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Abstract

This report treats several topics in applications of formal methods to avionics software development.
Most of these topics concern decision tables, an orderly, easy-to-understand format for formally
specifying complex choices among alternative courses of action.

The topics relating to decision tables include: generalizations of decision tables that are more
concise and support the use of decision tables in a refinement-based formal software development
process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables
for users of decision tables; and test coverage criteria and decision tables. We outline features of a
revised version of ORA’s decision table tool, Tablewise, which will support many of the new ideas
described in this report.

We also survey formal safety analysis of specifications and software.
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Chapter 1

Introduction

The theme of the research done on this project! and on its predecessor [12] is the use of formal
methods and formally based tools to produce precise, understandable specifications and to help
automate parts of the software production process, such as formulating specifications, checking
specifications, deriving code and documentation from specifications, and testing of specifications
and code. We have particularly concentrated on decision tables because, as discussed in Sherry
[25], they are easy to understand, suitable for specifying iterative reactive systems of the kind
common in avionics, and have a natural refinement methodology associated with them (missions
to operational procedures to scenarios to behaviors to dependent missions).

In the predecessor to this task we developed Tablewise, a tool supporting formal specification of
code using decision tables and generation of code from decision tables [12, 13]. Tablewise is a
basic tool supporting editing of decision tables, testing decision tables for consistency (at most one
outcome assigned under each possible scenario) and completeness (some outcome assigned to every
possible scenario), a form of structural analysis that localizes faults responsible for tables being
incomplete or inconsistent, and generation of Ada or C language code from decision tables.

Under this task, we have tried to broaden the scope of the project by identifying a broader range
of ideas in formal methods that can be of use in avionics software development in general or in
decision table methods or Tablewise in particular. The topics we have addressed are the following
listed by chapter. For the most part, each chapter was originally written as a separate report on a
particular topic.

e (Chapter 2) Extensions of decision tables.

— Incorporating preconditions into decision tables. This is a method of indicating the
context that a decision assumes and also of annotating relationships between the in-

1This research was carried out under NASA Langley Research Center Contract NASI1-20335, Technical Monitor
Michael Holloway. We thank Lance Sherry for the substantial input he has made to the content of this report. We
also thank Steve Miller for helpful and instructive discussions about testing, and David Rosenthal for his many useful
comments.



put variables that mathematically guarantee that certain scenarios cannot occur and
therefore can be excluded in analysis of the table.

— Permitting input variables to be partitioned into groups resembling records (as the term
1s used in programming languages). The resulting partitioned decision tables can express
the same information as a “flat” decision table far more concisely.

— Assertion tables, which represent more general logical formulas than decision tables.
Assertion tables permit one to write assertions about a specification that can be used
either to generate a decision table or else to check whether a given decision table says
what one thinks it should say.

Our algorithms for consistency and completeness analysis extend straightforwardly to decision
tables that may be partitioned or have preconditions. Consistency and completeness analysis
is essentially done automatically as part of generating a decision table from assertions. We
had to generalize our notion of structural analysis in order to apply it to partitioned decision
tables.

(Chapter 3) Placing decision tables in a more general formal program development methodol-
ogy. We propose a tabular specification method that permits a complex system to be specified
using a family of decision tables. These tables specify not only how to choose one of a num-
ber of courses of action (the selection), but also what each course of action actually is (the
behavior).

The resulting system is essentially a variant of Parnas’s A-7 specification method (10, 28],
using decision tables with behaviors rather than Parnas’s tables as the main definitional
element, and using other tabular forms to declare system variables.

Our system also bears a significant resemblance to Leveson’s RSML [17] minus its statecharts.
Leveson uses decision tables (selection part), divided up into pieces to define state transitions
in her statecharts. Essentially, a state transition (arc in the statechart) in RSML corresponds
to an operational procedure in ours. In Leveson’s approach, as in its parent, Harel’s state-
charts 7], the overall state is represented partly by locations in the statechart and partly by
values of state variables. In ours, as in Parnas’s A-7 method, the state is represented entirely
by state variables.

A promising idea that we have not worked out here is the idea of a decision table as an
object with an internal state (its operational procedure) and some associated methods (its
behaviors). We think it will provide a basis for a compelling connection between state machine
specification methods and decision tables.

(Chapter 4) In the context of his A-7 specification method, Parnas uses a variety of speci-
fication tables. On the ground that these may be useful instead of or in conjunction with
decision tables, we review the varieties of Parnas tables, explaining them in terms of decision
tables.



o (Chapter 5) We explore the problems of generating code that is testable according to a certain
test coverage criterion (MC/DC) and show how to generate such code along with a test suite
meeting the coverage requirement from a decision table.

We also explore the idea of a test coverage criterion for decision tables so that they can be
tested in order to validate them as requirements.

e (Chapter 6) We present a short survey of formal and quasi-formal methods as applied to
software safety.

e (Appendix A) We are developing a new version of Tablewise incorporating new methods

reported here. Appendix A is a short description of what will be new in Tablewise 2.

We believe that the most important contributions reported here are the table extensions in Chap-
ter 2 and the work on testing tables and test generation in Chapter 5.

1.1 Basics of Decision Tables
Operational Procedures Operational Procedure Op Proc 1 Op Proc 2
Operational Scenarios Scen 1 Scen 2 Scen 3
Scenarios
Inputs States
[ Sh 81, 52 51 51 52
Scenario
grll%ms (SE) Sk 81,582,853 $1 s 81
States (s;
( 2) SI3 81y.0+98n * 82 Sn
Behavior Behavior 1 Behavior 2
Operational -
Behavior Outputs Functions
I. BO, fi, f2 f2 f2
Behavior BO
Sputs (BOD | BO, firfs 2 fs
Functions ( f;)
BOS flv"'sfm f3 f2

Figure 1.1: A decision table with both selection and behaviors parts [25].

A decision table (Figure 1.1, as presented in [25]) is a tabular format for specifying a choice of
the actions that a system is to take. Overall, the decision table specifies a mission. The possible
courses of action that will be used to implement the mission under different circumstances are called



operational procedures (or opprocs, for short). A decision table is divided into two parts. The top
half specifies the conditions under which each operational procedure will be selected. This half of
the table is called the selection part. The selection part is composed of two things.

o The signature lists input variables whose values affect the selection of an operational procedure
and the possible values, or states, that those variables may take.

In Figure 1.1, the input variables are SI;, SI,, and SI3; the possible states of SI,, are s1, Sg,
and ss3.

* The body associates an engagement criterion with each operational procedure. Each engage-
ment criterion is a set of scenarios, and each scenario is a list associating a set of possible
values to each input variable.

In Figure 1.1, the engagement criterion of Operational Procedure 1 consists of Scenario 1
and Scenario 2. Operational Procedure 1 will be selected if either of those scenarios holds.
Scenario 1 holds if SI;, SI; have value s;. The “x” opposite SI3 means that it may have any
value (“don’t care”).

A scenario or an engagement criterion corresponds in a natural way to a logical formula
that is true of the inputs if and only if the scenario or engagement criterion holds. We will
frequently abuse terminology by speaking as if the scenario or engagement criterion and the
corresponding formula were the same thing.

The bottom half of the decision table is the behaviors part. It specifies just what course of action,
or behavior, is associated with each operational procedure. A behavior is an assignment of values to
a number of behavior outputs. The values of behavior outputs are called functions (as in the word
“functionality,” rather than the phrase “mathematical function”). A function might be to assign
a particular value to some quantity or to assign an algorithm for computing a given quantity from
sensor inputs during the period that the operational procedure is in force. Some of the functions
might be defined by reference to other decision tables.

Note that while several scenarios can be associated with an operational procedure, an operational
procedure has only one behavior.

In all of this report except Chapter 3, we consider only the selections part of a decision table.
The main reason is that the selections part is where the logical content of a decision table lies;
therefore logical methods of analysis can be most easily and directly applied to the selections
part. Nevertheless, decision tables with behaviors appear to have important connections with state
machine based specification methods, such as statecharts [7, 17].

1.2 Summary of Table Forms

In Chapters 2 and 3 of this report we define a rather large number of tabular forms. We present a
summary of them here. In Chapter 4 we describe in addition a2 number of forms defined by Parnas
[22], but we do not describe them here, since they are relevant only to that chapter.



Selection table. The selection half of a decision table.

(Recursively) partitioned decision table. A decision table whose input variables have been grouped
into records like those of Pascal or Ada.

Decision tables with preconditions. Decision tables in which certain opprocs (Always, Never, Pre-
cond, Illegal) indicate conditions which are or are not expected to hold of the input variables of a
decision table.

Assertion table. A variant of a selection table that describes conditions under which various opprocs
must or must not be selected.

Assertion result table. A table showing ways in which a decision table violates assertions made in
an assertion table.

Type declaration table. A table defining names as abbreviations for complex types (essentially a
table of type definitions).

Variable declaration table. A tabular representation of variable declarations.

Function table (functional decision table). A decision table with a single behavior output, called
output, equipped with a list of formal parameter declarations that indicate how the table should
be translated into a function subprogram.

1.3 Logical Notation

In mathematical contexts we use the usual logical notations for Boolean operations. For the con-
venience of the non-mathematical reader, we summarize them here.

Symbol  Meaning

AANB A and B (conjunction, meet)
AV B A or B (disjunction, join)

-A not A (negation, complement)
A= B if A then B (implication)

A< B Aif and only if B (equivalence)

10



Chapter 2

Three Extensions of Decision Table
Syntax and Semantics

This chapter gives the syntax and semantics for three extensions of decision tables: partitioned
decision tables, decision tables with preconditions or illegal scenarios, and assertion tables.

Partitioned decision tables are decision tables in which input variables may be (recursively) grouped
into records. This grouping has numerous advantages.

e Grouping input related variables helps organize a decision table and makes it more under-
standable.

¢ A partitioned decision table is typically less cluttered and can be far more compact than a
“flat,” simple decision table.

o Partitioned decision tables correspond closely to a well-structured “formal” English language
specification that uses logical constructs in an orderly fashion.

As presented here, partitioned decision tables are more general than previously described [12, 13,
11]. In those presentations an entire table was partitioned to a fixed depth. Here, variables are
individually structured into a structure of subvariables which is essentially the same as the concept
of a record type in programming languages.

Use of preconditions allows one to indicate scenarios that are always or never expected to occur,
clarifying the meaning of a table and making it possible for analysis to avoid reporting flaws in a
table that can never be exercised.

The purpose of assertion tables is twofold.

o First they allow one to make assertions about what a decision table specifies. One can then
check whether the table says what one thinks it says by testing whether it satisfies these
assertions.

11



e Second, one can design a table by using assertions to describe what the table should say. One
can then generate the table from the assertions, successively adding, removing, strengthing
or weakening assertions until a consistent and complete table is obtained.

Assertion tables present an important opportunity to apply the method of refinement [29, 6] to the
development of decision table-based specifications.

2.1 Recursively Partitioned Decision Tables

Ordinary “flat” decision tables have input variables that take values in an unstructured finite set.
Their type is what programming language definitions call an enumerated type or an enumeration
type. A standard way of structuring types is by forming record types. An variable of a record
type is essentially a collection of variables (fields) of simpler types. A value of the record variable
consists of an assignment of values to its fields. We can define record types based on enumeration
types as follows. We assume that a class Value of atomic values and a class Vble of variable names
are given.

TYPE ::= ENUM_TYPE | RECORD_TYPE
ENUM_TYPE ::= (w1,...,wn), w; € Value distinct
RECORD_TYPE == (v1 : T1,...,vn : Tp), v; € Vble distinct, T; € TYPE,:=1,...,n.

A record type is also called a signature, because it is a sequence of variables with their types.

Observe that a record type as shown above is like the signature of a decision table, whose variables

are vy,...,v, with types Ty,...,T,. If T1,...,T, were all simple types, it is clear in the context
of decision tables what an assertion about a value of that type should be: an engagement criterion
with entries suitable to 7Ty,...,T,. Formally, abstract entries, scenarios, and engagement criteria

are defined as follows.

e An entry for a simple type T = (wy,...,w,) is a set s C {wy,...,wp}.

o A scenario for a sequence of types (T1,...,7Tn) is a sequence (ey,...,en,) where for : =
1,...,m, ¢; is an entry for 7.

® An engagement criterion for (Ty,...,Ty) is a set of scenarios for (T1,...,Tn).

o An entry for a record type (vy : T1,...,vm : Trn) is an engagement criterion for (Ty,...,Txy).

The semantics of a recursively structured decision table is exactly what one would expect given the
standard idea that a scenario represents the conjunction of its entries and an engagement criterion
represents the disjunction of its scenarios.

12



Formally, the logical formula corresponding to an entry for a variable v of type T or a scenario or
engagement criterion corresponding to a signature is defined as follows.

e If v is a variable, T' = (wy,...,w,) and s C {wy,.. ., Wn} then the formula of s for v and T is
VES

or equivalently
v=w, V...Vv=w,,

where s = {w;,,...,w;_ }.
o If o =(v1:T1,...,v, : Ty) is a signature and s = (ey,...,e,) is a scenario for (71,...,T,),
then the formula of s for o is
P1 A APy
where, for : = 1,...,n, ¢; is the formula of e; for v; and ¢;.
o If E = {s1,...,5,) is an engagement criterion for the signature o, then the formula of E for
o is
¢1 V e V ¢m
where, for j = 1,...,m, ¢; is the formula of s; for 0.

e If ¢ is a formula and v is a variable, then ¢V is the formula obtained by replacing each variable
name v’ occurring in ¢ by v.2'.

e If v is a variable of a record type T = (v : T1,...,v, : T,) and e is an entry for T, namely
an engagement criterion for (vy : Th,..., v, : Ty), the formula of e for v and T is
¢’U

where ¢ is the formula of e for T (considered as a signature).

In practise, we will avoid prefixing the name of a record-valued variable to the names of its fields
by choosing distinct field names for fields of distinct variables.

As usual, a decision table (abstractly) consists of a signature o and a body B. The body B is
a function associating each of a set of operational procedures with an engagement criterion for
o. The table specifies that an operational procedure opp be selected whenever the formula of its
engagement criterion for ¢ holds.

13



Operational Procedure Il Takeoff 1l Climb [ ClimbInt Level ]| Cruise |
Input Variables States |! I 1l I |
flightphase :_lur?sl; climb climb climb cruise
Altitude AC_Alt > 400 FTE.J%% TRUE * * >
compare( AC_Alt, LT EQ - -
Status Acc_Alt) GT LT EQ GT
Altitude Alt_Capt Hold TotE | FALsE | TRUE || FALSE | TRUE TRUE TRUE
compare(Alt_Target, LT EQ - - - -
Target Status prev_Alt_Target) GT GT GT

Figure 2.1: A recursively partitioned decision table.

[ Operational Procedure 1 Takeoff i Climb [ Climb_Int_Level || Cruise |
Input Variables States
Flightphase Chl?lb climb | climb climb climb climb cruise
cruise
TRUE * * * *
AC_Alt > 400 FALSE TRUE | TRUE
compare(AC_Alt, LT EQ N
Acc_Alt) GT LT LT EQ GT | EQ GT GT
Alt_Capt_Hold TRUS || FALSE | TRUE || FALSE | TRUE TRUE TRUE
compare(Alt_Target, LT EQ * * *
prev_Alt_Target) GT GT GT EQ

Figure 2.2: A simple decision table.

2.1.1 An Example

Figure 2.1, adapted from [24], gives an example of a recursively partitioned decision table equivalent
to the simple decision table in Figure 2.2.

In Figure 2.1, one of the top-level input variables, flightphase, is simple and the other two, Altitude
Status and Altitude Target Status, are record variables with simple components. The grouping
of AC_Alt> 400 and compare(AC_Alt,Acc_Alt) into Altitude Status clarifies their meaning, but
has not been used otherwise since their entries are essentially the same as if they had been simple
variables. The entries for Altitude Target Status under Takeoff and Climb have been grouped into
a mini-engagement criterion. Doing so avoids duplicating the entries for flightphase and Altitude
Status, simplifying and further clarifying the structure of the table.

14



According to Figure 2.1, the engagement criterion of Takeoff is equivalent to the formula

flightphase = climb A AC_Alt > 400 A AC_Alt < Acc_Alt A
(—Alt_Capt_Hold v (Alt_Capt_Hold A Alt_Target > prev_Alt_Target)).

Engagement criteria in partitioned decision tables correspond closely to a well-structured English-
language specification. For example, the engagement criterion of Takeoff can be written as follows.

Operational procedure Takeoff will be engaged if all of the following conditions hold.

The flightphase is climb.
The aircraft altitude is above 400 feet.
The aircraft altitude is less than the acceleration altitude.

=W o

Either of the following conditions hold.

(a) Altitude capture hold is false.
(b) Both of the following conditions hold.
1. Altitude capture hold is true.
ii. Altitude target is above the previous altitude target.

As Figure 2.3 shows, tables in which several groups of variables can be grouped into records can
offer a great saving in space over equivalent simple decision tables. (Note that in this table we have
not bothered including names for the records, which are not essential if all field names are distinct.)

2.1.2 Decision Diagram Representations and Algorithms for Partitioned Deci-
sion Tables

Partitioned decision tables can be manipulated using decision diagram algorithms similar to those
for simple decision tables that we described in [13, 12]. The decision diagrams associated with
partitioned decision tables are, however, enriched by giving a record structure to the decision
variables, as partitioned decision tables do.

Given the enriched decision diagram algorithms, consistency and completeness analysis are essen-
tially the same for partitioned decision tables as for simple ones. The notion of structural analysis
had, however, to be generalized in order to be applicable to partitioned decision tables.

The enriched decision diagram algorithms can potentially support similar analysis and manipulation
of Parnas tables [22], described below in Chapter 4.

2.2 Decision Tables with Preconditions or Illegal Configurations

It seems that, for some decision tables, certain configurations of “illegal” or “impossible” values are
expected never to occur. Looked at from another point of view, the table is expected to be used
only when some precondition holds which excludes the illegal configurations.

15



[ Operational Procedure “ OP ]
[ Input Variables TStates ” |

A TF | T F
B TF | T *
a TF |T|F | F
B TF *1 T ¥
v TF ¥ x| F
L Operational Procedure L opP ﬂ
l Input Variables ] States ” |
A TF |\|T|T|T|F|F|F
B TF | T|T|T|*|*]|*
a TF |T|F|F|T|F|F
8 TF *TT1*| *| T]| *
~ TF * | x| F| *| *| F

Figure 2.3: Another partitioned decision table and an equivalent simple decision table.

A natural way to require or exclude certain conditions is by adding dummy operational procedures
Precond, Illegal, Always and Never. Their intended meaning is as follows.

o The engagement criterion of Never denotes conditions which are guaranteed never to hold
when the table is invoked, and which may be completely ignored in analyzing the table. For
example, an overlap between two engagement criteria that is contained in the engagement
criterion of Never will not be reported in an inconsistency analysis. In generating code, no
action need be taken on inputs satisfying the engagement criterion of Never, because there
will never be any.

The two tables in Figure 2.4 are equivalent. They define the three-valued comparison compare.
In this case, Never annotates a mathematical dependency between input variables: it is not
possible for z < y and z > y to both to be true.

o Always is similar to Never but states restrictions in a positive form, i.e., conditions that will
always hold. Scenarios lying outside the Always condition are entirely ignored.

e Precond and Illegal are respectively like Always and Never but are less strict. Their en-
gagement criteria represent conditions that are ezpected always/never to hold when the table
is invoked. Just in case, however, overlaps of engagement criteria that fall outside Precond
or inside Illegal will be reported by consistency analysis, and in generated code, scenarios
outside Precond or inside Illegal will raise an exception.

16



One can imagine further ways to treat preconditions, but there must be an end of such things. The
four kinds of precondition annotations can, of course, be used in combination. They are provided in
positive/negative pairs simply because sometimes it is simpler to express the negation of a condition
as an engagement criterion, and sometimes it is easier to express the condition itself.

In general, excessive use of Precond and Illegal, or Always and Never, except when they annotate
mathematical relations among input variables, make decision tables less reusable. If a table is
correct only if used in a context that guarantees certain preconditions, then it cannot be used
without modification in another context that does not guarantee the same preconditions.

In general extending our algorithms to tables with precondition annotations is trivial. Sometimes,
however, one might want to express an engagement criterion in the simplest possible way given
that it does not matter whether impossible scenarios are included or excluded. What is a good
algorithm for performing such a simplification?

[ Operational Procedure ” LT “ EQ || GT |” Never ]

| Input Variables | States || [i | Il ]
z <y TF | T F | E T
y<z TF F F T T

| Operational Procedure [ LT EQ] GT Never |

| Input Variables | States || I | il |
z<y TF T | F * T
y<z TF * F T T

Figure 2.4: Two equivalent decision tables with precondition annotations.

2.3 Assertion Tables

Assertion tables permit one to specify more general relations between operational procedures and
logical conditions than are possible in decision tables. In an assertion table, sets of operational
procedures may be associated with several engagement criteria, and in several ways: in an if, in
an only if, or in an iff (if and only if) relation.

o An if relation means that some opproc in the set must be selected if the engagement criterion
holds, but may also be selected under other conditions.

¢ An only if relation means that an opproc in the set may be selected only if the engagement
criterion holds, but does not have to be selected just because the engagement criterion holds.
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e An iff relation is the combination of if and only if —the engagement criterion states the exact
conditions under which some opproc in the set will be selected.

These different relations can be used to make assertions about what a decision table is meant to
be like. These assertions can be used either to check whether a decision table satisfies them or to
construct the least specific decision table that does satisfy them.

Figure 2.5 gives an example of an assertion table. It says the following things.

o If the flightphase is climb then one of the opprocs Takeoff, Climb, or Climb Int Level will be
selected. One of these opprocs will be selected only if the flightphase is climb.

o Takeoff may be selected only if AC_Alt < Acc_Alt.
e Climb may be selected only if AC_Alt > Acc_Alt.

e Climb Int Level will be selected if and only if flightphase is climb, Alt_Capt_Hold is true, and
Alt_Target > prev_Alt_Target.

o If the flightphase is cruise then the operational procedure Cruise must be chosen.

1 2 3 4 5

Assertions Takeoft, Climb, | .7} g | Climb || Climb Int Level || Cruise
Climb Int Level

Input Variables | States iff only if || only if iff if

flightphase clm:zb climb * * climb cruise
cruise

AC_Alt < Acc Alt TF * T F * *

Alt_Capt_Hold TF * ¥ * T *

Alt_Target > prev_Alt_Target TF * * * F *

Figure 2.5: An assertion table.

2.3.1 Checking a Table Against Assertions

Checking a selection table against an assertion table produces a result table listing violations of
the assertions.

The selection table in Figure 2.6 is a sort of botched condensation of the table in Figure 2.1.
Testing the table in Figure 2.6 against the assertion table in Figure 2.5 produces the result table
in Figure 2.7. The result table indicates the following things.

e The first column says that Assertion 1 is violated because the indicated scenario is not assigned
an operational procedure by the selection table.
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Operational Procedure Takeoff | Climb || Climb Int Level || Cruise
Input Variables [ States
flightphase clm.ab climb || climb climb cruise
cruise
AC_Alt < Acc_Alt TF T T * *
Alt_Capt_Hold TF F| T|F|T T T
Alt_Target > prev_Alt_Target TF *I'T | *| T * *

Figure 2.6: A table to test against assertions.

e No violation of the second assertion is listed, indicating that it is satisfied.
o The third assertion is violated by both scenarios under Climb in the selection table.

® The fourth assertion is violated because the engagement criterion of Climb Int Level fails to
exclude the case Alt_Target > prev_Alt_Target.

The fifth assertion is violated because the engagement criterion of Cruise restricts Alt_Capt_Hold.

Of course, most of these errors are silly and have been contrived to illustrate all the different kinds
of possible errors.

Assertion Results Asserfxon.l Assertion.3 Assertion.3 Assertion.4 Asser.tion.S
(unassigned) Climb.1 Climb.2 Climb Int Level.1 Cruise.1
input Variables | States
flightphase climb climb climb climb climb cruise
cruise
AC_Alt < Acc Alt TF ¥ T T = *
Alt_Capt_Hold T F F F T T F
Alt_Target > prev_Alt_Target TF * * T T *

Figure 2.7: Results of assertion check.

2.3.2 Generating Selection Tables from Assertions

A natural way to develop a selection table is to write down principles it is supposed to embody
as assertions, then build a table that satisfies those assertions. In fact, the selections table can be
generated automatically from assertions. Figure 2.8 shows the table generated from the assertion
table in Figure 2.5. This generated table is in fact complete and correct.

In general, however, a set of assertions will not fully specify a complete and correct decision table.
Typically, we would expect a designer to proceed incrementally, as follows.

1. Write down an assertion.

19



Operational Procedure Takeoff | Climb || Climb Int Level || Cruise
Input Variables I States
flightphase cimb 4y | climb climb cruise
cruise
AC_Alt < Acc Alt TF T F * *
Alt_Capt_Hold TF F| T |F|T T *
Alt_Target > prev_Alt_Target TF *I'T || *{ T F *

Figure 2.8: A table generated from assertions.

2. Generate and examine the induced selection table.
3. Add or modify assertions accordingly, or else correct the table by hand.

4. Go back to step 2.

To illustrate this process, consider the weaker set of assertions in Figure 2.9. Those assertions
generate the decision table in the same Figure. In that decision table Takeoff and Climb have not
been disambiguated and no restrictions have been placed in the opproc for the scenario in which
flightphase is cruise and Alt_Capt_Hold is false. These deficiencies might be corrected by revising
the assertion table to be the same as that in Figure 2.5.

2.3.3 Semantics of Decision Tables and Assertion Tables

In this section we will define and justify our algorithm for generating decision tables from assertion
tables. Justifying the algorithm means defining the semantics of assertion tables and decision tables
and showing that the semantics of an assertion table and the semantics of the decision table are
equivalent.

Consequently, we will go into some detail about the semantics of decision tables and assertion
tables, providing enough detail to prove that our algorithm preserves semantics. Thinking about
decision tables in relation to assertion tables has also caused us to revise our earlier definition of
decision table semantics [12]. The changes only affect tables that are incomplete or incorrect and
therefore are irrelevant to the finished product of decision table development. We made the changes
for the following reasons:

e to help design a sensible algorithm for generating a decision table from assertions;

e to make reducing inconsistency and incompleteness in a decision table correspond to refining
it (strengthening the formula it denotes);

e to make refinement of an assertion table (i.e. adding assertions) correspond to refinement of
the decision table it generates.
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. Takeoff, Climb, . .
Assertions Climb Int Level Climb Int Level || Cruise
Input Variables | States iff iff if
flightphase dm.lb climb climb cruise
cruise
AC_Alt < Acc Alt TF * * *
Alt_Capt_Hold TF * T T
Alt_Target > prev_Alt_Target TF * F *
Operational Procedure TaleOﬁ Climb Int Level | Cruise *
Climb
Input Variables | States
flightphase clm.qb climb climb cruise || cruise
cruise
AC_Alt < Acc Alt TF *# * * *
Alt_Capt_Hold TF F T T T F
Alt_Target > prev_Alt_Target TF * T F * *

Figure 2.9: A weaker assertion table and the decision table it generates.

Semantics of Assertion Tables

There is only one thing about the semantics of assertion tables that is not clearly annotated in
the table: exactly which opprocs may be selected? We adopt the convention that only the opprocs
listed in an assertion table are possible outputs. One can always make sure all intended opprocs
are there by adding an assertion

(list of all selectable opprocs) = true.

Abstractly, an assertion table is a set of triples
(engagement criterion, logical connective, set of opprocs);

The engagement criterion is a logical formula in terms of input variables and their possible values.
The logical connective is one of =, <=, or <. The meaning [A] of an assertion

A= (EC,=,{op,,...,0p,})
is

EC = (OP =o0p, V...V OP = op,),
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where OP denotes the opproc to be selected. The meaning [A] of an assertion table
A={A,..., A}

is
[A1]A...A[AJA(OP =o0py V...V OP = op,,)

where {op;,-..,0p,,} is the set of selectable opprocs.

Semantics of Decision Tables

Abstractly, a generalized decision table of the sort generated from assertions is a set of clauses,
which are pairs of the form

(engagement criterion, set of opprocs),

where the engagement criterion is, as it always is abstractly, a logical formula in terms of the table’s
input variables and their possible values. In a “normal” decision table, the set of opprocs must
always contain exactly one element, but in tables generated from assertions, the sets of opprocs
may have more than one element or be empty. The difference from the elements of an assertion
table is that the logical connective has been left out as understood. But what connective should be
understood? The candidates are: A, =, < and <. Furthermore, should the interpretations of the
clement clauses of a decision table be conjoined, as for assertion tables, to form the interpretation of
the whole table, or should they be joined together some other way? Two reasonable interpretations
of a decision table present themselves. Let

D = {(ECy, 1), - .,(ECm,Sn)}

be a decision table (set of clauses).

o [D]: = ([EC1] A OP € 51) V...V ([ECr] A OP € spn).
° IID]]Q = (IIECI]I = 0P € 81) A /\(I[ECmII = QP € Sm).

Let us consider the properties of these two interpretations.

1. If ECy,...,EC,, are exhaustive and mutually exclusive, then [D}; and [D]; are equivalent.

2. If EC; and EC; overlap but s; and s; do not, then [D]; is ambiguous (allows OP to be either
a member of s; or a member of s;), but [D]. is inconsistent.

3. [D]1 says that the input variables must always satisfy EC1 V...V ECy,. [D]- leaves the choice
of opproc completely unspecified if EC1 V...V EC, does not hold.
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4. In [D]y, a clause (EC, {}) is vacuous—adding or deleting it does not change the interpretation.
In [D]2, (EC,{}) means that the input variables are forbidden to satisfy EC.

5. [D]y becomes stronger (is refined) if each [EC:] is made stronger (smaller) and each s; is
made stronger (smaller). [D], becomes stronger if each [EC:] is made weaker (larger) and
each s; is made stronger (smaller).

Elsewhere [13] we have given [D]; as our interpretation of decision tables.

On overlap, we are inclined to believe that [D]; is the best interpretation: if engagement criteria
overlap, that probably means we have failed to decide exactly which opproc to choose in some cases.
Incompleteness, on the other hand, probably means that we have forgotten about some cases and
have therefore failed to specify them. That corresponds to [D].. We therefore adopt the following
modification of [D]; as our official interpretation of decision tables.

[[D]]:(ECl/\OPEsl)v...v(ECm/\OPesm)v(ﬁEcl/\,,./\ﬁEcm)_

That is, on inputs satisfying some EC;, i = 1,..., m, OP must be selected compatibly with one of
the clauses of the table. Otherwise the opproc selection is unspecified.

This interpretation preserves both overlap as ambiguity and incompleteness as failure to specify
some cases. In [D], a clause (EC, {}) also becomes a contradiction if EC is not contained in the
union of the other engagement criteria. It is also the case that [D] is equivalent to [D]1 as long as
D the engagement criteria of different opprocs in D are mutually exclusive.

Generating Decision Tables from Assertions

The interpretation of a decision table is a formula and so is the interpretation of a set of assertions.
If a decision table is generated from a set of assertions, then those formulas should be equivalent.
We achieve this by the following translation algorithm, each step of which preserves equivalence of
interpretations. Tablewise uses a more efficient decision diagram algorithm to produce the same
result.

1. Replace each assertion of the form (EC, &, s) by two assertions (EC, =,s) and (EC, <, s).

2. Replace each assertion of the form (EC,<,s) by (nEC,=,s°), where s¢ is the set of all
opprocs which do not belong to s but are mentioned in the table.

3. Replace each pair of assertions (EC, =, s), (EC’, =, s') by the three assertions

(ECA=EC',=,s),
(ECAEC ,=,sns),
(EC' A =EC, =,s'),

discarding any of these for which the first component is equivalent to false. Repeat until for
every such pair of assertions, EC A EC’ is false.
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4. For each set s of opprocs, if
(EC1,=,8),-..,(ECn,=,3)
are all the assertions with third component s, replace them by

(EC1V ...V ECy,,=,5).
5. Form a decision table D by eliminating the middle component of each assertion.

The final set of assertions .A; has the property that for any two distinct assertions (EC, =, s) and
(EC',=,s') in it, s # s’ and EC A EC’ is equivalent to false. We have

[4s]1= [P} = [P],

the equality by definition and the equivalence by our remark above that [D] and [D]; are equivalent
when the engagement criteria of different opprocs D are mutually exclusive, as is the case here.

Preconditions and Forbidden Scenarios

We require that assertions related to preconditions (Always, Never, Precond, Illegal) take one of
the following forms.
(EC, <, positive restriction)

and
(EC', =, negative restriction)

That is, such an assertion must state either that a condition EC must hold or that a condition EC’
must not hold.

In generating a decision table from assertions, we replace an assertion about a positive restriction,
such as, (EC, <=, Precond), by a negative form, in this case (~EC,=, not-Precond). It is necessary
to do so because the semantics of positive preconditions is dual to that of negative preconditions
and ordinary opprocs, but in generating tables we need to treat all opprocs and preconditions the
same.

2.3.4 Refinement of Assertion Tables and Decision Tables

We mentioned above that we have modified our definition of decision tables and have set up our
relation between decision tables and assertion tables in order to be compatible with a notion of
refinement. Here, we will outline what refinement is, why it is important, and how refinement
applies to decision tables.

A specification of a simple computer program or subprogram has the form (P, R), where P, the
precondition predicate, is a logical formula in terms of the inputs to the program, and R, the input-
output relation, is a logical formula in terms of both the inputs and the outputs. For example, Z
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schemas [27] are always of this form—the part above the line is P and the part below the line is
R. P defines the competency of the subprogram, that is, the conditions under which it is valid to
invoke it. R specifies, though perhaps only partially, what effect the subprogram will have when
it is invoked. Together, P and R amount to much the same thing as the single formula P = R,
which can be considered as an input/output relation. Sometimes, however, R may not make sense
or may be ill-defined when P fails, so it is best to indicate P separately.

An important operation on specifications is that of refinement. One refines a specification by
making it logically more precise. We say that a specification (P, R') refines (P, R) if

P'AR = R.
That is, within its competence, R’ is consistent with and at least as specific as R.

Refinement is an accepted formal method for developing specifications. One starts with a rather
loose (weak) specification and proceeds to refine (strengthen) it until it is strong enough to translate
easily into code.

What is refinement for decision tables? First, what is the specification associated with a decision
table? There are two definitions: strict, counting only Always and Never as real restrictions and
treating Precond, or rather not-Precond, and lllegal as ordinary opprocs; and liberal, treating
Precond and Illegal as restrictions.

Let D be a decision table
D= { (Opl9 ECl)a ey (Opn’ Ecn)a

(Always, EC gjyays),
(Never, ECNever)7
(Precond, ECprecond)s

(Illegal, ECpjjegay) },

where op,,...,op, are distinct and not among Always, Never, Precond, and Illegal.

e The strict specification consists of
P= ECA]ways A =ECNever
and

R = EC1AOP = op,V...VEC,AOP = op, V not-Precond A —EC precond V lllegal A ECIHegaI-

e The liberal specification consists of
P = ECAIways A ~EC Neyer A ECprecond N "‘ECIIIegaI

and
R=ECiANOP=0p,V...VEC, A OP = op,,.

In either sense, adding assertions refines the specification (either kind) of the generated decision
table.
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Chapter 3

Tables with Behaviors

Elsewhere in this report we deal with decision tables that only choose a course of action, called an
operational procedure, that shall be active under a given set of conditions, called its engagement
criterion. But an operational procedure does cause something to happen; that something is called
a behavior. A behavior consists of outputs, whose values are called functions, as in the phrase
“what is the function of this object,” rather than the phrase “mathematical function.”

Once one begins to treat behaviors in decision tables, it becomes natural to use decision tables to
define the different possible behaviors. One would want, then, to define a framework supporting
systems of decision tables that refer to each other. This chapter is our preliminary essay in this
direction. The ideas worked out here closely resemble Parnas’s A-7 requirements model 10, 28].
The idea of regarding a decision table as an object, described below, suggests ways of going beyond
what we do here and possibly making connections to explicitly state machine-based specification
methods such as Harel’s statecharts [7] or Leveson’s RSML [17].

A classical way to view a decision table is as a means of denoting a subprogram in some programming
language. In that case, a behavior consists of simply a value to be returned as a result (if a function
subprogram) or an assignment of values to out variables or globals (if a procedure subprogram).

A more modern way to look at a decision tables with behaviors is as an object or state machine
whose main internal state variable is the operational procedure. The function of the object may
be to provide methods for computing certain values. How those values are computed depends on
the current value of the operational procedure. From time to time the operational procedure itself
would be determined as indicated by the decision table, either periodically or as triggered by some
sort of event.

For example, suppose we have a system whose operational procedure is determined once per second,
but whose function is to compute some control values fifty times each second.

It might be that under operational procedure O, the control value z will be computed as y?, where
y is the current value of some sensor, while under operational procedure O’ the value z displayed is
computed as (w + z)/2, where w and z are the values of two other sensors. What the operational
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procedure determines is not the value of z, but the formula to be used to compute z fifty times
during the second in which that operational procedure is in force.

These two points of view are not entirely at odds—they can be reconciled by imagining a subprogram
that returns a mathematical function for computing the value of z, as can easily be, indeed, is best
done in an “impure” functional programming language like ML. We remark also that an ob ject-
oriented programming language is not actually required to treat a decision table as representing an
object.

Our point of view in this chapter will be the more old fashioned idea that a decision table is meant
to specify a subprogram in a programming language. One reason for this choice is that we came
to understand the idea of a decision table as an object after most of this work had been done, and
have not had time to rethink it. The other reason is that the subprogram point of view is adequate
to represent the idea of a function embodied by methods if mathematical functions can be returned
as values.

For concreteness, we will imagine the programming language to be Ada.

Considering behaviors and regarding decision tables as subprograms requires that we face a number
of problems.

e How are behaviors to be represented?

e Will it be one subprogram or more? In Ada or C++ we would implement the object oriented
point of view by having one subprogram to select the operational procedure and one for each
behavior output.

o How will the signature of the subprogram(s) be represented?

e The signature of a selection table acts as a set of declarations of its input variables or pa-
rameters. But those “variables” need not be or correspond to variables of a programming
language—they can be more general expressions. The programming language variables in
them need to be declared somewhere.

e Complex systems are normally assemblages of subprograms, organized according to some
module structure. Presumably we would want the same for complex systems specified by
families of decision tables.

We will spend the rest of this chapter addressing these problems.

If we were to carry the idea of systems of decision tables with behaviors to its logical conclusion, we
would build a small design specification or programming language (or both) that included decision
tables. In terms of Ada, a logical thing to do would be to embed decision tables into Ada as a way
of defining subprograms. Such ideas are considered by Metzner [19]. We have not pursued things
so far, however, partly because of the work it would involve, and partly because, from the point
of view of design, we would first like to explore (elsewhere) the relationship of decision tables to
statecharts, RSML, and object oriented methodology. Accordingly, we will keep the programming
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language aspects of things as simple as possible. Nevertheless, thinking in terms of Ada gives a
concreteness that helps point out some potential problems, so we will do so.

Since we originally did this work, we have had second thoughts about whether it is a good idea to
try to connect decision tables closely to an existing programming language. Not to do so, however,
would require making decision tables into their own language—perhaps no improvement—and
would require code generation to be more sophisticated. Of course, this is by no means impossible,
but would require much more thought and work.

This work is based on simple decision tables in which variables have simple types, and has not been
upgraded to support partitioned decision tables and record types.

3.1 Table Definitions and Their Environments
A system of decision tables will be a list of the following kinds of things in any order:

e type declarations;
e variable declarations;

e decision tables (including selection, behavior, and subprogram signature).

We will define each of these in turn in the following sections. They may occur in any order, subject
types and variables being declared before use. In order to permit recursion, we do not require
tables to be defined before use.

3.2 Type declarations

A type declaration is essentially an Ada enumeration type declaration. It is of the form:
id :  (idy,...,idy)

where id, idy, .. .,id, are Ada identifiers, idy, ..., d, distinct; id is the type name, idy, ..., id, the
name of its elements. The type name id may not be integer or boolean (which are considered
predefined) or any type name that has occurred earlier in the list of type declarations.

We have excluded real as a type, assuming that floating-point types will not be used because of
the difference between machine arithmetic and mathematical arithmetic of real numbers.

Type declarations will be grouped in tabular form as in Figure 3.1. Descriptive phrases for the
type and its elements could be added for use in generating documentation. Each type must have
at least one element listed.
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Type Name Elements Type phrase element phrases
Flightphase | climb, cruise | flightphase type climb, cruise
Comparison | LT, EQ, GT comparison less than, equal, greater than

Figure 3.1: A type declaration table.

A type declaration table induces a set Type of types, consisting of all types mentioned in the list,
a set Value of values, consisting of all values listed, and a mapping valset : Type — P (Value),
where for 7 € Type, valset(7) is the set of values listed beside 7 in the type declaration table.

The set Value is not necessarily the value set of any decision table, but any decision table defined
in an environment with value set Value may use only values in Value.

3.3 Variable Declarations

A variable declaration is a pair
ud : type_name

where id is the variable name, an identifier that has not occurred earlier as a variable name or as
the name of an element of any type (including TRUE, FALSE), and type_name is the name of one of
the types previously declared (or predefined). Like type declarations, variable declarations can be
grouped together and represented in tabular form along with descriptive phrases, as in Figure 3.2.

| Variable Name | Type [l Description |
flightphase Flightphase flightphase
ac_alt integer aircraft altitude
acc_alt integer acceleration altitude
alt_capt_hold boolean altitude target being captured or maintained
alt_target integer altitude target
prev_alt_target integer previous altitude target

Figure 3.2: A variable declaration table.

As for types, the variable declaration table defines a set Variable of variables, consisting of all the
variables declared, a function type : Variable — Type, mapping each variable, to the type listed
beside it, and a function valset : Variable — P, (Value) given by valset(v) = valset(type(v)).

Note that Variable is not the same as the set Vble of “input variables” of a decision table. The
“input variables” are actually expressions, defined below.
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3.4 Expressions

Since expressions other than variables may appear in decision tables either as “input variables” or
as values to be assigned to output variables, we need to define expressions before going on to define
decision tables for a given environment (class of type and variable declarations).

We could use any reasonable notion of expression. For concreteness, we give a simple definition
adequate for the examples we have encountered.

e An integer expression is either:

— an integer variable or constant;
— abs(E),(—-FE), E1+ E2, Ey — E, or E, x E,, where E, Ey, E; are integer expressions.

e A Boolean expression is either:

— a Boolean variable or constant;

- E, < Ey, Ey < Ey, Ey = Ey, Ey > Ey, 01 Ey > E,, where E; and E, are integer
expressions;

~ not B, BandC, or BorC, where B and C are Boolean expressions.

e An expression of any other type is a variable or constant of that type.
For any type, function tables of that type, which we will define below, are also expressions.
Our definition gives each expression e a type type(e). We can also define valset(e) = valset(type(e)).
3.5 States and Assignments

Given a set of variables V and an assignment valset : V — S of a nonempty value set to each
variable, a state for valset is a mapping o0 : V — § such that for each v € V, o(v) € valset(V).

3.6 Decision Tables with Behaviors

The environment of a decision table declaration consists of the type and variable declarations earlier
in the system as well as all decision tables.

A decision table with behaviors consists of the following items.

e A name, not already used in the environment.

e A set OP of operational procedures.
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e A selections signature whose simple variables are all expressions of a type whose elements are
the same as the set of values assigned by the signature. (In fact, the set of values is already
determined by the type of the expression as determined by the environment.)

¢ A selections body, that is, a mapping eng_crit from OP to finite sets of scenarios.
® A set of variables O declared in the environment (the output variables).

* An assignment e for O (a map e defined on O such that for each v € O, e(v) is either an
expression of the type of v or else a decision table in the environment that has v as an output
variable. If e(v) is a decision table, that table e(v) is said to be a dependent table of the table
in whose behaviors it occurs.

The semantics of the table is a binary relation R on states, defined as follows.

A pair of states (0,0') € Ry if for each table 7’ that occurs as an output expression in T there is
a state o7+ such that (o,07/) € Rz such that

e there is some opproc op € OP such that eng_crit(op) is true when variables are given the
values assigned to them by o; and
e for any variable v in the environment,

d(v) = ofv), vg O
o(e(v)), e(v) an expression,
= or(v) e(v)=T".

Notes:

e (0,0') € Rr means that if o is the initial state, o’ is a possible output state. If T is complete
and consistent, then there is only one possible output state, and Ry can be regarded as a

function.

e We are assuming that each dependent table is invoked only once in an invocation of T, even
though it may occur more than once in 7. Furthermore, if a dependent table has output
variables that do not occur in T, then their values do not change in the state.

3.7 Checking

A decision table with behaviors is complete (consistent) if it and all its (recursively) dependent
tables are complete (consistent).

One would expect that in checking completeness and consistency of a dependent decision table,
the (disjunction of the) engagement criteria of the opprocs under which it occurs could be used as
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a precondition. In the examples we have looked at however, the variables relevant to dependent
tables have been all or mostly different from those in the master table, so this kind of dependency
checking seems, so far, to be irrelevant. Rather, the situation suggests an organization into objects
so that the variables of different tables are (mostly) the state variables of different objects.

3.8 Function Tables

The use of dependent tables above was slightly odd. The master table corresponds to a procedure
subprogram: it changes the state. A dependent table, however, acts more like function subprograms:
it only changes the state of the output variable in whose row it occurs. The fact that “output
expressions” are not just expressions, but either expressions or tables, suggests that we should
augment expressions with tables corresponding to function subprograms, and eliminate the special
case in output expressions.

Use of function tables also makes it possible to define expressions that we could not define before.
For instance, the compare function, which appears in Figure 2.1, takes values of type Comparison,
an enumeration type, is defined as follows.

compare(z,y) = LT, z<y
= EQ, z=y
GT, z>vy

But according to our definition, the only expressions of an enumeration type are constants and
variables, so for distinct integer variables z and y, compare(z,y) cannot in general be defined.

A function table consists of the following items.

e A name.
¢ An output type.

e A variable declaration table, declaring the arguments of the table considered as a function
subprogram.

e A decision table with behaviors that has only one output variable, called output. The envi-
ronment of this table is the environment of the function table itself with the local variable
declarations added to the environment variable declarations (superceding the environment if
there are any name clashes).

For each opproc op, the expression assigned to output under op must be of the output type.
A function table named T with arguments z1,...,2, of types 71,...,7» can be invoked as an ex-

pression by writing T(Es, ..., En) where Eyq,. .., E, are expressions of types 71, .. ., Tn, Tespectively.

Figure 3.3 shows what a table defining the function compare would look like.
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Function table “ compare 7
X integer
y integer
output Comparison
L H
Selection
Input Variables ] States ” ” Illegal
X<y TRUE, FALSE | TRUE | FALSE | FALSE | TRUE
X=y TRUE, FALSE || FALSE | TRUE | FALSE || TRUE
Behavior
output ] Comparison ” LT I EQ ] GT ”

Figure 3.3: Function table for the function compare.

Notes.

o Given type and variable declarations, the listing of states (possible values) of input expressions
of a decision table is redundant, though helpful. Listing the possible functions (expressions)
that can be assigned to an output does not seem useful. Instead, we have listed the type,

which is helpful in filling in the table.

e “Ordinary” (not functional) decision tables would look like functional ones except that the
title would be something like “Procedure Table,” there would be no list of local declarations,
there would be headings giving operational procedure names, and there could be more than

one output.

o Note that in the compare table, we have used lllegal to indicate that it is impossible for both
z < y and z = y to be true. A potential enhancement would be to build in basic checking for

order and equality.
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Chapter 4

A Guide to Parnas Tables

Originally Parnas’s A-7 specification method [10] relied on English-language specifications. Since
then it has come to be more oriented toward formal specifications expressed in the form of tables
[28]. In the report [22], Parnas describes a number of different kinds of tables for use in representing
specifications or logical formulas in general.

The purpose of this chapter is to summarize Parnas’s tables in a way easy for users of decision
tables to understand and to examine ideas in Parnas’s work that may be applicable to our work on
decision tables.

The part of Parnas’s report [22] that is most difficult to understand is the definitions of tables
of more than two dimensions, which cannot easily be illustrated by a diagram. Our approach
will be to avoid higher dimensions and abstract definitions, explaining by example. We suggest
that readers who are familiar with decision tables and are interested in thoroughly understanding
Parnas’s report should first read this chapter, then Parnas’s report concentrating on imagining
what generalizations of tables to higher dimensions would be like, then Parnas’s report another
time carefully reading the definitions.

The table definitions are not, of course, the whole of Parnas’s A-7 method. That method is similar
to the specification framework described in Chapter 3, but with any of Parnas’s tables used instead
of only decision tables with behaviors.

4.1 Taxonomy of Parnas Tables
In all, Parnas defines ten kinds of tables:

e normal function tables;
e inverted function tables;

e vector function tables;
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e normal relation tables;

e inverted relation tables;

e vector relation tables;

e mixed vector tables;

o predicate expression tables;

e characteristic predicate tables;

e generalized decision tables.

Besides these, he defines a number of forms (conjunction grids, union grids, substitution grids, and
concatenation grids) designed to reduce clutter in favor of structure in the rows of tables. In this
chapter we will discuss only the tables listed, not the ancillary forms.

Since Parnas’s tables include several kinds of function tables, we will use the term “functional
decision table” to denote what were called “function tables” in Chapter 3.

4.2 Background: Data States and Black-Box Program Specifi-
cations

The purpose of Parnas tables (and decision tables, for that matter) is to specify programs. Let us
start, then, by reviewing the basic ideas of program specification.

By a data state of a program we mean a function o : Variable — Value that assigns a value of the
appropriate type to each variable of the program.

A black boz specification of a subprogram is composed of two parts:

* a precondition P(c), which is a state predicate (set of states) indicating on which input states
the subprogram can be expected to behave reasonably;

e an input-output relation R(o,0’) such that:

— for any data state o, if P(c) then there exists o' such that R(o,o”);

— whenever the subprogram is invoked in an initial state o that satisfies P(c), the program
will terminate and its final state o’ will satisfy R(o,o").

Often there is only one intended output to a program on a given input; in that case the relation R
can be replaced by a function F such that F(¢) = o/ whenever R(o, o).

Using an input/output relation instead of a function allows nondeterminism—a subprogram can be
permitted to produce a variety of different outputs. Sometimes one may really want such a program,
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but more often this is a specification device to avoid specifying at an early stage exactly what
a subprogram should do (design nondeterminism—Heimdahl and Leveson [9] argue against this
practise). Usually, though, a deterministic specification (with a function F') is easier to understand
than a nondeterministic one (with a relation R).

Normally, ¢ and ¢’ will occur in R only in a form such as o(z), where z is a variable. The o
is mostly just clutter, so it is usual to let the variable itself stand for its value in a given state.
The problem here is that we are interested in values of variables in two states, before and after
execution of the subprogram. Most often this is done by writing z for the value of the variable z
before execution and z’ for the value after execution (this has the advantage that P does not have
to have any primes in it). Parnas, however, writes ‘z for the value of z before execution and z’ for
the value of z after execution. Parnas also calls R the characteristic predicate of the subprogram.

The classic specification of this kind is the Z schema [27], which consists of exactly the definition
of such a P (the part above the line) and R (the part below the line), together with the necessary
type and variable declarations.

Floating-point computations provide natural examples of nondeterministic specifications because
one normally specifies the result only up to roundoff error. Consider, for example, a subprogram
sqrt(z,y) such that, on input z > 0, on return z has not changed but y is the square root of z with
relative error at most some constant €. Its precondition P and input/output relation R would be

P(z) < z2>0,

R(xay?xlayl) — = z' A Iy' - \/I_L'—l < 6\/5.

4.3 The Tables

In the interest of understandability, we will mainly consider tables that can be represented in two
dimensions. Mostly we will consider the different kinds of Parnas function tables and how they
would correspond to functional decision tables.

4.3.1 Normal Function Tables

Consider Figure 4.1, which is Figure 1 in Parnas [22].

The table defines a function of f(z,y) using different formulas for the result depending on the
conditions on z and y listed along the side (for z) and across the top (for y) of the table. For
instance, if £ < 3 and y > 27 then

f@y)=y+y-(-3)

Since this kind of a table defines a function, it should correspond to functional decision table.
Figure 4.2 shows such a functional decision table.

Remarks:
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L 9=27 T "y>21 | y<2zi |

=3 27 +/27 54 + /27 yv> +3
T<3) |21+ V-(=-3)]y+/—(z-3) ¥+ (z - 3)°
>3 21+vz -3 [2+y+vVz-3 |y +(3-2)

Figure 4.1: A normal function table.

[ Function table | compare ]
X real
y real
output real
L
Selection
Input Variables |  States |
LT,
compare(z,3) EQ GT LT,GT LT LT EQ
compare(y,27) LTé,Ii:,Q’ LT EQ GT LT
Behavior
output | real | 2+ (z—3)? 27+ V3=¢ | y+vV3—=¢ | v +3
(continuation)
compare(z3) | 7% EQ EQ GT GT
compare(y,27) LT(’;;:Q’ EQ GT EQ GT
Behavior
output l real I 27+v27 | s4+v27 127+ ve-3[2+y+vz-3

Figure 4.2: A functional decision table corresponding to Figure 4.1.

The table in Figure 4.1 does not directly specify whether z and y are formal parameters of
the function or global variables. We have treated them as formal parameters.

In this example, where almost every pair of conditions on inputs has a different output
expression, Parnas’s form is more compact and more perspicuous than the functional decision
table.

On the other hand, when there are more than two arguments, we have problems representing
a normal function table on two dimensional paper.
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One approach would be to present the table one two-dimensional slice at a time. An example
with a third variable z, for which the relevant predicates are z = 0, z < 0,and z > 0, is
shown in Figure 4.3.

An alternative approach would be to simply divide the variables into two groups, “stacking”
them when one or both of the groups contains more than one variable. Figure 4.4 gives the
stacked equivalent of the table in Figure 4.3.

(Both slices and stacking are our idea—they do not come from Parnas [22].)
e Corresponding to the requirement of consistency for a decision table, Parnas has a notion of

a normal function being proper, namely that the conditions designating different outputs do
not overlap.

e Note that the output expressions are arranged so that the argument of square root is always
positive. The precondition of square root is that its argument is nonnegative.

[z>0] | y =27 l y > 27 ) y<27 |
z=3 27 + /272 54 + /272 ¥ + 32

z<3| [27T+ /- -3)z |y+V/-(c—3)z | y* + (z—3)*2
z>3 2T+ Jz—3z |2%y+vz -3z |y +(B-1)2

[2<0] | y =27 I y > 27 [ y<21 |
=3 27 — V272 54 — /272 ¥t +3z
z<3| [2T+ /= -3)z |y—/-(z—3)z| y* + (¢ - 3)°
z>3 27+ vz —3 2+y—vz—3z |y —(3—1z)°z
[z=0] [ y=27 l y > 27 [ y<21T |
=3 7 54 >
z<3 27 y+v-(z-3) Y7
>3 27 2+xy++Vz -3 y?

Figure 4.3: A normal function table with three input variables, presented in slices.

4.3.2 Inverted Function Tables

The inverted form of function table is suitable when conditions on the variables are more numerous
than the different formulas for output. The name “inverted” comes from the fact that, compared
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L 9=27 [ y>21 | y<ar |

r=3 274+ /272 54 + /272 v? + 3z
2>012<3) 1274+/—(z-3)z [y+/-(z-3)2 | ¥’ + (z - 3)%2
z>3 21T+vVz -3z [2xy+Vz-32 | 4>+ (3-12)2
r=3 27 — /272 54 — 27z ¥+ 3z
2<0)2<3) |27+ /~(z-3)z [y—/~(z=3)z | 2+ (z - 3)°
z>3 27T+ vz -3 2¢+y—+vzr -3z |y —(3-12)%z
=3 27 54 y°
z2=0|z<3 27 y++v—(z - 3) Yy’
z>3 27 2%y ++/7 -3 v

Figure 4.4: A normal function table with three input variables, two of them “stacked” on the left.

to the normal function table, the output values and the conditions for one of the input variables
have changed places. An example is Figure 4.5, which is Parnas’s Figure 2.

[ t+y | z—y [ x*yj

=3 y<3 y=3 y>3
z<3 y<rz y>z | y==z
z>3 y<-z|y>-z{y=-z

Figure 4.5: An inverted function table.

Here, the conditions on z are written along the side, the conditions on y are in the body of the
table, and the output expressions are along the top. For example, if 2 < 3 and y = z then the
output is z * y.

This arrangement permits a different set of conditions on y to be used for each condition on z. A
different notion of properness applies: the conditions on z (the left hand column) must be complete
and consistent and each set of conditions on y must be complete and consistent.

Recasting Figure 4.5 as a functional decision table gives Figure 4.6. Recasting Figure 4.5 as a
normal function table would yield 2 more awkward three dimensional table.

Notes:
o Although in this case the inverted function table is rather neat, we can see that the circum-

stances that make it so are rather special: even though each condition on z is associated with
a different set of three conditions on y, there are still only three output expressions.
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r Function table I anonymous J

X integer

y integer

output integer
L |
Selection
Input Variables |  States ||
compare(z,3) | LT, EQ, GT || EQ | LT GTEQILT|GT| EQ| LT | GT
compare(y,z) | LT, EQ, GT || LT | LT * TEQ|GT| * | GT|EQ}| *
compare(y,—z) | LT, EQ, GT || * * VLT * * 1GTYH * * | EQ

Behavior l
output [ integer || T4y | -y | THy B

Figure 4.6: Decision table corresponding to Figure 4.5.

e It is perhaps even more obvious here than for normal function tables that properness is
not just a matter of propositional logic, but may depend on other mathematical properties,
usually properties of order.

4.3.3 Vector Function Tables

Vector function tables are to normal function tables as procedure decisional tables (those with
several named outputs) correspond to functional decision tables. That is, they are basically the
same thing except that they have several named outputs instead of a single unnamed outputs.

These tables have the drawback that only tables with a single input variable can be represented
directly in two dimensions. In that case they essentially are decision tables. For example, consider
Figure 4.7, which is Parnas’s Figure 3.

[w<0 [ w=0 | w>0 |

z+y+qlz+2—-qf z—w
y+2 z+y |z4+y+2

z—w z z4+w

Figure 4.7: A vector function table.

As we understand it, a vector function table indicates an operation changing the values of the
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output variables. Thus, in the row of Figure 4.7 corresponding to the output z, we understand z
and y (and ¢) in the expression z + Y + ¢ to mean the values of those variables before invocation
of the table (or of the subprogram specified by the table).

Figure 4.8, the functional decision table corresponding to Figure 4.7 is nearly the same.

If we used the “stacking” representation for vector tables with several input variables, we would
end up with tables quite similar to what we call Parnas-style decision tables, discussed below and
shown in Figure 4.15.

| Decision table [ compare |
w integer
z integer
Y integer
z integer
L ]
Selection
Input Variables l States “
|_compare(w,0) [ LT, EQ, GT] LT | EQ I GT 7]
Behavior
z integer z+y+qgllz+2-g T —w
Y integer y+2 z+y z+y+2
z integer z—gq z z4+w

Figure 4.8: Decision table corresponding to Figure 4.7.

4.3.4 Normal, Inverted, and Vector Relation Tables; Mixed Vector Tables

Normal relation tables are like normal function tables except that the entries of the body of the
table, instead of being expressions of the desired output type, are Boolean expressions (logical
formulas) containing a special symbol r standing for the output (“result”). The idea is that any
value satisfying the formula is an acceptable output if that formula is selected. For example consider
Figure 4.9, which is Parnas’s Figure 4. If z < 3 and V¥ > 27 (and implicitly y > 0), then any
output R satisfying 2% = r? (i.e.,,R = tz) is acceptable. If z = 3 and y < 0 then any value of R is
acceptable, since any value of R satisfies the formula true. If z < 3 and y < 0 then no value of R is
acceptable.

Inverted and vector relation tables are analogous to inverted and vector function tables except that,
as for normal relation tables, acceptable outputs are indicated by formulas that they must satisfy
instead of expressions giving their value.

For vector relation tables, the output variables are named, so the formulas use the name of the
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i< [ Ji>2 ] w9<0 ]
z=3| [P+ y?=R]| 2’ =y* true
<3 y’> = R® z? = r* false
>3 Z2—R’ |z=R>3|2°+y° =R’

Figure 4.9: A normal relation table.

appropriate output instead of R. In my view, this makes vector relation tables somewhat confusing,
because some occurrences of variables in the formulas specifying the outputs indicate values of
variables before invocation and others values after invocation, and the only way to tell which is
which is to see which variable the row belongs to. For instance, in Figure 4.10, which is Parnas’s
Figure 6, it appears that in the z row, z stands for the value after, but in the y row it stands for
the value before invocation of the table.

| w<0 [ w=0 [ w>0 |
r=w =4 T4 =w

v =z +2 y=z+2 |y=|z|[+2
=ty tw | =24y z2=5

Figure 4.10: A vector relation table.

These problems are fixed in characteristic predicate tables, described below.

Mixed vector tables allow some output values to be specified by an expression and others by a
formula, with a notation to indicate which are which.

We could make a decision table analog of relation tables by allowing formulas instead of expressions
to define outputs.

4.3.5 Predicate Expression Tables

In form, predicate expression tables are like normal function tables, except that the entries of the
body are logical formulas instead of terms. This class of tables provides a means to represent logical
formulas two dimensionally without identifying some values as inputs and others as outputs.

A two-dimensional table with formulas A, ..., A, listed in the Jeft-hand header, formulas By,..., Bn
in the headers across the top, and formulas C; ;, 1 <1< m,1 <7< n,in the body denotes the
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formula
\/ A; AN B; A Ci ;.

1<i<m,1<j5<n
Here V means “or” (disjunction) and A means “and” (conjunction).

A particular example is shown in Figure 4.11, which is compressed from Parnas’s Figure 8. Fig-
ure 4.11 is equivalent to the following formula.

(:c§3/\w§0/\y=5)
V (2<3Aw>0Ay+z=uw)
v (:c>3/\w§0/\y>7)
V (2>3Aw>0Ay—z=6)

[w<0] w>0 ]

z<3 y=5|ly+z=w
z>3 y>7|y—z=6

Figure 4.11: A predicate expression table.

4.3.6 Characteristic Predicate Tables

Characteristic predicate tables are similar to predicate expression tables except that each variable
T occurring in it occurs in two versions, ‘z and z’, never plain z, standing for the values of z
before and after some subprogram is invoked. Thus a characteristic predicate table is suitable for
defining the input/output relation of a procedure subprogram, the characteristic predicate of the
subprogram. (In our discussion in section 4.2, we wrote plain z instead of ‘z.)

A characteristic predicate table is in some ways an alternate (and, in our opinion, better) way to
write a vector relation table.

Figure 4.12 is essentially Parnas’s Figure 9. It says, for example that if the initial value of z is 3
and the initial value of w is 0, then the final values of z and w are both equal to the initial value
of y.

Note that in Figure 4.12 the variables occurring in the headers are both “before” variables. We
would expect this to be the normal case, though there is no rule that says header variables must
be of that kind.
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. ' =‘z A =y A ' =‘y A
r=3 w = ‘z y_ ¢ )
= w' ="'y w'="y
c$<3 ylzgx y,:‘y wlzn,w
‘l’>3 y12=4 x’+w’:‘y yl—‘.’E

Figure 4.12: A characteristic predicate table.

4.3.7 Generalized Decision Tables

The main difference between generalized decision tables and decision tables as we would write them
is that the input expressions need not be finite valued and the entries of the body are predicates
on that input expression rather than lists of permitted values. The symbol # indicates where the
input expression for a given row goes in a predicate in that row. Parnas also permits just one
output (as for a functional decision table) and writes the output values for each column at the top.

Figure 4.13 is Parnas’s Figure 10. Figure 4.14 is the equivalent “ordinary” decision table.

EETREETE

T kY # <20 | #<20
zfy | |[#220 ] #=20
z* true | # > 20

Figure 4.13: A generalized decision table.

Remarks:

e In the generalized decision table, the list of input expressions is, strictly speaking, unnecessary,
since one can use them to replace the instances of # in the row, then delete the input
expression listing, as in Figure 4.15. In fact, we think that would be more in the spirit of the
other tables, whose principle characteristic is the use of logical formulas as entries.

e Writing predicates as entries in the body avoids making up functions like compare, whose
meaning may not be immediately apparent to the reader. For this reason alone we think
that this form of decision table is worth considering. The fact that entries to the table are
predicates may pose some (minor) problems for our checking algorithms, but may also provide
some new ideas about structured decision tables and structured decision diagrams.
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Function table ” anonymous j

X integer
y integer
output integer
L ]
Selection
Input Variables | States (
T*y <20 TRUE, FALSE | TRUE || TRUE
compare(z/y,20) | LT, EQ, GT EQ, GT EQ
z? > 20 TRUE, FALSE * TRUE
Behavior
output | integer | z+y [ z-y

Figure 4.14: Functional decision table equivalent to Figure 4.13.

L e+y [ o-y |

zxy<20|z*xy<20
z/y>20 | z/y =20
true z% > 20

Figure 4.15: The “true” Parnas-style decision table.

4.4 Conclusions

e Compared to decision tables, Parnas tables economize on space by eliminating the signature,
but to some degree pay back by having more complex entries (formulas).

Eliminating the signature has the more important benefit of allowing input conditions to be
divided into two groups, as in Figure 4.4. Doing so reduces the need to duplicate conditions,
as typically must be done in decision tables.

Note that although in theory the input conditions to a Parnas table could be divided into
arbitrarily many groups, but in practise, tables are written in two dimensions, so either the
conditions must be put into two groups or else the table printed in slices.

In the table definitions as given by Parnas and described above, each condition is a single

predicate. There is, however, no real reason why such predicates could not be organized in
tabular form like an engagement criterion in a decision table, as in a partitioned decision
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table. The motivation for tabulating the individual predicates is the same as for using tables
in the first place—it organizes the predicates expressed and makes them clearer and easier to
understand.

Though we have not discussed them here, Parnas has a system of grids for abbreviating sets
of formulas by tabulating them in a number of ways. Tabulating formulas into engagement
criteria might be considered an extension of the abbreviation grids.

In general, we think that the idea of permitting general predicates to be table entries is
interesting because it allows great flexibility. On the other hand, requiring entries to match a
given signature, as in a decision table, helps classify and clarify the information in the entries,
forces it to be simple, and makes it easier to perceive logical dependencies between entries.
This is particularly true of partitioned decision tables.

As to form assisting expression, inverted Parnas tables seem to be the most interesting since
they provide a neat way to tabulate a decision involving two variables in which the conditions
on the second variable are dependent on the first variable. Nevertheless, it does not seem
entirely satisfactory because the results that can be obtained cannot also depend on the
condition on the first variable as it can in normal function tables. Is there a compact tabular
form that combines these features of normal and inverse function tables?

Parnas tables all define functions or relations. Not having a notion comparable to operational
procedure, they do not directly represent objects in the way that we suggested for decision
tables in the previous section, though of course objects can always be modeled indirectly by
setting state variables on which other functions depend.

Parnas’s A-7 specification method is properly a way of defining the functions and relations
needed to define the transition and observer functions used in a complex system composed
of state machines, but it does not provide a notation for directly defining the component
state machines (objects), as Statecharts and RSML do. A form of object table might bring
Parnas’s method closer to the others and permit more synergy between the methods.
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Chapter 5

Testing Decision Tables and Code
(enerated from Decision Tables!

No matter how rigorously formal methods may be applied, and no matter how completely its results
are accepted, testing will still be needed at two points in the process of developing embedded
software.

o At the beginning of the development process, the formal specification must be tested in order
to validate it, i.e. to ensure that it says the right thing. Examining the results of these tests
can also help designers and others understand what the formal specification does say. This
testing of the specification amounts to a systematic simulation of a number of cases.

e At the end of the development process, when the software is finally integrated with the
system’s hardware, the entire system must be tested in order to confirm that the combined
system of hardware and software behaves as expected.

Besides these two points, software development standards such as the quasi-regulatory DO-178B
[23] specify the use of testing to verify correctness of software, and suggest the use of particular
test coverage criteria in this testing. Generating test cases that meet one of these coverage criteria
together with the test results specified generated by the decision table may therefore smooth the
way to acceptability of code generated from decision tables.

Systematic testing normally requires that one apply a suite of tests selected so as to satisfy some
test coverage criterion. The test coverage criterion represents some attempt to test rationally so as
to maximize the likelihood of finding (certain types of) errors for a given amount of testing effort.

Section 5.1 describes a number of test coverage criteria mentioned in DO-178B. One of them
is modified condition/decision coverage (MC/DC). MC/DC testing is believed to be as effective

'We thank Steve Miller for numerous explanations that have made this chapter possible. Any errors that it still
contains are the fault of the authors.
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in practise as testing according to the most thorough test coverage criterion, multiple-condition
coverage (M-CC), but normally requires far fewer tests (typically N +1 for N conditions in MC/DC,
compared to 2V tests for M-CC). Drawbacks of MC/DC are that it is more difficult to understand
than other test coverage criteria and that not all code even has a test suite providing MC/DC
coverage.

Accordingly, this chapter does the following things.

e We discuss testing as a means of validating specifications in the form of decision tables.
Testing a decision table by asking what result it would produce on a given input is not a
problem. Rather, the problem is deciding on a reasonable test coverage criterion in order to
get a good overall picture of what the table specifies. We propose an analog of MC /DC that
applies to decision tables (as opposed to code) and an algorithm for generating an appropriate
suite of tests.

o We address the need for testing code generated from tables by producing algorithms that
generate MC/DC testable code from any decision table together with a test suite providing
MC/DC coverage.

Testing is a big subject and we have been able to address only a very small part of it here. Testing
or generating a test suite for an individual decision table or the code generated from it is only a
small part of what is needed to validate the specification of a complex system or to provide a test
suite adequate to test the software implementing that system when it is installed in the hardware
it is to control. We believe, however, that it is a step in the right direction.

5.1 Coverage Properties and Associated Terminology

Here are definitions of some important test coverage properties as given in Chilenski and Miller [5].
The first four are quoted by Chilenski and Miller from the Glossary of DO-178B [23], though only
MC/DC seems to be mentioned in the text of [23].

e Statement Coverage (SC): every statement in the program has been executed [by the test
suite] at least once.

e Decision Coverage (DC): every point of entry and exit in the program has been invoked at
least once and every decision in the program has taken all possible outcomes at least once.

e Condition/Decision Coverage (C/DC): every point of entry and exit in the program has been
invoked at least once; every decision in the program has taken all possible outcomes at least
once; and every condition in a decision in the program has taken all possible outcomes at
least once. [L.e., DC plus: every condition in a decision in the program has taken all possible
outcomes at least once.]
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¢ Modified Condition/Decision Coverage (MC/DC): every point of entry and exit in the pro-
gram has been invoked at least once; every condition in a decision in the program has taken
all possible outcomes at least once; and each condition has been shown to independently
affect the decision’s outcome (by varying it while keeping the other conditions in the decision
fixed).

e Multiple-Condition Coverage (M-CC): every point of entry and exit in the program has been
invoked at least once and all possible combinations of the outcomes of the conditions within
each decision have been taken at least once.

We say that a test coverage property A subsumes a test coverage property B if for every program
P, any test suite for P satisfying A also satisfies B.

With the exception of M-CC and MC/DC, it is clear that each coverage property on the list
subsumes the previous ones. M-CC does not subsume MC/DC, however, because M-CC does not
require to show that all conditions have independent effect, as MC/DC does. In fact any program
has a test suite satisfying M-CC. That is not the case for MC/DC, because, as we shall see later,
In some programs not every condition has independent effect in the decision in which it occurs.

The definitions above use a number of technical terms that need to be explained. For concreteness,
we will couch our explanation in terms of Ada programs.

® Program. This term must be taken to mean Just one particular subprogram containing the
conditions and decisions in question, not any context in which it is called or any further
subprograms that it calls. The reason is that it will often not be possible to exercise, for
example, all possible outcomes of every condition when a subprogram is used in a particular
context.

 Condition, Decision. DO-178B gives the following definitions.
Condition: A Boolean expression containing no Boolean operators.

Decision: A Boolean expression composed of conditions and zero or more Boolean
operators. A decision without a Boolean operator is a condition. If a condition
occurs more than once in a decision, each occurrence is a distinct condition.

We make the following observations.

— Formally, conditions and decisions are instances of Boolean expressions rather than
Boolean expressions.

— The definition does not cover Ada case statements. According to Miller (private com-
munication), a case statement

case COLOR of
red, green => ...
blue => ...

end case;
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should be treated as if it were

if COLOR = red or COLOR = green then .
else if COLOR = blue then ...
end if;

— In a statement
if A and (B or C) then ...

expressions 4 and (B or C),B or C, 4, B, and C are all decisions. Normally, one thinks
only of the first, & and (B or €) (a maximal decision) as the decision, but a little
thought will show that it makes no difference to the coverage properties whether decisions
are all Boolean expressions or only maximal ones.

— A decision need not occur only in a control statement (if then else, case or while).
For example

A :=Bor C;

both A and B or C are decisions.

e An outcome of a decision or condition is simply one of the values (true or false) that it may

take.

Entry, ezit. In an Ada subprogram, the only point of entry is the beginning of the subprogram,
exercised by every test, and the exits are the return statements and any exceptions that can
be raised but are not handled, and, in case of a procedure subprogram, the end of the body
of the subprogram and of each exception handler.

We do not consider exceptions that are not explicitly raised in the subprogram as exits. As we
understand it, critical programs are normally written so as not to raise predefined exceptions,
such as CONSTRAINT_ERROR, and the property of not raising such exceptions is tested using
some form of extremal testing different from what we are discussing here.

Statement. An Ada statement.
Independent effe