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ABSTRACT 
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their 

environment and decide on actions based on those perceptions. There are many different sensing modalities that  
can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. 
This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot 
navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and 
compares them. Another issue in mobile robot navigation is determining the robot’s position and orientation 
(sometimes called the robot’s pose) in the environment. This paper examines several different classes of vision- 
based approaches to pose determination. One class of approaches- uses detailed, a priori models of the robot’s 
environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches 
builds maps using natural landmarks. Example implementations from each of these three classes are described and 
compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based 
obstacle avoidance with vision-based pose determination to perform a simple task. 

1 INTRODUCTION 
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their 
environment and decide on actions based on those perceptions. Although there are many different ways to sense the 
world, most robots use ultrasonic sonar sensors and visions sensors. Typically, mobile robots use sonar sensors to 
avoid collisions with objects in their environment and vision sensors to localize themselves within their environment. 
The former is necessary in unmapped or dynamic environments to ensure the safety of the robot and the safety of its 
surroundings. The latter is necessary because, over time, errors accumulate in the robot’s internal location sensors. 
This paper first looks at several different approaches to sonar-based obstacle avoidance and then examines several 
different approaches to using vision sensing to localize. 

2 OBSTACLE AVOIDANCE 
Obstacle avoidance for mobile robots is a topic of much current research. In recent years, two sophisticated ob- 
stacle avoidance methods have been implemented: Vector Field Histogram (VFH) [3] and Navigational Templates 
(NaTS) [ZO]. These two methods take very different approaches to representing the obstacles in the mobile robot’s 
environment. VFH is the more traditional approach and will be examined first. 

2.1 Vector Field Histogram 

The VFH obstacle avoidance algorithm uses a two-dimensional Cartesian grid, called the Histogram Grid (illustrated 
in Figure l), to represent data from ultrasonic range sensors. Each cell in the Histogram Grid holds a certainty value 
that represents the confidence of the algorithm in the existence of an obstacle at that location. This representation 
was derived from the certainty grid concept originally presented in [MI. 
The central idea behind a certainty grid is to fuse sonar readings over time to eliminate errors in individual sonar 
readings. In a typical implementation, each cell of the grid array would represent say a lOcm by lOcm square of the 
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Figure 1: Left figure a robot and an environment. Right figure shows the Histogram Grid of obstacle locations that 
VFH has created after the robot has moved. 

A 

Figure 2: The Polar Histogram has “mountains” in the 
direction of obstacles. VFH steers the robot toward a 
“valley” in the direction of the target. 

Figure 3: In NaTs each obstacle or group of obstacles 
is spun. The spin tells the robot to which side of the 
obstacle it should pass. 

environment and the array covers the entire environment space. As the robot travels through the environment, its 
sonar sensors are continuously being fired and returning range readings to objects. Since the approximate location 
of the robot at any time is known through odometry and the direction of each sonar sensor is known, the location of 
objects in the grid array can be estimated. Each time an object is detected at a particular cell location, the value of 
the cell is increased and the values of all the cells between the robot and this cell are decremented (since they must 
be empty). The cells have minimum and maximum values, which have been chosen arbitrarily for computational 
convenience. 
To perform the actual obstacle avoidance using the Histogram Grid, VFH creates an intermediate data representation 
called the Polar Histogram. The purpose of the Polar Histogram is to reduce the amount of data that needs to be 
handled for real-time analysis while at the same time retaining the statistical information of the Histogram Grid, 
which compensates for the inaccuracies of the ultrasonic sensors. In this way, the VFH algorithm produces a 
sufficiently detailed spatial representation of the robot’s environment for travel among densely cluttered obstacles, 
without compromising the system’s real-time performance. The spatial representation in the Polar Histogram can 
be visualized as a mountainous panorama around the robot, where the height and size of the peaks represent the 
proximity of obstacles, and the valleys represent possible travel directions (see Figure 2). The VFH dgorithm steers 
the robot in the direction of one of the valleys, based on the direction of the target location. 
When VFH is combined with an ultrasonic filtering routine called EERUF (Error Eliminating Rapid Ultrasonic 
Firing) [2] it is uniquely suited to high speed obstacle avoidance. Experiments on a robot at the University of 
Michigan have demonstrated obstacle avoidance in the most difficult obstacle courses at speeds of up to 1.0 m/sec 

2.2 Navigational Templates 

One problem with VFH and other obstacle avoidance methods is that it can be difficult for high-level processes 
to influence low-level behaviors. For example, there is no way to tell VFH to which side of an obstacle it should 
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pass. Navigational Templates (NaTs) are a method for combining high-level, qualitative guidance with low-level, 
quantitative control. NaTs come in two forms: substrate NaTs (s-NaTs) and modifier NaTs (m-NaTs). An s-NaT 
defines a gradient field indicating for each position in space the best direction of travel to accomplish the navigation 
task. This substrate is independent of any obstacles in the environment. m-NaTs are used to model obstacles in the 
environment. An obstacle or group of obstacles is represented by an m-NaT that has a spin, which constrains the 
robot’s motion. The spin can be clockwise or counter-clockwise. The robot uses the s-NaTs to determine the general 
direction of travel and uses the m-NaTs to determine how to avoid obstacles. Figure 3 shows an environment with 
several m-NaTs and the robots path through the environment. 
NaTs has been implemented on several mobile robots. Experiments demonstrate effective obstacle avoidance at top 
speeds of about 0.2 m/sec. Most importantly, NaTs allow higher-level processes to influence the spin of obstacles and 
determine the robot’s response when it encounters those obstacles. For example, when passing people in a hallway, 
the robot could always pass to the right of person, even if this wasn’t the optimal strategy. This is not possible with 
traditional obstacle avoidance techniques, such as VFH. 

3 LOCALIZATION 
All of the obstacle avoidance algorithms discussed in the previous section rely on the robot knowing where it is in 
the environment, so that it can calculate a travel path to its goal location. Robots keep track of their position and 
orientation (or their pose)  in their environment by using wheel encoders. However, due to wheel slippage, etc. the 
robot’s internal calculations of its location will accumulate errors. Over time these errors can become significant. 
Therefore, the robot needs a way of determining its pose in the environment using exterior references, which is called 
localization. This section will look at three different approaches to localization. The first approach uses CAD-like 
models of the environment, the second uses triangulation to fixed landmarks and the third uses naturally occurring 
visual cues. 

3.1 Using CAD-like models 

A popular and successful way of determining position and orientation is to match visual features to a 3-D, CAD-like 
world model that has been given to the robot. There are several different, working instantiations of this approach 
including Harvey [8], Mobi [13], FINALE [12] and COSIM [19]. The basic approach of each system is the same: 1) 
The robot has a detailed, 3-D model of its environment; 2) A robot action is performed and the model is used to 
predict the location of visual features that the robot should see after performing the action; 3) The locations of these 
visual features is compared with corresponding features in an actual image taken by the robot and the robot position 
is then updated. The major difference between systems is in the visual features that they use. Harvey uses vertices, 
Mobi uses vertical edges that fall within a small band across the center of the image, FINALE uses horizontal and 
vertical edges and CoSiM uses horizontal edges. Because many of these systems are similar and in the interest of 
brevity, only one will be examined in detail-COSIM. 

3.1.1 COSIM 

The COSIM system consists of a mobile robot with a single black and white camera and a 3D model of the robot’s 
environment. COSIM determines its position and orientation by comparing a simL1sted image generated from the 
3D model with an actual camera image. This process consists of five components: 

1. Camera calibration routines that use the model and images to determine effective focal length, and the x and 
y pixel dimensions. 

2. A fast and crude orientation corrector that uses vanishing point analysis. 

3. An algorithm to match 2D image points to 3D model features. 

4. A reverse projection algorithm to produce two sets of 3D match points from a 3D model and 2D image points. 

5. An algorithm for determining a registration vector that gives the rotation and translation necessary to align the 
two sets of 3D points. This registration vector can be used to determine the camera’s position and orientation 
relative to some fixed coordinate frame that is inherent to the 3D model. 
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Figure 4: Example object tags showing th basic 
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These five components work together as follows: First, camera calibration (1) is performed to obtain the camera’s 
intrinsic values, which are crucial in all of the other calculations. Calibration will have to be repeated anytime 
the camera is replaced or when the optical system is adjusted. Next the robot starts moving through the modeled 
environment and takes images. Each image is analyzed to determine the deviation between the position of the 
vanishing point in the image from its expected position based on the model and dead reckoning information. This 
step (2) assumes that there exists a pair or more of dominant parallel lines in the environment (the baseboard lines 
between the walls and the floor are used in the actual implementation). This technique corrects gross orientation 
errors very quickly, which allows for expectation matching of features to be performed robustly. COSIM matches 
image features to model features using a technique based on searching small regions in the image space for particular 
oriented features (lines) and their intersections. Then a global consistency check is performed in 2D space that 
eliminates gross matching errors. This produces a set of image points and a matching set of model points. These 
points are then reverse projected to 3D space. Finally, using a technique based on [l] the two sets of matched 3D 
points are used to find a correction vector $. The correction vector is made up of two vectors, a unit rotational 
quaternion and a translation vector. The correction vector can be used to align the robot with the model, both in 
position and orientation. 

3.2 Using fixed landmarks 

Model-based system require a complete model of the environment. This can expensive to produce and maintain. 
Triangulating to fixed landmarks in the environment can provide position and orientation information without the 
overhead of a 3-D model. Landmark-based systems rely on a small set of distinctive landmarks that can be seen over 
a large portion of the environment. Triangulation requires distinct, point-like landmarks that can be recognized from 
any direction and from long distances. These landmarks can be natural (see [16, 221 for a system that use natural 
landmarks) or artificial. There are numerous references for triangulation, including [21, 141. The triangulation 
approach will be demonstrated in this subsection by examining a robot system, CARMEL, which uses artificial 
landmarks whose locations have been acquired previously by the robot. First, the landmark recognition system will 
be described and then the landmark triangulation algorithm will be given. 

3.2.1 Landmarks 

CARMEL’s vision system consists of an object tag design and an algorithm for detecting and distinguishing those 
tags. The object tag consists of a black and white stripe pattern. An example object tag is shown in Figure 4. The 
basic stripe pattern is six evenly spaced horizontal black bands of 50 mm width, with the top of the top band and 
the bottom of the bottom band spaced 1000 mm apart. The white gaps between the black bands correspond to the 
bit positions in a five-bit word. A white space between two bands corresponds to an “off’ bit, while filling the space 
with black corresponds to an “on” bit. The five bits between the six bands can then represent 32 unique objects. 
The actual algorithm for extracting objects from an image requires no preprocessing of the image. The algorithm 
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makes a single pass over the image, going down each column of the image looking for a white-to-black transition 
that would mark the start of a potential object. A finite state machine keeps track of the number and spacing of 
the bands. After finding enough bands to comprise a tag the algorithm stores the tag id and pixel length. Once 
a column is complete, the eligible objects are heuristically merged with objects found in previous columns. The 
distance between the top of the top band and the bottom of the bottom band, in terms of the number of pixels in the 
image, is then used to estimate the actual distance from the camera to the object. The algorithm has an effective 
range of about 12 meters. See [9] for a detailed description and analysis of the vision algorithm. 

3.2.2 Triangulation 

The landmark recognition algorithm returns a heading and a distance to any landmark. The triangulation algorithm 
requires only the relative heading between any three known landmarks to determine the robot’s location and orienta- 
tion. Referring to Figure 5, landmark l ,  landmark 2, and the robot form one circle (circle A). Even though the robot’s 
location is not known, there are only two possible circles because the angle between landmarks as viewed by the 
robot is known. Landmark 2, landmark 3, and the robot also form another unique circle (B). f iom the information 
available (landmark locations and the angles Q and p) the equations of the circles can be determined. The two circles 
intersect at landmark 2 and the robot’s location. Landmark 2’s location is already known and the robot’s location is 
the other intersection point. Below is the algorithm for circle intersection. Refer to Figure 5 for variable definitions 
used. A landmark’s position is denoted by (Lzi, Lyi) where i represents the number of the landmark. A landmark’s 
orientation from the robot is denoted by Loi. 

1. Properly order landmarks, see below. 

2. a! = Lo2 - Lol. if a is too small or equals 90° or 270°, return with error because division by 0 will occur. 

3. /I = Lo3 - L02, if ,6 is too small or equals 90° or 270°, return with error because division by 0 will occur. 

4. ra = 

5. rb = -e 
7. lb = e j  

8. Let v12z and v12y be the unit vector from landmark 1 to landmark 2. 

9. Let v23x and v23y be the unit vector from landmark 2 to landmark 3. 

10. cax = p12x - lu(vl2y) 

11. cay = p12y + lu(vl2z) 

12. cbz = p 2 3 ~  - lb(v23y) 

13. cby = p23y + lb(v23z) 

14. Return an error if the centers of the two circles are too close (we used 10 units). 

15. If y is very large, then return error. 

16. Let cbax and cbay be the unit vector from the center of circle B to the center of circle A. 

17. d2r = 2rb sin(7) 

18. c2m = rbcos(y) 

19. Robot x position = Rx = 2mz - Lx2 + 0.5 
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20. Robot y position = Ry = 2my - Ly2 + 0.5 

21. 4 = arctan( Lzl-RE), the heading of landmark 1 from the true robot position. 

22. If 4 > 0.0 then robot orientation error = -(Lo1 - 4 )  else robot orientation error 360’ + 4 - Lo1 

23. Return with solution 

L 1-R 

For this algorithm to work properly, both a and p must be less than 180’. When this condition holds we say that 
the landmarks are “ordered” properly. Properly ordered landmarks assure that the desired solution (out of the two 
solutions possible) is found. Properly ordered landmarks have the following two features: 

1. They are labeled consecutively (1,2,3) in a counterclockwise fashion, 

2. The angle between landmarks 1 and 2 (p) and the angle between landmarks 1 and 3 (a)  must be less than 
180O. 

This triangulation algorithm is analyzed and compared with other triangulation algorithms in [5]. 

3.3 Using visual cues 

A drawback to landmark triangulation is that it relies on knowing the exact location of fixed landmarks and on being 
able to see them from anywhere in the robot’s environment. Such assumptions make these algorithms difficult to use 
in environments such as office buildings, where the field of view is very restricted. In these environments it may not 
be possible to localize at any place, instead, the robot may have to do place recognition. Place recognition involves 
using naturally occurring visual cues to determine whether or not the robot is at one of a number of predefined 
locations in the environment. For example, in an office environment, the robot could use visual cues to determine in 
which room it is located. However, when the robot is traveling between rooms it does not know its precise location 
in the environment. Representations that store only interesting places and information about how to travel between 
interesting places are called topological maps and were pioneered by Brooks [4] and Kuipers [15]. Topological maps 
have become quite popular in mobile robotics and there are many implementations, including [6] and [17]. This 
section will focus on one particular system, RPLAN [lo]. 
RPLAN consists of two modules, a sonar sensing module that detects interesting places in an indoor, office-like 
environment and a vision module that identifies those interesting places. Interesting places are openings that the 
robot finds as it follows a hallway or follows a wall. These openings presumably lead to new spaces that the robot can 
explore. At each of these openings, the robot takes an image. Vertical edges are extracted from a black-and-white 
image by a modified Sobel edge detector (see Figure 6). A second image is analyzed in the same way as the first, 
but it is offset by 18cm from the first image. Once there is a list of edges from this pair of images the edges are 
matched across the image using the direction of transition of the edge (Le., was the edge from light to dark or dark 
to light?), length, and location. The pixel shift in the matched edges from the first image to the second image (called 
the disparity) is calculated and used to determine a rough distance to the edge. Each visual cue, thus, has three 
scene-independent features: direction, length, and distance. These cues are stored and then, when the robot comes 
back to the same place, it can match the cues that it sees with those that it has stored and determine its position. 
Experiments in natural, unaltered environments, show that by using a combination of sonar and vision information, 
place recognition can be extremely robust. 

4 AN INTEGRATED SYSTEM 

Obstacle avoidance and vision sensing are not issues that should be studied separately, as they are both necessary 
for an intelligent mobile robot. In this section, I look at a completely implemented system that performs a task using 
both sonar-based obstacle avoidance and vision-based sensing. The robot is CARMEL, a Cybermotion K2A base 
with a ring of 24 sonar sensors and a rotating camera (see Figure 7). CARMEL has all of its processing entirely 
on-board in the form of three PCs. CARMEL’s task is to explore a 20m by 20m arena, locate ten objects and 
approach each object. This task was part of the AAAI’92 robot competition, which CARMEL won [7]. 
CARMEL’s strategy was to mark the 10 objects with the barcode tag described in subsection 3.2.1 of this paper. 
CARMEL then moved to predetermined points in the arena and performed a visual sweep for objects, noting 
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Figure 6: An actual image and its visual cues. Figure 7: The mobile robot CARMEL. 

their locations. When all of the objects were mapped, CARMEL then proceeded to approach each one, choosing 
the object nearest its current location as the goal. While moving between objects, CARMEL avoided randomly 
placed obstacles using the VFH obstacle avoidance algorithm described in subsection 2.1. For the competition run, 
CARMEL’s maximumspeed was set at 0.5 m/sec, approximately twice the speed of the other robots. CARMEL also 
had various high-level error recovery routines that allowed it to cope with unexpected situations, such as blocked 
paths or objects that had been incorrectly located. CARMEL could also triangulate its position using the algorithm 
described in subsection 3.2 of this paper. However, due to some last minute code changes, the triangulation routines 
were never invoked during the competition run.During the competition, CARMEL found and visited all 10 objects 
in just under 10 minutes, about twice as fast as any other robot. Details of CARMEL’s software design can be found 
in [ll]. 

5 CONCLUSION 
Perception is an important issue in mobile robot research. If a mobile robot cannot perceive its environment correctly 
and efficiently, then it will not be able to perform even simple tasks. Sonar sensors and vision sensors are often used 
for mobile robot perception and they are each suitable for different things. Sonar sensors are typically used to avoid 
collisions, whereas vision sensors are typically used to perform localization. Robot designers should carefully chose 
the correct sensor for their task. A successful robot system, such CARMEL, can be developed by carefully integrating 
sonar and vision sensing. 
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