THE FUTURE OF VERY LARGE SUBSONIC TRANSPORTS

R. Steven Justice,
Anthony P. Hays, & Ed L. Parrott

Advanced Design
Lockheed Martin Aeronautical Systems
The Vision

Bel Geddes Air Liner Number 4 (1929)
VLST - Past & Present

Dornier Do X (1929)

Saunders-Roe S.R. 45 Princess (1952)

Boeing 747 (1969)
Today's Situation

- Slot Limits At Existing Airports
- Traffic Growth Outpacing New Airport Development
- Bigger Aircraft Required To Increase System Capacity & Productivity
- Heavy Airlift Military Aircraft To Be Replaced In Early 21st Century
Airport Congestion

Kennedy International Airport

International Passengers Vs Aircraft Movements
How Did We Get Here?

- No Significant Increases In Aircraft Capacity Since Early 1970's

Aircraft Size Growth Since 1940

<table>
<thead>
<tr>
<th>Year</th>
<th>Passengers (Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>50</td>
</tr>
<tr>
<td>1950</td>
<td>100</td>
</tr>
<tr>
<td>1960</td>
<td>200</td>
</tr>
<tr>
<td>1970</td>
<td>300</td>
</tr>
<tr>
<td>1980</td>
<td>400</td>
</tr>
<tr>
<td>1990</td>
<td>500</td>
</tr>
<tr>
<td>2000</td>
<td>500</td>
</tr>
</tbody>
</table>

Lockheed Martin
VLST Missions

- Passenger Transport
 - 600 to 800 Passengers Over Global Distances

- Commercial Freighter
 - 6.5% Annual Cargo Growth
 - Increased Use Of ISO & Intermodal Containers

- Military Airlift
 - Payload Of C-5 Over Global Distances
Key Design Challenges

- Size Issues & Constraints
 - Clearances At Gates, Taxiways, & Runways
 - Ground Loading & Floatation
- Increased Aircraft Separation Requirements
 - Increased Power In Wing Vortex
 - Increased Separation Will Reduce Aircraft Throughput At Airport
Key Design Challenges

- Taxiway Clearance
Key Design Challenges

◆ Loading & Servicing
 – Compatibility With Current Gates
 – Servicing Vehicle Congestion
 – Longer Time Required For Loading & Servicing

Lockheed Martin
Key Design Challenges

- Ground Support

"Airport Support", December 1994
Key Design Challenges

- Gate Compatibility
Key Design Challenges

- Emergency Systems
 - Emergency Exit/Slide Height
 - Passenger Escape From Emergency Site
 - Emergency Systems Must Handle Up To 1,600 Victim Event (2 Aircraft)
Key Design Challenges

- Aircraft Noise Requirements
- Fabrication Of Large Composite Structures
- Control Of A Large Flexible Structure
Enabling Technologies

- Fly-By-Light/Power-By-Wire
- Active Control Systems
- Simple, Effective High Lift Systems
- Laminar Flow (Hybrid & Natural)
- Flight Deck Systems
- Modular Design
Options For VLST

Boeing 747-400F
Wingspan: 213 ft
Length: 221 ft
Maximum Payload: 260,000 lb

Lockheed Very Large Airplane
Wingspan: 208 ft
Length: 205 ft
Maximum Payload: 300,000 lb

McDonnell Douglas Blended Wing-Body
Wingspan: 212 ft
Length: 212 ft
Maximum Payload: 300,000 lb

Lockheed Spanloader
Wingspan: 191 ft
Length: 183 ft
Maximum Payload: 80,000 lb

Airbus Super Transporter A380-600ST
Wingspan: 273 ft
Length: 240 ft
Maximum Payload: 1,000,000 lb

Molniya 1000 Heracles
Wingspan: 299 ft
Length: 360 ft
Maximum Payload: 992,800 lb

Lockheed Martin
Options For VLST

- Sea Based Vehicles
 - Conventional Seaplane
 - Wing In Ground-Effect (WIG)
- No Runway Construction
- Use Existing Cargo Port/Terminals
- Increased Emergency/Alternate Landing Sites
Options For VLST

- Lockheed/Dornier Sea-Based VLST
 - 3,500 Nm Range With 882k lb Payload
 - 2.2M lb MTOW

Lockheed Martin
Options For VLST

- Lockheed Martin Sea-Based WIG
Who Will Build The VLST?

- McDonnell Douglas
- Boeing
- AIRBUS
- Lockheed Martin
LMAS VLST

- 1.4 Million Pound Takeoff Weight
- 282 ft Wing Span (211 ft Folded)
- 262 ft Length
- 4 GE90, RR Trent, Or PW4000 Class Engines
- 3,200 Nm Range With Over 400k lb Payload
LMAS VLST

- Comparison To C-5
LMAS VLST

- Cargo Layout (16 ISO 40 ft Containers)
LMAS VLST

- Blended Wing/Body Concept
Routes That Could Use A VLST Today

London - Tokyo
London - Hong Kong
London - Singapore
New York - London
New York - Paris
New York - Frankfurt
Tokyo - San Francisco
Tokyo - Los Angeles
Tokyo - Honolulu
Hong Kong - San Francisco

Lockheed Martin
VLST Market
(By 2010)

- Big Enough For More Than One Aircraft?

<table>
<thead>
<tr>
<th>Region</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia/Pacific</td>
<td>160-200</td>
</tr>
<tr>
<td>USA</td>
<td>70-100</td>
</tr>
<tr>
<td>Europe</td>
<td>50-70</td>
</tr>
<tr>
<td>Total</td>
<td>280-370</td>
</tr>
</tbody>
</table>

(British Airways Forecast)
How Much Money?

- $8-15 Billion Development Cost
- More Than One Company Can Handle
- $200-300 Million Unit Cost
- Larger Than Annual Profits For Many Airlines
- Unlikely To Be Internally Financed By Airline & Leasing Companies
- Resulting High Capital Cost For Operator
Summary

- VLST Is Technically Possible Now
- Airline Interest Has Decreased Recently Due To Financial Difficulties
- Major Aircraft Manufacturers Are Poised To Act Once Economics Improve
VLST - Argosies Of The Sky!

“For I dipt into the future, far as the human eye could see,
Saw the Vision of the world, and the wonder that would be;
Saw the heavens fill with commerce, argosies of magic sails,
Pilots of the purple twilight, dropping down with costly bales.”
Lord Tennyson