FY 1995 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
Joyce E. Turner
Marshall Space Flight Center • MSFC, Alabama
In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1995 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>12</td>
</tr>
<tr>
<td>MSFC REFERENCE PUBLICATIONS</td>
<td>13</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>14</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>19</td>
</tr>
<tr>
<td>INDEX</td>
<td>53</td>
</tr>
</tbody>
</table>
The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature, and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O₃, N₂O, CO, CH₄, CO₂, N₂, O₂, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.

The Retarding Ion Mass Spectrometer (RIMS) experiment onboard the Dynamics Explorer 1 (DE 1) satellite was designed to perform energy and mass-charge analysis on low-energy ions (<50 eV) with mass/charge ratios ranging from 1 to 40 amu/Z. The DE 1 satellite, carrying the RIMS experiment, was launched into an elliptical polar orbit on August 3, 1981. The ~7.5 hour orbit has perigee of 675 km altitude and apogee of 24,875 km altitude. This document, and those that follow in this series, contains summary RIMS data spectrograms for each orbit for which RIMS data are available. The RIMS instrument began returning science data on day 280 of 1981 and continued to return usable data until the end of the DE mission in March 1991. It should be noted that studies of the RIMS data set should be conducted only with a thorough awareness of the material described in the introduction section presented here, or in collaboration with a scientist familiar with RIMS data analysis.

A brief history about the development of the metric system of measurement. The need for the U.S. to implement the "SI" metric system in the international markets, especially in the aerospace and general trade. Development of metric implementation and experiences locally, nationally, and internationally are included.

This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-α telescope, a Questar telescope, and a computer code.
Qualitative and quantitative laboratory results are important to the decision-making process. In some cases, they may represent the only basis for deciding between two or more given options or processes. Therefore, it is essential that handling of laboratory samples and analytical operations employed are performed at a deliberate level of conscientious effort. Reporting erroneous results can lead to faulty interpretations and result in misinformed decisions.

This document provides analytical control specifications which will govern future test procedures related to all Water Recovery Test (WRT) Phase III activities to be conducted at the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This document addresses the process which will be used to verify analytical data generated throughout the test period, and to identify responsibilities of key personnel and participating laboratories, the chains of communication to be followed, and ensure that approved methodology and procedures are used during WRT activities. This document does not outline specifics, but provides a minimum guideline by which sampling protocols, analysis methodologies, test site operations, and laboratory operations should be developed.

A launch vehicle concept to deliver 20,000 lb of payload to a 100-nmi orbit has been defined. A new liquid oxygen/kerosene booster powered by an RD–180 engine was designed while using a slightly modified Centaur upper stage. The design, development, and test program met the imposed 40-month schedule by elimination of major structural testing by increased factors of safety and concurrent engineering concepts. A growth path to attain 65,000 lb payload is developed.

This report presents Space Station Furnace Facility (SSFF) thermal control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts.
Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

TM-108479 February 1995

This study numerically investigates the transport phenomena within and across a porous-plug phase separator. The effect of temperature differential across a single pore and of the sidewall boundary conditions, i.e., isothermal or linear thermal gradient, are presented and discussed. The effects are quantified in terms of the evaporation mass flux across the boundary and the mean surface temperature. A two-dimensional finite element model is used to solve the continuity, momentum, and energy equations for the liquid.

The temperature differentials across the pore interface of 1.0, 1.25, and 1.5 K are examined and their effect on evaporation flux and mean surface temperature is shown. For isothermal side boundary conditions, the evaporation flux across the pore is directly proportional and linear with ΔT. For the case of an imposed linear thermal gradient on the side boundaries, Biot numbers of 0.0, 0.15, and 0.5 are examined. The most significant effect of Biot number is to lower the overall surface temperature and evaporation flux.

TM-108480 October 1994

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY94. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM-108481 February 1995
Statistically Generated Weighted Curve Fit of Residual Functions for Modal Analysis of Structures. P.S. Bookout. Structures and Dynamics Laboratory. N95-22950

A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second-order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

TM-108482 March 1995

Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation, (2) low bleed through the engine, (3) recirculation lines, and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline
which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation line configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles.

Hercules™ IM7/8552 carbon/epoxy and Hyso™ EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 °C and liquid nitrogen (−196 °C). The specimens were quenched from the 100 °C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing tended to minimize the permeability and keep it within allowable limits. Thermal cycling had little effects on the permeability values of the bondline specimens.

This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1994. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an appendix (arranged by report number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publications in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ES01, 544-7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

The Retarding Ion Mass Spectrometer (RIMS) experiment onboard the Dynamics Explorer 1 (DE 1) satellite was designed to perform energy and mass-per-charge analysis on low-energy ions (<50 eV) with mass/charge ratios ranging from 1 to 40 amu/Z. The DE 1 satellite, carrying the RIMS experiment, was launched into an elliptical polar orbit on August 3, 1981. The ~7.5 hour orbit has perigee of 675 km altitude and apogee of 24,875 km altitude. This document, and those that follow in this series, contains summary RIMS data spectrograms for each orbit for which RIMS data are available. The RIMS instrument began returning science data on day 280 of 1981 and continued to return usable data until the end of the DE mission in March 1991. It should be noted that studies of the RIMS data set should be conducted only with a thorough awareness of the material described in the introduction section presented here, or in collaboration with a scientist familiar with RIMS data analysis.

November 1993 represented the 10-year anniversary of the flight of Spacelab 1 mission, with the first precursor mission (OSTA-1) being launched 2 years earlier. Since that time, a total of 27 shuttle missions have been flown, using the Spacelab system as a facility for conducting scientific research in space. The missions flown to date have allowed a total of approximately 500 Principal Investigator class investigations to be conducted in orbit. These investigations have constituted major scientific efforts in astronomy/astrophysics, atmospheric science, Earth observation, life sciences, microgravity science, and space plasma physics.

An initial survey of the scientific products gleaned from Spacelab missions already flown was sent to the Principle Investigators. In that survey, information was gathered from the investigators on the scientific highlights of their investigations and statistical measurements of overall success—such as papers published. This document is a compilation of the papers that have been published to date in refereed literature.

The environmental control and life support system (ECLSS) life test program (ELTP) began with trace contaminant control subassembly (TCCS) life testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document "Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxizer Life Testing (Revision A)," was to "provide for the long duration operation of the ECLSS TCCS HTCO (high temperature catalytic oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions." Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).

A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14×14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

Because the 2195 aluminum-lithium material of the super lightweight external tank (SLWT ET) has a lower toughness than the 2219 aluminum used in previous ET's, careful attention must be paid to stress concentrations. This report details the analysis performed on some of the stress concentrations in the orthogrid panels of the liquid hydrogen tank.

Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried
deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.

TM-108492 May 1995

ANSYS Duplicate Finite-Element Checker Routine. R. Ortega. Structures and Dynamics Laboratory. N95-29824

An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3-D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3-D finite-element models.

TM-108493 June 1995

The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA space transportation system reusable solid rocket motor boosters. The population of samples was to be large enough to determine the minimum defect size for 90-percent POD of 95-percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.

TM-108494 June 1995

The various regions of the magnetosphere-ionosphere system are coupled by flows of charged particle beams and electromagnetic waves. This coupling gives rise to processes that affect both technical and nontechnical aspects of life on Earth. The CRRES program sponsored experiments which were designed to produce controlled and known input to the space environment and the effects were measured with arrays of diagnostic instruments. Large amounts of material were used to modify and perturb the environment in a controlled manner, and response to this was studied. The CRRES and PEGSAT satellites were dual-mission spacecraft with a NASA mission to perform active chemical-release experiments, grouped into categories of tracer, modification, and simulation experiments. Two sounding rocket chemical release campaigns completed the study.

TM-108495 June 1995

The interlaminar shear strength of carbon/epoxy laminates was to be improved by placing particles of aluminum between plies of prepreg tape used for the layup. Difficulty in aligning the aluminum whiskers in the transverse direction prevented any gain in strength. A discussion of shear within a laminate is presented to better understand the results.

TM-108496 July 1995

Electrical power, as an area of study, is relatively young as compared to language, chemistry, physics, mathematics, philosophy, metallurgy, textiles, transportation, or farming. Practically all of the technology that has enabled the huge, continent-spanning power grids that have become ubiquitous in developed countries was developed in the last 150 years. In fact, Tesla's advocacy of alternating current for transmission just won out in the beginning of this century. Despite the novelty of the field as a whole, space power applications are, of course, much newer. This paper will look at the history of space power and compare it to its older sibling on Earth, forming a basis for determining appropriate transitions of technology from the terrestrial realm to space applications.

TM-108497 August 1995

Trace Chemical Contaminant Generation Rates for Spacecraft Contamination Control System Design. J.L. Perry. Structures and Dynamics Laboratory.
A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

Interim Report on the Space Station Water Degradation Study Covering the First 24 Months of Exposure. P.S. McRight and M.C. Roman. Propulsion Laboratory.

This report describes the MSFC space station water degradation study (WDS) and presents interim results from the first 24 months of testing. The WDS simulates the stagnant storage of water in distribution lines before the activation of the space station’s water processor by storing processed water at ambient temperature in valved sections of 1-in stainless steel and titanium tube. The WDS seeks to determine whether the water quality will degrade unacceptably and whether microbial growth will proceed to an unmanageable extent during extended stagnation. During the first 24 months, significant changes have occurred. Although iodine, which is used as a biocide, was nearly depleted within the first 6 months of testing, microbial growth has been minimal. This report describes the decrease in iodine concentration and the results of microbial and biofilm analyses. Increases in total organic carbon, iodide, chloride, nickel, iron, and chromium concentrations are presented and discussed. The observed increase in conductivity and the decreases in pH and turbidity are also presented. The authors conclude that, with proper preparation, potable water can be stored under stagnant conditions without unmanageable degradation in water quality; a flushing operation and subsequent processing of the degraded water should render the water system ready for use.

A Guidance and Control Assessment of Three Vertical Landing Options for RLV. M. Gallaher, D. Coughlin, and K. Krupp. Structures and Dynamics Laboratory.

The National Aeronautics and Space Administration is considering a vertical lander as a candidate concept for a single-stage-to-orbit reusable launch vehicle (RLV). Three strategies for guiding and controlling the inversion of a reentering RLV from a nose-first attitude to a vertical landing attitude are suggested. Each option is simulated from a common reentry state to touchdown, using a common guidance algorithm and different controllers. Results demonstrate the characteristics that typify and distinguish each concept and help to identify peculiar problems, level of guidance and control sophistication required, feasibility concerns, and areas in which stringent subsystem requirements will be imposed by guidance and control.
Presented in this report are the results of an investigation of the twisting/warping deformations occurring in open-section composite beams. A series of C and L channels were manufactured using both hand layup and the innovative “hot-drape forming” techniques. A transverse tip load was applied at the free end of the cantilevered open-section beams. The test setup allowed the tip load to be applied at various locations along the plane of and at the beam’s shear center. Charts are included in this report depicting various angles of ply layups, loads applied, and load application points.

A major verification resulting from this study is that the shear center of an open section composite beam can be altered, if not completely controlled, through laminate layup. Also, it was observed that the choice of the material system does not have an effect on the amount of deformation, as expected, and the material affects the location of an unsymmetric open section composite beam’s true shear center. The results from this study have provided a foundation for further investigation into the apparent shifting of the shear center location in open-section composite beams.

The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 µA/cm² and 23.7 µA/cm² for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 ft² of aerodynamic surfaces on the Saturn V.

Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

The behavior of zinc-rich primer-coated AISI™ 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 µA/cm² for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the
higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.

TP-3550 March 1995
Effect of Processing Parameters on Surface Finish for Fused Deposition Machinable Wax Patterns. F.E. Roberts III. Materials and Processes Laboratory. N95-26769

This report presents a study on the effect of material processing parameters used in layer-by-layer material construction on the surface finish of a model to be used as an investment casting pattern. The data presented relate specifically to fused deposition modeling using a machinable wax.

TP-3551 May 1995

Cylinder optimization of rings, skin, and stringers with tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs.

CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined.

During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.

TP-3553 May 1995
Developmental Problems and Their Solution for the Space Shuttle Main Engine Alternate Liquid Oxygen High-Pressure Turbopump: Anomaly or Failure Investigation the Key. R. Ryan and L.A. Gross. Structures and Dynamics Laboratory. N95-28263

The space shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and the solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time, and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals, (2) supporting technologies, (3) computation codes and capabilities, and (4) test and manufacturing facilities.

TP-3554 May 1995

Because the 2195 aluminum-lithium of the super lightweight external tank (SLWT ET) has a lower toughness than the 2219 aluminum used in previous ET's, careful attention must be paid to stress concentration in the SLWT ET. This report details
the initial analysis performed by NASA to determine the material properties required to ensure structural integrity in these critical areas.

TP-3556 May 1995

The investigation of the vibrational disturbances of the Hubble space telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitudes of the disturbances were considerably larger than the design jitter requirements. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first space telescope servicing mission and, in combination with the enhanced control system algorithm, reduced the disturbances to satisfactory levels.

TP-3558 May 1995
Test Load Verification Through Strain Data Analysis. V. Verderame and F. Harrington. Structures and Dynamics Laboratory. N95-28718

A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Testing may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

TP-3560 May 1995

This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (MI) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly elliptical polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and the ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

TP-3562 May 1995
Study of Localized Corrosion in Aluminum Alloys by the Scanning Reference Electrode Technique. M.D. Danford. Materials and Processes Laboratory.

Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bead is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

TP-3578 August 1995
Low-Pressure Electrical Discharge Experiment to Simulate High-Altitude Lightning Above Thunderclouds. M.A. Jarzembski and V. Srivastava.* Space Sciences Laboratory. *Global Hydrology and Climate Center.

Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these
discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between ~1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

TP-3581 August 1995
Aluminum U-Groove Weld Enhancement Based on Experimental Stress Analysis. V. Verderaime and R. Vaughan. Structures and Dynamics Laboratory. N96-10864

Though butt-welds are among the most preferred joining methods in aerostructures because of their sealing and assembly integrity and general elastic performance, their inelastic mechanics are generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the tab thickness between the grooves produce severe peaking, which induces bending moment under uniaxial loading. The filler strain hardening decreased with increasing filler pass sequence. These combined effects reduce the weld strength, and a depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve the welding process results over the current normal weld schedule.

TP-3583 September 1995

Low-velocity impacts were inflicted upon two elbow sections of carbon/epoxy feedline that are to be a part of the Delta Clipper-XA flight vehicle. A soap-based liquid leak detector solution was used to inspect the impact sites for leaks of pressurized gas that was pumped into the tube. Visual surface damage was noted and recorded for each impact site. After impact testing of each of the two sections of tubes was completed, the damage zones were dissected from the tube and cross sectioned through the impact site. These specimens were polished after potting them in epoxy and were examined for microcracking using a fluorescent dye penetrant technique. The results showed that nonvisible damage could cause microcracking, thereby resulting in leaks through the tube wall.
CP-3292
The 1994 NASA Aerospace Battery Workshop.
Jeff Brewer. N95-26785

CP-3297
N95-31350

CP-3298

CP-3308
N95-33199
RP-1350
The National Space Environment Effects on Spacecraft. Bonnie James, Coordinator; Al Norton, Compiler; and Margaret Alexander, Editor. N95-25875

RP-1351

RP-1352

RP-1354

RP-1358

RP-1368

RP-1374
Electronic Systems Failures and Anomalies Attributed to Electromagnetic Interference. R.D. Leach.

RP-1375
Failures and Anomalies Attributed to Spacecraft Charging. R.D. Leach. N95-11547

RP-1378
Magnetosphere Imager Science Definition Team Interim report. T.P. Armstrong and C.L. Johnson.

RP-1379
Magnetosphere Imager Science Definition Team Executive Summary. T.P. Armstrong, D.L. Gallagher, and C.L. Johnson.
CR-4652
High Frequency Flow/Structural Interaction in Dense Subsonic Fluids. COR: Tom Nesman. N95-24217

CR-4671
The Acoustic Characteristics of Turbomachinery Cavities. Tom Nesman. N95-28720

CR-196521
October 24, 1994

CR-196522
October 24, 1994

CR-196523
October 24, 1994

CR-196526
April 7, 1995

CR-196527
April 7, 1995

CR-196550
February 1, 1995

CR-196551
February 1, 1995

CR-196552
February 1, 1995

CR-196553
February 1, 1995

CR-196554
February 1, 1995

CR-196555
February 1, 1995

CR-196556
February 1, 1995

CR-196557
February 1, 1995

CR-196558
February 1, 1995

CR-196559
March 10, 1995

CR-196560
March 24, 1995

CR-196561
March 24, 1995

CR-196562
March 27, 1995
CR-196563
March 29, 1995

CR-196564
April 4, 1995

CR-196565
April 4, 1995

CR-196566
April 4, 1995

CR-196567
April 4, 1995

CR-196568
April 4, 1995

CR-196569
April 4, 1995

CR-196570
April 4, 1995

CR-196571
April 4, 1995

CR-196572
April 4, 1995

CR-196573
April 4, 1995

CR-196574
April 4, 1995

CR-196575
April 4, 1995

CR-196576
April 4, 1995

CR-196577
April 4, 1995

CR-196578
April 11, 1995

CR-196579
April 20, 1995
Experimental Analysis of Thread Movement in Bolted Connections Due to Vibrations—Final Report. NAS8-39131, D.O. No. 22. Auburn University. N95-14904

CR-196580
April 20, 1995

CR-196581
April 24, 1995

CR-196582
April 24, 1995
PRISM Spectrograph Optical Design—Final Report. NAS8-38609, D.O. No. 120. The University of Alabama in Huntsville. N95-24035

CR-196583
April 28, 1995
CR-196587 May 2, 1995

CR-196588 May 2, 1995

CR-196589 May 2, 1995

CR-196590 May 3, 1995

CR-196591 May 3, 1995

CR-196592 May 4, 1995

CR-196594 May 5, 1995

CR-196595 May 9, 1995

CR-196596 May 10, 1995
AMCC Casting Development Volume II—Final Report. NAS8-39027, DR-06. Precision Castparts Corp.

CR-196597 May 10, 1995
AMCC Casting Development Volume I Executive Summary—Final Report. NAS8-39027, DR-06. Precision Castparts Corp. N95-28419

CR-196599 May 10, 1995
CR-196637 June 8, 1995
Impact of Uncertainty on Modeling and Testing
PRC 95-001—Final Report (January 10, 1994 to
The University of Alabama in Huntsville.
N95-30013

CR-196638 June 8, 1995
Study of the Space Environmental Effects on
NAS8-38609, D.O. No. 113. The University of
Alabama in Huntsville.
N95-29246

CR-196639 June 19, 1995
Reduce Fluid Experiment System Flight Data
From IML-1—Final Report. NAS8-38609, D.O.
No. 127. The University of Alabama in
Huntsville.
N95-30014

CR-196640 June 20, 1995
Analysis of Measurements for Solid State Laser
Remote Lidar System, June 1, 1993 to September
31, 1994. NAS8-38609, D.O. No. 77. The
University of Alabama in Huntsville.
N95-29247

CR-196644 July 13, 1995
NAS8-38609, D.O. No. 110. The University of
Alabama in Huntsville.

CR-196645 July 31, 1995
SAFiRE (Sensing and Force Reflecting Exoskeleton)—Final Report (SBIR Phase II).
NAS8-39364. EXOS, Inc.

CR-196649 July 31, 1995

CR-196653 July 31, 1995

CR-196676 August 2, 1995

CR-199173 August 8, 1995

CR-199174 August 8, 1995

CR-199176 August 15, 1995

CR-199177 August 17, 1995
N96-10104

CR-199178 August 25, 1995
N96-70077

CR-199179 August 31, 1995
N96-10106

CR-199180 September 1, 1995
N96-11281

CR-199181 September 1, 1995

CR-199182 September 1, 1995

CR-199183 September 1, 1995

17
CR-199184 September 1, 1995
Hybrid Fuel Formulation and Technology
McDonnell Douglas. N96-11309

CR-199185 September 6, 1995
Validation of Automated Payload Experiment
Tool—Final Report, September 11, 1992 to July
30, 1995. NAS8-38609, D.O. No. 51. The Uni-
versity of Alabama in Huntsville.

CR-199186 September 12, 1995
Software to Model AXAF-1 Image Quality—

CR-199187 September 19, 1995
Development of Replicated Optics for AXAF-1
XDA Testing—Final Report. NAS8-38609,
D.O. No. 111. The University of Alabama in
Huntsville.

CR-199188 September 19, 1995
Space Transfer Concepts and Analyses for
Exploration Missions—Final Report Technical
Directive 11. NAS8-37857. Boeing Defense and
Space Group. N96-10326

Electric Currents and Magnetic Shear Variations During Some Flares of M- and X-Class. For presentation at the IAU Colloquium 153, Tokyo, Japan, May 22–26, 1995.

PAMELA: Phase I Testing and Verification on a 0.5 Meter Diameter Telescope with a 36 Segment Adaptive Primary Mirror. For

BALDESSARRE, G.J. Thermacore, Inc.
GERNERT, N.J. Thermacore, Inc.
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

BANKSTON, C.D. EB53
GILBERT, J.A.

BARRET, C. ED15

BARRET, C. ED15

BECHTEL, R.T. EB71
HALL, D.K.

BIGLARI, H. Sverdrup
GALABOFF, Z.J. ED13

BOCCIPIO, D.J. ES44
GOODMAN, S.J.
CHRISTIAN, H.J.
WILLIAMS, E.R.
BOLDI, R.
HECKMAN, S.J.
WONG, C.

BOOKOUT, P.S. ED26
RICKS, E. ED26
JONES, R. ED26

BOOKOUT, P.S. ED26

BOOKOUT, P.S. ED26
Statistically Generated Weighted Curve Fit for Test Generated Residual Functions. For presentation as Masters Thesis in ESM Department, University of Tennessee, Knoxville, TN, December 18, 1994.

BORDELON, W.J., JR. ED31
GADDIS, S.W. ED31
NESMAN, T.E. ED31

BOWDLE, D.A. UAH
SRIVASTAVA, V. USRA
CUTTEN, D.R. UAH
MCICAL, E.W. USRA
ROTHEML, J. ES43
JARZEMBSKI, M.A. ES43

BRADFORD, J. GP01
NASA Procurements on the Internet. For presentation at the CALS Expo 95, Long Beach, CA, October 23–26, 1995.

BRAINERD, J.J. UAH
MEEGAN, C.A. ES84
BRIGGS, M.S. UAH
PENDLETON, G.N. UAH
BROCK, M.N. ES84
Time Dependent Clustering Analysis of the Second BATSE Gamma-Ray Burst Catalog. For publication in Applied Journal Letters, Chicago, IL.
BRASWELL, W.D. \quad ES43
SPENCER, R.W. \quad ES43

BRAY, B. \quad EO45
PENER, J. Teledyne Brown Eng.

BREWER, J.C. \quad EB74
JACKSON, L.G. \quad EB72
LURIE, C. \quad TRW
FOROZAN, S. \quad TRW

BREWER, J.C. \quad EB74
JACKSON, L.G. \quad EB72
LURIE, C. \quad TRW

BRIGGS, M.S. \quad UAH
PACIESAS, W.S. \quad UAH
PENDLETON, G.N. \quad UAH
MEEGAN, C.A. \quad ES84
FISHMAN, G.J. \quad ES81
ET AL.

BRITTAEN, A.B. \quad ES76
OBENHUBER, D.C. \quad ES76
MATSOS, H.C. \quad ES76
NOEVER, D.A. \quad ES76

BROWN, A.M. \quad ED22
FERRI, A.A. \quad GA Institute of Technology

BROWN, R.W. \quad PD34

BUCY, R.P. \quad ES76
KARR, L. \quad ES76
HUANG, G. \quad ES76
LI, J. \quad ES76
CARTE, D. \quad ES76
HONJO, J. \quad ES76
LEMONS, J.A. \quad ES76
MURPHY, K.M. \quad ES76
WEAVER, C.T. \quad ES76
Single-Cell Analysis of Cytokine Gene Co-Expression During CD4+T Cell Phenotype Development. For publication in Proceedings of the National Academy of Sciences of the United States of America, Washington, DC.

BUECHLER, D.E. \quad Earth System Science Lab
RAGHAVAN, R. \quad Institute for Global Change Research
SMITH, M. \quad Hughes STX
MEYER, P.J. \quad ES43
GOODMAN, S.J. \quad ES43
CHRISTIAN, H.J. \quad ES43

BULLEY, A.P. \quad PS02
MULQUEEN, J.A. \quad PS02

BULLOCH, J.L. \quad Michigan Tech University
HAND, D.W. \quad Michigan Tech University
CRITTTENDEN, J.C. \quad Michigan Tech University
YU, J. \quad Michigan Tech University
CARTE, D.L. \quad ED62
GARR, J.D., II \quad ION Electronics
FINN, J. \quad ARC
Mathematical Modeling of Adsorption Processes for the International Space Station Alpha (ISSA) Water Processor. For presentation at the International Conference on

BUNE, A.V. NRC Fellow
GILLIES, D.C. ES75
LEHOZCZY, S.L. ES75

NICHOLS, R.L. Science Applications International

CALHOUN, P.C. ED12

CALLANAN, P.J. Center for Astrophysics
GARCIA, M.R. Center for Astrophysics
MCCLINTOCK, J.E. Center for Astrophysics
ZHAO, P. Center for Astrophysics
REMILLARD, R.A. Center for Astrophysics
HARMON, B.A. ES84
ET AL.

CALVERT, W. University of Iowa
BENSON, R.F. GSFC
CARPENTER, D.L. Stanford University
FUNG, S.F. GSFC
GALLAGHER, D.L. ES83
GREEN, J.L. GSFC
HAINES, D.M. University of Massachusetts
ET AL.
The Feasibility of Radio Sounding in the Magnetosphere. For publication in Radio Sciences, American Geophysical Union, Washington, DC.

CAMPBELL, H. EP22
GAYNOR, T.L. EP22

CAMPBELL, J.W. PS02
STOCKTON, R. PS02

CAMPBELL, J.W. PS02
FIKES, J. PS02
WALKER, S. PS02
GERRY, M. PS02
JONES, B. PS02
ET AL.

CARLSTROM, J.E. California Institute of Tech.
JOY, M. ES84
GREGO, L. California Institute of Technology

CARPENTER, R.L. Thiokol
BOARDMAN, T.A. Thiokol
CLAFLIN, S.E. Rockwell
HARWELL, R.J. PS04

CARTER, D.C. ES76
WRIGHT, B. ES76
TWIGG, P. ES76
HO, J.X. ES76
LIM, K. ES76
KEELING, K. ES76

CASEY, D.M. ES43
MCNIDER, R.T.
SONG, A.J.
JEDLOVEC, G.J.
A Quantitative Analysis of the Predictability of Diurnal Mesoscale Convective Activity. For publication in Journal of Applied Meteorology, Boston, MA.

CHAMPION, R.H., JR. EP23
RYAN, R.M.

CHAPMAN, J.C. EO32

CHEN, K.-T. ES75
ZHANG, Y. ES75
EGARIEVWE, S.U. ES75
GEORGE, M.A. ES75
BURGER, A. ES75
SU, C.-H. ES75

CHENG, G. Seca, Inc.
CHEN, Y.-S. Seca, Inc.
WANG, T.-S. ED32

CHOI, J. Alabama A&M University
AGGARWAL, M.D. Alabama A&M University
WANG, W.S. Alabama A&M University
METZL, R. Alabama A&M University
BHAT, K. Alabama A&M University
PENN, B. ES76
FRAZIER, D.O. ES76

CHOU, L.C. ED33
LIAW, G.S. Alabama A&M University
DENG, Z.-T. Alabama A&M University

CHOU, S.-H. ES42
High-Resolution Eady Model with External Forcing. For presentation at the 10th Conference on Atmospheric and Oceanic Waves and Stability, Big Sky, MT, June 5-9, 1995.

CHRISTENSEN, E.R. Sverdrup
BRUNTY, J. ED22
A Procedure for Quick Calculation of Launch Vehicle Hydroelastic Loads. For presentation at the AIAA Dynamics Specialist Conference, Salt Lake City, UT, April 18-19, 1996.

CHRISTIAN, H.J. ES44
GOODMAN, S.J. ES44
BLAKESLEE, R.J. ES44
DRISCOLL, K.T. ES44
MACH, D.A. ES44
BUECHLER, D.E. ES44

CHRISTIAN, H.J. ES44
GOODMAN, S.J. ES44
BLAKESLEE, R.J. ES44
KOSHAK, W.J. ES44
MACH, D.M. ES44
BOECK, W.L. ES44

CHRISTY, J.R. UAH
SPENCER, R.W. ES43
MCNIDER, R.T. UAH
CIKANEK, H.A. EA01
SOUDER, W. UAH
Multi-Organization Quality Function Deployment: An Example of Successful Concept Selection. For publication in the IEEE Management Journal.

CLANCEY, B.L. Hand, D.W. HOKANSON, D.R. CRITTENDEN, J.C. CARTER, D.L. GARR, J.D., II FINN, J. Michigan Tech University Michigan Tech University Michigan Tech University Michigan Tech University ION Electronics ARC

COLE, J. ROBERTSON, A. CAMPBELL, J. XX01

COMFORT, R.H. UAH CRAVEN, P.D. ES83 RICHARDS, P.G. UAH

COMFORT, R.H. ES83 CRAVEN, P.D. ES83

COMFORT, R.H. ES83 RICHARDS, P.G. ES83 CRAVEN, P.D. ES83

COOK, M. BETH EH42

COOK, S.A. PT31
The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator. For presentation at the AIAA Sixth Aerospace Plane and Hypersonic Technologies Conference, Chattanooga, TN, April 4, 1995.

CRAVEN, P.D. ES83 GALLAGHER, D.L. ES83 COMFORT, R.H. UAH

CROELL, A. ES75 SZOFRAN, F.R. ES75 DOLD, P. University of Freiburg, Germany BENZ, K.W. University of Freiburg, Germany LEHOCZKY, S.L. ES75

CRONISE, R. J. ES76 NOEVER, D. A. BRITTAIN, A.
Self Organized Criticality in Closed Ecosystems: Carbon Dioxide Fluctuations in Biosphere 2. For publication in Life Support and Biosphere Science, Nashville, TN.

CROSSON, W.L. ES44 DUCHON, C.E. ES44 RAGHAVAN, R. ES44 GOODMAN, S.J. ES44

CROSSON, W.L. ES44
LAYMON, C.A. ES44

CURREN, P.A. ES75
KAUKLER, W. F. UAH

CUTTEN, D.R. UAH
BOWDLE, D.A. UAH
PUESCHEL, R.F. ARC
ROTHERMER, J. ES43
SPINHINRE, J.D. GSFC
MENZIES, R.T. JPL
CLARKE, A.D. University of Hawaii
SRIVASTAVA, V. USRA

D’AGOSTINO, M. ED33
MNASA Plume Radiation Data. For presentation at 22nd JANNAF Exhaust Plume Technology Subcommittee Meeting, MSFC, AL, October 23–27, 1995.

D’AGOSTINO, M. ED33
PESSTS Plume Radiation Data. For presentation at 22nd JANNAF Exhaust Plume Technology Subcommittee Meeting, MSFC, AL, October 23–27, 1995.

DAHLLEM, M. Space Telescope Science Institute
KREYSING, H.-C.
Astronomisches Institut der Universitat Tubingen
WHITE, S.M. University of Maryland
ENGELS, D. Hamberger Sternwarte
CONDON, J.J. National Radio Observatory
HARMON, B.A. ES84
ET AL.
RE J1255+266: Detection of an Extremely Bright EUV Transient. For publication in Astronomy and Astrophysics, Les Ulis, France.

DARBY, S.P. EH01
LANDRUM, D.B. EH01

DARWISH, A. Alabama A&M University
SARKISOV, S. Alabama A&M University
BRYANT, W. Alabama A&M University
VENKATESWARLU, P. Alabama A&M University

ABDELADYEM, H. USRA
FRAZIER, D. O. ES01
Transient Multiple Diffraction Rings Induced by Ar Laser from Poly (Methyl Methacrylate) (PMMA) Polymer Doped with Organic Dyes. For publication in SPIE, Bellingham, WA.

DEAL, K.J. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PENDLETON, G. N. UAH
HARMON, A. ES84
ET AL.

DEAN, W.G. Dean Applied Tech.
WESTRA, D.G. ED63

DENZ, Z.-T. ED33
LIAW, G.-S. ED33
CHOU, L.C. ED33
MACH, K.D. ED33

DENZ, Z.-T. Alabama A&M University
LIAW, G.-S. Alabama A&M University
CHOU, L.C. ED33
Computation of Low-Density Axisymmetric Nozzle Flow Fields by Solving Burnett Equations. For presentation at the AIAA 29th

DEXTER, C.E. EP33
HUTT, J.J. EP33
HULKA, J.R. Aerojet
DENISOV, K.P. NIIHIMMASH, Russia

DIETZ, K.L. ES84
ELSNER, R.F. ES84
JOY, M.K. ES84
O’DELL, S.L. ES84
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84
ARMSTRONG, T.W. SAIC
COLBORN, B.L. TRW
KANVEC, N. TRW

DISCHINGER, H.C., JR. EO23

DOTY, P.M. FA64
What is Necessary to Get Your Ideas to NASA. For presentation at the Fourth International Conference on Tethers in Space, Washington, DC, April 10–14, 1995.

DOUGLAS, F., III SSC
FOGLE, F.R. EJ33
MOG, R.A. QuantiTech, Inc.
WILLIAMSON, A.S. QuantiTech, Inc.
RIGGS, J.L. QuantiTech, Inc.

DRAGO, F.C. ES82
ALISSANDRAKIS, C.E. ES82
BORGIOI, F. ES82
HAGYARD, M. ES82
SHIBASAKI, K. ES82

DRISCOLL, K.T. UAH
BLAKESLEE, R.J. ES43
A Comment to “Current Budget of the Atmosphere Electric Global Circuit” by Heinz W. Kasemir. For publication in JGR/Atmospheres, Washington, DC.

DUGAL-WHITEHEAD, N.R. EB72
WALLS, B.K. EB72

DUKEMAN, G.A. ED11
CALISE, A.J. Georgia Inst. of Tech.

ELROD, M. PD25
ADAMS, A. PS05

EMRICH, W. J., JR. PS05

EURO, H.C. EL54
NIEHUS, K. EL65

EVANS, S.W. EL58

EWING, F.L. Mevatec Corp.
FORSYTHE, E.L. USRA
PUSEY, M.L. ES76
The Effects of Purification on the Crystallization of Lysozyme at Basic pH. For publication...
FALCONER, D.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82
GARY, G.A. ES82
SHIMIZU, T. University of Tokyo

FAWCETT, S.C. EB53

FAZAH, M.M. EP25
SCHMIDT, G.R. EP25
KARR, G.R. UAH
Transport Phenomena in the Micropores of Plug-Type Phase Separators. For presentation at the 33rd AIAA Aerospace Science Meeting and Exhibit, Reno, NV, January 9-12, 1995.

FINCKENOR, J. ED52
ROGERS, P. ED24
OTTE, N. ED24
BEVILL, M. EP12

FISHMAN, G.J. ES81

FISHMAN, G.J. ES81
Gamma-Ray Bursts: Observational Overview and Counterpart Prospects. For presentation at the IAU Colloquium No. 151, Flares and Flashes, Sonneberg, Germany, December 5-9, 1994.

FISHMAN, G.J. ES81
MALLOZZI, R. UAH
HORACK, J.M. ES84
PENDLETON, G.M. UAH
ET AL.

FISHMAN, G.J. ES81

FITZJARRALD, D. ES42
ROBERTSON, F. ES42
BARRON, E. ES42
CHRISTY, J. ES42
POLLARD, D. ES42
THOMPSON, S. ES42
The Scale and Persistence of Soil Moisture Anomalies as Simulated in a Global Model. For presentation at the AMS Conference on Hydrology, Dallas, TX, January 15-20, 1995.

FOK, M.-C. ES83
CRAVEN, P.D. ES83
MOORE, T.E. ES83
RICHARDS, P.G. UAH
Ring Current-Plasmasphere Coupling Through Coulomb Collisions. For publication in American Geophysical Union.

FOK, M.-C. ES83
MOORE, T.E. ES83
KOZYRA, J.U. University of Michigan
HAMILTON, D.C. ES83
A Three-Dimensional Ring Current Decay Model. For publication in Journal of Geophysical Research, Washington, DC.

FOK, M.-C. ES83
MOORE, T.E. ES83
Ring Current Development During Storm Main Phase. For presentation at the IUGG XXI General Assembly, Boulder, CO, July 2-14, 1995.

FOK, M.-C. ES83
CRAVEN, P.D. ES83
MOORE, T.E. ES83
RICHARDS, P.G. ES83

FORD, E. Columbia University
TAVANI, M. Columbia University
KAARET, P. Columbia University
HARMON, B.A. ES84
ZHANG, S.N. USRA
FORSYTHE, E. ES76
PUSEY, M.
The Effects of Acetate Buffer Concentration on the Solubility of Tetragonal Lysozyme at pH4.0. For publication in The Journal of Protein Crystal Growth, Amsterdam, The Netherlands.

FRAIL, D.A.
National Radio Astronomy Observatory
KULKARNI, S.R. California Institute Tech.
HURLEY, K.C. University of California
FISHMAN, G.J. ES81
ET AL.

FRAZIER, D.O. ES01
PALEY, M.S. ES01
ABDELDAYEM, H.A. ES01
ROGERS, J.R. ES01

GALLAGHER, D.L. ES83
FOK, M.-C. ES83
MOORE, T.E. ES83
PEREZ, J.D. ES83
KEADY, J.P. ES83

GALLAGHER, D.L. ES83
CRAVEN, P.D. ES83
COMFORT, R.H. UAH
GREEN, J.L. GSFC
FUNG, S.F. GSFC
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

BUECHLER, D. ES44
BOCCHIPPO, D. ES44
BOECK, W. ES44
BLAKESLEE, R. ES44
DRISCOLL, K. ES44
ET AL.

GOODMAN, S.J. ES44
CHRISTIAN, H.J. ES44
BLAKESLEE, R.J. ES44
KOSHAK, W.J. ES44
MACH, D.M. ES44
BOECK, W.L. ES44

GORACKE, B.D. Rockwell
LEVACK, D.J.H. Rockwell
JOHNSON, G.W. PT51

GORACKE, B.D. Rockwell
LEVACK, D.J.H. Rockwell
JOHNSON, G.W. PT51

GORACKE, B.D. Rockwell
LEVACK, D.J.H. Rockwell
JOHNSON, G.W. PT51
Tripropellant Engine Option Comparison for SSTO. For presentation at the AIAA Space Programs and Technologies Conference and Exhibit, Huntsville, AL, Sept. 26–28, 1995.

GREGORY, J.C. UAH
RAIKAR, G.N. UAH
CROSS, J.B. Los Alamos Nat Lab
HOFFBAUER, M.A. Los Alamos Nat Lab
PETERS, P.N. ES75

GREINER, J. Max-Planck Institut
SOMMER, M. Max-Planck Institut
BADE, N. Hamburg Observatory
FISHMAN, G.J. ES81
HANLON, L.O. ESA
ET AL.
The Gamma-Ray Burst GB 920622. For publication in Astronomy and Astrophysics, Les Ulis, France.

GRIFFIN, L.W. ED32
HUBER, F.W. Pratt & Whitney
SHARMA, O.P. Pratt & Whitney

GRINDLAY, J.E. Harvard Observatory
PRINCE, T.A. Caltech
GEHRELS, N. GSFC
TUELLER, J. GSFC
HAILEY, C.J. Columbia University
RAMSEY, B.D. ES84
WEISSKOPF, M.C. ES84
UBERTINI, P. Instituto di Astrofisica Spaziale
SKINNER, G.K. University of Birmingham (UK)

GRINER, C.S. DD01
GOLDEN, H. EO01
GUILLORY, A.R. ES41
LYONS, A.T. EO45
NEWHOUSE, M. Computer Sciences Corp.

GUILLORY, A.R. ES41
JEDLOVEC, G.J. ES43
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Institution</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHAZANOV, G.V.</td>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>GUITER, S.M.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>MOORE, T.E.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>RICHARDS, P.G.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Martinez, A.</td>
<td>NM Highlands University</td>
<td></td>
</tr>
<tr>
<td>Sanghadasa, M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Penn, B.</td>
<td>ES76</td>
<td></td>
</tr>
<tr>
<td>Clark, R.D.</td>
<td>NM Highlands University</td>
<td></td>
</tr>
<tr>
<td>Liaw, G.S.</td>
<td>Alabama A&M University</td>
<td></td>
</tr>
<tr>
<td>Chou, L.C.</td>
<td>ED33</td>
<td></td>
</tr>
<tr>
<td>Mach, K.D.</td>
<td>Wright Lab</td>
<td></td>
</tr>
<tr>
<td>Howell, E.</td>
<td>EO45</td>
<td></td>
</tr>
<tr>
<td>Hakki, J.</td>
<td>Mankato State University</td>
<td></td>
</tr>
<tr>
<td>Meeegan, C.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Horack, J.M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Paciesas, W.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Emslie, A.G.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Meeegan, C.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Horack, J.M.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Mallozzi, R.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Koshut, T.M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Preecce, R.D.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Hakki, J.</td>
<td>Mankato State University</td>
<td></td>
</tr>
<tr>
<td>Meeegan, C.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Fishman, G.J.</td>
<td>ES81</td>
<td></td>
</tr>
<tr>
<td>Horack, J.M.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Hartmann, D.H.</td>
<td>Clemson University</td>
<td></td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Paciesas, W.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Vo, V.C.</td>
<td>Mankato State University</td>
<td></td>
</tr>
<tr>
<td>Meeegan, C.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Fishman, G.J.</td>
<td>ES81</td>
<td></td>
</tr>
<tr>
<td>Horack, J.M.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Hartmann, D.H.</td>
<td>Clemson University</td>
<td></td>
</tr>
<tr>
<td>Pendleton, G.N.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Paciesas, W.S.</td>
<td>UAH</td>
<td></td>
</tr>
</tbody>
</table>

30
HAKKILA, J. Mankato State University
MEEGAN, C.A. ES84
HORACK, J.M. ES84
FISHMAN, G.J. ES81
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
PACIESAS, W.S. UAH
EMSLIE, A.G. UAH

HAKKILA, J. Mankato State University
MEEGAN, C.A. ES84
HORACK, J.M. ES84
FISHMAN, G.J. ES81
ET AL.

HALE, J.P. EO23
SHAPIRO, R.G. EO23
BROWN, M.L. EO23
FOGLEMAN, M. EO23
GOLDBERG, J.H. EO23
GRANADA, R.E. EO23
SANDERS, E. B.–N. EO23

HALE, J.P. EO23

Human Factors Issues and Approaches in the Spatial Layout of a Space Station Control Room, Including the Use of Virtual Reality as a Design Analysis Tool. For presentation at the AIAA Space Programs and Technologies Conference, Huntsville, AL, September 26–28, 1995.

HALE, J.P. EO23

HAMAKER, J.W. PP03

HAMILTON, G.S. EO23

HANSON, J.M. ED11
DUKEMAN, G.A. ED11

HARDIN, D.M. ES44
GOODMAN, H.M. ES44

HARMON, B.A. ES84
WILSON, C.A. ES84
FISHMAN, G.J. ES81
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
ZHANG, S.N. Universities Space Research Assoc.
RUBIN, B.C. Universities Space Research Assoc.
SCOTT, D.M. Universities Space Research Assoc.
HJELLMING, R.M. National Radio Astronomy Observatory
RUPEN, M. National Radio Astronomy Observatory

HARMON, B.A. ES84

A New X-Ray Source Blasts Out Matter at Relativistic Speed. For publication in AAS Meeting, Tucson, AZ.

HARMON, B.A. ES84
WILSON, C.A. ES84
FISHMAN, G.J. ES81
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
ZHANG, S.N. USRA
RUBIN, B.C. USRA
SCOTT, D.M. USRA

HARMON, B.A. ES84
ZHANG, S.N. ES84
PACIESAS, W.S. ES84
TAVANI, M. ES84
KAARET, P. ES84
FORD, E. ES84

Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1. For presen-
Search for Periodic Behavior in GX 339-4
Hard X-Ray Emission. For presentation at the
HEAD Meeting, Napa Valley, CA, November

HARRISON, J.K.
SEDS/SEDSAT Project Overview. For presen-
tation at The Fourth International Conference
on Tethers in Space, Washington, DC, April

HATHAWAY, D.H.
Variations in the Sun’s Meridional Flow. For
publication in Astrophysical Journal, Chicago,
IL.

HATHAWAY, D.H.
Temporal Variations of the Sun’s Meridional
Flow. For presentation at the 26th Solar
Physics Division/American Astronomical
Society Meeting, Memphis, TN, June 4–8,
1995.

HAYASHIDA, K.B.
ROBINSON, J.H.
HILL, S.A.
Micro-Meteoroid and Orbital Debris Damage
Analyses on SEDS Tether. For presentation at
the Fourth International Conference on
Tethers in Space, Washington, DC, April 10–

HAYASHIDA, K.B.
HILL, S.A.
Comparisons of Hydrocode Simulation Results
Using CTH and SPHINX. For presentation at
the AIAA Space Programs and Technologies
Conference, Huntsville, AL, September 26–28,
1995.

HINMAN-SWEENEY, E.
CRABB, T.M.
Smart Sensing for Laboratory Applications.
For publication in Laboratory Robotics and
Automation Journal, Hershey, PA, December

HO, J.
CARTER, D.C.
CHANG, B.
KEELING, K.
KRISHNASAMI, Z.
Preliminary Crystallographic Studies of Four
Crystal Forms of Serum Albumin. For publi-
cation in European Journal of Biochemistry,
Zurich, Switzerland.

HORACK, J.M.
MALLOZZI, R.S.
KOSHUT, T.M.
Recent GRB Time Dilation Measurements in
the Context of Standard Cosmology. For pub-
lication in Astrophysics Journal, Chicago, IL.

HORACK, J.M.
HAKKILA, J.
EMSLIE, A.G.
MEEGAN, C.A.
Analytic Constraints on Gamma-Ray Burst
Luminosity Functions. For publication in

HUDSON, S.T.
COLEMAN, H.W.
A Preliminary Assessment of Methods for
Determining Turbine Efficiency. For present-
tation at 34th Aerospace Sciences Meeting,

HUDSON, S.T.
MINOR, J.L.
JOHNSON, P.D.
Pratt & Whitney
Performance Testing of Highly Loaded Single
Stage Oxidizer Turbine with Volute Mani-
folds. For presentation at the 31st Joint
Propulsion Conference, San Diego, CA, July
HUFFAKER, C.F.

HUNG, R.J.
HUNG, R.J.
LONG, Y.T.
PAN, H.L.
Response and Decay of Rotating Cryogenic Liquid Helium Reacted to Impulsive Acceleration in Microgravity. For publication in Transactions of the Japan Society of Aeronautical and Space Sciences, Tokyo, Japan.

HUNG, R.J.
PAN, H.L.
Orbital Spacecraft Cryogenic Helium Dewar Sloshing Dynamics Driven by Gravity Gradient Acceleration Associated With Slew Motion. For publication in International Journal of Fluids and Thermal Engineering, Tokyo, Japan.

HUNG, R.J.
PAN, H.L.
Sloshing Induced Moment Driven by the Gravity Gradient Associated With Spacecraft Slew Motion. For publication in AIAA Journal of Spacecraft and Rockets, New York, NY.

HUNG, R.J.
PAN, H.L.
Rotational Speed and Wrapping of Different Size Cryogenic Helium Bubbles Around Dewar Well in Microgravity. For publication in Aeronautical Journal, New York, NY.

HUNG, R.J.
LONG, Y.T.
ZU, G.J.
Sloshing of Cryogenic Helium Driven by Lateral Impulse/Gravity Gradient-Dominated/Or G-Jitter-Dominated Accelerations and Orbital Dynamics. For publication in Cryogenics.

HUNG, R.J.
PAN, H.L.
Modeling of Sloshing Modulated Angular Momentum Fluctuations Actuated by Gravity Gradient Associated With Spacecraft Slew Motion. For publication in Applied Mathematical Modeling.

HUNG, R.J.
PAN, H.L.
Spin-Up and Wrapping of Cryogenic Helium Bubble Around Dewar Well From Rest in Microgravity. For publication in Mechanics Research Communications.

HUNG, R.J.
PAN, H.L.

HUNG, R.J.
PAN, H.L.

HUNG, R.J.
LONG, Y.T.
Dynamical Behavior of Cryogenic Helium in a Partially Filled Dewar and Container in Microgravity. For publication in Journal of Aerospace Engineering, United Kingdom.

HUNG, R.J.
LEE, C.C.
Effect of Baffles on Gravity Gradient Driving Bubble Imbalance Perturbations in Microgravity. For publication in Canadian Aeronautics and Space Journal, Canada.

HUTCHENS, C.F.
RETHKE, D.W.

JACKSON, M.E.
SHTESSEL, Y.B.
Decoupled Thermal Control for Space Station Furnace Facility Using Sliding Mode Techniques. For presentation at the Space
JARZEMBSKI, M.A. ES43

SRIVASTAVA, V. (ES43) USRA

Low Pressure Experimental Simulation of Above-Cloud and Intracloud Electrical Discharges. For publication in Geophysical Research Letters, Washington, DC.

JARZEMBSKI, M.A. ES43

SRIVASTAVA, V. (ES43) USRA

Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud. For publication in Journal of Atmospheric and Terrestrial Physics, Cranfield, U.K.

JARZEMBSKI, M.A. ES43

SRIVASTAVA, V. (ES43) USRA

CHAMBERS, D.M. Micro Craft, Inc.

JAYROE, R.R., JR. JA01

JEDLOVEC, G.J. ES43

ATKINSON, R.J. Lockheed-Martin

Quality and Control of Water Vapor Winds. For presentation at the AMS Eighth Conference on Satellite Meteorology and Oceanography, Atlanta, GA, January 28–February 2, 1996.

JOHNSON, D.L. EL54

JEFFRIES, W.R., III EL54

YUNG, S. EL54

JUSTUS, C.G. EL54

JOHNSTON, A.S. EO63

HICKAM, H.H. EO63

JONG, J. AI Signal Research

NESMAN, T. ED33

BORDELÓN, W. ED33

JONES, J. ED33

ZOLADZ, T. ED33

Coherent Phase Wide Band Demodulation Technique for Turbomachinery Cavitation Detection and Monitoring. For presentation at the Society for Machinery Failure Prevention Technology Conference, Mobile, AL, April 22–26, 1996.

KANKELBORG, C.C. Stanford University

WALKER, A.B.C., JR. Stanford University

HOOVER, R B. ES82

BARBEE, T.W., JR. Lawrence Livermore

KARR, L.J. ES76

PANOSKALTSIS-MORTARI, A.

LI, J.

DEVORE-CARVER, D.

WEAVER, C.T.

BUCY, R.P.

In Situ Hybridization for Cytokine mRNA With Digoxigenin Labeled Riboprobes: Sensitivity of Detection and Double Label Applications. For publication in Elsevier Biomedical Press, Amsterdam, The Netherlands.

KAUKLER, W.F. UAH

CURRERI, P.A. ES75

KAVAYA, M.J. EB54

KAVAYA, M.J. EB54

Instrument and Mission Design of a Space Doppler Wind Lidar at NASA. For presentation at the Doppler Wind Lidar Workshop in ESTEC, Noordwijk, the Netherlands, September 20–22, 1995.

KHAN, G.V. ES83

MOORE, T.E. ES83

FOK, M.C. ES83

LIEMOHN, M.W. University of Michigan

JORDANOVA, V.K. University of Michigan

KIM, J.H.

KINDT, L.M. Michigan Tech University
MULLINS, M.E. Michigan Tech University
HAND, D.W. Michigan Tech University
KLINE, A.A. Michigan Tech University
CARTER, D.L. ED62
GARR, J.D., II ION Electronics, Inc.

KITTREDGE, S.L.
ED63

KOLODZIEJCZAK, J.J. USRA
AUSTIN, R.A. USRA
ELSNER, R.F. ES84
JOY, M.K. ES84
SULKANEN, M. ES84
KELLOGG, E.M. Harvard-Smithsonian
WARGELIN, B.J. Harvard-Smithsonian
X-Ray Source System at the MSFC X-Ray Calibration Facility. For publication in SPIE—The International Society for Optical Engineering, Bellingham, WA.

KOLODZIEJCZAK, J.J. USRA
RAMSEY, B.D. ES84
Performance of a Liquid Xenon Microstrip Proportional Counter. For publication in SPIE—The International Society for Optical Engineering, Bellingham, WA.

KOSKAK, W. ES43
BERGSTROM, J.
STEWARD, M.
CHRISTIAN, H.
HALL, J.
SOLAKIEWICZ, R.
Calibration of the Optical Transient Detector (OTD). For presentation at the 1996 10th International Conference on Atmospheric Electricity, Osaka, Japan, June 10–14, 1996.

KREUTZ, W.
SOLAKIEWICZ, R.
Chicago State Univ.
On the Retrieval of Lightning Radio Sources from Time-of-Arrival Data. For publication in Journal of Geophysical Research, Washington, DC.

KOSKAK, W. ES43
BERGSTROM, J.W. ES43
STEWART, M.F. ES43
CHRISTIAN, H.J. ES43
HALL, J.M. ES43
SOLAKIEWICZ, R.
Chicago State Univ.

KOLODZIEJCZAK, J.J. USRA
KOUVELIOTOU, C. USRA
PACIESAS, W.S. USRA
VAN PARADUJS, J. USRA
PENDLETON, G.N. USRA
BRIGGS, M.S. USRA
FISHMAN, G.J. ES81
MEEGAN, C.A. ES84
Gamma Ray Burst Precursor Activity as Observed with BATSE. For publication in Astrophysical Journal, Chicago, IL.

KROES, R.L. ES76
REISS, D.A. ES76
LEHOCZYK, S.L. ES76
Nucleation of Crystals From Solution in Microgravity. For publication in Microgravity Science and Technology, Munich, Germany.

KROGULEC, M. UAH
MUSIELAK, Z.E. UAH
SUSS, S.T. ES82

KUKHTAREV, N.
ABDELADYEM, H. USRA
CAULFIELD, H.J.
DARWISH, A. Alabama A&M University
FRAZIER, D.O. ES01
MOGHBEL, M. Alabama A&M University
NOGINOV, M.A. Alabama A&M University
35
VENKATESWARLU, P.
Alabama A&M University
Dynamic Memory in Phase Conjugation of Nonoverlapping in Time Picosecond Pulses. For publication in SPIE, Bellingham, WA.

LAM, N.S-N.
Louisiana State University
QUATTROCHI, D.A.
ES44

LANSING, M.
EH13
RUSSELL, S.
EH13
WALKER, J.
EH13
WORKMAN, G.
EH13

LAPENTA, W.
ES42
ROBERTSON, F.R.
ES42
LU, H.I.
USRA
JEDLOVEC, G.
ES43

LAPENTA, W.M.
ES42
PERKEY, D.J.
Inst. of Global Change
KREITZBERG, C.W.
Drexel Univ.
ROBERTSON, F.R.
ES42

LAROSA, T.N.
Kennesaw State College
MOORE, R.L.
ES82
MILLER, J.A.
UAH
SHORE, S.N.
Indiana University at South Bend

LASSITER, J.
ED74

LASSITER, J.
ED74

LAYMON, C.A.
ES44
CROSSON, W.L.
ES44
Regional-Scale Hydrology With a New Land Surface Processes Model. For presentation at the American Meteorological Society, Dallas, TX, January 15–20, 1995.

LAYMON, C.A.
ES44
QUATTROCHI, D.A.
ES44

LEE, J.E.
PT41

LEHOCZKY, S.L.
ES75
GILLIES, D.C.
ES75
SZOFRAN, F.R.
ES75
REEVES, F.A.
ES75
ET AL.

LERNER, J.A.
UAH
JEDLOVEC, G.J.
ES43

LI, M.
UAH
NADARAJAH, A.
UAH
PUSEY, M.L.
ES76
Modeling the Growth Rates of Tetragonal Lysozyme Crystals. For publication in The Journal of Crystal Growth, Amsterdam, Netherlands.

LIAW, P.
ED32
CHEN, Y.-S.
ED32
SHANG, H.-M.
ED32
Numerical Investigation of the Slag Behavior in the Aft-End Cavity of Solid Rocket Motors. For presentation at the 33rd Aerospace

LIGHTFOOT, R.M. EP85
MCCONNAUGHEY, H.V. EP01

LIM, K. ES76
HO, J.X. ES76
WRIGHT, B. ES76
TWIGG, P.D. ES76
CARTER, D.C. ES76
Analysis and Crystallographic Refinement of Hen Egg White Lysozyme at 1.4 A from Crystals Produced in Microgravity. For publication in Protein Science Magazine.

LORENZINI, E.C.
Harvard-Smithsonian Center for Astrophysics
BORTOLAMI, S.B. University of Padova, Italy
RUPP, C.C. PS04
ANGRILLI, F. University of Padova, Italy

LU, H.-I. ES42
MILLER, T.L. ES42

LU, H.-I. IGCRE
MILLER, T.L. ES42

LU, H.-I.
MILLER, T.L. ES42
Baroclinic Waves Dispersion in a Constant F Plan. For presentation at the 10th Conference on Atmospheric and Oceanic Waves and Stability, Big Sky, MT, June 5–6, 1995.

LURIE, C. TRW
FOROOZAN, S. TRW
BREWER, J.C. EB74
JACKSON, L.G. EB72

LURIE, D. TRW
FOROOZAN, S. TRW
BREWER, J.C. EB74
JACKSON, L. EB72

MAJUMDAR, A.K. Sverdrup
VAN HOOSER, K.P. EP32

MALLOZZI, R.S. UAH
PACIESAS, W.S. UAH
PENDLETON, G.N. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
MEEGAN, C.A. ES84
FISHMAN, G.J. ES81
The vFv Peak Energy Distributions of Gamma-Ray Bursts Observed by BATSE. For publication in The Astrophysical Journal, Chicago, IL.

MARMANN, R.A. JA01
Using Spacelab as a Precursor of Science Operations for the Space Station. For presentation at the International Astronautical Federation (IAF), Oslo, Norway, October 1995.

MARTINEZ, A. NM Highlands University
ROMERO, E. NM Highlands University
TAN, L. NM Highlands University
SANGHADASA, M. UAH
MCCALL, S. Spelman College
CARDELINE, B. Spelman College
MOORE, C. ES76
PENN, B. ES76
CLARK, R.D. NM Highlands University
Synthesis of Substituted 4-Nitroanilines for Nonlinear Optics. For presentation at the American Chemical Society Norm/Rocky Mountain Meet, Park City, UT, June 14–16, 1995.

MARTINEZ, M. NM Highlands University
ROMERO, E. NM Highlands University
MARTINEZ, A. NM Highlands University
ROMERO, L. NM Highlands University
MCCALL, S. Spelman College
CARDELINO, B. Spelman College
MOORE, C. ES76
PENN, B. ES76
CLARK, R.D. NM Highlands University
Synthesis of N-Alkyl Substituted 4-Nitroaniline and N-(4-Nitrophenyl) -N-Methylaminonitrile Derivatives. For presentation at the American Chemical Society Norm/Rocky Mountain Meeting, Park City, UT, June 14–16, 1995.

MAXWELL, T. EO45
HOWELL, E. (EO45) Boeing
Planning as a Precursor to Scheduling for Space Station Payload Operations. For presentation at the American Institute of Aeronautics and Astronautics (AIAA), Huntsville, AL, September 26–28, 1995.

MAZURUK, K. USRA
VOLZ, M. P. ES75

MCCOLLUM, M.B. EL54
JAVOR, K.J. Sverdrup

MCCONNAUGHEY, H.V. EP01
BURTON, J. W. EP81
THOMPSON, R. L. EP81

MCCONNAUGHEY, P.K. ED32
RUF, J. ED32
MCDANIELS, D. ED32

MCGAUGHEY, G. Texas A&M University
ZIPSER, E.J. Texas A&M University
SPENCER, R.W. ES43
HOOD, R.E. ES43

MCKECHNIE, T. Rockwell
KROTZ, P. Rockwell
LIAW, Y. Rockwell
HOLMES, R. EJ22
ZIMMERMAN, F. EH25
Enhanced Near-Net-Shape Ceramic Refractory Composite High Temperature Cartridges by VPS Metallurgical Alloying Technique. For presentation at the ASM International’s National Thermal Spray Conference, Houston, TX, September 1995.

MCKECHNIE, T.N. Plasma Processes, Inc.
BEASON, G.P. Plasma Processes, Inc.
ZIMMERMAN, F.R. Plasma Processes, Inc.

MCQUEEN, D.H., JR. EP44

MEEGAN, C. ES84
HORACK, J. ES84
DAVIDSEN, A. John Hopkins University

STECHER, T. GSFC

CODE, A. University of Wisconsin

MILLER, T.L. ES42

SMITH, S.A. ES42

KAYE, J.A. NASA HQ's

ATLAS-3 Space Shuttle Mission Studies Earth Atmosphere and Solar Input. For publication in EOS, Washington, DC.

MILLER, T.L. ES42

SMITH, S.A. ES42

KAYE, J.A. ES42

MITROFANOV, I.G. Space Research Institute

CHERNENKO, A.M. Space Research Institute

POZANENKO, A.S. Space Research Institute

BRIGG, M.S. Space Research Institute

FISHMAN, G.J. ES81

ET AL.

MITROFANOV, I.G. Space Research Inst.

CHERNENKO, A.M. Space Research Inst.

POZANENKO, A.S. Space Research Inst.

BRIGGS, M.S. UAH

PACIESAS, W.S. UAH

FISHMAN, G.J. ES81

MEEGAN, C.A. ES81

SAGDEEV, R.Z. University of Maryland

MONTGOMERY, E.E. PS04

BENNETT, H.E. PS04

Commercial Applications for Adaptive Segmented Mirrors For presentation at PHOTONICS West '95, San Jose, CA, February 8–9, 1995.

MOORE, R.L. ES82

MUSIELAK, Z.E. UAH

KROGULEE, M. University of Gdansk

SUSS, S.T. ES82

Propagating Alfvén Waves, Intermittent Magnetic Levitation, and Coronal Heating in Coro-

MOORE, R.L. ES82

LAROSA, T.N.

MILLER, J.A.

SHORE, S.N.

MOORE, T.E. ES83

CHANDLER, M.O. ES83

POLLOCK, C.J. ES83

REASONER, D.L. ES83

ET AL.

MOORE, T.E. ES83

MOORE, T.E. ES83

FOK, M.-C. ES83

KEADY, J.P. ES83

PEREZ, J.D. ES83

MULLINS, L.D. EL58

EVANS, S.W.

The Dynamics of the Proposed Orbit for the AXAF Satellite. For publication in Journal of the Astronautical Sciences, Springfield, VA.

MULQUEEN, J. PD32

BUKLEY, A. PD32

MUSIELAK, Z.E. UAH

PORTER, J.G. ES82

DAVIS, J.M. ES82

MUSIELAK, Z.E. UAH

MOORE, R.L. ES82

39

MYERS, T. NM Highland University
ROMERO, M. NM Highland University
PARHAM, T. NM Highland University
MCCALL, S. Spelman College
CARDELINO, B. Spelman College
MOORE, C. ES76
PENN, B. ES76
CLARK, R.D. NM Highland University

Synthesis of 1,1-Dicyanovinylbenzene, Compounds for Nonlinear Optics. For presentation at the American Chemical Society Norm/Rocky Mountain Meeting, Park City, UT, June 14–16, 1995.

NADERI, M.H. EO22

NEIN, M.E. PS02

NEIN, M.E. PS02

NEIN, M.E. PS02

NERNEY, S. ES82

Problems in American Education: Teaching Science and Mathematics. For publication in Kappa Delta Pi Records, West Lafayette, IN.

NERNEY, S. ES82
SUESS, S.T. ES82

NESMAN, T. ED33

NETTLES, A. EH33

NETTLES, A. EH33
DANIEL, V. EH33
BRANSCOMB, C. EH33

NETTLES, A.T. EH33

NEUGEBAUER, M. California Inst. of Tech.
GOLDSTEIN, B.E. California Inst. of Tech.
MCCOMAS, D.J. Los Alamos Nat. Lab.
SUESS, S.T. ES82
BALOGH, A. Imperial College, London, UK

Velocity Variations in the High-Latitude Solar Wind. For publication in Solar Wind 8, Pasadena, CA.

NEUGEBAUER, M. JPL
GOLDSTEIN, B.E. JPL
MCCOMAS, D.J. Los Alamos Nat. Lab.
SUESS, S.T. ES82
BALOGH, A. Imperial College, London, UK

NICHOLS, M. ES43
FUELBERG, H. ES43
RUSCHER, P. ES43
JEDLOVEC, G. ES43

A Comparison of Several Techniques for Estimating Soil Moisture Over Complex Terrain. For publication in Journal of Applied Meteorology, Boston, MA.
NOEVER, D. ES76
PUSEY, M.L. ES76
FORSYTHE, E.L. USRA
BASKARAN, S. ES76

Artificial Neural Network Prediction of Tetragonal Lysozyme Face Growth Rate. For publication in Journal of Crystal Growth, The Netherlands.

NOEVER, D. ES76
BASKARAN, S. ES76

NOEVER, D.A. ES76
MATSOS, H.C. ES76
LOOGER, L.L. ES76

Bioconvective Test Using Tetrahymena Pyriformis as an In Vitro Alternative to Ocular Irritation Testing in Rabbits. For publication in Chemosphere, Oxford, UK.

NOEVER, D.A. ES76
MATSOS, H.C. ES76
CRONISE, R. ES76

Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results. For publication in Biophysical Journal, Baltimore, MD.

ONKEN, J.F. EO43
HORVATH, T. EO43
MEADOWS, R. EO43
MENEES, S. EO43

ORVILLE, R.E. ES44
ZIPSER, E.J. ES44
AULICH, G. ES44
ET AL

PACIESAS, W.S. UAH
FINGER, M.H. USRA
WILSON, R.B. ES84
FISHMAN, G.J. ES81

PALOSZ, W. NRC/NASA
DUROSE, K. University of Durham
GILLIES, D. ES75
GRASZA, K. IP PAS
JERMAN, G. ES75

PALOSZ, W. NRC/NASA
SZOFRAN, F.R. Fisk University
GEORGE, M.A. Fisk University
COLLINS, E.E. Fisk University
CHEN, K.-T. Fisk University
ZHANG, Y. Fisk University
HU, Z. Fisk University

PALOSZ, W. NRC/NASA
SZOFRAN, F.R. ES75

PEARSON, S.D. EL54
JAMES, B.F. EL54
VAUGHN, W.W. EL54

PENDLETON, G.N. ES84
PACIESAS, W.S. ES84
FISHMAN, G.J. ES81
MEEGAN, C.A. ES84
WILSON, R.B. ES84

PENDLETON, G.N. UAH
PACIESAS, W.S. UAH
BRIGGS, M.S. UAH
PREECE, R.D. UAH
FISHMAN, G.J. ES81
ET AL.

PERRY, J.L. ED62
GRAFT, J.C. JSC
Spacecraft Cabin Air Quality Control and Its Application to Tight Buildings. For presentation at the NASA/AIAA Life Sciences and Space Medicine Conference, Houston, TX, April 3–5, 1995.

PETERS, P.N. ES75
HOOVER, R.B. ES75
WATTS, R. ES75
TARRIO, C. ES75
WALKER, A.B.C., JR. ES75

PHILLIPS, J.L. Los Alamos Nat. Lab.
BAME, S.J. Los Alamos Nat. Lab.
FELDMAN, W.C. Los Alamos Nat. Lab.
GOLDSTEIN, B.E. JPL
SUESS, S.T. ES82
ET AL.
Ulysses Solar Wind Plasma Observations at High Southerly Latitudes. For publication in Science, Washington, DC.

POLLOCK, C.J. ES83
MOORE, T.E. ES83
REASONER, D.L. ES83
Quasi-Parabolic Electrostatic Charged Particle Mirror. For publication in Review of Scientific Instruments, New York, NY.

POLLOCK, C.J. ES53
ADRIAN, M. UAH

PORTER, J.G. ES82
FALCONER, D.A. ES82
MOORE, R.L. ES82
HARVEY, K.L. ES82
ET AL.

PORTER, J.G. ES82
FALCONER, D.A. NAS/NRC
MOORE, R.L. ES82
HARVEY, K.L. SPRC
RABIN, D.M. NSO
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

PRAVDO, S.H. JPL
DAY, C.S.R. USRA
ANGELINI, L. USRA
HARMON, B.A. ES84
YOSHIDA, A. Japan
SARASWAT, P. Japan

ASC A and GRO Observations of GX301-2.
For publication in Astrophysical Journal,
Chicago, IL, December 1995.

PRAVDO, S.H. JPL
DAY, C.S.R. USRA
ANGELINI, L. USRA
HARMON, B.A. ES84
YOSHIDA, A. Japan
SARASWAT, P. Japan

ASCA and GRO Observations of GX301-2.
For publication in Astrophysical Journal,
Chicago, IL, December 1995.

PUSEY, M. ES76
FORSYTHE, E.
LI, M.
SIBILLE, L.

NADARAJAH, A.
The Tetragonal Lysozyme Crystal Growth
Solution. For publication in The Journal of
Protein Crystal Growth, Amsterdam, The
Netherlands.

PUSEY, M. ES76

Tetragonal Lysozyme Crystal Growth. For
presentation at the Protein Crystal Growth
Conference, Panama City Beach, FL, April 21–

QUATTROCHI, D.A. ES44
RIDD, M.K. University of UT
Analysis of Vegetation Within an Arid Urban
Environment Using High Spatial Resolution
Airborne Thermal Infrared Remote Sensing
Data. For publication in Atmospheric
Environment, Amsterdam, The Netherlands.

RAGHAVAN, R. ES44
CHADRASEKAR, V. ES44

Multiparameter Radar Study of Rainfall: Poten-
tial Application to Area Time Integral
Studies. For publication in Journal of Applied
Meteorology, AMS, Boston, MA.

RAGHAVAN, R. ES41
RAMACHANDRAN, N. ES41
GOODMAN, S.J. ES41

Retrieval of Cloud Properties Using Lightning
Observations From Space. For presentation at
the American Geophysical Union 1995 Fall
Meeting, San Francisco, CA, December 11–15,
1995. For publication in EOS, Transactions of
the American Geophysical Union.

RAGHAVAN, R. ES42
BUECHLER, D. ES42
SMITH, M. ES42
MEYER, P. ES42
GOODMAN, S. ES42

Lightning and Rainfall Maps of the United
States for Climate and Hydrology Studies. For
presentation at the IUGG General Assembly,

RAIKAR, G.N. UAH
GREGORY, J.C. UAH
WEIMER, J.J. UAH
YOUNG, P.R. LaRC
PETERS, P.N. ES75

Surface Modification of Polyimide Films
Exposed to Low-Earth Orbit Environment. For
presentation at the 17th Annual Symposium
on Applied Surface Analysis, University Park,
PA, June 7–9, 1995.

RAIKAR, G.N. UAH
GREGORY, J.C. UAH
CONNATSER, R.W. UAH
PETERS, P.N. ES75

Space Environmental Effects on Thin Metallic
Films. For presentation at the 1995 AIAA
Space Programs and Technologies Conference
and Exhibit, Huntsville, AL, September 26–28,
1995.

RAMACHANDRAN, N. USRA
BAUGHER, C.R. ES75

G-Jitter Effects in Protein Crystal Growth—A
Numerical Study. For presentation at the 26th
AIAA Fluid Dynamics Conference, San Diego,

RAMACHANDRAN, N. ED36
SMITH, A. ED36
GERRY, G. ED36
KAUFFMAN, W. ED36

High Reynolds Effects on Multihole Probes
and Hot Wire Anemometers. For presentation
at the AIAA 26th Fluid Dynamics Conference,

RAMSEY, B.D. ES84

Imaging Gas Counters for X- and Gamma Ray
Astronomy. For presentation at Imaging in
High Energy Astronomy, Frascati, Italy,

REIFF, P.H. ES83
GREEN, J.L ES83
BENSON, R.F. ES83
CARPENTER, D.L. ES83
CALVERT, W. ES83
FUNG, S.F. ES83
GALLAGHER, D.L. ES83
ET AL.

Remote Sensing of Substorm Dynamics Via
Radio Sounding. For publication in Proceed-
ings of the Second International Conference
on Substorms, American Geophysical Union,
Washington, DC.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

RHODES, P.H. ES76
SNYDER, R.S. ES76
ROBERTS, G.O. ES76
Role of Dielectric Constant in Electrohydrodynamics of Conducting Fluids. For publication in Journal of Colloid and Interface Science, San Diego, CA.

RHODES, P.H. ES76
Influence of Conductivity and Dielectric Constant in Electrokinetic Separations. For presentation at PITTCON 95, New Orleans, LA, March 5–11, 1995.

ROBERTSON, F.R. ES42
MCCAULE, E.W. ES42
COHEN, C. ES42
Large-Scale Water Vapor and Condensate Balance Over the TOGA-COARE Region. For presentation at Water Vapor in the Climate System, AGU, Jekyll Island, GA, October 25–28, 1994.

ROLIN, T.D. ES75
SZOFRAN, F.R. ES75
Determination of the Electrical Conductivity of Liquid GE0.95Si0.05. For publication in Journal of Crystal Growth, The Netherlands.

ROOD, R. EB53
FAWCETT, S. EB53
GRIFFITH, C. EB53
KHANIJOW, R. EB53
ENGELHAUPT, D.E. UAH

ROSNER, R. University of Chicago
MUSIELAK, Z.E. UAH
CATTANEO, F. University of Chicago
MOORE, R.L. ES52
SUSS, S.T. ES52
On the Origin of “Dividing Lines” for Late-Type Giants and Supergiants. For publication in Astrophysical Journal, Chicago, IL.

ROTHERMEL, J. ES43
CHAMBERS, D.M. ES43
JARZEMBSKI, M.A. ES43
SRIVASTAVA, V. ES43
JONES, W.D. ES43
Atmospheric Backscatter Measurement with Continuous-Wave Focused CO2 Doppler Lidars. For publication in Applied Optics, Washington, DC.

ROTHERMEL, J. ES43
BOWDLE, D. A. UAH

SRIVASTAVA, V. USRA
Mid-Tropospheric Aerosol Backscatter Background Mode Over the Pacific Ocean at 9.1 Microns Wavelength. For publication in Geophysical Research Letters, American Geophysical Union, Baltimore, MD.

ROTHERMEL, J. ES43
HARDESTY, R.M. NOAA
MENZIES, R.T. JPL

RUBIN, B.C. USRA
FINGER, M.H. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
FISHMAN, G.J. ES81
WILSON, R.B. ES84
WILSON, C.A. ES84
BROCK, M.N. ES84
BRIGGS, M.S. UAH
ET AL.
Observations of 4U1700-37 With BATSE. For publication in Astrophysical Journal, Chicago, IL.

RUPP, C.C. PS02

RUPP, C.C. PS02

RYAN, R.S. ED01

SAMBAMURTHI, J.K. ED33
ALVARADO, A. ED33
MATHIAS, E.C. Thiokol
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Affiliation(s)</th>
<th>Title</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMBAMURTHI, J.K.</td>
<td>Ed33</td>
<td>Plume Diagnostics of SRM Static Firings for Pressure Perturbation Studies.</td>
<td>For publication in Journal of Propulsion and Power.</td>
</tr>
<tr>
<td>CHUNG, T.J.</td>
<td>UAH</td>
<td>4U 0115+634.</td>
<td>For publication in IAU Circular No. 5990, Cambridge, MA.</td>
</tr>
<tr>
<td>BARR, T.A., Jr.</td>
<td>NM Highlands University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLARK, R.D.</td>
<td>NM Highlands University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARTINEZ, A.</td>
<td>NM Highlands University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMERO, E.</td>
<td>NM Highlands University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAN, L.</td>
<td>NM Highlands University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>Atlanta University Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOORE, C.E.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENN, B.</td>
<td>ES76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARKISOV, S.</td>
<td>Alabama A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DARWISH, A.</td>
<td>Alabama A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRYANT, W.</td>
<td>Alabama A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENKATESWARLU, P.</td>
<td>Alabama A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABDELAYEM, H.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAZIER, D.O.</td>
<td>ES01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHANG, H.M.</td>
<td>Engineering Sciences, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEN, Y.S.</td>
<td>Engineering Sciences, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIAW, P.</td>
<td>Engineering Sciences, Inc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHTESSEL, Y.B. UAH
JACKSON, M.E. ED14
Sliding Mode Thermal Control System for Space Station Furnace Facility. For presentation at the 27th IEEE Southeastern Symposium on System Theory, Starkville, MS, March 12–14, 1995.

SIBILLE, L. ES76
NADARAJAH, A. ES76
PUSEY, M.L. ES76
Chloride Ion Binding Promotes the Aggregation of Hen Egg White Lysozyme. For publication in American Chemical Society Journal of Biochemistry, Durham, NC.

SILVA, A.V.R. University of California, Berkley
HAGYARD, M.J. ES82
ET AL.

SINGH, J. Pennsylvania State University
JERMAN, G. EH23
POORMAN, R. EH23
BHAT, B.N. EH23
KURUVILLA, A.K. IIT Research Institute

SMITH, D.D. ES76
ABDELDAYEM, H.
PALEY, M.S.
SHIELDS, A.
WITHEROW, W.K.
FRAZIER, D.O.
GREGORY, D.
Z-Scan of Amorphous Polydiacetylene Thin Films. For publication in Optical Society of America, Washington, DC.

SMITH, D.M. University of Maryland
LEVENTHAL, M. University of Maryland
CAVALLO, R. University of Maryland
GEHRELS, N. GSFC
TEUGELLER, J. GSFC
FISHMAN, G. ES81
Limits on Reported Transient Emission Events Near 0.5 MeV from the Crab and 1E 1740.7–2942. For publication in Astrophysical Journal Letters, Chicago, IL.

SMITH, H.F. EJ23

SMITH, O.E. Computer Sciences Corp.
ADELFANG, S.I. Computer Sciences Corp.
ANDERSON, B.J. EL54

SMITH, S.A. ES42
Mesoscale Wind Variability and Profiler Precision. For publication in Journal of Atmospheric and Oceanic Technology, Norman, OK.

SMITHERMAN, D.V., JR. PP02

SNYDER, R.S. ES71

SORENSEN, J.E. ES83
STONE, N.H.
Ionization Near a Positively Biased Plate Exposed to Ionospheric-Like Conditions. For presentation at the American Geophysical Union Meeting, Baltimore, MD, May 30–June 2, 1995.

SOUTULLO, B.C. JA71
CLARDY, D.J. JA71

SPENCER, R.W. ES43
LAPENTA, W.M.
ROBERTSON, F.R.
Vorticity and Vertical Motions Diagnosed from Satellite Deep Layer Temperatures. For publication in Monthly Weather Reviews, Boston, MA.

SPENCER, R.W.
BRASWELL, W.D.
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instituto Fisica Spazio Interplanetario/CNR, Italy Identification of Charge Carriers in the Ionospheric Branch of the TSS-1 Tether-Generated Current System. For publication in Journal of Geophysical Research.</td>
<td>STONE, N.H.</td>
<td>ES83</td>
</tr>
<tr>
<td>High-Resolution Remote Sensing of Atmospheric Sulfate Aerosols from Backscatter Using Focused CO₂ Doppler Lidars. For publication in Geophysical Research Letters, Baltimore, MD.</td>
<td>BOWDLE, D.A.</td>
<td>UAH</td>
</tr>
<tr>
<td>Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport. For publication in Crystal Growth Research, Washington, DC.</td>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials. For presentation at the Sixth International Space Conference of Pacific-Basin Societies, Marina del Ray, CA, December 6–8, 1995.</td>
<td>GILLIES, D.C.</td>
<td>ES75</td>
</tr>
<tr>
<td>Interaction Between a Fab Fragment Against GP41 of HIV-1 and Its Peptide Epitope: Characterization Using a Peptide Epitope Library and Molecular Modeling. For publication in Protein Engineering, Oxford, UK.</td>
<td>LEHOCZYK, S.L.</td>
<td>ES75</td>
</tr>
<tr>
<td>Instituto Fisica Spazio Interplanetario/CNR, Italy Identification of Charge Carriers in the Ionospheric Branch of the TSS-1 Tether-Generated Current System. For presentation at the Fourth International Conference on Tethers in Space, Washington, DC, April 10–14, 1995.</td>
<td>WRIGHT, K.H., JR.</td>
<td>UAH</td>
</tr>
<tr>
<td>The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials. For presentation at the Sixth International Space Conference of Pacific-Basin Societies, Marina del Ray, CA, December 6–8, 1995.</td>
<td>MAZURAK, K.</td>
<td>ES75</td>
</tr>
<tr>
<td>Interaction Between a Fab Fragment Against GP41 of HIV-1 and Its Peptide Epitope: Characterization Using a Peptide Epitope Library and Molecular Modeling. For publication in Protein Engineering, Oxford, UK.</td>
<td>SU, C.-H.</td>
<td>ES75</td>
</tr>
<tr>
<td>Mass Flux of ZnSe, ZnSeTe, and ZnCdSe and Crystal Growth of ZnSe by PVT. For presentation at the 11th International Conference on Crystal Growth, The Hague, The Netherlands, June 18–23, 1995.</td>
<td>SHA, Y.-G.</td>
<td>ES75</td>
</tr>
</tbody>
</table>
COBB, S.D. ES75
SCRIPA, R.N. UAB
Crystal Growth of HgZnTe by Directional Solidification in Microgravity. For presentation at the 34th AIAA Aerospace Sciences Meeting, Reno, NV, January 15–18, 1996.

SUSS, S.T. ES82

SUGGS, R.J.
JEDLOVEC, G.J. ES43

SUTS, M. EH13
LANSAW, J. Aerojet
Use of Ultrasonic Inspection Techniques for the Advanced Main Combustion Chamber. For presentation at the JANNAF Conference on NDE in Aerospace, Hill AFB, UT, October 24–28, 1994.

SULKANEN, M.E.
KOLODZIEJCZAK, J.J.
CHARTAS, G.

SULLIVAN, R.M. ED28

SWARTZ, D.A. ES84
SUTHERLAND, P.G. ES84
HARKNESS, R.P. ES84
Gamma-Ray Transfer and Energy Deposition in Supernovae. For publication in Astrophysical Journal, Chicago, IL.

SZOFRAN, F.R. ES75

TELESCO, C.M. ES84
DAVIDSON, J.A. ES84
WERNER, M.W. ES84

TINKER, M.L. ED26

TOMLIN, D.D. ED13
MOWERY, D.K. ED13
MUSETTI, B. ED13
CIBRARIO, B. ED13

TRINH, H.P. EH32
Prediction of the Engine Performance and Wall Erosion Due to Film Cooling for the “Fast Track” Thrust Chamber. For presentation at the Propulsion Engineering Research Center—Sixth Annual Symposium, Cleveland, OH, September 13–14, 1994.

UBERTINI, P.
Istituto di Astrofisica Spaziale, Italy
BASSANI, L.
Istituto TESRE, Italy
BAZZANO, A.
Istituto di Astrofisica Spaziale, Italy
COLE, R.
Leicester University
LAPINGTON, J.
MSSL, UK
MAS, M.
LAEFF, Spain
NATALUCCI Istituto di Astrofisica Spaziale, Italy
RAMSEY, B.
ES84
SOGGIU, E.
Istituto di Astrofisica Spaziale, Italy
ET AL.

VAN DER HOOF, F.
University of Amsterdam
KOUVELIOTOU, C.
University of Amsterdam
VAN PARADIJS, J.
University of Amsterdam
RUBIN, B.
University of Amsterdam
FINGER, M.
University of Amsterdam
HARMON, A. ES84
VANHOOSER, T.B. JA21
MCCLENDON, R.K. JA21

VANLANDINGHAM, F. Computer Sciences Corp.
LUCHETTI, K. Computer Sciences Corp.
ROBINSON, J. Orbital Sciences Corp.
SULLIVAN, D. EL44

VAUGHAN, O.H. ES44

VENKATAKRISHNAN, P. ES82
HAGYARD, M.J. ES82
WEST, E.A. ES82
SMITH, J.E. ES82

VENKATAKRISHNAN, P. ES82

VERDERAIME, V.S. ED01
VAUGHAN, R.E. ED01

VERDERAIME, V.S. ED01
VAUGHAN, R.E. ED01

VIKRAM, C.S. UAH
WITHEROW, W.K. ES76
TROLINGER, J.D. MetoLaser

VOLZ, M.P. ES75
MAZURUK, K. ES75
Flow Transitions in a Rotating Magnetic Field. For publication in Experiments in Fluids, Berlin, Germany.

VU, B. ED32
WANG, T.-S. ED32
SHIH, M.-H. ED32
SONI, B. ED32

WALKER, J.L. UAH
HILL, E.V.K. Embry-Riddle Aero U
WORKMAN, G.L. UAH
RUSSELL, S.S. EH 13

WALLACE, B.K. EL64

WANG, F.C. ES75
RAMACHANDRAN, N. ES75
BAUGHER, C. ES75

WANG, J.-C. Alabama A&M University
WATRING, D.A. ES75
GILLIES, D.C. ES75
LEHOCZKY, S.L. ES75

WANG, T.-S. ED32
Base Flowfield Grid-Resolved Analysis for a Four-Engine Clustered Nozzle Configuration. For publication in Journal of Spacecraft and Rockets, Washington, DC.
WANG, T.-S. ED32

WANG, T.-S. ED32

WANG, T.-S. ED32
McCONNAUGHEY, P. ED32
WARSI, S. Sverdrup
CHEN, Y.-S. Engineering Sciences, Inc.
CFD Assessment of the Carbon Monoxide and Nitric Oxide Formation from RD-170 Hot-Fire Testing at MSFC. For presentation at the Sixth Propulsion Engineering Research Center Symposium, Cleveland, OH, September 12–15, 1994.

WATRING, D.A. ES75

WATRING, D.A. ES75
LEHOCZKY, S.L. ES75
BABCSAN, N. University of Miskolc
BARCZY, P. University of Miskolc

WATSON, M.D. EO36
ABUSHAGUR, M. UAH
ASHLEY, P.R. Army Missile Command
JOHNSON-COLE, H. EO36

WEDDENDORF, B. ED55

WEISSKOPF, M.C. ES84
O’DELL, S.L. ES84
ELSNER, R.F. ES84
VAN SPEYBROECK, L.P.

WIEDERHOLD, M.L. University of Texas
SMITHERS, G.A. EH32
STEGYER, P.S.

WILLIAMSEN, J. ED52
HOUGH, G.E. ED52
SERRANO, J. ED52

WILSON, C.A. ES84
FINGER, M.H. USRA
HARMON, B.A. ES84
SCOTT, D.M. USRA
WILSON, R.B. ES84
ET AL.

WILSON, C.A. ES84
HARMON, B.A. ES84
ZHANG, S.N. ES84
PACIESAS, W.S. ES84
FISHMAN, G.J. ES81
ET AL.

WILSON, C.A. ES84
WILSON, R.B. ES84

WITTELES, E.M. World-Wide Innovative Tech Corp.
NELSON, R.D. World-Wide Innovative Tech Corp.
DASARATHY, H.
RAMSEY, B.D. ES84
KOLODZIEJCZAK, J.J. USRA
Multilayer Structures for High Performance Hard X-Ray Optics. For publication in EUV.
X-Ray, and Gamma-Ray Instrumentation for Astronomy VI, Bellingham, WA.

WU, S.-T.S. ES43

ZHANG, S.N. ES84
HARMON, B.A. ES84
FINGER, M.H. ES84
FISHMAN, G.J. ES81
PACIESAS, W.S. UAH
WILSON, C.A. ES84
GRINDLAY, J.E.
Harvard-Smithsonian Center for Astrophysics
BARRET, D.
Harvard-Smithsonian Center for Astrophysics
FORD, E.
Columbia University
ET AL.
GRO J1849-03. For publication in IAU Circular 6150, Cambridge, MA.

ZHANG, S.N. ES84
HARMON, B.A. ES84
WILSON, C.A. ES84
FISHMAN, G.J. ES81
ET AL.
EXO 1846-031. For publication in IAU Circular No. 6096, Cambridge, MA.

ZHANG, S.N. ES84
HARMON, B.A. ES84
PACIESAS, W.S. ES84
WILSON, C.A. ES84
FISHMAN, G.J. ES81
X-Ray Nova in Scorpius. For publication in IAU Circular No. 6101, Cambridge, MA.

ZHANG, S.N. ES84
WILSON, C.A. ES84
HARMON, B.A. ES84
FISHMAN, G.J. ES81
ET AL.
X-Ray Nova in Scorpius. For publication in IAU Circular No. 6046, Cambridge, MA.

ZHANG, S.N. ES84
HARMON, B.A. ES84
PACIESAS, W.S. ES84
FISHMAN, G.J. ES81

ZHANG, X. ES83
COMFORT, R.H. ES83
GALLAGHER, D.L. ES83
GREEN, J.L. ES83
MUSIELAK, Z.E. ES83
MOORE, T.E. ES83
Magnetospheric Filter Effect for Pc3 Alfvén Mode Waves. For publication in Journal of Geophysical Research, Washington, DC.

ZISSA, D.E. EB52
ADMAD, A. EB52
FENG, C. UAH
Software to Model the Performance of X-Ray Telescopes. For presentation at the SPIE Symposium, Orlando, FL, April 19, 1995.
INDEX

TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABERG, J.</td>
<td>1</td>
</tr>
<tr>
<td>AHMED, R.</td>
<td>5</td>
</tr>
<tr>
<td>BOOKOUT, P.S.</td>
<td>3</td>
</tr>
<tr>
<td>CLEARY, N.L.</td>
<td>3</td>
</tr>
<tr>
<td>COUGHLIN, D.</td>
<td>7</td>
</tr>
<tr>
<td>EARHART, E.</td>
<td>5</td>
</tr>
<tr>
<td>FAZAH, M.M.</td>
<td>3</td>
</tr>
<tr>
<td>FIORUCCI, T.</td>
<td>5</td>
</tr>
<tr>
<td>FLACBART, R.H.</td>
<td>3</td>
</tr>
<tr>
<td>GALLAHER, M.</td>
<td>7</td>
</tr>
<tr>
<td>GILES, B.L.</td>
<td>6</td>
</tr>
<tr>
<td>GNACEK, W.J.</td>
<td>6</td>
</tr>
<tr>
<td>HOLT, K.A.</td>
<td>3</td>
</tr>
<tr>
<td>HORTON, C.M.</td>
<td>6</td>
</tr>
<tr>
<td>JACKSON, M.E.</td>
<td>2</td>
</tr>
<tr>
<td>JEFFRIES, W.R., III</td>
<td>1</td>
</tr>
<tr>
<td>JOHNSON, D.L.</td>
<td>1</td>
</tr>
<tr>
<td>JUSTUS, C.G.</td>
<td>1</td>
</tr>
<tr>
<td>KIM, J.H.</td>
<td>1</td>
</tr>
<tr>
<td>KISSEL, R.</td>
<td>1</td>
</tr>
<tr>
<td>KRUPP, K.</td>
<td>1</td>
</tr>
<tr>
<td>McCOOK, M.A.</td>
<td>6</td>
</tr>
<tr>
<td>McCOOK, M.W.</td>
<td>6</td>
</tr>
<tr>
<td>McRIGHT, P.S.</td>
<td>7</td>
</tr>
<tr>
<td>MILLER, G.P.</td>
<td>6</td>
</tr>
<tr>
<td>MOOREHEAD, T.W.</td>
<td>4</td>
</tr>
<tr>
<td>NETTLES, A.</td>
<td>4, 6</td>
</tr>
<tr>
<td>ORTEGA, R.</td>
<td>6</td>
</tr>
<tr>
<td>PERRY, G.L.E.</td>
<td>2</td>
</tr>
<tr>
<td>PERRY, J.L.</td>
<td>5, 6</td>
</tr>
<tr>
<td>ROMAN, M.C.</td>
<td>7</td>
</tr>
<tr>
<td>SMITH, J.E.</td>
<td>1</td>
</tr>
<tr>
<td>SPRINGER, A.M.</td>
<td>5</td>
</tr>
<tr>
<td>SUTER, J.D.</td>
<td>2</td>
</tr>
<tr>
<td>TATARA, J.D.</td>
<td>2, 5</td>
</tr>
<tr>
<td>TOELLE, RONALD</td>
<td>2</td>
</tr>
<tr>
<td>TORR, MARSHA</td>
<td>5</td>
</tr>
<tr>
<td>TRAWEK, M.S.</td>
<td>2</td>
</tr>
<tr>
<td>TURNER, JOYCE E.</td>
<td>3</td>
</tr>
<tr>
<td>TURNER, S.G.</td>
<td>2</td>
</tr>
<tr>
<td>WALLS, B.</td>
<td>6</td>
</tr>
<tr>
<td>WEBB, D.</td>
<td>2</td>
</tr>
<tr>
<td>YUN, S.P.</td>
<td>1</td>
</tr>
<tr>
<td>ZOLADZ, T.</td>
<td>5</td>
</tr>
</tbody>
</table>

CONFERENCE PROCEEDINGS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREWER, JEFF</td>
<td>12</td>
</tr>
<tr>
<td>GAMWELL, W.R.</td>
<td>12</td>
</tr>
<tr>
<td>WHITAKER, ANN</td>
<td>12</td>
</tr>
</tbody>
</table>

REFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXANDER, MARGARET</td>
<td>13</td>
</tr>
<tr>
<td>ARMSTRONG, T.P.</td>
<td>13</td>
</tr>
<tr>
<td>CLARK, T.L.</td>
<td>13</td>
</tr>
<tr>
<td>GALLAGHER, D.L.</td>
<td>13</td>
</tr>
<tr>
<td>GOLDBERG, BEN</td>
<td>13</td>
</tr>
<tr>
<td>HERR, JOEL</td>
<td>13</td>
</tr>
<tr>
<td>JAMES, BONNIE</td>
<td>13</td>
</tr>
<tr>
<td>JOHNSON, C.L.</td>
<td>13</td>
</tr>
<tr>
<td>LEACH, R.D.</td>
<td>13</td>
</tr>
<tr>
<td>Mccollum, M.B.</td>
<td>13</td>
</tr>
<tr>
<td>NETTLES, ALAN</td>
<td>13</td>
</tr>
<tr>
<td>NORTON, AL</td>
<td>13</td>
</tr>
<tr>
<td>POKORA, DARLENE</td>
<td>13</td>
</tr>
</tbody>
</table>

CONTRACTOR REPORTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerojet</td>
<td>14, 15, 17</td>
</tr>
<tr>
<td>Auburn University</td>
<td>14</td>
</tr>
<tr>
<td>Boeing</td>
<td>16</td>
</tr>
<tr>
<td>Boeing Defense and Space Group</td>
<td>18</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>16</td>
</tr>
<tr>
<td>Engineering Sciences, Inc.</td>
<td>17</td>
</tr>
<tr>
<td>ERC, Inc.</td>
<td>16</td>
</tr>
<tr>
<td>EriL Research, Inc.</td>
<td>16</td>
</tr>
<tr>
<td>EXOS, Inc.</td>
<td>17</td>
</tr>
<tr>
<td>Fed C. Hart Associates, Inc</td>
<td>17</td>
</tr>
<tr>
<td>Giordano Automation Corp.</td>
<td>15</td>
</tr>
<tr>
<td>GPS Solutions, Inc.</td>
<td>16</td>
</tr>
<tr>
<td>Isothermal Systems Research, Inc.</td>
<td>17</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>BROWN, M.L.</td>
<td>31</td>
</tr>
<tr>
<td>BROWN, R.W.</td>
<td>21</td>
</tr>
<tr>
<td>BRUNTY, J.</td>
<td>23</td>
</tr>
<tr>
<td>BRYANT, W.</td>
<td>25, 45</td>
</tr>
<tr>
<td>BUCY, R.F.</td>
<td>21, 34</td>
</tr>
<tr>
<td>BUECHLER, D.E.</td>
<td>21, 23, 29, 43</td>
</tr>
<tr>
<td>BUKLEY, A.P.</td>
<td>21, 39</td>
</tr>
<tr>
<td>BULLOCH, J.L.</td>
<td>21</td>
</tr>
<tr>
<td>BUNE, A.V.</td>
<td>22</td>
</tr>
<tr>
<td>BURGER, A.</td>
<td>23</td>
</tr>
<tr>
<td>BURTON, J.W.</td>
<td>38</td>
</tr>
<tr>
<td>BUTLER, B.L.</td>
<td>22</td>
</tr>
<tr>
<td>CALHOUN, P.C.</td>
<td>22</td>
</tr>
<tr>
<td>CALISE, A.J.</td>
<td>26, 50</td>
</tr>
<tr>
<td>CALLANAN, P.J.</td>
<td>22</td>
</tr>
<tr>
<td>CALVERT, W.</td>
<td>22, 43</td>
</tr>
<tr>
<td>CAMPBELL, H.</td>
<td>22</td>
</tr>
<tr>
<td>CAMPBELL, J.</td>
<td>24</td>
</tr>
<tr>
<td>CAMPBELL, J.W.</td>
<td>22</td>
</tr>
<tr>
<td>CAMPBELL, P.</td>
<td>24</td>
</tr>
<tr>
<td>CARDELINO, B.H.</td>
<td>37, 38, 40, 45</td>
</tr>
<tr>
<td>CARLSTROM, J.E.</td>
<td>22</td>
</tr>
<tr>
<td>CARPENTER, D.L.</td>
<td>22, 43</td>
</tr>
<tr>
<td>CARPENTER, R.L.</td>
<td>19, 22</td>
</tr>
<tr>
<td>CARTER, D.</td>
<td>21</td>
</tr>
<tr>
<td>CARTER, D.C.</td>
<td>22, 32, 37, 47</td>
</tr>
<tr>
<td>CARTER, D.L.</td>
<td>21, 24, 32, 35</td>
</tr>
<tr>
<td>CASEY, D.M.</td>
<td>22</td>
</tr>
<tr>
<td>CATTANEO, F.</td>
<td>44</td>
</tr>
<tr>
<td>CAULFIELD, H.J.</td>
<td>35</td>
</tr>
<tr>
<td>CAVALLO, R.</td>
<td>46</td>
</tr>
<tr>
<td>CHADRASEKAR, V.</td>
<td>43</td>
</tr>
<tr>
<td>CHAMBERS, D.M.</td>
<td>34, 44, 47</td>
</tr>
<tr>
<td>CHAMPION, R.H., JR.</td>
<td>23</td>
</tr>
<tr>
<td>CHANDLER, M.O.</td>
<td>28, 39</td>
</tr>
<tr>
<td>CHANG, B.</td>
<td>32</td>
</tr>
<tr>
<td>CHAPMAN, J.C.</td>
<td>23</td>
</tr>
<tr>
<td>CHARTAS, G.</td>
<td>48</td>
</tr>
<tr>
<td>CHEN, K.-T.</td>
<td>23, 41</td>
</tr>
<tr>
<td>CHEN, Y.-S.</td>
<td>23, 36, 50</td>
</tr>
<tr>
<td>CHEN, Y.S.</td>
<td>45</td>
</tr>
<tr>
<td>CHENG, G.</td>
<td>23</td>
</tr>
<tr>
<td>CHERNENKO, A.M.</td>
<td>39</td>
</tr>
<tr>
<td>CHOI, J.</td>
<td>19, 23</td>
</tr>
<tr>
<td>CHOU, L.C.</td>
<td>23, 25, 30</td>
</tr>
<tr>
<td>CHOU, S.-H.</td>
<td>23</td>
</tr>
<tr>
<td>CHRISTENSEN, E.R.</td>
<td>23</td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>20, 21, 23, 28, 29, 35</td>
</tr>
<tr>
<td>CHRISTY, J.</td>
<td>27</td>
</tr>
<tr>
<td>CHRISTY, J.R.</td>
<td>23</td>
</tr>
<tr>
<td>CHUNG, T.J.</td>
<td>45</td>
</tr>
<tr>
<td>CIBRARIO, B.</td>
<td>48</td>
</tr>
<tr>
<td>CIKANEK, H.A.</td>
<td>24</td>
</tr>
<tr>
<td>CLAFLIN, S.A.</td>
<td>19</td>
</tr>
<tr>
<td>CLAFLIN, S.E.</td>
<td>22</td>
</tr>
<tr>
<td>CLANCEY, B.L.</td>
<td>24</td>
</tr>
<tr>
<td>CLARDY, D.J.</td>
<td>46</td>
</tr>
<tr>
<td>CLARK, R.D.</td>
<td>19, 30, 37, 38, 40, 45</td>
</tr>
<tr>
<td>CLARK, T.</td>
<td>24</td>
</tr>
<tr>
<td>CLARKE, A.D.</td>
<td>23</td>
</tr>
<tr>
<td>COBB, S.D.</td>
<td>48</td>
</tr>
<tr>
<td>CODE, A.</td>
<td>39</td>
</tr>
<tr>
<td>COHEN, C.</td>
<td>44</td>
</tr>
<tr>
<td>COLBORN, B.L.</td>
<td>26</td>
</tr>
<tr>
<td>COLE, J.</td>
<td>24</td>
</tr>
<tr>
<td>COLE, R.</td>
<td>48</td>
</tr>
<tr>
<td>COLEMAN, H.W.</td>
<td>32</td>
</tr>
<tr>
<td>COLLINS, E.E.</td>
<td>41</td>
</tr>
<tr>
<td>COMFORT, R.H.</td>
<td>24, 28, 52</td>
</tr>
<tr>
<td>CONDON, J.J.</td>
<td>25</td>
</tr>
<tr>
<td>CONNATSER, R.W.</td>
<td>43</td>
</tr>
<tr>
<td>COOK, M. BETH</td>
<td>24</td>
</tr>
<tr>
<td>COOK, S.A.</td>
<td>24</td>
</tr>
<tr>
<td>CORNELISON, J.W.</td>
<td>28</td>
</tr>
<tr>
<td>CORNETT, K.</td>
<td>28</td>
</tr>
<tr>
<td>CRABB, T.M.</td>
<td>32</td>
</tr>
<tr>
<td>CRAFT, H.G., JR.</td>
<td>24</td>
</tr>
<tr>
<td>CRAVEN, P.D.</td>
<td>24, 27, 28, 30</td>
</tr>
<tr>
<td>CRAWFORD, J.T.</td>
<td>19</td>
</tr>
<tr>
<td>CRITTENDEN, J.C.</td>
<td>21, 24</td>
</tr>
<tr>
<td>CROELL, A.</td>
<td>24</td>
</tr>
<tr>
<td>CRONISE, R.J.</td>
<td>24, 41</td>
</tr>
<tr>
<td>CROSS, J.B.</td>
<td>29</td>
</tr>
<tr>
<td>CROSSON, W.L.</td>
<td>24, 25, 36</td>
</tr>
<tr>
<td>CURREI, P.A.</td>
<td>25, 34, 45, 47</td>
</tr>
<tr>
<td>CUTTEN, D.R.</td>
<td>25, 20, 47</td>
</tr>
<tr>
<td>D'AGOSTINO, M.</td>
<td>25</td>
</tr>
<tr>
<td>DAHLEM, M.</td>
<td>25</td>
</tr>
<tr>
<td>DANIEL, V.</td>
<td>40</td>
</tr>
<tr>
<td>DARBY, S.P.</td>
<td>25</td>
</tr>
<tr>
<td>DARWISH, A.</td>
<td>25, 35, 45</td>
</tr>
<tr>
<td>DASARATHY, H.</td>
<td>51</td>
</tr>
<tr>
<td>DAVIDSEN, A.</td>
<td>39</td>
</tr>
<tr>
<td>DAVIDSON, J.A.</td>
<td>48</td>
</tr>
<tr>
<td>DAVIS, J.M.</td>
<td>39</td>
</tr>
<tr>
<td>DAY, C.S.R.</td>
<td>43</td>
</tr>
<tr>
<td>DEAL, K.J.</td>
<td>25</td>
</tr>
<tr>
<td>DEAN, W.G.</td>
<td>25</td>
</tr>
<tr>
<td>DELOACH, A.</td>
<td>28</td>
</tr>
<tr>
<td>DENG, Z.-T.</td>
<td>23, 25</td>
</tr>
<tr>
<td>DENISOV, K.P.</td>
<td>26</td>
</tr>
<tr>
<td>DEVORE-CARTER, D.</td>
<td>34</td>
</tr>
<tr>
<td>DEXTER, C.E.</td>
<td>26</td>
</tr>
<tr>
<td>DHINDAW, B.K.</td>
<td>47</td>
</tr>
<tr>
<td>DIETZ, K.L.</td>
<td>26</td>
</tr>
<tr>
<td>DILL, R.A.</td>
<td>38</td>
</tr>
<tr>
<td>DISCHINGER, H.C., JR.</td>
<td>26</td>
</tr>
<tr>
<td>DOBROWOLNY, M.</td>
<td>47</td>
</tr>
<tr>
<td>DOLD, P.</td>
<td>24</td>
</tr>
<tr>
<td>DOTY, P.M.</td>
<td>26</td>
</tr>
<tr>
<td>DOUGLAS, F., III</td>
<td>26</td>
</tr>
<tr>
<td>DRAGO, F.C.</td>
<td>26</td>
</tr>
<tr>
<td>DRISCOLL, K.</td>
<td>29</td>
</tr>
<tr>
<td>DRISCOLL, K.T.</td>
<td>23, 26</td>
</tr>
<tr>
<td>DUCHON, C.E.</td>
<td>24</td>
</tr>
<tr>
<td>DUGAL-WHITEHEAD, N.R.</td>
<td>26</td>
</tr>
<tr>
<td>DUKMAN, G.A.</td>
<td>26, 31</td>
</tr>
<tr>
<td>DUROSE, K.</td>
<td>41</td>
</tr>
<tr>
<td>EGARIEVWE, S.U.</td>
<td>23</td>
</tr>
<tr>
<td>ELLIOT, G.</td>
<td>47</td>
</tr>
</tbody>
</table>
SZOFRAN, F.R. 24, 36, 41, 42, 44, 47, 48
TAN, L. ... 37, 45
TANDBERG-HANSSEN, E 30
TARRO, C ... 42
TAVANI, M. .. 27, 31
TELESFIO, C.M. 48
THOMPSON, R.L 38
THOMPSON, S 27
TINKER, M.L. 45, 48
TOMLIN, D.D 48
TRINH, H.P.. 48
TROLINGER, J.D. 29, 46, 49
TUELLER, J 22
TWIGG, P.D................................. 22, 37
UBERTINI, P. 29, 49
USCHEK, H 50
VAN DER HOOFT, F 48
VAN HOOSER, K.P 37
VAN PARADIS, J 35, 48
VANHOOSER, T.B 49
VANLANDINGHAM, F 49
VAN SPEYBROECK, L.P 50
VAUGHAN, O.H 49
VAUGHAN, R.E. 49
VAUGHAN, W.W 42
VENKATAKRISHNAN, P 30, 49
VENKATESWARLU, P 25, 35, 45
VERDERAIME, V.S 49
VIKRAM, C.S. 49
VO, V.C.. 30
VOLZ, M.P. 38, 47, 49
VU, B .. 49
WAITE, J.H., JR 28
WALKER, A.B.C., JR 34, 42
WALKER, D.N 19
WALKER, J 36
WALKER, J.L 49
WALKER, R 45
WALKER, S 22
WALLACE, B.K 49
WALLS, B.K 26
WANG, F.C 49
WANG, J.-C 49
WANG, T.-S................................. 45, 49, 50
WANG, W.S 19, 23
Warsi, S 50
WATRING, D.A 47, 49, 50
WATSON, M.D 50
WATTS, R 42
WEAVER, C.T 21, 34
WEDDENDORF, B 50
WEIMER, J.J 43
WEIR, J.M 50
WEISSKOPF, M.C 26, 29, 50
WELLS, B.E 38
WELZYN, K.J 50
WERNER, M.W 48
WEST, E.A. 30, 49, 50
WESTRA, D.G. 25
WHITE, S.M 25
WHITESIDES, R.H 38, 50
WHORTON, M.S 50
WIEDERHOLD, M.L 51
WILLIAMS, E.R 20
WILLIAMS, R.W 28
WILLIAMS, J 51
WILLIAMSON, A.S 26
WILSON, C.A. 31, 32, 44, 51, 52
WILSON, R.B 41, 42, 44, 45, 51
WILSON, R.M 51
WINGARD, C.D 51
WINGO, D.R 51
WINNINGHAM, J.D 47
WITHEROW, W.K 41, 46, 49, 51
WITTELES, E.M 51
WOLF, D.. 44
WONG, C 20
WORKMAN, G 36
WORKMAN, G.L 49
WRIGHT, B 22, 37
WRIGHT, K.H., JR 47
WU, B .. 45
WU, S.-T.S 52
WU, S.T 30
YOSHIDA, A 43
YOUNG, P.R 43
YU, J .. 21
YUNG, S 34
ZHANG, S.N 27, 31, 51, 52
ZHANG, X 52
ZHANG, Y 23, 41
ZHAO, P 22
ZIMMERMAN, F.R 38
ZIPSER, E.J 38, 41
ZISSA, D.E 52
ZOLADZ, T 34
ZU, G.J ... 33
APPROVAL

FY 1995 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Teresa H. Washington
Director
Human Resources and Administrative Support Office
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY95. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

Abstract (Maximum 200 words)

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY95. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.