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ABSTRACT

This proposal requests continued support for the program of activities to be undertaken by
the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the period October 1, 1995
to September 30, 1996. The emphasis in this program is on training and research in experimental
and computational methods with application to aerodynamics, acoustics and the important
interactions between them. The program comprises activities in active flow control, Large Eddy
Simulation of jet noise, flap aerodynamics and acoustics and high lift modeling studies. During the
proposed period there will be a continued emphasis on the interaction between NASA Ames,
Stanford University and Industry, particularly in connection with the high lift activites.

The program will be conducted within the general framework of the Memorandum of
Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement,
the purposes of the institute include the following:

® To conduct basic and applied research.

® To promote joint endeavors between Center scientists and those in the academic
community.

® To provide training to graduate students in specialized areas of aeronautics and
acoustics while participating in the research programs of the Institute.

® To provide opportunities for Post-Doctoral Fellows to collaborate in research programs
of the Institute.

® To disseminate information about important acronautical topics and to enable scientists
and engineers of the Center to stay abreast of new advances through symposia,
seminars and publications.

The program described above is designed to address future needs of NASA Ames and has
been the basis of discussion among Profs. B. Cantwell, I. Kroo, S. Lele and S. Rock from the
Stanford faculty and several members from NASA Ames including Dr. R. Moser, Dr. S. Davis,
Dr. Dochan Kwak, Dr. S. Smith, Dr. J. Ross and Dr. L. Olsen. Coordination of this activity at
Ames is the responsibility of the Institute Associate Director for Center Affairs, Dr. C. A. Smith.



I. JOINT INSTITUTE PROGRAM OVERVIEW

A. Introduction

Experimental and computational aecrodynamics have for many years played an important
role in the basic and applied research programs of Ames Research Center and in the research and
training activities of Stanford University. Recently computational tools have been brought to bear
on the difficult problem of flow generated noise. The coordinated use of a combination of
experimental and computational tools has long been recognized as an essential part of a
comprehensive approach to improving our fundamental understanding of complex flow
phenomena. Developments in computational capabilities, in flow visualization, in measurement
and in new kinds of wind-tunnel instrumentation will constitute a major step forward in the ability
of scientists and engineers to advance the state of the art in acrodynamic design technology.

It is therefore the general character of the proposed program that it involves both
experiment and computation and that these are used in complimentary ways. This approach can be
undertaken only if highly qualified personnel and good research facilities are available. In this
regard the blending of resources from Stanford and Ames is an important ingredient and was one
of the motivating reasons behind the establishment of the Ames-Stanford Joint Institute. -

In the experimental parts of the program described below, smaller scale investigations
undertaken at Stanford are coordinated with both computations and experiments carried out in the
more powerful facilities at Ames Research Center.

B. Research Project Summaries

The research directions summarized here, and further elaborated in the Program
Description, are the result of several discussions with research management and staff at Ames
Research Center. The activities are consistent with the emphasis on acoustics and high-lift in
current NASA programs.

Project 1. Active flow control by tangential forebody blowing

This is a continuing program in the use of active control as a means of controlling aircraft at
high angle of attack. The combined roll and yaw control of a generic aircraft with thin delta wing
using forebody tangential blowing is being investigated. Techniques for developing nonlinear
optimum control laws are being developed using experimentally derived results obtained on a
unique free-to-roll, free-to-yaw support system which has been developed under this program.
The natural behavior of this system consists of oscillations in roll and yaw. Wind tunnel data, plus
numerical computation are being used to provide the aerodynamic information necessary for the
formulation of control laws for this configuration.



Project 2. Large eddy simulation as a tool for studying jet aero-acoustics

New subsonic and supersonic aircraft are required to meet more stringent environmental
noise regulations. Current design/analysis tools for estimating the noise generated by an aircraft
configuration rely strongly on empirical data. With recent advances in computational technology it
seems possible that important components of aircraft noise could be predicted by a first principles
approach. Since noise is generated by unsteady flow it becomes necessary to accurately predict the
unsteady flow. The proposed research seeks to evaluate and develop Large Eddy Simulation (LES)
as a computational technology for predicting jet-noise.

Project 3. Study of a lifting wing-flap combination with application to
airframe noise generation

The adoption of increasingly stringent international, national and local noise rules and the
advent of large, high lift commercial aircraft has led to a renewed interest in noise generation by
airframe components. Recent studies of airframe noise have identified noise sources associated
with wing flap trailing edges and flap side edges. In this project the fluid dynamic processes
associated with this type of noise source are being investigated. An NACA 63-215 Mod B airfoil
section has been used by NASA Ames investigators for high Reynolds number studies in the Ames
7x10 tunnel. These experiments also included noise studies carried out by Boeing and Ames
investigators working in collaboration using Boeing-developed phased array instrumentation. This
same geometry is also being studied in CFD computations by Ames and Stanford investigators and
in small scale experiments at Stanford University. The emphasis in the Stanford experiments is on
visualization and measurement of unsteady aspects of the flow which can not be easily studied in
either the computations or the 7x10 experiments. Fluorescent dye visualization will be carried out
in a low speed water facility and unsteady pressure measurements on the flap and other sections of
interest along with selected wake measurements will be taken in the Stanford low speed wind
tunnel.

Project 4. Application of luminescent paint sensors to fluid physics
problems

The use of a luminescent (pressure sensitive) paint to measure the spatial pressure
distribution on a wind tunnel model is being studied. These paints are based on a class of
chemicals known as porforins and make use of a surface reaction which, under illumination with
ultraviolet light, causes the scattered light intensity to be proportional to the partial pressure of
oxygen at the painted surface. This can be used to infer surface pressure over an extended area
using a video camera and associated image processing system. With further development, these
paints as well as similar systems capable of measuring wall shear stress, promise to revolutionize
wind tunnel testing techniques. In particular the high cost of’ pressure instrumentation for wind
tunnel models can be greatly reduced both because the need tor pressure taps is greatly reduced and
also because the cost of illumination can be amortized over a large number of experiments. The



surface reaction is fast and in principle it should be possible to measure the time varying pressure.
Initial, proof-of-concept, experiments are under way at Stanford using a jet impinging on a plate to
examine the time dependent response of the paint.

Project S5  Prediction of wing maximum lift for preliminary design
methods

The high lift characteristics of wings have important effects on aircraft noise, cost and
performance. The goal of this project is to improve our understanding of the flow regime for high
aspect ratio swept wings in the context of preliminary analysis and design. A computational
experiment using a 3-D Navier-Stokes code is being developed to investigate the viscous flow
along a swept wing segment. A 2-D grid is used with sweep simulated by imposing sideslip
through boundary conditions at the edges with subsonic exit boundary conditions specified. The
calculation will be run on representative airfoil sections in order to identify the effect of changing
the character of the pressure distribution. This research will provide information on the capability
of using appropriate 2-D Cy,,,, data to infer the 3-D highlift characteristics of swept 3-D

wings.
C. Institutional Support

Institutional support involves administrative, secretarial and technical salaries, travel,
university equipment and services including communication, expendable supplies, computer
services, engineering services, etc, and capital equipment. This support provides all of the basic
services necessary for continuing operations of the Institute including its small-scale experimental
and computational facilities, instrumentation and equipment and thereby supports all of the research
and training activities summarized earlier.

D. Training activities

The training role of the Institute is accomplished through 6 units of coursework in acoustics
offered by the Aero/Astro department including AA 201 A (Fundamentals of Acoustics) and AA
201B (Topics in Aeroacoustics). In addition the Aero/Astro Lab course, AA131, incorporates an
experiment based on an analogy which can be drawn between two-dimensional sound waves in air
and surface waves generated in shallow water (of a depth chosen to provide nondispersive waves)
to introduce students to the problem of flow generated noise. For the first time facilities at the
Fluid Mechanics Laboratory at NASA Ames were used to carry out an experimental project for
AA131 (Spring quarter 1995). The project involved measuring the effect of velocity difference on
the strength of streamwise vortex structures in a plane mixing layer.



E. Research Participation

The research programs summarized in Item B above will be undertaken by Stanford
faculty, staff and graduate students within the Department of Aeronautics and Astronautics with the
involvement of 4 Professors, 2 Research Associates and 4 Ph.D. students. This group has
experience in Aerodynamics and Acoustics and is familiar with NASA’s wind tunnel and
computational facilities. The strong collaboration between Stanford and Ames researchers which
has been the hallmark of Joint Institute research in the past will be continued and enhanced in the
coming year. The program activity at Ames will be coordinated by the Institute Associate Director
for Center Affairs, Dr. C.A. Smith.



II. DETAILED PROGRAM DESCRIPTION

The research program proposed for the period October 1995 through September 1996 is
described in detail below. It has been discussed with the cognizant personnel staff members at
Ames and agreement reached on the general scope of the programs.

Project 1. Active flow control by tangential forebody blowing

Research participants: Prof. S. Rock, Dr. Z. Celik, graduate student
Ames Technical Contact: Dr. C.A. Smith

1.1 Introduction

The aerodynamics of an aircraft flying at high angles of attack is characterized by such
phenomena as flow separation and vortex breakdown. Under these conditions the separation is
usually asymmetric and the vehicle is subject to large lateral loads which cannot be overcome by
conventional control surfaces. It is therefore necessary to find alternate means of augmenting the
aircraft flight control system. Several methods of flow control have been studied and are of
interest as a means to alter the flow structure in a such way that post-stall control of the aircraft
becomes possible [Ref. 1-8].

The focus of this research is active flow control by the injection of a thin layer of air
tangential to the forebody of the aircraft. The method is known as Forebody Tangential Blowing
(FTB) has been proposed as an effective means of altering the flow over the forebody of the
vehicle[Refs. 2,5]. By using this method, the flow asymmetries are changed and consequently the
aerodynamic loads are modified. Static and dynamic experiments performed at the Department of
Aeronautics and Astronautics at Stanford University under the NASA-JTAA program have shown
that significant side force, roll and yaw moments as well as normal force and pitching moment
[Refs. 5,8-10] can be generated using a small amount of blowing. This is important given that the
implementation on a real aircraft would provide a limited amount of air. It has also been
demonstrated that the FTB could successfully be used to suppress wing rock and to roll the model
to a desired bank angle. In addition, it was shown that FTB could provide sufficient acrodynamic
force and moments to use in a control scheme in two degrees of freedom [Refs. 9,10].

During this past year, dynamic experiments have been performed using a model support
system that allows the wind tunnel model to move in two degrees of freedom, roll and yaw [Ref.
11]. This configuration is of interest because it better approximates the characteristics of the
lateral-directional dynamics of an aircraft. It has been demonstrated that FTB could be used in a



closed loop control logic to stabilize the two degree of freedom system [Ref. 12]. All these
experiments have been performed in the low speed wind tunnel of the Department of Aeronautics
and Astronautics at Stanford University.

1.2 Research Objectives

The overall objective of this research is to understand better the mechanisms through which
tangential forebody blowing works and to demonstrate that the lateral control of a wind tunnel
model is possible in two degrees of freedom. The ultimate purpose is to determine the feasibility
of its use to control and/or improve the motion of an aircraft at high angles of attack.

Significant progress has been made during 1994-95. One of the fundamental extensions is
to further develop the mathematical modeling and the control approach to encompass large roll and
yaw angle control and to add a degree of freedom in the pitch direction. It is also our intention to
improve the aerodynamic predictibility of the motion of the wind tunnel model. This will be
achieved by investigating a tip geometry which would enable us to modify the flow over the
forebody in a controllable manner. Blockage and wind tunnel wall interference effects should also
be explored. The control algorithm which uses FTB in two degrees of freedom should be
extended to include the vertical stabilizer and the rudder. Investigation of the effect of FTB on
rudder buffeting is also proposed. These are the proposed future directions for the research.

1.3 Research Program

Experimental investigations are being conducted with a wind tunnel model provided with
roll and yaw degrees of freedom. Static and dynamic measurements of the aerodynamic loads are
being used to characterize the natural behavior of the system and the effect of blowing. A
mathematical model of the system is being generated for use in the synthesis of control laws for the
two degree of freedom system. Past work [Ref. 5] and the present experiments have shown that
the effects of roll angle, yaw angle and blowing on the pitching moment and normal force are
significant. It is also known that the flow characteristics will change when the angle of attack is
changed [Ref.4,5,8]. Therefore investigation of the coupling between lateral and longitudinal
modes will be conducted.

For the system with two degrees of freedom the regulator problem has been solved using a
closed loop control based on a linearized model of the system. Research will be conducted to

address the problem of commanding large roll and yaw angles, ¢ and y respectively.

Due to the characteristics of the aerodynamic phenomena, non-linear control laws will be
investigated as a means to incorporate this blowing "effector” into a flight control system while
minimizing the amount of air used for control.



1.4 Summary of Activities Completed During 1994-1995
The following activities were completed during the 1994-1995 period:

. It was shown that the wing rock of the wind tunnel model with 60 and 70 degree swept
wings and with and without the vertical tail could be successfully suppressed. The model with a
70 degree swept wing could be rolled up to 30 degrees by FTB in either direction and be
successfully held at a desired roll angle.

. A suspension system that allows a model two degrees of freedom in the wind tunnel has
been implemented. In particular, the sub-system that actively cancels external effects due to the
supporting structure has been completed.

. A discrete vortex model has been developed that captures the interactions between forebody
and wing vortices. The model correctly predicts the overall structure of the flow and the trends in

the static loads.

. The mathematical structure of an unsteady aerodynamic model has been proposed that
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motion of the system and will be used in the design of closed loop control laws.

. The feasibility of using forebody tangential blowing to control the roll-yaw motion of a
wind tunnel model at high angle of attack has been experimentally demonstrated within the
constraints of the experimental apparatus.

In the next section each of the completed activities is discussed in more detail and data are
presented to support the results.

1.5 Research Activities Completed

A suspension system to provide a wind tunnel model with two degrees of freedom, roll and
yaw, has been designed and built. The system is such that for small roll angles it approximates the
roll and yaw degrees of freedom of an aircraft. The wind tunnel model used in these experiments
consists of a thin delta wing with a sharp leading edge and a fuselage with slots on the right and
left sides of the forebody [Ref. 5,8]. A vertical tail can be incorporated and wings with 60 and 70
degrees leading edge sweep angle are used. The model has no movable control surfaces except the
rudder which can be moved manually [Ref. 9,10]. A partial view of the wind tunnel facilities is
shown in Figure 1.1.
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Figure 1.2: Side View of the Test Section

Design and construction of the experimental apparatus has been completed. In particular
the active cancellation of external effects has been addressed during the 1994-95 period:

. A system to actively cancel the effects of the suspension has been designed, built and
implemented. An overall objective in building the experimental apparatus was that the dynamic
properties of the suspension should not dominate the dynamic response of the overall system.
Examples of these added dynamic effects include the inertia and gravity restoring moment due to
the geometry and configuration of the supporting structure, the friction on the bearings and the
spring effect of the tubing used to supply the air for the blowing system.

. It has been verified that the sub-system which implements the roll degree of freedom, has a
minimum adverse effect on the dynamic response of the system in roll. This was demonstrated by
comparing the aerodynamic roll moment during wing rock with the friction effect of the bearings
and the spring effect of the tubing [Ref.9,13].

. Simulations and preliminary tests have indicated that for the yaw sub-system the apparatus
inertia and the gravity restoring moment have a large effect on the motion. Therefore a system has
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been designed and installed that provides active cancellation of these effects [Refs.11,12]. The
operation of all the hardware and software components of this system has been verified and the
system has been used in dynamic experiments with two degrees of freedom. Figure 1.3 shows the
implementation of the active cancellation loop in a block diagram form.
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Figure 1.3: Concept and Implementation of Active Cancellation Loop

Progress has been made in the understanding of the aerodynamics of the phenomena and
the use of blowing to control the roll-yaw motion of an aircraft at high angle of attack. The
following results were achieved in the 1994-95 period.

1. Flow visualization experiments

Past and present smoke and surface oil-flow experiments have revealed the basic structure
of the flow [Ref.3,8]. Figure 1.4a shows the flow structure for a cross-section on the forebody of
the model. The structure is clearly asymmetric with the left vortex (readers view) close to the
tfuselage and the right one away from it. The asymmetry scales up as one moves towards the rear
portion of the model. Figure 1.4b shows the flow structure for a cross-section further downstream
where the wing is present. On the left side only one large vortex is observed while on the right
side two vortical structures are identified. The left wing vortex merges with the left forebody
vortex due to its proximity to the fuselage. Although four main vortices are expected, two from the
forebody and two from the wing leading-edges, in some experiments, particularly dynamic tests, it
was observed that only three vortices could be clearly identified even for a symmetric condition in
which roll and yaw angles are zero and no blowing is applied (Figure 1.4b). This is attributed to
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the location of the smoke relative to the burst vortex and resulting lack of suction to attract smoke,
and the rapid dispersion of smoke at relatively high velocities.

The effect of asymmetric blowing, i.e. blowing applied on one side only, is mainly to
increase the asymmetry or reflect it to its mirror image depending on which side the blowing is
applied. Blowing moves the primary and the secondary separation lines on the forebody as
reported in Refs. 5 and 8 and can cause a change in the amount of vorticity that is shed as shown
computationally [Ref. 14]. As a consequence, the strength and positions of the vortices are
affected by blowing.

The application of symmetric blowing has the effect of changing the flow structure to a
more symmetric one. It also has a similar effect on the flow structure over a delta wing model
[Refs. 3,4,7] such that the model would act as if it were at a lower angle of attack. For high values
of symmetric blowing the flow on the forebody can be considered attached and its structure is
symmetric even on the stations where the wing is present. This observation indicates a possible
control strategy to be employed on the two degrees of freedom system: Application of symmetric
blowing to remove or minimize flow asymmetries and an additional time varying asymmetric
blowing to maintain stability of the vehicle. .

(1.4a) Station 1 - Forebody (1.4b) Station 2 - Wing-Body

Figure 1.4: Smoke Flow Visualization Results - ¢=y=0, no blowing is applied.

14



2. Static Aerodynamic Loads

A quasi-three-dimensional potential discrete vortex model has been developed to provide
insight on the interaction between forebody and wing vortices. The inclusion of blowing is
currently been investigated and should be fully incorporated with the aerodynamic model by
October 1995.

One concern regards whether a potential vortex method is appropriate, given that vortex
breakdown may occur. To address this issue, a reference is made to the results of flow
visualizations, for example Figure 1.4b. These experiments show that a vortical structure is
present even on the side where the wing vortex merged with the forebody vortex. The causes of
vortex breakdown are the object of discussion among researchers, but it is well accepted that the
consequences are a diffusion of the vorticity and lower velocities in the vortex core. Therefore
such effects can be modeled by increasing the vortex core radius and/or weakening the vortex as it
moves along the vehicle. These effects are being studied using a discrete vortex program
developed by Pedreiro [Ref. 15]. However the location of the vortex breakdown is dependent on
various factors such as sweep angle, flow turbulence, Reynolds number, wall interference and
blockage effects which can not be modelled accurately by potential flow solvers.

Preliminary results demonstrate that the method correctly captures the trends of the roll,
yaw and pitching moments, Figure 1.5. Current work is being directed at modifying parameters
such as vortex core radius and vortex strength factor, that requires experience with the code and a
comparison with experiments so that the optimum values can be selected.

Cmx Cmy Cmz
0.4 T T

20 0 20
Phi (Deg.)

Figure 1.5: Results from the discrete vortex model. Comparison with experimental measurements.
Cmx, Cmy and Cmz are the roll, pitch and yaw moment coefficients.
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Figure 1.7: Block diagram of the aerodynamic model.

The time constants as well as the coefficients of the linear functions fl and f2 are
determined by using a minimum least squares fit of the simulated time histories of roll and yaw
angles to the measured ones. Results of the mathematical model are compared to experimental data

in Figure 1.8 for the cases with and without blowing and the wind tunnel model constrained to
motion in one degree of freedom, roll.
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Figure 1.8: Roll and yaw angle time histories. Comparison of simulation and experiment.
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4. Closed Loop Control

The feasibility of using FTB to control the roll-yaw motion of a wind tunnel model at a
high angle of attack has been demonstrated. The natural motion of the two degrees of freedom
system is divergent as shown in Figure 1.9a. The system is therefore unstable and an initial
objective was set to investigate the possibility of using FTB to stabilize the system dynamically
since it was already shown in the static experiments that the FTB could generate sufficient side
force and yawing moment to alleviate the asymmetries on the model [Ref. §,10]. The unsteady
acrodynamic model was coupled with the dynamic equations of motion to provide a description of
the system. The equations were linearized about small roll and yaw angles and written in a form
suitable to the design of closed loop control. A linear quadratic regulator design was performed
and implemented in the experiment. The results are shown in Figure 1.9b. As can be seen the

closed loop control stabilizes the system.

Time (s)

(1.9a) Natural Motion (1.9b) Closed Loop Control
Figure 1.9: Two Degree of Freedom System: Natural Motion and Closed Loop Control.
The offset in both roll and yaw angles is due to the fact that zero roll and yaw is not an

equilibrium point. The offsets can probably be made smaller by adding some integral control.
Refinements of the control logic are currently being investigated.
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1.6 Research Activities Proposed for 1995-1996

Based on the results obtained to date, two main areas of research are proposed for 1995-
1996.
1. The stabilization of the system with two degrees of freedom has been demonstrated (see
Figure 1.9). A logical next step consists of investigating the possibility of commanding large roll
and yaw angles. This problem is of utmost interest because it applies directly to the ability to point
the vehicle to a desired direction. The issue associated with large angle maneuvers can be
appreciated by comparing the effect of blowing at different roll and yaw angles, shown in Figure
1.10. The characteristics of the system vary for large roll and yaw angles making the control
problem extremely difficult. Thus, the challenge is to model these variations so that control logic
can be effectively applied.

The proposed approach to accomplish this modeling is to augment the present technique
using indicial response methods to examine the functions of roll and yaw rates and their angular
accelerations with respect to aircraft attitude. These methods will allow for a better understanding
of the unsteady nature of the flowfield, which varies for large roll and yaw angles [Refs.16,17]. It
should be noted that these investigations do not require any modifications of the apparatus or
instrumentation available.
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Figure 1.10: Effect of Blowing for Different Roll and Yaw Angles.
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2. Measurements of the aerodynamic loads have shown that the effect of roll angle, yaw angle
and blowing on pitching moment are considerable, Figure 1.11. It is also well known that as the
angle of attack increases, the originally symmetric flow becomes asymmetric and as a consequence
lateral loads occur even at symmetric flight conditions. Since the ultimate application of FTB is
control augmentation for free-flving aircraft. it is important that the counling betwegn lateral and

longitudinal modes be investigated. Research will be conducted to evaluate the coupling effects
and to incorporate those in the design of the control logic for the vehicle. The modeling techniques
that have successfully captured the main physics of the flow for roll-yaw motion will be extended
to account for an additional degree of freedom in pitch. In addition, the nature of the angular rates
and accelerations will be examined using functional analysis for insight into the dynamic interaction
between aircraft and flowfield. The control laws will ultimately be demonstrated in the wind tunnel
through an experiment in which the model is allowed three degrees of freedom. It is possible to
add pitch as a third degree of freedom with some modifications on the existing apparatus[Ref. 18].
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Figure 1.11: Effect of Roll Angle, Yaw angle and Blowing on Pitch Moment.
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scales have been developed to allow an overall statistical prediction of the aerodynamic near-field.
The models are typically designed to provide correct energy transfer between the resolved and
unresolved scales (Ghosal et al. 1992). While these models seem quite promising, their impact on
far-field acoustics has not been considered. Since the far-field noise is a very small by-product of
the flow it is necessary to ensure that the subgrid models do not behave as a low order (and hence
efficient), but spurious source of sound. As Crighton (1988) points out, sources of this type may
be introduced via discretization errors and numerical boundary conditions, etc. It is necessary to
examine subgrid scale models as well in this context. Furthermore for practical LES applications,
the subgrid scale energy may be as much as 10-30% of the resolved energy and this may require
that closer attention be paid to the acoustic sources implied by such models.

2.3 Research Program

We propose to carry out a program of research aimed at extending/developing the LES
methodology from the point of view of far-field noise prediction. The fidelity of LES in predicting
the unsteady flow and acoustic sources will be judged by making extensive comparisons with a
Direct Numerical Simulation (DNS) of the same flow configuration. For this reason, the initial
study is direct simulation of turbulent flow in simple geometries. -

2.4 Research Activity Completed

A formulation capable of yielding a stationary turbulent jet flow while maintaining the
efficiency and accuracy of spectral methods was developed. The method is an extension of
Spalart's method (1988) for simulating boundary layers, to the case of a co-flowing jet or wake.
The results resemble those obtained by Spalart (1986) for the sink-flow boundary layer. The
method involves incorporating the slow spatial growth effects via a decomposition of the variables
according to their multiple spatial scales and a suitable coordinate transformation (Timson et al.
1994). The derivation is more rigorous than the boundary layer analysis, due to the simplification
introduced by explicitly considering the small deficit limit.

The result of the formulation is a modified set of equations consisting of the Navier Stokes
equations with an additional set of small growth terms. The implied flow field is homogeneous in
both the streamwise and spanwise directions, and was therefore implemented in the spectral code
used by Rogers and Moser (1993). Testing of the code's ability to maintain a stationary flow was
carried out, and a preliminary Direct Numerical Simulation was completed.

A flow field from a previously completed, temporally evolving wake simulation done by

Moser and Roger (1994), was used as an initial condition for the DNS. Time histories of
momentum thickness and turbulent kinetic energy during the simulation are shown in Figure 1. All
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quantities are made dimensionless using the half-width of the average wake profile and its
maximum velocity deficit. It is clear that a statistically steady evolution is achieved. There is some
variation about the mean as would be expected as large scale structures are formed and destroyed.
A snapshot of the vorticity magnitude at the final time in Figure 1 is shown in Figure 2 from both
the top and edge view.

2.5 Research Activities Proposed for 1995-1996

The DNS will first be extended to collect the data necessary to make acoustic predictions.
This will involve continuing the computation from the final condition of Figure 1 and computing
the two point space-time correlations necessary for acoustic predictions. Concurrently the code
will be modified to perform the Large Eddy Simulation of the same flow field. The LES
calculations will begin with the simplest Smagorinsky type subgrid scale eddy viscosity models.

Comparison of the LES and DNS results will begin with one point statistics and move on
to the two-point correlations mentioned previously. If the LES and DNS results compare well at
this level it may be concluded that the dominant acoustic sources have been effectively modeled (at
least in the context of an acoustic analogy). -

2.6 Research Activities Planned Beyond 1995-1996

Once the initial tests of LES's fidelity have been carried out using a simple subgrid scale
model, the direct impact of different subgrid scale models will be directly examined. This will
require a study of the space time correlation of the model subgrid stresses and the resolved stresses
in the DNS database. It is expected that this will involve reintegrating the DNS data from the
coarsely spaced times available as restart files. When the subgrid scale energy is non-negligible
these correlations may provide information about how much noise is radiated by the unresolved
subgrid scale motions and how effectively it is captured by subgrid models employed in the
calculations.

Once the efficacy of LES has been established. The prediction of far-field noise which uses

the near-field unsteady flow calculated via LES can be applied to flows of engineering interest.

LES calculations of an exnerimental flow for which detailed flow and noise data exist mav be the
r

next logical step in this direction.
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3.1 Introduction

Experiments by Kendall and his co-workers (Refs 1, 3, and 4) and Grosche et al. (Ref.
2), using a directional microphone to measure noise distributions on a wind tunnel model, found
that the noise generation was highly localized. The most active locations were the flaps, the wing
tip and leading edge, the trailing comer and trailing edge of the flap and the gap separating adjacent
flap elements. Areas where the attached turbulent flow existed were found to be non-active for
noise generation. In experiments with individual flaps, vortex roll-up was considered to be a
major reason for noise generation. When the vortex strength was reduced, the noise intensity
decreased. Kendall observed that the major part of the noise generation was caused by the gap
between two flaps which were deflected differentially. When the flaps were retracted, the noise
intensity distribution was high along the gap between the flap and the wing. Depending on the flap
configuration, the noise intensity distribution showed point-like or line-like sources. Kendall also
argued that the trailing edge noise did not play an important role.

Recent experiments (Refs. 6 and 7) on a wing-half span flap configuration by NASA
investigators in the Ames 7 x 10 included a collaborative program of noise measurements by
Boeing researchers. The flap edge was clearly identified as the major source of noise and various
edge treatments were tested in an attempt to reduce noise. Large differences in the effectiveness of
noise reduction were observed depending on the particular choice of flap edge treatment.

Fluid dynamic sources for noise generation from a lifting surface include confluent
turbulent boundary layers and vortex sheets rolling over edges producing large surface pressure
fluctuations. The flow involves a wide range of length scales, high local shearing stress and
intense turbulence activity over the lifting surface. A better understanding of these fluid dynamic
processes is needed for the development of effective methods for airframe noise reduction.

3.2 Objective

The objective of this research is to understand the flow mechanisms responsible for noise
generation by a wing and trailing edge flap combination. An NACA 63-215 Mod B airfoil section
has been selected for flow measurements at the conjunction of the main element, cove section and
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Fowler flap. For comparison purposes, the same model geometry used in the 7 x 10 experiments
has been selected for computations by Stanford and Ames investigators and for small scale
experiments at Stanford. A 1/3 scale version of the wing flap model is presently being built for
flow visualization studies at Stanford. The Stanford experiments will include fluorescent dye
visualization in a low speed water channel and smoke visualization and unsteady pressure studies
in a subsonic wind tunnel. Various flap edge treatments will be used to see how they modify the
flow field about the flap. The visualization studies coupled with the computations will provide a
useful tool for investigating the flap aerodynamics. Finally, in a separate study, hot wire
measurements will be carried out in the 7x10 in the near wake of the wing flap model in order to
determine local turbulence intensities and scales at the higher Reynolds number available in this
facility. The facilities at Stanford University and NASA-Ames will enable us to investigate the flap
edge flow field over a range of Reynolds numbers from 50,000 to 2.5 x 106.

3.3 Progress of the Research:
In the past year, our efforts were concentrated in the following areas.

(1 The identical model geometry was selected for experiments both at Stanford and NASA-
Ames and also for the computational work. Differences between old geometrical data and the
newly designed portions of the wing, especially, of the flap and the CFD were eliminated after the
surface geometry was remeasured on the existing model at NASA-Ames.

(2) The design and construction of the wing model, the main wing and the split flap portion,
and the model support system is nearly completed. Because of the small test section size of the
wind tunnel and the water channel at Stanford compared to Ames experiments, the wing model had
to be scaled accordingly. The same aspect ratio was retained between the two models. Our efforts
concentrated on a model design which could be used in both facilities with minimum modification.
The size of the model also restricted the available choices for selecting the number of pressure
tappings and pressure sensors. The wing and flap are mounted separately allowing maximum
flexibility in choosing the flap gap and angle.

As shown in Figure 1, the model is designed with two interchangeable middle parts which
were instrumented accordingly for the wind tunnel and the water channel environments. The
material for the model is aluminum to minimize the risk of corrosion in the water channel. For the
wind tunnel experiments, the middle section is instrumented with pressure tappings and with
pressure sensors mounted under the surface. For the water channel experiments, the middle
section is replaced with a geometrically identical section containing dye ports for flow
visualization. Instrumentation for the wind tunnel experiments includes 35 pressure tappings on
the main section and three pressure sensors on the side of the split flap (Figure 2a). Of the
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pressure tappings on the main section, any tap can be instrumented with a pressure sensor if
desired. For the flow visualization experiments, the main wing has 12 dye ports; four on the top
surface, seven on the bottom surface and one at the edge of the cove section (Figure 2b). This
gives us the ability to inject dye at different locations of interest. Of three dye holes on the flap,
one is located on the top surface while the other two will be used to inject dye on the lower surface.

A support system for the main wing and the flap was designed and manufactured for the
water channel. With this system, the angle of attack of the model, flap deflection, flap gap and
overlap ratio can be adjusted independently. In addition, end-plates are used to minimize the
interaction of the model with the wall boundary layer. The main element of the wing is supported
at both ends. The flap is attached at one end only to eliminate the interference which would
otherwise be caused by mounting struts. The model support system is shown in Figure 3.

The water channel facility is of moderate size, with a 12 ft long test section designed in a
single section for uninterrupted viewing of the flow. The channel cross-section is 20 in.x 28 in.
A test section velocity of 1ft/sec is achievable with the pumps operating at maximum capacity and
the channel at maximum depth. Given this velocity and the constraint on model size, the maximum
chord Reynolds number is approximately 70,000. Optical access to the model is through the glass
sidewalls and bottom of the test section as well as through a downstream window. At the present
time the facility is in final assembly with testing and characterization of the flow quality scheduled
for late July and initial visualization studies of the wing flap model scheduled to begin in August.
A schematic of the water channel is shown in Figure 4.

3.4 Proposed Work:
The following experiments are planned.

(1) Wind Tunnel Experiments:

Surface mean and unsteady pressure measurements and wake mean velocity measurements
will be carried out at Reynolds Numbers ranging from 400000 to 800000 on a 9-inch chord model
in the low-subsonic wind tunnel at Stanford using the settings of the test matrix used in the
experiments at Ames [Refs 8,9]. In addition to these settings, a wide range of angle of attack and
flap settings will also be explored to investigate the flow structure around the wind tunnel model.
The model is designed so that the flap angle and gap can be varied easily without any direct
connection to the main wing. Smoke flow and surface oil visualizations will be conducted at the
conditions given in the test matrix of Ames experiments. Cove tabs and flap edge treatments
devised at Ames will also be studied in the Ames experiments. These experiments will provide a
visual understanding of the unsteady flow field and they will provide data at several Reynolds
numbers for comparison with the computations carried out on the same wing-flap geometry.
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2) Water Channel Experiments:

Concurrent with the construction of the facility, research has been done to evaluate a variety
of flow diagnostic techniques. For the initial flow visualization dye injection will be used to
characterize the flow-field and the model has been designed with a variety of dye injection ports to
tag interesting flow regions [Figure 2b]. The Reynolds number for these experiments will be
approximately 50-70000 based on the chord. Various color dyes will be used on the main airfoil
and the flap to visualize the flow interaction between the airfoil elements. For surface
measurements, it has been established that the surface oil-flow technique can be successfully
applied underwater at the velocities the model will be tested.

3) CFD Computations and the Correlation Between Flow Properties and Noise

Measurements:

Under a separate grant, research is in progress to study ways to correlate the flow
properties and the noise intensity distribution around the airfoil. For this purpose, CFD
computations of the flow over the split-flap configuration are under way in an effort to determine
which flow properties, i.e. Reynolds stresses, vorticity distribution and unsteady pressure
distribution, will correlate best with the recent noise measurements done at NASA Ames Research
Center [Ref. 8]. Preliminary results indicate that the unsteady surface pressure measurements
would correlate better with the noise measurements. Our efforts next year will concentrate in that
direction.

r
]
Interchangeable /
part .. Interchangeable
of the main wing part
of the flap

Figure 1: NACA 63-215 Mod B Airfoil with Fowler Flap and regions of interest.
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(b)

Figure 2: (a) Pressure tappings and sensor locations of the model for wind tunnel experiments and
(b) Dye port locations of the model for water channel experiments.
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Figure 3: A schematic of the model support system for water channel experiments.

o~

Figure 4: A schematic of the water channel facility at Stanford University.
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3.5 Research Activities Planned Beyond 1995-1996

Pressure measurements initiated in 95-96 will be completed. At this stage of the research,
flow velocity measurements will be obtained using Particle Image Velocimetry in the water channel
and a multihole probe in the wind tunnel. Mean velocity measurements will be carried out using an
available 5-hole probe. Mean measurements are required for comparison with the CFD results, for
assessment of the turbulence model(s) and for examining the effects of wall interference. To
enable us to measure the unsteady velocity field near the flap edge, we have begun to put together
the hardware needed for a a low resolution Digital Particle Image Velocimetry system. After
gaining experience with this basic system we plan to switch to a higher resolution camera to obtain
measurements at an accuracy suitable for comparison with wind tunnel or numerical results. The
velocity measurements will provide information needed to evaluate source strengths and to
correlate the flow visualization, surface pressure measurements and acoustic surveys.
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4.1 Introduction

Pressure sensitive luminescent paints have some important advantages over pressure taps
which are typically used for surface pressure measurements on wind tunnel models. For example,
the paint provides a measurement over the entire model surface and measurements with pressure
sensitive paint hold the potential of being much less expensive (over time) than those with
pressure taps.

Pressure sensitive paints are now used routinely for measuring surface pressures on wind
tunnel models at transonic and supersonic Mach numbers (Refs. 1-4). The method utilizes a
surface coating containing fluorescent or phosphorescent materials, the brightness of which varies
with the local air pressure on the surface. In current practice, a wind tunnel model is coated with
the luminescent material, which is then illuminated with light of an appropriate wavelength to excite
the material. The illuminated model is imaged with a digital CCD camera during the wind tunnel
test. The images are then computer-processed in order to obtain a map of the surface pressure
distribution. The relationship between surface brightness and pressure is generally determined by
calibrating the paint (in situ) using a few pressure taps on the model.

The pressure sensitive paint technology is by no means fully mature. There are a number of
areas where the technique is currently undergoing improvements, such as sensitivity to temperature
and motion of the model, for example. Some attempts to obtain surface pressure measurements in
low-speed (M < 0.1-0.2) flows are also now being reported. Further work is needed in order to
improve the accuracy of the technique and to make it more versatile.

4.2 Research Objectives

The overall program objective is to apply the luminescent paint technolgy to the study of
basic fluid physics problems, especially at subsonic speeds.

The successful use of pressure sensitive luminescent paints at transonic and supersonic
speeds has been well demonstrated in tests conducted over the last five years. In present day
aeronautics, low-speed (M < 0.1-0.2) testing 1s becoming increasingly relevant. For example,
complex multi-element systems are being designed for subsonic and supersonic transports for the
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take-off and landing phases which must be extensively studied and tested in wind tunnel
experiments. The pressure sensitive paint has the potential of providing surface pressures over the
entire model in a relatively fast and cheap manner. However, the one limitation of the pressure
sensitive paint is that the brightness of the paint is inversely proportional to the pressure.
Therefore, detection of differences in brightness, which relate to differences in pressure on the
model, become increasingly difficult as the flow speed is reduced. Our objective is to first bench
test various paint compositions supplied mainly by our collaborators at Purdue University. Once
the promising paint compositions for low-speed testing have been identified, they will be used to
measure pressures on aerodynamic surfaces in the Fluid Mechanics Laboratory (FML) subsonic
wind tunnels. Another possible application will be in the model testing of the National Wind
Tunnel Complex components, scheduled to take place in the FML in the coming year.

Plans are also under way to use the pressure sensitive paint on a high aspect ratio wing in
the High Reynolds Facility and to use pressure and temperature sensitive paints (for transition
detection) in the new Supersonic Quiet Wind Tunnel.

4.3 Progress and Activities

Currently, an imaging system consisting of a Digital Cooled CCD Camera linked to a 486
Personal Computer (PC) is being used in a "bench-top" experiment. The bench-top test consists of
an inclined turbulent jet (shop air) impinging on a flat plate. The surface pressures on the plate are
varied by controlling the flow velocity and also the angle and height of the jet above the plate.
Suitable paints and the optimum application techniques are also being identified in these tests. So
far the results indicate that certain paint compositions which were initially thought te be very
responsive to low pressures were, in fact, responding to some contamination in the shop air. The
symptoms suggest that the (dried) shop air may contain excessive oxygen since the measurement
technique relies on oxygen quenching. Subsequent tests have been performed with a nitrogen jet
so that at least the qualitative behavior of the paints may be assessed. This last observation has
inspired an experiment, currently being performed by a graduate student at Stanford University,
where the surface interaction of two inclined jets will be studied by supplying one jet with nitrogen
and the other with oxygen. The effects of nozzle geometry on the interaction will also be
investigated.

In an experimental project, designed as part of the Experimental Techniques Class in the
Aero/Astro Department at Stanford, the effects of velocity ratio on mixing layer three-
dimensionality are being investigated. This work is being performed in the Mixing Layer Wind
Tunnel in the FML by a graduate student. These types of student projects will continue to be
offered in the coming year. One project under consideration is that on baseball aerodynamics with
the possible application of the pressure sensitive paint.
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Proj - iction of Wing Maximum Lift for Preliminary Design Meth
Research Participants: Prof. I. Kroo, Graduate Student

Ames Technical Contact: Dr. L. Olsen, Dr. S. Smith

5.1 Summary

The high lift characteristics of wings have important effects on aircraft noise, cost and
performance. The proposed research is aimed at improved understanding of the high lift flow
regime for high aspect ratio wings in the context of preliminary analysis and design.
Computational models will be developed and used to examine the important inviscid and viscous
phenomena that effect wing maximum lift, as well as the importance of three-dimensionality on the
flowfield. The ultimate goal is to develop an analysis routine that accurately predicts wing
maximum lift with the speed, accuracy and sensitivity necessary for use in multidisciplinary
optimization design codes.

5.2 Introduction -

Recent advances in the field of multidisciplinary optimization make this approach promising
for use in the conceptual design of new aircraft. Traditional aircraft selection methods, such as
parametric studies and summary charts, allow the designer to pick the "best” design based on
variation of a limited number of parameters. This best design is, however, still sensitive to many
other variables that were not examined in the original parametric studies. The true optimum design
can only be found when all of the available design parameters are varied simultaneously in order to
find the best combination that meets all of the given constraints. The major benefit of computerized
optimization for aircraft design is the ability to perform these trade studies with many more
parameters and much greater speed than can be accomplished through traditional methods.

While numerical optimization provides the benefit of more thorough exploration of the
design space, it also presents new challenges for the modeling of the aircraft throughout that design
space. In order to best meet their objectives, optimizers tend to push designs to their limits. This
sometimes results in exploitation of weaknesses in the aircraft model, producing designs that are
not really feasible even though they look very good to the optimizer. For this reason, one of the
most important issues in using optimization for aircraft design is accurately modeling the various
effects that drive the design. These models must also be simple enough to run quickly since an
optimizer may require thousands of function evaluations to explore the design space. There is a
fundamental tradeoff between accuracy and speed that must be properly made in order to formulate
analysis techniques that make numerical optimization a practical tool for use in conceptual and
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preliminary design.

Wing maximum lift is one of the areas that has been most difficult to model accurately for
optimization. It has also been shown to be a very important parameter for choosing optimum wing
planforms (Ref. 1), due to significant effects on aircraft noise, cost and performance. The tradeoff
between high sweep for low drag at high Mach numbers and low sweep for good low speed
performance and handling qualities is of fundamental importance. However, current methods used
to evaluate wing maximum lift in conceptual design phases may not be sufficient to accurately
model the effects of sweep.

The ideal model to determine wing maximum lift would be a 3-D Navier Stokes code with a
grid density fine enough to capture the details of the stalling phenomenon on the wing. The
computational power and time required for such a calculation, however, are not compatible with
the simplicity requirements of an optimization model (in fact, they are not compatible with any of
the computers available at the current time). Recalculating an entire 3-D Navier Stokes solution for
each combination of the many design parameters chosen by the optimizer would be impractical if
not impossible.

The starting point for the research described here is a wing model developed by Sean
Wakayama at Stanford University (Ref. 1). This method uses a critical section analysis which
compares local section lift coefficients, calculated from a Weissinger vortex lattice method, with
estimates of 2-D maximum section lift coefficients based on empirical data. Flaps are simulated by
increasing wing incidences in the Weissinger model, applying an increment in clmax due to flap
deflection on the flapped portion of the wing, and increasing the assumed C,,,, due to induced
camber on the sections near the flap edge. Finally, the maximum 2-D section lift coefficients are
reduced by a factor of cosL as an empirical correction for the effect of sweep on the pressure
distribution. The wing is then assumed to be at its maximum usable lift when any section C;
reaches some fraction of its local C,,,,. The assumption of a cosA variation in Cy, ., as opposed
to the simple sweep theory (Ref. 3) assumption that C,,,, decreases with cos2A, is based on
experimental observations (Ref 4). It has been observed that proper placement of fences and
vortex generators on swept wings can yield Cy,,, values that closely approach the 2-D unswept
values (Refs. 5 and 6).

The critical section method may be justified for unswept wings, but its validity is suspect
for wings with significant sweep for several reasons. The method assumes acquisition of 2-D
Cinax by placement of boundary layer control devices without actually specifying the location or
geometry of such devices. Also, wing sweep changes the shape of the pressure distribution at
fixed total lift, increasing the magnitude of the leading edge pressure peak. Most importantly, the
existence of transverse pressure gradients along a swept wing induces boundary layer flow in the
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spanwise direction. This spanwise flow increases the length over which the boundary layer
develops, resulting in a weaker boundary layer toward the wing tip. In certain codes used for high
lift design at Boeing (Ref. 7) 3-D panel codes are coupled with 2-D boundary layer codes, thus
capturing the correct 3-D pressure distribution, but still neglecting 3-D boundary layer effects. The
effects of sweep on the transverse boundary layer development and the pressure peak are the
primary areas of interest in the proposed research.

5.3 Research Objectives

Some optimization results using the current high lift analysis have indicated the possibility
of problems due to inadequately modeling the impact of the various effects of sweep on Cy,,,.
The optimizer tends to give wings a few more degrees of overall sweep than existing designs for
the same missions. It has also favored highly swept wing tips. Information on the variation of
Cimax With wing sweep is vital to performing planform optimization. Usable maximum lift is a
major constraint that limits the sweep of a wing. With optimization results favoring larger sweeps
than would be expected, a better assessment of the penalties sweep will impose on maximum lift
capabilities is needed. To improve our knowledge of this constraint, we propose to continue a
program of research on the effects of wing sweep on maximum usable section lift. -

5.4 Research Program

Computational models are being developed and used to examine various inviscid and
viscous phenomena that effect the maximum usable lift of wing designs, especially with regard to
changes in wing sweep. The results of this study will be used to formulate an improved algorithm
for optimization of wing planforms in preliminary design methods.

5.5 Research Activities Completed

During the previous year, studies have been initiated in two main areas. The first study
focused on transverse boundary layer development, and the second on the effect of sweep on the
inviscid pressure distribution for a wing of fixed total lift.

The transverse boundary layer development is studied using a 3-D, incompressible Navier
Stokes code (INS-3D) to compute the flow properties along a segment of a swept wing. The wing
segment runs all the way to the boundaries of the computational grid, eliminating the need for wing
tips or roots. The idea behind modeling only a section of the wing is to use the available
computational resources as efficiently as possible. By eliminating the wing tip and root, more grid
points can be concentrated along the section of the wing where the boundary layer development is
examined. Additionally, the grid is relatively easy to generate, allowing fast and efficient
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parametric studies varying sweep and airfoil sections. The key element of the model is then
applying appropriate boundary conditions to simulate the actual flow over a section of a swept
wing with a boundary layer control device.

The computational grid used for the boundary layer study is illustrated in figures 1 and 2.
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and 5. This is much like the familiar infinite swept wing except that the remaining conditions are
modified in this model so that flow properties do not remain constant in the spanwise direction.
The boundary conditions at the wing surface and the inboard and outboard edges of the
computational domain simulate the desired flow conditions. The goal of the model is to examine
the spanwise development of the boundary layer along a swept wing outboard of some boundary
layer control device; the boundary conditions at the inboard wing edge and the wing surface must
be set to simulate this 'fresh’' spanwise boundary layer condition. The boundary conditions at the
outboard wing edge are then used to simulate a continuation of the wing surface. In the current
model, the conditions at boundaries 6 and 7 are obtained by a zero-order extrapolation to the
nearest computational plane. This is the same condition used for the infinite swept wing model.
The wing surface, however, is used to provide the distinction. The first few rows of grid points
out from the inboard edge of the wing segment are modeled as a slip surface, so the flow over this
section is essentially an inviscid solution with no boundary layer. A no-slip boundary condition is
then applied over the rest of the wing surface. This combination results in a boundary layer that
begins forming at the edge of the no-slip surface and progresses down the wing toward the
outboard edge.

Several cases have been run using the model described above with some promising results.
The code was able to converge using the unconventional boundary conditions and evidence of a
growing spanwise boundary layer can be seen in the flow solution. Substantial spanwise flow and
some outboard flow reversal could also be seen using particle traces. Also, a code to compute
boundary layer characteristics in the chordwise and spanwise directions was developed and tested
on some of the preliminary test cases.

In addition to the viscous phenomenon discussed above, an inviscid effect commonly
observed to cause separation is sonic flow at the pressure peak (Ref. 2). The lift coefficient at
which this sonic flow condition is reached is affected by sweep for a couple of reasons. Since the
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The pressure coefficient corresponding to sonic conditions is calculated as an isentropic
function of the normal component of the freestream Mach number. This pressure coefficient is
then converted to an 'incompressible’ velocity increment using the Prandtl-Glauert or Karman-
Tsien compressibility correction. The incompressible velocity distribution over the normal airfoil
section is computed at two different angles of attack. Due to the linearity of the solution, the
velocity distribution is then known for any angle of attack. This yields a closed form solution
(quadratic in alpha) for the lowest angle of attack at which any point on the airfoil reaches sonic
conditions, thus defining the maximum allowable angle of attack for the airfoil section. Then the
maximum section lift limited by sonic conditions is calculated using this angle of attack and
converted back to a compressible lift coefficient, again using the compressibility correction. The
maximum lift based on freestream conditions is the computed maximum section lift times the
square of the cosine of the sweep angle (which assumes that Jones' simple sweep theory applies
for this inviscid model.)

The advantage of this model is that it provides a very simple and fast calculation of a
constraint that is widely recognized as one of the primary factors limiting maximum usable lift.
The disadvantage is that it relies on a panel code which requires use of a compressibility correction
that is not necessarily appropriate with the large velocity increments. The model has been tested,
however, against the results of a full potential code for a NACAO0012 airfoil section over a wide
range of sweep angles and freestream Mach numbers. The results, shown in figure 3, are quite
encouraging. The errors are largest at low Mach numbers where the allowable angle of attack is
quite large so that the velocity perturbation is much too high for the compressibility correction to be
valid. Still, over most of the range of sweep and Mach number the method does a very good job
of predicting sonic velocity. The algorithm developed here is substantially faster than the full
potential solution for a couple of reasons. First, the panel code solution is faster than the full
potential code for any given flight condition. Also, the full potential solution requires iteration to
find the angle of attack for sonic conditions, while the new algorithm solves for the critical angle
with a simple algebraic equation.

5.6 Research Activities Proposed for 1995-1996

During the coming year the models described above will be developed further to provide a
base for the proposed wing design routine. Several issues concerning the current models remain
open such as appropriate boundary conditions for the viscous case, and the effect of three-
dimensionality on the inviscid pressure distribution.

The issue of appropriate boundary conditions will be the main focus of the work on the 3-D

viscous wing section model, and there are several ideas on how to best model the flow conditions
of interest. The key is to simulate the flow conditions on a finite swept wing with boundary layer
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control devices as closely as possible using a computational grid that contains only a piece of the
wing. One idea is to model the entire wing section as a no-slip surface and use suction to remove
the boundary layer at some spanwise location close to the inboard edge of the wing surface.
Another is to somehow model an actual vortex generator or fence on the wing. This would also
allow a detailed investigation of how these devices actually delay separation, and could lead to new
insight on the best way to design and place such devices. A basic understanding of the physics of
fences and vortex generators could be a very valuable tool in the future of wing design. Improving
the model by finding better and more physically realistic boundary conditions will be the focus of
this project in the coming months.

Further validation of the sonic velocity prediction routine will be carried out using 3-D
codes with coupled boundary layer solutions to determine where the method is or is not useful.
The routine will also be tested on a wide range of airfoil sections to determine the sensitivity of the
model to different types of pressure distributions.

5.7 Research Activities Planned Beyond 1995-1996

The overall goal of this research is to design better wings faster. This could be
accomplished in several ways depending on the results obtained in the coming months. A
comparison of boundary layer properties on swept and unswept wings at similar conditions could
be made to assess the applicability of using a 2-D boundary layer analysis on swept wings. This
could be used to determine whether or to what extent the independence principle applies to the flow
at conditions near maximum lift. Direct comparisons of velocity profiles, displacement
thicknesses, momentum thicknesses and other boundary layer properties could be made between
the 2-D wing, and along several cuts of a swept wing (such as normal to the sweep axis, aligned
with the freestream velocity or aligned with the inviscid streamlines). These comparisons could be
used to assess the validity of using 2-D maximum lift data, and could lead to appropriate
corrections to 2-D data based on properties such as inviscid pressure distributions or sweep and
other geometric parameters.

An attempt to build a Stratford like criteria for separation on a 3-D lifting surface could be
made using data obtained from the research described above. In such a criteria, separation would
be correlated with various properties of the flow such as pressure distribution, Reynolds number
based on the distance the boundary layer has had to develop and the pressure gradient in the
direction of local velocity. If such a criteria could be developed, it presents the best possibility for
a fast but general method for preliminary assessment of maximum lift.

Another key factor in modern wing design that would benefit from this improved high lift
modeling is the prediction and alleviation of flutter. As the preliminary design code is refined to
better assess wing high lift characteristics, a flutter analysis could be included. This would make
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the wing design algorithm substantially more valuable in the early stages of aircraft synthesis and
optimization.

Finally, further exploration of the 3-D flow over various wing configurations could allow
examination of some unconventional wing designs. A code that is developed for 3-D analysis of a
wide range of flight conditions and geometric parameters could be useful for exploring new ideas
such as multi-element cruise airfoils or wing-body configurations. The lack of an analysis tool at
the preliminary design stage that accounts for the complexity of 3-D flows makes these
unconventional designs very difficult to assess with the current methods.
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III. PERSONNEL

The program, as described in the section, Detailed Program Description, will involve
faculty, staff and graduate students as follows:

Faculty:

Prof. Brian Cantwell (PI) 15 % academic year, 30% summer

Prof. Steve Rock 5 % academic year, 10% summer

Prof. Sanjiva Lele 5 % academic year, 10% summer

Prof. Ilan Kroo 5 % academic year, 10% summer

Staff:

Senior Research Associate: Dr. Rabi Mehta 100 % calendar year -
Research Associate: Dr. Zeki Celik 100 % calendar year

Research Assistants: 4 Ph.D. students 50 % AY/100 % summer

Additionally, the following support staff will be involved:

Sci-Eng. Associate 10 % calendar year

Throughout the conduct of this research and training activity close coordination will take place
between the research personnel at Stanford and the research personnel and technical management
staff at Ames.

IV. FUNDING

The funding requested for the one-year period, October 1995 - September 1996 is given in the
attached Estimated Cost Breakdown. As the University's contribution to the administration of the

Institute, indirect costs on Professor Cantwell’s administrative salary charges and administrative
and secretarial support are waived.
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JIAA 95-96 Admin Budget

ESTIMATED COST BREAKDOWN - JIAA 95-96 ADMINISTRATIVE BUDGET
GRANT NUMBER NCC 2-55

PROPOSAL NUMBER - AERO 42-95

DURATION - 12 MONTHS BEGINNING OCTOBER 1, 1995 TO SEPTEMBER 30, 1996

ACADEMIC SUMMER CALENDAR COST

A. SENIOR PERSONNEL

B. Cantwell, Prof. 10.00% 20.00% 13,711
B. OTHER STAFF
C. Edwards, Secy. 20.00% 6,634
TOTAL SALARIES and WAGES (A+B) 20,345
C. FRINGE BENEFITS (applied to TOTAL SALARIES AND WAGES)
Faculty - 26.2% through 8/31/96, 26.2% through 8/31/97 3,592
Staff - 26.2% through 8/31/96, 26.2% through 8/31/97 1,738
TOTAL SALARIES, WAGES and FRINGE BENEFITS (A+B+C) 25,675
D. SUB-TOTAL DIRECT COSTS (A+B+C) 25,675
E. MODIFIED TOTAL DIRECT COSTS (D) 25,675 -

F. UNIVERSITY INDIRECT COSTS (Waived)
0.00% through 8/31/95, 0.00% through 8/31/96

G. ANNUAL AMOUNT REQUESTED (D+F) 25,675
**TOTAL PROJECT COST** 25,675

TOTAL ESTIMATED JIAA COST FOR 95-96

Admin Budget 25,675
On-campus Budget 394,405
Off-campus Budget 141,144
ESTIMATED TOTAL JIAA 95-96 BUDGET 561,224
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JIAA 95-96 On-Campus Budget

ESTIMATED COST BREAKDOWN - JIAA 95-96 ON-CAMPUS BUDGET

GRANT NUMBER NCC 2-55
PROPOSAL NUMBER - AERO 42-95

DURATION - 12 MONTHS BEGINNING OCTOBER 1, 1995 TO SEPTEMBER 30, 1996

ACADEMIC SUMMER CALENDAR COST

A. SENIOR PERSONNEL
B. Cantwell, Prof.
S. Rock, Assoc. Prof.
1. Kroo, Assoc. Prof.
S. Lele, Assist. Prof.

B. STUDENTS
STUDENT RESEARCH ASSISTANT
STUDENT RESEARCH ASSISTANT
STUDENT RESEARCH ASSISTANT
STUDENT RESEARCH ASSISTANT

C. OTHER STAFF
Z. Celik, Res. Assoc.
V. Matte, Sci.-Eng. Assoc.
TOTAL SALARIES and WAGES (A+B+C)

D. FRINGE BENEFITS (applied to TOTAL SALARIES AND WAGES)

5.00%
5.00%
5.00%
5.00%

50.00%
50.00%
50.00%
50.00%

10.00%
10.00%
10.00%
10.00%

50.00%
50.00%
50.00%
50.00%

Faculty - 26.04%through 8/31/96, 26.04% through 8/31/97

Staff - 26.04%through 8/31/96, 26.04% through 8/31/97

Graduate - 26.04%through 8/31/96, 26.04% through 8/31/97

TOTAL SALARIES, WAGES and FRINGE BENEFITS (A+B+C+D)

E. OTHER COSTS

Univ. services, communications, xerox, travel,pub.

F. COSTS NOT SUBIJECT TO INDIRECT COSTS

Capital Equipment

Project 1 - control system modification - $8,500
Project 2 - simulation display system-$5,000
Project 3 - velocity measuring system fabrication - $16,000

Project 3 - pressure measuring system - $2

,500

G. SUB-TOTAL DIRECT COSTS (A+B+C+D+E+F)

H. MODIFIED TOTAL DIRECT COSTS (G-F)

I. UNIVERSITY INDIRECT COSTS ON MTDC (H)
63.04% through 8/31/96, 63.04% through 8/31/97

J. ANNUAL AMOUNT REQUESTED (G+I)

**TOTAL PROJECT COST**

Page 1

100.00%
10.00%

6,855
6,413
6,457
5,772

17,400
17,400
17,400
17,400

60,501
6,272

161,870

6,680
17,495
18,235

204,280

18,000

32,000

254,280
222,280
140,125

394,405

394,405



JIAA 95-96 Off-Campus Budget

ESTIMATED COST BREAKDOWN - JIAA 95-96 OFF-CAMPUS BUDGET

GRANT NUMBER NCC 2-55

PROPOSAL NUMBER - AERO 42-95

DURATION - 12 MONTHS BEGINNING OCTOBER 1, 1995 TO SEPTEMBER 30, 1996

ACADEMIC SUMMER CALENDAR COST

A. SENIOR PERSONNEL
B. Cantwell, Prof.

B. OTHER STAFF

R. Mehta, Senior Res. Assoc. 100.00% 81,363
TOTAL SALARIES and WAGES (A+B) 81,363
C. FRINGE BENEFITS (applied to TOTAL SALARIES AND WAGES) 21,317

Staff - 26.2% through 8/31/96, 26.2% through 8/31/97

TOTALS

JARTES. WAGES and FRINGE BENEFITS (A+R+() 1070 AR

™

D. SUB-TOTAL DIRECT COSTS (A+B+C) 102,680
E. MODIFIED TOTAL DIRECT COSTS (D) 102,680
F. UNIVERSITY INDIRECT COSTS ON MTDC (H) 38,464

37.46% through 8/31/96, 37.46% through 8/31/97

G. ANNUAL AMOUNT REQUESTED (F) 141,144

**TOTAL PROJECT COST** 141,144
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