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Abstract

This paper presents necessary and sufficient conditions for
a linear, time-invariant (LTT) system to be inside sector [a, b] in
terms of linear matrix inequalities in its state-space realization
matrices, which represents a generalization of similar conditions
for bounded Ho.-norm systems. Further, a weaker definition
of LTI systems strictly inside sector [a,b] is proposed, and
state-space characterization of such systems is presented. Sector
conditions for stability of the negative feedback interconnection
of two LTI systems and for stability of LTI systems with feedback
nonlinearities are investigated using the Lyapunov function
approach. It is shown that the proposed weaker conditions for an
LTI system to be strictly inside a sector are sufficient to establish
closed-loop stability of these systems.

Introduction

Sector conditions for the stability of the feedback
interconnection of general input-output systems were introduced
in [1] and further expanded upon in [2,3). These results were
developed in an abstract mathematical setting of general input-
output maps using operator-theoretic methods. In this paper
we first present & state-space characterization of linear, time-
invariant (LTI) systems inside sector [a, b], in terms of three
matrix relations in its system matrices, which is referred to as
the sector-boundedness lemma, since it represent a generalization
of the bounded realness lemma for bounded H..-norm systems
[4,5]1. Moreover, this state-space characterization of sector-
bounded LTI systems can be equivalently expressed in terms of
linear matrix inequalities, as shown in Theorem 1. Using these
state-space characterizations, analysis of sector bounds on stable
LTI systems can be performed with algebraic Riccati equations
as well as convex programming techniques for the solution of
linear matrix inequalities [6]. Next, a new definition is proposed
for LTI systems strictly inside a sector, which is weaker than the
corresponding definition in previous literature [1,2], and extends
the notion of strict bounded realness [4,5] as well as strict
positive realness {7]. State-space characterization of LTI systems
strictly inside a sector is presented in Theorem 2. The next result
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in Theorem 3 demonstrates that the weaker definition of systems
strictly inside a sector is adequate to establish sector conditions
for closed-loop stability of the negative feedback interconnection
of two LTI systems [1,2], thus extending the previously available
results. Theorem 4 presents a similar extension for sector
conditions to guarantee stability of LTI systems with feedback
nonlinearities. Moreover, these results are established using
straightforward Lyapunov function techniques rather than the
abstruse operator theoretic methods. Sector conditions for closed-
loop stability are seen to be a generalization of the small gain
theorem, and the ensuing discussion shows that these conditions
may be used for synthesis of less conservative robust controllers,
as opposed to the small gain theorem-based controllers.

Before proceeding, we present the notation used in the
developments of this paper. Herm{M} is the Hermitian part
of matrix M, that is, Herm{M} = (M + M*), where the
superscript  * denotes the conjugate transpose of the matrix;
and M7 is the transpose of the matrix, M. A stable linear
time-invariant system, L, is represented in state-space form
as T = Ar + Bu, y = Cz + Du, where z € R",
u € R” and y € R™, with n > m. The square transfer
function matrix of £, is G(s) = C(s] — A)"'B 4+ D, and
the quadruple [A B,C, D] is a state-space representation of
G(s). G~(s) & GT(-s) = BT(-sI— AT)"'CT + DT;
thus, the quadruple [-A7, —CT, BT, DT] is a state-space
representation of G~ (s). A square matrix transfer function, ¢(s)
is said to be parahermitian if ¢~ (s) = ¢(s). The next section
discusses the conditions for sector boundedness of LTT systems.

Sector-Bounded LTI Systems

A memoryless, time-varying nonhncanty, ¥(y, 1), is said
to be inside sector [a, b] if (¥ — by)T (¥ —ay) < 0 for all
y € R™ [1]). Geometrically, these sector conditions imply that
the graph of the nonlinearity lies within a conical region in the
R™ x R™ input-output space for all time, ¢. For m = 1, Figure
1 shows a nonlinearity, ¥(y, t), inside sector [a, b]; the graph of
¥(y, t) must lie in the shaded region within two lines of slopes
a and b. The concept of sector-boundedness extends to linear
time-invariant systems by defining an LTI system, ¥, to be inside
sector [a, b] if Herm {[G(jw) — al]*{G(jw) ~ bI]} < 0, for all
w € R [10). The Nyquist plot of an LTI system, inside a sector
[a,b], b > a, lies within a circle in the frequency plane, whose



center is at [(a + b)/2, 70] and has a radius of (b - a)/2. Note
that a square, bounded, real system, that is, a system satisfying
| G(s) |, < 1, is inside sector [~1,1]; and its Nyquist plot
lies within a unit circle centered at the origin. For example,
G(s) = 15/(s + 3)(s + 5) is inside sector [—0.4, 1.0] and its
Nyquist plot lies within the corresponding circle, shown in Figure
2. Note that || G(s)]| . < 1, so that its Nyquist plot also lies
within the unit circle centered at the origin, as shown in Figure 2.

The bounded realness lemma [4.5) gives a state-space
characterization of Ho.-norm bounded LTI systems; and these
conditions may equivalently be expressed as linear matrix
inequalities [11]. Theorem 1 below presents the extension of
these state-space characterizations to LTI systems inside sector
[a, b].

Theorem 1: Given a stable LTI system £ : z = Az +
Bu, y = Cr + Du, where the quadruple [A, B,C, D] is a
minimal realization of the transfer function matrix, G(s) =
C(sI — A)™' B + D, the following statements are equivalent.

(i) T is inside sector [a,b].
(ii) There exist real matrices P = PT > 0, L and W which
satisfy

PA+ATP= —CTC-1L71,
PB=CT(al —D)-L"W,
DTD— a(D + DT) t+abl = —-WTW,

where o = (a +5)/2.
(iii) There exists a real matrix P = PT > 0 which satisfies the
linear matrix inequality

CTC + PA+ATP PB-CT(al - D) 0
BTP_(al -D)'C DTD-a(D+DT)+abl]| =

The proof of this theorem is presented in the Appendix.
Note that, for a = -1 and b = 1, the conditions in
(ii) are equivalent to the bounded reainess lemma [4,5], and
the linear matrix inequality in (iii) corresponds to an LMI
condition for norm-bounded systems {6,11). These state-space
characterizations of sector-bounded systems allow the use of
reliable numerical algorithms for solution of linear matrix
inequalities and algebraic Riccati inequalities, to determine
sector-bounds for a given LTI system from its state-space
realizations. The existence of a symmetric, positive definite
solution to the linear matrix inequality (LMI) of condition (iii)
may be established using convex programming techniques as in
[6). Alternately, if R = DTD—a(D + DT)+abl < 0, the LMI
can be equivalently expressed as the algebraic Riccati inequality

ATP 4+ PA- [PB ~CT(al - D)] R

PB-CT(al -D)| +CTC <0,
T

using a Schur complements identity. Positive definite solutions of
this algebraic Riccati inequality may be obtained from a solution
of the corresponding algebraic Riccati equation and using the
results on comparative solutions of these equations [11, 12].
For linear, time-invariant systems, the notion of systems
strictly inside a given sector in [1, 2] is more restrictive than

necessary to establish certain stability results. Following the
approach in [4,5] for strictly bounded real systems and for strictly
positive real systems [7], we propose the following definition of
an LTI system to be strictly inside sector [a, b].

Definition: A stable LTI system, G(s), is said to be strictly
inside sector [a, b] if Herm{[G(jw) — al]*[G(jw) — bI]} < 0,
for all |w| < oo.

This definition for systems strictly inside a sector is weaker
than that in previous literature [1, 2], which corresponds to
Herm{[G(jw) — al]*[G(jw) - bI]} < ~el, for all w € R,
with ¢ > 0. Note that, with a = —1 and b = 1, the new
definition of LTI systems strictly inside sector [—1, 1] reduces
to the condition for strict, bounded realness of the system, that
is, | G(s) |, < 1, as in [4,5); whereas, under the previous
definition, LTI systems strictly inside sector [—1, 1] corresponds
to LTI system satisfying || G(s) ||, < 1 — ¢, for € > 0. For
example, a transfer function, ',‘% is strictly inside sector [—1, 1]
with the new definition, but is not so under the previous definition.
Theorems 3 and 4 show that the new (weaker) definition for
systems satisfying sector conditions in a strict sense is adequate
for stability results described therein. The following theorem
characterizes LTI systems strictly inside sector [a, ] in terms of
its state-space realization, and is proved in the Appendix.

Theorem 2: Astable LTIsystem Y : % = Az+Bu, y=Cz+
Du, where the quadruple [A, B, C, D] is a minimal realization
of the transfer function matrix G(s) = C(sI — A)"'B + D, is
strictly inside sector [a, b] if and only if there exist real matrices
P =PT >0, L and W which satisfy

PA+ATP= -CTC-1"L,
PB=CT(al -D)-L™W,
abl — a(D + DT) +DTD= -WTw,

where a = (a+8)/2, and that the quadruple [A4, B, L, W]
is a minimal realization of the transfer function V(s) =
L(sI — A)"'B + W, which does not have transmission zeros
on the imaginary axis (that is, rank [V (jw)] = m, for all
|w] < o).

Stability Results

Negative feedback interconnection of LTI systems, as shown
in Figure 3, are known to be stable if the systems satisfy certain
sector conditions given in [1-3]. This result is repeated here to
demonstrate that the weaker conditions to characterize systems
strictly inside a given sector are adequate for stability of the
closed-loop system, and to present a direct Lyapunov function-
based proof for these results.

Theorem 3: Consider two stable, LTI systems X;, ¢+ = 1,2,
with minimal state-space realizations, £, = Aizi + Biui, 3 =
Ciz; + D;u;, interconnected in the standard negative feedback
configuration, shown in Figure 3. If T, is inside sector [a, b], with

b > 0 > a, and . is inside the sector [—%, —2], then the origin

is a Lyapunov stable equilibrium point of the claosed-loop system.
If either Xy or I, satisfies the sector conditions in a strict sense,

then the origin is an asymptotically stable equilibrium point.



A straightforward Lyapunov function based proof to
Theorem 3 is presented in the Appendix. Note that substituting
a= —1and b =1 in Theorem 3 leads to a small gain theorem
for stability of the feedback interconnection of LTI systems
shown in Figure 3. The importance of this result stems from the
fact that it can be used for less conservative robust controllers
as opposed to those based on the small gain theorem. While
characterizing uncertainty by the M. norm of the uncertain
plant, the frequency response of the plant must lie within a
circle in the frequency plane, whose center must be at the origin.
Tighter bounds for the uncertainty can be achieved by allowing
the center of this circle to move along the real axis, as is provided
by the sector boundedness condition. With tighter bounds on the
uncertainty in terms of sector conditions, the result in Theorem 3
characterizes a larger set of compensators which provide robust
stability, and consequently leads to synthesis of less conservative
robust compensators. For example, by Theorem 3, stable closed-
loop system is achieved with feedback around the plant G(s) in
Figure 2, for all compensators, H (s), whose frequency response
is within the circle corresponding to sector [—1.0, 2.5]. This
circle is shown in Figure 4, along with a unit circle centered
at the origin, within which the frequency response must lie
to guarantee stability by the small gain theorem. Thus, sector
conditions for stability characterize a larger set of compensators
that provide closed-loop stability. Specifically, a compensator
H(s) = 15/s* + 4s + 8, whose Nyquist plot is shown in Figure
4, would lead to a stable closed-loop system by Theorem 3;
however, the small gain theorem cannot be used to establish
closed-loop stability. Synthesis of compensators within a given
sector [a, b] can be performed using techniques suggested in [10].

Another stability result in sector theory considers the
stability of linear systems with memoryless nonlinearities in the
feedback loop [13, 14]. Let a minimal state-space realization of
a stable LTI system be £ : £ = Az + Bu, y = Cz + Du,
and let ¥(y,t) be a memoryless nonlinearity, which may be
time-varying. The problem is to obtain sufficient conditions
for the stability of the negative feedback interconnection of
the LTI system and the nonlinearity, as shown in Figure 5.
Time-varying, nonlinear closed-loop equations of this system are
& = Az — By(y,t), y = Cz — Dy(y,t). Theorem 4 below
shows that under mild conditions on the nonlinearity, the new
definition of LTI systems satisfying sector conditions in a strict
sense is adequate to establish asymptotic stability of the closed-
loop system above.

Theorem 4: Consider the negative feedback interconnection of
a stable LTI system £ : £ = Az + Bu, y = Cz + Du,
where the quadruple {A, B, C, D] is a minimal realization, and
a memoryless, time-varying, nonlinearity, ¥(y,t) (as shown in
Figure 5). If the nonlinearity, ¥(y,t), is locally Lipschitz in
y, uniformly Lipschitz in ¢, and belongs to sector [a,b], with
b > 0 > a, then the origin is a Lyapunov stable equilibrium point
of the closed-loop system if T is inside sector [~3, —~3]. I £
is strictly inside sector [—%, —%], then the origin is a globally
asymptotically stable equilibrium point of the closed-loop system.

The proof of this theorem is given in the Appendix. Note
that the conditions on the nonlinearity ¥(y,t) are not very
restrictive and are needed for well-posed closed-loop system as
well. Moreover, global asymptotic stability of the closed-loop
is ensured when the nonlinearity satisfies the sector condition
for all y € R™. However, if the nonlinearity satisfies the sector

condition in some local neighborhood of the origin, then this
theorem guarantees (local) asymptotic stability about the origin.
Theorem 4 presents a direct approach to this problem rather
than applying loop transformations to convert sector [a, ] into
sector [0,00) nonlinearities [11, 12). Similar to Theorem 3,
weaker constraints for LTI systems satisfying sector conditions
in a strict sense make these results more general than those
presented previously in the literature.

The results presented in this paper consider LTI systems
inside sector [a, b} with b > 0 > a. Corresponding results for a
larger class of sectors can be developed with a similar approach
[15]. For example, the negative feedback interconnection of an
LTI system, ¥:, inside sector [0,b], for b > 0, with another
LTI system, 2, such that (X2 + bJ) is strictly positive real, is
stable, as expected from [1,2].

Conclusions

A state-space characterization of stable linear time-invariant
systems inside sector [a,}] in terms of a sector boundedness
lemma and linear matrix inequalities has been presented.
Moreover, weaker conditions for LTI systems to be strictly
inside a sector are introduced. These weaker conditions are
shown to be adequate for establishing sector conditions for
(1) stability of the negative feedback interconnection of LTI
systems, as well as, (2) the stability of LTI systems with sector-
bounded feedback nonlinearities. Furthermore, a straightforward
proof for these results is presented using the Lyapunov function
approach, in contrast to the operator-theoretic methods used in
previous works. Finally, it is argued, using the interpretation
of sector-boundedness of LTI systems in terms of circles in the
frequency plane, that less conservative robust controllers may
be synthesized with these results, as opposed to those based on
the small gain theorem.
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Appendix
Proof of Theorem 1:
(@) = (ii): Note that ¢(s) £ G (s)G(s) — e[G(s) + G™(s)] +
abl, where a = (a + b)/2, is parahermitian. If the linear system
is inside sector [a, ], then, by definition, ¢(yw) < 0, for all
w € R. Prom the spectral factorization theorem [8, 9], there

exists a stable transfer function, V' (s), with no transmission zeros
in the open right-half plane, such that

#(s) = =V (s)V(s). (1)

If the quadruple [A,, B1,C1, D,] is a minimal realization of
V(s), then [-A],-CT, B], D{] is a minimal realization for
V~(s), and a minimal realization for the product V" (s)V(s)
is given by

A 0 B, T T T
(& ) () wre sp0in]
Let X1 = X{ > 0 be the observability grammian, that is, X

satisfies the Lyapunov equation

ATX, + X1 A +CT ¢y =o0. @)

Applying the state transformation l ;1 g] another minimal
realization for the product V™ (s)V

[ A] 0 Bl
0 -AT ) \-x:B,-CTD, )’ (3)
(BT X, + DTc: BT), DT Dy).

Repeating this process with G(s), which has a minimal
realization [A, B,C, D], a minimal realization of the product
G~ (3)G(s), is given by

[(f)l -Sﬂ)' (—XBI—}- CTD>’

(BTX + D*c BT), DD},

s) is given by

where X = X7 > 0 is the symmetric positive definite
observability grammian of G(s), that is, X satisfies

ATX+XA+CTC=0. @)
Therefore, ¢(s) has a minimal realization
(5 _ar) ( b ).
0 -A —XB+CT(al - D)
(BTX — (al - D)TC BT), ®)
D™D - a(D + DT) + abl)

From (1), (3) and (5), we conclude (as in [14]) that there
exists a nonsingular matrix T' such that

Al = T_IAT; B] = T—IB
BI X, +D{Ci= -[B7X - (al-D)'C|T ()
DD, = - [DTD - a(D + DT) + abl]

Premultiplying (2) by T~ 7 and postmultiplying by T~ results in
(T ATTT )T T X, T + T T X, T (TA T -
= T Tcfe,r7.

Adding (4) and (7) leads to PA+ ATP = -CTC - L7L,
where P=X+T" 77X, T, P=PT > 6,and L =, T,
Setting D = W; and rearranging the terms in (6) leads to the
other two relations in (ii).

(i) < (ii): Substituting G(jw) = C(jwI -~ A)'B + D, in
¢(Hw) = G*'(Jw)G(Hw) — o[G(Jw) + G*(jw)] + abl leads to

$(jw) = B (—jul — A7) T CTC(jul - A)B +
BT (~juwl - AT)”CT(D —al)+
(D -al)TC(jwl - A)'B +
DTD - a(D+ DT) + abl.
Using the matrix relations in (ii) leads to
¢(jw) = —BT(-jul - AT) T LTLGwl - A)'B
~ BT (~jul - A7) - [PA+ATP|(jwl - 4)7'B
~ BT(~jul - a7)" [PB+L7W]
- [BTP + WTL] C(jwl— A)'B+WTwW.
Using the identity
BT (~jol - A7) (PA+ ATP)(jwl - A)7B =
~ BTP(jul - A)" B~ B” (~jul - A7) PB,
and some algebraic manipulations lead to
d(jw)= BT (=jul — A7) LTL(jul - A)"'B
~ BT (—jwl - AT) T Tw
~WTL(GwI - A)'B-WTW
-V(w)V(jw) < 0



for all w € R, where V(jw) = L(jwl — A)' B+ W.
(ii) & (iii): This equivalence follows directly by noting that

CTC+PA+ATP PB-CT(al - D)

BTP—(al —D)"C DTD~a(D+ D7) +abl
LL  L™W

“lwrrp wiw | S0

Proof of Theorem 2:

If 6(jw) < 0, for all |w] < oo, then ¢(jw) =
~V*(jw)V(jw), where V(s) = L(sI— A)"'B + W, as in
the proof of Theorem 1. Further, since ¢(jw) is negative definite
on the imaginary axis, V (jw) is full rank on the imaginary axis,
that is, it does not have transmission zeros on the imaginary
axis. Conversely, the proof of Theorem 1 shows that the sector-
boundedness lemma leads to ¢(jw) = =V *(jw)V(jw).
Since V(s) is full rank on the imaginary axis, ¢(jw) < 0, for
all |w| < oo. Further, it is always possible to select L such that
transmission zeros of V' (s) are in the open left-half plane [8, 9.

Proof of Theorem 3:

Stability of the closed-loop system is demonstrated using the
following Lyapunov functionV (z1, z2) = Vi(z1) — abVa(z2),
where Vi(z:) = zT P,z,, with P = PT > 0 being a positive
definite matrix which satisfies the sector-boundedness lemma,
for + = 1,2. Note that since b > 0 > a, V(z;, z2) is a
positive definite function of z; and z2. Time derivative of
V(z1, z2) is V (21, z2) = Vi(z1) — abVa(z2). By Theorem
1, for i = 1,2, if &, is inside sector [a;, b;], then there exist
matrices i = P7 > 0, L; and W,, which satisfy

P A+ A|TPI = _ClTCl - LlTLl'a
P,B, = Cl(a,1 — D)) - LTW;, ®)
DIDi— oi(D.+ DY) +abd = -WIW,
where a; = {a; + b:)/2. Consider V;(z,) = 2T Pizi+z] Pids
= I:F(A;TP| + PlAl)zl + ulTB;rPiIi + I,TPcBiuh Usmg the
first two relations in (8) leads to
V,(z.) = —zFLT L1, - z,TL,TW,-u. - u:rW,TL.z,
- I.TC,TC.'z. - 1:.-TC'.TD.'u. — u.TD,TC.':t.-
+ a.x:rC,Tu. + a.'u,-TC.':z:.'.
Adding and subtracting ul WJ W,u, for “completing the

square,” using the last relationship in (8) and some algebraic
manipulations, results in

Vi(zi) = —[Lizi + Wiwi)"[Lizi + Wini]
= (y = bu) (3 — aiwi)

With these expressions for Vi (z1) and V(z2), the time derivative
of the Lyapunov function V(z1, z2) becomes

Vizi, 22) = —(Lizi + Wiu) (Liz1 + Wang)

— (31 = bur) (31 — aup)

+ab(Loz2 + W2u2)T(L2-‘B2 + Wauz)
+ab(y2 + uz/a)T(!h + uz /b)

Using u2 = y1 and u; = —y. as implied by the negative
feedback interconnection, ab(y2 + u2/a)T (y2 +u2/b) =
(yl - bu, )T(y1 - aul). Therefore,

V (3, 12)= —(Liz: + Wim) (Lizy + Wiuy)
— (—ab)(Laz2 + quz)‘(Lzu + Wauz)

< 0.

&)

Thus, the origin is a Lyapunov stable equilibrium of the closed-
loop system.

When one of the system satisfies the sector conditions in a
strict sense, asymptotic stability of the closed-loop is proved using
LaSalle’s Invariant Set Theorem [13, 14]. Suppose X; is strictly
inside sector [—%, —1]. We demonstrate, by contradiction, that
z1 = z2 = 0 is the only trajectory for which V(z,, z2)=0If
V (z1, z2) = 0, then (9) implies that ys = Lazs + Wouy = 0.
If uo # 0, then it has to be an exponentially decreasing function
of time, since transmission zeros of V2(s) are in the open left
half plane. Stability of the linear systems and the minimality
of their realizations imply that z; and z, are exponentially
decreasing functions of time, leading to V' (z1, z2) < 0, which
is a contradiction. Thus, the origin is an asymptotically stable
equilibrium point of the closed-loop system. A similar argument
holds if £, satisfies the sector conditions in a strict sense.

Proof of Theorem 4:

Consider a Lyapunov function, V(z) = z” Pz, where
P = PT > 0 is a symmetric positive definite matrix which
satisfies the sector-boundedness lemma in Theorem 1. From the
proof of Theorem 3, we get

V(z)= —[Lz+Wu]"[Lz + Wu] - (y+u/a)" (y + u/b)

(10)
Since the nonlinearity, ¥(y,t), is inside sector [a, b,
(v—by)"(¥—ay) < 0, for all y. The negative
feedback condition implies that v = —. Thus, we have
(u+by) (v + ay) <0, 0r (y+ u/a)T(y + u/b) > 0. Thus,
from (10) we have V (z) < 0, and the origin is Lyapunov stable.
. If ¥ satisfies the sector conditions in a strict sense, and
V (z) = 0, then z = 0 is the only possible trajectory of the
system, by a contradiction argument as in Theorem 3. Thus,
by the Invariance Theorems in [14], the closed-loop system is
asymptotically stable.



Figure 1. Memoryless Nonlinearity Inside Sector [a,b].
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Figure 2. Nyquist Plot of G(s)

Inside Sector {-0.4

Figure 5. Absolute stability framework, with nonlinearity, , in
negative feedback about an LTI system, L

Figure 3. Negative feedback interconnection of two
LTI systems, Z and E,.









