. Thus, our formulation is

a mix of GSE1 and GSE2.
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?—Li

3.2 Solving the System

The terms [K],[4],{a},{C}. and {L} are all quantities known from the converged base-
line configuration. A finite difference technique is used to calculate the terms . 0{a}/8a.
d[K]/0r(, and 8{a}/Or. The terms d[A]/0r and O{L}/0Or are computed analytically.
The terms d{C}/dr; and da/dr; are the unknowns found by solving this system of equa-

tions.

2.3 Derivatives of [4] and {L}

These derivatives are calculated by using the chain rule and the derivatives of each

of their elements. Each element’s derivative will be reduced to derivatives of one of our

coordinates (u, 7. etc.). Thus, derivatives of these coordinates will be found first. then the

derivatives of the elements will be found.
Coordinate Derivatives

u,v - Local panel coordinates. The panel based pressure interpolations discussed
in chapters 3-T use the coordinates u and v for on-panel coordinates. They are based on the

gauss points on a particular panel. Thus. they don’t change with our shape parameters.

du dv

= — = 2
drl drl 0 (3 1)

n,& - Transformed wing coordinates The square n, £ (—1.1) planform doesn't

change with wing geometry changes.
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z,y - True Planform Coordinates These do change with wing geometry.

y:—g(1+n)=%\/5.~lR(1+q) (3.23)

where b is the single-wing span, S is the single-wing area, and AR is the aspect ratio

of the single-wing/

dy _(1+n) [AR

ds 4 S (3.24)
dy _(1+mn) [ 3 o=
dAR~ 4 VAR (3:25)
d d
Zi% - d_?; =0 (3.26)
where A is the wing taper ratio.
z is a function of the local chord length, so %%f- and i%é{ﬂ are derived first.
Y 2,/
c =2 VAR (3.27)
b(1 + A) 14+ A
dC, 1
- 2
45 M1+ N (3.28)
dC, -1 1 /S5
= 9
dAR (1+A) ARV AR (3.29)
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=0 (3.30)

ac, -2 [S
dx  (1+A)?V AR (3.31)
Cly)=C- {1— %(1 —/\)(1+n)] (3.32)

where C(y) is the local chord length as a function of the span-wise coordinate, y.

dC(y) _ dC.C(y)
dS ~— dS C, .
dC(y) _ dC, C(y) (3.34)

dAR =~ dAR C.

dC(y) _ dCr C(y)

o —avc (3.35)

iCly) _dC.Cw) | G
- oc i (3-36)

Now. back to z:

r= <1j5_§) C(y) + ytan A (3.37)

dz.

45 —= 4+ —=tan A (3.38)

ds ds

146 1\ dC(y) dy
2 4

dz _ (14+¢& 1) dC(y) dy ,
dAR ‘( 2 "4) dAR T aag (3.39)
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wg, wy - Gauss weights. These don't change with respect to geometry.

vi(z,y) - Generalized mode shapes. As given in equation 2.5.

(zy) = (I: r) (ygu)

where m = 0 to mw and n = 2 to nw + 2. N is looped over first. Thus,

2

0
o= () ()
Imacr Ymarz
I 0 3
‘r’z(l~y)=< ) ( ’ )
Imaz Ymaz

Em=0,

otherwise ( m # 0 ),

dy ™ ly! { dr dy]
= 'my-— +nr—-

- .m n
dri ZmarYmaz

(3.40)

(3.41)

(3.43)

(3.44)

(3.46)

J, - First Jacobian. The Jacobian of the z,y to 7, coordinate transformation 1s
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1-2A

Then,

(1-Y) _S-Ndy
(1—'7 )‘ 1(1+X)dS (3-48)

T=3 (3.49)
2%1% = (3.50)
% = (3.51)
de/\l - 2(1?A)2 (302

Jo - Second Jacobian. The panel based interpolation schemes discussed in chap-
ters 5-7 use rectangular sub-sections of the square n,£ wing defined such that the local

corrdinates (u.v) = (—1,1) The Jacobian of the n.£ to u.v coordinate transformation 1s

Iy = St (3.33)

v,

n

<

where S, ¢ is the panel area measured in the (n,£) system and Sy, 1s the panel area

measured in the (u,v) system which always equals 4.

The derivatives of J, are
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a2 _ o, (3.54)

dry

3.4 Deflection Sensitivities

These results can be used to calculate a variety of other useful results. For instance.

equation (2.4) can be differentiated and combined with the equations in section 3.4 to

produce the sensitivity of the deflection of any point of the wing to changes in the shape

parameters. Recalling

with

np
W(z.y) =Y vlz.y)C, (3.35)
1=1
Yi(z.y) = (rr y(—L—)m (3.56)
maz Ymar

where m varies from 0 to mw and n varies from 2 to nw + 2 with n varying more rapidly

than m. Then

mc,-[z:

Tmaz {Tmaz

3.0 Senstitivity Equations

dVV(I,y) mw nw+2 dC,‘ I m y n
- e

I
me=0 n=2 mazr Ymaz

m—1 n m n—1
d ; d
Ymaz drq Ymaz [ Tmaz Ymaz dry

(1)
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4.0 Chebyshev Pressure Representation

The wing pressure field is represented first by a tensor product of Chebyshev polyno-
mials. They were chosen for their ability to accurately fit a curve with a small number of

terms. due to their orthogonality properties. The pressure distribution can thus be written

p(n,€) = }:Za,q (n)Ty(€ (4.1)

g=0 p=0

Here T, is the Chebyshev polynomial of order p.

Tp(z) = cos(ncos™(z)) (4.2)
Thus,
To(z) = 1. (4.3)
Ti(x)=1r (1.4)
Ta(r) =2z% -1 (+.5)
and in general
Tos1 = 22Th(z) — Ta-1(2). (4.6)

A quick comparison of Eqns. 4.1 and 2.9 shows that the generic 37 is

B7(n, &) = Tp(n)T4(€) (4.7)

4.1 Chebyshev Results

The aeroelastic code does an excellent job of calculating the converged wing loading

and deflections for a particular flight condition. The sensitivity derivative calculations do
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an excellent job of predicting shape sensitivities. Slight difficulty has been encountered in
the exact calculation of derivatives with very small values. It was modeled structurally
using a box beam model detailed in Ref. 10. The material properties were Ey; = E3; =
6.89 x 10'%, Gy2 = 2.63 x 10!, and v;2 = 0.3.

The behavior of the chebyshev aerodynamic coeffients, a, are of interest because
several perturbed runs of the program are needed to produce finite difference derivatives
for later use by the sensitivity program. As Figures 8-9 show, the overall trend of these
aerodynamic coefficients is smooth, but with significant sharp “wiggle” in these curves.
This wiggle makes accurate finite differencing problematical on the affected a's. These
curves are the worst cases; many of the other curves are much smoother.

To overcome this problem, a higher-order finite difference scheme using a large step

size was used. This scheme

F(z) ~ I—;EU(J: 9Ar) - 8f(x — Ar) + 0f(z) + 8f(x + Az) — flz +2A5)]  (43)
has an accuracy of O(Az*).

Note. these figures are for single elements of the sixty element {a} vector. These
graphs can be used to estimate the best step size for a single element. but not for the
entire vector. In an attempt to discover an optimal step size to maximize the accuracy of
the vector as a whole, the L-2 norm of the difference between two finite differences was
minimized. In this case, for each of a wide variety of step sizes, a forward and central first

derivative finite difference was calculated with the central difference used as a reference.

The logarithm of the average of the square of the difference of these two values was plotted.
The step size that produced the minimum difference was chosen as our optimal step size
for use in eqn. 4.7. Note, this is not in any way a percentage error, but instead the average
absolute squared error. Figure 10 shows the variation of this pseudo-error with step size

in a and aspect ratio. Similar curves were generated for the other three ri’s.
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The individual deflection coefficients, C. show some wiggle. similar to the aerodynamic
terms. but the effect is much smaller. Since these derivatives are only used to confirm the
sensitivity results, a step size study was less important. Nevertheless, one was performed
to insure that these derivatives would be as accurate as possible.

Derivatives of the stiffness matrix are also calculated by finite difference for use in the
sensitivity code. A step size study identical to the aerodynamic code study was undertaken.
While the term “L-2 Norm” is not strictly accurate for a matrix operation, the process

was the same. The difference between each term of a central and a forward differenced

derivative was squared and summed. The behavior of this pseudo-error measurement is
also plotted in Figure 10. The optimal step size was used by a central difference in the
actual sensitivity calculation.

The variation of the trim angle of attack with respect to the wing area is shown
in Figure 11. The solid line shows the converged results from the iterative aerodynamic
and structures combination. The various dashed lines show the variation predicted by the
sensitivity derivatives at the different base configurations. The prediction goes through
the converged value at the base geometry and is linear with a slope equal to the sensitivity
derivative. The desired result is for this line to be tangent to the converged data curve.

Similarly, the sensitivity of the trim angle of attack to changes in the wing aspect ratio
is shown in Figure 12. The solid line shows the converged iterative results and the dashed
lines show the predicted variation by having a slope equal to the calculated sensitivity

derivative.

Figures 13 and 14 show the converged and predicted values for the angle of attack
variation with respect to taper ratio and sweep. It is obvious from Fig. 7 that the obtained
value of the sensitivity of the angle of attack with respect to the taper ratio is not very
accurate corresponding to the taper ratio values of 0.5 and 0.8. However, note that the
value of the converged angle of attack is almost insensitive to the variation in taper ratio
at those values of taper ratio. The inaccuracy in the present results can be attributed to
the numerical problems associated with determining derivatives that are almost zero.

Also of interest are deflection sensitivities. Figures 13-18 show the predicted and
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actual variation of a few of the deflection expansion coeflicients. Figure 15 is the worst
of all of the plots in this report. Note the relative scaling of the axes in this plot. The
sensitivity is very near zero. Perhaps more important is the sensitivity of the deflections
themselves. Figures 19-22 show the sensitivity of the leading edge tip deflection (measured
in meters). The sensitivity of the coefficient C; with respect to wing area 1s not very
accurate (see Fig. 13) as C; is almost insensitive to the variation in the wing area. The
inaccuracies obtained in calculating this sensitivity do not however affect the sensitivity
of the tip deflection with respect to wing area. This can be observed in Fig. 17. From
Figs. 17-20 it is clear that the present formulation yields very accurate shape sensitivities
for the aeroelastic tip deflections and can be used in optimization studies. The coefficient

errors largely disappear in the integrated quantities.

Table 1: Comparison of Finite Difference and Analytic Logarithmic Derivatives

Term Finite Difference Analytzic % Error
%ag -1.188194 -1.129775 1917
do -0.366320 -0.463287 29.906
da -1.85613x1072 -2.40882x1072 29.777
do 0.098611 0.126453 28.236
dey -5.83136x10~* -9.77324x107° 10.333
de 0.122537 0.123391 0.8531
& 0.332564 0.329906 -3.957
dey 0.122932 0.112007 -8.887
TipDe 0.984423 0.978191 0.2812
dTipDe 1.888806 1.916328 1.457
dT:pDe 0.273598 0.265756 2.866
dTpDef 0.262560 0.238709 1.467

These errors are largely numerical in origin. Variables with very small logarithmic
derivatives will be difficult to differentiate numerically regardless of the scheme used?'.
Table 1 shows a variety of variables, their logarithmic derivatives, and the error in calcu-
lating them. As can be seen from the table. some of the intermediate results with very low

logarithmic derivatives show as much as a 40% error. However, sensitivities of the final
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integrated tip deflection results show a maximum of a 3% error.

The results show good accuracy for integrated quantities such as tip displacements but
less accuracy for individual displacement coefficients or trim angle of attack. In general,
the accuracy decreases noticably when the size of the derivative decreases.

The global sensitivities of the aerodynamic coefients were also studied. Equation 3.4
was used to calculate these sensitivities. As with the deflection coefficient semsitivities.
it was difficult to accurately model the sensitivities of individual coefficients. A wide
variety of coefficients were examined for each of the four shape parameters. Figures 23-30
are representative of the overall results. Figures 23-24 show the mediocre modeling of
da/dS. The similarly bad modeling of da/dAR is shown in figures 25-26. Despite more
| eratic behavior in the variation of the a's with respect to sweep and taper, the modelings of

da/dA and da/d) are much better. These are shown in figures 27-28 and 29-30 respectively.
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5.0 Constant Local Pressure Representation

The global Chebyshev pressure representation will not adequately capture small. lo-
cal, details in the pressure field unless a very large number of terms are used. Thus.
an alternative scheme was employed. The pressure is represented by using interpolation
polynomials that have local support over the wing panel. It is expected that a larger
aerodynamic coefficient vector, {a}, will be necessary for similarly accurate results. This
relationship is examined.

Any number of polynomials are available for this purpose. To begin with a scheme
that represented panels each having constant pressure was used. Given a square panel

defined as (u,v) = (—=1,1), and the values at the four corners of the panel as bgg. boy. b1o.

by1. Then the interpolated value p at any point (u.v) on that panel is given by:

o1 boo  bo 1 -
p(u.b)-—4[1 1]{1)10 b“}{l} (3.1)

This can be rearranged by multiplication to become:

bOO

1 bo1
==-1111 .
plu,v) 1 [ ] bio (

bll

(S]]}
SV}

In other words, the pressure on a panel is represented by the average of the pressures
at the four corners of that panel. The symbol R,(u,v) is used in the following chapters
to represent the interpolation polynomials used by the bilinear and biquadrétic interpo-
lation. For completeness sake, the constant pressure panel representation’s interpolation

polynomials are
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R.(u.v) =

|

where 1 varies from 1 to 4.

This form is suitable for the integration of the forces. If we call the right hand side

our aerodynamic coeficients (actually true pressures), {a}, we get

plu,v) = {R}T{a} (5.4)

This pressure representation can be used in eqns. 2.10 and 2.12. These equations
allow us to produce the [A], aerodynamic kernal matrix, for the constant pressure panel

case. A typical term in [A¢], our constant panel aerodynamic matrix, is:

——
(8]}
(]

SN

1 1
= 3 [ [ Reor(z I il idude
panels” ~1 /-1

where J(u,v) is the Jacobian of the transformation from the (n, ) to (u, v) coordinate sys-
tem, and the subscript C indicates the constant pressure representation of the aerodynamic
pressure over the wing panels.

[Ac] has the following properties:

1) Each row corresponds to a particular @); (corresponding to v;).

2) Each column corresponds to the contribution of a particular point pressure.

3) Each wing panel will add to 4 columns in [4]. For instance, panel ~;” will add to

W
[

each element in the column corresponding to the upper left node:

1 1
1
[ [ 0 ne el du do (5.6)

The constant-panel version of {L} is very similar. Each panel contributes to the four

elements of the vector corresponding to its four corner nodes.
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(1]
-1
—

i 1
Le= Z /_l/ﬂR(‘“‘) |J1 (. O T2 (u.v)| du dv (5.

panels

A Gauss integration scheme was used to perform the double integrals in the [A¢] and
{Lc} equations.

The first step was to verify [Ac] and {Lc}. Recalling that Q, = [Ac]{a} and
Lift = {Lc}T{a} gives us an easy way to test the terms. Comparing @, and the lift
to results earlier obtained from using global Chebyshev polynomials eventually gave very
good results.

An evenly distributed rectangular grid was first used. A computer graphics visualiza-
tion of the error field confirmed that significant error was concentrated in the region very
near the leading edge.

A revised gridding scheme was devised. This had two refinements. The inability of
FAST to produce pressure data at the wing edges was initially a problem. Under the
original local bilinear scheme, panels were assembled away from the edge. resulting in a
100% error band around the boundary of the wing. The current scheme puts the panels
nearer to the wing edges and also specifies a zero pressure along the edges. allowing panels
to be placed along the wing edges.

Second, a variable spacing technique was used to put improved resolution where it
was needed. This used a modified half-Gauss-Lobatto grid. The phase and frequency of
the cosine term in the Gauss-Lobatto equation was changed to give high resolution at the

wing leading edge and tip. and low resolution along the trailing edge and wing root.

m1—1

f(l) = —QCOS(;—N—,é—) +1 (3.8)
: . r)—-1 = }
n(7) = '3COS(§ v, T35 -1 (5.9)
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This scheme captures the leading edge peak of the pressure field much better than
the earlier scheme employing a uniformly distributed grid and also better than the global
chebyshev scheme employed in Chapter 4.

Then. the derivatives of [4] and {L}, taking into account all the zero coordinate

derivatives, are:

d;l, d‘j«, d.] -
d < = Z ZRw;wag <d—J1 + ‘Y;“d—l> (0.10)
T %oz kgu T L
and
dL dJ, -
— = W _— 1
ym Y > RwowyJ; - (3.11)
kgr kgy

where kgr and kgy are the number of gauss points in the r and y directions. (Typically.
kgr = kgy = 2). Note that dJ,/dr; = 0.
Tables 4 - 13 (in Chapter 8) show the results from the constant pressure panel versions

of the analysis. Comparisons with the other approaches show very close results.
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6.0 Bilinear Local Pressure Representation

Next. a bilinear scheme was used to represent the wing pressure. Given the same
square panel defined as (u,v) = (—1,1), and the values at the four corners of the panel as

boo, bo1, bio. b11. Then the interpolated value p at any point (u,v) is given by:

_}_ _ boo b01 1-v
p(u,v)-—4[1 u 1+u][b10 b“]{l+v} (6.1)

This can be rearranged by multiplication to become:

bOO

p(u.v)-—-%[(l—u)(l—v) (1=—u)(l+v) (L+u)(l—v) (14+u)(l+v) Z?; (6.2)

by

If we call the left hand vector R, our interpolation vector. and the right hand side is

our aerodynamic coefficients (actually true pressures), {a}, we get

p(u.v) = {R}T{a} (6.3)

where a typical term in [Ag.].our bilinear aerodynamic matrix. is:

1 1
o= X [ [ Rzl Ot )ldude (6.4)

panels

where Jo(u,v) is the Jacobian of the transformation from the (n,£) to (u.v) coordinate
system. and the subscript BL indicates the bilinear representation of the aerodynamic

pressure over the wing panels.
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[45.] has the same properties discussed for [A¢]. For instance, panel *;" will add to

each element “i" in the column corresponding to the upper left node:

i 1
/ / S0 = (1= ) 0(0:€) WA (i) du e (6.5)
—1J-1

The bilinear version of {L} is very similar. Each panel contributes to the four elements

of the vector corresponding to its four corner nodes.

1 1
Loo= Y. [ [ Rtwo) 1o, st )l du do (6:6)

panels

A Gauss integration scheme was used to perform the double integrals in the Ag; and
L g1 equations.

The next thing to test was the derivatives of [Ap.] and {L}. This was accomplished
by comparing the analytic derivatives to finite difference derivatives calculated by recalling
the subroutines with slight changes to the shape parameters.

The new bilinear-interpolation versions of the terms {d{a}/da}, [d{a}/d{C}]. and
{d{a}/dr¢} remained. Each was calculated by appropriate finite differences. Then. the

sensitivity code had to be modified to allow easy switching between the two {and other

future) schemes.

R(u.v) - Bilinear interpolator. R has ¢ different values, one at a time. depending

on which term of [A] is under consideration.

Ry =0.25(1 —u)(1—-v)=0251—-u—v+uv) (6.7)
R, =025(1+u)(l=v)=025(1+u—v~—uv) {68)
R; =0.25(1 —u)(1+v)=0251—-u+v—uv) (6.9)
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Ry =0.25(1 + u)(1 + v) (6.10)

Since the derivatives du/dr, and dv/dr, are zero. the derivatives of R, is also zero.

6.1 Bilinear Pressure Interpolation

The motivating factor for attempted local or panel based schemes was to try to
improve the accuracy of the local derivatives of the aerodynamic loads. A major factor in
the inaccuracy of the Chebyshev approach’s aerodynamic derivatives were the “wiggles”
in the data being differentiated.

A study was undertaken to determine if the new aerodynamic coefficients. actually
point pressures, were any smoother in their behaviors. Each of the four shape parameters
was varied and pressures at three points on the wing were stored. These points were the
nodes nearest to the wing leading-edge-root. the wing center. and the wing trailing-edge-
tip. Nearly all of the data was if not linear, at least very smoothly varying. Figures 31 - 34
show the four worst cases. Only the trailing-edge-root pressure vs. Sweep plot indicates
a potential problem. The other sweep plots were perfectly smooth. The pressures shown

are measured in Pascals.

6.2 Bilinear Results

The variation of the trim angle of attack with respect to the wing area is shown
in Figure 35. The solid line shows the converged results from the iterative aerodynamic
and structures combination. The various dashed lines show the vartation predicted by the
sensitivity derivatives at the different base configurations. The prediction goes through
the converged value at the base geometry and is linear with a slope equal to the‘ sensitivity

derivative. The desired result is for this line to be tangent to the converged data curve.
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Similarly, the sensitivity of the trim angle of attack to changes in the wing aspect ratio
is shown in Figure 36. The solid line shows the converged iterative results and the dashed
lines show the predicted variation by having a slope equal to the calculated sensitivity

derivative.

Figures 37 and 38 show the converged and predicted values for the angle of attack
variation with respect to taper ratio and sweep. It is obvious from Fig. 38 that the
obtained value of the sensitivity of the angle of attack with respect to the taper ratio is
not as accurate as one would like. However, note that the value of the converged angle of
attack is almost insensitive to the variation in taper ratio at those values of taper ratio. The
inaccuracy in the present results can be attributed to the numerical problems associated
with determining derivatives that are almost zero.

Also of interest are deflection sensitivities. Figures 39-42 show the sensitivity of
the leading edge tip deflection. From these figures it is clear that the present formulation
vields very accurate shape sensitivities for the aeroelastic tip deflections and can be used in
optimization studies. The coeflicient errors largely disappear in the integrated quantities.

These few errors are largely numerical in origin. Variables with very small logarith-
mic derivatives will be difficult to differentiate numerically regardless of the scheme used
(Haftka®®). The final comparisions between the current versions of both schemes is also of
interest. The following chart. Table 2, tompares the various results. The finite difference
derivatives are all forward derivatives where the step size was decreased until the derivative

converged:
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Table 2: Comparison of Bilinear and Chebyshev approach Derivatives

Term Bilinear Chebyshev  Bilinear Chebyshev
Analytic Analytic Fin. Dif. Fin. Dif.

Qtrim 6.2686 6.0987

TD* 0.4086 0.3879

TDw/a 0.6179 0.3915
da/dS -0.710 -0.689 -0.686 -0.725
dTD/dS 0.040 0.038 0.040 0.038
da/dAR -0.766 -0.775 -0.579 -0.596
dTD/dAR 0.209 0.274 0.209 0.195
da/dA -0.056 -0.051 -0.032 -0.040
dTD/d\A  -7.2x107° 6.7x107%  -7.2x107° -6.8x107?
da/dA -0.359 -0.294 -0.188 -0.226
dTD/dA 0.213 0.266 0.227 0.212

*Tip Deflection
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7.0 Biquadratic Local Pressure Representation

A biquadratic pressure panel representation was developed next. Again. a panel was
designated as having (u.v) = (—1.1). For this scheme. the panel has nine input pressure

nodes.

The interpolation polynomials R, were derived from Langrangian polynomials. The
two dimensional R’'s are products of the one dimensional quadratic Lagrangian polynomi-

als. These Lagrangian polynomials with an arbitrarily positioned middle node are:

__1_(u—u2)(u—1) -
Li(u) =3 1+ 0) (7.1)
L(u) (et Dlw 1) (7.2)

“= (ug + 1)(ug — 1)

(u—uz)(u+1)

1
L3(U)=§ (1—UQ)

(7.3)

where

u is the location to be interpolated to and
us is the coordinate of the middle node.

Next, we define our two dimensional interpolation polynomials as follows:

R](U,U) = L](U)L](U) (74)
Ry(u,v) = La(u)Ly(v) (7.5)
R3(u,v) = L3(u)Ly(v) (7.6)

&




Ra(u,v) = Ly(u)La(v) (7.7)

Rs(u,v) = Ly(u)La(v) (7.8)
Re(u,v) = Ly(u)Ly(v) (7.9)
R+(u,v) = Ly(u)L3(v) (7.10)
Rs(u,v) = Ly(u)Ls(v) (7.11)
Ro(u,v) = Ly(u)L3(v) (7.12)

This development allows us to use the same half-Gauss-Lobatto grid scheme developed
for the constant and bilinear panels. Initially, this didn’t work properly. The biquadratic
interpolation calculated a significantly higher lift for a given deflection, leading to a sig-
nificantly lower required trim angle of attack, roughly half of what was predicted by the

other methods.

Some graphical visualization revealed the problem. The pressure field calculated by
FAST is shown in figure 33. The field is heavily dominated by a huge spike along the
leading edge. The constant and bilinear fits were able to deal with what is effectively an
impulse in the field. The biquadratic representation could not. As it tried to fit a curve
through the zero pressure on the leading edge, through the huge value at the next node,
and back to a fraction of that value on the third node, it encountered numerical difficulties.

The solution to the problem was to reduce the gradient of the pressure field at the
leading edge. For this purpose, the edge values were set equal to the values at the near-
est internal node. Thus, the edge pressure gradient was set to zero. The biquadratic
interpolation then worked correctly.

To understand the magnitude of the net change in the pressure field. the bilinear and

constant convergence tests were rerun. The converged value of trim angle of attack
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was reduced by about 2%. The change is small because the area of the panels effected is

extremely tiny.

7.1 Bigquadratic Results

Figures 44-47 show the biquadratic pressure representation results for trim angle of
attack and the sensitivity derivatives. Figures 48 - 51 show the tip deflection values and
their sensitivity derivatives. These plots are nearly identical to those produced by the
other pressure schemes.

Chapter 8 discusses the relative performance of the schemes in detail.

Equation 3.4 was also used to try to represent the global sensitivities of the point
pressures to the shape parameters. It was anticipated that as with deflection coefficients
it would be difficult to model the individual sensitivities of the 1600 coefficients. As with
the Chebyshev version of da/dr, the results were mixed. Figures 52-59 are representative
of the large number of point pressures examined.

Figures 52-53 show da/dS at two points along the leading edge. Figures 54-55 show
da/dAR’s mediocre performance. As with the chebyshev approach, da/dA and da/d) per-

form much better. Representative plots are shown in figures 56-57 and 58-59 respectively.

7.0 Biquadratic Local Pressure Representation [ %]



14

{ —— Converged Angle of Attack, degrees
12 f - - - Sensitivity Prediction at $=10

- — - - Sensitivity Prediction at S=7.5

e i —————— L0 44+ A 1o . W0 +%

10 ¢

4.0 6.0 8.0 00 120 140  16.0
Wing Area

Trim Angle of Attack vs. Wing Area
Biquadratic Pressure Representation

Converged Angle of Attack, degrees
[00)

Figure 44. Trim Angle of Attack vs. Wing Area, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representation 84




8.0
X _ —— Converged Angle of Attack
S 75| - - - Sensitivity Prediction at AR=7.5
= Z
g ,
"5 7.0 -
9 .
2 651
q Z
® ol
o |
=
Y |
> |
€ 55}
o) .
0 »
5.0 ‘ ‘

30 40 50 60 7.0 8;0 90 100 1.0

Aspect Ratio
Wing Angle of Attack vs. Aspect Ratio
Biquadratic Pressure Representation

Figure 45. Trim Angle of Attack vs. Wing Aspect Ratio, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representation as

-



6.00

590 |
5.80 [
570 |

5.60 |-

5.50

—— Converged Angle of Attack
- - - Sensitivity Prediction at Sweep=-15

[ |

Converged Angle of Attack

T250 -200 -15.0

00 50 00 50 100 150

Sweep, degrees

Figure 46. Trim Angle of Attack vs. Wing Sweep, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representation




¥
¥

“;,

e

o

o 6.4

o)) \ —— Converged Angle of Attack, degrees
% 6.3 L - - - Sensitivity Prediction at Taper=0.5
X

0

£ 62}

<

- i

o 61

2

e

< 6.0 -

9

o 59} ——
o S -

w = ~ -

> o RS

S ss - ‘ ,

(&) 0.0 0.2 0.4 0.6 0.8

Taper Ratio

Trim Angle of Attack vs. Taper Ratio
Biqudratic Pressure Representation

1.0

Figure 47. Trim Angle of Attack vs. Wing Taper Ratio, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representation

L X4



gl

0.6
| | —=— Tip Defiection
- - - Sensilivity Prediction at S=10
[ |— - - Sensitivity Prediction at $=7.5
05
<
lg
° 04 L
o !
-—
Q
B 03]
Ie 1
-
02}
0.1 ! ‘ ‘ - ‘
4.0 6.0 8.0 10.0 12.0 14.0 16.0

Wing Area
Tip Deflection vs. Wing Area
Biquadratic Pressure Representation

Figure 48. Tip Deflection vs. Wing Area, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representatios ss

.
T

Ry et




) |
i .ﬂl

0.6
—— Tip Deflection
| |- - - Sensitivity Prediction at AR=7.5
05t
c
lg
T 04 L
o !
-
QO
Q 3]
lg i
h 3
02|
0.1 L .

30 40 50 60 70 80 8.0 100 11.0
Aspect Ratio

Tip Deflection vs. Aspect Ratio
Biquadratic Pressure Representation

Figure 49. Tip Deflection vs. Wing Aspect Ratio, Biquadratic Pressure Representation

7.0 Biquadratic Local Pressure Representation




0.41

—— Tip Deflection

040 Y - - - Sensitivity Predition at Sweep=-15

0.39 | ‘
0.38 |
0.37 [

0.36 |

Tip Deflection

035 ¢

034 [

0.33 ' ‘
26,0 -20.0 -150 -100 -5.0 0.0 5.0 10.0 150

Sweep Angle, Degrees

Tip Deflection vs. Sweep
Biquadratic Pressure Representation

Figure 50. Tip Deflection vs. Wing Sweep, Biquadratic Pressure Representation
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Figure 51. Tip Deflection vs. Wing Taper Ratio, Biquadratic Pressure Representation
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8.0 Method Comparison

In this research, a variation of Sobieski's Global Sensitivity Equations is implemented
to obtain the global sensitivity of the static aeroelastic responses. The scheme s indepen-

dent of the analysis code used to obtain aerodvnamic data.

8.1 CPU Twme Comparison

Each method produced very similar final results. The remaining question is how well
they performed costwise. The following chart shows a comparison of CPU times on the
VAX mainframe for a complete analysis run. Here. Nx is the number of pressure nodes in

the z. or chord-wise. direction. Ny is the number of pressure nodes in the Y, Or span-wise,

direction.
Table 3: CPU Times
Case CPUTime
HR : MIN : SEC
Chebyshev 1:31:55.31
Constant Nx=Ny=15 1:11:42.02
Constant Nx=Ny=39 1:24:41.62

Bilinear Nx=Ny=15 1:20:52.99
Bilinear Nx=Ny=39 1:23:00.35

Biquadratic Nx=Ny=15 1:14:17.58
Biquadratic Nx=Ny=39 1:24:41.40
8.0 Method Comparison 100
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Thus. the differences in CPU run times for the various schemes and resolutions vary

by less than 20%.

8.2 Performance Comparison

The next issue for the local schemes is just how much resolution is necessary. This is

not a simple issue.

Tables 4-33 show the various converged results for all three local pressure schemes.
A wide range of resolutions is investigated. The tables also list each value’s percentage
difference from the highest resolution grid’s value. These percentage differences give an
indication of how well a particular grid has done at producing a converged result. The
senstivity derivative charts also give the logarithmic derivative of the highest resolution
grid’s value. This value gives some indication of how accurately it is possible to mode] the
derivative.

Some grid conclusions are valid across all of the cases. It is obvious that N; has a
much more significant effect on the solution than Ny. This is because the main variation in
the pressure field is in the x. or chordwise, direction. A certain minimum resolution in the
V. or spanwise, direction seems necessary, perhaps Ny = 15. After that. increasing spanwise

resolution accomplishes little compared to a similar increase in chordwise resolution.

Since the difference in CPU times between high and low resolution cases is not very
large. in most cases running the program at the highest resolution available makes sense.
If however. one wishes to minimize the CPU time used, then some choices must be made.
One has to decide how close to a converged value one is willing to be. The convergence
tables give some qualitative feel for what grid spacings are necessary to be as close as vou

desire to convergence for a particular technique.

For instance, assume a 10 % difference from the highest resolution value is permissable

8.0 Metbhod Comparison




for a certain application. A look through the Biquadratic results shows that a 15x15 grid
will provide this accuracy. The bilinear approach requires a 15x5 grid to get this result.
The constant pressure panel approach requires a 15x15 grid.

The choice of which scheme to use remains. All four schemes work well. Of the three

local schemes, the higher order schemes converge faster than the lower schemes. but the
difference isn’t overwhelming. Since the CPU times for the three schemes are comparable,
the biquadratic scheme produces the best results for similar computational effort. However,
the polynomial overshoot problems encountered in this approach could be problematical

for other cases. The bilinear approach is more robust and only slightly slower to converge.
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Table 16. da/dS, Local Bilinear Pressure Representation
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Table 17. dTipDeflection / dS, Local Bilinear Pressure Representation
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Table 20. da/dA, Local Bilinear Pressure Representation
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Table 21. dTip Deflection/d A, Local Bilinear Pressure Representation
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Table 22. da/dA, Local Bilinear Pressure Representation
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Table 23. dTip Deflection/d A, Local Bilinear Pressure Representation
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Table 27. dTipDeflection / dS, Local Biquadratic Pressure Representation
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9.0 Conclusions

The results show good accuracy for integrated quantities such as tip displacements but
less accuracy for individual displacement coefficients or trim angle of attack. In general,
the accuracy decreases noticably when the size of the logarithmic derivative decreases.

The global sensitivity approach does an excellent job of predicting global sensitivities
with the input of just local sensitivities. It does this without the expense of multiple runs
of an entire aeroelastic system.

A few of the capabilities of the current system have never been explored, and could
expand the utility of the system. The aerodynamic-code input filter code supports cam-
bered and twisted wings. for instance. The system also allows easy replacement of the
various modules with higher performance models. A non-linear aerodynamic code or a
fancier structural module could be easily integrated into the system.

The code implemented for this research can be of significant utility in the early con-
figuration determining stage of a design project. Coupled with an appropriate optimizer,

the code could produce a reasonable baseline design for a minimum effort.
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