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On why dynamic subgrid-scale models work

1. Motivation

By J. Jim_nez 1

Dynamic subgrid models were introduced in (Germano et al. 1991) and have
proved to be remarkably successful in predicting the behavior of turbulent flows.

Part of the reasons for their success are well understood. It is known, for instance,

that their behavior as the flow becomes smooth, such as near walls or during transi-

tion, is better than that of other "hand-tuned" models. Since they are constructed

to generate an effective viscosity.which is proportional to some measure of the tur-
bulent energy at the high wavenumber end of the spectrum, their eddy viscosity

vanishes as the flow becomes laminar. This alone would justify their use over simpler
models.

But beyond this obvious advantage, which is confined to inhomogeneous and

evolving flows, the reason why they also work better in simpler homogeneous cases,
and how they do it without any obvious adjustable parameter, is not clear. The

simplest case, and one of the first to be documented, is the decay of grid turbu-

lence as measured in (Comte-Bellot & Corrsin 1971), which was shown to be well

predicted by simple dynamic models in (Moin et al. 1991).

This lack of understanding of the internal mechanisms of a useful tool is disturb-

ing, not only as an intellectual challenge, but because it raises the doubt of whether

it will work in all cases. This note is an attempt to clarify those mechanisms. We

will see why dynamic models are robust and how they can get away with even com-

paratively gross errors in their formulations. This will suggest that they are only

particular cases of a larger family of robust models, all of which would be relatively

insensitive to large simplifications in the physics of the flow. We will also construct

some such models, although mostly as research tools.

It will turn out, however, that the standard dynamic formulation is not only

robust to errors, but also behaves as if it were substantially well formulated. The
details of why this is so will still not be clear at the end of this note, specially

since it will be shown that the '% priori" testing of the stresses gives, as is usual in

most subgrid models, very poor results. But it will be argued that the basic reason

is that the dynamic formulation mimics the condition that the total dissipation is

approximately equal to the production measured at the test filter level.
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2. Accomplishments

2.1 Numerical experiments

We will restrict ourselves to the simple case of the grid turbulence experiments

in (Comte-Bellot & Corrsin 1971), reduced to a temporal decay through the usual

Galilean transformation, and to the simplest formulation of the dynamic model

(Lilly 1992). We establish the notation next.

Consider two filters with characteristic widths/_ and A = 2_. In all our experi-

ments the filters are spectrally sharp, the code is spectral on a triply periodic cubic

box (Rogallo 1981) with 322 Fourier modes before de-aliasing, and the narrower

filter coincides with the grid.

The initial conditions are obtained by filtering a flow field which has been left to
decay at a resolution of 643 to an energy and spectrum closely resembling those of

Comte-Bellot and Corrsin at their first experimental section. The energy transfer,

as measured by the skewness of the velocity gradients, is past its maximum value

and has begun to decay. The initial skewness of the filtered field is about -0.27
and decays to about -0.21 at the end of the computation. Because the field is

disturbed by the initial filtering operation, the cascade is initially perturbed, and it

takes a few time steps to recover, but the recovery is fast and the decay proceeds

thereafter in an approximately self-similar manner. Both the initial field and the

original simulation code were kindly provided by T. Lund.

For the grid- and test-filtered velocity fields we compute Reynolds stresses and

rate of strain tensors which we will call rij, aij, and Tij, Sij, respectively. The

test-filtering operation will be denoted by < • >, while an overbar will be reserved
for averaging over the whole flow field. Because of our choice of the narrow filter,

there is no explicit grid-filtering operation, although our numerical velocities should

be interpreted as being related to the experimental ones by filtering at width/_

A tensor is denoted by the same letter as its components, and inner products and

norms have their usual meaning. In a minor departure from usual LES practice,

the symbol [. ] is reserved for the L2 norm, so that ]SI2 = SijSij, without the extra

factor of two used by some authors.

We introduce the Smagorinsky weighted strains

M = 2v_A21SIS, m = 2x/2621ala, (1)

and the differences

L = T- <r>, g = M - <m>.

The Smagorinsky assumption at both filter levels is that

(2)

T* + cM = O, T* + crn = O, (3)

where the star stands for traceless projection, T* = T - ½tr(T)I. Subtracting and

neglecting the spatial variability of the proportionality constant c leads to the tensor

equation
A --L* + cg = O, (4)
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FIGURE 1. Decay of filtered energy for modified dynamic models. -- : f = 1;

.... : f = 0.5; ........ : f = 2. Symbols are experiment in (Comte-Bellot & Corrsin

1971). (a) Filtered at grid level. (b) Filtered at test level.
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FIGURE 2. Energy spectra of modified dynamic LES runs. Symbols as in Fig. 1.

(a) Initial numerical spectrum and t = 42 for the experiments. (b) t _ 98.

The constant c is chosen so as to satisfy some contraction of (4), and it has become

standard to use g as the contracting tensor (Lilly 1992), on the grounds that it

minimizes the L2 norm of (4). It is well known that when this is done locally

numerical instabilities arise because of artificially high back-scatter in those points

in which c becomes negative, but that this is cured by averaging over large volumes

of the flow. In this note we always average over the whole flow field,

L* • g

c=--f _ , f=l, (5)

where the unit factor f is introduced for later convenience. This choice minimizes

the norm of (4) when its definition is taken to include integration over the whole

volume. Other strategies have been proposed, and in particular the original for-

mulation used S as the contracting tensor (Germano et al. 1991). We will not
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present here results for that formulation, but experience, including ours during the

preparation of this note, indicates that its performance is similar to that of (5).

The final step of the model is to apply (3) for the calculation of 7"in the equations
of motion.

2.2 Robustness

One way to understand a phenomenon is to observe its response to artificial

perturbations, and to study (5) we undertook a series of numerical experiments in
which errors were purposefully introduced into it by changing the arbitrary factor

f.
As expected, the initial rates of decay are changed proportionally to the change

of f, somewhat surprisingly, the effect is only temporary and the logarithmic rate of

decay soon recovers the same value as in the undisturbed case, which is very close

to the experimental one. The only lasting effect of the prefactor is an offset in the
initial conditions (Fig. la).

The reason for this is clear once the spectra of the decaying turbulence are exam-

ined (Fig. 2b). The one computed with f = 0.5 has too much energy in the small
scales, while the one computed with f = 2 is damped in that region. The large

scales, on the other hand, are very similar in the three cases, even if the total energy

in the flow has decayed from the initial condition (Fig. 2a) by more than a factor of

two. The energy differences seen in Fig. la are almost totally due to the differences

in the high wavenumbers of the spectra, while the large scales are unaffected by the

change of the subgrid model.
In fact, if the energy of the flow is measured by filtering at the test level, which

could be argued to be a more natural measure of performance, the three runs are

indistinguishable (Fig. lb), although they are separated by a factor of four in the
definition of the model.

This is consistent with the classical idea that the rate of energy decay is fixed by

the large scales of the flow (the production), while the small scales adjust themselves

to dissipate whichever energy is fed to them by the cascade.

The way in which the adjustment occurs in this particular case is also clear. Con-

sider first the classical Smagorinsky model in which c is a predetermined constant.

The dissipation of the model is then r. _r ,-_ clal 3. If c is chosen too low, not enough

energy is dissipated at the small scales to compensate for production at the large

ones, and energy accumulates in the high wavenumbers. This in turn raises and

increases the dissipation, until both rates are again in equilibrium. For a k -5/3

spectrum the strain depends mainly on the high wavenumbers, which contain little

energy. As a result the adjustment can be accomplished with relatively little effect

on the total energy of the flow, and the model is robust to mistuning of the constant

c. The Smagorinsky model is in this sense slightly superior to regular viscosity be-
cause it makes the dissipation proportional to the cube of [crl, rather than to the

square, and it is therefore able to adjust itself with milder effects in the total energy.

If, in addition, we accept the last octave of the spectrum as a "sacrificial" range

of scales available as a buffer for the model, the effect of the errors in c is minimal,

as is the case in Fig. lb.
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2.3 Hyper-Smagorinsky models

This analysis suggests that subgrid-models could be made more robust than

Smagorinsky by making their dissipation dependent on measures that are more

concentrated towards the high wavenumber end of the spectrum, in such a way

that they can adjust with still smaller effects on the total energy.
Consider for example, a "hyper-Smagorinsky" model,

based on a hyper-strain

r* = (6)

f
[o,,i

= J k2nE(k)dk, (7)

Note that the case n = 1 is a "global" Smagorinsky, in which [a I is computed

over the whole field rather than locally. Because of the higher powers of k inside
the integral (7), the hyper-strain depends more locally on the tail of the spectrum

when n > 1, and the models should be able to adjust the dissipation with less

effects on the total energy. This is confirmed by the experiments in Fig. 3, where
the prefactor technique is applied to the hyper-Smagorinsky models. For each value

of n the optimal constant cn is determined empirically to make the energy decay

approximately as in the experiment, and is then modified by substituting it by fcn.

There are three groups of curves in the figure. The central one corresponds to
E32 with f = 1, while the upper group corresponds to f = 0.5 and the lower one

to f = 2. It is clear that as n increases the sensitivity of the model to errors in the

constant decreases, and this is confirmed in Fig. 4, in which the ratio between the
energies computed with f = 0.5 and 2 is plotted as a function of decay time.

An ideal model would be completely insensitive to the prefactor and would main-

tain this ratio equal to one. The hyper-Smagorinsky models approach this behavior
as n increases, but they never reach the optimum limit because they use an eddy

viscosity, which cannot change the total dissipation without affecting broad ranges

of the spectrum. A still better family of models would have a hyperviscosity compo-

nent, but such models are numerically inconvenient and are not explored here. The

dynamic model is also included in the figure and is shown to behave best of all, with

a sensitivity that is roughly half that of Smagorinsky. This is easy to understand
since the effect of large n's is to concentrate the model feedback "sensor" near the

end of the spectrum, while the dynamic model computes its constant exclusively
from the last octave through the effect of the two filters. Because of that, the

dynamic formulation should be nearly optimal among eddy viscosity models with
respect to robustness.

Note that in all these cases the initial jump of the energy ratio corresponds to

a transient in which the spectrum has not had time to adjust to the incorrect

dissipation and is accumulating or losing energy at the small scales.

2._ Why does it work?

Even if we have shown above one of the reasons why a dynamic model should

work reasonably well, even if its formulation is considerably in error with respect to
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FIGURE 3. Sensitivity of energy decay to mistuning of the proportionality constant,

for different "hyper-Smagorinsky" models. The central group of lines uses optimally

tuned constants; the top group is modified by f = 0.5; the bottom one, by f = 2.

-- • dynamic model; .... : n = 0; ........ : n = 1; m.__ : n = 3; Symbols are

from the experiment of (Comte-Bellot & Corrsin 1971).
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FIGURE 4. Ratio of energy obtained for different "hyper-Smagorinsky" models

with f = 0.5 and f = 2. Symbols as in Fig. 3.
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the true dynamics of turbulence, a simple inspection of the spectra in Fig. 2b shows

that the standard formulation (5), with f = 1, must be very close to the "truth".
The tail of its spectrum matches the experimental measurements much better than

any of the modified models.

The classical explanation is, first, that the two Smagorinsky assumptions in (3)

enforce a scale similarity between the two filter levels, which mimics the scale in-

variance in the inertial range (Germano et al. 1991) and, second, that the least

squares approximation of (4-5) ensures that the original Smagorinsky assumptions

are reasonably well satisfied (Lilly 1992).

We will argue now that this explanation is unlikely. In the first place, the

Reynolds numbers in the (Comte-Bellot & Corrsin 1971) experiment are fairly low

(ReA ,_ 70 - 60), and the experimental spectra do not contain an inertial range.
Their slopes are close to k -4/3, and obtaining a computed k -s/3 inertial range

would require choosing a prefactor f _ 1.5.

Next, the original stress similarity argument requires that the constant c obtained

from (5) satisfies the tensor Eq. (4) in some approximate way. An approximation
can be optimum and still be so bad that it makes no sense to consider that the model

represents the data. This is unfortunately the case in (4). A good approximation
would require that ]AI2/JL* j2 << 1, which in turn would imply a high correlation be-

tween the tensors -c9 and L*. This can be tested from the results of the calculation,
and the correlation coefficient

L* • g
7 = ,, (s)

(lga' JL*IO

is represented in Fig. 5. After an initial transient, it saturates around 20% and,
since

I;q=/IL*l2 = 1 - 7 2, (9)

this implies that 95% of the magnitude of the stresses remain unexplained by their

dynamic Smagorinsky approximation. That the optimal Smagorinsky approxima-
tion of the subgrid stresses only explains a small fraction of their magnitude was

already noted by Bardina, Ferziger and Reynolds (1983).

This result shows that the Leonard stress L* and the Germano strain g are

far from being coaxial, and that there is little point in trying to model one as

proportional to the other. On the other hand, the fact that the method works proves

that something is being modeled. Bardina et al., in the same work, noted that the

correlation between the model prediction and the true dissipation is much higher

than that for the stresses, and it is easy to see that (5) is actually a dissipation

formula. The least square approximation results in an exact cancellation of the

projection of the tensor over one of its summands, and the projection of the stress

on the strain is the dissipation. In fact (5) can be rewritten as

rg=-cg, L.g=rg.g, (10)
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FIGURE 5. Correlation coefficient between the two tensors in (4), computed from

a calculation using the dynamic model.

which says that the "dissipation" generated by the Smagorinsky stresses vg, is the

same as the "production" of the Leonard stresses. Since, in any numerical flow

without an explicit grid filter, the grid Reynolds stresses are identically zero and

L = T, the Leonard production can be used as a surrogate for the production at
the test level.

While this argument is suggestive, it is difficult to go much further. Direct com-

putation shows that none of the actual productions and dissipations really match

in the dynamic approximation. The numerical production -T. S remains about

twice smaller than the dissipation of the Smagorinsky stresses, mainly because a

substantial amount of energy is dissipated by the subgrid model on the flow scales

between the test and grid filters. Other combinations can be tested with similar

lack of success. While there is qualitative agreement in all the obvious balances, the

quantitative details are always masked by the broad support of the second order

dissipation. Equation (10), while indicative, does not seem to correspond directly

to any physical property of the flow.

3. Conclusions and future work

We have shown that a large part of the good behavior of dynamical subgrid

models is probably due to their robustness to approximations in the physics. This

is shared by other models, with the main requirement being that the formula for the

eddy viscosity contains a sensor which responds to the accumulation of energy in the

high wavenumber part of the spectrum before it contaminates the energy containing

range. The regular Smagorinsky model derives this property from the lal factor in

the eddy viscosity. The classical dynamic model is about twice less sensitive because

its constant is computed exclusively from the part of the spectrum between the two

filters. Any model with this feedback property, and which contains a reasonable

approximation to the flow physics, is likely to represent the energy containing scales
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essentially correctly. The quality of the modeling improves substantially if the last

octave of the turbulent spectrum is filtered when evaluating the results, and only

the large scales are kept.

All this is in addition to the main advantage of the dynamic models, which

remains their ability to generate vanishing eddy viscosities in smooth flows, and

their resulting good behavior near walls.

From this point of view, the use of the Smagorinsky model as the basis for the

dynamic formulation is probably nonessential, and simpler formulations must exist

in which the eddy viscosity is computed directly instead of through the Smagorinsky

constant.

The classical justification of the dynamic model in terms of scale similarity and

optimal approximation of the stresses has been examined and found weak. The ap-

proximation provided by the least square formula is so poor in practice as to make

any argument based on the stresses meaningless. The least square formulation is

a dissipation formula, and Lilly's formulation of the dynamic model can be under-

stood as making the dissipation approximately equal to the measured production.

The connection is, however, only approximate, and both quantities agree only qual-

itatively in computed flows (to within a factor of two). It should be noted that the

poor prediction of the stresses, although worrying at first sight for the application

to shear flows, in which the stresses are the main results of the computation, is

probably not serious. The mean Reynolds stresses, in the same way as the total

flow energy, are contained in the large flow scales and, if the latter are reasonably

well predicted, the former should also be.

Further experiments are needed in cases different from the (Comte-Bellot &

Corrsin 1971) decay to make sure that the specially good behavior of the spec-

trum for the standard model is not accidental. In the same way, tests should be
undertaken with other model formulations. The main result of this note should

be the realization that the present form of the dynamic model is not unique and

probably not optimum, and that other formulations can be developed in terms of

considerations such as numerical expedience, not necessarily fully based on strict

inertial range physics.
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