NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The future of very large subsonic transportsThe Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and modular design. The VLST will encounter severe restrictions on weight, ground flotation, span, length, and door height to operate at current airports/bases, gates, and cargo loading systems. One option under consideration is for a sea-based VLST, either a conventional seaplane or Wing-In-Ground effect (WIG) vehicle, which would allow greater operational flexibility, while introducing other design challenges such as water impact loads and salt-water corrosion. Lockheed Martin is currently developing a floatplane version of the C-130 Hercules which will provide experience with a modern sea-based aircraft. In addition to its own ongoing research activities, Lockheed Martin is also participating in the NASA Advanced Subsonic Technology, High Speed Research (HSR), and other programs which address some of the technologies needed for the VLST. The VLST will require NASA and US aerospace companies to work together to develop new capabilities and technologies for make the VLST a viable part of transportation beyond 2000.
Document ID
19960023624
Document Type
Conference Paper
Authors
Justice, R. Steven (Lockheed Aeronautical Systems Co. Marietta, GA United States)
Hays, Anthony P. (Lockheed Aeronautical Systems Co. Marietta, GA United States)
Parrott, Ed L. (Lockheed Aeronautical Systems Co. Marietta, GA United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1996
Publication Information
Publication: Transportation Beyond 2000: Technologies Needed for Engineering Design
Subject Category
Air Transportation and Safety
Distribution Limits
Public
Copyright
Public Use Permitted.

Available Downloads

NameType 19960023624.pdf STI

Related Records

IDRelationTitle19960023610Analytic PrimaryTransportation Beyond 2000: Technologies Needed for Engineering Design