NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A new non-eddy viscosity subgrid-scale model and its application to channel flowTo date, most large-eddy simulations (LES) have been carried out with eddy viscosity subgrid scale (SGS) models, with only a few exceptions that used the mixed model. Even though the assumptions behind Smagorinsky's model are rather stringent, it has been applied successfully to a variety of turbulent flows. This success is attributed to the ability of eddy viscosity models to drain energy from large scales, thus simulating the dissipative nature of turbulence. Most SGS models are absolutely dissipative, i.e. they remove energy from the large scales at every instant. However, SGS stresses may transfer energy back to the large scales intermittently; this reverse transfer or backscatter is especially important in geophysical flows and in transition. In a fully developed channel flow, there is reverse flow of energy from small to large scales near the walls, but eddy viscosity models are unable to account for this important feature. The dynamic localization eddy viscosity model of Ghosal et al. (1995) allows backscatter by co-evolving an auxiliary equation for the SGS energy; however, the computational cost is considerably larger than for conventional SGS models (Cabot 1994). In this report, a new non-eddy viscosity model based on local approximation of total quantities in terms of filtered ones is introduced; the scale similarity model of Bardina (1983) is a special case of this model. This procedure does not require the assumption of homogeneity, permits backscatter of energy from small to large scales, and is readily implemented in finite difference codes. The results of applying the proposed model to second order finite volume simulation of plane channel flow at high Reynolds numbers (Re(sub b) = 38,000) is described in this report. Greater emphasis is placed on the high Reynolds number flow since it provides a more rigorous test of the SGS model and its potential application. The results are compared to ones produced by the conventional and dynamic Smagorinsky models and the spectral LES of Piomelli (1993).
Document ID
19960022300
Acquisition Source
Ames Research Center
Document Type
Other
Authors
Shah, K. B.
(Stanford Univ. CA United States)
Ferziger, J. H.
(Stanford Univ. CA United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1995
Publication Information
Publication: Center for Turbulence Research Annual Research Briefs: 1995
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
96N25321
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available