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Modeling and Analysis of the DSS-14
Antenna Control System

W. Gawronski and R. Bartos
Communications Ground Systems Section

An improvement of pointing precision of the DSS-14 antenna is planned for the
near future. In order to analyze the improvement limits and to design new con-
trollers, a precise model of the antenna and the servo is developed, including a finite
element model of the antenna structure and detailed models of the hydraulic drives
and electronic parts. The DSS-14 antenna control system has two modes of opera-
tion: computer mode and precision mode. The principal goal of this investigation
is to develop the model of the computer mode and to evaluate its performance.
The DSS-14 antenna computer model consists of the antenna structure and drives
in azimuth and elevation. For this model, the position servo loop is derived, and
simulations of the closed-loop antenna dynamics are presented. The model is sig-
nificantly different from that for the 34-m beam-waveguide antennas.

l. Introduction

The DSS-14 antenna control system model consists of the antenna structure, antenna, drives in azimuth
and elevation, and the position servo loop. Each drive, in turn, consists of gearboxes, hydraulic servo
(active and passive valves, hydraulic lines, and hydraulic motors), and electronics boards (amplifiers
and filters). The DSS-14 antenna control system model was developed by R. E. Hill [1,2]. In the present
development, we obtain a more precise model that allows for accurate simulations of the antenna pointing
errors and allows simulation of the intermediate variables, such as torques, currents, wheel rates, truss
stresses, etc. We incorporate the finite element structural model with free rotation in azimuth and
elevation, in a manner similar to the 34-m antenna models [3-5], that involves cross-coupling effects
between azimuth and elevation, wind pressure on the dish, and pointing error model. The hydraulic part
involves a recent development in modeling of the hydraulic components by R. Bartos [6-8].

The rate loop model consists of the elevation and azimuth drives and the antenna structure. Each drive
consists of three major components: the electronics boards, hydraulic system, and gearbox. A model of
each component is derived separately, then put together, forming the drive and rate loop models. Finally,
the position loop is closed to obtain the position loop model.

il. Drive Model

A block diagram of the drive model is shown in Fig. 1, where N; is the ratio between motor rate
and tachometer (pinion) rate; r, rad/s, is the rate input to the drive; 4, A, is the hydraulic active valve
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Fig. 1. Block diagram of the antenna drive.

solenoid current; T, and T, N-m or lb in., are the gearbox and on-axis torques, respectively; and B1qcn and
6m, rad/s, are the pinion and motor rates, respectively. The state-space representation of the electronic
board, hydraulic system, and gearbox are derived in the following sections.

A. Electronic Board

A schematic diagram for the electronic board is shown in Fig. 2. The inputs are the rate command
r, rad/s, and the tachometer rate 0.4, rad/s. The output is the solenoid valve current i. The scaling
factors, k, and k;, convert the inputs into the command voltage, v,, and tachometer voltage, v;. The
subsystem, G, is the tachometer circuit: it transforms the tachometer voltage, v, into the voltage, vs,.
The subsystems with the transfer functions G,; and G,o are the rate amplifier circuits: they transform
the command voltage, v, and the tachometer voltage, v;,, into the error voltage, vs. The subsystem with
the transfer function, G, is the valve driver amplifier circuit, with the error voltage, vs, as the input and
the valve current, i, as the output.
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Fig. 2. Block diagram of the electronic board.

The following transfer functions of each of the four components are derived in the Appendix. The
transfer function Gy, for azimuth is

Gio = 0.151 1)
and, for elevation, is
Gy = 0.127 (2)

The transfer functions G, (from v, to vs) and G,o (from v, to v,) are
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G, = 6.20 G,

®3)
Goo= —4.65G,
where
oo
is the transfer function of a lag compensator. The transfer function G is
G, =442 x 1078 (5)

The scaling factors, k. and ki, are k. = 1212.6 V/rad/s and k; = 2.5 V/rad/s. Thus, the command
transfer function from the rate command r to the solenoid current i, is

G, = kGG, = 0.3323 G, (6)

where G, is defined in Eq. (4). The tachometer transfer function from the tachometer rate Btach to the
solenoid current 7, is )

Gt = kthoGr2G3 (7)

G, = { ~0.7750 x 107G, for azimuth (8)
E —0.6525 x 104G, for elevation

In order to check the correctness of the derivation, note that the ratio G,/G; should be equal to N,, where
N, is the tachometer-to-axis ratio (N, = 4287.5 for azimuth and N, = 5083.6 for elevation). Indeed,
from Egs. (6) and (7), one obtains

Gr _ [ -4287.7= N, for azimuth 9
Gy —5092.7 =2 N, for elevation (9)

Finally, the state—space representations of the transfer functions G, and G; (for azimuth and elevation)
are easily obtained with the standard Matlab command in the form

iy = Aptp + Bp17 + Bpobiach

(10)
i=Cpx + Dyr + Db2étach

The plot of the transfer function in azimuth (magnitude and phase) from r to 7 is shown in Fig. 3. The
transfer function for elevation is identical. The plots of the transfer functions in azimuth and elevation
from O44cp to ¢ are shown in Fig. 4. The magnitudes drop in the frequency range from 0.01 to 0.1 Hz due
to implementation of the filter G,,.
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Fig. 3. Magnitude of the electronic board transfer function from the rate input to the
board current.
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Fig. 4. Magnitude of the electronic board transfer function from the tachometer rate
input to the board current.
B. Hydraulic System

The hydraulic servo system model was presented by R. E. Hill in [1] and [2]. Here we take a different
approach, based on the recent investigations of hydraulic components by R. Bartos (see [6-8]). A block
diagram of the DSS-14 hydraulic system is shown in Fig. 5. It consists of the hydraulic motor, shorting
valve, hydraulic lines A and B, passive servo valves, and active servo valves. It has two inputs, servo
valve current i and motor rate 6,,, and one output, motor torque 7,. The equations for each component
are derived separately based on the work of Bartos [6-8]. Basically, these models are nonlinear ones;
however, we linearize them in order to model the antenna linear regime of operation.

1. Active Servo Valve. This valve model has the input, 4, A, and two outputs, ¢,,—the flow rate
out of port a, cm3/s, or in.3/s, and g, the flow rate out of port b, cm?/s, or in.3/s. From [6], one obtains

q.;w + 2Cowo¢jav + w?;qa,v = wgkai (11&)
Qv = —lav ' (11b)

where (, = 0.8 is the damping ratio, w, = 345.6 rad/s is the valve natural frequency, and k, = 59, 200
— 97,300 cm3/s/A (23,300-38300 in.3/s/A) is the valve gain. The lower value is the Bartos estimate,
while the upper value is the Hill estimate [2]. The values of the parameters are listed in Table 1.
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Fig. 5. Block diagram of the hydraulic drive.
Table 1. Parameters of the active servo valve (line A and line B).
Wo, ka, ka,
Dri
rive Co rad/s cm?/s/A in.3/s/A
Azimuth 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300
Elevation 0.6 to 0.8 345.56 59,200 to 97,300 23,300 to 38,300
Introducing the new variable q, = ¢4y — gby, One obtains from Eq. (1 1)“
g, + 2Cowoly + wigy = 2w2kai (12)

The differential variable ¢, and the other differential variables introduced allow one to further simplify
the analysis without loss of accuracy and to get rid of the “parasitic” variables, such as tank pressure,
supply pressure, and case pressure.

2. Shorting Valve. The pressures p, and pp, kPa (lb/in.2), are the inputs to the shorting valve, and
the flows qqs and gps, cm3 /s (in.3/s), are its output (see Fig. 5). The linearized relationship between the
inputs and outputs is as follows:

Qas = ks (pa ~ Db)
(13)
dbs = — das

where &, is the valve gain, &k, = 0.0007 —0.007 cm3/s/kPa (0.0003-0.003 in.3 /s/psi), both in azimuth and
elevation.
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Introducing new differential variables p = Do — Pb and s = gas — gbs, one obtains Eq. (13) in the form
qs = 2ksp (14)

3. Passive Servo Valve. This valve has four inputs: pressures p, and pp, supply pressure ps, and
tank pressure p;. The last two are supplementary constant inputs that can be removed from the analysis.
The valve has two outputs: flows g, and gp,. Its linearized input-output relationship is as follows:

ap = kp1(Pa — Ps) + kp2(pa — Pt) (15a)
Qop = kp1(ps — Ps) + kp2(po — Pr) (15b)

where the gains are k,; = 0.0055 cm®/kPa (0.00233 in.3/psi) and kpz = kpi, the supply pressure is
17,240 kPa (2500 psi), and the tank pressure is 345 kPa (50 psi). These values are identical for azimuth
and elevation.

Introducing g, = gap — gbp, and recalling that p = p, — ps, one obtains Eqs. (15a) and (15b) as follows:
ap = (kp1 + kp2)p = 2kpp (16)

where, for simplicity of notation, we denote k, = kp1 = kpa.

4. Hydraulic Motor. The motor is described in [8]. From Fig. 5, it follows that the motor has four
inputs and four outputs. The inputs are pressures p, and ps, case pressure p., and motor rate 8,,, rad/s.
The outputs are flows g, and g, leakage to the case ¢., and motor torque T,, N-m (or 1b in.). Following
(8], one obtains the flow ¢, from Eq. (59) of [8]:

9a = a1 + da2 + a3 (17)
But, from Eq. (40) of (8],
Ga1 = Dem (18)

where D = 6.3 cm®/rad (0.3836 in.3/rad) is the motor “displacement.” From Eq. (52) of [8], one obtains
k
Qa2 = —:L—z(pa — po) (19)

where kq2 = from 6.35 x 107 to 18.3 x 10™° cm?® (from 2.5 x 107% to 7.2 x 10~% in.3) is the leakage
constant (assumed to be 10=% c¢m?, or 4 x 107% in.3); u = from 2.8 x 10 to 2.8 x 1073 kPa s (from
4 %1075 to 4 x 107° Ib s/in.?) is the absolute fluid viscosity (assumed to be 10~* cm?, or 4 x 105 in.3);
and p. = 221 kPa (32 psi). From Eq. (58) of [8], one obtains the leakage from port A to port B, ga3:

k
a3 = _:Lé(pa - pb) (20)
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where k.3 is the constant of proportionality determined through experiments. It is assumed to be equal
to ka2, ka3 = ka2-

Combining Egs. (17) through (20), one obtains

. keo + k ko k
qo = DO, + “"‘g—ﬁ_a:s'pa - Ts'pb - _;z'pc (21)

From [8], Eq. (60), one obtains the flow rate qy:

gb = Qo1 t+ Qb2 — Ga3 (22)
It follows from (8], Eq. (41), that
a1 = —Gal = _Dém (23)
and from [8], Eq. (53), that
k
Q2 = -f’f(pb —Pc) (24)

Combining Eqs. (22), (23), (24), and (20), one obtains

-k k k k
g = —DO —~ —Zgipa + —“:i—;{-ﬁpb - %pc (25)

The motor torque T, is obtained from Eq. (28) of [8] by neglecting Coulomb friction and inertia torques
(the latter are included in the gearbox model):

T, = Tp -+ Tf (26)

where T, is the torque generated by the motor and T is the viscous friction torque. The linearized
Eq. (10) of [8] gives the torque generated by the motor:

Tp = D(pa — ps) (27)
and from Eq. (24) of [8], one obtains the viscous friction torque:
T = —ky,Dub (28)

where k, = 0.0438 is a dimensionless viscous friction coeflicient. Corhbining Eqgs. {26) through (28), one
obtains

T, = Dp, — Dpy — kyDub (29)

119



Define ¢ = g, — gp; then from Egs. (21) and (25), one obtains

. 3k
g =2D6, + =2p
i3
(30)
T, = Dp — kyDpbp,
The motor parameters are given in Table 2.
Table 2. Parameters of the hydraulic motor (line A and line B).
D D, Pe De
. . 2 b 3 0 3 3 3
Drive i, kPa s i, 1b s/in. em/rad  in3/rad kv ka2, cm ko2, in. KPa  psi
Azimuth  2.8x 10~% 0.4 x 10-° 25.2 1.52 0.0438 41x107% 25x107% 220 32
to to to to
28 x 10~ 4x 106 11.8x 104 7.2x 1078
Elevation 2.8x10% 0.4x 1076 25.2 1.52 0.0438 4.1x 1074 2.5 x 10~5 220 32
to to to to
28x107%  4x10°6 \ 11.8x107% 7.2x107°

5. Hydraulic Line. There are two lines: A and B. A model for line A is developed, and the model
for line B is similar (index “a” should be replaced with “b”). Line A has four inputs, flows ¢4, ¢av, Gapw,

and g,sy, and a single output, pressure p, (refer to Fig. 5). ¥From [7], one obtains the line-A model as an
integrator, with the negative feedback signs as in Fig. 5:

Pa = kla(""]a, + dav — Qap — Qas) (313.)
Similarly, the line-B model is obtained:

Do = kiv(—qb + Gbv — Qop — @bs) (31b)

As before, defining p = p, — py, one obtains

p=ki(-q+aq —a —qs) (32)

In these equations, the gains are
- ._ﬁ
L= : (33)

where 3 is the effective bulk modulus (capacitance of the line), 8 = 1.29 x 10° kPa (1.87 x 10° psi), and
v, is the total volume, v, = 27,200 cm® (1660 in.3), so that k; = 47.3 kPa/cm?® (113 psi/in.?). The values
are collected in Table 3.
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Table 3. Parameters of line A and line B.

Drive B, kPa, 3, psi v,, cm U, in.3
Line A

Azimuth 1.29 x 108 1.87 x 10° 27,200 1653.6

Elevation 1.29 x 108 1.87 x 105 24,500 1498.1
Line B

Azimuth 1.20 x 10° 1.87 x 10° 27,700 1690.4

Elevation 1.29 x 108 1.87 x 10° 24,600 1499.9

6. Hydraulic System Model. The model of the hydraulic system is derived by combining its
elements (active servo valve, shorting valve, passive valve, hydraulic lines, and hydraulic motors). By
introducing the new differential variables, the block diagram in Fig. 5 is simplified to the one in Fig. 6.
A detailed block diagram of the hydraulic system is shown in Fig. 7. Combining Egs. (12), (14), (16),
(32), and (30) (or, alternatively, using the block diagram in Fig. 7), and defining the new state vector
zp = [x1, T2, z3]7, with three states, z; = ¢y, 22 = ¢y, and z3 = p, and defining the input current, i,
motor rate ém, and the single-output motor torque, T,, one obtains

Ty = Apxp + Bhoém + Bpit

(34a)
T, = Chzp + Dhoém + Dp,

where

A
L
£

; ACTIVE
i ‘ IHYDRAULIC] _ P | HYDRAULIC -
—| SERVO LINE > MOTOR
VALVE r
PASSIVE |, P ]
VALVE [ m

9s SHORTING | P
VALVE [*

Fig. 6. Simplified block diagram of the hydrautic drive.
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[ —2(w, —w? 0 )
1 0 0
Ap =
3kg2
0 ki k,(— ; — 2k, — 2k,)
2wk
Bpi=| 0
| 0
[ o
Bho = 0 > (34b)
—2k D
K
Cph=10
| D
Dy, =0
Dho = — kyDp )

The plots of the magnitudes of the transfer function in azimuth and elevation from 3 to T, are shown
in Fig. 8. The plots of the magnitudes of the transfer functions in ammuth and elevation from 6,, to T,
are shown in Fig. 9.

C. Gearbox Model

The gearbox model was described in detail in [5], and its block diagram is given in Fig. 10. In this
diagram, T, is the motor torque, 0,, is the antenna angular rate, wy, is the motor rate, T is the gearbox
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Fig. 8. Magnitude of the hydraulic drive transfer function from the solenoid current to
the output torque.
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Fig. 9. Magnitude of the hydraulic drive transfer function from the motor rate to the
output torque.
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N

To *+ 1 om + kg T

Om

Fig. 10. Block diagram of the gearbox.

torque, Jy, is the motor inertia, kg is the gearbox (output) stiffness, and N is the gearbox ratio. This

model has two inputs, the motor torque, T,, and the wheel (pinion) angular rate, 9,,, and a single output,
the gearbox torque, T

The equations for this system are as follows:
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< T
Imtim =To = % (35a)

T—k, (%’" - 0,,) (35b)

Denoting the state variables z; = wy, and z; = T, one obtains

= T
=Nt T (362)
. kg1 ;
By = 22t~ kyfy (36b)

Defining the gearbox state as z, = [} z3]7, input T, and 9,,, and output T and w,,, one obtains the
gearbox state—space representation (Ag, By, Cy):

Ty = AgIIIg + Bngo + ngép

T = Cgizg (37a)
ém= 92Tg
where
I -1
A = 0 NJn, W
g =
ko
- N
-1
Bgl“‘ Jm]
| O
L (37b)
[ 0
B.o =
g2 __kg]
Ca=1[0 1]
Co2 = {1 0] )

D. Drive Model

The drive model is obtained by combining the state-space representation of the electronic board,
Eq. (10); the hydraulic system, Eq. (34); and the gearbox, Eq. (37), according to the block diagram in
Fig. 1. Defining the drive state vector z4 = [zf,z¥, x] T we obtain the state equations
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@g = Agzs+ Barr + Babp

(38a)
T = Caza
where
[ Bb2Cg2 \
Ap 0 o
Bh; Dy C
Ag= B Cy Ap Bhng2+ hi ]Vb: g2
By Dpi DpaC,
| BiiDwiCy  BgiCh  Ag + Bg1DnoCy2 + __91__’}_:[;_’&_9?_
[ Bu
Bdr = BhiDbl [ (38b)
| Bg1 DpiDp1 :
[ 0
Bag =] 0
-Bg2
Ca=1[0 0 Cgul J

The plots of the magnitudes of the transfer function in azimuth and elevation from r to T" are shown
in Fig. 11. The plots of the transfer functions in azimuth and elevation from 6, to T" are shown in Fig. 12.

lll. Structure Model

The structural model is derived from the finite element model of the antenna structure with free
rotations with respect to the elevation and azimuth axes. The finite element model consists of the
diagonal modal mass M,,(p X p), diagonal natural frequencies matrix Q(p x p), diagonal modal damping
matrix Z(p x p), and modal matrix ®(m X p),p < m, which consists of p eigenvectors ¢; (mode shapes),
i=1,---,p:

® = [¢1, 02, -+, Py (39)

Let the finite element model have m degrees of freedom, with s inputs u(t), where u is s x 1 vector,
and with r outputs y(t), where y is r x 1 vector. If the input matrix is B,(m X s), the output matrix
for displacement is Co4(r X m), and the output matrix for rates is Coy(r X m), then the input-output
relationship is given by the following second-order differential equation:

“Gm, + 2ZQm + Q2qm =M;1®T Byu
(40)
Ym =Coq®¢Im + Cou®dm

Define the state variable x as follows:

125



1010 1) 1 llllll‘ T 1 Illlll! i ) llll||| 1 ¥ LI D L L
£ ]
z .
W 105 -
[¢] 4
g v AZIMUTH
- i e ELEVATION

100- Il o1 gl 1 L0l ! Lo gl
102 10-1 100 101 102
FREQUENCY, Hz
Fig. 11. Magnitude of the drive transfer function from the rate command to
the output torque.
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Fig. 12. Magnitude of the drive transfer function from the pinion rate to
the output torque.

=== [a

(41)

where ¢, and ¢, are modal displacements and rates (such that ¢ = ®q,,;q is the actual displacement);
then Eq. (40) can be presented as a set of first-order equations:

or in the following form:
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&g = — Q% — 220z + M ®B,u,

I

Ys Coq &z + C,, (42

Ty =Axs + Bsu,

ys =C,x

(42)

(43a)



where -

B = 0 > (43b)
s | M;'eTB,
Cs =[Coq® Co®] )
is the sought state-space model in modal coordinates. In our case, us = [T, T.], where T, and T,

are torques at azimuth wheels and elevation pinions, respectively. The structure output consists of the
elevation and azimuth encoder angles and rates, pinion angles, elevation and cross-elevation pointing
errors, and other structural variables of interest. Two outputs, 9pa and ()pe, the pinion rates in azimuth
and elevation, are of special interest. Thus, the structural state-space equations are as follows:

Ts = A3$s + BsaTa + BseTe ]
épa = Upals
\ (44)
épe = Upels
y=Csz J

The modal data obtained from the finite element model consist of 150 natural frequencies, w;; modes,
¢;; and modal masses, M, = 1,---,150. Additionally, based on the measurements, the modal damping
is assumed to be 1 percent, i.e., {; = 0.01. Based on this information, the state matrix A;, as in Eq. (43b),
is determined by introducing the matrix of natural frequencies, @ = diag(w;), and modal damping,
Z = diag(¢;),i =1,---,150.

The determination of matrices B; and C, is presented here for the azimuth wheel torque input and
the azimuth wheel rate output. For the azimuth wheel torque input, consider the azimuth wheel of radius
r, and the azimuth rail of radius R,. Let nodes n; be located at the contact point of the wheel and the
rail. The torque applied to the wheel generates the force F,, at node n;. The force is tangential to the
azimuth rail. Assuming a rigid pinion, the force F, applied to the wheel is

T
Fo=— (45)

Ta

This force has z and y components, F,, and F,, [see Fig. 13(a)], such that

T,
Fop. = — Facosa, = —— cosa,
Ta

(46)

. To .
Foy = Fysina, = —sing,
Ta
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Fig. 13. Forces and rates at the azimuth pinion: (a) forces and (b) rates.

and o, is the angle marked in this figure. Let e, and e, denote the unit vector (all but one component
are zero, and the nonzero component is equal to one), with the unit component at the location of the z
and y displacement of node n; in the finite element model. The input, F', to the finite element model
is F = Fygze; + Fyye,. Therefore, B, follows from the decomposition of F, such that F = B,T,. From
Eq. (46), it follows that .

e ey .
B, =-"=coso, + Zsina, 47
Ta Ta

Next, from Eq. (43b), it follows that the nonzero (lower) part of B, after introduction of Eq. (47), is

oT T
M71eTB, =— M ! % cosag + Mt - %Y sinay (48a)
a a
=— M,‘,‘l1ﬁ cos oy + M,;lgsﬁ sin oy (48b)
Ta Ta

where ¢, and ¢, are vectors of modal components of z and y displacements at node n;:

¢s = ®Ter = [bo1, P2, - -, Prr150]T
(49)
¢y = (DTey = [¢y1, ¢y2y Tty ¢y150]T

where ¢; and ¢,; are z and y displacements of mode ¢ at node n;. Therefore, from Eqs. (43b) and (48b),
one obtains

0

—M;Llﬁ cosag + M1 E sina, (50)

B, = Yy
Ta Ta

The output matrix derivation is presented here for the wheel rate, ém. The wheel rotation is
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. Vg
Opa = o (51)

a

where v, is the tangential velocity of the wheel at the contact point [see Fig. 13(b)]. If v; and v, are
and y components of v,, and ¢, is the angle marked in this figure, then

Vg = —Ug COS Qg + Uy SiD (52)
therefore,
. el el
Opa = | —= cosa, + L sina, | g (53a)
Ta Ta
and in modal coordinates
. del PeT T T
Opa = (— % cos g+ —Lsinag | Gm = _%e cos oy + fy_ sinag | Gm (53b)
Ta Ta Ta Ta

Finally, the matrix C;, according to Egs. (43b) and (53b), is

¢7 ¢y
Cs = [0 —2Z cosag + :y—sinaa] (54)

Ta ‘a

The structural model consists of m = 150 modes or 300 states. Modes not participating in system
dynamics are eliminated. Observability and controllability properties in the balanced representation are
used to determine insignificant modes. The balanced representation [9] is a state-space representation
with equally controllable and observable states. The Hankel singular value is a measure of the joint
controllability and observability of each balanced state variable. The state§ with small Hankel singular
values are deleted as weakly excited and weakly observed, causing minimal modeling error.

For flexible structures with small damping and distinct poles, the modal representation is almost
balanced, c.f. [10-12], and each mode is considered for the reduction separately. For a structure with
m modes, matrix B, has 2m rows, and C, has 2m columns. Denote bs as the last m rows of By, ¢, as
the first m columns of C,, and ¢, as the last m columns of C;. Then b; is the ith row of b,,cy; is the
ith column of ¢;, and c,; is the ith column of ¢,. Denote 8% = byb%, g = clicyi, and ary = cficrs. The
Hankel singular value for the ith mode is given in [11] and [12]:

NG 2 2 2,,2,.2
2 WeiPsi \/ WeiCg; +wwiog;
Yi = 2

4(1;(4)1;

(55)

where the weighting factors wy; > 0,wg; > 0,wy; >0,and i =1,---,m.

Care should be taken when determining Hankel singular values. Units should be consistent; other-
wise, some inputs or outputs receive more weight in Hankel singular-value determination than necessary.
Consider, for example, the azimuth encoder reading in arcseconds and the elevation encoder reading in
degrees. For the same angle, the numerical reading of the azimuth encoder is 3600 larger than the eleva-
tion encoder reading; hence, the elements for the azimuth output are much larger than those for elevation.
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On the other hand, some variables need more attention than others: Pointing error and encoder readings
are the most important factors in the antenna performance; hence, their importance has to be emphasized
in mode evaluation. For consistency of units and importance of variables, the weighting factors wy;, Wi,
and w,; are introduced. Typically, weights are set to 1.

For each mode, the Hankel singular value is determined and used to decide on the number of modes in
the reduced structural model. For the rigid body modes, Hankel singular values tend to infinity; hence,
rigid body modes are always included in the reduced model. Hankel singular values of the 150 modes of
the antenna model are plotted in Fig. 14. The reduced order model consists of 24 modes: 2 rigid-body
modes and 22 flexible modes.

The plots of the transfer function in azimuth and elevation (magnitude and phase) from the wheel
{(pinion) torque T to the axis rate g are shown in Fig. 15. They show that the azimuth transfer function
has low frequency resonances (about 1.2 and 2.2 Hz), which are absent in the elevation transfer function.
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Fig. 14. Hankel singular values for the antenna structure.
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Fig. 15. Magnitude of the transfer function of the antenna structure: (a) direct coupling
and (b) cross-coupling.
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IV. Rate Loop Model .

A rate loop block diagram is presented in Fig. 16, where T, and T, denote the drive torques, épa and

. denote pinion rates, and r, and . are rate commands in azimuth and elevation, respectively. The
state—space equations are combined from the state equations of the azimuth and elevation drives [see
Eq. (38) and add subscript “a” for the azimuth drive and subscript “e” for the elevation drive] and the
structure [see Eq. (44)]. Combining them, and defining the rate loop state vector z, as z, = [Zdas Tdes Ts),
where x4, and z4. are azimuth and elevation drive states, one obtains the rate-loop state-space equations:

Ep = ApZy + BraTa + BreTe

y = Crzy

! (56a)
0, = Cazx,

f, = Cexy
where

Ada ‘ 0 Bdta Cpa )
A'r = 0 Ade Bdtecpe
LBsaCda BseCae As

L 0 . ) (56b)

Bre = Bdre
0

C,=[0 0 G,

where 6, and 8, are azimuth and elevation encoder readings, Cp, and Cp are the output matrices for the
azimuth and elevation pinion rates, and C, and C, are the output matrices for the azimuth and elevation
encoders, respectively.

Figure 17 shows the magnitude of the transfer function from the azimuth rate input r, to the azimuth
encoder rate 6, (solid line) and the magnitude of the transfer function from the elevation rate input r. to
the elevation encoder rate 6. (dashed line). The figure shows that the required identity relationship for
low frequencies is not acquired. The magnitude of the transfer functions for frequencies less than 0.3 Hz
is 0.74, below the required 1, due to inaccuracy in the model parameters (mainly in the hydraulic part).
This drawback can be removed by the experimental investigation of the parameters of the hydraulic
drives, such as motors, valves, and lines. However, this inaccuracy is corrected by the position feedback
loop, as will be shown later. The high-frequency peaks in azimuth and elevation (8 Hz in azimuth and
20 Hz in elevation) are the gearbox resonances.
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Fig. 17. Magnitude of the transfer function of the rate loop model.

V. Position Loop Model

The rate loop system with the proportional and integral (PI) controller is shown in Fig. 18, where e,
and e, are the azimuth and elevation servo errors. For the series connection of the rate loop system and
the controller, as in Fig. 18(a), define the state vector 7 = [z4; Te; ] with the new state variables
Te; and z4; (integrals of the errors) such that

Zai = €q
(57)

Tei = €¢

The system output y is defined in Eq. (56a), the encoder output is 67 = [§, 6], and the input is
e’ =[e, ee]. The inputs to the rate loop systems are obtained from Fig. 18(a):

Ta = Kpa€q + kiaTai
(58)

Te = Kpe€e + k’iexei

where kpe, kie, kpa, and k;, are proportional and integral parameters of the controllers. Combining the
equations for the rate loop system with Eqgs. (57) and (58), one obtains
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Fig. 18. Position loop: (a) open and (b) closed.
T, = Ayzo + Boe
0= C,z,
y=Cz,
where
[ 0 0
A, = 0 0
LkiaB'ra kieBre
- I 0
B, = 0 I
_kpaBra kpeBre
-
10 0 C,
%=1o o ce]
c=[0 0 C/]

For the closed-loop system [see Fig. 18(b)],

e=c—10

(59a)

(59b)

(60)

where ¢ = [c; c.] is a command signal in azimuth, c,, and in elevation, c.. Introducing Eq. (60) to
Eq. (59), one obtains

where

T = Aaza + Boc

y=Czq

(61a)
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The simulations shown in Figs. 19 through 22 have two sets of assumptions: (1) a proportional gain
of 1 in azimuth and elevation and an integral gain of 0.3 and (2) a proportional gain of 0.7 in azimuth
and elevation and an integral gain of 0.2. The closed-loop transfer functions from azimuth command
to azimuth encoder are shown in Fig. 19(a), and those from elevation command to elevation encoder
are shown in Fig. 19(b). They show a bandwidth of 0.1 Hz. The cross-coupling transfer functions from
azimuth command to elevation encoder and from elevation command to azimuth encoder are shown in
Fig. 20. They show low-level cross-coupling. The closed-loop step responses from azimuth command
to azimuth encoder are shown in Fig. 21(a), and those from elevation command to elevation encoder
are shown in Fig. 21(b). They show a 20- to 30-percent overshoot and a 7- to 9-s settling time. The
cross-coupling from azimuth step command to elevation encoder and from elevation step command to

Ay = A, — B,C,

azimuth encoder is shown in Fig. 22. The cross-coupling is of the order 1073,
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VI. Wind Disturbance Simulations

Wind gust disturbances were modeled similarly to the DSS-13 antenna (see [13]) using the wind tunnel
pressure distribution on the dish taken from Blaylock.! Their time history is generated using the wind
Davenport spectrum (see [14] and [15]), determined for the Goldstone site. The simulations for the
50 km/h wind gave the results listed in Table 4 and compared with the simulation results of the DSS-13
antenna. The table shows that DSS 14 has better disturbance rejection properties (at the encoders) than
has the DSS-13 antenna.

Table 4. Servo errors in mdeg (30 rms)

for 50 km/h wind gusts.

Drive Front wind  Side wind
Elevation, DSS 14 2.6 0.7
Elevation, DSS 13 14.6 1.9
Azimuth, DSS 14 0.1 2.1
Azimuth, DSS 13 0.5 2.3

VIil. Conclusions

An analytical model of the DSS-14 antenna has been developed. The rate loop model consists of the
structural model (derived from the finite element model), gearbox model, hydraulic servo, and electronic
boxes. The position loop was closed, and the time and frequency responses were simulated. The wind
pointing errors of the DSS-14 antenna have been simulated. The model allows for detailed simulation of
antenna, dynamics and for modifications and improvements to the antenna control system.

The simulations confirmed that the use of encoders located at drives limits the performance of the
antenna (mainly by reducing its bandwidth to 0.1 Hz). The use of the master equatorial or new encoders

L R. B. Blaylock, “Aerodynamic Coefficients for Model of a Paraboloidal Reflector Directional Antenna Proposed for a
JPL Advanced Antenna System,” JPL Interoffice Memorandum CP-6 (internal document), Jet Propulsion Laboratory,
Pasadena, California, 1964.
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located close to the axes of rotation of the antenna (similarly to the 34-m antennas) would allow expansion
of the bandwidth to 0.7-1.0 Hz.

The antenna model needs further improvement. First, in this model, certain parameters of the hy-
draulic drive are known with rather poor accuracy, and it influences the accuracy of the antenna model.
It is essential to use experimental techniques to get more precise values of the parameters. Secondly, the
RF pointing errors (in elevation and cross-elevation) of the antenna should be determined in order to
evaluate the precision of the antenna pointing.
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Appendix
Transfer Function Derivation

Each component of the electronics board is composed of operational amplifiers (opamps), resistors,
and capacitors. The basic configuration of an inverting opamp circuit is shown in Fig. A-1. The “4”
terminal of the opamp is grounded; thus, the “—” terminal voltage is zero, called a virtual ground. In
this situation, the currents i; and iz flowing through impedances Z; and Z; are equal to

i1 = Vin
1= 7
(A-1)
Gy = Jout
2 = A
and their sum is zero; that is, ¢; = —is. Introducing them to Eq. (A-1) gives
Vout = —kVin (A‘2a)
where
Za
k=== -
Z (A-2b)
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Vout

Fig. A-1. Opamp circuit.

I. Transfer Function Gy

A schematic for the transfer function G, is shown in Fig. A-2(a), where the notation and the value
of each element were taken from JPL Drawing 9479871D.2 This schematic can be simplified to the one
shown in Fig. A-2(b). In this figure, :

R, = (Rzl + R5} + Rag + R3d) ™ + Rey = 49.5 kO (A-3a)
where Rzg = Rsy = Rsg = Rsg = 100 kQ, and Rgy = 24.5 kQ; thus, R; = 49.5 k). The component Z; is

Rga

Zy = —_—
! R63+1+Re40408

& Res + Res = 91.1 kQ (A-3b)

where Rgz = 40 k€, Rgq = 51.1 kQ, and Cyy = 0.15 pF. The time constant RgsCyo = 0.0077 s is small,
thus neglected. Denote Ry,utq = 9.7 kQ and R, = 7.8 k2 the motor resistances in azimuth and elevation,
respectively, and Cy; = 0.15 puF. Then, the component Z; for the azimuth drive is as follows:

Rmta
Zp = i 2 R = 9.7 kQ A-4
2T T+ BuntaCats (A-te)
and for the elevation drive,
Rmte
Jg = —r— =R =T7.8kQ A-4b
2T 1% ReCurs . ™ (A-4b)

The time constants Ry:eCa1 = 0.0015 s and RpnseCa1 = 0.0012 s are of the order 1072 s, thus considered
small, and neglected.

The transfer function Gy, for azimuth is

R, 8800
" R+ R, 49,500 + 8800

Gto =0.151 (A-5a)

and for elevation, it is

2 JPL Drawing 9479871D (internal document), Jet Propulsion Laboratory, Pasadena, California.
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_ R,- 1200
Gro=pg+ R, 49,500 +7200 0-127 (A-5b)

where R, = (Z7' + Z5 1)_1 = 8.8 kQ in azimuth and 7.2 kQ in elevation, while R, = 49.5 kQ.

(a)
Rsg (b)
e Sl e S
o O
Re3
Z ]
I Cq1 Rmt
1 11

nr nr

Fig. A-2. Schematic for the transfer function Gig: (a) full and (b) simplified.

Il. Transfer Functions G,y and G2

The transfer functions G,; and G,y are determined simultaneously.
Fig. A-3(a), the parameters parameters of which are

Their schematic is given in

Ry5 = 750 kQ
Rso = 100 kO
Rsy = 12.1 kQ
Rsp = 442 kQ
Rs3 = 442 kQ (A-6)
Rgs = 909 kQ
Rgs = 90.9 kQ
C3 =1 uF
Cya=01puF |

The schematic from Fig. A-3(a) can be transformed to the form shown in Fig. A-3(b). The value of Z3

is as follows:

R65
o = - A . — 108 _
3 Rﬁﬁ + 1 R650428 = Rse + Rﬁs = 10° kO (A 7)
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In this variable, the small time constant RgzCysz = 0.0909 s was ignored.

The value Z4 is obtained as

R 14 0.400s
Zy=Rsz + ——>—— = 4.65 x 108 ————
4 53+ 1+ R,Ca1s %

1+ 4.205s (A-8)
where R, = (Rso + Rse + R50R52) / Rg1 = 4205 k.

Having determined Z3 and Z4, the transfer functions G,; (from v, to v,) and Gr2 (from vy, to v,) are
obtained:

Zy
=—=6.2
G o 0 G,
(A-9)
Zy ,
G — — =-—4.65G,
r2 Z3
where
1+ 0.400s
G, = —————— -
® 7 1+4.205s (A-10)
is the transfer function of a lag compensator.
(@ —— =G 7
| —_—l o
A
v, Ris ! RAs3 Rs2 s0 | | Ris
© M, T _I Vr
— — —— =, Mw z4
[ T 1 l Rst |+
I I l = l Vio
Vio | | e | = ————— — — — 2z = Vs
bl >
| Res \ o >
> _..I..I Ve Vs
Z3 =

Fig. A-3. Schematic for the transfer functions G, and Gya: (a) full and (b) simplified.

lil. Transfer Function Gg

The transfer function G, is determined from the schematic in Fig. A-4(a), and is shown in compact
form in Fig. A-4(b). For this schematic, B3 = 100 kQ, R3s = 10 k2, Rq3 = 24.9 kQ, and C1g = 0.1 pF;
therefore, one obtains

Rge |
7y = —————— = Rac = 10 kQ) A-11
® 7 1+ RasClss 3 (A-11)
where R3gC1s = 0.0015 s =2 0. Since v1 = v5Z5/R43, and i, = 1)1(Z5"1 + R~1), thus,
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Fig. A-4. Schematic for the transfer function Gg: (a) full and (b) simplified.
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