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The fourth International Conference on Squeezed States and Uncertainty Relations was 
held at Shanxi University, Taiyuan, Shanxi, China on June 5 - 8, 1995. This conference 
was jointly organized by Shanxi University, the University of Maryland (U.S.A), and the 
Lebedev Physical Institute (Russia). The first meeting of this series was called the 
Workshop on Squeezed States and Uncertainty Relations, and was held in 199 1 at College 
Park, Maryland. The second and third meetings in this series were hosted in 1992 by the 
Lebedev Institute in Moscow and in 1993 by the University of Maryland Baltimore 
County, respectively. 

The first three meetings in this series were called workshops, and the fourth meeting was 
an international conference sponsored by the International Union of Pure and Applied 
Physics (IUPAP) and by the International Center for Theoretical Physics (ICTP). At this 
meeting, there were a large number of Chinese and Japanese participants. 

The scientific purpose of this series was initially to discuss squeezed states of light, but 
in recent years the scope is becoming broad enough to include studies of uncertainty 
relations and squeeze transformations in all branches of physics including of course 
quantum optics and foundations of quantum mechanics. Quantum optics will continue 
playlng the pivotal role in the future, but the future meetings will include all branches of 
physics where squeeze transformations are basic transformation. This transition took 
place at the fourth meeting of this series held at Shanxi University in 1995 

The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the 
principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. 
Box 132, H- 1052 Budapest, Hungary. 
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SQUEEZED STATES AND PARTICLE PRODUCTION 

IN HIGH ENERGY COLLISIONS 
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Abstract 

Using the 'quantum optical o p ~ '  we propme s modd d multiplicity distributions in 
h i  energy collisions hosed on squeezed cohermt states. H'e show that the k-mode s q d  
d m m t  state is the most enera1 one in describing hadronic mulitiplicity diitribu'.ions in 
particle dlii p r o m ,  describing not oniy pp cdlii but e+e', up curd diamctive 
cdlii as well. The reason for this pheaomendogicsl fit has been gai.?od by v m  ting out 
a rnimscopic thaxy in w b i  the q r d  cohereat mm arise naturally if one considers 
the b n t z  squeezing d hadnns and mwks in the covariant phase space formalism . 

INTRODUCTION 
Although Quantum CE~rmodynamics is widely believed to be the theory of Strong Interactions, 
wry few experimental results support this claim. In particular the behavimr of QCD at small 
momentum transfer i-e low energies is not understood. This lack of understanding reflects itself in 
the fact that particle production in high energy coli;sions cannot be explained within QCD. Given 
the absence of a &tiled dynarnical thcory of strong interactions , one can adopt a statistical 
~utiook and try to forcast m.lcroscopic behaviour of a strongly interacting system given only 
partial information about their internal states. Experimental in fmat ion  about hadronisation in 
high energy collisions mines from the observation of jets of hsdrons and the distributions of the 
fird stak p,micles. By using analogies with quantum optical systems one can get information 
about the types of sources( Chaotic, coherent, etc) that are responsible fur hadronic emission. 
Also, by using adapting another quantum optical efiixt such as the Hanbury-Brown Tniss effect 
onc cam study the size and lifetime d the emitting region. This information can then be uscd to 
put rcstr~ctions on the nlicroscopic thcory pursued from the quark-parton end [I]. 

The experimental quantities m n a b l c  to the quantum statistical approach are: the mdtiplicity 
Distribution d firld state particles (PI0NS)given by 

on p -- - a -- 
did  

wiwre an 11-pion cross-section, the tlunlber of particles produced per unit rapidity d~V/dy  , where 
y -- l n ( p )  is tlie rapidity w l ~ i d ~  plays the role of time in pion cc~unting experiments, the 
monicnts ufh and the two pion correlations which are ac~alogmls to llanbury Brown Twiss effect 
for pions in rapidity spirt*. 



In particular, the quantum op t id  models are based on the assumption that multiparticle 
production takes place in two stages. In the initid stage farmation of arr excited system (fireball) 
which consists of a number of well defined phase space alls or 'solutes' which then hadronize 
independently. In these models an ansatz is made h u t  the statistical nature of these manes 
and the resulting multiplicity distributions are compared with data (21, (31. Table 1. Ijw the 
comparison of various quantum optid models. 

'Mle 1: Cornparism of Quantum Optical Models af Multiplicity Distributions 
Nature Of Source W t y  nmtrix hbabi l i  ty Two pion 
One Source (Coherent State Red Distribution Comlatiau 

Perina-McGill nnnn 

2 The Phenomenological model 
Experimentally there exists a large class of data (up) and low mass diffractive data that have 
mulplicity distributions with sub-Poissonian Statistics. Thus we seek a more general distribution 
than the ones given in table 1. A clue as to the appropriate distribution is that dmrged pions 
occur in pain Mhermore the most general Gaussian source characterid by Gaussian Wigner 
k c t i o n  . These facts point to the use of Squeezed Coherent states. 
We find that the k-mode squeezed state la, r >= lol, rl > lo2, r2 > - . lak, rk > 
characterised by the mu1 tiplicity distribution: 



and the second ordcr correlation function: 

is the most general distribution that fits a wide range of data 14). If r > 0 there are regions where 
gi(0) < 1 and the distribution is narrower than Poissonian. If r < 0; g:(0) is always greater then 
1 showing distributions which ere broader than Poissonian. 

Hadronic distributions in J@ collisions show broader than Poisonnian multiplicity distributions 
with a long multiplicity tail, which gets broader and broader with the increase of energy. The 
k = 3 mode distribution for pl = 13.6, z = -0.20 and tr = 26.1, z = -0.35 respectidy fit 
cmesponding ISR (62.2Gev) and UA5 (540Cev) data, a for eadr of these is thus fixed. 
To fit neutrino indumd collisions in which the distribution is super-Poisnonian (($) < I), k = 
3,s = 0.5 fit data wdl. e+e- collisions are fit by the k=2 s q d  coherent distribution with r 
close to  zero . (nearly Poissonian.) 

3 The Statistics confronts the Dynamics 

We would now like to conjecture on the reason for this success and find an overlap with dyamical 
models. \Ve search for incoming states of the hadronic fireball which will give rise to SQUEEZED 
COHERENT DISTRIBUTION. The candidate dynamical model of Iradrons, which we find is 
appmptiate is the c o d a n t  phase space model for hadrons which is a revival of Feynrnan et. al's 
relativistic harmonic oscillator nrodel[5] Kim and Wigner pointed out that the covariant harmonic 
oscillator model is the natural language fur a covariant description of phase-space (61, (71. In this 
paper, we use the covariant phase space distribution description of relativistic extended partides 
to give a phenomcndogical description of multiplicity distributions in the high energy collisions 
of hadrons 

Wave functions without time-like oscillations can be constructed by using the unitary repre- 
sctitatio~rs of the l'oincare group and imposing a covariant conditionjB]. In this model tu.o quarks 
bound together by a relativistic harmonic oscillator potential mapped onto 0(3,1) invariant har- 
monic oscillator equation. The ground state wave function 11,; in the Lorentz boosted (primed) 
frame is 

& ( ~ )  = le-iqKs I t l rg (4  (4) 

tvhcre K3 boost gcncriltor along the z axis, 

uncl 1) r;- 7'1~71h-'(;7) 
111 'Qrin~~turli Optici\i' la~lg~iage, using liglrt- colic variables we havc: 



Introducing creation and annihilation operators 

we find that the wave function & = $(u', d )  is a two mode squeezed state. 

J&(u', v') = I0,P >= 10, r, 10. -s >, (8) 

The excited state is given by: 

In, B >= (4)=10, r > (a:)mp, -r, > 

The condition for absence of time-like oscillations in the hadronic rest-frame 

(4 - 4)tn,P >= 0- (10) 

The physical wave functions are 

l a  

&(+" = In, B >= (: ) ln-m,v>d lm,-q>d 
m=o 

in the Fock-space representation 

Where 191: 

for n,In ewil and 

for n,nl odd. Cnnm is no11 zero for both n,m even or both n,m odd , thus excitations of quarks 
occur in pairs. and tne Lorentz squeezed vacuum i s  a many particle state . The above suggests 



the identification of Hadmnic sources in terms of squeezed states. 
In the 'fireball picture ' the Wigner function of the sllrce is , (101 

The number distribution for 1 particles in the n& excited state. 

where: 

The cosine terms imply 6 vanishes when Im - L2l or Jn - m - I I I is odd. so that the excited each 
of oscillator modes is excited in pairs. 
If each pair is associated with a two quark bound state(pion), the excited state con- 
tains pair correlated pions!!! 

4 Results and Conclusion 

The picture emerging is as follows the distribution of the fireball results from the excitation of 
oxillator modes of the colliding hadrons. This excitation takes place in pairs. Modes deexcite 
statistically emitting 2 pairs of quarks which we identify as two pions The phase space distribution 
of the fireball: 

Probability of emission of m particles from two indcpcndent populations 1 and 2 corresponding 
to eacll of the incident hadrons. forming an overlapping distributions is given as: 

Total probability distribution thus becomes a product of the probability distribution of four 
squwed sources: 



For target Projectile collisions @' = 0 thus the probability of emitting n' particleer is: 

X 
(*)A+p 

L4 (2p)!(p/2 - p)!(y - p)!(m/2 - A)!(? - @ A)! 

As f l  increases the distribution gets broader . 
For Central Collisions f l =  #l' and by plotting mP, v s . e f a r  different values of 0 we see that 

the distributions become wider and skew symmetric as the value of /3 becomes larger. This is 
&stent with the variatim seen in experimental data 

The total probability distribution fix the two nucleon system far n pions is: 

where k=6 for nuclcon-nucleon collisions , k=4 for ~ . r r  dlisions and k=3 fm up collisions (with q 
positive). 

We include find state interactions in a simple fashion by assuming that the effect of interaction 
is to add coherence into the final state. This is consistent with the fact that in particle mllisions 
experimental data shows some amount of coherence, especially in the low energy region , cunong 
the emitted particles. With the resulting density matrix we obtain the mutiplicity distribution for 
a variety of collisions and compare to data The distribution we get is: 

Where the average number of particles emitted by each mode is given by:& = a2 + Sanh2(q) 
Above distribution fits the CERN ISR 62.2 CeV and UA5 540 GeV data. The k=3 distribution is 
compared with up data. The data is well reproduced by the distribution. For e+e- collisions we 
take k=2 because the intermedeate state is the virtual ijq state formed by the colliding electron 
and positron. 

In terms of hadronic final states the LEP energy (& = 100 GeV) is equivalent to the SPS 
energy (6 := 546 CcV ) as far as total mutiplicitics are concerned, in so far as V'~-(LEP) 
x E*(SPS) e26 . 
Ihr thc sarnc value of ri ri~ucli narrower distribution for e+e- distributions than the pp d~stributions. 
'l'his is consistent with recent LEP data Ill]. 

\\;! 111akc some yrcdictior~s for higher er~crgics such as tlimc obscrvcd at the LHC and 
SSC. S ~ I ~ L Y ~  ~vidcning of the distributions is related to the squeezing pararncter tile lorentz boost. 
vf t l ~ c  I~ilclronic firebiill, at C.1I.S. energies of 20 TeV and above we have a large P value and 



higher modes will be excited. The multiplicity distribution for ultra-high energies is very broad 
and skew-symmetric. plot nP,vs.g for jjp collisions for E = 50 

We can also calculate the b E i n s t e i n  Correlations of pions in this model by using the two 
mode state. Ongoing work is in progress to establish the connection d this model with QCD 
using the Light cone formalism (121. In this formalism it is also easy to incorporate temperature 
dependence by using Thermal Squeezed Coherent states. Thcse would be of interest in heavy ion 
cdlisions. 
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Abstract 
We introduce acd study the properties of a class of coherent states for the group SU(1,l) 

X SU(1,l) and derive explicit expressions for these using the Clebsch-Gordan algebra for the 
SU(1,l) group. We restrict ourselves to the discrete series representations of SU(1,l). These 
are the generalization of the 'Barut Cirardello' coherent states to the Kronecker Product 
of two non-compact groups. The resolution of the identity and the analytic phase space 
representation of these state. is presented. This phase space representation is based on the 
basis of products of 'pair coherent states' rather than the standard number state canonical 
basis. We discuss the utility of the resulting 'bi-pair coherent states' in the context of four- 
mode interactions in quantum optics. 

1 FORMULATION 

1.1 Coupling of Pair coherent states in the fock state basis 
For two mode systems the traditional SU(1,l) coherent states which have been extensively studied 
in the context of squeezing have been the Caves-Schurnaker states (11, defined by the relation 

In addition to these states many authours [2] [3] have considered the SU(1,l) coherent states of 
two mode systems or the 'pair collcretlt states' which were simultaneous cigcnstates of a6 and 
ata - btb 

These car1 be mappcd onto the SI!(l, 1)  group by means of the two Boson realisation: 



which form an SU(1,l) dgebra with the commutation relations 

The conservation law for QI is related to the Casimir operator C for the SU(1,l) group; which 
can be written as 

1 1 
C = -(1 - (ata - btb)l) = $1 - Qi). 

4 (5)  
Thus the eigenstate of Ql is also an eigenstate of C and the pair coherent state is related to the 
eigenstate of Ki by B a t  and Girardello. 

- ~ 

These generate a representation Dm that correspond to the positive discrete series represents- 
tion of SU(1 , I)  [4). In the number state basis, this corresponds to the basis states )nl + 91, nl >, 
where 

The @r mherent state in the number state basis labelled as I(,, qi > is 

with - 1/2 
~ , , = [ ( I c I ) - ~ ~ I ~ , ( ~ ~ c I ) ]  - 

These states constitute a complete sct in each sector qi and the completeness relation is given by 

for the normalized states . 
\Ve now consider the group obtained by the addition of two SU(1,l) generators defined for four 

modes a,b,c,d. 

The 'bi- pair coherent statcs' or the coherent statcs for the I<ronccker Product are now the eigcn- 
states of K' ,C1, C2 and C . If we restrict oursclves to the positive discrete scries reprcscntations 
of SU(1, I ) t.ttcn the Iiro~lecker Procluct Dql XDqa i.e the Clcbsch Cordan scrics for SC(1,l j given 
by 

w 
D"XDq'.: 1 Uq. 

V q1 t'Ut 1 
(11) 

Thus a kiven reprcsctltat ion in the I(roncckcr 1)rocluc-t is  fixed by g, qi , q 2  



The cigenvalue problem that we wish to solve is 

In terms of the product number state basis Inl + ql , nl > In2 + q2, n2 > we get: 

we get an expression for the Kronecker Product states in terms of the CC coefficients in the photon 
number basis. 

1.2 Clebsh Gordan Problem in the pair coherent state basis 
Consider the four mode bases of the Hilbert space characterised by the product of two pGr 
(SU(1 , I)  coherent states ICl, ql > 16, q2 > . Since these coherent states form an overcomplete set 
any vector in the four mode Iiilbert space can be expanded in terms of these states. In particular 
the coherent state of the product SU(1,l) X SU(1,l) (C,q > can be expanded directly in terms of 
the unnormalized states 

00 ,n 

The completeness relation for the unnormaliscd states I<,, q, >> can be deduced from (2.18) to be 

The utinormalised states have th. -.dvantage that the operators Kif and Kt can be expressed as 
differential operators. The completeness relation and resolution of the identity ensures that the 
product states ICl,ql >> lCa,q2 >> form the bas% states for DqlXDw and any four mode state 
111 > can be expanded as 

111 this representation the quantity << ( 1 ,  q l ,  zeta2, ~ ~ I T , ! J  > is an analytic function It((;, C,', qr , q2) 
and the operators K 1  and K2 act as ifferential operators on this function. In particular the 
colrercnt state vector If,, q > in this four mode hilbert space can be written as: 

This becomes thc equivalent of the Clebsch Gordon equation in the pair coherent state basis 
and tllc qtln~ltity The overlap function << ( 1 ,  q1 I C ~ Q ~ I C ,  q >= f (C;, C;, Cq1,qz) is the equivalent 



of the Clebsch Godon coefiient for the SU(1 , l )  COHERENT STATE BASIS. The action of the 
generators of SU(1 , l )  X SU(1, l )  on f is given by 

On the other hand 
KJ = c f  ; cf = - ~ 4 1 f  

Thus we get the following two differential equations for f: 

and 

Solving these two equations we get IS]: 

N is the normalisation . Thus the state I{, q > can be obtained from the relation: 

This is the Clebsch Cordon form for the product basis of Coherent states of SU(1 , l )  X SU(1 , I ) .  
It is interesting to note that by substituting the values of ICl,ql >> and 1c2,q2 >> given in 

equations (14)  and using the expansion for the JacoSi Polynomial as well as the expansion of the 
Bessel function I, and carrying out the various integrations we have: 

C ( - l ) l  
1 

I!(q2 t l ) ! (n  - l)!(n,2 - l ) ! ( n l  - n - l ) ! ( n  t ql - t )!  in1 + 91 nl > 1% + Q2, n2 @2)  
1 



By cornpariso,l wi;h cxprcssion !13] in the previous section we have: 

E ( - l F  
1 . (23) 

n a  ((12 + na)!(n - m)!(n2 - m)!(nl - n - m)!(n t q1 - m)! 

Which is the Clebsch Cordon coefficient for the canonical number state basis for SU(1 ,l)XSU(l,l) 

2 SubPoissonian Properties of SU(l,l)XSU(l, 1) coher- 
ent states 

To give an idea of the Sub-Poissonian nature of these states let us consider a special caqr! which 
is useful in physical applications. Consider the case ql = qa = 0 ; q=l ; f 0 
In this sgccial case , we start with equal number of photons in the modes a and b and in c and d. 
Then 

Ck 1 IC, 1,0,0 .= Nl C C (k + l)li2 6n1+nz+lnl,ni > )n2,n2 > , 
k [(k + I)! (k)!] l" ni ,nz 

(24) 

where 

The single mode probability distribution Pnl and the mean number of photons < nl > are given 
bv 

and 

A measure of the non-classical nature of the distribution is given by Mandel's Q 2arameter , which 
for tho mode a is given by 

In fig. 1 we plot Q .vs. /CI. For values of ICJ < 2, Q is negative showing the departure from 
the Poisonnian. The joint probability distribution Pnl+na can be calculated from Pnl,r,a by the 
relation : 



The average value c k > is given by: 

In figure 2 we plot Pk.us.k and compare it to the c m q m d i n g  Poisscinian with mean value < k > 
and it is clear that the distribution is sub Poissonian. 

3 Physical Applications 
SU(1,l)XSU(1,1) states are d states in d d n g  with physical systems invdving hw malea 
of the radiation fields. The physical problem a d d  be the of two-beams d light d 
baviq two pdarisation modes passing thmu$~ a medium in -:!hi& there is a ampetitian between 
tb m-linear gain due to an arternal pumping field and the non-linear abeorptionjfl [q,[q. The 
states generated are predscly the states ams ibd  in t b  paper. I& each beam oor$ain both left 
a n d r i g h t c i m x h r 1 y ~ ~ .  L e t a , b , a , b d e m k t h e a e a t i o n a n r t d l a t i i ~  
lor FUCHT circularly pok i sd  ~;I:atau from beam 1 and beam 2 and c, d, ct , d b m t e  the creation 
Md annihilation operators for LEFT circuhdy polar id  photms in beam 1 and beam 2. The 
araster equation describing the d+c beimviour of the kids resulting 6rom the aompetition 
betaren taro photon absorption and four wave mixing can be shown to be: 

Where C denotes the four wave mixing susceptibility. Where K is related to the cross-section for 
twu photon absorption and 0 = ab+cd. Mning an operator C=0+2iG/K W e  have: 

Whose steady state solution: C p  = 0 with p - 16, >< $1 so that: Cl* >= 0 implying that 
Oltp >= -2iC/KI$ > or (a6 + dl$ >= Ai$ > Where A = -2iCIK Thus the steady skrte 
sdutions of the master equations are eigenstates of the operatar 0. Whermcre, if we now 
impose the condition that the initial state is one in which the difference in the in the the number 
of photons in the tum polarisation modes of 4 beam is a constant, with q being the constant 
far the right circularly pdarised photons and q being the constant for the left circularly polarised 
p b n  in beam 1 and bean 2, the states I$ > are just the SU(1,l) X SU(1,l) coherent states. 

Another examples of processes where four modes of the radiation field are important involve 
phase conjugate resonators and the procesa of down conversion in the field of a standing pump 
wave(61 .In the latter case, the fotward wave will produce the modes a and b and the backward 
pump will give the modes c and d. The Hamiltonian for such interactions will have the form 

where and cb are the forward and backward fields. Again the relevant coherent states are the 
eigenstates of the operator 

K' = (aQ+ cd) = K,' + K c .  (35) 
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We consider a model for nondegenerate cavity fields interacting tlrrough an intervening 
Boson field. The quantum correlations introduced in t b i  manner are manifest through their 
higher-order correlation functions where a type of squeezed state is identified. 

1 Introduction 
Squeezed state generat ion of electromagnetic fields provides a means of reducing uncertainty in one 
electric field quadrature at the expense of a larger uncertainty in its conjugate partner [1,2]. It is 
one realization of nonclassical states (ideally, minimum uncertainty states) that has received wide 
attention. Ordinarily. in single or multi-mode squeezing, the fluctuations of linear combinations 
of the field operators are considered [I]; however, Hillery f3] introduced quadratic combinations 
of the field operators as a type of higher-order squeezing [4]. The higher-rder combinations are 
examined to  help elucidate the nature of the phase space occupied by the squeezed states. 

We consider a twwmode model originally developed to study stimulated Raman scattering 
[S, 6). In a cavity environment the model has features of amplifiers [7, 81 in which quantum states 
are rendered macroscopic and therefore, classically measurable, while a t  the same time the fields 
retain some quantum mechanical correlations. The introduction of both Stokes and anti-Stokes 
fields indirectly coupled through a Boson field, whose origin stems either from phonons or weak 
atomic excitation of the medium, is an interesting two-mode quantum system. It  differs from 
several previous two-mode systems, eg. [l, 8,9], because the two modes are coupled through the 
intermediate field that acts like a reservoir. 

The emphasis of this paper is placed on higher-order squeezing found in the fields because 
squeezing of the linear combinat ions of the operators is not present in this model. A more complete 
discussion of the results can be found in [lo]. The type of higher+rder squeezing found is in the 
variance of the variables defined by Hillery, sc~called sum or difference squeezing variables; they 
are used tb infer that quantum correlations exist between the electromagnetic fields and the Boson 
fields. 



2 Model 
We investigate the model Hamiltonim for a stimulated Raman scattering process with undepleted 
laser field eL, which can be treated classically. The fields in the interaction me the Stokes field. 
subscript S, and anti-Stokes field, subscript A, that are coupled through a h n  field with 
multiple modes [5,6]: 

This model has a bath of Bosom, eg., phonons that have excitation energies spread over a range 
of fquencies. In this mod$ the Bogons are responsible for coupling the electromimgnetic fields 
and for introducing damping, as well. 

In order to calculate various moments we determine the characteristic function of the operators 
in normal-ordered form. The normal characteristic function after reducing the intermediate reser- 
voir in the dynamical equations is expressed as an average over an initial distribution of complex 
amplitudes {&s, ( A ) ,  which is the coherent-state repmentation for the initid field operators, 

whew we assume that the detuning parameter A = WL - (us + wA)/2  is equal to  zero and define 

The angular brackets denotes the average over the initial states of the Stokes and the anti-Stokes 
fields. The coefficients in the above expressions are obtained from solution of the Heisenberg 
equationa of motion and the subsequent reduction of the Boeon modes in the normal characteristic 
function using disentangling theorems. Letting I' = (rs - -yA) IE~I2 /2 ,  where the laser field is 
EL = e~ exp ( ioLt )  and the parameters 

introduced from the Markoff approximation with the Boson excitation frequency ws = w~ - u s ,  
the results are 

1 
B s ( t )  = 2 2rt - 

(7s(e 1 ) + 2 7 ~ ~ ~ ( 1 - - e I " ) ) +  ' Y A ~ ~ V  (e2rt - I ) ;  
(7s  - 7AI2 7s  - 7 A  

B A ( t )  .-: Ys'YA [err - 112 + Y A ~ ~ V  2rt 
(7s - ?A)* 

( 1 - e  1; 
Ys - YA 

D s A ( ~ )  = ( - I ) (  - e r )  + ( e r r  - I)) e a t .  (3) 

T h e  phases are defined by EL = /ELI exp (ddL) ,g  = Igl exp ( i $ s )  and K = I K ~  e x p ( i $ ~ ) .  



The usual definition of the two-mode operators is a linear combination of the creation and 
annihilation operators. However, we find that the rnodel discussed here does not yield the usual 
squeezed state correlations between the Stokes and anti-Stokes fields. The coupling through the 
reservoir is aiso expected to degrade the coherence developed between the Stokes and the anti- 
Stokes fields during evolution. It is, therefore, surprining that the fields do display quantum 
cohemnces in the higher-order correlations between the fields. To show this we adopt of the 
definitions of sum squeezing and difference squeezing used by Hillery [3]. 

2.1 Sum Squeezing 
For sum squeezing we define the operators 

The product of their standard deviations, AF, satisfies the Heisenberg inequality 

The operators are in a quantum state, said to be sum squeezed in the & direction when the 
variance of V1 satisfies the inequality 

To debermine whether the dynamics produces a higher-rder squeezed state, we define the shifted 
variance 

1 av:  = - (NA + N~ + 1) ; (7) 

which is negative in the region of the quantum state. 
The moments of these operators are calculated by using the characteristic function and the 

result for the sum squeezing shifted variance of Vl is 

2.2 Difference Squeezing 
For the definition of difference squeezing, define 

The state is diffcrence squeezed in the Ct ;  operator when the variance of the operator satisfies the  
inequalit, ((,+k) > ( K A ) )  



The moments are calculated from the characteristic function, as discussed already ic tne previous 
subsection. We also define a shifted variance of Wl in analogy with Eq. (7) 

which is negative when the state is s q u d  dong the Wl direction. For the difference squeezing 
variable W1 we have the following expression 

3 Results 
There are several parametem occuring in the model and appearing in Section 2. The dynamical 
parameters, i.e. those appearing in the evolution equations have been previously defined. We note 
that the detuning is assumed to  be small in our model and this parameter is set to zero. The 
initial states of the fields represent another set of important parameters. The choice of an initial 
state for the Stokes and anti-Stokes fields is dictated by experimental conditions. We restrict our 
discussion to combinations of two experimentally useful initial states: the coherent state and the 
chaotic state. Using one of the choices, we examine the quantum correlations developed betwwen 
the electromagnetic fields; of course, other situations, such as, a Fock state or a squeezed vacuum 
state could also be identified. The Boson field is considered to  be in a chaotic state with an average 
number of excitations iis; when the Stokes and/or anti-Stokes fields are in a chaotic state, then 
their phases are randomized and their statistical properties are also represented by their average 
photon number iis and iiA, resp. When the Stokes and anti-Stokes fields are in coherent states, 
in addition to the average photon number, the phase of the fields, +s and is also needed. . 

The plot of Figure 1 is a display of the shifted variance of the operator Vl versus the interaction 
time t for the three different values of the phase t$ = 2dL - $s - The Stokes and anti-Stokes 
fields are both initially in a coherent state, n s  = n~ = 2, and the reservoir is in the vacuum state 
iiv = 0. The time has been scaled to the product, yl Er,I2, where EL is the laser field amplitude 
and in the results presented here we set y = 7s = ?A,  i.e. the damping constants are equal. The 
region of the curves with negative ordinate values corresponds to the case when light is &-sum 
squeezed. The phase value of t$ = x / 2  continues to decrease as the interaction time increases which 
means that for large times squeezing occurs near the point q5 = r / 2 .  As the average number of 
excitations is increased in the Boson reservoir, the region for squeezing deteriorates. 

When both the Stokes and the anti-Stokes fields are initially in a chaotic state, the sum 
squeezing variable Vl sti!l shows squeezing and the phase 4 = 7r/2 is very robust to the values of 
the initial state (Figure 2). We note that t h ~  initial value of the shifted variance has been changed 
by the initial chaotic state of the variable$. 

No squeezing was found for the variable M/;, either with coherent or chaotic initial states. 



4 I 1 I 
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Figure 1: Plot of the sum squeezing shifted variance versus the interaction time for initially 
coherent Stokes and anti-Stokes fields. The phase d, = 24' + T,!?~ - r,bA has the values 0, n/2 and 
f .  

4 Summary 
In this paper we have examined a special nlodel for the interaction between two modes in a 
cavity mediated by a Boson reservoir field [5, 61. VCre find sum squeezing, a form of higher-order 
squeezing, over a range of interaction times and initial states. There are two salient features of our 
results; first, the intermediate field has a continuous spectrum of a reservoir, but still the two fields 
develop quantum mechanical correlations; and second, the quantum nature of the correlations is 
not manifest through the usual first order or even simple higher-order correlations among the 
operators, but through special combinations of the field operators. 

There are other models where the fields are mediated by either electronic or acoustic fields, 
eg. a polariton or Brillouin scattering model 15, 6,  11); these processes are analogous to the 
present model where the directly coupled fields are not detected in an experiment. In such cases 
experiments designed to  measure higher-order correlations can reveal the underlying quantum 
correlations induced through the fields. 
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Abstract 

I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the 
"sqt~eozed" Q function. This propagator leads to squeezing in one of the phasespace variables 
and anti-squeezing in the other. By noting that the Q function is related to the Wigner function 
by aspecial case of the above propagator, 1 am led to a new interpretation of the Wigner function. 

1 Introduction 

The Wigner repmelitation of any operator A is defined by 

where the rounded kets are eigenstates of the position operator, Q Ir) = x 1 z), and W(p, q) = Jzm 
I q + a)(q - a 1 e*da is a unitary and also a Hermitian operator, which can be interpreted as a 
Aisplaced parity ope:ator 121. The Wigner representation yields functions of two variables, p and 
y, . oh may be looked upon as phase-space variables. These "Wigner functions" have interesting 
propt 'es and are useful for various calculations (11. The Wigner functions are often referred to 
as pseuuo-probability functions, because they can take negative values, even when A Is a positive 
operator, A 3 0, such as the density operator p. 

In contrast, the IIusimi or Q representation 131 yield nonnegative functions for positive operators 
A: These functions are defined as follows 

are projection operators on t t e  squeezed states Ipq; C), which are defined by 14) 

and 10) is the ground state of a specific harmonic oscillator, a10) = 0. (i.e. a is the annihilation 
opcrntor with a definite frcqucricy wo; Henceforth, wre sct h = m = cr?o = 1, for simplicity.) In (3) 

is the clisplnccrncnt operator which generates the coherent states w h e ~  app1ic.l to lo), and 

Q t i P  
S(O - cxp [i ((at2 -(*a')] , (a=  T )  

is t l ~ c )  scluc~cbzi~ig opc.riitor, whc!rcb the squcczcJ para~ncter y vanishcs in the cohcront-state limit. 



If A is a density matrix p, then its Q function Q(p;p,q;() can naturally be interpreted s a 
probability distribution. To emphasize this fact, the Q functions were denoted by P in 15, 61, 
instead of Q here. 

For simplicity, I shall from now on discuee only squeezings which are pure boosts, without 
rotation, i.e. with cp = 0 in (3), and use the squeezing parameter X := e* instead of y. 

The Q and the Wigner functions are related as follows 11, 61: 

In this paper, I shall first recall in Sec.2 that the Q functions (2) satisfy the partial differential 
equation (7). Thie quation describes how the Q functions Q(p,q; A) get changed in phase space 
(p, q) as the squeezing parameter X is increased. In Sec.3 I define a forward-backward propagator 
for this equation. Finally, in Sec.4 I show that the Gaussian factor in the integral (6) is equal to 
a ~pecial case of the above propagator. This fact will yield thb- new interpretation of the Wlgner 
function. 

2 The Pseudo-Diffusion Equation 

In previous papers [5,6j, it was shown that the Q functions, and other quantities, obey the following 
partial differential equation 

1 aa 
V@,q;X)Q(A;p,q;X)= [,a* - - -  I (w ---- ) ~ i  0 where A:=e*,  (7) 

where y is the squeezing parameter, as deflned in (3). Eq. (7) was called 15, 61 pseudo-dmion 
equation, because (a) it resembles the diffusion equation in 2 dimensions [7), where the parar ~k*er X 
plays the role of time, and (b) the coelRcienta of 6 and f i  in (7) have opposite signs. Thk vc .ore, 
this equation descdbea a diffusive process in the p variable and an inlusive one in the q variable 
for all A. In this way a thin distribution along the q-axis get continuously deformed into a thin 
distributi a along the paxis, as A is increased from 0 to oo. 

3 Solutions by Separation of Variables 

The pseudo-diffusion equation (7) was solved by two methods 161: by Fourier transform and by 
separation of variables. 1 shall now recall the latter method: Writing the solution as a product of 
two functions, Q(p, 9; A) = 8(p ,  A)$(q, A), where 0 depends only on p and A, and $ depends only 
on q and A, we get 

Since the first term in (8) depends only on p and A, while the second term in (8) depends only on 
q and A, we conclude that each of them must be equal LO a function of A only, which we denote 



by !(A). In (61 the soluticns for f(X) # 0 were discussed. But for my purpose8 here, 1 shall only 
consider the case f (A) = 0. For this case equation (8) yields the following two equations: 

where $: = -$& was used in (10). We we that 9 obeys a 1-dimensional diffusion equation in 
p, where f A plays the role of tlme. Similarly, 3 obeys a diffusion equation in q, but with f A-I 

playing the role of time. The solutions of the diffusion equation are well known (71. In particular, 
the propagators of Eqs. (9) and (10) are specific solutions, given by 

1 - tf, A'' - a-') = (9 - 6)2 
dT (A-i - .-l) exP [-X-I - .-I] , for A < @ .  (12) 

Clearly, the products of the above two propagators yield a different solution of the pseuddiffusion 
equation (7) for every 4-tupel (p', 6 ,  p, a): 

C(p-p',q-$;X,p,a) -= Gl(p-#,A-p) ~~(g -q ' ,A-~ -a" )  for p <  X c: n l . \ 

I shall call these C functions two-sided or forward-backwad propagators of the pseudo-ditrusion 
equation ('I), because they involve the two squeezing parameters, p and a, which are cn opposite 
sides of A. In particular, these C solut;ons have the proper limit when X is approached from 
opposite directions: 

Since the heart operator V is a linear, any superposition of the abwe 2-sided propagators will 
also be a solution of the pzeudo-diffusion equation. In particular, if we fix the squmiilg parameters 
p and a and integrate only over p' and q', we get solutions of the form 

for any given f~inction f (p, q;p, a), provided that the integrals (16) exist. 

4 The New Interpretation of the Wigner Function 

An extreme case of the 2-sided propagators (14) is obtained by choosing p = 0 and a = oo. These 
squeezing parameters correspond to the values -00 and +oo of the y = 4 In A variable, respectively. 
For this choice of p and a, X is free to take any positive wllue oo > A > 0. Moreover, the square-root 
factors in the two propagators cancel out. For this case, Eq. (16) becomes 

dPtd4' 
f(p, g; A, A) = /J - expl-;-'@ - $1' - ~ ( q  - q')l] f (pt, d ;  0, oo), for A > CI . (Ir) 

A 



If we campere (17) with the well kmrarn relation (6) beaween Lbe Q functkm al the Wl- 
l u r t c C b a , w e d k i r a m e d i a t e l y t h a h t ~ ~ ~ * p l y ~ b y h ~ a g M e d  
-C(p-#,q-d;A,O,ao). • ~ c w e , w e a m l d i a a ~ u d w a y  tothe- 
W t R e W ~ / i W c ~ b a Q ~ ~ i b & k ) t ( = + o o m I k C q ~ d  
~ - ~ t o ~ = - ~ i a t k e p ~ .  

Note that by applying ?he tdlarving relation 

to(17). weabtainalonnrsldutioo j ~ p , q ; A , A ) d d ~ ~ e q u a t b n  (7), lnternrsda 
di W t b l  -tor qwbd to an arbitrary function g(p, q) = f fe, Q; 0.00) of p and q: 

O I l e c a n d l y c h e d r , ~ s i m ~ ~ t ~ ~ ~ r e e p e c t t o A , ~ L h i s b o n a a l d u ~ ~  
thc p s d o d i f b k  eqmtkm (7). Sn pdcular, if &,q) is equd to the function of en 
a~enrror A, then f@,aA,A) is the correspondiag Q W m .  This lormd mbmship between 
them two fimctbm was Doted by H d m i  PI. 

Asenapplicalm,wenutethat tbedation (6) b o l d s f o r ~ o p e ~ a t o r A , m ~  t h e e m  
spading two operators in Eqs. (1) aad (2) axe aim related by the above specid p q q a t m  

5 Conclusions 

A oneeided ppagabr, ahich we d get k# example from (14) by chming p,a < A, is rwL 
suirabsetbrthepsaddilfudonepuatioa (7), becauseoeeoftheGdanfactorsin(14)willb 
upatinfinity. B y ~ t b a t a s p e c i a l ~ p m p q p t m ~ t b e W n g n e r h r n c t i o n i n t o a Q  
hracrioar, I amclwled that the Wiper functkm cao be regarded as a Q function, whicb b s q d  
backwards (p =q) la tbepnrriabeeand forwards (a = oo) in q wrrisble. 
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Generalized c o k t  states for p e t a l  potentials, constructed through a cmtrdling 
mechanism, can a h  be obtained applying on a refcmm state suitable operatam. An explicit 
example is supplied. 

1 Introduction 

A h  the seminal works of Clauber, Klaudcr and Sudarshan [I], relevant generalizations and 
extensions of &rent states have bcen introduced, both in a grouptheoretical framework PI, 
and in the d i redi~n of squeezing phenomena (31. 

Moreaver, a celebrated a p p r d  for general potentials was given in the case of classically 
integrable systems by Nieto and collaborators 141. 

We have tackled the problem of building generalized coherent states from a point of view which 
can be useful dso in a wider context 151. In fact, if an interesting physical behavim has been 
singled out for a quantum sy~+,em, one can search for a controlling device which allows for its 
realization; we call this approach Controlled Quantum Mechanics (CQM) [6]. 

To this aim we use the methods of stochastic mechanics 171 181; however, we will show that 
these states call also be obtained in the standard operatorial approach. 

2 The coherence constraint 

We proceed now to appty the scheme of CQM to the problem of generalized coherent states. We 
will use in the fdlowing the notations E(.) and < . >, respctively, b r  the stochastic mechanics 
and quantum mechanics mean dues, sending back to [6] for the code of ompondence. 

We scarch for states which are constrained to follow classical-like dynamics: 



cP -4 = C(< 4 >, 4, t ) ,  dP 
w b  F, C me known functions and 4 is the 
f s R m c & d b m - .  

If 8 demhs the potentid associated to our stah, bhe EhrePrtesb equation 

always Mds. Then we can wrik the above dassical-like constmint in the moae trrmsl#ol.ent farm 

CP 
-A4 = C(< tj  >, Aq, t) ,  dt4 

where 6F is a known function. We note that for harmonic potentials this cadition b d w  
didied in the strict sense, that is with 6F = 0. 
H-, BM ~m-harmonic potentials the a h  mdition becoanes a true constraint. Haar 

this amstraint can be imp&? 
In the fmmwork of stochastic mechanics the mean deterministic motion of the quantum 

pmcm~ is ruled by the current velocity u(z,t), while quantum fluctuations are asmckhi to the 
omnotic velocity u(z, t). 

A given U c e  of v(z, t) sin* out a whole class of quantum states, all &wing a commoa 
mean motion. In our ccrse, then, the constraint must be imposed through a suitable dmice of the 
c!ummt velocity. 

The natural choice is given by the following Eorm of v(x, t) 

which is associated to the standard harmonic <wallator coherent and squeezed states [9]. We can 
expect, in fact, that these states are a sub-set of the whole class or states selected by the f m  (4), 
and that all these states exhibit mean classical-like motion in the sense of Eqs (3). 

Note that, in conventional quantum-mechanical formalism, choice (4) arresponds, through 
mu = VS, to ti.? well known quantum mechanical coherent phase 

(< {tj,fi) > /2)- < 4 >< 6 > s=<p>x+ 
2(A9I2 

(x- < QI >)* + &(t). 

in order to find explicitely the form of the searched states, we must take into account the 
constitutive couple of equations 

~ C P  = -V(P), 

(6) 



bhat is the continuity equation and the Hamilton-Jacobi-Madclung (HJM) equation mpeceidy. 
Inserting expression (4) in the first af the Eq.s (6), the selected states result to be all the sdates 

with a (nmmalizable) probability density of the ("wave-like") form 

with the corresponding form for the associated osmotic doc i ty  

jFnwn the expressions (S), (7) for S and p we obtain the wave functions of the g e d i E e d  stabes 

Now, inserting Eqs (4), (8) in the HJM equation (6), taking the g r h t  tenn by berm, and 
m p u t i n g  the resulting identity in x =< > (or in z = 0 if the potential is singular), we can 
simply verify that the classical-like constraint is fulfilled. Then, our aim is reached. 

Finally, the HJM equation, with the inputs of Eq-s (4), (8), gives as output the contmlling 
potential 9. 

It is immediately sccn, however, that @ must be in general a function *(x,tl < tj >, Atj) dso 
of < tj > and Ai; namely, in order to control the coherence of the wave packet, it is n& a 
fesd-bad< mechanism, which allows for readjusting the system a t  any time. 

L& us now look with g m t e r  detail a t  the pmblem of spreading. Two choices are possible, 
that is constant or timedependent dispersion. 

a) Constant dispersion 
If a- q u i r e  Ai = const., the general relation 

faces the current velocity to assume the "classicaln value v = dE(q)/dt r E(v), which is exactly 
expression (4) when dAq/dt = 0. Thcn our states in this case are the unique solution of the 
problem. Note that, the right memhr of the Iast equation is connected to the quantum average 
of the position-moment urn ant icommutator 191. 

b) Squeezing 
If a time dcpendcnce is allowed for Ad, one can ask the following question: are states (9) the 

natural generalization of the harmonic oscillator sclueezed states? The answer is p i t i v e ,  due the 
following considerations. 

First of all, a "stochastic sq~~cezing condition" AqAu = Kh/2m is satisfied, where fl = 

(4m2/h2) lY(c2(<)). 
hlorcovcr, if we consider the whole quantum unccrtaitlty product for our states, it is immedi- 

atcly provcd (101, using Eq-s (4), (8), (lo), that 



We see, then, that the uncerbainty structure in thi case has the same h a in the ksrtaonic 
osciUator squeezing states, with the only difference of a d e d  Heisenberg part. 

Fidly,  the dispersion satisfy the equation [lo) 

which is the natural generalization of that of the harmonic aase 191. 
EQ.8 (I l ) ,  (12) assure controlled squeezing. 

3 Displacement and squeezing operators 
One can now asks two questions: 
-can we construct statcs (9) directly in the standard quantum mechanical formalism? 
-how we can Wee in the whole ciass of states (9) the physically interesting &&a? 

We can answer both questions in the following way (101. 
Consider a reference stationary state ibo, for example the gn#md state of s physidly relevant 

potential V. 
Consider moreover the standard displacement and squeezing operatam 

C & = ezp{5(a2 - a")}, 

which are used to construct the harmonic oscillator coherent and squeezed states, and h t e  them 
in terms of the position and momentum operators 

with 

Then i t  is simple to verify that the states 



belong to our dass (9) respectively i .I the case of anstant  dispersion and in the case of squeezing. 
This answers not onlv the first question, obviously, but also the second one. In fact, we now 

have the following scheme, which will be clarified by the subsequent example. 
Given a physical system described by a potential V, we can choice as reference state, for 

exsunple, its ground state *o. 
Applying on it operators (14), we obtain generalized coherent packets, whose centers follo\w 

the classid dynamics Puled by the potential V. 
Inserting then the current and osmotic velocity associated to these states in the HJM equation 

(6), we obtain the controlling potential 4~ which allows, through the feed-back mechanism, to 
retain states (9). 

V and 9 must not be confused: the first (V), in fact, is the original potential, for example a 
moldar  one, for which we want to construct generalized coherent states, while the secrond (8) 
simply describes the controlling device, that is i t  supplies the feed-back prescriptions needed to 
retain &mce. 

4 Example 
We devebpe now an explicit example. 

Putting for simplicity h = m = 1 in tire following, let us consider the potential 

and choose as reference state its ground state 

where No is a normalization constant. 
Applying on (19) the operators (14), we obtain the generalized coherent states 

where S is the phase (5) and 

with a, b suitable functions of w. 
Inserting in the HJM equation (6) expression (4), and the osmotic velocity aswc~ked to (20) 

through Eq. (B), we obtain for the center the classical equation 



and f a  the controlling potential the form 

1 
*(x, tl c ( >, At) = z d ( t ) ~ 2  + h ( t ) ~  + - y(t) 

+dl ) ,  2 (z- < 4 >)2 

where 
bd 

ua(t) = 2[a2 - bi-'-~tj] , ~ ( t )  = 6(Arj)4. 
dt2 

We e e  from Eq. (22) that the center follows just the classical motion d a t e d  to the potentid 
V, Eq. (18), as previously claimed. 
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Abstract 

Lorentz boosts are squeeze transformations. While these transformations are similar to 
those in s q u d  states of light, they are fundamentally different from both physical and 
mathematical points of view. The difference is illustrated in terms of two coupled harmonic 
oscillators, and in terms of the covariant harmonic oscillator formalism. 

The w ~ d  "squeezed staten is relatively new and was developed in quantum optics, and was 
i~iverited to describe a set of two photon coherent states (1). However, tlic geometrical concept of 
squeeze or squeeze transformations has been with us for many years. As far as the present authors 
can sce, the earliest paper on squeeze transformations was published by Dirac in 1949 (21, in which 
he showed that Lorentz boosts are squeeze transformations. In this report, we show that Dirac's 
Lsrentz squeeze is different from the squeeze transformations in the squeezed state of light. The 
question then is how diffexnt they are. In order to answer this question, UT shall use a system of 
two coupled harmonic oscillators. 

Let us look at a phase-space description of one simple harmonic oscillator. Its orbit in phase 
space is an ellipse. This ellipse can be canonically transformed into a circle. The ellipse can also 
be rotated in phase space by canonical transformation. This combined operation is dictated by a 
three-pxamcter group Sp(2) or the two- dimensional sympl~etic group. The group Sp(2) is locally 
isomorphic to SU(1, l ) ,  O(2, l), and SL(2,r), and is applicable to many branchcs of physics. Its 
most recent application was to single- mode squeezed states of light 11, 31. 

Let us next consider a system of two coupled oscillators. For this system, our prejudice is that 
the system can be decouplcd by a coordinate rotation. This is not true, and the diagonalization 
requires a squeeze transformation in addition to t,ne rotation applicable to two coordinate variables 
13, 41. This is also a transformation of the symplectic group Sp(2). 

If we combine the Sp(2) symmetry of mode coupling and the Sp(2) symmetry in phase space, 
the resulting symmetry is that of the (3 + 2)-dimensional Lorentz group (51. Indeed, it has been 
shown that this is the symmetry of two-mode squeezed states 16, 71. It is known that the (3 + 
2)-dimensional Lorentz group is locally isomorphic to Sp(4) which is the group of linear canonical 
transformations in the four-dimensio~al phase space for two coupled oscillators. These cannnical 
transformations can be translated into unitary transformations in quantum mechanics 171. 



In addition, for the two-mode problem, there is another Sp(2) transformation resulting from 
the relative size of the two phase spaces. In claseical mechanics, there are no restrictions on 
the area of phase space within the elliptic orbit in phase qmx of a sin& harmonic milletor. 
In quantum mechanics, however, the minimum p h a w p c e  size is dictated by the uncertainty 
relation. For this reason, we have to adjust the size of phase spm behe making a transition 
to quantum mecRania. This adds another Sp(2) symmetry to the coupled oscillator system 18). 
However, the transformations of this Sp(2) group are not necesearily canonical, and there does not 
appear to be a stmightforwd way to t r d a t e  this symmetry group into the present formulation 
of quantum mechanics. We shall return b this problem later in this report.. 

If we combine this additional Sp(2) group with the above- mentioned 0(3,2), the total 8ylTl- 

metry of the two-oercillatur system becomes that of the group 0(3,3), which is the Lorente group 
with three spatial and t h m  time coordinates. This was a rather unexpected result and its rnath- 
ernatical detaile have been published recently by the present authors 181. This 0(3,3) group has 
fifteen parameters and is isomorphic to SL(4, r). It has six Sp(4)-\ike subgroups and many Sp(2) 
like subgroups. 

Let us consider a system of two coupled harmonic osciilators. The Lagrangian for this system 
is 

1 
t = - {ml* + m& - A's; + B'4 + C'Z~X~}, 

2 (1) 

with 
A1>O, B'>O, 4A1B'-e>O. 

Then the traditional wisdom fnmr textbooks on classical mechanics is to diagonalize the system 
by solving the eigenvalue equation 

There are two solutions for w2, and these solutions indeed give mrrect frequencies f ~ r  the two 
normal modes. Unfurtunately, this computation does not lead to a complete solution to the 
diagonalization problem. The above eigenvalue equation seems similar to that for the rotation, 
but it is not. 

Let us go back to Eq.(l). This quadratic form cannot be diagonalieed by rotation alone. 
Indeed, the potential energy portion of the Lagrangian can be diagonalized by one rotation, but 
this rotation will lead to a non-diagonal form for the kinetic energy. For this reason, we first have 
to repl~ce x1 and 2 2  by yl and y2 with the transformation matrix 

In terms of these new variables, the Lagrangian can be written as 

with 



The Lagrangian of Eq. (5)  can now be diagonalized by a simple coordinate rotation: 

cosa sin a (ti) = (-sin0 m a )  (!:)I 

with 
C 

tan(2a) - - 
A -  8' (7) 

In thls Lagrangian formalism, momenta are not independent variables. They are strictly propor- 
tional to their respective coordinate variable&. When the coordinates are rotated by the matrix 
of Eq.(6), the momentum variables are transformed according to  the same matrix. When the 
coordinates undergo the scale transformation of Eq.(4), the momentum variables are trbnsforrned 
by the same matrix. Thus, the phase-space volume is not preserved for each coordinate. 

Let us approach the same problem using the Hamiltonian 

Here again, we have to rescale the coordinate variables. In this formalism, the central issue is 
the canonical transformation, and the phase-space volume should be preserved for each mode. If 
the coordinate nriables are to be transformed according to Eq.(4), the transformation matrix 
for the momen:;. should be the inverse of the matrix given in Eq.(4). Indeed, if we adopt this 
transformation matrix, the new Harniltonian becomes 

As for the rotation, the rules of car~onical transformations dictate that both the coordinate and 
momentum variables have the same rotation matrix. The above Kamiltonian can be diagonalized 
by the rotation matrix given in Eq.(6). 

\Ve csn now consider the four-dimensional phase space consisting of variables in the follawing 
order. 

(x1,xa,x3, x4) = ( x l r x 2 , ~ l I n ) .  (10) 
For both the non-canonical Lagrangian system and the canonical Harniltonian system, the modc- 
coupling rotation matrix is 

-sins cosa 0 R ( o ) =  0 coso sino 
0 -sirla cosar, 

On the other hand, they have different matrices for the scale transformation. V3r the canonical 
llamiltonian system, the matrix takes the fom. 



Here, t' 2 position and momentum variables undergo anti-parallel squeeze transformations. On 
the other hand, for non-canonical Lagrangian system, the squeeze matrix is written as 

We use the notation S+ and S- for the parallel and anti- parallel squeeze transformation respec- 
t ively. 

If we rotate the above squeeze matrices by 45" using the rotation matrix of Eq.(ll), the anti- 
parallel squeeze matrix become 

coshq sinhq 0 
sinhq coshq 0 

0 wshq 
0 0 - sinhq coshq 

and the parallel squeeze matrix takes the form 

mshq sinllq 0 
sinhq coshq 

0 ) .  
0 coshq sinhq 
0 sinhq mshq 

Now the difference between these two matrices is quite clear. The squeeze matrix of Eq.(l4) is 
applicable to two-mode squeezed states of light [7, 9, 101. 

As for the squeeze matrix of Eq.(15), let us consider the Lorentz transformation of a particle 
along the z direction: 

Then the momentum and energy are transformed according to 

If we regard z and t as the two coordinate variables, the four- component vector of Eq.(lO) takes 
the form 

(XI, X2r X 3 ,  x4) -- (2, t, P, El. (18) 
Thus, the parallel squeede matrix performs a hrentz boost. According to classical mechanics 
of coupled harmonic oscillators, this transformat ion appears l i ke a non-canonical transformation. 
'I'hen, is the Lorentz boost 3 non-canonical transformation? The answer is NO. 

\l;c would like to show that the Lorentz boost is an uncertainty- prcscrving transformat.ion 
using the covariant oscillator formal~srn which has been shown to be effective in e..glaining the 
basic hadronic features observed in high energy laboratories 11 11. According to this model, the 
ground-state wave function for the hadron takes the form 



where the hadron is assumed to be a bound state of two quarks, and t and 1 are space and time 
separations between the quarks. If the system is boosted, the wave function bewines [I lj 

where 
u = (2 + t)/JZ' V = (* - t)/&. 

The o! and v variables are called the light-cone variables [2]. The wave .~nction of Eq.(19) is 
distributed within a circular region in the uv plane, and thus in the zt plane. On the other hand, 
the wave function of Eq.(20) is distributed in an elliptic region. This ellipse is a "squeed" circle 
with the same area as the circle. The question then is how the niomentum-energy wave function 
is squeezed. 

The momentum wave function is obtained frcm the Fourier transformation of the expression 
given in Eq.(20): 

A(B, a) = (k) j & ( z l  t)  ex^ {-i(qzz - yo t )~kd t .  (21) 

If we use the variables: 
a = ( q o - q z ) / f i ,  %,=(q!go+q)/\/i. 

In terms of these variables, the above Fourier transform can be written as 

The resulting momentum-energy wave functior. IS 

Because we are using here the harmonic oscillator, the mathem~tical form of t?te above momentum- 
energy wave function is identical with that of the space-time wave functio:~ given in Eq.(20). The 
Lorentz-squeeze properties of these wave functions are also the same. This certainly is consistent 
with the parallel squeeze matrix given in Eq.(15), and the Lorentz Enosts appears like a non- 
canonical transformation. 

Ho~~cver, we still have to examine how conjugate pairs are chosen from the space-time and 
momentum-cr.zrgy wave functions. Let us go back to Eq.(21) a ~ d  Eq.(2S). I t  is quite clear that. 
tile light-cone variable 21 and v are conjugate to qu and q, respectively. It is also clear that the 
distribution a l ~ n g  the q, axis shrinks as the u-axis distribution expands. The cxact. calculation 
leads to 

< u2 >/: qt >= 1/4, c v2 >< qt >= 114. (23) 
Planck's constant is indeed a Lorcntz-invariant quantity, and the Lorentz boost is a canonical 
transformat ion. 

Because of the Rlinkowskian metric we used in the Fourier transformation of Eq.(21), the non- 
canoriical squeeze transfornlation of Eq.(15) becomes a canonical transforlnation for thc Lorcntz 
tjoost. Ot,hcrwise, it remains non-canonical. Then, does this nori-ranonical transformation play 



a r d e  in &sics? The answer is YES. Tbe best k1.m enamples are thermally excited adlator 
states (12]endcloupledd~oys8emhoaedthedll&otia~obaervled (13,141. These 
systems sene as simple d d s  hr studyiag tbe r d e  of ea-v in quantum mechrrnics 115,161. 

~ ~ m k t h e c c r s l l e s h t h e f i - ~ h w \ r m e C b c e a c h n a o i l e b e e o m e s ~  
thmPlandr's0011stant. I n t k ~ ~ o f t ~ o w p l e d h r r w r # r i c ~ l l ~ ,  t h e w  
tipax vdume of & ~~ fluctuates. If one bmmes lager, the other shrinks. In quantum 
mechanics, we do not have a theory of sbrinkiag ~~ dumee. Without this, we cannot 
have a complete understanding d coupled oecilbtors in qmntum nredrsnics. 
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Abstract 

Vl'e introduce the antibunching dfect for tbe q-efectraacrgneCk fidd, sad study this ktnd 
norrclassical propertics d k-mtnponent qcoberent states giwm by Kumget  sl.[Pbys.Lett.Al'ly1993)1). 
The results show that all of them show antibunching effect. 

Recently, cohm-ent status d quatum alsbrasll-4 (q-CSs) have attracted a lot of attention due 
to their maybe applications in many fields of physics and mathematical physicd"g. The Clauk- 
typed q-C~sb-'l have t ~ v n  st~ldies in great detail and applied widely to ~ . o u s  axmete physid 
problernsbl. In the refrencesp-''1, the even and odd q-CSs representations arere constructed end 
the squeezing propcrtics of tll:*tn were discussed. The ewn and odd q-CSs are defimect to be the 
eigenstates of the square (a:) ~f the q-annihilation operator. More recently,k-component q-CS8 
were introduced and their propett~es were investigated by h a n g  et al.ll'l. On the basis d this 
work, in this paper, u.tt study the iu~tibunching effect d them, because of this effect has the typical 
nondassicd property. Squl~ezing propcrt.ics of them were irlvestigated by usI14. 
The k-component (k is ari intcwr and k 1 3) q - CSs were given by I"I 

where t is a complex ntiinlcr, the q-fractorial In;,,! = [nlq[n - I], - - -  [lk with the q-number 
[Xj, = (q-v - g-"/(q - q - l ) .  Their actions on the basis vectors are 

It is easy to prove that the k states of ( I )  ale all the eipnstates of the operator a:(k 2 3) with 
the same eigcn\ral\~e z k .  
It is well kr~owli that, \\.II~*II the scwnd-ordcr correlation fiinclion of a light field11qg(2)(~) < 1, one 
says that then light ficltl cxl~iLit.s ~ U I  antiluncl~ing effect. Itr a similar way, we introduce a second- 



order pcorrelation fimction for the q-light field, 

If the mrmnd-order qar.datiun function d the qlight field gi2)(0) < ],we say that th plight 
geld exhibits the antibunching ell&. Now, we study the antibunching effect of the k states given 
by (1)- 
Using the relationsllll, 

for the k states of (I), it is easy to prow that the relations hold: 

9 < ~ k , m ~ a ~ c r o ~ t , k , m > , = ~ ~ 2 A , - ~ / ~ , ( m = 1 , 2 , ~ ~ - , k - 1 ) ,  (7) 
+a 2 , < ~ ~ k . 0  l a,, a, I z,k,O >,=I I' Ab-2/&, (8) 
+2 2 

q < zlk,  1 / a9 av 1 z ,k ,  1 >,=I 1' Ak-,/Al, (9) 
+a 2 ,, <z.k,mla, aq lt ,k,m>,=lz 14.4 -2/&,(m=2,3,---.k-l). (10) 

By means of (6)-(10) tlle q-mhemlt degrees of tlw second order of the k states given by (1) can 
be obtained,respectively, they an. 

Substituting (2) into (1 1), wt: ~ b t i ~ n  

where s =I z I2.Consider k 2 3: while [nlq , [n - ljq 2 1, tlierefore we have 

m 1 m 1 
Iknl,!(k~n - kn + k - *Iq! ' (kn + k - l],![krn- + k - ljJ' n=O 

(15) 

md hence fql (1) > In(=), u that $2) > 1 wlwn r < 1. However, when x > 1, there sweIy exist 
values of x (e.gJk > jql(z)/ jql(z)) for which the relation holds: 



Thcrfoce, the state I 2 ,  k,O >, may exliibis antiburcliing effect when z > 1. Substituting (2) into 
(12), we have 

Obviously, Re m I 

so that Jq3(z) < k(x ) .  TI1ewCore ~J$'(o) < 2 ,i.e., when s 1, 9$)(0) c 1. Rom (2) and (l3), 
we obtain 

Obviously, 

lim [n + 1],zk = [I], = 1, 
n=O 

lirn gg(0) < liin [ l i t -  ~ l , ~ Z , e o [ n +  fl#" - - Im-lI9 < 
X-4) r-O b l q  1 4  

Therefore, the states 1 z, k, 111 >, (in = 2,3, - . - , k - 1) exhibit antibunching eSect when x -. 0. 
l+k sum up tlie above results and obtain that all of the k states given by (1) show the antibunching 
elled, ir., they are dl nonclassical states-It had been provedl"l that the k states is the mn~plete. 
therefore, they form a no~iclassical cmplete representation. For example, in this picture,the q- 
coherent state t >, may be expres.sed as: 

It is ititcrcsti~lg to ~iotc: ih.,t. w11c11 11 -4 1, the rigc~istata of tlie operator a: become the states 
considelrrl is our p.tpct I'  '. 'l'I~t-~t:h,te, this lettcr is a gelit:ralirat.iua of our papcr1141 in the condition 
q-defor~~lcd. 
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Abstract 

The quantum interference between tbe two parts of the optical Schriidinger-cat state 
makes pwsible to construct a wide class of quantum states via discrete superpositions of 
coherent states. Even a small number ofcoberent states can approximate the given quantum 
states at a high acc::racy when the distance between the coherent states is optimized. e. g. 
nearly perfcct Fock state 1%) can be constructed by discrete superpositivns of rt + 1 coherent 
states lying in the vicinity of the vacuum state. 

1 Introduction 
Recently, much attention has been paid to the problem of generating quantum states of an elec- 
tromagnetic field mode. In niicmtnaser experinie~its various scnemes have h e n  proposed that 
allow us to  create states with co~~trollable number-state distribution [ l ,  2). There are theoretical 
results presenting that certain quantum states can be arbitrarily well approximated by discrete 
superpositions of coherent states (3, 41. The significance of applying a coherent-state expansion 
instead of the number-state one is to open new prospects in "quantum state engineering". Non- 
linear interaction of the fie!d, being initially in a coherent state; with a Kerr-like medium IS] or 
in degenerate parametric oscill~tor [6) leads to  superpositions of finite number of coherent states. 
back-action eviuling and quantum nondemolition measurements can also yield such superposition 
states [i. 8) .  An atomic. intcrfere~rce method has been developed, which can result in arbitrary 
superposition of colierent states on a circle i*i phase space !9]. Based on these promising schemes, 
itnplenlentation of experiments capal>le to produce required superyosi'.ions of coherent states can 
be anticipated. 

In this paper we shall discrrss the possibility to co~lstruct quantum states using coherent states 
superpositions. We find a simple set of sriperpositio~t states which coin.-:#la with the Fock basis 
for any practical purpose. 

2 Schrodinger-cat states 
The superpositior~s of cohereist states 110. I I].  



referred to as Sclrriidi~~ger-cat states, witen the constitue~it coherent states are t~~acroscopically 
distinguishable, have attracted 111ucl1 interest. 

The two most typical suyerpositioa statcs are the even or "maie" (4 = 0) and odd or "femden 
(4 = R) cat states. The case with s~liall difference between the constituent states, by analogy, 
could be called Schdinger-kitten states. 

Although the coherent states are the most classical of all pure states of light, their simple 
superposition described by Eq. ( 1 ) shows rrmarkable nonclassical featurn as a consequence of the 
quantum interference [12, 13, 141 

The Wigner fl~netio~l of a Schriidinger-cat state with real a = x 

leads us to better understanding the origin of the <~uantun~ iilterference. The first two terms 
in the Wigner fuliction of Eq. (2) correspo~ld to the Gaussian bells of the constituent coherent 
states while tile third tern1 describes a.11 interference fringe pattern between the bells. We note 
that although two coherent states with strongly different arguments are a l m t  orthogonal to 
each other, the ~ilaxi~ilal a~liplitrrde of the interference fringe retliai~rs two titnes larger than the 
amplitl~des of the constituent coherent states, i~ideyendently from the distance between them. 

The wavelength of tlie fringe decreases with the inc.reaqc? of the distance between the coherent 
states, the phase of tlre fringe delw~lds on tlrc rc~lativc phase Q it1 Eq. ( 1 )  betwcvn the conlposite 
part of the rat state (Fig. I ). 

The picture becomes more complicated if we sltperpose nlore than 2 colreretlt states. In this 
case nlultiyle fringes can constructively or destructively interfere with each otller and also with 
the original coherent state Iwlls to prodlice different nonclassical states as we will show in the rrext 
Section. 

3 State engineering 
Let us consider a pure state given as a superposition of coherent states along the real axis in phase 
space [12,3, 151 

I ~) = J F ( X )  I X ) ~ X  . (3) 

Let us cotlsider the following discrete superposition of coherent states along the real axis of 
the pilase space 

N 

I Q N )  = C Fk I z,) . 
4=l 

(4 )  

Here &he coherent states I x k )  arc chosen to be equally distributed at distances d along the 
real axis around tlie cohere~rc state 1 20,  tho: 1)elongs to the center of the corresponding one- 
dinlensiotial distrloutiotl functioti F(x \  ( Eq. 3). i.e. 



FIG. 1. The interference parts (fringes) of the M'igner functions of Schriidinger-cat 
states consisting of two coherent states put along the real axis of phase space. The 
phase difference between the coherent states changes the phase of the fringes, leading 
e. g. to the secalled male ~r female cat states (Fig.la, 4 = 0 and Fig. lb, t$ = R 

respectively). Incwasing the distance 1 of the coh ient state from the origin of the 
phase space decreases the wave kngth of the fringes (Fig. la, x = 0.6; Fig. Ic, t = 2; 
Fig. Id, s = 4) .  



The coefficients Fk are derived from the one-dimetisional continuous distribution (Eq. 3) 

where c is a normalization constant. 
1.s ati example we  coasider displaced squeezed nuniber states 1 n,C, 2). Their interesting 

nonclassical properties were widely discussed in the literature [16]. The one-dimensional coherent- 
state represeutatiou of s q u d  displaced nutliber state dong the real axis of phase space has the 
form [I?] 

The parameters u and v are connected to the complex squeezing parameter C in the usual way 

We note that states 1 0, C, 2) are the well-kaown squeezed coherent states. 
111 Fig. 2. we show how a squeezed Fock state builds up as we use more and more coherent 

states in tlie superposition. Here n = 1, the squeezing parameter r = 0.5. The sampling distance 
d for each N was optimized, minimizing the mismatch between the desired and the approximating 
states. In Fig. 2a even at N = 3 coherent states the resulting state began 6 0  resemble the desired 
state. Fig. 2b shows state made of 4 coherent states. The emerging target state can be clearly 
seen. As we added more coherent states (N = 5 and N = 6 for Figs. 2c and 2d respectively) the 
approximation became more and more perfect. In fact, the picture of the Wigner function of the 
superposition of 6 coherent state is indistinguishable from tha' of the squeezed 1-photon state. 

Another possibility for state construction is if we begin the discretization described in this 
section with a otle-dimensional representation of the state on a circle in phase-space 13, 18). 

The discrete suyerpositiori of tr + 1 coheret~t states (a generalization of the female cat state) 
situated sytntlietric-ally on a circle with radius r in phase space 

for small etiougli radius r leads to the n-photon Fock state ( n) [19]. 
There are several -perimental schemes which are appropriate to generate superposition states 

composed of coherent states lying on a circle in phase space. Making an initial coherent field 
interact with a sequence of two-level atoms detuned from the cavity resonance leads to such 
superposit: ~ n s  (81. In the special case of their scheme, whe~i the *phase-shift per photonn ac- 
cumulated by the atomic dipoles crossing the cavity is a rational multiple of n, a symmetrical 
superposition of finite number of coherent states on a circle emerges. Required discrete superpo- 
sitions on a circle, including the elements of the basis set given in Eq.(9), can be prepared in a 
single-atom interference method in  a riesigned apparatus [9]. Superposition on a circle with small 
rdius, that is essential in our case, can be generated in both of the above mentioned experimental 
schemes by starting with a field initially in coherent state with a small amplitude. The progress in 
qua~~tutli optics seeins to enable us i n  the near future to create experitnentally these superposition 
states. 



FIG. 2. Wigner functions of the coherent-state superpositions along the real axis 
approxi~nating the squeezed number state 1 n = l , r  = 0.5). The numbers N of the 
constituent coherent states are equal to 3 (a), 4 (b), 5 (c), 6 (d) and the optimized 
distances dqt of adjacent coherent states are equal to 1.27 (a), 1.13 (b), 1.03 (c) and 
0.96 (d). Superposition of 6 coherent states gives surprisingly good approximation, 
while even that of 3 cohere~lt states has features resembling the desired squeezed 1- 
photon state. 
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1 Introduction 
T k ~ l i a o D l r r w ~ L u b & . d r r r l o p d h ~ ~ 1 - 3 ] i r m P d q r e d c r P  

atam nitB tee qusaQi#d dlec- 
di$dinaaviay. ItBas-OT I x m h t h a t t b e W u i t h m  
popatl. d as rbpiwdm pbba diddb[45] a d  d quadrature t q u M 6 - 8 ]  
r m b e ~ i n a ~ p l d a ~ .  T l r L e J ~ p o a r i t L e ~ 8 9 e r i  
( k i n k r h d a b W J Q r i t b a - m o d e m - & f d d i D i d e t b e  
cavity. h mad, the J a p e  Cnmdnp mode491 is employed to describe the poaas ard the 
comr- H d h  i written as 

wbae  3, = i ()e >< el-lg >< gl), 3- = le >< 91 and $ = (g >< el. In (be above, lg > and (e > 
dm& the lower and uppex a- of the rtong f i b  ace energies of the atomic levels, d+ and 



Ir H i g M m  rqmdng properties of ootmgent state 



If tbJ acegl tk  fa&^ +i(w$# + &+&)T] ) r j d  b$# +mi& 
~ h p a i o d ? t b ~ h b ~ ~ r r ( ~ b & ~ 1 ~ e ( 3 ) . t k r t b a ~ o m  
bR out d tbe d y ,  Ic., Qdi((*se + dtii)r]~l(t + t) >= 19(t) >, and makmg (b i uhac tk  
~ z f u l f i u f l r s e ~ ~ l d i ~  

we can wtite (4) m 

witb n =  h!,+?n,Nd+2m,---,N, h(7),~apt&pkabap(-k&+&),:),(Lcfddrrbras 
t ~ ~ ~ ~ i a a i . l ~ ~ ~ ~ ~ ~ ~ > ~ ~ ~ w l e ~ ~ l ~ d a p i c ~ ~ e a p . t i a ~ ~ t ~  
& t u d a h t h c b r r r d r p p a ~ m - e r k ( L L i t * l W c a ~ > + f l l g > k t t L t  
dativephasedato~dangesr. Tbedare, W e c m d d e & & i l t h e d s l d L ~ W  
thect~eE~~&~n>b.~~ib*ldrkidrillmhyrk&dbtiedrta~, 
w k b  are initially in the eoBeteat state ale > +& > . In rhia sense, we say that the &ate 
~ N , S , J n > ~ s t e d Y .  Siaethedatiom ( 8 ) i t b e a ~ t n t b b t b e - W  
ofthe fLdd L d thca&m@etate[l4]. 

T o i n ~ k a q u ~ ~ d t h e ~ t c l r k ,  weinttodllcethe twosbwly varying 
quadrature components of the field amplitude 

In an arbitrary state of the field, the Ntb-order moment of fluctuation of (he field in d(i = 1,2) is 



t ~ ~ t l e ~ ~  W ~ @ ' ) < O O Q ~ < O ~ ~ ~ ~  
tesW*hksg*. 

S q d g p o p e r t b d t h ~ t ~ r i d L w i a ~  
kainvmtigatgd, InoualahliorUeletirrphrdthe 
b t h e b n a h d a e f l i d a a r / 2  ~ h ~ r r r h d t h u t t k p l a a a s d d d ~ d e r  

~ , ~ ~ ~ ~ ~ d k ~ ~ d r t e n i ( ~ r n = ~ a r e  
~ m t L r a ~ t h t t h a ~ ~  

ehake d a/@. For exa#e, #) = -0.91 can be 
t o t b e i n i t i a 8 t a $ e d t h e ~ i P w ~  

the occupatbn p M t i m  br tk uppa d bum krcb are 0.91 ud Oe@, respectivelye We rbo 
n o t i a t h J t h e ~ & e q u ~ ~ d y t  thmgiomdtbe~edone .  It meam 
t b d t h a ~ f d d ~ ~ d ~ ~ ~ m . ~ ( m ~ c [ ~ O ] ~ ~ d m h d r o d f m m t b e d a c .  h 
i .  2,Qlobtlucolugatdr*withm= 1 . o d m = 2 ~ ~ 1 0 / ~ L e h o w n .  Itiobnned 
m U - ~ U 1 t b O I a @ ( ~ N . c h n & t h w h s d a / f l b r t k o p t $ P u l ~ ~ .  Fa 
example, Q1 can d 4-54 and 4.62 hr m = 1 and m = 2, laspcctidy, wben a/fl = 2.5 and 



P i .  2: 91 nnm with Nd = 0, m = l ( d d  b e )  sld m = ?(dashed lin). 
(8)N. = lO;(b)N. = 40. 
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N . = a  I t m a o t h a t t h a e q ~ ~ o u b e a c q & d w h e n t h e r t o P l u e m i ( * l l y i n  
r b t h t ~ 6 ~ ( b a k n l ~ ~ ~ t i s e d = 0 . 8 6 d ~ = 0 . 1 4 .  Werboocica 
Udck&al~mtbetnopbdacucLrh~~(bui,(beapLdQaa 
hragivenN.. Inourcak~rcfudthatUeqduprtdaq~diappaawhen 
m > 2  I t m a u ( l u l t b L ~ c u b e ~ ~ h ~ ~ m d t n o - p h o t o m ~ ~  
the coherent hpphg q p m d .  

3 Dynamic process of generation of steady state squeer- 

Iftbenextatomabn tbe~avityr((imsti+~,thered benoatomiwidetheuviry witbin the 
time intanl ti + T 4 t < We mppe that during that intenrid the field reha at the rate 
7 to the thermal mew& nab the mean photon n m k  nb. Tbis pmcsar is dcbcdbed by the 
maeter equation [5] 



On the basis of (13)-(14), we can study the dynamic evolution oi  the fidd while the atoms one by 
one paes through the cavity. 

In the present calculations, we choose h t  the field ie initidy in the vacuum, and make the 
relative phase of a to fl k g  1r/2 rod I e-g tbe conditions (5)-(6) with q = 0 and p = 1. 
Meanwhile, we take y = 5s-', g = lOkEz wbi*  are conaiatent with the panmetere ased in the 
c ~ a t  miaomua[4]. If the i.jk(ion d the atom is rejplar, it., the time diotaneee between the 
adjacent atorna are same. In thia caae, the dud ion  time of the fiekl bo the m v i o r  is equal to 
1/R - r where R is the domic dux. In Fi3-6. b the single photon case. the evolution of D;" 
and QQ? rgainat tbe number of the atoms rbtb have left out of the cavity L &own with V B I ~ U S  

values of the atomic flux R. In these figma, the dashed line reptesents the result with y = 0. 
According to the conditions br the present cakdtiona, the steady atate with 7 = 0 mu6t be the 
cotangent etate. It is obeerved that when B ie amall the fidd baa not the second- and fourth- 
adaaqpasing~cineatkcLcldys(.(cnn*~(kbrLnabct~riegrin.ad 
the ba. As R increase, the gain brought by the atom wi l l  ovetpasa the cavity hr the steady 
s t & d i n ~ r n t h e c o ~ t ~ ~ d t b c ~ ( 6 ) .  Tbnthe&adyr(de 
exbibits the equeeing behahui aa lLnn m tbe f i p .  We rbo notice that w k n  R L dquate 
l y e D f o u d ~ ~ o f t b e ~ ~ ~ c u c ~ d o r b r b e n l r a o f ~ b e c o ~ t ~ n i & t b e  

In F i . 7  and 8, br tLe twephoton case, the evahrion of Ql against the .amber of the atom 
is depicted. It i olmerved that the evolution behaviour L aimh to ah- in P i  5 ud 6, and 
the sqoeeting becomea d e e p  tban in cbc one p h o b  we with tbe elm d u e  of R 

4 Conclusion 
We have ahown that the cdraet state produced by the coherent trapping scheme in a one 

photon micromua un *bit d d y  drk h k x d e z  as d a a q u d  ampStude aqne&gs. 
The last squasipg can rbo appar in the cotangent state produced in a degenerate two-photon 
micromaser. The co*ngent state of tbe fid with tbew queahg dab can be reached from the 
avity vacuum by tbe atomic cob& pmphg. The idoeme of the cavity has om the qu&g 
dmts has been hvc8hgated. The d t e  ahow that rhea the flux of the atom e n t e i i  the cavity 
ie moderately large the aquemhga ate not essentially afllicted by the cavity lm.  
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Q.3: D(,') versus the number of .(01~ IQ OM Fig.6: v e o l u ( b e ~ d ~ h o l u ~ u  
case with N, = 30 and a/@ = 2.9. Tbe dueo of the with N' = SO aad a/@ = 2.3. (8)?08-';(b)308-'; (c)b08-'. 

111 
do& flux for (be bee M (a) %lao1, (b) 308-I and (c)  SOU-^. 

OD 

Fig.4: Same aa Fi.3 but (a) 100s-' and (b) 5008-'. F'i.6: h e  I Fig.5 hi (a) lWol and (b) WOI-I. 





References 
[I] G. h m p ,  H. Wdther md N. Kbim, Pbys. Rev. Lett. 58, %3(198?). 

[2] D. M d d e ,  8. Waltbet rod G. MiPcr, Phys. Rev. Lett. 51,551(1985). 

[3] M. Brunt, J. M. Rdmad, P. Cloy, L. Davidovich, and S. E d ,  
Phye. Rev. Lett. !58,1899(1$87). 

[6] S. Qmu and M. S. Zubaky, PLp. Rev. A48, (1893)1559. 

[8] RSI Li a d  b j n g  Wang, Php. Lett. Al48,320(1990). 

[9] E. T. Jaynee ad P. W. CuPmirg, Pmc. IEEE 51,89(1863). 

[ll] A. S. SLammlg, Pam Le Kkn and E. I. Alalrmderov, Php. Lett. AlU,  351(1987). 

1121 C. C. &my and P. I. Id-, Pbys. Rev. AN, 5665(1988). 

1131 Xiaojjing Yang and Xiping &ng, P h ~ k  Lett. AIM, 409(1989). 

1141 J. J. Sb&r and P. Meydte, Pb. Rev. A41, 3867(1990). 

(151 C. K. Kong and 1. bfanded, Phy8. Rev. h t .  M, 323(1985); 
Phys. Rev. AS, 974(1985). 



NEXT 
DOCUMENT 



HIGHER-ORDER SQUEEZING OF QUANTUM FIELD 
AND THE GENERALIZED UNCERTAINTY RELATIONS 

IN NON-DEGENERATE FOUR- WAVE MIXING 

Xi-zeng Li Bao-xia Su 
Depart me ni of Phvrier, Tianjin Unisetritg, Tianjin 50007t, P. R.  China 

Abrtraet 

I t  is lound that the 6eld of the conlbicd mode of the probe wave and the phase-conjugate 
wave in the process of non-degenerate lour-wave nbing exhibits higher-order squeezing to 
all even orders. And the genedied uncertainty relations ut this process an also presented. 

With the dwelopment of techniques for making higher-order correlation measurement in quan- 
tum optics, the new concept of higher-order squeezing of the single-mode quantum electro- 
magnetic field was %rst introduced and applied to  several processes by Hong and hiandel in 
1985'*'. Lately Xi-zeng Li and Ying Shan haw calculated the higher-order squeezing in the 
process of degenerate four-wave mixingD and presented the higher-order uncertainty relations 
of the Belds in single-mode squeezed states4. As a natural generalization of Hong aucl hiandel's 
work, we introduced the theory of higher-order squeezing of the quantum aelds in two-mode 
squeezed etates in 1993. In  this paper we study for the 6rst time the higher-order squeezing 
of the quantum fjeld and the generalized uncertainty relations in non-degenerate four-wave 
mixing (NDFWM) by means of the abave theory. 

1 Debition of higher -order squeezing of two mode quan- 
tum flelds 

The red  two mode output field E can be decomposed into two quadrature comporrents E~ and 
&, which are canonical conjugates 

Then the 6 eld is ~queezed to the Nth-order in dl (N = 1.2.3. . . .) if there exists a ylrase angle 
4 such that < ( A & , ) ~  > is smaller than its value in a cornplrtrly two-mode coherent *ate of 
the field, viz., 

< ( A E , ) ~  > < < ( A E , ) ~  > t v o - m o ~  to*.. . (3) 

This is the de6nition of higher-order squeezing of two mode quantum fields. 



1 Scheme for generation of higher-order squeezing via 
NDFWM 

The scheme is shown in the following Qgure: 

FIG. 1. Schematic for generation of higher-order squeezing via 
NDFWM. M1,M,, M8 are mirrors, BS is the 50%-50% beam splitter 

Where two strong, classicd pump waves of complex amplitude (v l  = lvlle"l and t ~ ,  = lvSle1'*) 
with the same frequency 0 are incident on a nonlinear crystal possessing a third-order (y18j) 
nonlinearity. The length of the medium is L. ii, is the annihilation operator of the transmitted 
-probe wave with frequency w4, i8 is the annihilation operator of the phase -conjugate. wave 
with frequency w8, and 

The effective Hamiltonian of this interaction s p t e m  has the form of 

where go is the coupling const, t is the time propagation of light in NL crystal. 
By a o h n g  the Heisenberg Equation of motion we get the output mode 

i 8 ( t )  = IFir(L)  + uaf (o)]c"*', ( Z  = L - ct for a8) 

a4(t) = Ipir(0) + uii (L)]e-'w4', (2 = el for a4) 

where 
f i  = eeclklL. 

v = -iel('l +'')tan (k(L, 

lkl = F. 

I 
I 



3 Combined mode and its quadrature components 
It can be verified that  the field of either aa(0 )  or a4(L)  mode does not exhibit higher-order 
squeeoing. 

Ct'c consider the field of the combined mode of a a ( t )  and a 4 ( l )  

where 

and -i denotes the phase delay. The units are chosen so tha t  h = e = 1. 
~ ( t )  can he decomposed into two quadrature components E, and E,, which arc canonical 

conjugates 
E ( I )  = Eleoe(f2i - 4) + ~ , d * n ( f 2 i  - $), (11) 

where 

and g is an arbitrary phase angle tha t  may be chosen at will. 
E, ran be expressed in term of initid modes i 8 ( L )  and a, (O) ,  

%, = gas(L) + h 4 ( 0 )  + goal  ( L )  + L e i :  ( O ) ,  (13) 

where 

c is the modulation frequency 
Now we define 

t.hetl 

where B' is the adjoint of 8.  

B+ = p e i :  ( L )  + he=: ( 0 ) .  



4 Highem-der ndse moment = (A&)* > and higher 
-order squeesiag 

By wing the Campbell-Baker-Hadodl forumla, we get the Nth-order moment of AE~,  

<:: (&,)N-4 ::> 
+- . a  + (N - l)!!Cys. (N is even) 

d:: : : d e u * % r n r l a r d ~ * ~ t t o B d ~ * .  
We take the initial qaantaol s w e  f~ be (a >, 10 >a, which is a jmdact of thr coherent statr 

b>, hr &(O) mode and the vacuum state for h ( L )  mode. Smee la >* 10 >a is the eigtastak 

dB,=* 

Smb6titOtiag q e .  (S), (lo), (24) into (B), m get the Nth-order moment of AEl,  

&en thc a h  q. (25) leads to the n s d t  



When 0 < (CIL < u, the right-hand side is less than (N- l)!!flNia, which is the comsponding 
Nth-order moment for two-mode coherent states. It follows that the field of the combined mode 
of aht probe wwe and the phase conjugate waw in NDFWM exhibits higher-order squeezing 
to aU even orders. 

The squeeze parameter q, for measuring the degree of Nth-order scloeezing is 

< ( A E ~ ) ~  > - < ( A E , ) ~  > t v o - n ~ ~ e  r 4 . a  - - 9 N  - ----. -- 

1 t o -  ,oh, -- 

We 6nd that g, is negatiw, and g, increases with N. This giws out the conclusion that the 
degree of higher-order squttaing is greater than that of the second order. 

5 Generalized uncertainty relations in NDF WM 
& c a n  be regarded as a special case of el if 9 is replaced by 6 + x / 2 .  Then if 4 is rhosea to 

saw W - dl - ds = 0, from eq. (25) it follows that 

when 0 < (klL < r ,  the right-hand side is greater than (Ar - l)!!flN" 
Fmm q s .  (26) and (291, we obtain 

Eq. (90) shows that < ( A E , ) ~  > and < (AE,)N > can not be made arbitrarily s m d  
simdtantoosly. We call eq. (30) the generalized uncertainty relations in NDFWbf, and the 
right-hand side is dependent on c, Q, N, and IklL. 

In the degenerate case wd = wt = O, r = 0 from eqs.. (26). (28) and (30) we obtain 

< ( A E , ) ~  > < >= [ (N - I)!!]' . flN. 

When N = 2, 

< ( A B ~ } ~  > = f'l(eeelklL - lan/klLIa, 



< (A&)' > . < (A&)' >= 0' (16 1 

These nsdb ut in agreement with the conclusions in t.lw previous rclcvr nt ~ t f t tcnc . ts f~~~ l .  

This rewuch was s~pported by flrt National Natural Science Foundation of China. amcl Tianjin 
Natural Stit rc t Foudrtion. 
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THE SQUEEZING OPERATOR AND 1HE SQUEEZING aATES OF "SUPER!PACE" 
M a  Aiqun 

Department of Physics, H arbin Cdlqe.  H atbin, 150020 

Yan Changzhi 
Department of Physics, H arbin IndiLvlc of B k t t i c a l  Thchndogy , H arbk ,150080 

Lu Q4-8 
Department of Phyks ,  Harbi Teadct's Cdltpe, Harhi ,150080 

Shi Weicbun 
Department of P I y & s , N d t a d  Farcatty Unwersily ,Herbin, 150040 

In this paper .the unitary sq?eedng operator of asuperspace"is intraduccd and by making thir operator 
act on the supercoherent statelthe squceriag supucobeteat states an obtahd*then come out the four or- 
thoaarnalization eens ta t s r  of the square of annihilation opentor A of the supusymmetry harmonic a d -  
Ltort.ad their squeezimg character ib ako studkd. 

1 Intrduttkr 

*ly in the 1970 i rD. ~td t r~ ' : pu t  torwud the concept of the sqwezbg state first. Fdlowing him .H. 
P. ~uen'*:8ude a detailed study of the qwntum characteristic of the 4ueeda6 state which was obtained 
fhnm the squee* operator actmg on the coherent state. This kind of squsszing state they studied a the 
squeezing coherent state. Having less noise than the coherent state ,the squeezing state would be a vast ap- 
pbd vistr~ in the optical communicatbn and the 8nvitational fotce wave probing ,etc. The squadry  state 
BIE koome an attentive probkm. 

In recant -,a k t  of s tud is  about the supersymmetry have been donerP. ~ l k o r o a ~ n ~ ' l . n d  &her 
papa~s put forward the supersymmetry humoaic e t a ,  aad C. AryorrcC43, with other , intro- 
duced the superooherent state. People found that the inner link of different a t o m  .nd ions am related to the 
abstnct s u ~ y ~ n r n e t ~ ~ ~ .  Chen Cheng - ming .nd Xu DonghuiE':acted the dkp&ement operator otr one 
~upcn-etry Hmiltoohn *uwl .ko drew the s u p e r c o h ~ t  state *moreover ,mule the dimassion oa the 
squee- state extend into the supercoherent state. The eigenstate of the annihihtion operator A of the su- 
pasymmetry harmonic oscillator which they introduced- -the supercoherent state a n  nd be introduced 
by using the dhplmment operator to affect the supersymmetry harmonic accWtor Hmiltonhn. Actin8 
the SqIWZhI8 operator on the Hamiltoninn of the dirplrccment harmonic acillatot , the eigenstate of the 

new constructed Hamiltoninn is the squeezing statec':. According to this theory, to d m  the probkm 
.bout supersymmetry requit- not only oonstructing proper annihilation operator of the H.miltwmb of the 
wpemymmetry humonk oscillator , but .Is0 i n t r o d u a  the dkptcsment operator and s q u e e ~  operator 
of -superspnc8". 

Thk introduces the s q ~ r t r y  operator of ' ~ u p a ~ ~ * r . n d  acts it on the superaherent state.so 
as to Bet the squeezing supercoherent state. This method is equivalent to act@ the aquee- opetator of 
*supersprca*am the displacement supenymmetry humonk esi?illtor.and then *to act the eigenrtate of the 
new constructed Hmiltontn. In this paper *the annihilation operator A of the supersymmetry harmonic a- 
cgt.or h a  such & ~ c ~ ~ ~ [ A , H ] = ~ , [ A , A + ] = ~  md H m  ~ A + A * A S  * mult , the abtlinsd squecrriry 
supetcoherent state & different trom the squseza  state in literaturec':. In this paper the squeezir~ chuac- 
tar of the Menstate of A is rko  discussed. 

The Hamiltonh of the supenymmetry humonk oscill~tor iscs2 



W b . n r x  and p u e  the a r o r d h t e  opemtor and momentum opentar in the 8eneml .prs, q & the third 
component m h l i  matrix ,a and a+ a n  the rnnihiktion md crmtbn uperators of the ordbmry Bumonic a- 
cantor. 

The HumLoninn of the supwsymmetry harmonic usdlhtor m rbEo written 8s: 
H - d * A  (2.) 

1 1 I ?P' -6 -&Q' - -o 
2 2 (26) 

t c . t a a d v c r i f y ~ ?  
~ A , H ]  = 4 (5) 

[ A , A + ]  = I . [ Q , P ]  - i (6) 
Beause (5) & t d  ,A m C.tkb the .onihiQtbn operota of the wpmsymmatry bmmok orePh-6 

A+ the creation operator of the supersymmetry human& aodllrtor. (a) ir equrl to the relevant ex- 
krm of the ardhuy h-aaic aKLtlrta Q UMJ P m atbd the 8 e a e d i d  coordinue opntor .ad the 
gensrrllasd momentum operator ot "supenpace" sepuateiy. 

W e  CM g t  the ~@%IWAIW of H .nd the m b m t  Menstate E r a  &ititst~~d''*tby u e  

T h e ~ e n d u e o f  q h  4-1 and -1. 
It is euy to prove that 

AR>, = * A  + a - m a + ,  .A + A n  = sm (8) 
the dgenquatko of A & 

A  I F ( a ) )  - a l lP (a ) )  (9) 
Whete ,a ir the c o m p k x  puuneter , a- /alea. 

The def&itkn of the dlrphcemont operator d '8upbtrprcaa & 

D ( a )  * e x p ( d + -  a * A )  ( 1 0 )  
It has the similar character of the ordinary diplrament operator D(u) r 

D +  ( a )  - D ( -  a )  = [D(a ) ] - '  (118) 
D+ (a )A  D  ( a )  = A  + a  ( l l b )  

D + (0144 + D ( a )  = A + + a W  (1 le) 
The Menrtate o t  A (doubk de~enente)  & obtrined by rolvin# the ~ e n o q w t k a  of (9) , ot by mku 

D(a) 
1 a). 

a  = x p -  y I *  a I 
t '1 



Where * /a)aand lo), w odd coherent state and even coherent state r e spec t iw l~a" lo~  he two m8thematical 
expression formulas produced by the translation of the orthonormalizatbn eigenstate me 

10) 
IY*(o)) - D(o)( ) (13.1 

Pot the aigenstate of A *it is easy to prove that 

Namely,the eigenstate of A is tbe minimum uncertainty state of Q and P,they ve the conjugate H a -  
lnitira opetatom. In thk  rsnse,the ehenstate of A ir c a h d  the supercoherent state. 

3 Sqtl8nl.l ~ r e o h e r c r t  state 

First ,kC us btroduce the unituy e v d u t i o d  operator of usuparmpace* generrUy: 
s,(e) - exp[Z,(A+)' - Z ; A ~ ] .  z, - Z I K  (15) 

Wben k = I ,it C the displ.cement o p m t a  D (a) (a= z) t When k = 2, SIC,, k crbd the rqw- oper- 
ator of compkx parameter, written as S(x). 

1 
~ ( r )  = exp [ ~ z ( A + ) '  2 - --=*A'] 2 .  . z - PC (16) 

where r is the squeezing factor, 8 the squeezing angle. Since the character of A is the same as a. urd .IFO 
so ( z ) ~ s ( e )  = A d r  + A +  rta (17) 

And 

Where, R (0) is the revolving operator of the ph.rcsp.cc, S(r) the s q u a z a  operator of the red prt.me- 

t- , 
R ( 8 )  = exp(- &A+ A )  ( I & )  

To d e f i n e  the qudrature phase amplitude operator of 'supcrspace* 

Shce the eaenstatt of H and A all have the doubk degeneracy, the squeezw states are doubk. One 
of the squarin# state of 'superspace" can be defined 

Because of D + ( o ) ~ D ( a ) a ~ f  a ,  and making use of (17) and (18),the expsction value of X(v) in 
la. Z)l. can be calculated, that is 

but the expeetion value of X2(v) in !a.Z), $ 

thus r 

1 
(dX2(p)),  - (XZ((p)), - tX(p)): - T1chr + &-'d~\' (23) 

When t = O .  the formula above is the fluctuation of the supercoherent state. . (AX'), is irrelevant to qb 

When r#O (suppasing r> 0) t if qsatisfies the inequality. 
c a ( 2 p +  8 )  <- t h t  (21)  

then 
1  AX'(^)), < ( 2 5 )  



Nmely,  (24) is the condition that the squaezhg of X(rp) exkts in la . r ) , .  X(w+n/2) is the phase 
amplitude operator which is quadrature with X(cp). Its squeezing condition is 

ccrs (2p+ 8 )  > thr (26) 
Obviously (24) and (26) an be tenable at the m e  time. That ire  la,^)^ can not exist the squmzlng 

of X(cp) and X(w+n/2). 
EspcWly, U 

Clr >,cas (2p+ 8 )  2- C l t  (27) 
neither of the quadrature phase components h a  the squeezing. 
From (23) we get 

W1Csn 2w+B*O or n * the tormul. above takes the minimum d u e c  

the relatiam of the minimum uncertainty iE tenable. 
When 2&@=0, (29) .ad (26) are utirfied at the suns  time8 when &+B=n, (29) @ (24) too. 

Similar to the detinitian of the squatia8 coheremt state, the squeezing supercahetant state Ia.z), k m a d .  
Using (17) 

S+ ( 2 )  D (a)S(z) = D (8) (30.) 
i r ~ d v a d ,  t h t  r 

@ (a)S(z) = S(x) D (8) (30b) 
Where * 

f l  - d+ - a'drd' (30c) 
Now amke 

Ctom (30b).herz bs 

1%. 8)l = la* f ) ,  

Next another squeezing state d 'superspace" will be dkcuorsd. Let 

I x * h )  S ( Z )  / V z ( b ) )  
Using ( I ? )  , h m  is 

So, 

It 6 ckar that 1 z, 8)' and I z *  = 1 a* z > ,  have the same squeezing character, and both are the 

squeezing supercoherent states. 
The eigenstate and of A can be generally written as 

iYr(a)) = C1 lYl(a))  + C21Yf2(a)) ( 37a ) 

lc1 1' + Ict12 = 1 (37b) 
To make 

I t *  B )  = S(x) IYr(/?)) (35)  
Similarly, I z  , 8) is the squeezing supercoherent state. It includes 12. 0) and l z ,  g),. 



Since 
S ( z ) A S +  (z)S(i:) I Y ' ( B f )  = flS(z)lY'(Pt) I 

that is, 1z.B) is the eigenstate of the unitary transformation operator S+ (z)AS(z) of A. The unitary 
transformation does not change the eigenvalue of operator. It IS still P. 

s c z > n s t  ( z ~ l z ,  8 ,  = PI.. j?) (39, 

The eigenstate of equation (39) is doubk degenerate. with the same characher. 

4 The Squccaing Characbtr of The Eigenrtatc of A' 

As an s x m p k .  the squeeung character of the etgenstate of A' will & discussed. The otthunormal- 

iration eigenstares (quartet degenerate state) of A' can be obtained casily. They are 

10,(a)) = (I:*)= la)- (408) 

(@.(a) IeJ(a)) = 6.) 

A2(0,(a)) = dI@,(a)), (a = lr2,3,4) 

The eigcnstate of A' has the character that can be converted by A acting on. 

A IfPl(a)) = a(lh la(')+ (@,(a)) 

A !&(a)) = a(cU 1a12)3 )@,(a)) 

A Ie3(a)) = afclll la!')+ 19,(a)) 

A Ie4(a)) = aft? la12)i lcbtfu)) 
According to ( 4 1 ) .  (42) and (43), the following can be got easily, 

(X(p)))), = (X (9)). = (X(p)))), = (X(p))oo " 0 
thereby 

<Ax2(p) )- = {X2(p)),, 

Because the minimum value of cth la1' is I ,  the squeeze can nut exist in 1e2(u)) and IQ3(u)). But the 

maximum of the l u / *  is 1 and not negative, so if the value of cy can be chosen properly, it can make 

cas2(9+ 2) <-- lh 1 0 1 '  (46) 

thus 

That is to say, /a, (u)) and j@,(u)) both have the squeeze. But 



SKI IU$(a)) and I@,(a) ) ue the g e n e n l M  squeezing states. 

As fu as [A,  H ] = o A .  rho common expression of the annihilation operator of the supenymmetry 
harmonic arcillator is 

ia it 9 6 r , k and p can be either a u r e  C , or the operator hnction of a+.. U A a n  stiU satirly the commu- 
tation reIation [A ,A+]=l, then the eigenstate of A CM be produced by the dbplaament operator of 'su- 
psrspacs" acting on the two minimum energy state of H. 

' 

The annihilation optrator of the suparsymmetry humonic oecilhtor , bin$ diacusrsd in thin paper , has 
the rpectl si&nificcmce. k i d a s  it satlfias the commutation relation [A, HI=& .ad [A, A+]=l, t b m  
is H =uA+A also, which is like the general annihilation operator a. So the study in t h t  paper ir wry re- 
semble in form to the o h i l u  discidon about the ordlrary spmx. Bu: oa the 0th- hand, it can make our 
study in this paper have many putieuluitk because bf the double dc&enwdas of H , A and s(z)AS+(Z). 
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The Total Gaussian Class of Quasiprobabilit ies 
and its Relation to Squeezed-state Excitations 

Alfrc~i Wiinsche 
rl t.bt.itsgruppc "Nichtklassisc.hc Strahlung " dcr  Max-I'lanrk-C'~sc1lschajt 

Rudourer. Chausscc 5. 12489 Rrrlin, Cerntun y 

Abstract 
The c l a ~  of quasiprobabilities obtainable from the Wigner quasiprobability hy cottvolu- 

tions with the general class of Gaussian functions is investigated. It can be described by 
a thrw-dimensional, in general, complex vector parameter with the property of additivity 
when contposing convolutions. The diagonal representation of this class of qr~asiprob;;hilities 
is conncctect w i t h  a generalization of the displactad Fork states in dirt.ction of squrc~zing. 
The subclass with real vector parameter is considered more in  detail. It is related to the 
rrtost important kinds of boson operator ordering. The properties of a specific set of discrete 
excitations of squeezed coherent states are given. 

1 Introduction 

The rc>presentatiotl of dtvwity operators by quasiprobabilit.ics forms one of the bridges het.wccn 
classical and quanturn rnecttanic~s. Whereas the classical dist,ributia~ fu~ ic t~on  is utliquely dcfilled 
and givtbs t h c  prohabi1it.y dt*rlsity to find the system at  the corresportding poirit of the pl~ascl spa(-(*. 
a qtraotunl-rnecharlic.al distribution furlction over the phase space is tltliqricly defittrbd only i r l  rela- 
t,ioti to a cc'rtain opvrator ordcring and does not possess all propcrt.ies of a t.rtlc probabilil y dctlsity. 
for cxalttl)l*>. posit ivc dcfinite~tess or orthonor~ltality of thc invnlvcd statcs. Thc best, c.otlll)ro~nisc* 
l~et.wc~.~t c.lassical attd qtlantu~n mcct~arlics is ~ i v e n  by the Wigt~er cpasipl.obahility I l ' ( c t .  tr') i t \ -  

t.roctuc.c~tl hx Wignrr in 1932 [ I ]  a ~ l d  corrc~spoilcting to  symrtletrical ( \4!cyI ) ortlc~rillg. Ilowc.vc.r, 
o t h c ~  (+tlasiprol)al)ilit ~ C S  ar(* it1 use artd sorlte~t.irrtt*s advantageous as t ttt. c-ohcwnt -stat,r cltlasiprcd,- 
ahilit y Q ( o .  n* ). t 1-1cs (;lauhc*r-Sudarstta11 q~iasiyrobability P ( m ,  a*), or t,he ottc-parar~tt~tc*r (.lass of 
s-ordcrcd quasiprol)al)ilitirs ( - 1 5 s < + 1 ) which lincarly int.rrpolatc)s Itc*twc-c>rt t. tle cohc~rent -st atcb 
cl~~a"l)rol>ahilit,y and thc (ilauber-Suclarshati q~~asiprol)ithility with t,lle. U'ig~ltlr c~~rasil)rot)ahilit.\ 
i t 1  i1.s (.e'~ttvr [ L ' .  3. 41. '1'111' cjl~it~iproI)al)ilitit'~ a . r ~  a~~xi l ia ry  fu~l(.l,iot~s i l l  analogy to t h t .  c.la.ssir;ll 
tlixt,ril~t~tiott t ' t~t~(.t iol~ aticl arc* ap1)ropriatc. for the. c.ot~vc~t~ient c.alculat.iot1 of chxl)cbct;itioll valrlc.5 of 
op(.rators I)('it~g it~vitriant yuartt.itic~s i n  q~tatttunl ~llc*cha.nics. Tticrrforc.. oac.11 of t trt. q11asil)rol)a- 
I b i l i t  icss tri~lst 1.itr.r~ t t rc '  cotliplet c. inforrrtat.iot~ of t , I tc .  de~isity operator i l l t ( l  R r ( ~ o n s t  r11c.t iott of' t I t (*  

clctlsit j. ol)cir;tt or fror11 t 110 cltrasiproI>at)ilits ti~tlst. I)?  possible. Wtb corlsicler 11t~1-cl I hc gc.ttt>ral t tircv.. 
l ) i 1 r i i t 1 t t%t (~ r  (-1tis5 o f  c ~ ~ ~ ~ ~ i ~ ) r o l ~ a l ~ i l i t  i t > -  o l ~ t a i t ~ i ~ l ~ l c  I?>* ( ~ o ~ ~ v o l ~ t t i o r ~ s  of t l t t b  \+'igt~(>r ~ ~ t ~ i ~ ~ i ~ ) r o l ~ a l ) i l i t ~ ~  
with t l i t '  t o ~ a l  ( ' l i l s~  c)f  rtortnalizrcl (;arrssia~t fu~irtiorts of' t l ~ e  phase-spat.c. \:ar~iat)lt~s i~rlti ('ill1 I 11i.s t I;(. 
total (hrissiat~ (,lass of cl~~itsil)rolr;lt~ilit its. 111 par1 ic.111ar. it.  (:on1 airls t l \ c l  q\~asi),t.o\)it l) i l it  ic,s rclli\~c*~l 
to  st i l l l ~ I i t l . ( I  at111 H I I  t is1 alidar(1 ordc~ritip; of t hcs c.arlo~lical oy)tBrat.ors a ~ l d  t littc>itr i l l 1  orpolnt iorl 
l)11l wt1t111 r.ll i ' l l l .  



2 The displacement structure of the quasiprobabilit ies 

A strong and important restriction to the form of quasiprohabilitics over a phasc* space with the 
topology of a plane results fro111 the requirement that displact?rnc*nts of the whole system in the 
phasc plane ( Heisenberg-Weyl group ) rnust lead to correspondirigly displaced quasiprobabilities 
in analogy to classical mechanics. If the transition frorri the density operator p to a norrnalizc.d 
c~~iasiprohahility k'(cr, a') is written by a trarrsitiort operator 7'((r, a*) as follows 

-do A da* b'(a, a') = 1. F ( a ,  0') = (eT(a, a*)) ,  

then the requircrncnt regarding displacenlents implies the following "disy1ac~er~let:t structurc" of 

the transition operators 

1 1 i d o  /r do* T(a_ a*) = I ,  ('lt(a: a*))  = (T(O.0)) = -, 
X 

where the displacement operator L)(a, a*) is defined by 

with a and at as the boson annihilation and creation operator artd with I as the ur~ity operator. 
This means that the transition operators T(a,a') provide a phase-space decomposition of the 
unity operator. The giver1 trace of the transition operators is a consequence of the following 
identity which car1 be proved for arbitrary operators A [5, 61 

1 ids h da* D(a ,am)~(D(a ,a*) ) '  = r(A)I.  ( 4 )  

The rrt.onst,r~iction of the density opt-rator e fro111 the q~iasiprobahility F ( o ,  cr* )  (:an be madf~ by 
an operator T(tr, n * )  in the following way 

under thc condition 
1 

(T(a,a9)T(/3, b e ) )  = -b(a - /j,u* - B * ) .  
X 

It can be proved that the operator T(a ,  u*) possesses the same "displaccrnc.nt structure" as the 
operator T(a,ru*) with all its corlsequences ( phase-space decomposition of thc rlriity operator, 
t r i l ~ . ~  equal to I /a, see (61 ). 



3 The three-parameter Gaussian class of quasiprobabi- 
lit ies 

, , I he discwssed restrictiorls frorri the displaccmcnt :;t;tlcture of t.hc qtlasiprobabiIit,ir. adrriit still a 
rich variety of possil)lt- quasiprobabilit.ies. U'e corlsicfer here tllc three-paramcttr class c:f quasiprob- 
abilities &((I.. n * )  with t llc vcv-tor parameter r r ( I - ~ ,  r2 ,  r:$) which Carl bt* ohtainccl fio111 t l l c b  

Ct'ig~icr cl~lasiprobability M'(cr. 0') = Fo(cr, n*) ,  (0 - ( 0 , 0 , 0 ) ) ,  t)y t h c a  followit~g c.onvoIrrtiolts 

- (2 a 
- Q(rl ,+'2."3) CZ'(Q. a*). i 6a* ' i ilct 

2 1 
~ t r t , t z . r 3 ) ( Q ,  a * )  - exp { - ;;(q (a2 - a*') + i r2(n2 + u*') + rs200*)) .  

fix d 2 )  . ( a 2 +  a ' )  

- tr2 - - 
an2 i ) ~ * ~  

r 2  E r f + r i + r i .  (8) 

This total (;aussian class of q~lasiprobabilities with, in grr~rral, complex vector parainrtcrs r = 
( r l ,  7-1. r:,) (.orit ains the class of s-ordered quasiprobabilities as the spcrial cast. f'(O,O, ,)(ct. a*) with 
red r3 = --s. The st~brlass F;ir,,o.or(a: a * )  with real r1 and - I  5 t.1 < t 1 is rclateti to t h t ~  
linear int.erpolation between siarldard and antistandard orderirig of powcrs of the canoxiical op- 
erators Q and P that is corlsidcred more in detail in (61. The connect.ion between two arbitrary 
qtiitsipot~ahilities wit,ti the vector parameters T and s is given by 

and the reconstruction of tlic: density operator e by 

.A .rc.sting subclass of the total Gaussian class of q~iasiprobabilities is given by the restrict,ion 
tc . nl vcrlor paranlet,ers r ( I S , .  ts2. r j ) )  arid i . r' 5 1 .  The "diagonal rc.prcscntatior~" of this 
sttl~c.lass Ic.ads t o  a generalization of the displaced Pock states i l l  direction of , ,  kind of disr ' i d .  ed 
q~iccn-(i Fock stiitt's it.s wtX IIOW wil l  show. 

4 Diagonal representation of the Gaussian class of quasi- 
probabilities with real vector parameters 

From the Foc-k-st;ltc> rcytrt~~t~rltatiol~ of t.he operator 'T'(0.0) in f;cl.(2) it1 c~ot~tlc~ction will1 Eq.( 1 ) ot~c. 
ot)t.ains the following. i t 1  gt*rlc.ral. norrdiagonal representation of the  rlii:~siprol)ahililirs in ciisi)lac.ed 



F d  states (a, n) 

The s - o r d a d  class of quasiprobabilities is diagonal in the representation by the displaced k k  
states according t o  ( s = -r3 ) 

The more gtmad Gaussian class of quasiprobabilities with fed vector parameters T r (r,, rz,r3) 
can be diagondized in the following way ( proof is given in [6] ) 

w h e  we have introduced a set of discrete excitations of squeaed cohetent states lo, n: C) with a 
complex squeezing parameter i in the nonunitary approach as follows 

The atat* la. m: -C) and la, n; i j  with opposite squetrling parameters ( are mutually ort.honor- 
mdized and satisfy a completeness relation in the following way 

In case of vanishing squeezing parar~~eter ( = 0 the states In, n; i) hecome icfentiral with thc* 
displactad F ~ c k  states I c t .  n)  

10 . t t :O)  = D(o,<t9)\r/) E I o . r t ) .  (16) 

('otlsidcr :tow tht- lit~iiting case of r~iaxirlial squcvziltg I(/ = I within the states la, n;  (.). I f  ant* 

makes the tra~lsitiol~ to real \~riat)lm .sl aal~d y and to thc  canotiii.al llernlitean operators Q and P 



tben, i ~ r  particular. one obtains 

wht*re* f ) ( q , ; ) )  dettotcu the ctisplacerrwt~t operator in ttlz reprtwntation by the real variablt5 q and 
p arid iq) and (pj aria thc eigertstatt.s of this operators C) anti Y. rcspertively, n o r m a l i ~ d  in tht* 
usual way hy rllcans of the delta ft~~a.tioas with tLt8 a-alar pmd~ict \&(qlp} = exp ((ipq)/h). -. I he states it1 E=q.(lH) r e p r w ~ r t  ciiscrete st8ts of cxcitat.ions of the states )q} and Ip) in anatagy t o  
thc displac-tut Pock states 1 f i . 1 1 )  as cliscretc scts of cxcitatiolrs of the coheretrt stat- 10) .  

The states Irk, t t :  i) with lil > i are well defined by Eq.( id)  hut. ttley are not rrormaliaablt. 
in the ttsrtal st>nsc or by nltgaas of tfrc delta function. They are states of ct'rtain r i g i d  Hilbt-rt 
spar= sincc their scalar products with itself does not exit hut it exists the scalar product with 
statvs from spacrs of sttffic-ientl~ well-hrhavd riortr~alizahle states t.itat can hc used for a~rxiliarj- 
purposes. for exan~ple. for the fornlulation of cornpleter~ess relations or1 contours of the complex 
wriatblc n. III this c-o~r~tection we introduce the following t-errrlirtolo~v of rror~iializahility of states: 

I .  rrorn~alizahlc ( scalar yrodtlct of thc state with itself exists meaning that thcy an* states of 

the r~sual Hilhert space caw < 1 in Eq.(l4) ). 

2. weakly r~onnorrnalizahlt ( states van bc cotisidi-rd as lirniting cases of norrnalizable statix 
or statc.s of a cvrt ain riggtd Hilhert spaw and car1 often be nornlalized with -neighbouring" 
stattxs \by rncarrs of the delta ft l~~ction; caw I < /  = 1 in Eq.(14) ), 

3. strongly rlonnorrrializable ( states cannot be considered as limiting caws of r~ormalizable 
states hut they art. states of mortB general riggecl flilhert spaces or spaccs of linear functionals: 
case l(l > 1 i l l  hi.( 1.l) ). 

If one* adtnits strorrgly nonnorn~alizable states in E:q.(13) in a formal way. then orre ma! omit 
the restrictior~ to nonnegative values of r3/r. in the case r3 = 0 one has t o  do with weakly 
nonrrornializahlr states corresponding to  J C j  = 1 and both possible signs of the square root it1 

r. = bm arc aclmissihl~ l e a d i ~ ~ g  to two possible rrpresr*t~tations of equal rank. 

5 The sphere of the Gaussian class of quasiprobabilities 
with real vector parameters 

A s  the main class of quitsiprot~abilit,ii~s, the (;aussiari subclass of quasiprobabilities with real vector 
parameter r r ( r l ,  1.2, I . : , )  aad with r2 < 1 forms the interior plus surface o f  a three-dimensional 



sphere with the Wigner quasiprobability W ( a ,  a') in its center, the coherent-state quasiprobability 
Q(o,a') in the North pole, the Glauber-Sudarshan quasiprobability P(tr,ct*) in thc k t h  pole arid 
the quasiprobabilities Ft,, z,%&, lll-.O)(a, 0') corresporiding to standard or antistandard ordering of 
the rotated ranonical operators Q and Y a b u t  an angle 9 around the Equator ( sc?r fig.1 it1 [ti] ). 
Whereas at  the surface of this sphere the* quasiprobabili ties an- reprt.sentahlc~ as thc expectat ion 
values of transit ion operators of the dyadic form 1 / r  la, 0; ()(a, 0; -(I with squeezing parameters 
f C fixed for each diagonal through the center of the sphere ( if we adrlrit strongly nonnormalizablt~ 
states; in the other case this is only t.rrte for the upper hemisphtw ). in the interior one has mixed 
states of )ct. n: ()(a, n; -il. (n = 0.. . . . m) as trarlsitiotr operators. This is in a c-t?rtait~ analog? to 

the Poincari sphere of pure and nlixcd plarization states where the puw yolarizatiur~ s t a t e  an* 
situated or1 the srrrface of this sphere ( right-handed and left-handmi circular polarization a t  thi. 
North and South pole and the different lirrear polarizations around thc Equator in depetidenec* 
o t~  the* dirrction of linear polarization. clliptiral polarizatio~~s OIL gc-e~ral surfacr points ) and t l~ t*  
ntixrtl yolarizatiolrs in tire interior o f  thc syherc with the ftrlly unplarized state ~ I I  the cetrter. 

6 Some representations of the states 10, n: C) 
It is interesting t o  corlsicfer the properties of the states I;$. t i;  i) itself by tllc ralculatior~ of cfiffrrt*trt 
reprcjetttations and qtlasipro1~abilitit.s. These states cooipriw the stlueezcd cohrrer~t s ta t ts  as tfv. 
special case 1J.O:i). U'c introductvt thew s t a t e  it1 Eq.(14) i t1  a non~torn~al izd  form. First. a 
normalization factor ran be caltttlated from the following scalar product ( we 161 ) 

The yolyrlo~l~ials a t  the right-hand side of Eg.(19) do not b~long.  a t  least, to  well-known p lyno-  
rrlials with a fixed abbreviation. 

Next, we calc-ulate the Bargtnatln rcprtwntation of the nonnormalimci states I;?. n: (;) with t tic* 
following result of an  analytic futtctioa of e' 

f (a') r (01 rxp(a'a)l$, n; () 

where H,(t) denotes the Herrnitts yofyrlo~l~ials in the rlsual way. For thc "position"represcntatior~ 
one obtains 



and for tttc "nlurntet~tun~" rcyreientation 

Fro111 Eys.(20) altcl (19) o n r  finds tibe c-ohervnt-statr* q a z ~ i y r o b a b i l i t  Q(a. tr*)  for t hc* ~ ~ u r t r ~ a l -  
r 7 ~ ~ 1  states ! ;j. 11: <),,,r,,, . 1% give it otrly for the* states / O , u :  f ),,,,, htrause the  t ratlsitio~i 1 0  thcb  
states I:j. t r :  i),,,,,,, catr Iw sirnyly ~iiadc- t ~ y  thc  sahstitrttions 0 -+ 0 - ,d altrl t r '  -, o' - .3*. l'he 
riwtlt for 10.)1:() ,,.,,,, is 

,/- 
Pxp { - (on* + y n  + rtr 

7i <- " 2 *2)1- 
Hy convolutiorr of G)(,a, o * )  with 2/a t*xp('Lno') one obtains from Eq.(2:i) thc Wigrler cjuasiyrul)- 
ahility for the normalized states 10. tr; <) , iOT, l ,  ~ ~ . i t . h  the resltlt 

Thc transit ion from (0, t t ;  ('j,,,,,; to I;]. n ;  i),,,,,,, cart hc. rmde  again in E;cl.(21) by t hc. sitnple 
substitutions tr -r t r  - . j  arid o* --+ n* - d*. In figs.( 1-6) we represc!~~t. thta LVigtitv- cluasiprohis'hilit~ 
i t1  ir.s real rrprtasent.at ion tl ' (q. p )  with the nortnalizatio~~ [ dq A dpCt-(q, / I )  = 1 for t hc* first 6 statt*s 



Fig. 1-6: 

IVigncr q~rasiprohnl,ility CC'(g. 1)) to stattBs 10. n: () ,,,,,,, for ti = 0, 1, . . . , 5  . C = +O.5 arid h = 1 .  

m 



10, t l ;  j),,,,,,. i.c. for it = 0, I . .  . . ,.', , with thc squmirig parameter ( = +0.5 and with h = 1. For 
( = -0.5 one obtains the sarlre picture only rotated about an angle t/2. 

Let us give here additionally the explicit expressions of three partial classes of quasiprohabilities 
from the total Gaussian class for the normalized squeezed vacuunl states 10.0; 

The modulus of the complex squtu~zieg parameter C determines the amount of squeezing whereas 
the phase of the squeezing parameter { determines the position of the squeezing axes. In particular. 
the squeazing axes are parallel to the coordinate axes for real C = ('. In this case the class of 
quasiprobabilities F1,,.o.o~(o,a') simplifies. The squeezing axes are diagonal t o  the coordinate 
axes for imaginary C = -i' atid thvn the class of quasiprobabilities kio.rl.o)(o,n') sirnylifia. 
The usually consider4 class of qliasiprobabilities F~o,e,+,)(a,o') contains the interesting valuc 
of the paramet,er r3 for which the denominator in the expollentid function vanishes arid the 
quasiprobability becomes a singular function. This point depends on the modulus of the squeezing 
parameter and is given by 

where the second solution given in brackets seems to  be not of interest. For parameters r3 less or 
equal this singu1arit.y point the corresponding quasiprobabilities can be only considered as gen- 
cral izd functions. Recall that the quasiprobabilit.ies for squeezed coherent states (i3.0; C) vail be 
obtained again from the quasiprobabilities for )0,0; C) by the nlentioned argument dispiacenlettts. 

Last, we found for the number representation of the states 10, n; <),,, 

(0. n : i) norm 



It contains only even or odd number states in dependence on n as an even or odd number. For 
large n~odulus of the squeezing parameter i the resulting number distribution becomes relatively 
broad and uniform over even or odd numbers. The transition from the states (0, n; C)- to the 
displaced states I/?, n: C),,,, is here more complicated as in the case of the quasiprobabili ties. 
Generally, if an arbitrary state IJ.) has the number representation 

then the displaced state D(8,  @*)I+) has the number representation 

at OC b . n )  
m!n! 

, + * I  = exp ( - F) c (x -+ c 
m!n! j!(m - j)!(n - j)! tn=O n=O 

where L:(:) denotes the Laguerre polynomials in the usual way. This is a kind of discrete conva 
lution of the primary nurnber representation. 

7 Conclusion 

We investigated the total Gaussian class of quasiprobabilities and its diagonal representation in 
case of real vector parameters. Another interesting special case is given for red r j  and imaginary 
rl and r2. It seems that this case may be treated in anaIogy to the usual s-parametrized class of 
quasiprobabilities by transition to new boson operators via a BogoIyubov transformation. Some 
points and proofs are given more in detail in [6] but some are new in the present paper, in 
particular. all formulae of section 6 for the s t a t e  /B,  n; C) are given here for the first time. 
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Abstract 

The relation of squeezing and Q ( a )  function is discussed in this paper. By 

means of Q function, the squeezing of field with gaussian Q(a) function or negative 
P ( a  )function is also discussed in detail. 

1 Introduction 

In quantum optics. P t a )  *Q(a)and W (a)are coammon quasiprobability distribution func- 
tion [ 11, but only Q ( a )  perserve good function (positive and nonregular). Recently, by means 

o f  Fokker -Plank equation for Q function ,M. S. Kim et. a1 discussed the fouth -order squeez- 

ing[~]. In this paper , W ~ Z  consider the relation between Q function and squeezing , and study 
rile squeezing of field with gaussian Q function or negative P(a)function. 

for any field density ojxrator p ,the Q function is definded as  

1 
Q(a) = -(alpla) 

% 

it satisfies the normalization condition 

For iultinorn~ally ordrred operator f (a , a + )  =ft''(a ,a+ ) ,one can get following equation 

( f  ( a  ,a+ )) = 2aQ(a)f'"'(a,am = 1 Id (3)  
where a and a'nrc annihihtion and creation operators respeotively Ddfining parameter 

S = ( : ( a  + a + ) 2 : )  - (a +a')? ( 4 )  
For sqi~eezing ,S should bc negative 

Now ,we suppose that Q function can be expanded as following form 

Irhing mathmatical identity [3] 



one can have 

and the normalization condition is 

Ccm*,nt !/a+' = 1 
m 

By means of equatio~c(3iand (7) .we have 

and 

If the field exists squeezing,then 

2 Squddzing of field with gaussian Q function 

We introduce the gaussian Q function as 



where t >2 1 A I .  Using int8:gration formula[3] 

and equation ( 3)  ,one can show 

(a+  a )  = lw12 + t 
t" 4IAl2 - 1 

and easyly obtain 

S = 
2 (A  + A* + 4 ( A  1' + t - t 2 )  

t" 4 41.4 I t  
Thus the condition for the existence of squeezing is 

A + A a  + 4 1 A I 2 < t 2 - t  (20) 
If A=O ,squeezing means t>1 ,if t <l and A=O .no squeezing exists in the field. It is worth to  

point out that the field with A=Oand t > l  has not been found uptill now. 

3 Squeezing of field with negative P(a) function 

The relation of p ( a )  nnd & ( a )  is 

- J d T e - ~ ~ - a ~ t P  Q(a> - 
A 

(21) 

for nonclassical field,its P ( a )  function has two situations [4] t i )  P ( a )  is negative, i i )  Y ( a )  
is nwrc singular than 6 - function. We consider the nonclassical field with negative P ( a )  
function[5] 

Suppose )'(a) a s  

I : s~ng  equations ( 6  )and !:?I ) ,we obtain 



comparing with equation (?  ) ,one can have 

Obviously .the field with negative P function can exihibites squeezing for some situation.but *if 

p(a)  is only the function of la I , i .  e , P ( a )  is sphere symmetry in phase space, then 

C,,,=O ( m # n )  
Form equation ( 12) ,one can get 

S > O  (29) 
11.1 conclusion .it is clearly that no suqueezing exists in the field with negative P ( a )  function 

which is sphere symmetry in phase space. 
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Abstract 

A new type of timeenergy uncertp.int8y relation was proposed recently by Anandan 

and Aharonov. Their formula, to estimate the lotver bound of timeintegral of the energy- 

flt~ct.~latio~i in a q~lnnt.urn state i s  generrtlizecl t.o the one involving a set of quantum states. 

'I'liis is achieved by oI~t,aitiillg a11 explicit. fort~1111a for ',he distance hetween two finitely 

sepa.ratai points i l l  the (:rr?ss~rlitn manifold. 



I. Introduction 

We first review briefiy the conwntiond time-energy uncertainty relation in quantum 

mechanics. Let A be a11 ovservable without explicit t inwdepderce mcl I$t(t)) be a 

nornrdized quantum state vector obeying the Sltrtiiinger equatio11 with a herrrutian 

H u n i k m i a n  H .  !f we d&ne AA and r~ by 

and take the equation 

into account, we are led to tile urlcertainty relation [ I ]  

The quantity TA is interpreted as the tinre nemsary for the distribution of (#~(t)lAl#(t)) 

to be recognized to hove clearly changed its shape. 

In contrast with the result given above, Anandan and Atmrorlov p] have recently 

succeeded in obtaining quite an interesting inequality. I'tiey co~lsider tlie case that ttie 

I$(t)) develops in time obeying 

when? H ( t )  is an operator w~lich is iiernliticll~ arid tr~igl~t be time-depetrdent. They coil- 

ciude that 

where At ( t )  is given by 

The inequality (7), which we refer to as the Anandan-Aharonov time-energy urlcertainty 

relation, has bcvn derived througl~ a gmt eetricitl itlvestigatior~ of tlie set of ~tor~nillized 



quatltuni state vectors. Thc r.h.s. of (7) can h: rqarded as the distance b e t m n  t-MI 

poitits in a coniplex projective space. 

Here, VR seek tile geiieralized versiorl of (7). We consider a set of N orthonormal 

vectors {j@,(t)) : i = 1,2,. . . , N) satisfying 

each of which obeying the Sci~riirfirlger equation (5). We defilte A' x N rriatrices A(tt, t2) 

a d  Kftl,t2) by 

a d  &(tl, tZ), a = 1,2,. . . , N, to be the eigenvdues of K(tl, t 2 ) .  Defirlillg the generalization 

we find that AEN ( t )  satisfies 

T!te inequality (13) car) be written in at1 operator form as 

where P(1) is defined t>y 
N 

ctrtd '17t. denotcs the trace in the I-lilbert space. 'rhe result (13) is obtailled thro~~gh a 

geometrical investigation of the Crusrnalln l~ianifold GN 111eiltioned below. 



11. Distance formula for the Grassmann manifold 

Ciwn a Hilbert space It,- coneider vectors i = 1.2,. . . , N,beloilgirlg to h and 

satisfying (#,I$,) = ba,. We call the set 

an N- frame of I and the set 

It is clear that the (91 a i d  the projection operator P = zN, are invariant under 

the replacenlent 9 9u. We denote the set of all the 9's of h by SN. Then the set GN 

defined by 

GN = {I*) : 9 € SN) (1% 

is known to constitute a w l i f d d  of oornplex dimension N(dun h - N) and is d e d  the 

Grassmenn manifold. 

To an N - M e  *(t) = (1161 (t)), I$&)). . . . , / # ~ ( t ) ) )  E SN, 0 I t < 1, there cm-qmnd 
an N-plane [*(t)]  E GN 4 a projection operator P(t) = cE, (Jti(t))(#g(t)l. Since the 

eigenvalues of P ( l )  are qua1 to t b  of P(0) i~~cluding multiplicitics,there exists a unitary 

operator W such that 

Y(1) = WtY(o)W, W = e"', Yt = Y. (20) 

We define the distance d((@ (O)] ,  19(1)]) between two poi~lts I* (0)] and I@(l)] of the Craw- 

nlann tnanifold CN by 

d(I*(O)l. l*(l)l) = g: IIYII, (21) 

where X is Ihe set of Ilernlitiu operators specified by P(0) and P(1) in tile lollowitig way: 



After sorne manipulations,~ find that the distiu~ce is given by tile fortr1ula 

where h;, is detintxl below ( I  I )  mtf satisfies 0 5 h; 5 1. 

We also fir~d tlrat the above defined distance in CN satisfies the property of distmce: 

111. Time-energy uncertainty relation 

The projection operatcr P( t )  is defined by (13) and I$,(t)),i = I ,  2,. . . , N, devthps 

in time obeying (3). We then have 

When [\Ir(O)] and j*(l)] areclose toeachother, ~ , , i  :: 1,2, ..., N, lire nearly cqud to 1 .  

Noticing that (Arccm 6)' x 1 - n for rc 1, we see 

where n,(t)'s are obtained fro111 P(t) and P(t + d t )  by similar procedures to those of 

previous sections. Since, in the above caw, we have ?\rP(t) = N and 

(28) can be rewritten as 

d((Y (t)] ,  [*(I 4 d l ) ] )  : b?t(~(t){  ~ ( t )  - P(t I dl)}) .  



Now we haw 

It can be easily seen that the r.h .s. of (31) is proportional to h C ~ ( t )  defined by (12).  Now 

we are led to 
JZ 

d((*(t)l* (0 ( t  + &)I) = ~ ~ ~ ( t ) l ~ l .  (32) 

For finitely separated (*(tl)f and [4( t2)]  in G N ,  the trhlgte inequality (26) implies 

The formula (23) then lea.* us to (13) or (14). For detcrils , see 131. 
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We show thst the reservoir influence can be mod$ed by an infinite array d beam splitters. 
The superpasitioo d the input fidds in the beam splitter is discussed with tbe convolutkrn 
laws for their quasiprdbabilities. We derive the Fbklrer-Plan& equation Tor the cavity field 
coupled with a pbssasitive reservoir using the condution law. We also d y s e  the 
amplification in the phase-semitive resmdr with use of the modified beam splitter model. 
M'e show the similarities and differences between the diiipation and amplification modeis. 
We show that a super-Potsmian input k W  canad become subpdsscmian by the phase 
sensitive amplification. 

1 Introduction 
A cavity with imperfect mirrors not only lets the awity field out but also allows the feld outside 
to leak into the cavity so that the reservoir surrounding the cavity gradually influences the cavity 
field. The mirrors in the cavity can be considered as beam splitters. An arrayx consisting of an 
infinite number of beam splitters can model a reservoir coupled to the cavity field [I]. 

It is convenient to utilise quasiprobability distributions such as the Q function to describe 
states of quantum-mechanical systems in phase space. We briefly show that the fields at the 
output ports of the beam splitter can be expressed by the convolution of the quasiprobabilities of 
the input fields. U'e then use the convolution relation to derive the Fokker-Plandt equation for 
attenuation of the cavity field coupled with the phase-sensitive reservoir. 

It is known in quantum mechanics that an amplification process is inevitably accompanied 
by the increase of the quantum noise in the system. In other words the amplification degrades 
an optical signal and rapidly destroys quantum features that may have been associated with the 
signal. The nature of the amplifier affects the physical properties of the amplified states of light. 
The phase-sensitive amplifier is conceptually based on the establishment of squeezed light and 
enabks a squeezed input to keep the property for a gain larger than the cloning limit 121. 

The amplification process can also be modeled by an array of beam splitters, where the beam 
splitters are somewhat modified from the usual sense. We find the convolution relation for this 
modified beam splitters and the Fokker-Planck equation is derived from it. We then formaiy solve 



the Fokker-Planck equation ior the phase-sensitive amplifier for nn arbitrary input field d study 
the photon statistics of the amplified field. 

2 Phase-Sensitive Attenuation 
Consider that two fields at the two rnput parb of a W beam sphtter art mpeqmd. For 
convenience we call one input field the signal and tb other the noise (Fig. 1). The input i g d  
mode b with its annihilakion opatar 6 is mperpad on the ndse mode a with its annihilation 
operator i by the beam splitter whose amplitude dk t iv i ty  is T = sin8 and transmittivity 
t = mse. The two output Wd annihilation operatom C and d are related to the barn splrtter 
input fields by the tnndMmatioa using the beam iplitter o p n t a  b !3]. 

Fig. 1 Beam splitter with the signal input in mode b and the noise 6etd input in mode a 

A field state can be represented in phase space by quasiprobabilities. Let us chooge to use the! 
positive P-representation to describe the fields, The density operatam A and for the noise and 
signal fields are then written with the positive P-representation P.,*(a, 7 )  as 

The fields and @d at the output ports are calculated by the beam splitter transfamation: 
BU -. Ah. With use of the transformation matrix Eq.(l) we find that the pasitin P- 
representation for the field at the port d is found in the form of the convolution relation: 

The Q function is another quasiprobability function and is well-defined even for the nonclassical 
state. The paitive P-representation is defined in four-dimensional space. The Q function, which 
is defined in two-dimensional space, i s  therefore sometimes easier to treat, so we will extend the 



convolution law for the uses of the Q function. The positive P-representation may be defined as 
tlie Fouricr transform of the characteristic function. 'l'he characteristic function C(P)(~)  is related 
to the characteristic function C(q)(() for the Q function as C(P)(() = C(q)(()exp(](l2) . By using 
tile convolution theorem, we can factorise the inverse Fourier transform of the convolution law (3) 
a9 

@"(o = c:p)(rt)@)(y) . (4) 

Using the relation between the characteristic functions, the convolution relation for the Q function 
is found as 

\Ve now derive the Fokker-Planck equation for the phase-sensitive reservoir using the model 
of an infinite array of beam splitters (Fig.2) [4]. The total duration of time when the field is 
coupled with the lossy channel is denoted by T, the total number of the beam splitters by N, and 
the interval between the adjacent beam splitters by AT. The beam splitters are first taken to be 
discrete components, but their number, N = TIAT is later taken to infinity in order to model a 
continuous attenuating reservoir. Under the assumption that the reflectivity is very small for the 
beam splitter, Eq. (5) is written as 

N beam splitters 

Fig.2 The phase-sensitive reservoir modeled as an array containing an infinite number of 
beam splitters. The signal is injected from left and the independent squeezed fields (all with the 
same properties) are injected into the ~ t h e r  ports. The transmittivity is considered to be nearly 
unity. 

To calculate the effects of attenuation, we need an expression for the output signal operator in 
terms of the input operators. To simulate an attenuator, we consider the beam splitters forming 
a continuous array by taking the limits N -, oo, AT -+ 0, and R -, 0 . These limits cannot 
be taken independently: N A r  should be kept constant. Also, the total energy loss within T 
is described by 1 - exp(-~T),  where K is the attenuation coefficient, and this loss should be 
equivalent to the beam splitter loss so that R E* KAT. 



Let us define Q(T; a) as the Q function of the signal field incident on the beam splitter at 
time T, Qq(P) as the Q function for the noise added to the signal at the beam splitter, and 
Q(r +  AT;^) as the Q function for the signal leaving from the beam splitter. The squeezed 
thermal fields produced by the independent stationary sources act as noise in our model. 
h m  Eq. (6) ,  we obtain the relation 

where E a + f a - fi P. With the Taylor expansion for a function having a complex 
argument: 

where the real and imaginary parts of a and P are respectively denoted by al, a2 and PI, &. The 
function Q is the simplified notation of the function Q(r; a). Substituting Eq. (8) into Eq. (7) we 
obtain 

Taking the squeezed thermal state as noise we substitute the simple Gaussian integration of 
Qq(P) into Eq. (9)  and obtain the Fokker-Planck equation for the field coupled to a phase-sensitive 
attewation reservoir: 

where N is the mean photon number for the squeezed thermal field and the phase-dependent term 
M is zero when the field is not squeezed 141. The Fokker-Planck equation is relatively simple and 
observables can be calculated as correlations of the quasiprobability function. 

3 Phase-Sensitive Amplification 
The amplification process can also be modeled by an array of beam splitters similar to that for 
dissipation. In their experiment with phase-sensitive amplification, Ou et al. have a nondegenerate 
parametric amplifier where the signal field is amplified and the idler mode is coupled with the 
squeezed vacuum [5]. As in their experiment a two-mode parametric optical amplifier is modeled 
here by an amplification beam splitter matrix. For a twemode parametric amplifier the signal 
input b is transformed into the amplified output d with unavoidable noise ht :  



where g > 1 is the infinitesimal amplification factor. We are going to build a beam-splitter-like 
relation for amplification, and consecutive application of an infinite number of Eq. (1 1) will give the 
final timplification result. The actual gain C by the amplifier will, thus, be proportional to g. The 
unitary amplification beam splitter o erator has been introduced in analogy with the twemode P- squeezing operatrr as BI = exp[iOl(d bt + 8611 with coshfll = ,/lj and sinh thctdr = 4Fl. 

To analyze the beam splitter transformation for the amplifier, let us assume that the input 
fields are expressed as a weighted sum of diagonal coherent components: 

where P, and Pb are respectively the Glauber P-representations for modes a and b. "Racing the 
output field over mode c, we find the output density operator for mode d: 

and hh is the thermal field density operator for the mean photon number fi = g - 1. Even when 
both the signal and the idler tields are in the vacuum state, i. e., a = @ = 0, the amplifier 
brings noise into the fields. The density operator for the thermal field can be written with its 
quasiprobability PT(h) as 

By using Eq. (14), we find the Glauber P-representation for the output held as convolution of the 
three P-representations 

The inverse Fourier transform of the Glauber P-representation gives the characteristic function 
for the output field in the formmf the product of the characteristic functions for the input modes 
a and b and the thermal field. We can simplify this relation using the relation between the 
characteristic functions for the various quasiproba,bili ties. The Fourier transformation of this 
shows that a modified convolution between Qb for the signal Q function and P, for the noise 
P-representation results in Qd for the output field: 

The convolution relation for amplification differs from that for attenuation (5) because of the 
unavoidable extra noise due to the thermal field (14). 

Consider arl array of N beam splitters which satisfy the transformation relation (11). To 
simulate an amplifier we will take N -. oo and let the infinitesimal amplification factor for each 
beam splitter be given by g .= 1 + c m 1. After a signal passes through the N beam splitters, it is 
amplified by the factor of C = e y T  = ( I  + OH, where 7 is the amplification coefficient. By using 



the Taylor expansion of Q function (16) to the second-order under the asa~mption t w 0 (we had 
r 0 for attenuation), ve  obtain the Fokker-Planck eqllation for amplification: 

The Fokker-Planck equation (17) is solved for an arbitrary signal amplified in the phaee-sensitive 
reservoir. The Q function co~~esponding to an arbitrary input field can be written as a weighted 
integral of Gaussian functions: 

where A = ?(p + v) ,  B = $ (p - u)  and Pb, u) is the positive P-function for the fidd. It has bcm 
recently shown that if the initial Q function of the quantum system is (complex) Gaussian, then 
the solution of the Fokker-Planck equation (17) is also Gaussian with time-dependent parameters. 
The Q function (18) is a weighted integral of complex Gaussian functions, so one can &tm I the 
time evolution of the input state 

where the timedependencies of the amplification parameters are 

A(t) = A@ = A*' , B(t) = B@ , N,(T) = (N + l)(G - 1) and Ml (r) = M(C - 1) . 
(20) 

The invexst! Fourier transformation of the Q function (19) shows that the characteristic function 
G$p for the Q function of the amplified field is the product of the characteristic function C$) 
for the P-representation of the squeezed thermal field and that a@ for the Q function of the 
amplified signal without noise 

The convolution relation for this relation is then in a form analogous to Eq. (16) for the amplifi- 
cation beam splitter superposition of two input fields. 

The antinormally-ordered moments can be calculated from the characteristic function C(d: 

We can also consider the phase-sensitive amplifier which can be implemented as a stream of 
three-level atoms in a ladder configuration with equispaced levels injected into the cavity where 
the initial state of the field has been prepared. We denote the population in the uppermost state 



@ h, the popdaion in €he bw& state by p, and the oobmas betwen them by p, d h. 
T b  akHnic &en- p, and bring abut the phaae-msitive &ect in the tw+photan i imw 
@ i f i e r . T h e ~ M a n d M c s n t h c t t b r ! r e p r e a e n t e d b y h r r ~ k v a r i a b f a s  

Tb n o n n s r t t y d  pho8on number mrhce, : [An)2 :, w h  (An)s = (d)- (N2, smmm-es 
kk Mat ion of the phofoR number Rwt- from the ibissdm phdxm Wda. Tiie Eob 

&Id haa the d l y - Q t d d  p b t a  aumbe-r VLVtmce m, while the qsmhm 
& & , h i a n  field has it less khan m. ft is irrr$er than zero foa the troisy super-Poidan W. 
ma use Qb Eq.f22) we find thtt nannafty(ird4 g@btazi r lumk Vwimm 

: (An):, := €9 : (AnX' : y, (34) 

Btfresddi~uehb~iw,titesmptiffedfieMbteear~aumb.erff~~jOR~h 
wfi$d. fthktyeeenthdttiftfmeatomic~e~~,Lmmtbrrbditi=&LJ~ 
@%im. Hmwt  irs the atomic cdmmc;e h aomm we CCM have the neg&ve wise k, h a  
the dgnal b troise ratio. 

U 4 i  ahmi injected into the cavity is in atomic CT)- trrre have tire retation h ~ ,  = bv 
and the &tie n(sfse (25) ~ a t l  be written es 

whicfi has to be negative to have the dditiw noise aegative. The b n i c  operators e and rrf be 
a simple restriction, 2(ata) - ((a2) + ((at)')) 2 -1. It L thus required that 

for %he noise reduction in the amplified signal. The noise reduction in thc: photon number 8uc- 
tliatiotls scterfis to bc possible if the input field satisfies Eq.f28). Howevcr we ehrrutd not faif to 
not,ice that the condition (28) is rcfatcd to the initial photon number fiuctuatiotts. Because the 
sxpcctation value of an operat.or times its hcrtnitiiln conjugate is again positive, 

It, is  ciuily wot~ f r o ~ t i  Eqs.(28) mid (29) f . f l i~ t  tllc illput ficld should hc stq)trr-Pcti.i.:ir ;I;~T, i r *  i l , , ; ' i .  . - ,  
a possil~ility to r.l!duccr the plloton 11iti111)rs fi~ict\iations by the anqtlificatiot~. If ELL i ; , ~ , r ,  ;.I 't;  1.. 

130issnniall there is uo il~tcl.~t'ctia~; ~)C(~~VCC'II the t.svu conditiot~s (28) atld (29) SO t . l i i t i  HY: c';.~II Sily 

that t llc I'i~isso~liatl field docs not tocon~c s ~ : l -  I 'oissunisn during t,hc a1nplific:~t i c  111. 
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QUANTUM WCHANICAL NOISE IN A MICHELSON 
INTERFEROMETER WITH NONCLASSICAL INPUTS 

- NONPERTURBATIVE TREATMENT 

Sun-Ktm King 
Deparhnent of Phgsics, Ndiond Tsing Hua Uniuersity, 

Hsinchu, Taiwan SO, ROC 

The d , ~  of the quantum-mechanical noise in a two-input-port Michebn interftr- 
0-r within the Eramework of the Loudon-Ni modci rwt solved exactly in tau, general 
cases: (i) orre coherent state input and one state input, apd (ii) two photon number 

inputs. Law intensity limit, exponeatid decaying signal and the due to mixing 
were discussed b M y .  

1 Introduction 
In 1981 the effects of intensity ffuctuations in the two light beams and radiation pressure on the 
mirrors in a Michelson interferometer were modeled in a unified way by Loudon (11. In 1987, Ni 
extended the model to include the intrinsic uncertainties of the mirrors and obtained an exact 
sdution of the variance of the quantum mechanical noise for a coherent light source with arbitrary 
intensity 121. These results awe used recently by Ni in proposing an experimental scheme for 
controlling a macroscopic quanturn state of a mirror by light shining [3]. 

Quantum-mechanical noise of a Michelson interferometer is an important noise source in gravi- 
tational waves detection. Experiments had reached the shot noise limit already. Photan shot noise 
decreases as the intensity goes up. Roughly speaking, it is propotional to the inverse square root 
of intensity. But, it was argued 141 that t.he fluctuation of radiation pressure on the mirrors would 
increase as the intesity becomes higher so that a minimum would be reached, called the "standard 
quantum limit" 141. OH t.he other hand, various works 151 show that such a measurement (without 
loss) implies no limit while squeezed states were used. 

With the knowledge of squeezed states and that semi-classical model of interaction between 
a macrwopic object and photons, we ~t chance to probe this problem in detail. Within the 
framework of the Loudon-Ni model, the method of Ref. [2] was extended to  obtain an exact 
solution for the variance of a two-inputport Michelson interferometer where a squeezed-state 
light source and a cohererit light source (both with arbitrary intensity; were applied on each port 
respectively. Faithful matrix representations [6] were used in this calculation. The final result 
is more complicated. Nevertheless, it can be organized in a similar form as in Ref. 121. Photon 
number state inputs can be treated in a similar way. 

Due to  the complicated restilts we've got, the physical implication is yet under study. However, 
some feat.urcs and observation were discussed in the final section. 



3 The Model 
The usually input port wirs identified as "a-moden, with an uinihikrioa operator "an ("' aur 
omitted for simplicity). The usually unused port was cdled "b-mode", with an anddatba 
operator "b" ('^' was omitted, ah). Both satisfy the csnonicsl commutatiosl relations, say, 
[a,at] = 1 and (6, bt] = 1. Beam splitter played the role of a mixer here. It combined both inputs 
from a-mode and b-mode then the mixture was sent into two arms as a*-mode and a*-mode. 
Therefore, 

a = (aI + a2)/&, b = (a, - *)/a. (1) 

A phase was chmn.  Nevertheless, it losts no g e d t y .  The re&ction coefkircnt of srm o w  is 

where "argrn is a constant phase (real) and 2i1 is the optical pakh length d the 6rst am. k is 
wave vector as usual. Since 2 is a hermitian operattor, R is a unitary operator. Tbe annihilation 
operator on one of the output ports, which was named " d - d e n  as in Ref. [1][2], d be s lineorl. 
combination of thoee from both anus. The d h e ~  output port was caUed "c-mode!"' Tkdwe, 

where the phase term eik was kept for generality. Energy consemtion was fulSlled. 
To treat photon shot noise and the fiuctuatioa or radiatitm pressure separately was c r i t i c id  

by Mant [7] on the p u n d  that it seems to assume some knowledge of the routes through the 
interferometer followed by individual photons, which is contrary to our understanding of quantum 
mechanics today. Loudon proposed a unified calculation [l] by introducing a coupling constant C. 
Ni pointed out that the position of the mirror itself should be a quantum-mechanical operator 121. 
It'll contribute its intrinsic uncertainty to the total quantum uncertainty of the position of mirrors. 
In the low intensity limit, it was shown that the total uncertainty can be expressed as the sum 
of all three noise sources. Situation gets complicated at hrgh intensity. The independence and 
correlation at  different intensities among these noise moments provide wa-ys to monitor and control 
a macroscopic quantum-mechanical object 13). 

The Loudon-Ni model can be rephrased as the following: 

kZt = kZ1, - G a i t a l  and k& = k&, - C;aZta2 (4) 

bVhcrc CJ is the coupling constant which might be different from each mirror. The prime was to 
differ our notat,ion from the previous one. There might be a factor of 2 difference. carresponds 
to t.hc position operator of the first mirror ~*it.hout including the coupling cffwt. 5 is the mirror 
position operator we measured finally. 

Thc* coopling constant. C' can bv estimated below. Suppose thc mirror was hanged aq ii 

simplc pend~~l~iln with mass 11 and lcrigth I .  Its restoring force would be Ax-Mg/l whew Ax is 
it s~~ial l  diq>la(.crncnt and g i? thc grat?itationai ac.celeration. Each photon saff~rs a morncntrint 
('11a.rg~ 2tlk aftc.r t)rc.~r rcflrc-ttd hack from t tic mirror. Oil hiiiance w got C' = 2hk21/(Xfg) 

Piroton clt\twtor usi~ails has its oii.11 clriilntilm cfficicncq.. dcnotcd by <. which was assumed 
idts~iticil! for both c.-~riode allti tl-~nodc. Tllc nicasurcd ~lioton iiitensity \\.or~ld. ttirrcforc. c1ifft.r 



from (d td )  and (ctc) by a factor (. We've considered two detection &mes as in Ref. 181. The 
first is direct detection: 

(m)dir = (4 = €(dd)- (3) 
The other is difference detection, which is the difference between the two output ports: 

Only the variances of diffm~ce detection =re presented in this articfe: 

or, equivaiently, iu its expansion form: 

TBes3e are what we want to calculate with our various inputs. It a~uld be more compdicsted sBd 
d d - d e p n d e n t  when considering photons with different frequencies. 

3 The Solutions 
First, a solution for coherent state - squeezed state inputs R'BS sold .  We'll have to deal with an 
expectation value, (exp[A(ata + btb) + B(bta + atb)]), where the state vector 1). is in coherent 
state /a), / )b is in general squeezed state If?,<). C = se*, where s is squeezing factor and 8 is 
squeezing angle. The coherent parameters a and 19 are complex numbers with their phases 4, 
and tjp respectively. 

Since coherent states la) is a's eigenstates, it is reasonable to reorder those operators as 

exp [.4(ata + btb) + ~ ( b ~ o  + atb)] = exp(l'atb) e ~ ~ ( ~ * a ~ a )  exp(I'btb) exp(2bta). (9) 

To get the coefficients C!, V, ).: 2, it would be much easier to use faithful matrix representations of 
those four operators. Suppose .Yl 1. Xz2, Xlzt Xzl are their corresponding matrices, which satisfy 
the same commutators as ata, btb. atb and bta do. It is not difficult to find a set of faithful matrices 
(2 x 2) whirh. !,a\-c the samc relations. The operators equation becomes a mat.rix equation after 
this subst it  ution. Solvit~g this matr ix eql~ation w got 

I '  .-. Z = tanll B. 1- = -4 - In(cosh f?) and I' = -4 + ln(cos1l B). (10) 

.After rc'orclcrit~g, t h ~  calrtilatiotl of the expect.ation value on a-mode (rohercnt state input) 
(-it11 1w carrictl out. ( i t :  cxp( \ 'ata) fa)  tvas given in Ref. [Z]. What left woiild be a r.alculation 
or1 h-t~ioclt- !;cl~~c*t.ztri s t a t c  input). which looks like (3, (1 exp(l7a*b) cxy(Ybth) exp(t'ciht)I;9, (). A 
s . ; ( ~ ~ ~ t ~ ~ ~ t ~ i l  startb c.;tr; Ijt* vspl.c*wrd a \-a(-tirim state operatrd by a sjuvczinp, opcrator S(s. 8) anti 
a ciispl;tt.c~;lc.at opt8rator D(c#. a) wilcrc 



Subetitute this definition of squeezed state into b-mode, with some algebra, we may expm its 
expeetation %-due as the vacuum expectation value of a product of seperating t e r n  

To solve this, we turned t h w  operatars into their mmd mderiag. Those operators form a Lie 
algebra. With axresponding commutators and their structure coastants it is possible to fuad a 
baithful matrix repmentation b]. Therehe, the operator equation could be reordered as 

and, its companding matrix equation can be dved easily. We got 

It is now straightfitmad to d p r t e  the tumrtainty of photon measwements. The ~~ 
d u e  of tbe photon number of d-mode is 

where lbl is W y  proportioed to the input intensity and & is an exponential tactor which 
d be d i s d  later. p, is sqmaing dated and & is ~kntially the dieerewe in optical path 
length with additional terms. 

04 - a'f' - Ip812eY' 
h, = Iholei& = (n) + - f 9' 

P2 - lhl2SY' (2 - 



h diietence detection. Basically, the Michekon interferometer is a transducer which tuns a 
ctraal~e of the arm length into a change of light intensity. The m d  inteasity (m) d its 
variance can be transformed back to the uncertainty of arnr length, or more precisely, the difference 
of the positions of t u ~  mirrors. Nre may write down this uncertainty as 

w h  ( A m ) L  was given by Eq. (7) or, more explicitly, by Eq. (8). This is just the in- of 
signal to noise ratio. The final result is 

for difference detection. Where (n) = /a/' is the intensity of the input coherent state on a-mode. 
8, is shorthand notations of complicated modification on intensity square, H2 is its phase. E" is 
andher exponential factor which decreases the interference terms in AZ-. Im(Q) and Im(Q") 
are imaginary parts of Q and q, which came from solving the matrix equation Eq. (13) or its 
similar version. All of them can be evaluated exactly as follow. 

09" - a* f" - 2jp,12eY" 
h2 = lh21ciH' = [(n) + - ~ 9 "  $ 1 ~ ~ 1 ~  - 2 1 ~ ~ ~ e ~ ~ ~  

d - l ~ , / ~ e ~ ~ ~  ( ~ 2  - I P ~ I ~ ~ ~ ~ ~ ) ~  1 + (2 - ~ ~ l ~ e ~ ~ ~ ) ~  

Lf" and Y" are similar to Cr' and Y' but with AC' and CC' replaced by 2ACr and 2CC'. fn,  gn, 
Ev and Im(Q") are similar to j, g, & and Im(Q) except Y(Yt)  and U(U1) were replaced by Y" 
and U". In our calculation, it was assumed that C; = C; s C.  

We now turn to  the photon number states input. Photon number state is a quantum state 
without classical correspondence. Its second order coherence is minimum such that its ?umber 
variance vanished. 

Suppose the i n c ~ t  state is In,), G lnb)b with ( r h , ) ,  = ( a t ) * - / a I ~ )  and Inb)* = ( b t ) n b / & f l ~ )  
where n, and nb &re real numbers. With a different reordering from Eq. (9) and the assumption 
AC' = 0, we have 

nb x{n,cos2C',Fl(1 + tze. 1 - n,, l:sin22C') - - IFt(nb. -na, 1; sill2 2C')) (29) 
cos 2C' 



where tF1(a, 6, c; z) is hypergeometric function. in perfect detectitxi, that is, ( = 1, the variance 
of t8t photon detection becomes 

Them are relations between a hypergeometric hnetkm and its contiguous functions. Fbtk 
simplification is posgible. 

4 Discussion 
A km intensity limit can be obtained easily 111 while bmode was in vacuum state. In short, 
(AZlosa)' 2 @/ k2. We have searched in a limited parameter space and found no videti of 
this inequality (within error). Though, it is not a proof of that limit. At very high intensity, the 
dectmce R has little effect. The noise behavior can be explained by the mixing of two input 
states. Hi& order moments are needed to characterize such a superpasition. On the other hand, 
that noise can be eliminated by setting two input states at nearly the same intensity. Nevertheless, 
there is still an exponential factor & in signal (cf. Eq. (25) and Eq. (26)). It doesn't show up in 
classical solution and it daveys decreases the signal. We felt further discussion to another work. 
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Abrtrrct 

The optical Selrradinger eat states ate simple realisations of quantum states having Ron- 
classical features. It is shown that vibrational analogues of such states can be realized in an 
experiment of double pulse excitation of vibrionic transitions. To track the evolution of the 
vibrational wave packet we derive a son-unitary time evolution operator so that calculations 
are made in a quasi Heisenberg picture. 

1 Introduction 
The and- of the ciassicaf harmonic oscillation in the quantum tnechanics is the coherent state 
1 a) defined as an eigenstate of the annihilation operator B ) a) = a I a). Botb in the pai t ion and 
in the momentum representations the absolute square of its wave function has a Gaussian shape. 
It performs harmonic vibration in time with an amplitude that depends on the initial excitation. 
The superpositiotl of two coherent states [ I ]  

situated sufficiently far fro111 each other in the phaw-space can be considered as the superposition 
of two n~acroscoyically distinguishable quasiclassical states called Schroedinger cat state. 

Recently great interest has been paid to such srrperyosition states in quantrim optics f2-ill. 
Non-classical features of Schroedinger cat states i.e. squeezing, 141 sub-Poissonian statistics, oscil- 
lation in piloton statistics, etc. were discussed rather widely. It was shown f5, 71 how the quantum 
interference between the coherent states involved in the superposition leads to the occurrence of 
non-classical features. Due to the interfererice a fringe pat tern appears between the Gaussian bells 
representing the cot~erei~t states in the Wigner function picture. This fringe pattern is transformed 
characteristically wheri the positiotls or the nurnber of the coherent states changrs. There are sev- 
eral promising scltetnes to produce noticlassical states of light using the concept of Schroedinger 
cat states [8, 91. 



A wide itlterest was addressed to wave packet formation and motion during Frmck-Condon 
transitions in both theoretical and experilrlental poirrts of view [4, 10, 111. In this paper we shall 
discuss the possibilities of producing Schroedinger cat like superpositions of the vibrational states 
during Frmck-Cat~doa vibriouic tratlsitio~ls in molecules or in crystals. A s  we shall see such states 
can be created by two short pulses separated in time appropriately. 

2 The model Hamiltonian 
Let us consider a ooe-vi bratioaal-mode tnodel specified by the adiabatic Hamil tonians 

correspondi~lg to the rl~olecular vibrations in initial (i) and excited (e) electronic states. Here ci,e 
are electrottic energy levels and w i ,  vibrational frequencies. 

In terms of the annihilation yhonon operators b associated with the vibrational potential of 
the excited states, 

ti Mu, 

the Harniltonians of Eq. (2,3) have the forms 

1 A. = ce + i ~ e ( i t 6 +  Ut). 

The Hamiltonian of the initial state can be diagonalized by the unitary operator 

Here g and r are disylace~nent and squeezing paranieters correspondingly. The vibrational ground 
state of the initial electronic lev4 is 

lo), = 1 O)e, (8) 

where I 0), is the vibrational gro1:od state of the excited electronic level. 
The Hatl~iltoniirn ~ ' ( 1 )  describing the interaction with the external field has the form 



where 
E ( t )  = e(t)exp(-ifl(tt), 

iziipl is t h e  annihilatiorl operator of the i(c)-th electroti level, 4, the  dipoir t~.atrix elenlent of t h e  
electronic t r a n s i t i o ~ ~ ,  1 e ( t )  l2 and Ro are the  etlvetope ftttlctiot~ atld t h e  cclttral frguerlcy of the  
exciting pulse. 

Suppose tltc electruaic traltsitiut! takes place ittstaatat~m>usly. T h e  etnerging vibrational wave 
packet is  described by Eq, (8). The t i r~ie  e v o l u t i o ~ ~  of the  wave packet in the  excited level is 
driven by the  unitary operator exp[-(i/h)ket]. So the  evolution of the  vibration from -to until 
t is d e s c r i l d  by the unitary operator 

Let us assume tha t  initially, a t  t = -00 the  systetii is in the ground s ta te  1 i )  I O),. Aft.er t h e  
exciting prllse has p a s 4  according t o  the  first order pcrturLation theory t h e  elmtronic-vibratio~ial 
wave function takes t h e  fortn: 

Here I {E( t ) ) ) ,  is u~iriorr~ialized vibrational wave functio~l of t h e  molecule i t t  t he  excited electronic 
state: 

where A = fi + (u. - wi)/2, 0 = (c. - ri)/8. T h e  timedeyel~dent part  of & ( t )  is the  exponential 
of k.  Assume the  pulse duration is short compared with the  observatictti tintr. t. 111 this case 
we can put the  rtpyer limit of the  integration t o  infinity. This condition means we perform 
measuremet~ts after the  excitation pulse has pass&. T h e  illtegratiotl in Eq. (13) car1 be done 
explicitly. Separating the  operator ia Eq. (13) in front of the  vaclrum the  non-unitary t ime 
evolutior~ operator is 

= cxp (- tki) exp [- 2u2 

where 6 = A - G. 
In t h e  following sections we sliall investigate the  properties of the  vibrational wave function of 

Eq. (13) corisideri~ig twin exciting laser pulses. For the sake of simplicity we suppose tha t  there is 
110 change of t h e  vitratiotlal frequency due t o  the  electronic transition (we = w, = w). In this case 
the  operator ,k in Eq. (13) simplifies t o  a displacement operafor D and the  excited vibrational 
wave function has the  form 

{ E ( ~ ) J ) .  = exp (-:+tit) exp [-'Yeii 2u2 - '''1 I g)coh 7 

where ( g)eoh is a colierent s ta te  with respect to  the pllonon operator b. 



3 Dorlble pulse excitation 
Let us cotlsider two idelltical Gaussia~l shaped pulses followi~lg each other by an i~~terval TI 

here 4 is a possible additional phase difference between the subpulses. 
The vibrational state produced by such a twin pulse excitation has the form 

To investigate the quantum properties of the superposition state of Eq. (18) it is convenient 
to consider its W igtler fu~ictiotl 

For extrenlely short pulses we have coherent superposition states which are the vibrational ana- 
lag of the so called optical Schroedinger cat states. The Wigner function and the time dependence 
of the absolute square of the wave function are shown in Fig. la and Fig. lb  correspondingly. The 
Wigner function consists of two bells of the superposed coherent states and an interference fringe 
between them. If the coherent states are far away the fringe has a lot of well-pronounced peaks. 
On the contrary, if the coherent states are near enough the fringe has only few peaks. In this case 

fringe can partially merge with the bells and, depending on the phase between the component 
sta may decrease the uncertainty of one of the quadratures X+ = 6 + bt or X-  = - i ( b -  bt) 
below be vacuunl level. 

4 Discussion 
Baumert et. al. first excited the No2 molecule by a short laser pulse 1121. Applying a second laser 
pulse they exciteci the state once more. Depending on the time delay between the two successive 
pulses they had a molecult? on another excited level or dissociated fragments. We suggest a similar 
experiment with a double pulse primary excitation leading to a Schroedinger vibrational state on 
the level e (Fig. 2). Applying a third pulse when the two parts of the Schroedinger cat state are 
furtilest frorlr eacl~ other one obtaitls a superposition of a molecule with its fragment. 

This chemical cat state can lead us very near to the original paradox of Schroedinger. Let 
us suppose that this nlolecular superposition is superposition of the undamaged form of a virus's 
DNA with a de~~aturalized variant of the same virus. The resulting 'Schroedinger virus state' 
would be, in fact, a qt~atltum mechanical superposition of a "living" and a 'dead' virus. 
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CORRELATED LIGHT AND SCHRQDINGER CATS 

Abstract 
The SdbrWmger cat male and female states are dismmd. The W- a d  Q-funcUolre 

o f g e n e r a l i 9 e d ~ ~ a r e g i ~ .  W o e a r ~ o f p h o r o a s t a t i s t t c s i s ~ .  

1 Introduction 
Tbe integral af motion which is quadratic in podtion and tmmentum was found for ck&d 
uaillator with timedependent f k p n q  by Ermakov 111. Two time-dcpmdent inkgrab of wtian 
which are linear forms in position and mmentum Too the dassid and quantum oscilkrbor with 
hedepen+z! frequency were found in 12); for a charge moving in varying in time unilarm 
magmt.ic Wd, this was dane in t3). For the multimode nonstationary oscillatory systems. d 
new integrals of moth, both of Ennrrkmt's type (quadratic in positions and momenta) and linear 
in position and momenta, gememking the results of 121 nrere constnrcted in 14). We will cmsider 
belaw the param&ic &llabor using the integrals of mobion.The W w  functiin of multimode 
# light is studied usi~g such special functions aar multiwariable Hermite polynomials. The 
theory of parametric 0s cillator is appropriate to consider the problem of creation of pWms 
fmn vacaum in a resonator witb moving walls (with moving mirnws) which is the phenomenon 
based on the existence (?I b i m i r  forces ( d e d  nonstationary W h i r  effect). The monabr 
with moving boundaries (moving mirrors, u.&a witb time-dependent refractive index) produce8 
also effect of squeezing in the light quadratures. In the high energy physics very fast particle 
dlisions may produce new types of s t a b  of bomn &Ids (piorrs, for example) which ate s q d  
and correlated states studied in quantum optics but almost &own in particle physics, both 
theoretically and ex~.menbally. 

2 Multimode Quadratic Systems 
The generic nonstationary linear system has the Hsmiltonian 

where we use 2N-~&ors Q = (pl, f i , .  . . , p ~ ,  q,, e,. . . ,qN) and C(t), as well as 2Nx2N- 
matrix B(t), the Plan& constant h = 1. This system has 2N linear integrals of motion (51, (61 
which may be written in vector form 



T&e real symplectic matrix A(t) is the solution to the system of equabiaur 

If tar time t = 0, one has the initid W i  tunction of the system in the form 

the H r i  function of the system at time t is (duc to the density opemtm is the integd of 
motion) 

W(P, e t) = WO[W)Q + A(t)l. (6) 
This formula may be inberpreted as transfmmth of input Wigner funcbian into output Wigaer 
functb due to symplectic quadrature tzansf~~m (2). An optical hear trausbator of p b  
distribution function using this output W i  fundion i s mwsted in M. 

The Hamiltonian (1) may be rewritten in terms of creation and annihilation operators 

where we use 2N-Vedors A = ( at, a2,. . . , a ~ ,  art, uzt,. . . , a ~ t )  and E(t), as #ell as 2Nx2N- 
matrix D(t). This system has 2N linear integrals of motion (51, (61 w h i  are written in vector 
form 

Ao(t) = M(t)A + N(t). (8) 
The complex matrix M(t) is the solution to the system of equations 

where the imaginary antisymmetric matrix a is 2Nx2N-analog of the Pauli matrix -ow, a d  
the vector N(t) is th solution to the system of equations 

Analogously to the Wigner function evolution, if for time t = 0, one has the initial Q-fmction 
of the system in the form 



the -tian d the system time t  is 

Heru! a = (q + ap)/JZ. 
Fat time-indepedmt Hamiltmian (I), th matrix A(t) is 

and the wtor A(t) is 

A(t) = r( e n p ( ~ ~ 7 )  C C(r) dr. 

Fa time-independent Hamiltonian (7), the makix M(t) is 

and the vedor N(t)  is 

N(t) = l eq , (@Dr)  r E(r) dr. 

For litlear systems, the W~gaer function of m c  squeezd and cofielated state 
~ d ~ s b a t e ~ ] ) h a s ~ m B o r m d i t ~ e a l ~ i n [ 3 j .  

Thus the evolution of the W i  funct,ion and Q-function for sy&ems with quadratii W h o -  
nic.ms for any state is given by the following pmcrij&b. Given the W ' i  function W (p, q ,  t = 0) 
for the initial moment of time t = 0. Then the Wiier  function for t h e  t is obtained by the 
rep-t 

W@,q,t) = W(p(t)* q(t)* t = 01, 
where timedependent arguments are the &neat i n t q d s  of motion of the qurrdtati system Swnd 
in [5), 14). and [9). Thii iormula was given as integral with &fundim kernel in [lo]. The iinear 
integrals of motion describe initial values of classical t r a m e s  in the phase space of the system. 
The same antab is used for the Q-function. Namely, given the Q-fimction of th quadratic system 
Q(B, t = 0) for the initial moment of time t = 0. Then the Q-function for time t is given by 
the replacement 

Q(B, t )  = Q(B(t), t = 01, 
where the 2N-vector B(t) is the integral of motion linear in the annihilation and creation o p  
erators. This ansatz follows from the statement that the density operator of the 1Iamiltonim 
systenl is the intcgral of motion, and its matrix elements in any basis must depend on appropriate 
integrals of motion. 

3 Multinlode Mixed Correlated Light 
Tile tncwt gcrl(:ritl ~ i i i x i * l  s q t ~ t : ( ~ t x i  st,i-ttt(! of t,he N-moctc light witlr a (;ailssinn ctvnsity ct;>c.rator p 
is c1cscriLtd 1)y t hc \\'i;;lir.~ T:~:lt.l i011 \\'(p, q) c)f the gc ~lcric Cauwinn fort~l ,  



* o b e y ~ y r e t a L i o a s ~ ~ .  ~ b 0 p r e l f i ~ a e c e i o a t h e W i g n e r ~  
of panmet& linear system with initial tralue (17) is 

where the st& In > is photon mrmber state, rPhich was c d c u b d  in [ll], (14 and it is 

The trane (21) may be cel- using tbe eq&B Barm of aBe W w  function of the op'a- 
tar Im >< n( (see, M) which is the product of W i i   function^ of oae-dimensid o s c i l b  
erpressedintermsofLaguempol~atsofthebrm 

The function ~s}(y) is dtidimensi011d Hermite polynomial. The probability to h.ve no 
photons is 

PO = bet (M + &n)]-lD exp [ - < Q > ( 2 ~ + 1 ~ ) - '  < Q >], (24) 

where we introduced the matrix 

and the matrix 

The argument of Hermite polynomial is 



and the 2 N 4 ~ o n a l  unitary matrix 

T h e n e s n p h a t o s r m u r r b e r f o r ~ m & & ~ i n ~ d p h o t o a ~ ~ ~ e -  
dispersions 

Thepbotan~but ion TuHction b r t a a d o m d ~  (20) ieghm by thesarnelarnarlrae(a), 
(24)-(28) but with dmnged dispersion matrix 

Thug we have a l i n e a r t r a m s o f  p h o t o n ~ i ~  in (4. 
Let us now introdurn aamptex 2N-vector B = (h, &, .-., ON, &, Bbf, ..., &). 

the Qfunction is the diagonal matr i~~ elenent of the d d t y  operator in ahenmt state basis 
I a, &, . . . , #3# > . This function is the generating function thr matrix elements of the derrsity 
opePator in the basis In> which has been calculated in 1121. In notations mmsponding to 
the Wigner function (17) the Q-function is 

Thus, if the W i t  function (17) is given one has the Q-function. A h ,  if one has the Q-function 
(32), i.e., the matrix R and vector y , the W~gner hction may be obtained due bo relations 

Mu1 tivariable Hermite polynomials describe the photon distribution function Tor the multimode 
mixed and pure correlated light [I 11, [13], 1141. The nonclassical state of light may be rreated due 
to nonstationary Casimir effect [151, 1161 and the multimode oscillator is the model to describe 
the behaviour of squeezed and correlated photons. 

4 Parametric Oscillator 
For the parametric oscillator with the Hamiltonian 



d y i n g  the ccmunuktmn relation 
[AI At] = 1. 

it iseasy toshow bbat packet dutiarrsoftheSchtiidispgereq& may be i n t d u d B M f  
intap&& as mhemt states la], .~nce they are eigpmbtes of the opemtm A (35), of the form 

i s ~ o f t h e g m u n d s t a t e o f t h e ~ a n d  et i sa~lexmmber.  
V . a n ~  of the position and momentum of the pmmetric dl tator  in the state (38), (39) 

andtheandathcoeflkient rof the~t ionandmoanentumhwthevalue~diagto 
minimization of the SduiMinger uncertainty W o n  1171 

If us < 1/2 (a, < 1/2) we have squeezing in photon quadrature components. 
The analogs of orthogonal and complete system of states which are excited states of stationary 

oscillator cue obtained by expansion of (38) into power series in a. We have 

and these squeaed and correlated number states are eigenstatcs of invariant A ~ A .  In case of 
pcriodicd dcpcndcncc of freqtrency on time thc clnssicd sdirtio~~ in stable rcgime may be taken 
in Floquct form 

€ ( l )  = eaK17t(t), (43) 

where u ( t )  is a periodical hi:w.tion of time. Then thc stiit.cs (42) are ( 1 1 8  wir!ncr~ sktcs realizing 
the unitary irrccluciblc rcp~.cscnt.ation of tinit! tri~nslat ioil syni~~lctry , r i l )  OF (,he ilamiltonian 
and tlic paritmcter K dctcrtnilmi t IE iluasic.~lc*rgv .y~.i.t rutn. I11is: ri,,t. si . rl solutions give 
coirt inuotis spect r w n  of quiisicncrgy ~ 1 i ~ t . c ~ .  



The pcrrtlrri asas of parttmetric oscillator me h e  motion ( w(t) = 0 ), stationary hamonk 
d l k  ( d(t )  = 1 ), and repulsive oscillator ( d(t) = - 1 ). The solutions obtained above me 
described by the function ~ ( t )  which is equal to ~ ( t )  = 1 + it, for h e  particle, ~ ( t )  = 8, far 
usuPrl oscillator, and ~ ( t )  = cOBh t + isinht, fot repulsive oscillator. 

Another normalized solution to the Sdrriidinger equation 

iti the even coherent state [Is] (the Sch6dinm cat male state). The odd coherent state of aaPe 
parametric oscillator (the Schriidiw a& female state) 

satides the Schriidinger equation and is the eigemtate of the integral of motion A* (as wen as the 
even coherent state) with the eigenvalue 2. These states are one-mode examples of q u e e d  and 
correlated SchM~nger cat states constructed in (19). The experimental creation of the 
cat states is discussed in 1201. These states belo ng to family of nonclassical superposition states 
studied in 1211, jnj.  
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Abstract 

A classical model of the Schriidinger's wave packet is cclnsidered. The problem of 
finding the energy levels corresponds to a classical manipulation game. It leads to 
at1 approximate but non-perturbative method of finding the eigenvdues, exploring the 
bifurcations of classical trajectories. The role of squeezing turns out decisive in the 
generation of the discrete spectra. 

1 The classical model of quantum systems. 
The quantum theory devotes a lot of attention t o  the classical models of quantum phenom- 
ena. M ~ l c l ~  less attention t o  the quanttlm nlodels of classical phenomena. Yet, ;uch models 
exist. Some classical processes can mimick the quantum laws. One of the most provocative 
examples was given by Avron and Simon in 1986 by explauainir~g the structtrre of t  hc* S a t ~ ~ r n  
rings i r ~  terms of the hand spectrum of the Schrodinger's operator [l](Fig.l). Tht~ir work 
shares some epic qualities of Jonathan Swift p] (something so enormous imitating something 
so little!). 

The analogy. thcugh, is natural and has some antiquity 1.31. Consider thc. 1-ciimcnsional 
Scttrodinger's equation: 

with i ' (z) .  tl(x) and E rcal. Suppose, wc are interested in the h~!titions of ( 1 )  for arbitrary 
E E R, not nectssari ly bclnnging to the spectrum. Denote now the variable x hy t and call it 
tirnv (3, 4 ,  51: put also q = ~ ( t ) .  p = Gr(t). Thc equation (1)  becomes: 



Note, that (2) is simply the pair of canonical equations for the classical variables (1, p of 
a classical oscillator with a time dependent ellastic constant. The Hamiltonian reads: 

The canonical trajectories of (3): 

'portrait' every detail of the Schriidirtger's wave packet $ ( I )  arrd its first. derivative ti?'()). 
This includes the pherromenon of the "classical spectral hands". 

SO HEAVY 

Figure 1. Saturn rings, the macroscopic imitation of the spectral hands (An 

intperfect itnage of Avron and Simon idea: the spectral bands of a cuasi- 

periodic potential for111 a Calltor set). 

Indcctd. assr~tl~t* I ' ( t )  is periotlic or quaGperioc!ic. If  I:' h:~longs to a spectral I)arr(l of 
the Scltri;ditrgcr's opc!rator. t.he wave firactior~s ( 1 )  arc. boutrded in a -. f m  arrcl so arc- 
tlrc. traject.ol-ic-s of 111c c.lassical oscillator (2-3). l'htrs, thta spectral I)atrds t)f i'u) c lc - l i t r e -  tlre 
stahi1it.y I~alrds (trappcld ~~~ot io r r s j  of the c.lassical systerr: (2-3). 111 f I I ~ I I .  ! . ~ r  1: I)c*longir~g to t . l l r  

rcsolvc-t~t set, thc "ac.t of (.reat ioa" was irtcomplt~tc on the! quat~tulr~ si(lc*: :Ire. w;r\?o f~rn,:tiorrs 
( 1 \ Ilave no physic.al n~c-ilni~~lr;. Ilowcvclr, t trc* classical t rajectoric-z t~avc*: t lloy cssc.rrl)c to x 
citltcr for t -+ +cc or I + -oc. pai11ti11~; t lit* pict ~:rc! o f  ;I parti~t~tnt ric: rtssorrarrcc. l l t~ t~ct~ .  t l i t .  

rc~sctltrrnt set. dcfirrc?~ tllc. ilrst.abilit rc*gitl~c* (csscai)c* nlotior~s). *i'l~is c-sl)liti~~?; w l ~ y  the. s1)c~c.t ral 

gal's dcst.ert11i11c. tllr cnlpty sl)ac.ca i r ~  the Sattrrl~ rit~gs (Avror~ i i r i c l  Sirrlorr [ I ]  I .  A tc* t r i l , t ; l t  iilg 
clucstiorr arises: car1 t Ilcrr. 1~ a s i l~~ilar  'c.lassica1 port rail' for t l i e  cliscrctc- sj,c*c.t rllrrl'.' 

124 



2 "Classical point-spectrum". 
Corrsider agairl the classical system (2-3), with E < 0 arid with V(1) in form of a lirnil,ccl 
potential well: 

The corresponding classical ilamiltoniart: 

represents a rat trer simple mechanical system. The classical point is clriven I)? a constant. 
rep~~lsive poterrtial, corrected by an *attractive episode" - L ' ( l ) c i 2  (sc.2 Fig.2). T l ~ c  1notio11 
trajectory. in general, diverges either for t -oo or t -, +oo (a,. thc resul* of a corrstat~t. 
rep~llsivc tcbrnl Ec12 ). For some E .  however, a very special dynatiiical phenomt*notr occurs: 
t,he trajectory. deyart.ing from (I= 0 at 1 = -m, by a rare ciyr~anricnl coinciclescc., retrlrrls 
nsirnl~totically to 0 for I -4 +,x. This phenomenon, c?xtrcn~ally ~~tlstat)le. as exc.cpt iotral as 
arr ecl~pst., is our classical eqrrivalerrt of a bound state [c' ,(x) -+ 0 for .r -t kx]  it*.. i l ~ c *  1rros1 

stal~lc* rriotiol~ for111 irr  q11antunr nrecltanics! 
The "classical portrait.", this time. has no astronomic magnituclc: i t  rcy,rctsc-nts rat hcr 

a kill(! o f  classical sport game. This aspect is specially visible if V ( t )  is a sun1 of b-pcaks: 
\ / ( I )  = -a16(t - 11) - . . . - u,b(t - t , , ) ,  with aJ > 0 ( j  = I ,  2,. . .). T l ~ e  classical Harr~iltn~~iat~: 

t Ire11 clcscril)es a point mass i l l  a corrstallt rel)ulsive ficld, pertrrlht~cl lly a sec1tletrc.c o f  at t rart ivc 
~)trlscs. ( 'ot~si(l~r ~ I O W  ii trajtv-tory del)arting from <I= 0 at t = -x. \+'frat lypic-ally 11appt-11s 
wfter~ tire attractive pulses are over. is that the point must escape either t o  q= -ac or 
ti= tcc. Yet, for some exceptional E < 0, the kicks will provide to  the mass point a 
momentum exactly sufficient to  climb asimptotically to  0, against the repulsivr forces. When 
this happens, E is an eigenvalue of (1). The whole phenomenon resembles a ping-poll; g a m ~  
against t.he repulsive potential. The attractive kicks in (7) are an equivalent of the "ping- 
pong rocket" and the "goal" of the game is to collocate the point at. the very repl~lsion 
center! 

Sott?, that the picture permits one to guess the number of the bound states. Tfrtls, e.g., 
for rc = I (one kick), there i s  only one way (modulo proportionality) to rctrlrr~ the esczping 
poirrt to zero. Henceforth, the sinple 6-well has exactly one boutid state. For rc = 2 ( 2  kicks), 
the point can be returned in two (qualitatively different) ways correspondit~g to tw,, different, 
values of E and two different. bound states. For more peaks, or for contirtl~oris \ / ' ( t ) ,  the game 
complicates and to predict results, some geometry elements on the classical phasc plane 'P 
ar: necessary. 



9 The bifiarcations. 
We shall assume below, that V(t) is a continuous real fur c: ,.;rc, satisfying (5) [the 6 peaks 
(7) are included as limiting cases]. 

One of the oldest observations of quantum mechanics is that the eisenv~ctors of (1) are 
a kind of "recurrent phenomenon", tending to  repeat itself as E c: -.4. This fact can be 
explained in several ways, but its simplest illustration is obtained ;. :rms of the integral 
trajectories of (2  2). 

Since the evoiution equations (2) are linear, the phase point (4) depends linearly on the 
initial condition: 

q(t)  = u(t,a)qia), (8) 
where u(t,o) is a real 2x2 simplecticevolt~tion matrix. The canonical equations (2) in h r m s  
of (8) read: 

For V(t) 0 ( t  5 a and t 2 b), (2) becomes an equation with constant coefficients which 
can be explicitely solved: 

e " ( " ~ ' ~ ( a )  for t 5 a 
eA' -b)q(b) for t 2 b 

where A is a constant 2 x 2 matrix: 

Note that A has a pair oi  real eigenvalues: 

eigenvalues rigenvectors 

A,. = 
1 

+ = I + d m  /I 

Thus, in absence of V ( t )  (i.e. for t 4 (a, b]), the motion on the phase plane P amounts to 
a cotltinuous squeezing: the direction e+ expands while e- exponentially shrinks as t + +oc 
(inversely for t -, -00). The typical phase trajectory (2) diverges for both t + f oa. 
However. exceptional cases exist. if q ( a )  = Const x e+, then q ( t )  vanishes for t -, -00, and 
if q(b) = Const x e,, then q ( t )  vanishes for t -, +oo. The number E < 0 is an eigenvalue of 
the Schrodinger's operator, iflthere exists a canonical trajectory vanishing on both extremes 
t f m. This can happen if and only if the evolution between ? = a  and t = L bring the 
directiori of e+ into that of e-, i.e: 
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Pigum 5 'Ttre w o t p k o s i s  of the dassical ttaicaot?; (2-3) fix varying E 
and tixed V(f 1 (qualitative pict~re). As E raises to zero from belor. the detor- 

nntion Slrz :o the mating k t n ~  -I ( c ) ~ ~  expands c ldwise ly  around the phaw 

%pace origir. ri-ing several times the %brinkin6 axis" e - ( E l .  At each new 

:nt-.1Rctlon a bifurcatioa occurs, producing a new closed orbit interpretable as 

an eipvertot of thr Sr!tdinge*k equation (1). Tk trajectory transf.?tn~a- 

ate pictured in the moving frame of the 'sguming a-is' and replpsemt as 

aeii .R* h~fur~-.t~ons whiA r . .~bt  occur for a fixed E < 0 and variable \'(I). 

To = the -fervrrent nature' of ?he phencinenon. coqsider an integraa trajectory of (2) 
witn q!a) = Ce+ ti-c.. tieparting from q(-m) = 0) and ohserve how does it change for 
varying E 0. If \ ' ( t  j s (1, the. tralsctt~rv escapes to infinit. dong thee, d i m t  ion. If V ( t )  < 
O in ,d.5i. tile . %cape is corm-ted by a rotatic11 w n d  t h e  phase space origin (typically 
generated :>y thc attrst-t;ve ~ c i ' ; e t o r  h'ainiltoiiians!. For t > 6. i.e., when the rotation 
cenm, t hr: rlcformation is ~ j l * t ! t d  b?ck to wro. and the trajectory returns &simptotically 
to t!w expanding axis e+ [see Fig.2). Yow. A>: E grows (approaching zero from below). 
ri,e rrpulsiorr (sr;u~zii lg) kcor. re s ker and t be def..rmation caused by C:(t )q2 grows. 
tipically drawing e ;. tll! q ( t )  touches the e--ax~s. W h ~ n  this happ--ns. (13) is fulfilled 
anti the trajectory. instead of escaping to icfinity.. i a ; l ~  to  zero. forming a c l o d  orbit tan 
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eigenwctor of (1) ). As E still grows (and I E I decreases) t he  deformation caused by 
-V(t)q2 drivcs the phaw point q(Q) across the e,-axis and the asimptotic picture suddenly 
changes: the  trajectory escapes to ac! again, but this time iv '-he direction -e+ (not +e+). 
meaning the  bifurcation (dismtltinuous change of the asimptotic angk hy -r ). If E still 
rises (tending to E = 0). the deformation expands clmkwisely around the phase space origin. 
intersecting several times the shrinking axis e-. Each time this happes. a rrew bifurcation 
occrm (a discontinuous change of the asymptotic arrgk). giving hirth t o  a new c l d  orbit 
(next rigenwctor) a t  the exact bifurcation point (Fig.2). 

'iencefotth, the dgenvalues of ( I  ) are the  bi/rtmrtioa ~ l l ~ t s  of E (i-e. the \dues  for which 
t1.e trajectories of (2) change their asymptotic type). In orrler t o  bifurca~c, the trajectories 
I I W . ~ ~  1-s thmugl~  : M quencc? of exceptional forms (closed orl~its): this is why them cxist 
spectra. Can this ht:lya to  find the spectral values'! The  difficulty of finding the 6ijumt;ur 
ralrts. of course. is the same as that of finding the poirlt s p r t r u m  ( the analytical scimws 
arc. cmpty!). Yet. an a d ~ a n t a g e  of our model (2-3) is, t l  at it 111rnh att-11 ion to .mnw w w  
~nettlmls till now nqlectecl. 

4 The angular Schriidinger equation. 
Sincr t hc -tor nornls arc- i~ ;r?lrvant. our conditiort ( 13) can Iw convceic-r~t 1y writ t r r l  ill t t-r~ns 
of an a ~ g a i e  r mrdiaatr .  Indeed. define: 

q =  pcoso. 1, = p s i n o  

The canonical q u a t  iorls ( 2 )  k o m e :  

where p and ;i mean the time deri-~atiivs. Curiorwly. the equation for the angrtlar variable 
.separates. in fact. multiplying (IS) by -cine. (16) by coso and adding one gets the I-st 
order d~fft-ret~t ial rquxt ion for a alone: 

2 
ti = 2[V(t )  - E ] m 2 a  -sin a 

while permuting the operations, one arrives at: 

The  angular equation ( 17) was found by Drukarev [6] and Franchetti [7] (though without 
the geometric interpretation) and used t o  evaluate the phase shifts. Note, that the squeezing 
directions e* too can be defined in terms of the angles: 

o * ( E )  = f arctan #m (19i 

Now. our c o ~ d i t : m  (13) means, that the evolution 4esc r iM by the 1st-order q. (17)  in 
the time inte* -1 should transform tlre 'expansive direction' a(a) = ci+(E) into the 
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'shrinking direction* a(b) = o , ( E )  + nu (n = 0,1,2,. . .). Introducing the defect aRgle r (E)  
as a difference between the 'shrinking angle* a,(E) and the final angle a(b, E) obtained by 
integrating (I?), one can write the spectral condition (13) as: 

An immediate generalization of (20) is obtained for V(t) constant (though not d l y  
vanishing) for t ft (a, 6): 

for t < a 
V(b) f o r t 2 6  

TPe trajectory (2) has then two constant generators A(a) and it(b) fot t 5 a and t 2 Q 
and the formula (#)) holds after substituting I V(a) - E I or I V(b) - E I instead of I E 1 in 
the expmsbns (19) for a+ and a, respectively. Two elementary facts make the bifurcation 
condition (20) specially efficient to determine the eigenvdues: 

Observatiee 1. For a fixed V(t) and E < 0, the spectral angle r ( E )  is an increasing 
function of E. (This is an elementary consequena? of the Cauchy equation (17); see also (81). 
The monotonicity of r ( E )  permits one to interpolate easily, helping to find the points where 
T(E) intersects the critical values r = n r  (n = 0,1,2,. . .). 

Obsemtioa 3. The functicn r ( E )  is unstable and changes very abruptly when crossing 
the sequence of critical dues r = nr (n = 1,2,. . .) (i.e. when E uwsses spectral points). 
Thus, even a little enor  in -c in vecinity of an e i p v a l u e  traduces itself into a visible effect in 
I', improving tbe accuracy. This i n d ~ l i t y  is caused by the fact that the energy e igendues  
correspond to the orbit bifurcations where the  final integration point a(b, E )  deflects fast 
when E cnrrses a bifurcation value. If the integration could yield a(+oo, E),  r ( E )  would 
be an exact step function (see also the observation in p, p.2741). 

As an example, we have considered the energy levels for the truncated I-dimensional 
oscillator potential: 

&'a2 for ( 4 2  q 8 

We h a w  determined the angular function r ( E ) ,  0 < E < V( j), for w = 1, a = 8 
integrating numerically (17) (see Fig.3). and obtaining the 8 energy levels for the oscillator 
truncated a t  a = 4. all calculated with accuracy up to 10"O. The obtained eigenvalues are 
very close to the first 8 lewls of the exact oscillator, E, = n + % (indeed, even the highest, 
and last eigenvalue of the truncated potential (22) differs rather little from the orthodox 
& = 7.5). 

Note the characteristic shape of T(E), with sharp steps helping to  localize the energy 
eigenvdues! The same spectral problem would be much more t r o u b l e m e  if approached 
by the conventional perturbation calculus. (Even compared to Ritz method, our algorithm 
shows some simplicity as there is no need to invent adequate classes of test functions!). More- 
over, the same method can be used without difficulty to find the eigenvalues of arbitrarily 
deformed wells. 
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P i  3. The defect angle r ( E )  = a+ - 4 4 ,  E). The intersections r d  this 
-steppingn function with the lines n x r give the eigenValu~es of the S c h d i n g ~  
pmbiern. 

The met hod, till now, concerns the limited potential wells. However. tho got~eralization 
for unlimited and/or singular we,ls is already reported (it involves the substitution of the 
constant angles o * ( E )  by their -.ariablc anabpt  [5,8]). The (generalized) sptrtral  Einction 
r ( E )  shows the same "step behaviour" permitt'i~g to determine spectra with a high accuracy. 

It is interesting t o  notice that all the stnr,-ture elements which we have introduced wen- 
basically known since long time, though very seldom used. Thus. t he idea about t he ciassicai 
model of (1)  (with r substituted by t ) was considered as far back as 1970 (or even ~ar l ic r ;  
see :he discussion in [3]). The angular equation (17) was found by Drukarev [6] and then by 
Franchetti (71 (though without geom0:tric pictures) and was used to  examine the phase st,ifts. 
The idea that the angles deter mi^: the discretc spectra is quite olcl (w e.g. discussions ia 
[lo]) though is usually focrr.sed oil the phase o j  thr csmplrt wave junction. and mixed up  with 
the WKB approximation. The implicationsof the classical angle w e  known to Calogero (we 

[II ,  p.m] and [9, p274]), though Calogero was not interested in the numerical algorithms! 
The  idea that the eigenvalues are bifurcations is as old (though usually contemplated without 
paying attention t.o the geometry of P, and the toleof squeezing in produciog thv hifurcation). 

It seems also worth noticing, that the definition of the bifurcation does not require the 
linearity of the evolution equations (2). Hence, the defin'tion of the spectrum via bijurceliorw 
might be a natural answer t o  the intriguing problem of how to extend the concept of spectrum 
to  non-linear variants of the Schdinger 's  operator (see. e.g. diccusaions in [12]). Some u.ork 
in 1 his direct ion is being recently carried 1131. 
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Absaract 
Critically analyzing the -called quantum Zeno efFeet in the measurement problem, we 

show that observation of this e&ct does not necessarily mean exjwrimeatal evidence for the 
naive notion of wave-function collapse by measurement (the simple projection rule). We 
also examine what kind of limitation the ancertainty relation and others impose on the 
observation of the quantum %no effect. 

1 Int reduction 
The quantum Zeno paradox, named after the famous Greek philosopher Zeno, states that an 
unstable quantum system becomes stable (i.e. never decays) in the limit of infinitely fiquent 
measurements. However, we cannot observe this limit, practically and in principle, as will be seen 
later on the basis of the uncertainty relations. Physically, its milder version, i.e. the quantum 
Zeao effect (QZE) can be observed. On the other hand, one may consider as if observation of this 
kind only of phenomenon were a clear-cut support for the naive notion of wave-function collapse 
(WFC) (the simple projection) onto an observed state. The purpose of this paper is to contrast 
this kind of misunderstanding by analyzing the mechanism of QZE and to discuss the important 
~ I P  of the uncertainty relations in observation of QZE. 

A quantum system that is initially prepared in an eigenstate of the unperturbed Hamiltonian 
undergoes a temporal e.mlu!ion that can be roughly divided into three steps [I]-[6]: A Gaussian- 
like behavior at short times, a breit-Wigner exponential decay at intermediate times, and a power 
law at long times. 

The first idea of the QZE was introduced under the assumption that the Gaussian short-time 
behavior can be observed in a quantum decay and only the naive WFC takes place in quantum 
measurements 171 fa]. In this context. the QZE is closely connected to the UrFC by measurement, 
so that we have to examine one of the central measurement problem.;: '&hat is the wave-function 
collapse? The authors have formulated a reasonable theory of measurement without resorting 
to the naive NrFC [9][10]. In this paper, however, we shall not discuss this problem (see refs). 
Rather. we shall explain the QZE along the line of thought of the naive WFC. 

Usually, the Gaussian decay is very difficult to observe. For this reason. che QZE was not 
considered to be easily amenable to experimental test until Cool. 11 11 proposed using atomic 

In collaboration with H Nakazato. C .  Badurek and H. Rauch. 
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transitions in two-level atoms. On the basis of this idea, Itano and his group j12) recently carried 
out an interesting experiment, claiming that they experimentally justified the naive WFC by 
observing the QZE. As opposed to this, Prigogine and his group asserted, by theoretieally deriving 
the same resuIt only through a dynamical process without the help of the naive W FC, that this 
exper:ment did not necessariiy support the naive WFC. This provoked an interesting deb:rte 1131. 

The present authors and others proposed to use neutron spin-flip, instead of atomic transitions, 
in order to confirm and simplify (and generalize) Prigogine et al's theory 1141. Similar Lmd of 
experiments were proposed and recently performed by making use of photon polarization flS](l6]. 

It is also important to note that Itano et al's experiment did not observe the state every time 
except the final one, and therefore was not exactly the same as Cook proposed. One of the nrain 
interests in this paper is, therefore, to find the reason why their experiment could give the same 
result as Cook's prediction, which was given by assuming the naive WFC (a  simpie projection) at 
every step. 

2 Naive formulation of QZE 
We first formulate the QZE along the line of thought of the naive WFC, and discuss it as an 
dynarnical process in the next section. 

For initial state u, a t  t = 0 (an eigenstate of unperturbed Harniltonian &), the wave function 
dynamically changes as 

at  very short t(> 0). provided that (uO, h u e )  = 0. 
According to the idea of the naive WFC, the system suffers such a sudden change as 

for its wave function. or 

for its density matrix. at very short t. 
T+e probability of finding state u, at  very short t (>  0) is given by 

Therefol. . the probability of finding the same state .Y times by repeated measurements of this 
kind in time intervals (0. T/?;) .  - - .  , ((iY - 1 T) (note that t = T/.V fur one step) during 
(0 ,T = t iV)  is b ; .  .I by 

.I' ( 5  

\.Ye propose to distinguish the QZE from the qtrantu:~~ Zeno paradox in the following way: 
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Quantum Zeno paradox: 

lim P;'(T) = 1 : only in the infinite :V limit, 
N-CQ 

Quantum Zeno effect: 

P ~ ( T )  > P;'(T) . if N > N' : for fillite N and :V. (7) 

Remember that we have simply formulated the quantum Zeno paradox and the QZE by making 
use of the Gaussian decay and the naive CCrFC. 

3 Neutron spill-flip and discussion on QZE 
In Cook's case. we observe only the temporal evolution of the type cos2(w/2). so that we obtain 

for the probability of finding the initial state ua at time T after N-step measurements, if we choose 
T so as 80 give cos(wT/2) = 0. 

In the neutron spin-flip case. we can also formulate the theoretical procedure in a similar way 
as in Cook's case, if we use a polarized neutron ' .earn along the z-axis and M magnetic fields with 
strength B along the x-axis as shown in Fig.1 (Case A), where i~ = pB/h  ( p  being the neutron 
magnetic moment). Therefore, we can describe the one-step measurement as 

* i**t 
p(1) = pa= cos - + pa* sin L 3 f  

2 3 - 
&'It ~t 

-ipob cos - 9 sin - + h.c. - 3 - 
ut 

=S pa, cos - (naive WFC projection) 
2 

where a =t, b =I, t = TIN (or dl:! = r / 2 ; V ) .  and then the final density matrix after N-step 
measurements becomes 

N 

(10) 

and correspondingly. we can get the probability of findinp the upward spin state at time T in the 
same form as ((3) with a =f. 

In this case. we can explicitly write down the whole density matrix in the channel representation 
before the final spin-detection in the following way: 



* 
B Do 

Figure 1: QZE in case A. 

Figure 2: QZE in case B 

where c = cos(r/2N) and s = sin(rl2N). 
On the other hand, we know that a measurement process can be divided into two steps, the first 

being the spectral decomposition and the second the detection. Usually, spectral decomposition 
step is a sort of dynamical process that keeps coherence among the branch waves. In this case, 
the experimental procedure is illustrated in Fi. 2 (Case B). We can easi!y show that, through 
the N-step spectral decompositions, the density matrix of the system will dynamically change as 

N 
&(T) = (cos2 &) p, + other components . (11) 

Therefore, we can explicitly write down the whole density matrix in the same channel repre 
sentaion before the final spin-detection as follows: 

Sote that both the density matrices p;(T) and &(T) have the same aa-component. Cor- 
respondingly, we obtain the same formula as (8) (with a sf) for the probability of finding the 
upward spin-state by the final detector Do at time T. This is the answer to the question asked at 
the end of the preceding section. That is, we cannot conclude that observation of PN(T) going to 
unity is an experimental evidence in support of the naive WFC. 



4 The uncertainty relation and other situations 
Undoubtedly. one of the most important quantities is 

where I stands for the length of each magnet and u  for the neutron speed. 
Mathematically, 6 is of order O(N-I), but we cannot take the infinite N limit for the following 

teasons: (i) In practice, we cannot make the zero limit of the magnetic region, and (ii) in principle, 
it is impossible to avoid uncertainties Au and Ax, because 

pB1, pBAx 4 - icB 1 AE* > = -- 
tivo fiw 2 m ~ A u  4 AEk 

where w, AE, = 2pB and AEk = A(mu2/2) are the mean neutron speed, the magnetic energy 
gap and the neutron kinetic energy spread, respectively. Consequently, we should have 

Fot this reason we can set the following limitation: 

Additionally, we have to take into account the probability of reutron leakage or absorption, 
a < 1, at each step, which should modify the probability of finding the neutron as follow*: 

We cannot take the limit N -, oc also for this reason, but we can estimate this kind of loss factor, 
both experimentally or theoretically, in order to get the net effect. 

5 Concluding remarks 
We have shown that observation of the QZE does not signify any experimental evidence of the 
naive WFC (the simple projection), and found the reason why Itano et ai's experiment got the 
same result as Cook's one, even though they did not exactly follow Cook's proposal. We have alsc 
examined an important limitation arising from the uncertainty relations and other limitations to 
be imposed on observation of QZE. 
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f i p t i m r s l  of Phptc.~, I!niwrsily o,i Marghnd l3altimorv C,'sunty 

Bullimom, MD 2l,% USA 

A met bod hrr producing a 4- photoa entangled state based en the use of tan, indqeadent 
pair sources is discussed. Of particalax interest is tbat eacb of bbe pair sources produces 
a two-photon state which is simdtaaeondy entangled in both pdarization and spacetime 
MI.iaMeJ. Perform-hg certain measurements which exploit thii tioubie estangitmm~t provides 
aa opportunity lor verifying the recent demonstration of noelaeaiity by Creenberger, Horee. 
and Zeitiager. 

1 Introduction 
Tbe incompatibility of quanturr~ dailies with some of !he intuitive concepts found in the 
premises of the Einstein-Podolskg- Rown argument (EPR) 111 has rpln?ntlp shown through 
the remarkable demonstration of nonlocdity by Greenberger, Horne, and Leilinger (CHZ) (21. 
Whereas traditional Bell-type [3] arguments have been based on the statistical correlations of 
two a t ang led  particles, the CHZ theorem relies only on the perfect correlations of three or  mom 
particles to exhibit a blatant, contradiction in the premises of EPR. The beauty and simplicity of 
this theorem has provided strong motivation for the experimental construction of a multi-particle 
entangled state. 

In this paper we present a method for constructing a 4-photon state entangled in space-time 
variables. As has been shown in the pioneering work of Ycrke and Stoler [4] 151, EPR effects can 
arise erm w * k t r  the particles do not originate from one central decaying source. Yet rather than 
basing our system on four independent single particle sources: wc will use two independent pair 
s0urCc)S. 

The use of two indrpctident pair sources in two-photon correlation experiments has been dis- 
c~.& by Zukowski, 7~ilingcr, Hornr, and Ekert [GI, and b j  Pavicic and Sumnihan~n~cr  171. I-ictrv, 
Iiow~ver, thc interesting feature of the pair sources i s  that they each produce two-photon stat- 
which arc simultanmosly cntanglmi in hot11 polarization and ?pace- ti tile variables. This doal~lo 
etitanglerncr~t is uscd to owrcotnc a basic problenl in $-photon experirncnts which is introduced 
through the sirnple examplc of 1;1c doul~le Franmn-i~lterferomcter [Sj. 'l'hroughout the paper 
sinlplificd n~odels irt ~vh~cl i  the statcbs cvolvc? alo~rg tltc optical paths are riscd to highlight. tllc 
importance of the rforthle entanglcn~cnt. 



2 The Double I;kanmm-Interferometer Example 
Perhaps the easiest way to envision constructing a 4-photon space-time eatangled state front two 
pair sources would be to use two standard lhmon-in- setup, and a 4-fold aincictenee 
cant ing scheme such as tha6 shown i s  Figure 1. Here, two type1 down-conversion crystals, A' 
artd X', are cohetently pumped by the sanae mbiwous wave (CW) k source. The signal and 

FIG. I. The double Franson-interferometer simply consists of two standard Franson- 
Interferometer setups coherently pumped by a single laser. 

idler photons of each down-converted pair can follow either a long or short path to their respective 
detectors. For simplicity a, 8, y, and 6, which are the phase delays between the long and short 
paths in the four arms, can be taken to be equal. 

Considering the single Franson-interferometer setup following crystal X, one would first per- 
form the standard p d u r e  of making the two-photon coincidence circuit time window, Tc, 
much shorter than the time delays associated with a and 8. By doing this the two-photon 
probability amplitudes corresponding to one photon of a down-converted pair taking the short 
path while the other takes the long path can not contribute to the two-photon coincidence 
counting rate, and the two-photon space-time entangled state originating from crystal X is: 
I&) - IS), IS)? + ei("+",l L), 1 L)*, where IS)* denotes the photon taking the short path to de- 
tector 1, and so on. By reducing T: a similar state is realized in the other two-photon setup : 
I+?#) - IS1)3)S'), + ei(v+6)I Lt)3 (L1)4, where the primes always indicate origination in crystal A''. 

Therefore, the 4-photon quantum state realized by combining the outputs of thew two-photon 
coilacidencc circuits into a 4-photon coincidence circuit would be the product: 

'This, llo\vevc*r. is not a $-1)110to1) syarr-time entangled state because of ttlc two rnialdlc tcbr~lls, 

clmc-ril~iag t \lc aml>lituclm wllcrc soale pl~ntons followcci thtb short paths wltilc ot lrcrs foIlo\vcfl 1 he 



long paths. What is desired is tme dliminatbn of these two terms so that the 4-fold coincidenee 
m a t i n g  rate shows the signature interference due to the two indistinguisBaBle processes ia which 
dl 4 photons take their short paths, or dl 4 take! their long paths. 

At first glance, one might be tempted to try and achieve this ellimination by reducing the 
&fold coincidenee time window, Te, (as had been done in meh of the twbphoton coincidence 
circuits) to "cut# these unwanted terms. However, this will not work, as c m  be seen throtlgh 
the following simplistic indistinguishability argument: the case when a down conversion 
pair is "born" in crystal X at  some time t and eaeh of the photons Hlows its 1- path en mute 
to detectors 1 and 2. Then at some later time t + T a pair is born in cyrstal X' but these photons 
follow their short paths to detectors 3 and 4. Well, in the extremely unfortunate citcumstaim 
that T is exactly equal to  the time delay between the short and long paths, all 4 detecbors will 
fire simultaneously. Thus, even though in principle TI, can be made extremely small, the 4-Wd 
~ e n c e  count resulting from this type of)L)r (L)219)31S)4 amplitude is indistinguishable fmm 
a tL)llL)21L')31L')1 or IS)IIS)IIS')31CC1)4 amplitude when the two pairs were born at exactly the 
same time. In other wvrds, simple dbempbs at spltretime based projective fneasurements will not 
result in a space-time entangled state. 

However, these two unwanted middle term cao be elliminated in a similar setup where each 
of the two-photon states is entangled in both polarization and ppaoe-time wariabk. As will be 
seen, the find projective measurements can be based on polarktabion, leaving a 4-photon state 
entangled in space-time varibles. 

3 The Two-Photon Double Entangled State 

Since we will solve the above problem by constructing our $-photon entangled state from two 
double entangled two-photon states, we will briefly review their interesting features. The two- 
photon state which is simultaneously entangled with respect to both polarization and space-time 
variables has been observed 191, and even used to demonstrate two diihent types of violations of 
Bell's inequalities in a single experimental setup [lo]. 

One way to construct such a state is shown in the cartoon schematic of Figure 2a Consider 
a down-conversion crystal, X, cut at a type-I1 phase matching angle [ll] which produces pairs 
of orthogonally polarized signal (parallel to the e-ray plane of crystal X) and idler ( p d l e l  to 
the o-ray plane of crystal X) photons that travel collinearly in the same direction ar the pump. 
Ideally, the crystal should be thin enough so that its birefringence does not impart any s~gnificant 
temporal phase lag between the two dom-converted phobcs, although in practice a thick crystal 
may be used followed by a compensation device [12] [13]. 

At this point the state can be roughly described by polaridion kets: 19) - lo) @ je). After 
filtering out the pump beam, the down-converted photons pass through a thin birefringent crystal, 
BC, whow fast and slow axes are aligned at f 4 5 O  to the signal and idler polarizations (see Figure 
2b). Thus, upon encountering BC, the state emerging from the crystal evolves as: 

where IF) and IS) describe photons polarized along the fast and slow axes of BC. 



in wdcr for a coincidence detection to occur, the photon pair must be split by 50/50 beam 
sptitkr BS. In each of the output ports of BS are delay units, whieh could be variable thidcncss 
birefringent material or even P d c l ' s  cAls, that are oriented witlr their fast and slow axes parallcl 

FIC.2. a) A carboon schematic of the experiment which can realize the two-photon 
double entangled state. b) The polarization orientations of the signal (e-ray) and idler 
(0-ray) photons, and the fast and slow axes of BC. 

to those of BC. In this way we can impart variable space-time phase delays, a and 8, between the 
fast and slow "paths" leading to each detector. Behind each delay unit is a polarization analyzer 
( 8, and 82) and a detector. 

It is easy to sec that alter BS and the delay units, 

State 3 is the double entangled state. Note that as we vary the phase delay a + fl we see 
a space-time inLerference between the two indistinguishable amplitudes in which both photons 
followed their fast paths and both photons followed their slow paths, in exact analogy b the 
standard Franson-interferometer. Furthermore, if we go to a space-time coincidence counting rate 
minimum or maximum (e-g. a + @ = 0 , ~ )  we may rotate the analyzers 8, and O2 and see a 
polarization interference in analogy to that seem in some of the earlier tests of Bell's inequalh.  
It should be emphasized that there was no need of a short coincidence time window b see this 
effects. 

4 The &Photon Space-Time Entangled State 

We now proceed to employ two of these double entangled two-photon setups in a manner analogous 
to the use of two Franson-interferometers in Figure 1, Addi! ionally, we insert am extra 50/50 beam 
splitter, EBS, so that photons transmitted by BS and B S  can reach either detector 2 or detector 
4, as is shown in Figure 3a. Furthermore, we align the fast and slow axes of the elements in the 
primed system orthogonal to those of the unprimd system (see Figrire 3b). As in equation 1, the 



4-+ton state hen? is the product of two two-photon entangled statcs (state 3 and i ts analog in 
Lhe primed system), so that taking into account the h i o n  of EBS and ignoring the  terms which 
will not contribute to the 4-fold wincidcnce counting rate, it is ~ m t  diliicult t o  see that 1141: 

Although analagous to equation 1, we see that thc inclusion of the extra beam splitter has 
essentially divided each of the tour possible 4-photon amplitudes into two equal phase parts, as 
indicated by Ihc curly bracketed terms in equation 4. B a d  on the polarization, it  is  these equal 

FIG.3. a) The envisioned scheme musists of two coherently pumped mdouble en- 
tangled two-photon state" setups which avetlap through the use of an extra beam 
splitter (EBS). b) The important polarization orientations of the various elements in 
the scheme. Note that B C  is orthogonal to BC. 

phase parts which will constructively or destructively interfere to produce the space-time entangled 
state. 

For example, we consider the projection of the state on to the polariation analyzers and note 
from Figure 3b that IF) and IS') are aatiparallel. Thus, regardless of the settings of analyzers 0s 
and 8, the two equal phase parts in the curly brackets of the second term wil\ subtract and this 
corresponding 4-photon amplitude will vanish. Likewise, since IS) and IF') are parallel, the two 
equal phase parts in the curly brackets of the unwanted third berm will also subtract. Furthermore, 
we note that if we orient e2 and 8, as shown in F i e r e  3b, and define she relevant part of the 
polarizer projection operator as P 3 (B2)l~,)(f9,1(e21, then in the curly brackets of the first 4-photon 
term: 



sa8 t b  two equal phase parts add togel)rer. The same is true inside the curly brackets of the 
lid 4-gho(on berm. 

in other wrds, since the polarizations are associabed with space- time paths, the amplitudes in 
WW some photons take the fast paths while others take the slow paths are seen to vanish, while 
t b  in w h i i  all four photons take the fast paths or all four photons take the slow paths m a i n !  

The remaining 4-photon state is entangled in space-time variables: 

It is interesting to see that with the above choice of e2 a d  8, settings, there is no depeadence 
on the difference in pair b i d  times (pmvided it is within the coherence time of the pump), nor 
any reliance on any type of ultra-short coincidence time windows provided we can assure & most 
oae pair of photons from each crystal is in the system at any given time. 
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QUANTUM MECHANICS OF A TWO PHOTON STATE 

Morton H. Rubin 
Department o j  Physics, University o j  Margfiand Baltimore C'otmly 

Baltimore, MD 21 228-5398 

We review the formalism for describing the two photon state produced in spontaneous 
parametric down conversion. 

P Introduction 
In this discussion we will first outline the general theory of optical spontaneous parametric down- 
conversion (OPDC). We will then discuss the phase matching conditions. After this we will discuss 
the classification of OPDC into type-1 and type-11. Finally we will present our picture of the two 
photon state generated by the thory. 

The work discussed in this paper is the result of the efforts of the members of the UMBC 
Quantum Optics Group: 

Y. H. Shih 
A. V. Sergienko 
T. Pittman 
D. Strekalov 
J. Orzak 
D. hi. Klyshko (Moscow State IJniversityj 

2 Optical Parametric Downconversion 
Optical Parametric down conversion is modeled (in the interaction picture) by the interaction 
Hamiltonian [1][2] 

HI = 2 2 / &rx$,$,(r, t )&(r , t )~ , ( r ,  0 (1) 

where Ep is the pump electric field and y$ is the second order susceptibility, ( X  = X ( ' )  + h(2) + 
a'" + . . .'). The integral is over the intersection of the birefringent crystal and the pump beam. In 
writing this it  is assumed that the crystal does not have a center of symmetry so yg # 0 and that 
wave length of the light is much greater than atomic dimensions so the crystal can be treated in 
the continuum limit. The pump is be treated classically. For spontaneous optical parametric down 
conversion the wave function incident on the crystal is assumed t o  be the vacuum, I @  >= 10 >. 



(Jsing first order pert urbation theory, we can compute the wave function produced at the output 
face of the crystal. It is a superposition of the vacuum and a two-photon state. The two photon 
beams are often referred to a4 the signal and idler beams. In our case, we choose the orientation of 
the optic axis of the crystal and the polarization of the pump beam so that the produced photons 
have orthogonal polarizations corresponding to ordinary (o-rays) and extraordinary (e-rays) rays 
in the crystal. 

Fk.k* = r k  jt#b(wd + w t ~  - wp)Lh( L A k ~ ) h t , (  k, kt). 
In Q. (3) Lb(LAkk,) comes from the integral over the length L of the crystal, 

Ab* = kp - kz - k: (5 )  
The integral over the area A of the intersection of the beam cross-section and the crystal gives 

The time integral gives the 217 times the Dirac delta function which is the steady-state or k e n c y  
phase matching condition. If we assume that the crystal is very large and the pump beam has a 
large cross section, then the integrals can be taken t o  extend over an infinite volume. This leads 
to the Mave number phase matching condition 

The assumption of a monochromatic pump beam g i v e  

3 The properties of the two photon state 

3.1 Terminology 
We introduce some terminolo~v for OPDC. 

Collinear k and k' are parallel to kp 

Degenerate wl = 

Type-1 Signal and idler have same polarization 

Type-I1 Signal and idler have orthogonal polarization 

We next remind the reader of the definition of an entangled state 131. For two degrees of 
freedom, we say a state Q(1,2) is entangled if it is not a product state, i.e. \lr(1,2) # 4(1)#(2). A 
simple example of an entangled state is the singlet state of two spin-112 particles. 



3.2 OPDC two photon state 

14) 'I'itcb statc- i r r  T.:cl.('t) is enlartglccl in wave ttrtnlbcr a:ld ftcllu-tlcy or. c~qlrivalct~tly, ia spac.cb nttd 
tirnc hec.atlsc8 clws riot factor i r~ to  a firlrction of k and k*. In gt*i~c*ral, it is not c*t l ta t~gl~l  ia 
~mlrriaatiott . 

FIG. 1. A Feynman-like diagram showing a pair created at point A inside thc 
crystal. For th r  case shown the speed of the e-ray is greater than that of thc o-ray 
in the crystal. Since the first photon is always the e-ray, the state is not entangled in 
polarization. 

'rhc sitnplcst experiment to  study the two photon state is illustrated below. 

Purp crymtal BS D 1 
beam 

I I 
e 

!:I( ; . 2.  .4 collinear, typcs- I l ~xpcrinlrnl.  'l'lrc beat11 spli tier scpt.rat cs thc polar 
izatiot~s and ser~ds them to  thc* two clet.c*ctors 111 and D2. A coirrcidct~t coltntcr, ('. 
cIcter1.s coinc.iderrc.c-9. 

I;or I his is a c-ollinc-ar . typc3- l I c-xl>c-rirllcnt 1.llc3 out put is given I,! t l lc-  coir~c.idc-trt co~rrrtir~g rate* 





arl.atrgcc1 so tlto c-ray passes along its slow axis. ' T l r c b  Icngth of thc* cot11l)cns;tt.or I I I ~ ~  I,(- vat-ic.0 so 

that i t  il~trocluccs a delay r i n  the cB-ray u.lativc to tlbc o-rag. 

FIG. 4. The use of a birefringent crystal as a compensator. 

If the! beam splitter is a 50-50 bean1 splittcr, then thc two photon amplitudc hccomcs 

'I'he minus sign comes from the reflection off the mirror. The figure below illustrates the form of 
the bracketed tcrm in Eq.(17). The probability amplitude will show interference between these 
two terms if r is chosen so the  two terms overlap. The xourrting rate is then vee shaped, going 
to zero for cornplete overlap. We refer you to Dr. Sergienko's talk for details of thc experimental 

I * 

k'I(;. .-). ' I ' l t (~  for111 ol' 1 I t (*  i~tttpIit~i(i(* i l l  Ktl .  ( 17) i$ sliow~t for IIO o\.t*~-Ia.p a110 part.iitl 
O ~ ~ ~ l ~ I i ~ ~ l .  



We also illustrate this effect using 1:cylirnan-like diagrarlls for a sorl~c typic:icl pairs. 

FIG. 6. Tliese diagranls illustrate how the cori~pensator effects pairs that arc c r r  
atcd a t  poir~t A near 1 . 1 ) ~  irtpl~t, at. the center, and near the output of' thc? cryst,al. 

4 Conclusion 

\4k have a good u~~derstaiiding of the structure of the two-photon alnplitude I,otlr tl~c*oretically 
and experimentally. Tlrc cxpcrimental rcsults have been reported by other members of our group 
at this nlevting. We have recently completed sorrle work on the transverse corrclatior~s of thv 
signal at~tl  idler hcarrls. 
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A PROPOSAL FOR TESTING d43CAL REALISM 
WITHOUT USING ASSUMPTIONS RELATED 

TO HIDDEN VARIABLE STATES 

Luiz Carlos ~ ~ f f i  
Udwniry qf Murylund BuI~imom Counry. Balthow. Marylmd 21228 

AlKtract 

A feasible experiment is discussed whic' allows us to prove a Bell's theorem for two 

particles without using an inequality. Tthe experiment could be used to test local 
realism against quantum mechanics without the introduction of additional assumptions 
reIated to hidden variables states. Only assumptions based on direct experimental 
&emation are needed. 

The experiment I wish to discuss is cpmsmted in Fig. I. It is a variant of 
Franson's two-photon cormlation experiment [I].  However, variants of other experiments 

could also be considered (2-41. A source (S) emits pairs of photons (y, and y2). Me 
photons are emitted simultaneously 151, bur there is uncertainty about the time of 

emissh.  H, and H, are 50%:50% beam ~plitters. As in an experiment recently discussed 
[dl, Hi, H;, H,, and H, are not 501.50% beam dylitters, and have real amplitude 
transmissivities TI. T,, T,, and T,, and real ampiitude reflectivities R,, R,, R,, and 
R,. MI, Mi, M2, Mi and Mi' are mirrors, and Q,, &, and 43 are phase shiften. 

h - S 2 = L l - S l = ~ T  is much greater than the coherence lengths of the packets associated 

with y, and y,. This implies that Ao,AT,l and A W T B I ,  where do, and A% are the 
uncertainties in the angular frequencies of y, and 7,. However, A(o,  +q)ATa 1. As is well 
known (I], in this case the situation in which both photons follow the long paths is 
indistinguishable from the situation in which both photons follow the short paths. In 

the present proposal a balanced Mach-Zehnder interferometer for photons y2, constituted 

by H,, Hi, Mi', and H, has been introduced. 

]permanent address: l)n~vcrsidadc Federal do Rio de Janeiro, Instituto de Fisica, Caixa 
Postal 681528, 21445-970 Kio clrt Jirl~elr~. KJ. Brazil 



FIG. I. Experiment proposed. 

1 will amsider four different situations: (A) H; and H, are removed; (B) H; is in 
place and H, is removed; (C) H; is removed and H, is in place; (D) Hi and H, a in 

place. The detections relevant to our discussion are only the coincident detections 
occwing at sites I and 2, 1 and 2', 1' and 2, and 1' and 2'. Naturally, the probability 
of coincident detections occuring at sites 1' and 2 in situation A, P;(1*,2)=0, since in 
situation A y,(y,) has to follow the long(short) path to be detected at l'(2). 

The probability amplitude of coincident detections occuring at sites 1 and 2' in 
situation B is [6] 

A;(l.2*)= 1 %,% (a,oll+BtM . (1) 

01% 

where is the probability amplitude of having a photon g with a frequency q and a 

photon y2 with frequency (4, a,= 2"" u p ( i q Q T ,  is the probability amplitude of 
having a photon y,(o,) following the short path, where 4 is the time spent by light to 
follow the short path* q=Z"?,i~~~[iy(4+(')] is the probability amplitude of 
having a photon y,(%) following the short path, where t* is the time spent by light 
from HI to H,. ~,=i2"Qexp(i$,)cxp(i~1tL~i~, is the probability amplitude of having a 
photon y,(o,) following the long path, where t, is the time spent by light to follow the 

long path, and ~2=i2"%xp(i~,)~~exp[iq(tL+t')] .r the probability amplitude of having 
a photon q(q) following the long path. Using (1) and the condition A(o, +a,)ATa1 we 
obtain 



A;( 12 ' )  =(in) 1 Am,cyfllT++BR,T,) . 0) 
WI'% 

where A w l , . c w , ~ ~ p [ i ~ , t s + i ~ ( t S +  t*)lmd B=exp[i(eI +&)+i(m,~+%)bTl whemqond 
% are the central frequencies of y, and y,. Choosing T,T,R,=R,T, and using the 
condition 

w"2 
we obtain 

In an ideal situation we can have [P;(1.2')]-=0 (ReB= 1) and [P;(I J*)L,=(T,T~R~)' 

(ReB=-I). This follows from quantum mechanical nonlomlity. But in a real situation this 
is not so. Let us then assume that ReB = I -& (ReB = - 1 +e) in the minimum (maximum) case. 

Them we can introduce the visibility V, given by 

Using a similar reasoning, we obtain 

A;(l*2*)= 1 C ~ , ~ ~ ~ I + R )  . (7) 

("lo, 

where 1 =2 '"2exp( i~ l~) ,  p, =2-'?,i~+x~[io,(~ + t*)JT4, and p2 = 2 - ' " i ~ ~ ~ ( i + , )  
exp[iq(t,+t*)]iR, which leads to 

AS =( 1/21 [ Ao,q(iT3R2T4-CR~RS , 
o,ol 

where C=exp(i$,). Thus, choosing T,R2T,=R,R, and using (3) we obtain 



As in (5) and (6). we can introduce the visibility V, to obtain 

In an ideal situation we can have V,= 1 and [P31,2')]-=0. This follows from the wave 

like properties of light. 
it is atso easy to see that 

A;( 1 2') = 1 etutqlA,(a, +%I +h%l (1 1) 

~10 ,  
when )r, =2*1nexp(im14)~, . a = 2 ~ +  t *  %=2-'"i~+p(%) 

expIi y( ts  +ts)IiR4. A? = i2' exp(i~,)exp(io, tL)iRP and 4 = i ~ ' ~ ' e x p ( ~ ~ ~  
expli%(t, + t'))T,, which leads to 

A; =(i/2)T,T,R2T, 1 AqW(l-B+ - iC) . (12) 

WlOz 

Then, choosing 6, and @? such that P ( 1 , 2 ) = [ P ( l 2 ) ]  and , such that 
P:(1,2*) =[Pi(l,2')]-, we obtain 

To prove a Bell's theorem for two w c i e s  without using an inequality we can 
consider the ideal situation: V, = V, = 1. I will assign the value i(1) for detections that 

occur at sites I and 2' (1' and 2). Thus, assuming there can be hidden variables states 

(HVS) of the photon pair which mimic quantum mechanics, we can only have: (A) 
d(A)bk(A) =i,- 1 ; (B) ai(A)bi(ll= i, I ,  from (6); and (C) g(A)G(A)=i, I, from (10). a:@) 
@(A)) represents the result of a measurement performed at 1,l' (2,2') when H; (H,) is 
in place (removed), and so on, the superscript c refers to coincident detections, and & 
represents the HVS of the photon pair [71. Assuming locality, that is, that G(A) is the 
same in A and C, for example, we see that ash) = i-a+bi(h) = 1 *(A) = i-fkbs(k) = 1 That 
is, P;(l,2')=0 (local mlism), in disagreement with ~~(1,2*)=(114)(T,~,~~~~)~ (quantum 
mechanics), from ( 13). 

Introducing some assumptions which are based on direct experimental observation the 
above argument can be extended to the case of a real (i.e., non-ideal) experiment. Let 
us initially consider situation C and select only those events in which detection at 2' 



occurs. In this case, whenever a coincident detection at 1 occurs we know that y, and y, 
have followed the short paths. I will assume that: (Al) if Hi had been in place 
(sit.C-+sit.D) the number of photons following the s b n  path that would be 
ooincidentally detected at I could not be greater than the number of photons 
coincidentally detected at 1 when H; is removed (I will return to this point). 

Therefore, the number of coincident detections at I and 2' in sit.D which cornspud to 
the possibiliirl, in which y, and y, fdow the short paths cannot be greater th;m 
Ni(1,2*), the number of coincident detections at 1 and 2' in sit.C. 

Let us now consider situation B and select only those events in which detection at 1 
occurs. In this case, ciniy the coincident detections at 1 and 2' can correspond to the 
possibility in which y, and y, follow the long paths. A d i n g  to (Al), if H, had been 
in place (s i t .ksi t .D) the number of photons following path n that would be 
coincidentally detected at 2' could not be greater than the number of photons 
coincidentally detected at 2' when H, is removed. Therefore, the number of coincident 
detections at 1 and 2' in sit.D which cy~mspond to the possibility in which y, and y, 
follotw the long paths cannot be greater than N:(1,2'), the number of coincident 

detections at 1 and 2' in sit.B. Hence, N~(l,2')=N$(l,2')+N~(1,2*), or, in terms of 

probabilities, 

P;(l,2')=P~(1,2')+P;(l,2') * (14) 

since : (A2) coincident detections can only occur when photons of the emitted pair 

either (a) both follow the long paths, or (b) both follow the short paths. 

Let us examine (Al) closer. It was assumed, when changing from situation C(B) to 

situation D, that the number of detections generated by photons y,(y. following path 
S,(n) could not be increased by placing a beam splitter H;(HJ in front of the 

detectors. Although this may appear to be a nonenhancement assumption 181, this can be 
directly verified. For example, by blocking path L,(q) in situation D. Now we are not 
assuming that for ervry HVS of a photon the probability of it being detected cannot be 

enhanced by placing a beam splitter in front of the detector. However, it might still be 
argued that when H;(H,) is in the position represented in Fig. I, in which case photons 
froin two different directions can impinge on it, its properties are modified, in such a 
way that photons coming via path S,(n) become more "detectable" after impinging on 
H;(H,) and being transmitted, whilst photons coming via path L,(q) become less 



"detectable" after impinging on H;(H,) and being reflected (9). However, this sounds as 
a much too contrived supposition. 

To have a rough estimation of the expected disagreement between the local realistic 
and the quantum mechanical predictions in a red experiment, we can make V,= V, = V. Hence, 
using (6), (10). and (13). we see that in order to have a violation of (14) we must have 

' 112 Then, makingT, =T,=T, R, =R,=R, whichldstoT,=R2,T2 =R3 =I-R+(1+3T) W,weobtBiA 

We see that the minimum visibility we must have in order to violate (16) is given by 
V >0.87 (T= I). Appatently our best choice wouM be T= 1. However, this corresponds to the 
situation in which H; and H, have been removed. In this case the probabilities drop to 
zero, and we would have to wait an infinite time to get any result. V-0.90, T=1/(1.2)ln 
--+l.h.s.(16)> 1.3. To have an idea of the time ~ecessary to perform an experiment using 
these data we caa calculate! the ratio between the probability of having a coincident 
-tion in a Franson's experiment in the case of perfect conelations and the 

probability given by (13) in the ideal case (V=l). We easily see that we need about 
eleven times more time to have the same statistics as in a Franson's experiment. 
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Abstract 

Simtrltaneous entanglement in spin and s p t i m e  d A two-photon qumtrlm state generated in 
type11 spontanwos parametric down-conversion is demonstratd hy the ohrvation of qiiantllnl in- 
terferenc,. with 98 %, visibility in a simple hem-splitter (Hm~burry Brnwn-Twin) anticorrehtion ex- 
periment. The nonlocal cancellation of two-photan probability amplitudes lu a tesrilt of IKL double 
entanglement allows rrs to demonstrate two different types of &Bell's inqtrality \iolations in one exper- 
imental settlp. 

1 Introduction 

Two-particle entitngld states play a partict~larly important role in the str~dy of the Einstein-Podolsky- 
b n  (EPR) pardox [I] and in the test of ,f1los ineq~~alities [2]. Entangled stat- itrr states of two or 
tnom particlei that can not be writt.cn as prodtlcts of singlc partirlc states. [I]. The physical conscqrlcnccs 
rcsirlting from the EPR s t a b  violntc! rlitrrical bcd realism [3]. 

In thc past, EPR typc two-particle cntanglcmcnt has hwn dcmonstratcd by two types of experiments: 
(1) twctputicle polarization correlation mcasr~rmcnts: most d the historical EPR-Dohm cxprriments [4] 
and the tncmrrrcments testing 13cl17s inqrrdity exhibited nonlocal two-particle polarization correlation 
[5]. Thcac cxpcrimcnts demonst.ratcd the EPR typc two-particle spin-type entanglement. (2) t.wc~part.icic 
interference (fourth order intcrfcmncc) cxpcrimcnts: recent two-particle noricla.s..ical interference cxpcri- 
mcnts detnonst.ratcd two-particle spce-time cntanglcmcnt [GI. 

Usr~dly two-photon cot,urglcmcnt appears iri the form that if onc wmt.s to mcasltrc? the liiicar po- 
larization of a singlc photon. one wouid find that neither of thcni has a preferred polarization direction. 
l~owc?vrr, whenever a singlc photcxi is rnczuqzrcd to he pl.uixcd in a certain dirwtion the other one n111st 
t)o po1,uizcd orthogond to that direction. A typical EPR typc two-photon spwr-time cntanglcd  stat.^, 
wrrc proposed by Franson rwcntly [7]. In this state one can never predict "which p a t h  for n singlc photon, 
however, if onc of thc photons traveled through the longcr (shorter) path the other mrrst have traveled 
thrrntgh the longer (rrhort,cr) path. The si[lnilt.t~re of this cltatc is n cosine sum freqr~ancy interference 
fringe pattern of the minridcncc? coi~ntinp; rate. 

Tllc tron-local spin or space-time two-particle cntanglemcnt phenomena is i~nr~ai~al  from the rlltasiral 
theory point of view. The third typc of sirnnltmcorw two- particle cntmglcmcnt both in spin ,md in spar(!- 
time will br d i s c r ~ ~ e d  in dct.Ail by reporting wvcrd cxpcriment.~. In these expcrimcnts, it is int.crcsting to 
see tthat. tho tno:;lsr~rcmcnt of thc spin and space-time otmcrv;tblcs of either particle determitres t.hc valtic 
of t.hcsc ohscrvables for the other pwt.iclc with unit probability. 

2 EPR experiments 

Spontmmrls parametric down-ro~lv~rsion (SPDC) is nnc of the mwt effective solirces for gct~crating two- 
photon ctitanglcd states. In SPDC a pump hcam is incident on a bircfringcnt crystal. The tlonlincarity d 



the crystal leads to the sprr~tweotl~ cmirurion of a par  of entangled light qtlrrnta which satidy the phme 
matching condition [8], 

4 

where oi is the frcqlrency and k; the wave wcltnr, linking pump (p), simai ( I ) ,  and idler (2). Thc? 
down-mnvetwion is callctn type-I or type-I1 &pending on whether thc photons in the pair haw p~allctl 
or twthogond plari7tation. The light q~rantn of the pair that emergm from the nonlinear crystal may 
propagate in d iemnt  diwtions or may propagate collineitrly. The frequency and propagation dimtiom 
arc determind by the orientation of the nonlinear my~tul and the phase matching relations in (1). 

In order to rmndctwtand the two-photon behavior d SPDC, consider the experiment which is shown 
in Fig. 1, a simplc beam-splitting experiment. Aseume that a type11 BBO (P - Ba&04) crystal is 
I I ~  for the SPDC. TIM mllinear down-conwrwion hcam is split by a beamsplitter. The hcamg,litter 
is ~ l ( i ~ ~ m e d  to bc pdirrixation dependent sn that the *ray b transmitted and the errty is mflmtd. 
Sin& photon co~mnting detwtom Dl d & arc p l w d  in the trammission and wflwtion olr tp~t  p m h  
d the beamsplitter for detecting the +ray and the e-ray, rcspmtively. An introdlrction d the effwtiw 
mvc?fimction @(tl, t2 )  is helpfill for tmderstmding the physics of the phenomenon. 

Figure 1. Schematic experiment for 
sttrdy of the type I1 SPDC hiphoton. 
BS is a beamsplitter. Dl m d  & arc! 
photon cotiting detectors. A coinci- 
dmce circliit. is t1wd for recording the 
coincidence rate. 

h 

For collinear type-I1 SPDC, a two-photon part of the state? exiting the crystal may be cdctilirted from 
the standard theory of SPDC [!I]. 

Thc effective wavcf~inction may hc calrtllatd for thc system p m n t d  in Fig.1 [9] 
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A ~ t r o n g  corrclntion which appears in the form of almnst a 100% destr~ictivc qtlanttim interference 
is R clear dcmomtratinn of the sitriation whew the Einutein-Podolsky-Rown wpiment. 111 is rlircctly 
npplicAh1c. The trimgilar shape of the correlation fimctinn is a clear signature of the rectangtdrrr shape 
d original two-photm cffwtivc wavcfimction. The d i s r r ~ ~ i o n  of the elfective wavcfiinction is important 
a h  for the rindcratrmding of the twn-photon doribkc r?ntrtnglcmcnt. 

3 Double Bell's inequality 

W i n g  advantage of the spin and space-time cntanglcmcnt of the hiphoton, mother typc of twn-photon 
intcrfercncc! phenomena cam hc demotvtratd. With tho addition of a Pockel's cclls, and a re-orientation 
of the quartz plate-s and pdarimrs. the rnincidcncc cotmting rate exhibits interferancc modtilation of 
tho pump frcqliency when maniprilating the voltage .Icrwm the Pnckcl's cell, r c ~ ; ~ d I o s s  of the optical 
delay by the qriartz  plat^^ (t~lhich i~ mttd  gwntcr than the mhcwncr! length of the rQnol and idler bum- 
conttersion fields). This twn-photon interfcrcnco cffclct is again d i ~ e  tn a nonclnssicd twn-photon statc 
which is cnt,mrtlcd both in s ~ i n  m d  in s~ace-time. 

Ciraril - 
F2 
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Fl 
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Figitre 3. Schematic set up for the new typc two-photon interferometer. 

Thc! schematic set lip of the experiment is ilhlatratcd in Fig.3. Thc type-I1 SPDC is the s m c  as that 
in thc qtirtnt~un beats cxpcriment. Tho collincar down-cnnvcrsion h e m  pmeu thrnligh a w t  of crystal 
q i i w t ~  plates before thc henm~plitter. The first three qtirsrtr: platcrr, which sum to 2.4nam in th ickne~,  arc 
orientcd in R way to make the two tcrms of the n-shape fitnction completely overlap (wr! the dimmion 
in acctinn 2). 11 more crystal qrinrtz plate8 follow these thrcc. The fmt axea of these 11 qticrrtz plates arc! 
rrligncd carcfiilly to be oriented at 46' relative to the o- ray and the c-ray pol~ization plancs of thc I3BO 
in order to introdlice a new hmis a~socioted with the f ~ t  and dow nxccies. Em:h of these qrinrtx plates 
is (1 f 0.l)m.m in thickness, rcsitlting in an optical dclay A1 E O p r n  between the fmt and thr! ulow rayR 



of the qrt'lrutz crystal nt wrwv~lcngt~l~s mormd 700 nm. The optical dclay is ahortt 901m~ After 11 qunrtr 
plates in compwison with the rohcrc~nm! lctigth of the field which is abortt 2511111. Tlrcrcforc, t,hc IX) and 
the IY) mtnponents of the original o-ray m d  e-ray of aitfcr enough optical dclay to he t~on-overlapping, 
whcrc )X) and IY) correspond to t.hca fast ntld ttic! slow ;rxm of the q~rrrrtr platcs. A Pockcl's ccll with 
f a t  md slow ~ X C S  cnrcfillly aligned to match the ( X )  and ti..: (Y) axes is plrrccd after the qiln-tz platcs 
in cnrh outpiit port- af the hc;unsplittcr for fin(? control of the optical delay hctwccn the ( X )  .and the (Y). 
The spcctrd tiltcrs f l  m d  f.r have G~ilrninn shape t.rmsmission fi~nctions centered at 702.2nnz. with 
baudwidths of 19nnz(filll width at. half mmcimrml). 

The down-l-co~lvcr~ion lo) hnd le) pdaxizod photons hoth have certain prohlzhilit,ias t.o he in tllc (X) 
or tthc IY) state when p~qsing throilgli thc: crystal qnrtrtx plates and the Porkel's cells. The optical 
dday between t.hc (X) and the /Y) is tho11 introdirccd by the lu~irrotropic refractive indcx d the qiirrrtz 
platcs and the Pockcl'n cells. T l ~ c  rcritlcidcncc time window in this c?xpcritncnt. is 1.8nscl.c. wliicli Is nuicir 
shorter th;m the dist.ancc hct.wcc~i thc Pockcl's cclls. Be11 ineqrrdit-y mcnsiucmc?ats car be p c r f o m d  for 
hoth apace-time mriilhlcs and for spin vwinhlcs iir otic cxpcrimart. For thc 4!i0 oriented polarixcrsl the 
caiuci&?ncc* cocmting rate is prcrlic.tcd to be, 

whcrc Ali/c is the optical delay introdiiccd by thr. ith Ptwkcl's ccll (to simplify the cdc~~la t io t~ ,  we ass~~rned 
thc optical delavs introdclccd bv the Pockel's cells ;rrr t.hc sgmc). 

4000 - ,1000 

Fiptrc 4. A typical observed sirm 
frcqilcncy modrtlatinn when the c r m  
volt.agcs of the two Pockcl's cells mc 
maniprllatcd (negative vdttcs corrc- 
spand to negative voltages). The in- 
terference viaihi1it.y is (88.2 f 1.2)s' 
which violatcs a Bell incqr1;rlity for 
spwc-time v.uiablcs by morc than 14 
standard d~viat;ms.[ll, 121 

Chanqe in opticai delays cbl and CAZ (nm) 
The itr,mipr~lntion ot Alp is rcdizcd by ch.mgmg the applied voltage of the Pockcl.s ceb .  The 

coincidence corlnts awe direct mcmarcrncnt.~, with no "rrccidcntrrl" s~~btrcltions. It  is clew that the 
tnodrtlation period corresponds t ~ t  the prtmp wavclcngt.h, i.e., 35l.lnm. Contrary to thc coincidence 
cor~nting rate, the single dctacctor cortnting rate remains cnnst,mt when Alp 1s manipulated, as is reported 
in thc it?ncr part of Fig. 4. 

It, i s  ,, ?resting to R(H! that in the smc! experiment, a test of a spin variable Bell incqiidity can be 
tngdc . . nipillating the orientation of the polmir~n, at  a tntdly constnlctivc or dcstr~lctivc spitcc-time 
iutcrfcrt:~lcc point. Becnitw of the symmetries present. 'r. the mc~ilrcmcnt, we are able t.o strldy one 
simple form of Bell's incqrlditics for pdirriaation variables 1131, 

6 = I[R,(*/8) - %(3.rr/8))/RoJ I 314 (9) 
,and the meastired rca~llt i~ h 0.309f O.OO!I, implying a violation of morc than 6 standard dcviat~ions.[l2] 

4 Conclusion 

Expcrimcnts atarting with typc-I1 down-conversion arc a very effective mt?chnniam for gcncrating two- 
phot.ot~ cntanglcd states (hiphntnn). The typc-I1 SPDC hiphdnn is entanglad both in spnrc-time and 



+I. A tm+ph*acw t4Ttwt.i~ waw frrrlztinn p rcd~mut  by Type-11 rlwmtiuic?ous pu;u~wtrii- dtwa cc)nMliic)n 
is d ~ h l i d  finr its nattaral r l t qw ilk spaw-tinu?. T h e  ht lde  clnhnglc?mcnt 18 thr two-phntmn state mr\kr?s it 
pmwihla* to fwrfonir EPR tyln8 6wcc)d~ltos in tedcrmw  ax^^ kr a ainrpb twnnt-splittity: *r?t np ad 
Gut Bcll'a u ~ q l d i t i c s  fcw qulcc~-tiliw V1ViJ~Itli  iultl qi11 Vi\FiAhlm in tba? Sunc cxper imnt .  Two-photcrp 
intrvt~?.rcntr virrihi'it.~ ks high as (W & 2)X l~irs h n  c h s w v c d .  Expc?riti~cl.trtaI hsts fiw t.11~ spm-t inkc  
nrriaI&.s a w l  slrilr .-;uLdldta n(*ll i ~ ~ t u l r ~ d i t i m  11:tvc h t r t ~  ~ ~ ~ c ? t w t a d  with vi14at.iotlri of 14 ;urrl ' ..rt;rurl;url 
c(mtiirtio~s. m~wrt ivc ly ,  in cntv cxlwrintc:ntd scat rip. 
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The contradktiaa between the measurement theory of 
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By the measurement theory of quantum mechanics and the method of Fourier 

transform ,we provcd that the wave function t#(x*y * e  * t )  = * @(I.*t.x)* 
tnfi) .  

(I.,t, y )9(l.. t ,z)- According to the theory that the velocity of any particle can not 

be larger than the velocity of light and the Born interpretation, when 181 > (ct + 
I. ,@(I.,  t ,a) = 0. But according to the calculation~ww proved that for some o", cvcn 

i f  161 >(~t+l . )  *iP(l.*t*B)#~. 

ISy the mcasurcmcnt theory of quantum mechanics.if someone measures the coordinatc 

of a particle,it will make the particlc to the eigcnstatc of the coordinate. The eigcn function 

(with cigcn value zero) of the coordinate nf a particlc can hc assumed as follows: 

when -I,<x<l, 

a(x.y,z)=O otherwise 

I. is an infinircsimally positive real numhcr. Now assume someone measures the coordinatc 



at the t i r m e t = 0 . t 8 t r s t b i s ~ i s ~ t o t k c ~ ~ t t < r r i t B e i g c n t n l u c o e r o ) d t h c e e -  

ordimtestbe wave fmctim + (;st) of tb* particle rill satisfy tha felt- conditioo 

By the Fourier tmmbrm d dw S d u d q p  - .  wave quationeit is not Pffdt to see 

1 =- 

1 =- I ' .ia*~.)&in(k&,$kin~t, 

(*)* <G,3 v 

- (a) I - b'%,,- Thu.+(xsy...t)--= q&k%P~(c*f-- 
B P  

1 

n e t  exp{i&x--+k,y-*+b-*~}dk= 2 r 2 r 3 P cRc, 

1 
e- WL.1 . 1 M ( L . t . ~ ~ L . t  ..I 

(*Ia (&,. 
Where 

@(I-.t*x)= hk3 sin(kL) cxpCi(ksx--1% - k, 2 r 

O(L .t . y 1 = rm sinv) expf i (k ,y -~) ]dk  
2 r 

fIsin(ic,Ia 
@(I.. t .z) = -_ 7 expCi(ks-*)~k. 

2 r 
Tbus W0.t ,x)=O 

nktt a(D(l*'t*x)= a 1, 1 : ~ k a I a  expCi(kax--))dk, 
2 r 

-exp(ik,L)+exp(-ikaJ,) 
2 expci(kx - - hk3 > J ~ L .  

2 P 
1 hkf t =y { ~~exp0kn(x+1.)lexp[-i  -]dk. 2 8 



According to the theory that the velocity of any particle can not be larger than the wloc- 



ity of light e and the Born interpretatimfw any t(t>O)*when Ir~>(ct+l. . l .  IyI>(ct+ 

l,).lzl>(et+l.).+(x.y.n,t) will be zero-This means if I b l > ( c t + 1 , ) . ~ ( 8 ~ 6 ~ 6 ~ t ) ~ l l  Be 
zero. Then by (5) .&n 161 ><ct+l.).SB(I..t.?j) will be zero. Therefon! when I&(>(ct+ 

a ~ t - . t . a )  dl I.). a( zero. 

According to (12). 

Then it is not 6Iifficult to see 

Where n is an integer 

o"A,. 'O<I..t .o will 
This means when 

ntu 
is not an integer-even if 18l>(ct+l.). 

zero. This result contradicts that when the velocity d any partide can not be larger than the 
a WI..~ .a) wd, =- velocity of light and the B a n  interpretation is nlid. if 181 >(ct+I,). a a 

ro. This contradiction means that there is a contradiction between the measurement theory of 

quantum mechanics and the theory that the velocity of any particle can not be larger than the 

velocity of light. 
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TWO-PHOTON "GHOST" IMAGE AND 
INTERFERENCEDIFFRaCTION 
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1 Introduction 
One of t-lle most surprising consequences of quantu111 ~neckanics is  thc e~tta~~e;lernc.~rt of ttvo or trlorc- 
distant particles. The two-particle entangled state was mathematicall_v forti~ulal mi I q  Scli4i11gc.r 
(I]: Cot14dc.r a pure state for a system con~posed of two spatially wparatcd s r i l~ys tc~ i~s .  

whew la) and jb) are two sets of orthogonal vectors for suhsysreni I and 2. If c(s. h) dcws liot 
factor into a prodtlct of the form f ( a )  x g(b).  so that the state does not factor into a pnwlt~ct 
state for stlhsysten~ 1 and 2 (e-g. p # p l 9  p2). the statc is defined by Schriidinger a< an-cmtangltul 
state". 

'The ciassic example of a two-particle entangled state wa.4 suggested 1)y Ei~rstcin. I'oilolsky. allcl 
h s m t  in their famoils 1935 gcda~kc n t x p c r i n ~ ~ n t  [2]: 

whcrc t.., is a constant. \\-hat is suryrisi~lg about tllc entangled stat(- (2) is t lw* follotvieg: thr 
~ ~ U S O I Y  d r a l u ~  of an obst rrcrblr for cithc r single subsyslc m is undr t t  rw)inatr. Ilowr rt r. if otrr 
r,l  thc .~trb.~ystr m u  1s rltrustlr~d to  6r nt a ccrtait~ ealur lor thaf obsrrrnblr (thr 1rrccl.crrrr8 t-nlrtr i.. 
n t.tnirrl!y art tigrn ralur ) thr othtr  onr is 100% dftrrnritlntc . This p i n t  can hc casily srt.11 fro111 tlir 
clelta f t~~lct iot~ it1 stat#* (2). Rased 011 this ~ I I I I I S U ~ I  qualltunl hchavior. EPII dcfioc-d thc*ir "pl~ysic.al 
rc*alityW aad I IIVII asktrl t hc y~lest ion: -( ' ~ I B  Quantun;-~4ccl1a11ical r)csc.ril,tio~~ of I'lr~sicitl I{c*alit y 
IJc*('ot~siclertwl <'o~npletr. 13):'" Otir nlay not appwciate EPR's criteria11 of l~l~psical n~iili* atlrl insist 
l~at  "no ele*t~~c~~tary  qtlant IIIII yhel~on~ct~orl is a pt~ctionicnor~ u~ltil it is a rw.corclc.cl l ) l t c * ~ t o ~ ~ ~ t . ~ r o t ~ "  

[-4;. however. no onc can ig~iore the t~t~usual  ionl local behavior of state (2). crsjn~c.ially c o ~ ~ k i d t * r i ~ i ~  
wl~t-n t lie* nicasr~remcnts of  subsystems I and 'I are space-like scyaratctl c-vents. 

Ol,tical spoatnnm,~is paratiict ric down coairersion (SPI)(,') [5] 16) is I 1 1 ~  rilost c*ffc*r.t ivc* ~~lc .c- l l i t -  

nistii to grncrate aa EYR t ~ p e  entangled two-photon stale. In SPl#:, all optical I,t-an~. callt~cl t Ile 
parnl). i s  iincidettt on a bircfringcrit crystal. The pump is intcnsc enough so tltat aat~lir~t.ar c*flt*c-ts 
lead to thc convcruion of purliy phototis into pairs of photons, historically callcvf signal anfl itilcr. 

lPrrma~~ent address: Department of Physics. Moscow State I'niversity. Moscow, Russia 



The two-photon state generated from the SPDC cry-sbal may be dculated from the standard 
theory (first order perturbation theory) to be (61, 

where w and k represent the frequency and the wave vector fw signal (s), idler (i), and pump (p). 
The two delta functions in state (3) are usually exdicitly written as phase matching conditions: 

Technically, the SPDC is said to be type I or type 11, depending on whether the signal and 
idla beams have parallel or orthogonal polariaation. The SPDC amversion efficiency is typically 
on the order of to lo'", depending on the SPDC nonlinear material. The signal and idler 
isteusities are extremely tow, only single photon detection devices can register thern. It is clear 
that state (3) is an EPR type two-photon entmgld state. The quantum entanglement nature of 
SPDC has been denmwtrutd in EPR-Bdun expekents and B a s  inequality measurements (71. 
The following two experiments were recently performed in our laboratory, which are more closely 
related ta the original 1935 EPR &n&enmment 

The first experiment is a twephoton optical imaging type experiment [8], whicb has been 
named "ghmt imagew by the physics community. The signal and idler beams of SPDC are sent 
in different directions, so that the detectiin of the sapel and idler photons can be performed 
by two distant pho~on counting detectors. An aperture object (mask) is placed in front of the 
signal photon detector and illuminated by the signal beam through a convex lens. Surprisingly, 
an image of this aperture is observed in the idler beam, by scanning the idler photon detector 
in the transverse plane of  the idler beam, if we are sure that the idler photon detector "catchesw 
the "twin brotherw of the sip4 which can be easily performed by a coincidence measurement. 
This effect is even more striking when we found that the object-lens-image relationship satisfies 
the Cacrssian thin lens eqrr3ioR 

The second experiment demonstrates t-photon "ghostw interferencediffraction 191. The 
experimental set up is similar to the image experiment, except that rather than a lens and an 
aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signel beam. We 
could not find any interhence (or difiaction) pattern behind the slit. Surprisingly, an interference 
(or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure 
that the idler photon detector "catches" the "twin brother" of the signal. 

2 Two-photon "ghostn image experiment 
The experimental set-up is shown in fig. 1. The 351.lnm line of an Argon Ion laser is used to 
pump a nonlinear BBO (@-Ba&04) crystal which ie cut at  a degenerate Type-I1 phase matching 
angle to produce pairs of orthogonally polarized signal (e-ray of the BBO) and idler (o-ray of the 
BBO) photons IS]. The pairs emerge from the crystal near collineatly, with w, S wi Y 4 2 ,  
where w, (j = 8,  i ,  p) is the frequency of the signal, idler, and pump, respectively. The pump is 
then separated from the down conversion beam by a UV grade fused silica dispersion prism and 





interesting to note that while the size of the "UMBCn aperture inserted in the signal heam is 
only about 3.5mm X 'Irnrn, the observed image measures 7mm X 14mtn. We have therefore 
managed 1il.rea.r magnification by a factor of 2. Despite the completely different physical situation, 
the remarkable featurc here is that the relationship between the focal length of the lens j .  fht  
aperture 's optical distailce fronc tht: lens S,  and the irnayc 'R optical distance from the lens (lens 
back through beamsplatter to  BBO then along the tdler b ~ a m  t o  thc image) S' satisfies thc Gaussian 
thin leas equation: 

1 1 1  - + - = -  
s st j 

In this experiment., we chose .C = 600mm, and the twice magnified clear image was found when 
the fiber tip was in the plane with St = 1200mm (see fig.3). 

To understand this unusual phenomenon, we examine the quantum nature of the two-photon 
state produced in SPDC. which is entangled ill momentuni. The spatial distribution of the photon 
pairs is the result of the transverse components of the wave vector condition in cqtiation (4 )  and 
Snell's law up011 exiting the crystal: 

sin as = ki sin a, ----+ us sin BS = =$in 13; (6) 

where a, and a, are the scattering angles inside the crystal and 3s and P, are the exit atrgles 
of the signal and idler photons with respect to  the k, direction. Therefore, near the degenerate 
case the photons constituting one pair are emitted at roughly equal, yet. opposite, angles relative 
to the pump. Although the momentum of each photon is indeterminate, if one is measured at a 
certain value then the other is 100% determined. This then allows for a simple explanation of the 
experiment in terms of "usual" geometrical optics in the following manner: considering the action 
of the bcamsplitter, we envision thc' crystal a.. a "hinge point" and "unfold" the schernatic of fig. 1 
into that shown in fig. 3. Bwause of the q u a 1  angle requirenient of quation (6). we sec that 

YlG.3. .+I conceptual "unfolded" version of thc* schernatic shown in fig. 1? which 
is helpful for understanding the physics. Although the placenieni of the lens and the 
detectors obey the Caussian thin lens equation, it is important. t o  reniember that the 
geometric rays act~ially represent pairs of SPI)<: photons which propagate in different 
directions. 



all photon pairs which result in a coincidence detection can be rcprc~scnt.ed by atmight lints (btit 
keep ill mind the difiewnt propagation directions) and therefore !.)I(* itnagc is well produml in 
coincidences when the aperture. lens. and fiber tip aw locat,td according to cc~uatiatl (5). In other 
words, tltc image is cxac.tly the same as olw- would observe orr a scree11 placed at the fihcbr tip if 
detector Dl were rpplaccd hy a point-likt* light source and the H U O  crystal by a reflecting mirror 
IlOI. 

3 uGhost" interference-diffract ion 
The sche~~ratic c-sperintc-ntal set-np is illustrated ia fig. 4. It i s  sin~ilar t.o t l ~ c  first cxperirrrertt 
cxccpt that after t he sq,aratio~t of sigttal and icller, thr signal pl~oton passc*s tlrrotiglt ii clor~hlc~-silt 
(or single-slit ) apcbrturc8 ancl t hc:tl travels about 1 tn to nicuSt a poi111 -likr j)hotolr coutlt i t~g  clet4c.ct.or 
13; (O.ritn?it in dianictcr). The icllt-r photon travels a distance about 1.2~1 frotn H.9 to the input 
tip of the optical fiher. In t l~ is  c~xi,erinlrnt only the horizontal tra~isversr coorilitratc. r d .  of t . 1 1 ~  
fibcr input. tip is sca~tnctl by an enroder driver. 

i I 
I J 351 nm FIG.4. A sc-hcniatir srt-up for 

080 the twephot on "gf~ost ' int.crferencc- 
, . ~ii8rwrion c*xperin~c*nt. I ltc* signal (c-ray 

.A 

Ar Laser 
4- 

of RBO) aitd icller ( c ,  ray of RRO) plw- 

! e  101 
ton pair is gcneratc~tl i t r  noi~lirrcar c r y -  

:* tal BRO. 'l'l~e 111tra violet pump lwa~n 

f T is separat,ed fro~ti t l ~ c *  tlowa co~rvcrsiot~ 
t)catns by a i'\' grade fuw*d silica dispcr- 
sion prism. BS is a beanlsylit.ting 'l'homj>- 
son prism for splitting the signal and idler 
beams to  different dirccations. ji a.nd f2 
are spectral filters with 70'2.2nnt cerrt.cr 
tvavelength and lotarn bandwidth. Both 
photon count.ing detectors Dl ar~d D2 are 
dry ice coole~l avalanche photodiode op- 
erated in Geiger mode. 

Fig. 5 reports ii typically observed double-slit interference-diffraction pattern. 'I'tie coirrcide~ice 
counting rate is rt:portecl as a function of * 2. which is obtained by scantling tho detector Da (the 
fiher tip) in the idler hcsani. whereas the double-slit is it1 the signal hcan~.  The Young's double-silt 
has a slit-width a = 0.1~nzm and slit-distance d = 0.47mm. The interference period is measured 
to be 2.7 f O.Ztntn and the half-width of the envelope is estimated to be about 8nlrr1. 



Detector 2 position (mm) Detector 2 position (mm) 

FIG.5. Typically observed interference- FIG.6. Two-photon diffraction: coincidence 
diffraction pattern: the dependence of the co- counts (per 4OOsec) vs. the idler photon count- 
incideaces (per r100eec) on the position of op- ing detector position. A single slit of width 
t i 4  fiber tip of detector D3, which counts the a = 0.4mm is ia the signal beam. The solid 
idler photons, while the signal photons pass c u m  is a fit from the theoretical calculations. 
through a double-slit with a = O.15mm and 
d = 0.47mm. The solid curve is calculated from 
equation (7). 

By curve fittings, we conclude that the observation is a standard Young's interference-diffraction 
pattern: 

The remarkable feature here is that 22 is the distance fram the slits plane, which is in the signal 
beam, back through BS to BBO crystal and then dong the idler beam to the scanning jiber tip of 
detector D2 (see fig. 4). The calculated interference period and the half-width of the sinc function 
from equation (7) are 2.67mm and 8.4rnm, respectively. Even though the interference-diffraction 
pattern is observed in coincidences, the single detector counting rates are both obseptted to be 
w ~ t a n t  when scanning detector Dl or Dz. Of course it is reasonable not to have any first order 
interference+diffraction in the single counting rate of Da, which is located in the "emptyn idler 
beam. Of interest, however, is that the absence of the first order interference-diffraction structure 
in the single counting rate of Dl, which is behind the double-slit, is mainly due to the divergence 
of the SPDC beam (> A/d). In other words, the "blurring outn of the first order interference 
fringes is due to the considerably large momentum uncertainty of a single SPDC photon. 

Furthermore, if Dl is moved to an unsymmetrical point, which results in unequal distances to 
the two slits, the interference-diffraction pattern is observed to be simply shifted from the current 
symmetricd position to one side of 2 2 .  This is quite mind boggling: imagine that there were a first 
order interference pattern behind the double-slit and Dl were moved to a completely destructive 
interference point (i.e. zero intensity at that point) and fixed there. Can we still observe the 
same interference pattern in the coincidences (same period, shape, and counting rate), except for 
a phase shift? 



Fig. 6 reparts a typical single-slit diffraction pattern. The slit-width a = 0.4mm. The gattern 
fits to the standard diffraction sine function, i.e., the *envebpen of equation (71, within w.xwmMa 
experimental error. Here again 22 is the unusual distance described ill the above paragraphs. 

To explain this unusual phenomenon, we again present a simple quantum model where, sim- 
ilar to the "#host" image experiment, the momentum of either single photon is undeterminate. 
However, if OM is mecaclured at a certain value the other one is determinate with unit probability. 
T b  impartant peculiarhy &ts the only possible optical paths in fig. 7, when one photon passes 
thlrougfr &he double-slit zbperture whib the other gets to Dz. In the near degenerate case, we can 
simply treat the crystal as a d e c t i n g  mirror. 

FIG.?: a) Simplified experimental scheme, and b) i t  "unfolded" version . The 
averall optical path lengths between Dl and D2 dong the upper ( rA)  and lower ( rB)  
paths, appearing in equation (1 l), are M n e d  as: r~ s r ~ l t  r ~ 2  = r ~ 1  t rc2, and 
re r ~ 1 +  r ~ 2  = re1 + r ~ z ,  where rci and rDi are the optical path lengths from 
the slits C and D to the ith detector. 

The coincidence counting rate R, is determined by the probability PI2 of detecting a pair of 
photons by detectors Dl and D2 simultaneous1 For SPDC, Plz is proportional to the square of r the second order correlation function ( E ~ ' E ! +  ) of the fields at  points Dl and D2 (it thus plays 
the role of the two-photon effective wavefunction): 

In equation (8) (. . .) (91.. . I@), and JQ) is the four-mode state-vector of the SP9C field: 

where c 1 is proportional to the pump field (classical) and the nonlinearity of the crystal, #A 

and h are the phases of the pump field at A and B, and at(bT) are the photon creation operators 
for the upper (lower) mode in fig. 7b (j = s, i). In terms of the Copenhagen interpretation one 
may say that the interference is due to the uncertainty in the birth-place (A or B in fig. 7) of a 
photon pair. 

In equation id) tile fields at the detectors are given by 



WIRW r ~ ,  (rCli) are t h e  optical path letrgths from regioa A (B) along t h e  upper (b) p t h  to 
the ith dt tkrtor. Substituting equations (91 and i 10) into equation (8). 

w h  w-e assuln~ = dg in t h e  .second line of equation (11) (although this is not a mmmary 
condition to see the interference pattern, the transverse coherence of t h e  pump beam at A and B is 
crucial). In equation (1 1) we defined r he d l  optical lengths between the detectors Dl and D2 

- along the  upper and  b m  paths (ser fig. 7b): r~ z r ~ l  + r ~ 2  = t'(.-l + r ~ 1  .rn = r ~ ~ + r ~ z  = r ~ l ~ + r m +  
where rt., and rD, are the path lengths from the  slits C and D to t h e  i th  detcrtor. 

If the optical paths lm11 I ~ C  fixed c h c c t o r  Dl t o  t h e  two slits am qua!. i-e.. rrl = rul. arid 
if rz > @/A. t!~a-11 r.4 - --g = rc2 - rn-  Z rdf zt and q u a t i o n  ( 1  1 ) can lw written as 

Equation ( 12) has the  lorn1 of standard Young's double-slit interference pattern. Hew again 
zr is tht untrsnel di-rtancr j m  the slits pkznc. cnliidc is in tCir signal kern. k c &  thmqgh B.6 to llhc 
crplal and lhrn along thr idler beam lo Lhr .mnaingfilkr tip ajdctecler  D2. 

If the  optical paths from t h e  fixed detector Dl to the two slits aw u n q u d .  i-e.. rc-I # rut, 
the i~~terfmt-ncp pattern will tw s h i f t 4  from t h e  symmetrical foml of equation (12) ac-twlisq 
to exlatat ion ( I I ). This intermring phc tmmcno~~ it- lwm o k r \ - m l  and  n-~rnrtrrl lullowing tllc 
discusion of fig. -5. 

To calculate the "ghost' diffraction effewt of r singte-slit such a- shown in fig. 6. we mwl an 
integral of t hc rPwti\-e two-photon w a v d u ~ ~ c t  ion over t h e  slit width: 

whcrc r(ro.r2) is thc  distance hetween points a0 and r t , z o  belongs to the slit's platre. iultl t t l t  

inequality :z > aL/A is assumed. 
Repeating ttw ahow calct~lat ions. t lie c.ombined interfewnre-diffract ion roincidenw counting 

rate lor t 11e clo111,lc- alit caw is gi\-tn !BY 

which is exactly thc  same as equation (7; obtained from experimental d a t a  fittings. 11 the finite 
sizc of the  detectors and t ire divergence of t hc pump are also taken into accorlnt by a convolrition. 
t h e  intcrfctcnct. visibility will be d ~ i c ~ d .  These factors have k n  taken into accor~nt it1 t h e  
theoretical plots in figs. 5 and 6. 
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SQUEEZED STATES, UNCEFtI'AINTY RELATIONS 
AND THE PAUL1 PRINCIPLE 

IN COMPOSITE AND COSMOLOGICAL MODELS 

Hidesumi Terazawa 
Insfitate .for Maelear S t ab ,  Uniwersitg of To&p 

Aiidori-cho, Tsrad i ,  Tokyo 188 dapun 

(Dedicated to Dr. Eugene Paul Wigner, the hk Professor) 

The importance of not only uncertainty relations but also the Pauli exclusion principle 
is emphasized in discussing various "squeezed statcsw existing in the universe. The coateats 
indude: 

I. Introduction 

XI. Nnclear Physics in the Quark-Shell bfodel 

111. Hadron Physics in the Standard Qud-Gluoa  hfodel 

IV. Quark-Lepton-Gauge-bson Physics in Composite Models 

V. Astrophysics and Space-Time Physics in C.osmdogical Models 

VI. Conclusion 

Also, not only the possible breakdown of (or deviation f m )  uncertainty r e l a t h  but 
$SO tbe superficid violation of the Patali principle at short distances (or high energies) in 
composite (and string) models is discussed in some detail. 

I Introduction 
1 have been asked by Professor Y.S. Kim, the Principal Organizer for this Conference to present a 
psrper biased on m y  recent research results in the field of squeezed states and uncertainty relations. 
S i n e  I am a particle theorist, I have not so much to  say about 'squeezed states" in condensed 
matter physics (or science). Therefore, what 1 am going to do  is to discuss "squeezed st?besm 
in nuclear physics (or science), hadron physics (or science), 'quark-kpton-gauge-bomn physics 
(or science)", a ~ t t o ~ l l j  SICS (or astronon~y) and "space-time (or cosmic) physics (or science)" (or 
cosmology). In either one of thew discussions, I will try to emphasize the importance of not 



only uncertainty relations /jut  also tlic Pattli c*xclttsiun priaciplc. Tlie reitson for this is that both 
tlte H e k l l w r g  ulrcc-rtaiety prirrcipk and tlrc* Parrli c-sclirsio~i l~riticiple are tlre amt important 
principles after the ~~rlick-\tta\ 'ct idca an \vliicil clttantunl nlccl~allics is based. Also, t k  two 
principles a rc  cbsi8ly relatcul to  cach otllcr so that tlicy may ~ m t  lu: t l i s c u d  separately. Toward 
the end of tlris talk, t \\.ill even d k t r s s  iiot only the possible breakdown of (or deviation from) 
uncertainty relatio~ls Ijrrt also tlie su1nrrfic.ial \-ioli~ti(~t UI t.11~ Patrli prilrcil)l~ a t  short dis6ancrs (or 
high e~iergies) ill cotnl~ositc (and string) tndcls.  

t woi~ld like t o  clculicatc this ~alk to Dr. Ertgctrc: Paul \\'igncr, tlrc* late Prolcvsor who has 
developed the group I l~cvrg ant1 its apl~licatiotl i l l  quanturrr mcu.l~at~ics of atomic spcctrum based 
on the unccrtainty prirtciple and the IJruli priaril~lt. [I]. 

Nuclear Physics in the Quark-Shell Model 
in  197.5, Aritna and I;lc.I~c:llo tai~glrt tttc* that nuclc-ar pllysics (or scietice) f'l! yet nccds a totally 
neu- oiudel. rltcir i~ltc.ract ing I ,osc~~ 1ilotlc4 !ill. 111 I!Ji!). I p r o t ~ ~ s t ~ l  i t~tut l~er  i~totlcl. tile quark-shell 
model of rtttcki i t t  rj~riutt~r~tt clt~~wrnnlyann~ics~ prescr~twl t l w *  c:%-c-tisu t \ \ .o - Idy  potcntiai betwen 
quarts in a nttclcrir~. ~wi~t t tnl  out vit)Ia:ttt I~rt*akcton-t~ of i w ' i l r i t ~  ittsariatict- and importance of 1:- 
spin itlvariancc i l l  sr~lw-rl~c*a\vy tiuc.lc.i iittcl ~)rcrclicttuI oossil~lc- crc-ation of -srtlwr-Ily~xrnuclei" in 
heavy-ion collisiorts at  l~iglr e~rc-rl;ic*s. 

In this scctiorl. k-t IIK* start ivitlr clis(.trssit~g S ~ I I I ( Y * ~ ( Y I  ~lilt.('?i in ~luclear pliysics. The nudeon 
der;sity i ~ r  at1 ortliriary tt~cc-k-11s \\.it11 I I I V  tl~irti. ,  a~~rill~c-r .A atlrl t l l c *  riidius R or in ordinary nuclear 
n~a t t c r  is p . ~  r .-1/\ ' = :1.4/.1r11" z :$/.l r ltj 1 0 . 1 - 4  /(jc.rtt~i). '  \sl~c*rc \,' = (41r/3)R' since R 2 
R,,A'~ for R, 2 1.2 fa-rrtri. :I rtrt1e.11 Iiiglic-r rr~~rlcw~ d ~ w i t y  call Iw fount1 i l l  an abnormal nudear 
matter sttcli as tilr rit*tttrcbtr star 01 tlrc* part of a ( Y ) I I I ~ I O ~ I I I ~  trltc-l~i to  he forriled in high-energy 
heavy-ion collisior~s. .l'lrc- lattcr of trlliclr tttay IH pr(~iltrcmI irk tltc near future by RIIIC, which 
is now untler construction at Urooklriivc.tt Satiotlal I.al>oratory. It is vcr! intriguing whether the 
future esperinw~rtu at 1t~IIC' \rill ol>?;(-r\.t*. Tor t l l c -  first t itiw, t11c- ~)lra.;e t rans i t io~~ of nuclear matter 
frotn t h t  ordinary ~rtlc.lcar pirase 1.0 t.hc al>r~or~r~al  1.c~'-\\.'ic.k I J I I ~ S C  i l l  which "efTectiven nucleon 
(or qtrark) nlacs il~sidt- t l t ~  tii~clcits 11r;cy I,c. tllrrcl~ slr~alla.~. :ltar~ I-IIP t ror~i~al VBIIIC [dl, which was 
predicted in 197.1. and also 1 1 1 ~  1)11a?i(* ~ ra~~s i t i o t r  fru111 ~ I I C  ortlirrary tirtcltlar phase to  the quark- 
gluon phase in \slticl~ cliiarks aricl glr~ot~s 111iiy IF d(*cor~fiticcl or lil)cratc<l. Ilowevcr, it soems still 
very difficult t o  catcrrlate tllc- CI-oss s c ~ l i 0 1 1  for ~ ) r o ~ I t ~ c i ~ i g  S I I C I ~  a l )~~or~l ia I  ~tuclei t o  a very good 
accuracy arid also t o  itnagirtc tlic rcliablc siglials for ol).;cr\?il~g tlrcm. 

A little later, i r i  I!)i!l. (Illin arltl lic-rl~rilll. atrd i t l ~ l ~ * ~ ) c ~ ~ O ~ t ~ t l y  niysclf predicted another type of 
abnormal nuclei (callcd super-1ty~~t~rtiirck.i or "strarrgeb qriark matter") consisting of almost equal 
numbers of up, clo~vn a~rtl stra~tgc clttarks. I>ascxl on tlrc ~iattiral expectation that they may enjoy 
suppression of not only the 1:crnii cltt-rg but also 1Iic Crortlo~nl, repttlsi\*e energy in nuclei (51. 
Furthermore, tlie possil)le creatio~r of srtc.11 al~~rortnal mattcr in bt~ll; (called "quark nuggets") in 
the early universe or itisitle the nct~trot~ star liad bccrt~ cliscttsswl in detail by Witten, and the 
properties of *strange matter" Irad hrc*~t it~\vst.igatml in (Icrtail in the Fermi-gzrs model by Farhi 
and Jaffe. Recently. Saito a d. fcjttntl in costrlic rays two al)sormal events with the charge of 
Z = 14 and the mass number of A 2 350 ancl ctnl)llasiwd the possibility that they are super- 
hypernuclei [GI. In ordcr to detcrtiritic* \r.llc*t Itcr or t~ot  tIrc?ic costliic rays arc really super-hypernuclei 
as clai m l  hy the coslnic-ray c-sl)c*rir~tc-~~~ il lib1 5 ,  I 11avc illvest igatcd Itow the small charge-to-mass- 



nuinher ratio of Zlr l  is clctcrtt~ittc.ul for S I I ~ M ~ ~  1tyl)cbrttttr')c~i t v l t c ~ t  crctatrcl ant1 coticltrded that such 
a small charge of 3 -. 110 tiiay I r  rrnlirnl nr 2 < m;ltf2 (2 1.5.7 for .4 = 370) if tte renlleki are! 
created spont~anmtoly fro111 h111 k s t r a l ~ g ~  c,ar rk I I ; ~ ;  tcbr cl l t r  t o  tllr Catllnmh attraction If]. The 
second most likcly intrrl)rctatiou of t l~c Saito c*\*c8itts is  that thry arc "tecli~libaryonic nuclei" or 
"tecl tniba~on-nr~clct~s  atott~," [Si. 

In cor~clrtc!itrg tltiq wctiol~, I \ v i s l~  l o  acl\.m.ate nty j~roposal for nlcasrtring not only the weak 
mixing angle* I ~ u t  also t!ic! cIclark ctc*rlsity it1 1111c.lci I,y al)scr\*i118 t Iic isffc~t t Iiat the elcctmn energy 
spcctrun~ i t r  truclc~iir 3 i - c I r ~ i t ~ ~  i s  afftvtc-cl 19. t l ~ c *  weak 11c.11t rill c.~rrrc:t~t it~tcract.ioa in tluclei to the 
ortlcr of scvc-ral c*\' [!)I. :\lso. I wi.;ll t o  itcl\.ctc..~tc !try ~)rc,l,os;tl for st ~ ~ ( l x i i ~ g  t IIC c111ark strttctt~re of 
nr~cki  in inc-fastic virtrlai (.'ot~to~otr ?;c.altc.ri~~g of p h o t o ~ ~ s  fro111 trriclt-i for It.pt.on-pair j~ro~litctiorr, 
7 + A -, 7' + utr!llfrirry i i t r c l  ;' -, r.+ + I - j 101. 

Hadron Physics in  the Quark-Gluon Model 
In this swt ion. k-t t.rrca tlisc~tsu scI~rcv~~~cl \tilit?; i l l  11i~d~t)tl ~ I I ~ s ~ c s .  'f'ltr quark density in an orclinary 
I~iulrntt wit11 tltc c l~~ar l<  I I I I I I I / , ( - ~  .Y, i i t ~ c l  tltc. riulitts 4'1. i t1  orciitlary I ~ i i d r ~ r ~ i ~  matttsr is pq S 
iSq/Vh = : ~ . Y t l / . I z l ~ ~  2 !I/ I rr; 2 I - 2.(i i /{It t-trii)" tvltc~rt, \ = ( i x / : ~ ) k ~  a11c1 rp  is t l ~ r  protott 
cltargc ra(li115 of t11v or~I(*r o f  0.Sl fa-r111i or t 1 1 ~  prot.w -tlt~itrk r a d i ~ ~ s -  of  t l ic* o rc l~r  o f  0.65 k*rriti [ I  I]. 
.-I ntuch I1iglii.r ( I ~ ~ ; r  rli clt-r~uitt. (.ill1 !,I- fo~r~tcl i t 1  ; ~ n  aI~~ic>rr~ln I I ~ ; r r i l - o l ~  o r  abt~or~l ta l  i~atlrotlic t l~attcr 
stlch ~LS tilr c ! e ' ~ t ~ c -  ( i ~ ~ i t ~ . k - ~ l ~ ~ o ~ i  pli ts!~i~ or t l l ~  I)i\rt 01 il C O I I ~ ~ ) O ~ I I I ~ ~  l ~ i t d ~ ) ~ ~  1 0  In! rort~rcxl in super 
high-cncrgv ttarllr,~~ c-ollisicr~~s. 'flrc* MI-calltul ('cntar~ro csvc~its will1 vst rcbnlcly high mr~ltiplicitics of 
j ) rd~tced Ita,lror~~ ( I ! ! ,  = 1 Of) rt ?!I) i111cl \\-it It t ~ a ~ ~ s r ~ a l l y  1ii.qIi avcbragi~ t ratisvcrse matlicnta ((m) = 
O . , % i O . l O  C:c.\',fc) 1 , t i l  \\.it 11o11t i l l* 7's ol>s~rvc*d in ~ I I C  C ~ S I I I ~ C  ray csp~rit i lr t t ts  hy the  Rrasil-Japan 
Emt~lsiot~ (.'!~i\r~~I)r*r t '(tlli!l~(,r;~t ion i l l  i ! ) i i  i1ia5 I,P i11~1i r~a t i~~11~ o f  s1tc:11 a l ~ i ~ o r ~ t ~ a l  t~aclrons althougll 
no candidates for ?;r~c.l~ c-xot ic I~;!c/ro~t'i Ilavc* yct I)tr*l~ 01)~4*rvcxI ilt any ~ C C C ~ C ~ P ~ O ~  e s l w r i ~ l t ~ ~ ~ t s  [I?]. 
Ilowvevi~r. nl!. ~,c:r\olr;~l ~>rc-jl~clicx. i.i t Itnt srlc-11 ttnristtal c*\.c-~rts ntiry 1101 t akc~i  as  itldicittions of such 
exotic 11a~lrt111~ I I I I ~  I , c .  t.ul)li~i~~c! t i t  1:c.r In. c-olic.rc.~~l c4rc.r.t~ of rltiilly ~~r~c.l(.otis in projectile arrd target 
ftc-avy ion. tar 1)). i~l<.o!~tv(~rtt t ' l F c - ~ . t l r  o f  i : ~ c l i t . i c l t ~ i t l  t ~ t ~ e . l c w j ~ r u  sill(.(: I IIC cl~rlrgvtl ~~lr~l t ipl ic i ty  in hadron- 
Itarlrc,tl collisior~~ ;I?  vrs:y 1 1 i ~ I t  r*!~i.t.gic*- tit;ly I~c*cot~w 111tlc.11 1nrgc.l- 1llr1n ~lsually e s l ~ ~ t t u l .  In fact, 
it1 i!K? 1 ~ I Y I I O I I ~ ~  ritlil(I 1 I I ~ I ~  l l t r ,  it\.(.l.dgcn (*II,+~%(*(! 1111ilt ip!it"ity ( ( t ~ , - ~ ) )  a11t1 1,ransverse I I I O I ~ ~ ~ ~ I I ~  t t t i t  

( ( lV )  j of pro(l~~c.c~tl I B J I . ~  ic.lc-s i t )  I~;~clro:t-I~acl~t,rr collisio~~s at vcry I ~ i g l ~  c-nergics (&) have a simple 
r(*Iati011 of j r t . . h ) - ) ! l ~ 7 . )  / = c.o~ist i l l i t  (= 0.iO f 0.0:) i l l  1 IIC g~ t~c ra l i z (d  knni-Landau statistical 
a t ~ d  I ~ ~ ~ ! r ( n l ~ ~ ~ ~ t ~ t i i ~ ~ ~ l  111e)(!(-l. ' I ' i 1 4 -  t.t.l;\tio~i i~ s;~tisfic(l rc-~~larkaldy \vcll I)? t l l t~ expcri~iiatital data  
up to tlrc 51'5 ] c p  ('o!li(lc.t. c-t~rrgic-s ;>II(I  will soorl I)(*  tc.stcul Ity Tc-vatrota Collidcr experiments. 
Front t11(* r(4iitioli. 1 l~avc' ~~t~c~~lic.tc.~l that t l rc '  avrragc cl~argccl ~~irtltiplicity \\.ill I~ccornc as Iargc as - r 
( # l c h )  = 4 ,  i 2 '11 ,/.* = ! .S  -I-(-\- [I:!]. 

I Itiivv ( ! ~ ~ I I - ~ I I  \o k ~ r  t l t c *  s(l!~(v-z(~<l ~tiitc*s of trt~(-Ic-iir 111iit ter and I t a~ l ro t~~c  matter \vl~icll arc 
s c l t~ t~zcd  I)!. t l t c -  c - x t c - ~ - ~ ~ ; t l  Tr,t.c.cn or I)l.caslll.cs ca~~sc*cl I)! Irc.avy-io~r collisions ancl tra(lron-ltadron 
~ollisiot~s.  1Ittrvc.vc.r. ~ I I I ~ *  I I ~ I ~ I I . ~ J I I ~ ~ .  rriitltcr ( . . t t t  I)c- scI~~c~c~zc~cl I,! itscblf at I ~ J \ V  tc!tt~l)c*raturcts (or low 
c t t ~ r g i c ~ ~ )  ( 1 1 1 e *  tct I l l c -  ~ (~1 .y  st rc ,~~fi  i t ! !  riict i\ ( *  lr~rct- I )c- t \v(+~t t  C C J I I S ~ ~ ~ U C I I ~ S  of 11acIr011ic matlcr. the . .. 
quarks. I t  111ily 1 ) c -  c;~llc.cl " s c I f - s r l ~ r t u ~ ~ ~ r , ~  . I?or vsitrnl)l(*. tl~c* vcry Ilcavy top quark ( t )  and thc 
atltiqt~ark 11111-t I I ; IV(# a vary h t  ror~g 1 rac:t ivr forw ~ I I I ( *  to at1 cscltat~gc of tile Iliggs scalar (11) in 
tlre star~cli~r(l n~c)(lcl of ( ; l ;~sl~o\ \ . -Snli~t~~-\ \ i~i t i l~crg For c-lcct ro\v~;lk irl t~ract ions. Thert.fore, suppose 



that the vacuum consists of quark-antiquark and Iqton-antilepton pairs as in our unifisd umkl 
4 the IUmbu-Jona-Lasinio type for all elementary-partick bms (141, we can expeet that a top 
quark and an anti-top quark be self-scluoeaed to form a d a r  bound ssbe of tf [Id). TBi is add 
%p(-antitop) condensation*. According to Nambu, this is r kind d "bootstrap", the wi@d 
fenn of which was advocated by Chew L ldm p h y k  in tlw micMje of 10GO'e, s i n e  h e  H i  
mdnr is taken M a bound state of tl or a condcnsa'c of If in our picture. In 1980,1 predicted, from 
the mm rules for quark and lepton muses pwviously derived in our unified model of 1977 (141, 
tbe top-quark and Higgs d u  masses to  be m, @rn, I 131 GeV and tn. i9 2ml PI 1 1  
Gev. Much later, Nambu, h'liransky & d. and Barden d 81. made similar predictions br nrt 
d rnH in their models of the Nambu-Jona-Lwinio type which arc similar do our unified model 
114). In lW, 1 derived a similar sum rule for quark and lepton masses in a mchl-indepenQeat 
way [lSJ. 

IV Quark-Lepton-Gauge-Boson Physics in Composite 
Models 

In this section, kt me discuss squeezed states in quark-kpton-gauge-beaon physics. Since Pati 
aad Salam, and independently ourselves proposed composite models of quarks and leptons in the 
d d k  of 1970's [16], hundreds of particle tlmrists have extensively investigated t h e  mod& in 
great detail for the las6 two decades [li]. For the last decade, thousands of high-energy partide 
experimentalists have becn scriotlsly searching for a possible evidence for the substructure and 
excited states of not only quarks and leptons but also gauge bosons (181 although they have not 
yet found any clear evidence [19]. 

In our unified composite modd of quarks cind leptons (161, not only quarks and leptons but 
dm gauge bosons as well as Higgs scalars are mmposite states of subquarks (or preons), the 
inore fundamental and probably nmst fi~n<lamental constituents of matter. All these fundaunentd 
particles in quark-lepton-gauge-bosoli pllysics riiay Be taken as self-squeezed composite s tah  of 
the quark-leptonic matter. Since our composite model of quarks and leptons is e simple auralogy 
of tbe celebrated quark-gluotl nmlel of I)a<lroas by Cell-hlann, Zweig and Nambu, i t  leads us 
b e lot of easy analogous ideas in cjuark-lepbn-gauge-boa physics. One of the most eminent 
examples is the principle of *triplicityw, which asserts that a certain physical quantity such as tho 
weak current can  be taken equally well as a composite operator of hdrons ,  or of quarks, or of 
su bquarks [ZO]: 

where w, and ti9 are an iso-douklet of spinor subquarks with charges f 1/2 (called "wakemsn). 



Another example is scaling nlass paraiiwtcn of hadl-011s. quarks and suhquarks. It asserts that 
the c u m n t  mass of light quarks Iw sca ld  to  thosc of suhquarks which can be as smdl as 45 CeV 
and that the Uelectrostrong" gauge tChcory for hadrons may aplwar rcs an effective theory in QCD 
as the electroweak gauge t l~mry  fw quarks with the scaling relations of tnH/mW = m,/na,, which 
Btgdib r n ~  2 94 94V 121]. 

The principle of triplicity tells us that the Higgs scalars can be taken equally well as c a m p s -  
ites (or condensates) of subquark-antisubquark pairs or of quark-antiquark (or lepton-antilepton) 
p i n r  as in our unified nmdel of the Mainhu-Jona-Lasinio type as n's and a as those of nuele~n- 
mbinudeon pairs as in the original form of Nambu-dona-Lasinio model (14). In this picture of 
eubquark-antisubquark condensation, we have derived the mass forn~ula for composite quarks and 
leptolls from a partially c o n s c r ~ d  induced strpercurrent hypothesis. In supersymmetric composite 
models [B], it leads to a sinlple sum rule for quark and lepto~l masses of [23] 

if the first generation of quarks and leptons can he taken as almost Nambu-Goldstone fermions [24]. 
We have found that not only this square-root mass sun1 rule but also another similar sum rule sf 

1 /? m - m = m 2  - I , ,  are sat isfinl renmrbbl y .n~ell by the experimental vduta. F u r t b n m m ,  
if the first and .second generations of quarks and leptons can be taken as almost and quasi Nambu- 
Goldstone fermions, respectively, we can derive not only a simple relation among lepton masses of 

3 2 3 ID m, i (rn:/me)'f2 [25] hut also a silnplr relation arnons qr~ark m a w  ntl 2 (mdrncmb/rn,,m,) 
[26]. These relations predict PI), 2 1520 MeV and m, 2 177 CeV, which should be compared to 
the experimental valucs of nt, = 1777.1 f hk\f and tnt = 17G f S f 10 CeV or I S  f :; +22 GeV 
f27], respectively. 

In 1991, 1 suggestecl that the existing rnass spectrum of quarks and leptons can b explained by 
solving a set of sum rules for quark a l ~ d  lepton masses [%I. Today, I am pleased to announce that 
it can be explained completely by solving a set of not only the previously derived sum rules for 
quark and lepton masses but also t11ne newly derived relations among quark and lepton masses. 
As an illustration, given a set of the sum rrlles atid relations of 

I have obtained t.he solut ion of 

/ 0.51 1 MeV 105.7 hleV 1520 MeV 
( illput ) ( input ) (1777.1 f z:: MeV ) 

4.5 s 1.4 1 1:3.W f 50 hleV 183 f 78 GeV 
( input ) ( inpt~t ) (176 f S f 10 or 199 L:! &22 Gelr ) 

8.0 f 1.9 hlcV 154 f 8 h1cV 5.3 f 0.1 GeV 
(7.9 f 2.4 hleV ) (I 55 * 50 klcV ) ( input ) 

where the v a l ~ ~ e s  it~clicatccl in t,llc lxtrc~~tl~csc* clctlotc bllc cspcrimcntal. to which my predicted 
values shoul~l be conll>arctl. As a~lotilcr i l l~~s~ra t io t~ ,  given another set of khe sum rules and 
relations of 



' 0:19 hk!V 101 htcV 1454 MeV 
(0.51 1 hlc:V ) (105.7 MeV ) f 1777.1 MeV ) 

3.3 hl tV  I%l - l  MCJV 131 CeV 
(-i..;* 1.4 AlcV ) (t:i.'iO f 50 XleV ) (176-fr8i 10or 199fiif22 GeV ) 

6.3 htcV 1.1Q.S AfcV 5.3 f 0.1 &\l 
, [i.!l st 8.4 hlcsV f ( 1.53 f 50 hlc\' ) ( input ) 

-far atw = SO CcV. 
In 197'7, 1 suggtlstc~l titat t 1 1 ~  Chkl clttitrk ltiixiltg ~niitris (V,,) can he defined by the mratrix 

ekment betv1~11 the  t,,tlr t~p-like <111irrk with chargc 2f.3 arlcl tlw 3t.h down-like quark (4) 
with the dtarge -I / :$ as (tc,,, I ti.1;,,rr2 r l , )  = I.:,,,,tr,,,7,,rln nl1d tirat fltc Cahhibo angle (and ali the 
CKhi ~iiisitlg ailglcs) I I I ~ ~  viiry a s  a f111tctio11 of ~ ~ w m c ~ ~ ~ t t l r n  transfer hct.\wen ql~rrks  [29], which 
shmikd be observcci i l l  tllcr I'II~ llrc. lligll cuc8rgv < * s I ) ~ ~ c ~ I I H . ~ I  s S(LL.JI as  for clccays of b 4 c at B factories 
(ort + b)andforscatterinpoft/+tr -, I+.* i t i l i l  v+tr --, I + d ( o r c + u  4 w+di tnde+u- ,u+s  
at  HERA). 111 1'381, we pnvlirttvl that tllc* I'iil)I,ibo itrrglc Inu.onrs Icrrgcr as momentum transfer 
betweell quarks gro\vs tip i l l  i t  siriil,lc- si~l,cluitrk tiwwlcrl [:MI. Fttrtl~crtlmrc, in lW2, 1 pointed out 
that given tlir  IF ~ I C I I I C I I ~  of ~ I I C  (t l ihl  cluark ir~isitlg rliatris (1 is), aft t l ~ c  other elements can Be 
successft~tly esplailit.tl or prtrlir.tt.cl 1)y lisitlg t l l c -  five rclatiolls clchrivt:cl iii a composite model of 
quarks (311. 111 fact.. given a scat of 1 li(* n4atictlts of 

I have ohtait~ccl tltc soltttiot~ of 

TO ~11111 I I ~ ,  1 \\.is11 to 1-ntphasixc* t11i t t  11ot  otlly l l l c *  Inash sj)cc-tru~ii of rluarks and leptons but 
also tile ('l i l l  qrlnrk trlisi~lg 1 1 l i ~ t 1 . i ~  i'an ( ~ ~ l ~ l ~ ~ i ~ t c * c l  S I I C C C S S ~ ~ I I I ~  it1 tlie tlnifiecl composite model 
of quarks ntlcl Ic-ptotls i l l ic l  I 11at . * c * l e ~ ~ ~ ~ c ~ ~ i ~ i i i . ~ . - l ) i ~ ~ . t  i(-lc*" j ) l~~'.si~s or cIt~arks and leptons in the last 
quarter cent !try \vill 110 c I o 1 1 I ) t  I )~ 'oT( '~*(\   IS^ OII (*  st.c.1) for\vitrel t o  '.s~tl)j~l~ysics". t hc eleii~cntary-particle 
physics o f  s11hc111arkw. 



V - Astrophysics and Space-Time Physics in Cosmological 
Models 

In this s c r t  iott , Ict ttag clisr~tss scj~~cu*ncvl k:t s tc% of mat l.thr in tltc t ~ l i i n ~ s c * .  A sinlplmt example of 
df-eclclcezcci stiitcs of 111at.l.cr itr tlic u~livtrsc: is a star. t l  pIa~~c!tary systcnnl, a nebuia, a gdacy, s 
c#u&er of gaf;~xi(-s ar~cI it  c.lttstcr of lllc cltist.(*rs of galasics arc* also wlf-s<luced statts in a senire. 

Sintr I ham- t,ittic* (or slmcc) to clisc.rtss c\itllcr ~ H I C  of t!~cw ccat~q>k:s me by one, I ody point 
out tbc importarwu* of scwrchirlg fctr " s ~ ~ ~ w * r - l ~ y ~ w ~ a ~ r c l c a r  stars", whiclr an: l l e l C s q u 4  states of 
mlper-hy~wrtt~~(.Ici (or .;t riit~gr* ciltitrl: ttiat tc*r) prctlictrnl 1 q  C'llin aticl l i c r ~ t ~ a ~ b  and by myself 151. k 
has k~tt c?ipccialiy aclvucat.cvl littcr I,y \ \ ' i r .r t s .  

blow f;\sc.iniititlg, Iro~vc-vc~r. is to it~~itgillc* that ~ I I C  t ~ t ~ i v ~ r w  iilst4f is a wlf-squeezced s ta te  of 
nurttc-r. No ilumt.irt~t. i t  \\'its a wlf-sc(trc.c~etrl state of iilat.kr riglrt aficbr 1.1,c big bang. One can 
im;cgi~tc tliirt it I l i r t l  illso II~.( .II  i t  sc~lf-scl11cu*i..t~c1 state of 11tilt.t~r cB\'ctl 1)c~forc- t ! i ~  big bang. In order to 
disctts lmssil,tr: pitysic-s 1,c.fot-t. 111c .  I)ig I , ; I J I ~ .  if all?; IS(* rrtay t l o t  1,;- it111e* Io II.W aay more Einstein's 
bJmry of gelivral rt.liat.i\.itx t ~ t  gravil,at,io~l. 111stc*acI, tvr' rtlttst wtopt. ~ p c ~ e o ~ n e t r y " ,  the more 
functarnrntal blrwry, Iiwr stiggt*s~.fil 1 ) ~  Sirkliaros ill I!#ii /:l'2] atltl first t k ~ n ~ o n s t r a t ~  by us irt 1977 
I%?), hi ivlticit gravity i s  t i tk(*ti  as  a cji~a:~~.tt~)i effmt. of ttlr7ttcBr fit-lrls anti ill \vf~ir-ll Elinsteit~f.-thcury 
dgtwcral nala~i~ity S a w  grirvity it)>ixaitl.s i a11 apl)tl)xiltliltc: a114 elfCCti\v t.11ectry a t  long t C i ~ c c s  
(or k , ~  (-~tiet-gics). III  I ! N I .  \t*c* cuufrt tm\?c:n s11ggi.st. tlrc* ~lrcxec>ttn%ric arigitl of the big bang irt the 
fdk~wing  \v;t?. I;! I]. I'l.t*gtr)il~t*t ry l ~ n s  cl~i~tt~(y.cuI tlw iiot ioti of t I#* sl)ircc-- tinw tiWtric compktelg. since 
tlit* s l ) i tc~-t i r t~-  i~tc~ttic. t i t t i  1)c- t i \ k ~ ~ i  a3 i t  ki i l t l  o f  co11i1)ositc- o l , j ~ ' t  of t . 1 ~  f t~t~tlati~cntal matters. 
'I'~I* ~c*~ort-. \vts ~ ' R I I  I*\-PII illlngi~rt 1.11itt a1 higlt t t *~ i~~~*ra t r l r (*  the spitce-t i t ~ t t .  l lwt r i~  \ V O I I ~ ~  dksociabe 
ittto i ts colrst it r t t c * l t t  5 jtl.;~ its ol*tlitl;lry ol)j(-cts do. 'i'lic*~~, t l i t  tnct ric wotlltl va~lish although the 
ft~ts.i;t. .*tal rnattc!r> st i l l  rc.ittiiit~ i l l  tlw 111i~t1~:maticitl ~nattifoltl of ttrc icpacc-time. Natnely, the 
prtgmlih a i r  I I I I R W  is t.llc* ~ , l t i t ~ ( *  o f  t it(: r;j)~ct*-tiiiw it1 tsl~ich l~~(*t,ric g""(gp,) vanishes (diverges) 
and, tlrcnrc-ta,rc*, t lic tlihti\tt(.c* of d.s2 = !~',,,d.r"d.r" di\.crgc.s. l'hcrc*. tJic space-time still exists as a 
rriatkcniat icai nii~ttifctlcl for t 11r i,rc3c*tlc.tb of I hct f i~t~cl i r~~ic*~~tal  tliat.tclrs. S11cl1 an extraordinary phase 
tlia!? ht* rc*;rlizc*cl i l l  s11c.11 ~ . t ~ ~ i o t ~ s  ; 'st  l1i11 I~c*yoiiil t hr sl)i\ct--ti~iii~ si~lgtllit~.ity. 1.c.. before the big bang 
itttcl fllitt far i l t s i t l c -  n 1)Iac.k Itolt- \vlit*~.t* t l i ( .  trnll>craturc1 is cst.rc-tnc4y l~igli (as l~igli PA thc Planck 
1tlil.i~). I I I  it sil~tj)lc- 111i1tlci o f  1)lunl;cz)~i~i*t  ry, rlkil~iti~ atlcl 1 Ilavc. ~lt*~l~ot~st~rat~(.cl  that  ltltltough the 
~)r(*grt)~~tc*tric. 1~11:ts(* is >tnl)l(.  ;I: \.cr!. I ~ i p l ~  tc-~~~l,c*ral.~~rc. t IIC ~ C O I I I I * !  ric PIIAW where the nlctric is 
firlitc it11c1 ~ ~ o i t - ~ - i - i t ~ i s i i i ~ ~ ~   ill t I I V * !  o r 1 1  to  ~ t i i l ~ l ( *  a s  t !I(* t(*rtlpt*raturt8 g c ~ s  <IO\VI~.  This re~~mrlialjlc 
~nwsi l~i l i~j .  o f  i)lta3i* 1 t ' i , ~ ! > i I  it1119 of t 11t. -l)itcx--l i 1 1 1 ~  I > C L \ ~ Y * I ~  t lit; ~ ~ T ) I I I C ~ ~ ~ C  irt~ri l>rcgmtnet I pl~ase will 
c:sl~iI)il a c.!l,~ri~~t('l.i*t i t '  f c . , ~ t  11rc- of l)r.c*g~-uri~(*! I.!.. if i t  is fo1111(l. It wSc..cnnls \-car\. attractive to interpret 
tlrc- origi~i of ~ l l r .  I i l :  lii!lig (:!' o11r t t t l i v c ~ ~ . + c ~  as  sucll a local ;\IN! sl)o~rtartmotis pllase trarlsition of 
I l i t* slbtirt*- t i ~ i i c n  ~ ; I I : I I  t ; t ~ ( y e ~ , ~ 1 1 1 - 1  tGa l ) i t i \ ~ t *  1,) t IIV g(bo~~t(.-! ric ot~t: i l l  ! l i t *  ~\~c!rcmIecl space-time 
1 1 1 i t r i i f e ~ \ r 1  1*:11icIi I t i ~ t I  1 . 1 1  l ~ t d ~ - c * t i t  : I I  1 l i t -  '.i)~ct-!~ig-l)~t~ig** crii for SOIIN- rcasotl. 

-1'Itih ; r t ? a ~ ~ * t ) ~ * ~ * t ~ t * i t ~ ~ ~  01 :!I(> ? j i g  I)itt~g illst) S I I R ~ P S ~ . ~  tltitt tlr~rc* 1i1~1y (!xist t.liotisa~~ds of universes 
.. . 

( . v ~ . ' ~ \ I ~ * I I  ; 1 1 1 ( 1  * ~ S ~ ~ i t I I t ~ t I ~ t !  ::I ! ! : a *  ~ l ) i ~ ( ' f ' - ! i I ! ~ ~ '  111atlifokl i I \  01ir 1111iv(~r~~~.  t*Vcsll p~*Cdict.s that S U C ~ ~  

di!f(*~-t-tit I ~ I I ~ v ( ~ I ~ ~ * *  ttIity ~ . t~~! i ( \ t *  u~i111 (*i\('It ot11f.1.. ~ t ~ r l ~ ~ ~ e * r i ~ i o r ( ~ ,  c ! ~ ~ t t  ~ I I  ~ t t r  ~ t ~ ~ i v c r s e  there niay 
('xist . . ~ ~ r c ~ j i c ~ ~ ~ ~ t c - f ~ ~ i c ~  I t ( , ! ( ' - " .  t 1 1 t b  Ioc.ill sl)ots in tlw ~ ) r ( y , ( ~ ) ~ ~ i ~ t r i c  1)llasc- wit l~ an  ext.rt~mcly high 
tcti~l)t'l.iti~~l.t* \rllc*rc* I I l c '  5 j1i lc . t*-t i111( '  ~ ~ : c . t r i ~  (lisi11)1)cars. lil)~ratillg c-ilor~~iotrs latetit heat, and/or 
" s l ~ t ~ - t  i111c- t l i - ( . o 1 1 1 ; 1 1 1 i i t  i1.s". + IN .  !I)( i l l  I ) l i ~ i ~ i -  \ v I I ( * ~ ( ~  t 11t- I I I V ~  ric ( i \ t ~ ( l .  t IIPI.(-~OT(*, the fight velocity 
01' the* N c \ \ \ . t ~ ~ t t i i t ~ l  g t i t ~ . i + ; ~ ! i o ~ ~ i t l  ( . ~ I I ! * ! ; ~ I I ~ )  (liwrt*trIy C I I ~ I I I ~ ( ' Y  ( I u I *  to t 1 1 ~  ~ ) l l a sc  differetlce of two 



6ipaee-tima (or two mllicling universm). I have been strongly uqing srsrtron- tad 
~ l o g k d  ertperimcntalists to B C L ~ P C ~  for these prqmmetr.ic holes and space-time d 
WW are much more exotic tllan black hde. It would be fwcinating if the men 
%=t Wall" of galaxies (much o&r than the C h b  Great Well) be 4 by such qae~b'ram 
h t i n u i t y .  

el%e most fascinating among my suggestions on s q u d  s t a h  is that in a d d the 
-tied ro4imsionrrl Einstein-14iIbet-t action for sgaoe-time and matter the qaxe-bime(er a& 
w), w h  contracted (or squeezed), may transit into a rtetw one ob higher or lcvwer d i m e d m  

minimum action near the P h ~ k  scale IS). Shim I ~~~ tKi  in tW7, many ~tt&cwti 
i m ~ s e d  this Uindiblew pae9ibility 3rd c o n c W  that it is possible MI. 

h amchiding this ection, 1 wish to anwttnm my latat  wwk on sgueated states of nmtw ftl t&e 
= titled, @The Meaning of Dirac's taige PJumk )IypotMsw p?). Dira's hge 8utrrBer 

is (LNH) (38] states that  the Eddi~gton Icuge numbers P9] N t ( e  a f Gm,m, S! lp), 
/aH 2 1Ua) rrnd &(= 4ap~3m,H3 2 lom) are not inuqendent but 

&we. By the meaning of the LNH, I; hatre shewn that aob only 
&P@!I debt0~ of fV3 - NN2 (40) but dso the " p ~ ~  LNR wh.tion of AT3 - (W2IP haf& so 

tlme LNH may mot be taken as a l lyp theh  but b n l e  tire brge number mie (LMR). 

V'I Conclusion 
In the prwious sections, I have disettssed not only various q u d  states existing in the aurivem 
a d  various squeezed states which might be existing or may be produced in tbe t m i w ,  But 
also even a s q u d  state of the universe (or space-time), itself. In this last section, I Batre 
ePigidly planned to emphasize the importance of uncertainty relations and the Pauli p r i w  
in &cussing these s q u d  states in the nature. tlowevw, since I have no time (or space) ca Bo 
that, which seems to be rather trivial, I will i n a t d  emphasize how closely these two pt inapk,  
&be Heimnbertg uncertainty principle and tlre Pauli exclttsion principle, are drrted with eack 
dber and discr;.:s how they may be violated in the nature. 

The close relation between t.he two principles seems to be self-explained in the followring chain 
diqgam: 

AP + b7 d = - ih 4 [ ~ ( x ) .  dg.)] = ih(r - 8 )  and ( b ( ~ ) , $ ( ~ ) )  = i(i a + rn)A(+ - p). 

The possible breakdown of (or deviation from) uncertainty relations at extremely short distances 
(or high energies) has already been si~gges tcd and extensively discussed in superstring models 1411 
by Amati, Ciafaloni and Vcncziano [4 '21. They have sttggested the extended uncertainty relation 
(EUR or ACV rclat.ion) of 

where art is the Rcgge slope of superstrings \vl;ich is the order of (P lanck~nass ) -~ .  Thie realizes 
not ~ n l y  the old conjecture by Landall a ~ l c l  \Veiskopf \vI~o srlggestcd the existence of natural cutoff 
at a short distance (or lligll ctiergy) of tile Plancli. scale hut also our hypothesis in the unified 
compite model for all elcn~ctltary-palatick forces inclucling gravity 1431. 



A h ,  the ,possible sinrpte violatioal of the Pauli principle has already been investigated mt d y  
thewetidly but also expeoimentnlty 1441. Recently, we have discuseed s u @ A  vkdath af 
Pw1 principle due to the possible substructure of electrons in con~posite model8 of quarks and 
iepbqu, aa8 estimated the ratm of the Pauli forbidden atomic transition to the ailowed aae te be 
d& - for heavy atoms if the site of the ekbron is of order loo8' ern 145). we kt@ 
$eo emphasized that such s~~perficial violation of the Pauli principle must exjet, no rmrdte~ k w  
d l  it is, if the electron has any substructure at ail. It seems even natrrod eince it b a 
e x t e w h  of the familiar eflects at the \~arious levels of atoms, nuclei, an8 hadms: For v l g ,  
&e hydrogen abnl which consists of the proton md the etcctron obeys b e e  stabist'm is o r b  
Irituirfjons. Hmever, when two hydrogen a tom overlap each other, the Boso~ic property d e d - t  

hydrogen atom hecdnres nwaningkss and, instead, the ferrnionic property of the d i t t r e a t  
protans and dectrons t m e s  effective. S u p p .  dso tnto hetiurn nuchi are averiappiq-@ 
&. Tberl, the genuine bosonic statistics of each helium nucleus b meaninglea a d  ~nty (be 
fermienie statistics of the constituent nucleons is valid. Furthermore, when t t~e pmbns errei%ag 

&her, the kr~niotlic property of protons will be fost d that of cunstiluent qaarks will k 
~ i v e .  

A Wd theoreticat fmant~letion of well a11 & a t  is wt familiar. Suppose th@ hke e k t m  - 

qfa-&mnbn to and a boaon C as in the minimal composite model of guub md btons [1?b'Ebs, 
&e bed M d  of the composite electron Jt (of mass nz and energy E )  can be esnsbrucbgd ia the 
HwNkhijime-Zimmermann formelism [46] as 

t/~(s) = Iim 4 2  + C)C(r - 6) 
4 P c ~  4-0 [ ( 2 ~ ) ~ ( E / m ) ( 0  I w(x + f)C(r - 4 )  1 +))'/2' 

However, in the local liniit of C 0 no sucll eifect as a violation of the Pauli principle due to the 
mpositeness of electrotla call he expcct.ed. To find such an e k t ,  let us mnsider the biiocal field 
of a composite electron, 

rhcm <  represent.^ the finite nonvai~islling size of order r~ [= (C) 'A] itad N is an ~ppmpriate 
normalization factor. The all*icommutator of tlie fields, givea by 

clearly indicates I l i ~  sul)erficial \)iolation of not lnly the Pauli principle but also causality, sin= 
neither { w ( r  + t ), tu (y  + t l ) )  nor [C(g - t)), C(X -()I vanishes for (.T. - y). < 0 [although the former 
vanishes for ( x  - !I + - q)2  < 0 \vhile the latter does for (.T - y - t + q)2 < 01. 

This demonstra ti011 ]nay illustrate what we mcztn l,y the superficial violation. Namely, neither 
the Pauli principle nor causality is violated at tllc level of constituent fields of w mid C since w 
and C perfectly ol>cy Fermi ancl Dose statistics, rcspectively. Also, the ~nticommutator of w'a and 
the commutator of C's 1,erfc)ctly rcspcct. causir.lily. flo\r.ewr, cltte to the possible substructure of 
electrons, the con~posite electroti field may exllibit tlie situiction ill which its statistics looks neither 
purely fermior?ic 11or purely I>osotiic 1vlic11 two clcctronfi arc locatecl closc! to and are overlapped 
with each other at a tlistatlce oi' the ol.clcr ol' tl~cit. size 910. 



The rccrc.; rxpcr i i tmr t  of F:jiri d. [.I71 ~ t s i ~ t g  a K a l  dctcctc: in Osaka U n i d t y  may be .blc 
Lo set a n  ulywr hact~rd oC d r  3 x lo-* OII t l w  ra t io  lor Z = -59, which is tb- at& aumber 
d I .  This conr~ lmacls  t o  a11 ulqwr ImuaR ol 1 .. lo-'' can o n  tlre ekrron size re. If this is the 
case, it also cornslnn~<ls LO a k c r  I m l a t l  d 2 TeV on r l w  B\*erse size of clcctrons, lira w k i  h 
1 order of m a g ~ r i t ~ u k  krrgcr t hart tlre ~IIO\~II htwr bOl111c1s of or&*. 100 CkV on the mmpaimm 
gCgk 01 el.-etm~~s. A, o l ~ t a i ~ t m l  t)y C+C- cotlidm crlwrinmts PSI. 

Itr the rrst of ttry talk, let IIK' talk almtt. tilt- f ~ ~ t u n *  I D C O S ~ W ~ ~  d these two principles. &e 
pmible n l o v w t w ~ ~ t  is to take CIN- t ~ ~ ~ c r * r t i ~ i l l t y  pr incipk nut w a f n ~ ~ c l a m t a l  pr idpk but a 
amsequence d a IIWIV basic icka. :\lcmg titis l i tWof  t l ~ i i ~ k i ~ ~ g ,  kt nte mnind you of the W rrork 
by Hall, who has alro\ve tlral t l~c* SIIIII of ;lie i ~ r f o r t i t a t k ~ i  gains corn.slw,nding to m c a ~ u ~ t s  d 
pi t ion axid rnOnmttl111i is lmt~rr t l td as 

Iw a cpianlrtlit ~ l r s ( -~~ l l ~ l c  wit 11 ~ms i t  ion a~rcl IIKHIH~I~ III~ v~rc .c r ta i~ t t -k  AX and JP (491. In any eoa, 
we rimy a d  to it~vvstigarc- ~.rk,~t?;ly c*s~c-~talc-l tr~rcr~rtairtty rc~littio~rs s t~c l l  as the ACV relation in 
s u p t . r i n g  rtnwlcls atrc! gc*rnralinsl rtiurkwal c - o ~ ~ ~ ~ i r r ~ t a l b ~ t  da t i o t t s  sttch as ours i e  compmitc 
madrrk tliscusw.11 it1 Sccticrtt \- (. attcl also perhaps c~tral t tut i~ grtntp). 

Artother psi l , lc*  ~ l ~ i \ ' ~ . ' l l ~ ~ l l t  i s  10 takt- t Ira* Pauli p r i a c i l ~ k  ~ w t  as a f t~ndatrmrlal  principk but 
a mqr t c l - r cc r  of the Iln)rc. Imsit- i(!ca. -1;) this a l c l .  81-e- I I I~~ IIWI 10 c p c 0 ~ ~ i e l - r  generalized be- 
Einstein ant1 Ft-rn~i-i'artli statist it-s scic-11 as parirlmsc* i l l l a 1  l ~ r a f c ~ ~ t i i  statist-irs (, a d  also q-bosc 
and q-fernti stat i .~t ic* jrd)! ). 

5lor.c. iatrrast i r ~ g  MV-IIIS t o  i~~va?;! i g i ~ t c .  -pra*lr~asl IIII~ t JIC'OC~ (or nmI1a11i~s)- i t r  which tIw & m i l k  
qt~irntrtrn t!wur> [c,r ~ ~ u ~ l r i i ~ ~ i c - s )  III~I~ i~l) l~c-ic~. ac i t i t  icl)l)rosin~atc~ a11a1 t - f f ~ t i v e  t h r y  t1h1g this 
line, we ma_\. ~~r rc l  t o  mntrsit lcr ~~ I I~ I I ' s  t lnwry \\-it!: Iticl&m \*ariaid= and Einstein's argument 
against b i l r ' s  ~~ro l~a l , i l i t  \.-statist ical ilitc-;l)rc-tat ~QII i n  C~IIJJ~~UIII IIICC~I~II~CS. 

In ccnclurling III? talk. I \*:is11 to r t i ~ l ~ l ~ a s i z c  t l ~ i l t  hoth sr~bph!liics and pmgmmetry am at 
kast j~rwt i is ing -tllrwrics of evr-ryt I t i t~g" a ~ t d  n-t~rkirlg f ra~rmsorks or t ~ m c - l i i n w k  for 'prepBysks*, 
a new l ine of ~,l~ysic.r (or  ~ d r i i c m ~ l ~ l ~ y  IDIII 1101 mc-tapl~ysics) in which sonw bait hypotheses (or 
principles) ia l icr~ as . a r m !  o ~ ~ t s  ill orclirr;-ry 1~l1Fsic-3 s r ~ c l ~  as tho futtr c l i~~mls ional i ty  of space-time 
[$5]. t i lc  n:lrn1n-r oi  s :)clr~srks [>I]. l l lc i~~\.ariancc 1111de-r gar~gc tran.ifornmtion [.j'2], that under 
geivcrai ccordinntc t r a ~ i ~ k ~ r ~ n i t t i o t ~  (533. tlrt: ulicrosrol>ic catrsali~y. tire pr i l~cipk.  d superposition 
(or particle-\\.a\.(* itlca i t r  IIK)I(* gc-ttc*r;rl) ;111cl 3,) 011 arcs to I,c- rri~so~tcci. Tllcrc:fotr, I wish to conclude 
t l l is talk simply I>y r r n n l i f ~ i ~ ~ g  t l lc  or ig i l~ i r l  \\'lrc.c.lcr's s~orcl i111u tltc f~~lIo\vitrg: Scver more than 

clot% oric h a w  t l ~ c  i ~ t c ~ ~ r t  ivc- t o  csldo~c* ~,rc*plry.iic.s (or -tlcBw pl~ysics') fM]. 
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:-@SCRETE PXQTODETmEb AND SUSSKPSDGMDOBRB 
PMAst OPBWTOm 

f Conti~uow and Discrete P h o ~ t 6 c t i u ~  

When 1 and i t  lower or raise a number state n >, they also gemrate the we& f '  6 ar 
d m ,  respectively. The SD opaaton &+ a d  h- only r.*. or lower the number states w i b t  
generding any weight h. The eslpeatial diff' between the two types d ladder cpemhm 
impk diffizences between two -in schemes. 

In the model of osatinuoua jht&M&i [%$I the density matrix d the field is  continuously 
d d  by the informath pvided by tbe pbc&ahe&r. The insfantarmus :rrocem of one- 
phoh counting is U b e d  by the ~ ~ O T  J:  



laa&ix. T B e h i s  ~~ B- which includes the SG gaeratoFs 

f l P B c a e ~ ~ ~ , * ~ t k c g e P t s i t y ~ ~ t h e ~ ~ b e B o a e a e d ~ t h e ~  
dapbota. ~~epornuliytimf.da*~~(jB+b-)= 1-<q)p>. hadab  
why&. ( 6 ) h M , n b i n t l t e t a t k r r n t i a g ~ t l r e d i f f ~ b e t - & ~ d d  
d d k & e  mi and the model d csartiatmm p b t a M e d i .  

In cmttiauous photodetecb the measurement occurs continuously a& my time wbmwer  the 
is active. In dkmte ph&&&db the measurement warn d y  when an atom 

ieam the cavity, so t h a  the number of is e q d  bo the number of  toms trensmiatd 
though the cavity. The only d d  measurement is that in which aa excited atem is ckeded. 
TMfore in this model there is no analog to the no-count proem of continuous phstodebecti. 
In the present model we are not inberested in the properties of tbe interactions inside the cavity 
and in the d a t e d  probabilities. By getting only the i n f d i o n  taat one atan is exsited we 
reduce am n-photon state of the dia&km into an n-1 photon state. The use of Eq. (6) fix the 
density aperator of Eq. (5) has only a statislical meaning, w h  An) iq the smistical pbabi l i ty  
that the state is > while in fact mly one of the st- In > exists in the cavity. For &aks 
with different number oi photons it will take different times to excite one atom, but by repeating 
many times the experiments in which one atom is excited and using only the information that 
atom is excited the density operator of Eq. (5) is reduced according to Eq. (6). One should kidre 



tkreh bse ~ ~ I P U ~ W #  %- k8S U k  ~srb 8 W k d  a#wrsh- 1P&a 
d i a b r s i r w d b y  that d l e a c p k i ~  by a ~ n g t ~ e t i r n e ~ ~ t  oftlneqsbtr~ 
u m  m y  quitatum brajeebrk 131. By get&- a &&rent m W i  & i  ta eur model wte 
&bin a differerrt pbode tmt ion  theory which we call &irete psokrdebecti. 

As ahe msutt d &+ate tducth (6), the in tbe phokm number distribut'km d the 
m d W i  W e a n  beexpremed in tkeptvsmtrnoeelin tkehlltmnting Eeml 

~ ~ ~ ~ b e P i r n & ~ a f t e r t l P e ~ t d a r p e ~ e i M ~ $ & ~  
d u g  to Eq. (6) hy: 

~ B i k  ia the continuom pbotodetection theory the mean photon number inmediat.el. .a the 
count process p1: 

Tbe diflerence Between the continuous photodetection theory and the bodel of di&e pho- 
tod&ctien cam be explained also a9 the differeeee between a s#ktid model of ~~~ 
~nterrPction by a dekctor and a statistical moda of i##1Wt ion p] experiments, respectively. 
The measurements of atoms excitations outside the cavity in the discrebe plmt0d-h modd 
gives information only on the change in the number of photons inside the cavity but does mt dve 
inkmation on phase changes of the field. This quantum f a t u r e  folfa\mr from the fundamental 
principle that it is not possible to produce cloning of all the quantum information. Thedore 
in atre present experimental scheme of the m i c m a s e r  one can get enough information only for 
diagonal density matrix in which the information on phrases has been eliminated ($1. 

2 Experimental Realization of Discrete Photodetect ion 
We can generalize our model by aending atoms in the lower state through the cavity till the 
measurement shows a d e s i d  number M of excited atoms. T h  the field state is reduced according 
to 



c d e r t t 3 d i ~ d  ' P h e - y a b t k m r t l s e e l d  

aboJlss~iebareiatbe)ararerstatewe~it~ 
state. k maay e r r c i w  am 

Qarteide the cavity w h a  4 mgdmmb is divided t l o e ~ ~  
abagt, tiuafirtedntl~lseraobatoensk~bed. T b t i m e i s d l e f n # n o e e a c p r i a r a r t t o  
aam48er d n g  to quantum nrschanieal datisbical fist- b]. H , ia 4 egwareat 
wemmkthetimeft toassgn,iaWtimeandmasureintheseceP#i thenumberdabornrr 
& i o 3 u r d w i n g a a d i M t i r n e t w b i c b i s t i l t e d b b b s e ~ , h d & ~ t s  
in the second stage. Wow, we cbedt the rredictitm d the treual quantum m e c b a  W i  
tbeery ob the micrsRLeser [8] fer a time of interaction r, aesumimg an iaitid w m k  state in >. 
The intapesting point here is that we caa vepify by examining the m l b s  of the measurements in 
h mxmd &age that our initial state &aid from the first stage was the m m k  state Ja >. 
~ ~ ~ c a o  beamonly if l f r e h  arequitesrnajl which sraaas that bircrite~io~d 
a narrow paranreber a~ in Eq. (1) is did .  
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PACS: 63.65.& 42.50.9 

~ a p p w f d r n a a y ~ ~ o n t b i 8 p a b b r m [ ~ ] . E s p a c E a t r y ~ ~ B a r r a s t t  
M r ~ o p e r a t o r m a ~ m & 3 , 4 ) d t l p e M t i o n h a s  
B a a n w i d d y u e e 4 T b j s ~ o 1 1 ~ d w ~ ~ i n m C ~ c n m l  
~ a t t h e p r i c t ~ k i s ~ t o a ~ s t a t e ~ ~ ~ ~ i a o f w ~ c h i s  
a u O W Q a ~ O t d t O ~ * * ~ ~ ~ ~ I t s , s \ r c h a p  
~ v a l u e s , ~ ~ I t i s n o w o h a s o q r t e d ~ a M ~ . c d  
~ ~ ~ d o o s a o t ~ s t  h ~ t 8 ~ ~ ( 2 4 ] . I l a & 8 p a p s r w  
~antwapproachtstb&dcftnCtionofthephscopuator. W e h m d d i n e d a  
M t i a o p h a s s ~ d i r a o t t y i n ~ t e ~ ~ . B y ~ @ a & m o f  
~ ~ ~ l s a a d ~ p h s s e ~ t i m ~ r i o n , w e ~ ~ ~  
a h x ~ e - m m Z i d d i f f i c u h i s s h d a o ~ d o p p r o r r c & A ~ a d ~ f ~ & ~  
d h e c t l y i n ~ ~ s p e o o s , ~ p h a e e ~ h e r e ~ v c a y ~ ~ c m s  
in ~idely-usud npmmtai0~18 which mntc it wry oonvenient for ws. 

I). Dentrition of the phase operator 



kfbisim of 5 makes a pod tknckx tor h c  bthiiim df *- li#mitim pbPac 
o p c w t a i n i a f i n i a c : ~ ~ .  



4e) = ea@le), (7) 

whem 8 satdkthedkretecodition 
8=2m (? ER) (8) 

aod R is dot ratmd number set. Combugng Eq.(n8) with Fqs (3)(4), we ga the 
t . a n s i t i O a ~ ! x t w x n t k ~ a a d t h e ~ ~ ~ 4 0 t t  

(q*} = h4. (9) 



m. --BCI e e m ~ l e t c ~  and 
~ n o s o f t h e ~ ~ o r i s ~ ~ ~ ~ t . ~  

where f(J.) is tk a d y t d  amsim ol'f(e,)  to the d mrmba set. Then tbt 

number optrator in the pbiasc has a succinct form: 

From Eq.(21), we get the pbase-nuslber caamn- 

If we limit the phase value to [e0,8, + 2 ~ ]  in the ducical case , the c u m m m  

grim by Eq.(22) jm aquals times tht classical Possicmian bmckc44). This fact 



sbom that lhe ciefhtion here is reasanable. Thc mean value of Eq.(22j over a 
physical state p) ghw the result obtained in Ref. [4] 

F u r r h # w e g i v c d i n c t ~ o f t h t ~ a p e r a t o r i n t h t ~ b e r a n d c o h a c n t  
-. Tbey have sucbct and usdid explltssions which benefit tiom the 
farttbatwebavedcfmd~pbsc~diredyininfhitcstatespaccx. 

I n t h e m s n b m ~ t h e p b ; r s e o p c m o r h a v c t h e f d l o w i n g ~ o n  

huim f ( ~ )  &ere may appesnr a difkmce 2). . This 6x3 also results !bm the 

p e a i o d i c a a ~ n n o f t k ~ a n d w c a v o i d t k a r h i t a r y ~ k ~  bylmnitinqthemcm 
nlrr of b in Eq.(25) to [e.,~. + 2x1 . 

~ o o ( 2 5 ) i s v e r y ~ f o r w c b c c a u s e d p h y s i c a l ~ ~ e a s y  
~ ~ F o c L ~ d t h c o ~ E g . ( 2 5 ) ~ c a a ~ p h a s c p r o p t r t i e s o f  
tbe-bysimpk- 

. . 
N o w w c $ i v c a n ~ f i # m o f t b t p h a s t ~ ~ b y t h t  

m d a a i m a p a r ~ a s  2,;' *cLmm- 'Ihr 
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Ibex alen't Mn-standard Solutions for the 
Braid Gm\r1? kp~esentations of the QYBE 
AS ~sciaie;f I - rt!! 10 - D W plesentatiom of SU(4). 

' iu!g Yjun. Yu GuochQl and Sun Hong' 

Department of Foundation the Fist Aeronautical College of Air FOICC 

Xlnyang Hennan 464000 P . R . China . 

In this paper by employing the weight c o r n t i o n  and the diagrammatic techniques w show 

that the solutions associated with the 10 - D representations of SU (4) are standard alone . 

1 introduction 
It IS well known that the quantJm Yang - Baxw equations ( QYBE) play an important mle 

in various theoretical and mathematical physics, such as oomplady integrable system in ( 1 + 1 ) - 

dimensions, exactly solvable mcdels ir. statistical mechanics. the quantum invase scattering method 

and the confoml fKM theones in 2-dimensions . Recently, much mmrkabk progress has bccn 

made ur constructing the solutions of the QYBE associated with the representations of Ik algrebras . 
It is shown that for some ca& except the srandard solutions. there ako exist new solutions. but 

the others haw not non -standard wlutiom . In d- 11. we derid the braid gmup reprcs - 
enbtiom associated with the 10-dimenshnal repmentation of SU ( 4) and cort~sponding w o n  - 

omevic and rational solutions . ln t b  paper. the cb ica l  lunit of the braid p u p  r e p ~ ~ t i o n s  

is checked . Then it is shown that the solutions associated with the 10 - dimentional representations 

are standard alone . 

2 Classical Limit 

It is uell known that in the classical limits as q -- 1 the standard solution of QYBE require 
that' '6 i 

S I 
= P  [ 1 +  (q-1) r ]  +o[ (q-1) ' I  

Ip - l 
( 2 .  1) 

and 
@.i~.=Cy =2& -q,, ( 2 . 2 )  

where T is the pennutation operator and @, stands for the normalized dasical eigenveaols. r is 

the classical r-matrix, C, a d  C,,azc the Casimirs . The eigenvalues are given by 

A, = ( i) qC. ( 2  . 3) 

In Ref . (1 1). We have denved the braid group representabons asociatcd with the 10 - D 

Address; J~nan 250023 



representations of SU (4) . The Casimir eigenvalues of S -matrix w m  given by 

A , = ~  ' , ,$= -q  , A,=$ (2  . 4) 
From the result of Ref. (1  1) we know that there ace some fundamtal submtrias , A,. 4 "' 
A, ''). A, m. A, "' and A, ", and otfias can be e x p d  by direct sum of the fumdamental su - 
brnatriocp . So we discus only the classical limas of ths subritrices . 

For example. w dircuss only A, "': 

1  = 7 1  2 1). a':= 1 !- (1 0 - 1 ) .  @,'=,(I - 1  1) ( 2 . 8 )  
4 6  42 4 3 

and 

I 3 v = 3  

Thedon the solutions of QYBE are staadard . 

3 About absence of the nonstandard soiution 

From Ref . ( 1  1  me have known that so long as &= uZ= U- = U - 6 .  there exiPrs the alone 
solution . In Ref . ( 1 1 ) , we have 

UA: 12 .I + W (4 ' 6, pt 6, = WIO 
10 c4 ~6~ 



From eq. ( 3 .  1,. we have 

From eq .  ( 3 .  2) +cq. ( 3 .  6 ) .  we have 



From eq . ( 3 .  8). ( 3 .  10) and ( 3 .  12) w have 

Tkdom the bolutions of  the QYBE are standard alone . 
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Solutions of the Quantum Yang - Baxter 
Equations Assocated with ( 1 - 312)- D 

Re presentations of SUq ( 2 ) 

Huang Yijun, Yu Guochen and Sun Hong* 
Department of Foundation, the First 
Aeronautical College of Air Force, 

Xinyang Henan 464000 P . R . China . 

Abdmd 
The solutions of the spectral independent QYBE associated with ( 1 - 312 ) - D ~wf=mtations 

of SU, ( 2 )  are derived, based on the wight conservation and extended Kaufiinan diagiammatic 
technique . It is found that there are nonstandard solutions . 

1 Introduction 
It is well known that thequantum Yang- Baxter equations ( QYBE ) play an importact role 

in various theoretical and mathematical physics. such as completely integmble systems in ( 1 + 1 

dimensions, exactly solvable models in statistical mechanics, the quamtum inverse scatteringmethod 
and the c o n f o d  fded theones in 2-dimensions . l"-i%cently, much remarkable progresr has 

been made in constmction the solutions of the QYBE associated with !he xtpresentations of Lie 

algebras . In this p a p  we derive the solutions of the spectral independent QYBE associatsi 
with ( 1 - 3;2 ) - D representations of SU, ( 2 )  , based on the weight conseavation and extended 
Kauffman diagrammatic technique . It is found that there are nonstandard solutions . 

2 Braid relations of (1 -312)-D representations of SUq( 2 ) 
We know that thexe is the relation for Universal R - matrix: 

We define the new R - matrix: 

Were P is the transposition ( P: V" (59 Vh + V" (x) V') 

Then the eq . (2 - 1) can be M t t e n  ax follows 

r A h :  Jinan 250023 



Forthe ( 1 - 3 / 2 ) - ~  w-tation of SU, (2 ) .  Q,. J,, j,) C (1, 1, 3/21. then 
eq . (2 . 3) gives the folowing nlatiotls 

These are the braid rebtions associated ( I  - 312)- D repmentations of S  ~ ~ ( 2 )  . We suppose that 

the R satisfies the C - P invamnce, then e9 (2.4 - 1) is equal to eq . (2.4 - 2) . 
3 The weight consenmtion and the solutiom of QYBE 

To determine the structure for the solutiorrs , We oousida the ureigbt ooaservatbn 

(R): =O unless a + b = c + d  ( 3 .  1 )  

- 1 3/2 
By the weight conservation R can be constructed in the form 



c <d 
Where 

' a b )  and q ( a. C )  a. b f  ( 5 1 ,  0 ) ;  b, c i  (*3:2, *1/2) P a - b  
3 - b  

a:e the determined parameters . 
Substituting cq . ( 3  . 2 ) .  ( 3  . 4) into eq . ( 2 . 4- 1 3 ) .  We obtain the unknown pardmctcll; 

by atended Kafiman diag rammatic kchinuc . 

- 1 3:2 
Scb~nltu!g cq.(3.S) into cq.(?.4), we obtain the solut~ons R . And we obtain the sol - 

utions kj:? I by ernploylng the c - p invarance . 
We have derived the solutions of the spectral independent QYBE associated with (1 - 3:'2 ) -- D 

representations . It is easy to see that thm is a new arbitary parameter, Q . then tht le an: new 
solutiis . In fact when Q - I ,  the solutions IS Universal R - matrix of SLq ( 2 ) .  



S m d a d  d u m m  . When Q # 1, rhcrt i~ ncw solutions . 
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QUANTIZATION OF ELECTROMAGNETIC FIELDS 
IN CAVITIES 

Abstract 

A cl~~nntizaticb~l prc)c.c.d~lrr f e w  thv c~lcr.trornagnctic. fic*ld in ;i rt~tang;l~lar r-avity with pcrfmt 
c.c~ltait~c-~*~r walls is l)rcs(v1tev1. wkc-rc. a ritv.c)rrlpnitic)n fornv~la o f  the. fit4d p'ays an msential 
rolc. 1\11 vtr-tor n~odc* fu11c.tion.i arc ot)taincd t ~ y  using tho dcrvrnpc~sition. Aft- expand- 
ina tha. ficC1 in Ic.nrl.s o f  tht- vcr.tor modc fun#-tioas, wcB get the- qumti~crl  c?lt.ctmmagnctic 
I l i i ~ ~ ~ i l t e ) ~ \ ~ i i ~ t .  

1 Introduction 

Ktu.c-rrtly wt- have. I .irricul o t c t  t I t t ~  Iic~ld clt~cult.iaat.io~~ in scvc*ral nu.t.angular t2vit.it.s llsirlg !.he vtv-tor 
rrtcnlc- f11rlc.t iobrls ( I  1. 'I'hc- vcu.tor rrttni+ f i ~ r # - t . i o r r s  ticrve~ tttw*rt ohtaineul with t l t ~  hclp of w orthogonal 
rr~nt rix. Ilow~vt-r, t.tie1 j)rcnx~i~crc- clt-vc4<)pcwl t.tienrc* has not tlwn applicable t . c ~  other cavitits in a 
st raiglrl f c  trwirrc 1 rniirlrltSr. 

' l i) ovc8rc.e ) I I I ~ -  t 114- al)ovcl cfillic~~clty. wc- I l r r v c b  i)rt'st-rtt.tul arrot.Iv*r clt~arrt,izatior~ sc.ht*mr for the. field 
in a c.irc.~tlitr c.yltrdric.al c-aviiy I'L!. All vtu.t.or rnt wit* f1111c.t ions have- t)ren ot l t  aintd by using a 
c f c * t r b r n ~ ~ ~ ~ ; i ~ i c ~ l ~  fo r rn~~la  cic~rivtuj frorn Maxwc~ll's ~ Y I I I H ~  JOIIS ciireu~t.ly. 'J'his rnc-t.hcwj is rnvrr gt:rleral 
t l~ari l)c*forc.. Iber allst* i t  is HISO al)l)li(.at)lt~ t.o n~' t i i l~giclar a1141 sphc-ric-al c-avitits. 

111 tihis ~bapt'r. we. a1q)litui t he. al)ovcs rnvt llcwi t o  n rtr-t.artgl~/ar cavity ~ 1 t . h  pnrftw.t c-oncjucting 
walls. 'I'hc*rt sportt iulcu)tls I-rrlissio~i o f  a11 ol.orn insid11 t.hc* c-avi1.y is talc-t~lattri. 

2 Decomposition of Electromagnetic Fields 

111 t tiis w~'t.iorr, W" (it-rivt. I.t,c. cltu.ornl)c~il i c ~ r r  f o r ~ r ~ r ~ l a  for t.ttt> fe~l(l in t.hr (:artesian c:cw,rciinata. We 
shall rcwh Il l is  rtsrcll. i r ~  i)c*rforrnirtg I I r e -  l ic-l(l ( ~ I H I I ~  imt ion i r i  a rtr-t,(tng~clar (:avit,y in Sty.. 3. 

IClaxwt~ll's e u ~ i ~ ~ t . i o r ~ s  for t . I t t *  4-ltu't.ric. fic-l(i E artd 1,ti(- rnagrrt-t.ic. fiehl B in frtw spcu:cB an8 give-11 t,y 
V - E  I),V.R O,ar1ci 

wltt-rep (- is t.tle. vc*loc-il y or light i r l  frtu- spiu.c* ar~cl i)l a/i&. 
'l'ht* c * l ~ u . t . n ) r ~ ~ ~ j i r ~ c * t i c .  lit-lcj E ar~cl R ('a11 t ) c >  writ.Ic*n in t.hc. (:arf.c.fiiwl c.tw)rciirtat*s (I, y,z) as 

E El. I E,. B B,l, I B,, wtrc-re. El. e,h> I e,b,\ is t . t ~ c -  trnr~svt~rnt~ cx)mponent, of t.hta fieltl 



and E, e,&. IIc*n* e,, e,, ale1 e, an: t.lrcn unil, vau:tors in thc x ,  y, and z directions, r c s p t i w l y .  
For simplicity, tlw* dc*rivativc- with n?fiptw.t to, for a!xarnplt!, z is dtrsc:ribd as i)/& a,. 

Sincc~ V, x E, 0, thv liwt aquation in ( 1 )  @vcs 

Similarly, ttw strxmd cquatio11 in ( I )  leads to 

Fzquatiora (2) and (3) give 

'lb n?writ~ Fq. (4), we must c i t ~ o r n p m ~  tht? cwmponents I.:, and Bz into two parts. Suppose 
that ttlc fiaald is in a finite ngi011. IA?I. us t?xperld 15, ard Bz in t e rn  of a certain complete system 
of func:tions with mcnie* Y: 

w h  b a r  t ) L ( r ) r - w a l '  and H,(r, I )  fi,(r)e-w.a'. Here LJ, (Y, 2 0, c - 1,2) is 
di?tc:rmir~c?ci hy using givc8n twundasy c:ondit.ions. Since I.:, and 8, satisfy the wave equation, the 
camp )nr3nts Em and 11, satisfy t. he Helm holts equations: 

whcn~  pm w:/(?. We- assurna~ that t.tw c:ompont?nts satisfy 

wtren! h: is (letermined by the boundary conditions. 'Then we h a w  two dimensional Helmholtz 
ryuat.iollfi: 

A T I . L ( ~ )  - g I   AT&(^) -d2Ba(r) ,  (8) 

whenxdo kZ, -hL. 
Hen* weB deafint- two frrnc:tions Fa from E, and Ba with f 0 as 

The? func:t,ionfi F, tmd bhcir c:omp~na*nt Fw satisfy tht: m e  equations as E, and Em, respectively. 
l'hc (.omponeant F, is a ~)lut. ion of t.he~ P o i w n  equation. On the. &her hand, if there is acomponent 
Em r 1 I 0, Eq. (8) rtriucm t o  two ciirnensional 1leplac:e equation. 



which satisfv 0 allti O,,.l&, 0. 'I'herr we havt* ~ ~ w h l l  fcjrr. l~llas for E, and 11,: 

i A .  ( I )  j t i t  F a. F e,P,, wt* (:an n-write Fq. (4) as 

w h w  &, e,&, artcl Boz ezthz. Ik-firrc & and & as the  q~larttitics in the  parcnth- at 
thv Ivft t r t u r c !  sictc* in Fq. (1.1) and (1.5)- rtslnr:t,ivc-ly. 'I'hcb rt.sults of this section is summariaul in 
tht. following t.htu)rc*m. 

Theorem 1: If  tltv c:ornporte~nts I:',# and H, sat.isfy Fq. (7), the* field (:an btb d w ~ m p o s t d  into 
ttlnr* c.ornpc)l~c*r~ts as follows: 

'I1luu)rc-m I plays a tn:nt.ral rola* in pt*rforrning the ficbl clrlantizat,io)n in t.his paptBr. I t  irs worth 
clmphasizittg t.lrat. tw.tl t.cBrrrl in Fy. (16) is a rrolut,ion 1.0 Maxwc~ll's equations. 

3 Vector Mode Functions and Field Quantization 
r 1 I Ire* c.avi1.y we1 t.rt.lrt ht-re- is t*nc.lcwitul ty rtr:t.anpllar walls having sidts l,,, L,, and I,, in the  s, 3, 

t clirtu't.io~ls, nsptv.tivt~ly: 0 c x < I,,, 0 < y < L,, and 0 < t < I,,. We assumc? tha t  the 
c-avily has pc-rftu.t lv c-orrclri(-t irrg walls. 'I'hta tangt*ntial compont?nt. of the? r-Iclrtxic field El,, and  t.he 
norrnd i30mponc*nt o f  t 1141 rnagnc.t.ic. fic*ld R(,,,, must ar-c-orclingly vanish at. t.he horjnclarits of thv 
c.avity. 



, , I 1111 td)cwc~ \)c ~uriciary c.onciit,iorr n*iuc:t~ to t.lrat. for tlw z cmrnponents 

'I'hc solution to  t h r  lit-lrnholt equation (6) T.)r the components Ea and Bm under the above 
boundary t:onditions is given by 

when* tht* mcdc i~lcjt?x is Y (C, m, n) (e, m, n 0, f- I ,  f 2, - - -). 
Iahm t.trc* wolutioa (2 1 ) wts havv 

(bmquently,  w: can use 'I'hwn:m 1 in the pwoding ~ z t i o n .  Although it follows from Eq. (22) 
that 92, 2 0, wc* cbm provt- that, #, > 0, whi~t l  m ~ u l t s  from the following lemma. We omit its 
pnwf. 

I~tmrmc: &, & Oancj$o > O .  Asnmul t , thcz tRrm wi the  m Oin F!. ( 2 1 ) c a n n d b c  
ustd. 

Ir:t. us next. ohtairi t.ht? fiinctions f$, w h w  definitions are given in Fq. (9) and (10). That  is, 
the functions art. givc!n by 

whew u, = ~ f .  and wc- htrvc- i n t n d u w j  a,(t) a , ( ~ ) e - ~ ~ ~  and +m given by 

( r  t )  GI s in( t rx/  L,) sin(mny/l,) c-(nnz/L,), (24) 

+dZ (r ,  t ) c.,, CU~(CAX/ I,,) =(mry/ L,) sin(nrz/L,), (25) 

with c.1 [8/(Veg:)jm and c,,~ - I8/(VW,2d)JtP. Tht: functions flr, has the orthonormality 
p ~ p ' ? l t y  

1 1 dr$~(r)?balo(r) ~ c M ~ ~ v & O ~ ,  v 6 )  

where 1, dr  I,,,, h d p d z  and V is the cavity volume. Hen-. the quantity cxxz in Fe. (24) and 
(23) must tw clmngrrj to I/& when z 0. 

Sulatituting the* func:tions I.b in kh. (23) into E in F4. (16), we find 



I * I lit* vtr.t.<,r rrtoclt> ft~rrc.tior~s .wt.isry V - u,,, 0 (A u 0, m d  a t  thc- Iwrrndarim u,Jm 

U, V x u,!,,, 0. 'I'trc-y ~ I M )  scit,isfy t.trt- orl.honc)rtnalit.y pn)ocarty n 4 e i  for quantization: 

1 dr &(r) - uart (r)  . 6,. 6,,.~. (29) 

'Ib gt?t tilt* q~larttiztd fit?lti, the* functions a,(t ) aru r c g d c d  crs annihilation operators satisfying 
t the: c:ornrnntatic,n rt-latiort (a,(t), a,,,,(t)J bdhu,t. ?'hen we get thc following thmrrrn. 

Theorem 2: 'l'hr qualtiirrri lkhd anci the llarniltoniar~ arc givt:rt by 

4 Spontaneous Emission 
As a11 application, wr c:onsitie*r t,hc- trwait.ion rates of an atom in the cavity, using the dipole 
aplm)xirnatiorr. l ' l r c*  I farniltoniru~ is givtm by H )IA f H R  4 H,, whew HA is the fm? Harniltonian 
for tilt- at.om. / IH for tht- lit-lc1 whic.h is dwbn in Fq. (32)- and H I  - eD . E(R) (-eD: the total 
tbltr.t,ric- ciiix~lt~ nr<,rnt~nt, of t . h c .  utonr; R ( X ,  Y, Z): the position of the atom). 

At. t 0, tht* atom is in (in c B r r e ? q g  st.at.tx lie > (with energy Em) and the field is in the vacuum. 
'1'11t-n t hc- prc,liat)ilit.y ptrr ~ x . t ~ n c 1  of finding the atom in a state (with energy &A) at sufficiently 
Iargt* Lima- 1 is givtw by 

wht>ri*hWg b;,,,-b,',. 
L K ~  116 t.akt. the averagt* of the cn>onjinata Y and Z and take L, -, oo. The transition rates 

ws artd u), vanish (w, irrdic:atts the. rat.8. whem the dipole moment i~ along with the i direction). 
r .  I hc ratt- uy, is givt:n by 

whtw {, LJ~/ , , /CIT,  tz 1/2, w0 t121 < GlDJi > J 2 ~ ~ / ( ~ k 0 t ? ) ,  B(x) 1 (x > 0)- and 



8(z) 0 (x < [ I ) .  wt1ic:h is shown in FIG. 1 .  

FIG. 1. 'hamition rate w, for L, -+ 00, when? the dipole moment is along with 
the x cjiwtion. 

S t t t t i~g  ht?m L.I,, lOI3 Hz, we have. I,, 4.7 x mrn, so that the cavity is quite narrow. 
Also, FIG. 1 shows that, t h ~  transition is forbidden when [, < 1, i.e., I,, < 9.4 x lo-' mm., where 
the cavity k a thin tube in this c - m e .  

5 Conclusions 
'J'ho quantkatiort for t h ~  field in tht* cavity has k n  performed as follows: obtain the decom- 
poliitio~~ fonnula (16) in the (:artmian cxm)rdincrtt.s; solve the Helmholts equations (6) for the 
components and H, uncicr t.hc hountlary conditions; tletr?rmint? the functions Fo, substitute 
them into t.hv citw:omprsition formula (16), and obtain the vector mode functions satisfying the 
ort.trcrnormalit.y propt:rt,y ((29); them we arrivt~ a t  the quantized field and Harniltonian. in the whole 
protrrss of quant.izat.ion, the clwomptsi tion formula in Theorem 1 plays an important role. 
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On the stochastic quantization met hod: 
characteristics and applications to singular systems 
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Abstract 

Introducing the generalized Langevin equation, we extend the stochastic quantization 
method so as to deal with sing* dynamical system beyond the ordinary territory of 
quantum mechanics. We also show how the uncertainty relation is built up to the quantum- 
mechanical limit with respect to fictitious time, irrespective of its initial value, within the 
framework of the usual stochastic quantization method. 

1 Basic ideas of stochastic quantization method (SQM) 
The Parisi-Wu stochastic quantization method (SQM) jl, 21 was so designed as to give quantum 
mechanics as the thermal equilibrium limit of a hypothetical stochastic process with respect t o  a 
new (fictitious) time other than the ordinary time. The Background idea is that a d-dimensional 
quantum system is equivalent to a (d+ 1)-dimensioral classical system with random noise. We can 
consider the SQM to be a third method of quantization remarkably different from the conventional 
theories, i-e., the canonical and path-integral ones. The SQM has the following advantages: 

1. We can quantize any dynamical system only on the basis of equation of rnotzon, while the 
canonical method is based on Hamzltonzan and the path-integral method on Lagrangian. 

2. We can quantize the gauge field without resorting t o  the conventional gauge fixing procedure 

!31. 

We deal with the dynamical system described by Euclidean action SE[q!,  where 
q(z) = {q l ;  t = 1,2,. . .) are dynamical variables and x is the ordinary time for particles or 4- 
dimensional coordinates for fields. As the first step, we show that SQM gives the same result as 
given by the conventional path-integral method: 

where < (; > is the quantum-mechanical expectation value of an observable G(q), A(x, r') is the 
propagator and i' the normalization constant In this paper we also observe how the uncertainty 



relation is built up to  the quantum-mechanical limit within the framework of the hypothetical 
stochastic process af SQM. 

According to the prescription of SQM, we set up the basic Langevin equation in the following 
way: 

< qi(x, t) >, = 0 , < rli(x, t)qj(xl, t') >,= 2aSij6(x - xf)6(t - t') , (4) 

where t stands for the fictitious time, I), for Gaussian white noises and a for the diffusion constant. 
Using its solution in the thermal equilibrium limit, we get the same expectation value as given by 
the conventional path-integral method. To show this situation more clearly, we need to use the 
Fokker-Planck equation corresponding to the Langevin equation. 

Defining the probability distribution functional a[#, t ]  by 

/ ~ q ~ ( p ) @ k . t I  =< G(q?(x.t) >, 1 

we can derive the Fokker-Planck equation as 

where P is the Fokker-Planck operator. If the drift force K,(q, t) = -(6SE[q]/6q,)Fq(I,r) has a 
damping effect, i.e. (6SE[q]/bq,),dz,t) > 0, we get the thermal equilibrium limit (t + oo) as 
follows: 

1 
aeq[q] = c e x ~ ( - - s ~ [ q l )  a (7) 

Putting cr = h, therefore, we obtain the prescription of SQM: 

lim < G(q:(x, t )  >, = lirn / D ~ G ( ~ ) O [ ~ ,  t] 
t-.w t-mo 

2 Building-up of the uncertainty relation in the hypo- 
t hetical stochastic process 

Quantizing one-dimensional harmonic oscillator by means of SQM, let us see the dependence of the 
uncertainty relation on the fictitious time. The Euclidean action of the one-dimensional harmonic 
oscillator is given by 

According to the prescription of SQM, we set up the Langevin equation of this harmonic oscillator 
as follows: 

< q(xO, 1 )  > q  = 0, < q(xO, t)q(xb, t') >,,= 2hd(xo - xb)d(t - t') . (11) 



Solving this, we easily obtain the following dependence of the uncertainty relation on t: 

where p ( k )  = (Ag(k, o ) ) ~  is the initial value at t = 0. 

FIG. 1. We show how the uncertainty relation were built up with respect t o  the 
fictitious time. The solid line corresponds to the uncertainty relation for Aq(k, 0) = 0,  
the dotted line to that for Aq(k,O) # 0. Note that the negative sign of ( ~ q ~ p ) ~  is 
due to the Wick rotation ( x o  --+ -iso). 

In FIG. 1, we can clearly see that the uncertainty relation in the hypothetical stochastic process 
approaches t o  the quantum-mechanical limit, irrespective of its initial values. 

3 Generalized stochastic quantization met hod 
We have many basic Langevin equations to give the same quantum mechanics [23. By making use 
of this kind of freedom, we can go beyond the ordinary territory of quantum mechanics. 

A generalized Langevin equation to give the same quantum mechanics is given by 

6 K (x, 2'; 4) + x ( x  x ;  4) q (  t  , (13) 
E @ ( x t ,  t )  

< 7 ) ( x , t )  >= 0 ,  < q(x,t)q(xt, tt) >= 2hd(x - zl)b(t - t') . (14) 

Yobe that we put h = 1 hereafter. As an example, let us discuss the bottomless system described 
by scalar field @(x) with the following action 

SE!~] = Sfree [#I + Sint 14' * (15) 

T being d-dimensional Euclidean spacetime point. Sfre,[$j is the free part of the action and 
Sint [@] the bottomless interaction part. We know that we can hardly quantize the bottomless 
system by means of the conventional quantization method. For 

K(x,x1:4) = b d ( r  - x1)K;q5] , G(r ,  r ' :  $) = hd(r - X I )  K 1 ' 2 ; @ 1  , (16) 



we simplify the above generalized Langevin equation as 

6 
--4(x, t )  = - K(#]- at aSK[gl + ~ l / ~ [ ( b ]  V(X# t), 

W(x,  t j  
where we have put SK = SE - In K. Provided that the drift force has a damping effect, that is 
t o  say, SK = SE - In K > 0, this Langevin equation has the thermal equilibrium limit. To satisfy 
this condition in the bottomless system, we may choose the Kcrnel as K[#] = exp(Sint). In this 
case the generalized Langevin equation becomes 

Based on this equation, we can perform the numerical simulations of bottomless scalar field models 
and the bottomless hermitian matrix model. 

4 Application to bottomless systems 
A simple bottomless example [4j is given by 

where 4 is a zero-dimensional field. If we put Kf#] = ~ X ~ ( A ~ # ~ ) ,  the well-posed condition men- 
tioned in the preceding section becomes 

If we choose A K  equal to A, the Langevin equation reduces to  

a 
,#(t) = - m2 exp[-sd]+(t) + expl-S4/2]t)(t) . (22) 

Based on this Langevin equation, we have numerically simulated the stochastic process of 4. 

4 5  -3.5 - 2 5  - 1 5  -0.5 05 1.5 2 5  3 5  4 5  # 
FIG. 2. Distribution of numerical solution of t h l  Langevin equation (22) (open cir- 

cles) for A = 0.1, m = 1. For comparison, we plot the path-integral measure expi-S)  
of the bottomless action (20) (solid line) for the same parameters. 



FIG. 2 shows that the form of the distribution of numerical solution is consistent with the form 
of the path-integral measure exp{-S} of the bottomless action (20) in the central region of $. 
From the prescription of SQM that at  the thermal equilibrium limit we get the same expectation 
value as given by the path-integral method, we conclude that, in the central region of 4, the 
probability distribution of solutions of the generalized Langevin equation (22) is consistent with 
the path-integral measure exp{-S) even of the bottomless action. 

As the next example, let us consider the bottomless hermitian matrix model 151. which is 
regarded as an important model of two-dimensional quantum gravity [6j. The partition function 
of N x N hermitian matrix model is given by 

Independent variables of the hermitian matrix model are Re$,,. IrnQ,, (i < j )  and $4, 
with i, j = 1 , 2 , .  N. The action of tile bottomless hermitian matrix model is given by 

For kernel K[$! = exp{-S4[$]), the generalized Langevin equation becomes 

The statistical properties of the Gaussian white noises must be subjected to 

< %1(' )  >t, = 7 < ~ 1 3 ( t ) ~ ] ] ( t ' )  >7J= 2 6 1 ] l i ( t  - t') I ( 2 7 )  

< ( c )  > = 0 , < ~ ~ : ( t ) ~ : ( t ' )  >,= ? . ~ * ~ 6 ~ 6 ~ , b ( t  - t') . (i < 3, k < 1 )  , (28) 
( = 0 , (i < j )  , (4, 5 = R, I )  . (29) 

One of the most remarkable results is observed in the deviation of < tr#2 > / N  from the 
planar calculation [6j, as shown in FIG. 3. 

FIG. 3 Expectation values < tr$2 > ,:'K for various values of N(open squares). 
The solid line shows the planar result :6) 

This deviation has so far been anticipated only from theoretical conjecture. 



5 Conclusion 

We haw observed, within the framework of SQM, that the uncertainty relation will be built clp to 
the quantum-mechanical limit, irrespective of its initial value, in a hypothetical stochastic process 
with respect to the fictitious time. 

introducing generalized (ker ',eked) Langevin equations, we have extended SQM so as to deal 
with ;;;lgular dyllarnical systems beyond the ordinary territory of quantum mechanics. We also 
have attempted to quantize a few singular systems, such as bottomless systems, by means of SQM 
which is b& on the generalized Langevin equations. 
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FREQUENCY 

0. V. Man'ko 
Lebedev Physical Institute 

Leninsky Pmspekt, 53, Moscow 11 7924, Russia 

Abstract 

Exact solutions of the Schrginger equation for quantum damped oscillator subject to 
frequency 6-ki*:k describing squeezed states are obtained. The cases of strong, intrrmediate, 
and weak damping are investigated. 

1 Introduction 

The aim of the paper is to consider parametric excitation of damped quantum oscillator. The 
parametric excitation is choosen in the form of very short pulse simulated by 6-kick of frequency. 
The damping is considered in the frame of Caldirola-Kanai model [ I ] ,  121. This model is a part ial 
case of the mu1tid;rnensional system described by nonstationary Hamiltonian which is a general 
quadratic form in coordinates and momenta operators considered in [3], 141. The problem of 
quantum oscillator with a time-dependent frequency was solved in 131-[16]. In [3], [4] it was shown 
that the solutions for systems with quadratic Harniltonian are expressed in terms of classical 
trajectory of the system. The case under consideration is interesting due t o  possibility of finding 
the classical trajectory in explicit form. The goal of this work is t o  extend the analysis of 1131 to 
more simple one-oscillator case but taking into account the dissipation and to  study the influence of 
the damping on the squeezing phenomenon for the kicked oscillator. Here the quantum dispersion 
of coordinate of damped oscillator is obtained in explicit form and the infl~lcnce on squeezing 
phenomenon of strong, intermediate, and weak damping is studled. 

2 Integrals of Motion 

Let us consider the quantum damped parametric oscillator in the frame of Cald~rola-Kanai model 
[I] ,  (21 using the methad of integrals of motion [3], 141, I?]. The Harniltonian of the system is 

where m is the mass of the oscillator, 7 is the damping coefficient, 2 and p̂  arc the coordinate 
and moment.urn operators, and d ( t )  is time-dependent frequency of the oscillator. 'rhc equation 
of motion for the classical coord~nat.e x and momentum p are of the form 



The Heisenberg equation of motion for the position and momentum operators have the same form. 
Let us look in the Schriidinger representation for the integral of motion &t)  which is linear in 

A A 

coordinate and momentum operators and satisfies the equation [irialat - H, A] = 0. At the initial 
moment of time, this integral of motion is equal to usual b m n  annihilation operator. Then for 
the operator A, one obtains the expression 

where ~ ( t )  is the solution to the equation of motion 

wit.h initial conditions ~ ( 0 )  = 1, &(0) = iR(0).  In order the operator (3) and its hermitian 
conjugate satisfy at any time t  the toson commutation relation, ~ ( t )  must satisfy the additional 
condition 

The eigenstates of operator (3) are the complete s t  of the squeezed correlated states of damped 
oscillator. Solving the equation A(t)@,(x, t)  = arb,(=, t ) ,  where a is complex number, one can 
obtain these eigenstates in the explicit form 

*,(t. t )  = ( 7 r ~ ~ 1 * ) " / ~  exp 

where I2 = h / d ( O ) .  The wave functions in coordinate representation are gaussian @ets 
with time- dependent coefficients in quadratic form under the exponential function. The density 
propability has consequently the gaussian form, too and the quantum dispersion of coordinate in 
the state (6) can be immediately &.sined. It is of the form 

l2 1 E 12 
uz2 = (*, 1 z2 1 - 12 1 * a ) 2  = -. 

2 (7) 

One can obtain for the quantum dispenion of momentum and for the squeezing coefficient, 

If I E I * < 1, which means that the disperssion of coordinate at  the same moment of time t 
is less than at the initial one. the squeezing phenomenon appears. Due to this the states (6 )  
are called squeezed correlated states as well as in the case without damping. Then all physical 
characteristics of the system are expressed through the solution of classical equation of motion 
~ ( t ) .  The only remaining problem is to find explicit expression for ~ ( t ) .  in the following sections 
the explicit expressions for classical trajectories will be found for different regimes of damping. 



3 The Case of Weak Damping 

We consider a quantum damped oscillator with time-dependent frequency which varies in the 
specific manner of 6-kick 

u2(t) - 4 - 2 ~ 6 ( t ) ,  

where is constant part of frequency, 6 is Dirac delta-function. For ~ ( t ) ,  we have the equation 

In this section we consider the case of a-k damping, when wo > y. Before and after 6-kick of 
frequency the solution t o  Eq. (9) is given by 

Ek(t) -- ~ ~ ~ - 7 ' + i Z I t  + ~ ~ ~ - 7 t - a ~  , k = 0 , 1 ,  (10) 

where in the case of u d  damping R = (4 - -y2)'I2. Due to continuity conditions, 

~ ~ ( 0 )  =€*(0),  €i(O) -€0(0) = ~ K E ~ ( O ) .  (1 1) 

The coefficients Ak and Bk must satisfy the relations which can be expressed in matrix form 

(t; ) = ( 1 - iK/R - i ~ / f l  
(12) 

If E(-0) = 1, E(-0) = iR a t  the  initial instant, then A. = 1 - i7/2Q. Bo =. i3/2Q, one has for the 
classical trajectory after 6-kick, 

If before the first d-kick the oscillator was in the state (6) with ~ ( t )  = e-?'(ei"' + 6 sinflt). the 
parametric excitation will t,ransform it into a squeezed correlated state determined by (6) with 
~ ( t )  given by (!3). One can calculate the quantum dispersion of coordinate in excited correlated 
squeezed state, it is 

he-21t r sin2 Rt sin 2Rt 
u*a(t) - 1+- 

2mR 1 R2 
( 2 ~  t 7)2 + ( 2 ~  + 7) fi . -1 

From the above expressions. we see that the maximum and minimum of u,a(t) and of squeezing 
coefficient k2(t) = u,l(t)/a,a(O) depend on ratio of the force of 6-kick and damping constant to  
the frequency of oscillations, while lower limit of squeezing coefficient is 



n = 0,1,. . . . Flom the above formulae, one can see that the squeezing phenomenon can be achieved 
for all values of damping coefficient. So chming kicks of frequency (increasing the force of 6- 
kick) we can squeeze quantum noise in coordinate even in the case of large (but smaller then w) 
damping coefficient 7. 

In the case of zero damping, formula (15) coincides with the result of (51 and 1131 (for two-mode 
system). In the case of zero damping (y = 0) for the limit of free particle (w = O), one 6-kick of 
frequency does not produce squeezing [17]. 

4 The Case of Strong Damping 
Let US consider quantum damped oscillatw in the regime of strong damping, when y > w. In this 
case the solution to Eq. (9) before and after 6-kick of frequency is €1, = Ake("-~~ + Bke-('+')t 
with frequency $2 = (y2 - 4) ' l2.  Making the same procedure as in Section 2 one can obtain 
that after 6-kick, coefficients A* and B1 are connected with the initial ones through the matrix 
equation 

(;:)=(""I" 
"I" 

- i - . / n ) ( 2 ) .  

Taking the initid conditions in the form ~ ( 0 )  = 1, i(0) = if2 one has A* = i ( 1  + i + y/fI), 
& + i ( l  - i - ~ / f l ) .  The classical trajectory ~ ( t )  after 6-kick of frequency is 

The hspersion of coord11at.e after &kick of frequency takes the f o m  

Since a s h  a 2 1, the dispersion cannot be !ess than he-at/2mR, squeezing (by 6- kick of fre- 
quency) cannot exist in the system under study in the regime of strong damping. 

5 Parametric Excitation of Free Particle Motion 
In the last section we consider the case when the constant part of frequency is equal to zero but 
parametric excitation acts on the free particle motion. The gaussian wave packets for such systems 
without parametric excitation were considered in 1181- [20]. The equation for classical trajectory 
in case wo = 0 is 

i'(t) t 2yd(t) - 2 d ( t )  = 0. (19) 

Before and aftcr &kick the solution to this equat.ion is given by expression: ~k = Ak + Bke-*'. 
Applying the procedure used in Section 2 and continuity conditions one can obtain the relation 



(20) 

W i n g  into account coeficients A. =. 1 $ i / 2  and & - 4 2 ,  which coincide with the initial 
conditions considered above, the expession for classical trajectory after 6-kick can be obtained 

The excited states are determined by formula (6) with dispersion of coordinate (7), where ~ ( t )  is 
given by (21). The squeezing coefficient is 

horn this expression, one can see that squeezing coefficient k2 > 1 (e-*' < I), for t > 0 and 
7 > 0. The squeezing can not be obtained for free damped particle by one 6-kick of frequency. 

6 Conclusion 

We have considered in the frame of Caldirola-Kanai model the parametric excitation of damped 
oscillator and discussed the influence of different regims of damping on the possibility of appearing 
the squeezing phenomenon in this system. It is worthy to note that different acpects of the damped 
oscillator problem was considered in 171, 1181- (271. Here the parametric excitation is choclsen in 
the special form (6--kick of frequency), which permits to obtain explicit expressions for squeezing 
coefficient and quantum coordinate dispersion for different w m e s  of damping. It is shown that in 
the region of small damping the squeezing can be obtained for all 7 < by choosing different form 
of &kick. In the region of strong damping and for damped free particle motion, it is impossible 
to have squeezing phenomenon by 6 kick of frequency. 
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Abstract 

Otie of sta~rrlartl ~rr~tl~ocls to prru1ic.t the ~)l;v~torrle~~a of s(l~lwzil~g e.o~rsists ill sl)littilrg the 
ulritary c~voliltio~r opcrator into the 1)rotlut.t of ?illli,ler ol)c.ratiol~s (Ytie~r I I ] .  hia all11 Iilroclcs 
121). l'irt. tea Irl~iqlie, wl~ile ulatlir.~r~aticAly gelrera!. is 1101 so sir~il~le il l  ;il)lrlic.;itio~~s alrcl leaves 
sartte pragtnat i c .  ~)rol)letrls ol)cil. We report ail extetrcl~d c-lass of cxpot~ct~tial fortlrul;~. wliitli 
;field a quicker insigl~t into tlie 1;tl)orntory (letails for a rl;iss of sc~i~et~zi~ig o1)er;rtiolrs. irtlrl 

Irrortwver. c.a11 hc alt~rlrativt.1y usctl to progliitl1irie c l i f f t w r r t  tyl~ta o f  ol)erat io115. ;is: 1 )  t l r ~  
frw evolutiolr iirv~rsiol~, 2 )  tlle soft s i t~r~~li i t io~~s of t l l r  sl~;irl~ kic.ks (so tlriit all iil~strac t results 
it~voIvi~~g tlte kirks of t lit. osc.illator potelit ial, l*ec.orrtt~ realistic 1;ihoratory prc.sc.rilrtiorrs). 

1 The manipulation problem 

Below, we sl~all  dissetit from the ot.t.llodox stt1,jec.t of '.scl~teeted stnt.es" A I I ~  dedicate sonte att.entiotr 
to a nwre geltern1 1)roblern. Slilq)ose, ol:e lias n qttntlti~m systenl wiiosc states are rel)rc*settted I>y 
vectors in a Hillwrt spare 3.1. Sow, cl~oose ttlrv ~~tritat.y ol)erntor 

Carl I f  lie ncliievecl crs n t.ealistic- e \vt t l~~t io~~ ol)c*l.iitioll, ~>erfot.mctl ~ t l~de l .  tht* i11Hlte1rc.e of some 
exterlral fields'? 

'Tlie pro1)lern so stilted, 1,eloligs to the q u n ~ ~ t r r n r  t~ ia t t i~) t~ la tzon theory, a donliii~r wlric*h has 

progresseil qt~ickly ill  tlrc l a s t  decndes. The first ctises of the dy~iamical m a t ~ i p t ~ l ~ t i o ~ ~  (for a finite 

tlinle~isiotirrl sllii(.e of states) achiever1 wide pr~l)lic.ity under tlic nctme of tlte spa?t. echo (e.g. 131). 



Tlie ge~ierirl pro\,lenl of m a ~ i i l ~ u l a t ~ o ~ ~  (c.otitro1) of cltlal~ttlnl stiites dates from I lie worhs of Lamb 

141. Lul)kin 1.51 u~ld folltrwe~.~ I(;. 7, 8. 9, 10). Cjuite ~~~depcl~cle~ltly. tlie strl,jec.t lias I)ee~l ~ m t  forward 

ill qualltuni c.l~eniistrv wliere it nlav soou I)ec.ome crucial 11 1.  121. For it11 111fi11ite dimetlsioni~l 

?-I = L2(R) some dynam~cal operatio~rs presellt a co~isiderable cl~allenge but ouly one of them has 

become t i  "cotiference stlbject". \Ve of course refer to the opc!rcltton of squeezz?i9: 

U = e  ( 2 0 ' 2 -  t ' o L ) / 2  (general squeezing) z E C 

xt~d/or 

u = e ~ A ( ~ ~ + ~ o ) / 2  (scale transformatioxl, X E R (3) 
coordinate squeezing) 

fiote, that there are several concepts of squeeziug iu the literature. Bv cl~oosirig (2-3) we ask 
abot~t tlie "operatorial sclueezing". 1.e. the shape trausforn~atioti which i~ffects all wave packets 
alike, i~iclel>endently on tlieir initial form. Tlius, under t!ie i~lfluenre of (3)  tlie car~o~lical observ- 
ables q ,  y are transformed into 

and simulta~teo~uly all the wave packets v = {vl ((r)) are deformed as: 

As found by Yuen [ l ] ,  tlre simplest method of producil~g s ~ ~ c l i  effects ill LqR) consists in 
apylicatio~~ of varialde oscillator potentials witli the time depende~it Ham11 toriialis: 

and the most explicit illustratio~is of tliis fact can be fotr~~d it1 the e ~ p o ? t ~ t r t w l  formulae, whicli 
express the evolr~tio~~ operator I T ( t )  (generated by (6)1 as the product of simpler exponential 
operat.ions. 

The very subject of the expo~ie~itial identities lias already some antiquity. startirig from the 

papers of Zassenhaus, Baker, Campbell and Haussdorff (BC'H) ( 13). However, the exponential 

identities of BC:H type involve iiitinite series and do riot offer closed solutio~ls. The key to the 

tecllniques of squeezirlg are tlie following formulae L':' Yuen 111 and Ma and Rhodes (21, which 

miglit be interpreted as exactly soluble cuses of BC'H iu:d Zuse~~l ia t~ss .  I f  uo liuear terms in H ( t )  

are present, they read: 



ir~id 
- I ~ ( r ) a ' ~ - z ' ( t ) u ~ l / 2  - , r t ( t )aTu U(t)  = e Q (Ma rind Rklodes, 1988) (8) 

where S ( t  ) ,  R(t  ) ,  E(t ) ,  : ( t  ) ,  tr ( t  ) tire 6- lrurr~l)e~. cocficiel~ts alrtl G IIICHIIS t l i ~  ~)roporc~o~~aIity of 

the ullititry operators (11 E 11' =. 1,' = r,'"I!' , (1 E R ) .  Tliese idelltities yrcciscls provide the proof 

that the vitri;~ble oscillator l>ote~ltiills (more ge~icralls: cl~iadratic. time tlcpel~ilcnt Ili~milto~rians) 

call produce the etfects of scltic*ezing ( 2 )  (or tlie scitle trirl~sforn~ittiotr ( 3 ) ) .  ;I l)a~.ticrilarly simple 
r) 0 

ide~rt~ty for two oscillator Hitmilto~iicriis I ! ,  - p 2 / 2  t LL*;(I-/~ it(.tlt~g c111r111:: t l 1  r ,  time Iilpses r , ,  r2 ,  

was detected I>y C; riibl 1141. If  the time illtervals r l  , r2 are in aclrcl~ratc~ prol~orr ioll to t-he frequencies 

wliere X = In w?/s l l .  (Sote. tliat i:riil)l hi~d no colifidr~ice to tlie oper;rtorinl formulae. He has 
proved (9) implicitely. wcbrkil~g with C:aussi;in packets). 

LC'l~ile nlathematicall complete. (7-8)  are uot cjalte eiciy t o  apply. clue t.o i~~volvecl syst,ems 
of nun-linear equcltiol~s for tlie c:-~rumber coefficieuts. This explailies it quick developrneut of 
alterliative metllods derived from evolntio~i matrices or itdialxiti(. ~ I I V ~ I ~ I ~ I I  ts 11 5 ,  I ti]. Yet, the 
"danlped oscillator" of 1940 1171, and the "step-Hamiltoliian" of Griibl (9) t.emi~ili tlie pr~ncipal 
cases solved with all n~~rnerical details. 

It will be our  purpose to sliow that the trend of tlie algebraic identities (7- 8)  is not at all 
exhausted! To the contrary. appart of (7-8). it  call provide tr  class of "easy formulae" For the 
squeezing and for more general colitrol operatiorls. 

2 The spin echo without spin 

Tlle first "citjy form~rli~" (accitlc~ititlly tletrc.trcl i l l  1077 I(;/) 11,~s tlrc fo1.111 o f  rile .'c.~rcrrlilr idelltit!": 

for the operators q ,  p in  L ? ( R ) ,  with [ q ,  = t Note, that all signs in the exponents are the same: 
the product (10) is therefore siml,le~. tllal) it co~ild be it1 the clwsical case! Tlie formula (10) has  an 
elemeutar?; oyerotiorrnl selise. Every operator expj - l p 2  121 rel>resen ts tire free evoli~ t.ion per unit 
time of the !ichrodingerSs particle in L2(R). Everv exp \ - i q2 /2 )  is the utiittiry evolution operation 
causetl I,? itifini telv sharp a~lcl cltriek pulse of t.ime tlrl)t.tltle~rt c~sc~li;rt.or 1)otellt ial (the "6-like kick" 
of tlie ellast~c force): 



The identity (10) describes n dyaamicnl "evolutiol~ loop": the wave packet in  L ~ ( R ) .  rna~~ipulated 
by 6 oscillator kicks and 6 free evollltion intervchls niust return to its iuiticrl state (no matter what 
this state was!). Tllis might Ile illrlstratcd by the followil~g (.loset1 diagrurrlrne: 

whose sides simbolize the free e\*olntioii iiitervals and vertices the oscillator kicks. .An immediate 

consequence r b f  ( l o )  is: 

The right hand side represesents a sequence of admissible dyriamical events (6 kicks and 5 rest 
intervals), while the left otie is the operator inverse to tlie Cree evoltrtion. The formula (1'2) thus 
tells how to invert tlie free evoli~tiou. Since (12) is an operator identity, the prescription can be 
applied "in blind": every wave packet in L2(R), elitertirined by 1 1  clytlaniical events must "go 
back i l l  time". t.eturllit~g to its pas1 sliape. 1 1 0  111att~1. \vl~at tliis shitpe w a s  181. (('oli~l>itt.e "Particle 
Memory" of Brewer a ~ l d  Hall11 f l X ] . )  

After some consideration, t l i ~  formula (10) looses ,t part of mystery: it is just a "discrete 

 mit tat ion" of the oscillator force (the cjscillator pote~ltiul itcuts only ill selectccl time moments, 

proclucil~g nonetheless ~r closetl dynamicnl process). Note Irowever tlie existeticc of other "circular 

idetititics" 181: 
- ~ p 2 / 2 e - ~ h q 2 / 2 c - ~ p 2 / 2 e t  d w i a  . . +tdjp2,Q 1 e (13) 

The left Iiand side represet~ts it salltlwiclr of the 9 nttrru.t.ive iillcl 3 repulsive pulses interruptecl 

by 6 free evol~~tion intervals. One might expect that the i~ttrartive atid re1)ulsive sl~ocks will cal~cel 

"in average". produci~~g i i  zig-zag equivalent of tlie free evolatio~~. Ilowever, it is not tlie case. The 

whole sequence traps the Scl1r6dinger's packets illto 41 closed dalicc!, with the e\.olutiol~ operator 

n 1 Note filrthermore: 

( e 1 p 2 1 2 1 q 2 ) 4  z 1, (4  silocks, 4 free evolr~tions) (14) 



+ ? 

t.! 

'The sin~l~lcst loop i l l  l d 2 ( ~  ) I I ~ I I S L  i~~volvc? at lewt 3 kic.ks iilttl rest illtc~rviils; its gt~lleral for111 is: 

Its "il~co~nl,lete versiou" : 

t l r p 2 / 2  e - ~ r ~ r y 2 : 2  - l ; lP2/2C - I ~ T ~ ~ / ~ ~  --1$rq2/2 
C! 4 4 (16) 

permits OIIC to n~itliil)ul;tte tile free evolutiol~ at will. T~IIIS,  for cr. ij, 3 > 0, (16) provides a 
prescription of how to enforce the Schriidinger's wave packet to "go 1)nck i l l  time". wl~ereas for 
3 < 0, cr, > 0 ollrs ol)taills tr "tiaie rn;rcl~ille" d)le to slow or act-eleritte tlre frec evolr~tion 18, 101. 

Tlic loop forrnrllae lire the (,l>vio~~s aualoglle of tl~cx sl)ilr-ecllo for l~otl-sl)i~r st,ates, As fits as 
we could cl~ec-k, tile ~x,ssil,ilit,y o f  tile (~i(,~~-irtlial>i~tic.) 1001) effrct.s i ~ r  L ~ ( R )  wits fj~st.  !)~eclic.tecl 
in  1970 (1,: rcitlterl)retiug tlle tsitl~si)i~re~.cy plie~lon~t~~ro~r of tlir pot.cl~t i d  wells; stSe lllalki~r i111cl 

Mit l l 'b)  1191, 1). 98XI, t110~1gll tllc sr11)jec.t was later 1~1s11etl i n  :L ~ l ~ t f c ~ ~ . t s l ~ t  (lise(*tio~~. Tlle first 
kicked svst.en~ was co~~sidtsrccl in 11977 (61 cu~d the nltr~~il)ulat.io~l of < l ~ I i l l l t . ~ ~ n l  sttitc..; 1)s pote~~tial 
1,ulse .s ~ ~ ~ t ~ n l ~ t i c i ~ l l y  st.r~di~tl silice 1SH(i 18, 9, 101. 

'I .lx)nc=t~tial itlelrtities suggest also Ilow to gelreri1t.e the scalr tt~ntisjorn~c~t?otr. Tlie sirnl)lest 
formttcer rrcll~ires agitit~ ti  1)trir of osc.illtrtor 1,111st.s o; J i f f t *~ .~~~ t  i r~~ l l~ l i t l l~ l~s :  



3 Evolution control in three dimensions 

.411 tllese t.ec.l;llicluc~s cr)lrccrll tlre Sc~l~l.i)tli~r~cl's p;*l.tic.lc. i l l  1 s1~~c.c~ dirilrl~sio~~ n ~ r c l  are. ill fact. 
o111y %II al)strn(.t ilitrod~~c~~olr t t b  ~)lly~~(.i~Ily ii1111~rtiillI  ~ ~ ~ ~ o l ~ l e r ~ ~ s .  I t  is t,Irirs (~wrrtiitl t o  fi11r1 tlleir 
luiak)gi~cs iir :I s1u:c.e tliaierrsio~rs. S~n le  resulta c.nu I)e alrc*ally rel~ortell. 

111 tlre tirst ~)litc.t-. tlte strluelrces of gig11 ~l~i t l lg i~~g kicks [e g .  (13-  I4)1 Cit l l  I)<* uscat1 t o  c.olrsrr\rc.t. 
sequettces of ktrt-rrrot~rc ptrlses i ~ r  R~ getrerctt iu:: the loop effect. i l l  L "R:') (81. 'I'llrs suggests, tlrat 
t11e Iool, effect (state cclio) iu R3 rnigl~t 1~ i~rodncrrl, ill prilrciple, I)y sllock waves of source f rec 

edcnralfiekds. As the nlatter of fwt, some closed dyrlanlical processes call Ile i~ ld~~ced  eve11 u~zthout 
slty kicks, by a source free, statiolrary field of all arleq~lately gui~ged iorl trap 191. A simple scelrario 
of additioual poteiitial kicks (electric yiilses applied to the trap walls) permits tllen to generate 
effects of squeeziug up011 tlie cliarged wave packet retained in the trap interior (see the report by 
one of 11s 19)). 

What IIU 1-s Inllx)rtalrt, tlle effects of ~,ositive (nttrirc.tivej osc.illator ~,oterrtials i r r  L ~ ( R )  tra- 
duce tllemselves intmtvlintely illto effects of hctnlogelrrr~us nragneti(. fields i l ~  '3  space dimerlsioi~s. 
.4s an examl>le. we Irave consitlerd it cluite sirtrl~le wl1relrc.e o f  ider~tic,ally sllnl,ed niirgl~etic. p~rlses 
in tl~ree orthogo~rrzl direc.tic)irs: n, m, s, n. m, s .  . .. .4s we liave reporter1 (111 tlle previo~rs IWSSI!H 
93, a11 adequate proportion betwee11 t h e  sel)aratiolrs nrrd tlie 1~11lse iirte~rsity irsslrres that the 
qltence must prcwltlce tlre 1w)p effect tc 11. tlie wave packet3 ill L'(R') .  Xloreover. tlre same oyera- 
tio~lal sclieme. wit11 differe~rtlv slialwd p~tlses. tur~is out to work as a "time maclri~le", permittiug 
to accelerate, slow or iirvert the frec evol~~tio~i operatio11 of tire Sclrrbdinger's wave packet 1101. 

4 The general manipulation scheme 

The most inimediate reasoil wliv one rlligllt be irrterested ill tlre "evolirtioil loops" is tlrc possibility 
of coi~trolli~~e, the frlzzirtcss (clifflactior. of the wave packets due to its free evollltion), esselitial for 



electrotric ~nic-roscopy. ~ ~ r o g r i r n ~ ~ r l i i r ~  tire t ~ c t t ~ - c l t ~ ~ ~ ~ o l i s l ~ i ~ ~ ~  tnc.ifitlrc*t~~el~ts rtc.. ( w e  also ('aves ct 
al. I'L'LI, Yuelr I'L:<l, 1toyc1 1241). Also ,  the 01 igi~rirl su1)jcc.l of tlrc t r i t t~~lba~.c~t~t  wt*lls 1 191 niiglrt 
still hriag some sr~rl,riscs (2.51. However. tlre loop ~>Iretrolrielrol~ s c e ~ ~ i s  ~liost (-rlic.iaI f o ~  tlle ~ e ~ r e r n l  
n~atiilwllitt ion nietlrodolo~y 

Tlre class of tile dy~rirrnic.nl ol>e~.i~tiotls illclr~cu-d 1)y statioirikry ficltls is rat.11c.t- Irarrow (for tlie 
Schriiclingt~r's pnrtic*lc tlrry arc itlwil~s of t lie forn~ exl~l-t H I wlrere t lrr exl)o~re~rt I 1  is at most 
quadratic it1 p!). 

The situatiotr is ~ t l o l ~  ilrter~st illy, for i k  ~ilic-roolbjwt, tritl)l)d ill a11 osc.ill;~t ilrg licld of all evoltrti.)tr 
loop. A s  lol~r, ns tlrc Ic~ctl~ tieltls are nliitrtUtled. tile wave 1,ncbts I)erfornr it "l)cbriodic' r l a ~ r c ~ ~ " .  A 
distinct pheiiome~rotl occtlrs. i f  tlrt. loop fields ure perturl,ed or in11)erfec I .  I~rst,eird of a closed 
p r o w ,  the system will tireu perforul, iift.et ever-! loop period 1 . n IIOII trivial rltlitary olwratioti, 
iater1,retal)le rrv tile loop yn.c~-.sszoii. 

Tlie preccssio~r of a clistortecl : mp: 
a natural key to the tlianipulatioir. 

At1 .!lementary algel>rair argi~melit sliows that the precession operations are m~icli more general 
than the operatioits stimlilated by  the statio~rar?; tields. Ill fact., tlrey are the key to  solve tlie 
mirnipt~latioi~ 1,rol)leni: 1,y "adding ~,recessio~is" ;LII arlbitrary 1111itary operatio~r I :  : % -. U rat1 1x 
alqwoxin~atetl [ X I .  111 wnle cases, alreiicly ill1 ~~llsol>l~istic,atecl clistortio~r of tlre "c*irc*r~lar processes" 
I>rilrgs ilrterestitrg ret11t.s (like e .g .  t l ~ c  scjllwz~r~g or frw evc~lt~tio~i clistortiolr ill "wrotrg loops"). 
In yriilcil>le, every olre of tlre "cil.c.~~litt. icle~rtities'' ( 10.13-1.5) is ti tratilral st.i~rtiltg p o i ~ ~ t  for some 
nlaiiipi~latioir ~,rocwlr~rt.s solvi~rg tlre illverse evc~lr~tio~r 1~rol)letn ( 1  ) .  N;itli c t l le  lit.tle ~mniendmelrt, 
iiowevt~r. 

The "soft kicks'' 
Tlie "e1lrrst.i~ kicks". while of u~lileliiiil)le tllrcstr.c~trl~e viill~e, are  rot so ei~sily acc.essil,le i t r  lobora- 
torics. l ' l ~ e  diffier~lty is nltriost i~tlt'(.clot.ic. i f  t l ~ e  "h-11ke kick" lias to be elrgillw~.ed with tlie Irell, of 
Iiornogetrcolls ~tlitg~~etic, fieltl itcting P g. illhide o f  i t  c . i l i i l l c l ~ . ~ c . t r l  solelroi(l. Siiice ~c:'( i )  o f  the rest~lttlig 
"n~aglrctic osc-illator" is pl.ol~ortiolrnl to R(t) '- l  1101, (wlrere H ( t )  is the nlagtretic field itite~rsity), 
the B ( t  ) in t.lie sole~roid would Iirive to motlel the square root. of tlie I)irtrc.'s O .  T l ~ c  recluest might 
be promisi~rg for t.lie tlrcory of 11011-1il1eilt (listril)t~tio~~s, \)\it is A ~riglitnlare i l l  tl~tt Ial>ornt.ory! (.4s- 

stlrniirg eve11 that the la1,orntory tram wo~tld ~ ~ I I I ~ I I R ~ P  tlie terhtiiqit~s of alq)rnaclril~p m, tile 



radiative coriwtioirs would llrohably spoil tlie effwts of the ol,erntioir). 
What one 1 1 4 s  are the sojt attdqtres of crscillator kicks ( 1  I ) ,  a~ ld  tlley ure rrot st) difficrllt 

to programme with tlre help of exlu~ire~rtial fol.nlulirc. Helow. we slr~ll te1)ol.t H (1i1it.e simple 
"expoileotinl experiment". 

Ci~usider first of all the prod11c.t of tlrree operators: 

Let's =k the questiou: call oue cbww A ,  7. tr to Iw tlrree ftinrtio~~s of time in s~lc.li a way tiint 
tlre prodrict I S '  hrifills a ~ll~ysi(.aIIy ilrterpretnl~le evoltiticur eqtlatiol~ 

with H ( 1 )  11avi11g tbe willator form (G)? To siml)lify tlie problem. we slrall tirst determil~e A a~rd -, as hiilctiol~s of 0. A = A ( e )  and 7 = 7 (0 1, and only afterwards we shall look for n = n (t ). Each 
tern1 ill ( 18) is easily differentialble: 

where Ho = P2/2 + 92/2 = a'a t 1 /2. Due to thc* trai~sfol.mat~o~r rule ( 4 )  turd: 

Jue easily finds: 

To assure tlmt the term with (qp + p q ) / ' L  val~isli i t  suffices to I M I ~ .  

I f  irow n = n(t) .  tlie differer~tital eqltatioir foi M' i l l  terms of t reads: 



t l f  t 
. . - - I 

LlA(1, j 

dt 

t l~eit  (2.5) crcqnires the  fnnliliar form: 

If  row \Iv(!) sat isties (27). their I : ( /  ) - IS'(t) \C'(O) - ' sc~lt-cs t11c e v o l ~ ~ t i o r ~  l,rt,l~lcni (6) with 
*.(t12 = g ( ! )  a i ~ t l  wit11 tire ii~itial t ~ ) i ~ t l i t i o ~ ~  l ' ( 0 )  = I 

Adol,tillg A(n) cleti~icrl in ( 0 . 2 ~  1 as our arllitrary "mani~,ulatio~r fililcti,nm'. we (.a11 model a t  will 

tlle desired properties of \I*(! l lard n)~~sisterrtly, of l i ( t ) l .  Tlrils, rf A(0) # X ( 2 x  ) i ) l~t  A(O) = i(2x ), 

f J  a t  0 -- 'LA I m ~ n l e ? ;  tlie scale o p r a t c ~ r  of fornl ( 4 )  airtl t l ~ e  f~lslc-tiol~ g ( t )  d e t i n d  hy (28) gives 

tlre yresc-ril~tiorr of Ilow tlre effect call Iw gerleraterl. If. Ilowevel.. A ( O j  : X(2: j l>ut -,, = A(2x 1 # 
X(0) - 0. tlie sicme 1~rocl1rc.t ( 18i rcclllc-es t o  the s i n ~ l e  I I ~ I A  trivial term 

culd I~e~lcefortlr, I! imitates tlre effects of tllc 3-like kick of tlre oscillator force. .As all example. we 
report two simple computer simillrrtio~ts wlrere tlre maaipalatinn h i~rc t io i~  X ( n )  yields either tlre 
"soft imitatio~i" of the  oscillator kick or tlre cr~ordinate squeezing (see I>elow). I t  seems pertinent to 
11otic.e. tlrat if 8 1 1  ~ l l t l l e i r t i ~  kick were to iw alq,liecl ill t!;e Ialw~rata~ry e.g I)? creitti~rg n very short 
aid sharp nlag~letic p d w ,  t l le~i ilr the  first plare it c-cwld lrever 1w exact (iror well approached: 
tlie 6-fri~~ct.inirs are I I O ~  truly act-essiljle ill labs!) Iir  nrir sce~lario lwlow, tlris tliflic.rrlty is a l w n t :  

M a n i p u l a t i o n  function Ellastic amplitude g(t) 

h(u)  = sin(oc/2) - sin(a)/2 Ett'ective Operation: 
en''L' (repulsive kick) 



The kick dect cau be exact ( p r o d u d  with uuiirnited accuracy), eve11 if negative, and is 
achieved by so$ly vrr- fields awaking little radiative response. By the same, all previous results 
iuvolviug the wi l la tor  kicks 16-9,231 k iuterpretml w realistic. lahrcrtmry yrwrildiulrs. Note 
dm the squeegiug s c e ~ ~ w i o  based on the snme fornli~lr (18): 

Manipulation function Elhstic amplituBg g(t) 

The shape of g( t )  agrees with the observation that the squeezing is caused by an increase of the 
ellastic constant 114, 171. 

The story does not end up here; it hanily starts. The method of distorted l o o p  makes 
possible much more sophisticated manipulations of quantum degrees, which will be probably the 
daily routine of the! experimeutal physics iu a predictable future. 
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THE GENERAL NECESSARY CONDITION 

FOR THE VALIDITY 
OF DIRAC'S TRANSITION PERTURBATION THEORY 

Nguyen Vinh Quang 
Insti?utr o j  I).sics 

Y.O. BOX 429 Boho. Huiioi 10000. \'icttrunr 

Abst raeb 

For the first time, fro111 tlre natural requiwrrrents for tlre strccessive iipproxi~rratior~ tlre 
general necessary cotidition of validity of the Dirac's nrethod is explicitly establisl~ed. It 
is proved that the coweptiotr of "the transitio~r probabilit~ per w i t  tiare" ib trot valid. 
The "super-platiniunr rulesw for calculati~rg the transition probahili ty are derived for the 
arbitrarily strong time-irdepeedent pert urbatiar case. 

1 Introduction 
The problem of calculating the probability of a t r a ~ l s i t i o ~ ~  caused I,! a sirtall perturbatiorr 

was considered by P.A.M.Dirnc- i t r  1926 [1] . 'rhc validity c-ondit ion of the L)irac.'s theory for the 
case of the constant in time lwrtorl~atiorr is that 1 . 1 1 ~  i~ct.irrg tilrrc. r~lust Oc* r~ot too large. In an 
applicatiou of the theory the couj)litig parameter or the interactiolr cot~stitrit oftt-11 plays a role of 
the perturbation coefficient. Naturally, it is vety valuabie to  clarify the rc*latio~rsltil) botwetn the 
perturbation coefficient arid the  time ratlge. in which the theory is valid. 

In this paper the yroblen~ is solved: the getleral nec.eusary co~tditiotr of valiclity is established 
as a explicit. function of the perturbation coefficient. By deriving the exact fortaulae we sl~ow that 
the conception of *the trausition probability per unit time" always is   tot. valid. 

2 Theory 
Let us rrow analyze the Dirac's method in detail. For calcrtlati~tg the tril~~sition prol)ability one 
has to solve the Schriidinger equation: 

with the initial conditiorr: 
* ( F , t  = 0) = ~ , ( q  



where 
ii" $9,&(F) = E!,") p,,(fl . 

First, consider the discrete opectrtllrl case [I]. The t r a ~ i s i t i o ~ ~  1~roI~al~i1il.y fro111 htate 9, to 91 
is ( u l ( t )  I2 where 

*(Fat )  = af(t)pf(F,t) . ( 4 )  
I 

The equation defining a J ( l )  is (21: 

or in the integral fort11 is : 

where 

The a j ( t )  is expressed in the form 121: 

At this stage we have to make the first, remark. It. in nat urai that the succ.essi\v ai~proxilmtio~r 
will make sense only if the following question is answered: What c-order is the coutribution of the 
neglected part less than ': It is evident that o y 1 ( t )  takes part il l  the trallritic~~r probability: 

a t  terms containing E* with p > n. After n steps haw been carried out, in order that tbe contri- 
bution of the neglected part is less than c("-'). I o f  '( t  ) I nltlst be of zero-order of r . ( J o ~ ~ q u e n t l y ,  

the numerical value I F(")(t)  I N  of a time-dependent part. F(')(t) of u y ) ( t )  I I I I I S ~  IN less than E - ' .  

Inserting (8) into (6) one gets: 

Considering E as a small quantity of the first order of c ( i . e  i' as a zero-order quantity) and " 
equating terms of the same order " [l], one gets1 

'From mathematical point of view tile group scale { 5" )witlt 11 beil~g integers is r l~owa  for co~l~pari~~g the terms. 



In all of t hc.sc3 cxpressiol~s. t l ~ r  S ~ I I I I I I I ~ ~ ~ O I I S  arc ~ - s ~ ~ ~ I I ( I c ( I  ovcbr all tlit* ~.igt~~if~~lirtiotis of 11". 
.It tliis stagc we havc* t.o ~ilake t l r c -  followilrg ~w~~itrks:  1.l:aclr siclc~ of 1;~1.(10) l~ i r s  iafilritc. 

~~urribcr of tcr.111~: the bet ( I  I ) Ilas iuli~~ite I I I I I I I ~ U * ~  of t . l rc .  c.cli~at iot~s. L).lh-c.ir~lsc- of tl~c- I.~*I.III  vrrlile is 
changed ill  time, the* tcrllr order 111ay I)(* rhit~rgecl. 'I'l~c*rt*forc* " c a c l ~ ~ i t t  t.c*r~ 11s of ~.hc salllc orclc-r " 
is not always eqtrivale~it to " equating terliis cw~tainilrg the fartor < of tl~rb sit~ilc ordc'r ". ill getirrg 
( 1  1) olie Ilas nlade act rrally t 11c. 1attt.r. :I.l;or ~t*~)iil.ilt.illg ( 10) i l l t o  ( I 1 ) i,!. cioillg so I 1lc1 f01!o\villg 
conditions are necessary: 
i )  The niodulus of both sitles i n  etrciry eclrlatiorl of sct ( I I ) I I I I I S ~  I)(- of t lit. silrtrc* orrlc-r. 
i i )  The modulus of t,he right-l~ancl sitles i l l  diffew11t e(luatio~~s of sc8t ( I  I )  lil~lst IN* of differt*li~ 
ordcr, i.r . ill P4.( 10) the n~odulus of t llc. ter111s cont.ai~~it~g t 11cs Iitc.tor .z of clilfv~.cvrt ordcr al~lst lw 
of different one. l'l~ercfore at ally ti~nc / f ' ( " ) ( t )  1.y IIIIISI ilot rliat~gt- 1 I~cbir orclcsr rc*lat io11 clt*~.t~rli~i~a*cl 
by o~ic  hc:twec.~~ their factors { e" }. 'l'llis tneans tliat 

1 ( )  1 < for auy r r .  ( 12) 

This condition is in  similar hut ratl~c:r deep setlce as disc~lssecl by 13ogoli11l~ov a ~ ~ c l  Alitropolski (9). 
Consider now the case  whet^ 1.' is time-indepe~ide~,t. I)ctlotil~g by I tile stgt of all of t . 1 ~  states 

of energy E,. eic, from Ec1.(11) wc obtairi ( I ,  E 1 ; t n  $ 1 ): 

It should he rioted that i l l  thc exl~ressioo of c c c )  ; r t t  4 i t,hc- t.t*rti~s i l l  \vhic.h t lie two s~l~llrnatio~i 
indexes get equal values ( 1 . c .  thc ternis with t A k  b/kk Ci., . k $ J .  A, t t o i t r t  .I/  ) also co~~tairi the factor 
1 ,  rtc. This nlrans t.hat n,")(t )with rr > 2. always colitai~r t l ~ r  st*culnr t t * r ~ ~ ~ s  [:I]. 

The general forn~ of F(")(t) is 

where 1, is real for any r ~ .  I t  is easy to see (41 t liat 

The nlaxilnal value of ( F(")(I)  I c-orresponds 1.0 t l ~e  trx~~sitiol~ . i l l  wlrir!~ t.lrc timl a ~ ~ d  all of the 
iritertilediate states have the sanrc elrergy as thb ilritial on(*. lie-IIC~ tlre g(*~~rral Iltar.rssarg co~tditio~l 



of validity (Eq.( 12)) leads t o  ( t cler~otes the tltlrncrical value of 6) 

i.e. the action tinte of the time-illdependent perturhatio~r nlrrcit bt. Icws tlrn~r the l i~lli t i~ig value, 
which is an explicit functio~i of the p r t u r h t i o n  coefficient. For rxnml,lr. r l t rn  e = & in the 
system of units with h = c = 1 we get t l  < 2.4 x 10-'"~cc. He11c.c. the ti~rrc* ra~~gcb.ill which the 
Dirac's method is valid,is ultra-short. 

The condition ( 16) is quite getleral, purely tuattle~aaticd arid iudelw~rdt~rt of the fact wlrether 
the perturbation is turned on suddenly or adiabatically. The ti111e I = 0 is unnwlj tlre nlorilent, 
from which the perturbation could be considered as constant ill Ci~ne. 

In the continuous spectrum case, by repeating the for~naliat~r just dovc*lol~c~tl al~ove, it. is not 
difficult to obtain directly the same condition. 

This condition is also the necessary one of validity for an arbitrarily tir~re-cleln:~rdelrt pertur- 
bation case because the time-indepel~derlt pert8rrrhtioa case is i t s  partic'ular o~lc!. 

It must be e~nphasized that when the group scale { E" } was choseti it is riecessary to use the 
notions "small of some order of E" . "large of some order of s- '" etc. itrsteiul of the ilncertain  roti ions 
as "not too snlall and not too large", "large enough". "sufficie~rtly smdl" [1.',',5].111 rtniug the Dirac's 
results it is necessary to  justify the existe~ice of the validity mrrge i~rst.eacl of I e a ~ r i ~ ~ g  01) such vcry 
uncertain statement:" There is no difficulty in satisfying hotlr tlrt-st. t.o~rclit.io~~s siarultaneously 
provided the perturbing energy V is sufficiently snlall' [I]. 

Now we prove that the conceptioll of " the tra~rsit io11 prolmhilit,y per unit linle" is 110t valid. In 
the time-independent perturbatioli cave the perturbed Hamiltorlia~l haw HIMI ccrtitin eigenvitlues 
and the full set of the normalized stationary eigenfunctions 

The initial condition (2) lileallv that at t = 0 the system stat.c I I ) is 1 t )u wlierc- ( F I i ) , ,  r pi(F) 

At time t the systen: state is: 

The probability WtJ of a trallsitiotl to  I f )o is: 

The probability W, <if the tralrsitions to the final states ( j")" i l l  the regiori Of" ['LJ is: 



I t  1\111st l ~ t *  cnrphasized t.lrnt t l ~ c s c b  rwtr l ts itre exac-t. 'I'Itty SIIOW t l ~ i l t  c8tx*~r ~ 1 1 4 ' 1 1  t.I1c' I)~~s~.II~I)~L~~oII 
is  "sufficieittly small"artd tllc* f,il~ttn I is "irol t oo  ~111 i i l 1  atlt l IIOI t oo  lirrgt-" [I,L).5j. t l ~ t *  t.~.irlisiliotr 
pd,abilit,it's CI,',I a ~ l c l  M; art* lrot prol)ort iolral t o  I, i . t  . il is irrtl~)ssil,lc~ l o  c l c * f i ~ r c *  t11t- c .o~~c -c j ) t i o~~  of 

"the t ransi t ion probabi l i ty  jwar i l l t i t  titttcb". Moreow*r, w l l c * ~ ~  t irpl)ronclls i11li11i1.v Oc*c.iittst* of tllesc* 
exa r t  resltlts are always clefiniltb. any a~~prox i t i~a t . io t r .  i i r  whiclr 14;. I1  ;, arc* j)roj)ort io11~1 t o  t. 1.t. 

approach infinity. is  not valicl etPc*il clunlitntively. 111 fac.~, th is  c.o~rcc*l)t i o l~  . i ~ r t I  t l r c b  I;cbr~~ri's "go l t l t *~~  

rulen (2.61 are only thc  const*clttellccts o f  tltt. ap l ) ros i~~~a t . i o r~  trscvl 11.v I)iri~c. \vi t l ro~rt jlrst ifyitrg tlrt* 
existence of a val idi ty rtgiotl. 

The riglrt waJ is the  follo\viug. Wl~c*~r ISci.(17) is  o11c. of t.lrc* \vc*ll- k r ~ o w ~ r  c8sirt.t I y  .;ol\.tvl t*igc*~~vnllu* 
problems in C)~~ant .n~ i l  Mec l~a~r i cs  atrcl w1w11 b y  t ~ s i ~ r g  l l r c h  c ly~rn~t~ic.wl 3y11111tc~t r i t ~  i111t1 111t- i l~t.cgraIs 
of the  motion 17) wc rat1 solvc* t-xactly tht* ti111e-clt*pt:ndt*111 Sc.hrc?cli~~gt~r tuilrnt.io~r. t he  fo r l~v t l iw  

(20) and (21) give the  exact results i r ~ ~ ~ ~ v ~ r l i a t e l j ~ .  l+ ' l~c?l t  i t  is ,101 so f ~ t . t i l t ~ i ~ t c * .  i t  is  possihlt* to 
rise t i l e  p e r t u r l ~ a  t.io,~ ltret hocl for t 11t~ t*igt*ttviilrre p r o h l c * ~ ~ ~  (I ,',r,:i,(i] c.a~.c*f~rlly ( ;. r . i t  is  ~lc~c-c~ssirry I o 

verify t l re val id i ty  cot ldi t ion at every st.el) ) for solviag 17) a~rcl t l t c - t l  t o  c-alc.ulatc* t Irc* t r i t ~ ~ s i t  i o ~ r  
probabi l i ty  following formula (20) o r  (21 ) t ~ p  t.o the  tlecessirry nt.c-uritc.y. 'I'lrc*rc*ft)rc*. i t  is iatc-rc.sti~~g 
to cal l  the111 " the  super-plati11i11111 ~IIIPS". 

T h i s  tncalrs that the  ~~rc- t , l~oc l  of expans io~~  i ~ r  powc8r of s ~ l l a l l  j~irril~rtc*tt~r is ~)ossil>lc* for t i l t -  

c igcavr l l l~c problenl  I ~ u t  is very I ~ a d  for s o l v i ~ ~ g  t11cb t i ~ tw~- t l e l~c *~ l t l t *~ t t  Scltriicli~rgt*r cv l t r i t t io~~.  w l r i c l ~  
is  i n  s similar sitr~..tiotl w i th  t In- orrr1 of 111~ ir~lalyzecl ill (31 cec111nt.iot1s c.c,rtc.t*r~tc*tl wit 11 t /I(* st?<.rrlar 
terms. 

T h e  c o ~ l c e p t i o l ~  of " t l l c  t r i r~ ls i t~ ion   robab ability per t~ t r i t  l i t l r c * "  is 1101 viilicl 1;)r I l i t -  ~)itrl i t - t t l i r r  c.;lsc 
a id t l~erefore. is not valicl Tor t l w  gr~tr r ra l  case o f  t l r t *  ~.irt~~~-clt*yt~~rt lc~~rt  l,tbrl ~~r l , i t t io~ i  c * i l I t c - ~ ' .  

Since t h e  rro~rrelat ivist ic case is a 1)ilrt icular otlc. o f  t IIC rc*iitt ivist ic  c.;t.itN \v11c*11 tlrc* 1,al.t iclt* 
velocity is very ni r~cl r  less than the light. vt.locit.y. this c.o~rcc~l)lion is 1101 siilitl ill t h ~  rc-littivistic. 
case either. c o ~ ~ w l u e t ~ t l y .  ill Quattt IIIII ficlcl t . I~mry.ia a m . l ~ i c . l l  I l t c b r t b  art* I l l i l l ly s ~ ~ l r - i i t c - o ~ r ~ i ~ ~ ( ~ t ~ t ~ r s .  

7 * 1 hus. t h e  carelesst~ess of t i le  gc*~ri t~s l i r r ~ t ~ l i r t ~ s  of SoOt4 ~)ric.t-s Iriivc* t i l t *  l~('ai~ti\.t' i ~ ~ f f l ~ ( * ~ r t * t -  011 

t he  d e v e l o y ~ r i e ~ ~ t  of the  nlodenr ~)I~ysics. 

Wit11 a hor~esty atlcl a couriigc* of t l i t -  scic*rlt ist wc- II~I\.<# t o  w*lb ~ l i r t r .~  ly  10 t 1 1 t b  I 1.111 11 i r l l c l  top- t  lrrr 
rc3construct the  crtrrcr~t y h ~ s i c s  \vitltorrt I)iriicqs colrccl)t. io~~ 01' "1 l t t a  I rwrrsitic,~~ ~,~.ol,itl)ility per 1111it 

t i l l lev. 
'I'he a t ~ t h o r  wottlcl l ike t o  tllarrk Profs. V.l.hlnrrko. C;.('.(;l~irar.cli RIICI I ~ . ( ' . ( : . S ~ ~ ~ l i l r ~ l ~ a t  fi)r 

the i r  support. 
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Jiang druobong 

Abstract 

h this paper. the quedng  effect, the bunch- effcet and the anti-bun&- effect of the sn- 
perpsition light field state which involving q-deformation vacuum state lo> and q -Ghukr  eoher- 

a~rtffeIz>. tcstudfSd,  ~ a o n t r a t r s M e q - ~ e r o B t h e ~ a P l h c t r  t b e b u n c h ~ e i f s f t  

and the auti-bunching effect of q-defamed superpasition &kt field state are obtained. 

1 introduction 

In recent lraft ~ s o p k  hawe maUa p r v  br the rssurch of some concrete bhysical prebkar mshg 
quantum groups SU, (2  1, Quantum a e b r a  has beea r d & d  by usin# q - oscillator .Dd the 
pararnctriml Fotk state In>q was obtained too. From this q-Gbubcr coherent state !n>q w s  in- 
tduccd. lfao ~arr)u;': showed that the c~Zierent degree can be cuntrolkd by q- defbr:cation par&ne- 
t a .  Zhrr Choalxuc'] showed that mane q a u r t m  statisticd propmias of q-even-add coberrat state 
crs be umtrdkd by q-pmmeta. 

We stodkd the squ- effect of q-detbrrad r o p e r ~ a ~ k n  tight fkW which bndvfng q-de- 
rotmarka vwcuum suce lo> and q - G h u k r  Coherent state I z>. The results showed thU the 

a 
squeezing effect, the buncbing cflca and the anti- bunching effect can be contrdkd by q - parame- 
t a .  

2 hnclmskal propetties of q-deformed superposition Light fwd stal. 

The q - d c h e d  superpositon Light field state is 

The normaliacion condtion is 



rtz + rzs + 2r,r.r,-bl*iL~<el - I (5) 
2.1 The squeezing effect of q-delbomd superpcsitlorr Uht fiatd state 

The two orthonrl  comcponets 02 q-datunnd cicctramsgnetie W art B e f i i  as 

i 
where a, is q - annihilation operator and a,+ is q - creaton operatat. Becase of [Y I Y z3 = - [a.. 2 
a,'Irso we have the uneenuinty relation. 

If tbe squceting exists. then we have 

Pi  =<<>Y,)' > - - < O  ( i =  1.2) * 9 4 
F a  q-deformed superpositton light field state* we have 

- teo &-~'** + l ~ l ~ a  
<$!a: Is > = <o* <Ol + )' <Z!>.,+<alO > + 61% >) * * * 9 9 9 - r-d-efild + Irlr* 
~?l%+~l$> = <ao <01 +be  <ZI)e:*<el@> + rle>> 
9 * 9 9 * 

P b0a&*%-W + J j l g g r n t  

<r ' c i ' ;  > = (a* < O I  + )* <ZI)ef(af3 > f fi:Z > * * * , 9 * - e8.$wz + 1 p 1's 
From (8) - (14),we can have 

ft is ckar F, and Ft are periodic Iuncrion of cp h'umerical valve calculating showed that Y i  and YE 
may be more than rcro and less than zero accompaning the variation of q. This result shows that ihc 
gencraUy squeezing may erist md can be caotroUcd by q 



8.2 The bunching effect, the anti-bunching effect of g-deformed superposition light field state 
For a-defrmed superpsition Ught field state. we hew 

<r,l~,+~aflr > - l a ' l s l t I '  (17) 

When tms (t3,-ez)>0, from (5) we have - 

.:+.',<I 
From (19). we get rs<l. so that 

(18) shows that the bunding ef'fect exists. 
Wen as (@,-@,)to, we have r:+tf> l ,SO that 6 may be more than 1 and we haw 

(22)Sbows that the anti- bunehby efloct exist. 

The results of this paper shows that the squeezing effect the bunching effect d the anti - 
effect of q-dckmed supctpaaitlen light fieM state a ~ g  exist uad can Be conmdhl by q- 

pameter. 

[I] HaoSanyu, ACTA PHYSICA SINICA.42, 1057 (1993) 
[2] Zko Chongxo etal. ACTA PHYSICA SIh'ICA. 43.1262<1994). 
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1 
Sb1= -jd%-d,~%fP- 2~ f ~ i i  (2) 

wlme, &-is a Rianerm metric and R is the anqmdhq scaler cumatw. We can a@~ bw (f. rg) 

sysoem viaaaotherscalar~ x 
[ t e a  Se-Q (3)  



. . 
ceandxfidds mebotbashktai to takiug dm om a mait ckk a/= ; this 
~ ~ o a n 6 g \ l t . l r t i o l r p o n ~ ~  ~ , ~ ~ g > O *  a a d ~ t k r # # p 8 a r y  

&iton aimm can be IahW by tbe l ~ ~ d t m ~ k h m m  
.rv, x ~ * ~ ~  (4 bj)aaQivarby 

nhea p, aa integasathQ@ ~ g = 2 ( 8  - I ) ,  and 8 is a spseitic spin strmne. 
K (B and x are tmtd hdepddy,  the eswrlt aria be difknat b m  that of the compolrding b, 

t ~ . W e ~ t l n t  
a) t h c b o s d d  fidds havedudant Z B I O - ~ ~ ~  oft and q W. 

and b) the (9, X )  eysOcm has a hger Hakrt s p a  than diat of the (P, 7) (B and 
x a w o o t ~ e n & ~ . T l r l r s u e  base mamiants, othcmk, some gkdd 

~ ~ w a f b e ~ ~ m ~ ~ n p # u y .  
8 

m-~vpsaombcM~I* oopaoll i ( t ( % ) ) ,  p 1 ( * ( 4 ) )  -= -- 
- I  

mbdes of C, 9 W. rl Bes am-mode at i=l ,  --, g, and C bas a wmtant am-medc, thus 

x is an aibitrary point on 1,. In order to a d  to oornpute &similar part of gbbal oo-IPO 
of A X f#lds, we inmduoe pmjecm 



6(mx-m$&( n , - n S  

to rastrid O, I[ on the same soliton  sect^ at the =me time . 
NOW, aomdbg to Riemunu-Rocb theorem, (7) nu t  be mrdified as Fdbw 

'Ibis d t  can be witten as a soliton  sum^,. , multiplied th a m p w e  of- - $, 



Fmm (1 1) and (12), holomorphic anomaly hctots of %, and Am, a can atnoell each other. Thus vte can 

ha= chid oomhtion fbctions 

Thus, by insmtiq appmpriade pmjcctor to nmow tk a m - m o b  of C, 1 fields and nstrict o, x on the 

~ a m e ~ o l i t a n ~ . w c ~ ~ o o ~ c b i r a l ~ 0 ~ t i o n ~ ? 1 ~ o f o , ~ f i e l d s . A s ~ ~ * ~ . ( 4 ~ 0 ~  

a p p r o a c h i s m o r r m ~  

References 
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NUMBER-PHASE UNCERTAINTY RELATIONS 
FOR OPTICAL FIELDS 
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Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 

Cmnwaidzka 6, 60-780 Poznari, Poland. 

Abstract 

The Hermitian phae formalism of Pegg and Barnett allows for direct calcuhtions of the 
phase variance and, consequently, the number-phase uncertainty product. This gives us a 
unique opportunity, inaccessible before, to study the number-phase uncertainty relations for 
optical fields in a direct way within a consistent quantum formalism. A few examples of 
fields generated in nonlinear optical processes are studied from the point of view of their 
number-phase uncertainty relations. 

1 Number-phase uncertainty relations 
Pegg and Barnett [I] introduced the Hermitian phase formdiem, which is based on the observation 
that in a finitedimensional state space the states with well-defined phaae exist. Thus they restrict 
the state space to a finite ( s  + 1)-dimensional Hilbert space spanned by the number states lo), 
(I),. . . , Is). In this space they define a complete orthonormd set of phase states by 

where the vdues of 8, are given by 

The value of Bo is arbitrary and defines a particular basis set of (s + 1 )  mutually orthogonal phaae 
states. 

The Pegg-Barnett Hermitian phase operator is defined as 

Of course, phase states ( 1 )  are eigenstates of the phaae operator (3) with the eigenvdues 8, 
restricted to lie within a phase window between 80 and + 2ns/($ + 1). The Pegg-Barnett 
prescription is to evaluate any observable of interest in the finite basis (1) and only after that to 
take the limit s + oo. 



Since the phase states ( 1 )  are orthonormal, (8, l8,t) = dm,#, the kth power of the Pegg-Barnett 
phase operator (3) can be written as 

Substituting eqs. ( 1 )  and (2) into eq. (3) and performing summation over rn yields the phase 
operator explicitly in the Fock basis 

s A 2n exp fi (n - nl)eo] In) (n' 1 
4 9  = 00 + - 

s + 1 + II+~ z, exp[i(n - n1)2n/(s + I ) ]  - I . (5) 

It is well apparent that the Hermitian phase operator 6# has well defined matrix elements in the 
number state basis and does not suffer from such problems as the original Dirac phase operator. 
A detailed analysis of the properties of the Hermitian phase opxator was given by Pegg and 
Basnett [ I ] .  As the Hermitian phase operator is defined, one csn calculate the expectation d u e  
and variance of this operator for a given state of the field I f ) .  

The Pegg-Barnett phase operator (S), expressed in the Fock basis, readily gives the phase- 
number commutator (11: 

2n (n - n') exp[i(n - n' )Bo] 
[i,,ti] = -- 

s + I s, eewp[i(n - nt)2r/(s + I ) ]  - 1 In)(nlI. 

Equation (6) looks very different from the famous Dirac postulate of the phase-number commu- 
tator. 

Having defined the Hermitian operators for the number and phase variables and knowing their 
commutator, we can easily test the number-phaee Heisenberg uncertainty relation for any given 
field with known number state decomposition. 

1 
A&AA 2 i ~ ( [ h ,  h ] )~  (7) 

For physical states the number-phase commutator can be considerably simpified (11, and its 
expectation value in the physical state Ip) am be expressed in terms of the phase distribution 
function P(80), which makes calculations of this quantity pretty simple. 

( P I  [ba,rij IP) = -41 - ( 8  + l ) l (p l  Ieo)121 (8) 
4 -i[l - 2n P(OO)] (9) 

In the next Sections we give a few examples of the number-phase uncertainty relations calcu- 
lated using the above formulas. 

2 Examples 

2.1 Anharmonic oscillator model 
The anharmonic oscillator model is described by the Hamiltonian 



where d and ~ct are the annihilation and creation operators of the field mode, and n is the coupling 
constant, which is real and can be rel3ted to the nonlinear susceptibility X ( 3 )  of the medium if 
the anharmonic oscillator is used to describe propagation of laser light (with right or left circular 
polarization) in a nonlinear Kerr medium. If the state of the incoming beam is a coherent state 
loo), the resulting state of the outgoing beam is given by 

" ole" 
!?[r) )  = u(+)lao) = exp(- laa/'/2) C - exp 

n r o  ,la 
where T = -nt. 

FIG. 1. Evolution of the uncertainty prodi.ct (lhs of eq. (7) - upper curve) and 
its lower bound (rhs of eq. (7) - lower cnrve) !or the anharmonic oscillator state with 
Iffo12 = 4. 

The appearance of the nonlinear phase factor in the state (11) modifies essentially the properties 
of the field represented by such a state with respect to the initial coherent state la0). It was 
shown by Tan& [2] that a high degree of squeezing can be obtained in the anharmonic oscillator 
model. Squeezing in the same process was later considered by Kitagawa and Yamamoto [3] who 
used the name crescent squeezing because of the crescent shape of the q~~asiprobability distribution 
contours stained in the process. 

The Pegg-Barnett Hermitian phase formalism has been applied for studyiug the pl~ase prop- 
erties of the states (11) by Gerry [4), who discussed the limiting cases of very low and very high 
light intensities, and by Gantsog and Tan& [5 ] ,  who gave a more systematic discussion of the 
exact results. 

In Fig. 1 we show the evolution of the number-phase ~r~certainty product as given by the lhs 
of ineq. (7) (uppei curve) and its lower bound as given by the rhs of iney. (7) (lower cu. /e) for 



the state !t 1) of the anharmonic aecillator assuming that the mean number of photons l-la = 4- 
It is axn that the number-phawe uncertainty product rapidly increases 3 the early stage of the 
cvolutim, which is due b the rapid rendomisation of the phase, since the photon stadisties remain 
d1 the time Poisacmian with the number of photons variance equal do the mean number of photoas 
lac['. This is a typical behavior for mean nrrmbera of photons greater than unity. It ie also ecen 
tbat the states generated in t b  darmoa~ic oeciliator model are never the minimum uncertainty 
or intelligent etatea. The level of noiac is much bigger than its lower bound abwed by quantum 
mechanics. Since the dynamics is periodic, after time r = 2% the system returns back to ite initial 
state. I t  can be shown [Sj that for jgbfZ w 1 the number and phase uncertainty product takes the 
approximate andyticd fonr. 

explicitly showing rapid increase of the uncertainty product from the d u e  114 known for the 
coh.rent state. 

2.2 Jaynes-Cummhp model 
The model is desuibed by the Haniltonian (at exact resonme) 

where i t  and i are the creation and annihilation operators for the field mode; the t.-level atom 
i~ described by the raising, &, and lowering, R, qerators and the inversion operafor &* a d  g 
is the mupling anstant. 

To study the phase prope- .ies of the field mode we! have to know the state evolution of the 
eysbem. After dropping the free evolution terms, which change the phase in a trivial way, and 
assuming that the atom is initially in its ground state and the field is in a coherent state I%), the 
sta& of the system is found to *be 

where lg) and le) denote the ground and excited states of the atom, the d c i e n t a  b, are the 
Poiegonian weighting factors sf the mherent state w) and do if the coherent state phase (phaee of 
*). The main oscillations of the uncertainty product r d e c t  the oscillatione of the phase variance, 
which has iw extrema for the revival times (in the figure time T = gt/(27r(mI) is scaled in the 
revival times). Small oacillationa seen on the figure etem from the oscillatione of the photon number 
variance and have only minor effect on the overall behavior. They ase aesociated with the r ev ids  
of the rapid Rabi oscillations in the model. However, this is the phase variance that emoothly 
oscillates in the time scale of the subsequent revivals. In this way, the well known phenomenon of 
collapsee and revivals ha obtained clear interpretation in terms of the cavity mode phase [6]. 



FIG. 2. Same as fig. 1 but for the Jaynes-Cumrnings model with Icr# = 20. 

FIG. 3. Same as fig. 1 but for the down conversion with quantum pump with the 
initial mean number of photons equal to 4. 



2.3 Down conversion with quantum pump 
The parametric down conversion with quantum pump is governed by tt)e Harniltonian 

H = ir, + & = i i u ~ ~ i  + #&ti + hg(iti2 + kt2), (15) 

where t (it) and (8') are the wnihilation (creation) operators of the ~ i g n d  mode of frequency 
w and the pump mode at frequency 2w, respectively. The coupling constant g, which is real, 
describes the coupling between the two modes. 

Phase properties of this system have been described by Gantsog e t  al. [7] and Tmai and 
Gantsog [a] and the details of the calculations can be found there. Here, in Fig. 3, we show, 
as in previous examples, the evolution of the number phase uncertainty product and i t s  lower 
bound for this process. For finite initial mean number of photons the number-phase uncertainty 
product remains finite during the evolution contrary to the parametric approximation under which 
it rapidly explodes to infinity. 

3 Conclusions 
All above examples, are typical examples of the fields generated in nonlinear optical processes, 
and they show clearly that nonlinear processes typically evolve to quantum states which are far 
from being the minimum uncertainty or intelligent states. 
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An electronic excitation of a molecule by a sequence of two femtosecond phase-locked laser pulses is 
considered. In this case the interfiixmce between the vibrslknal wave packets induced by each of thc 
subpuke within a single molecule takes plac,. It is shown that due to the dyniunical squeezing sect 
d a  molecular vibrational state the interference of thc vibrational wave packels llllows one to measurc 
the duration of a fkmlosecmd laser puke. This can be achieved experimentally by measuring the 
depenQnce of the integral flu or ex^ of the excited molecule on the delay time between the 
subpulses. The interference can lead to a sharp peak (or to a down-fatl) in that dependence. the width 
afwhich is equal to the duration d the laser pulse. It is shown that finite temperature of the medium 
b favorable for such an experiment. 

Recently a great interest has been shown to the study of spatially localized vibrational wave 
packets in molecules induced by ultrashort laser pulses. The time evolution of the mean position of 
such a wave packet corresponds to the nearly classical nuclei motion, and can be observed in the 
pump and probe spectroscopic optical experiments [I-41. The idea of controlling the chemical 
reactions due to the possibility of the nearly classical nuclei motion has been widely discussed and 
experimentally verified 15- 10). 

An impor tant characteristic feature of the vibrational wave packet is its spatial extent. In the case 
d a hannonic nuclear potential the spatial properties of the wave packet are closely connected 
with the phonon statistics and can be treated by the methods dewloped in quantum optics. In a 
series of previous publications [ I  I -  l (iJ we have studied the statistical properties of the vibrational 
states appearing due to the excitation of Franck-Condon transitions by the transform-limited light 
pulses of finite duration. The problem was to learn how is it possible, by varying the characteristics 
of a laser pulse (i-e. its amplitude and phase modulation), to excite the molecular vibrations with 
the given quantum fluctuations of the conjugated variables. In particular, it was theoretically 
predicted [I I - 131 and experimentally verified [I that. when the spectral width of the exciting pulse 
is smaller than that of the absorption band, there appears a molecule in a squeezed vibrational 
state with a reduced quantum uncertainty of the nuclei position. The mechanism of squeezing, 
which arises here. is of the dynamical nature and can be explained as the result of quantum 
interference in the phase space of the molecular vibrations [131. An application of the dynamical 
squedng effect to the problem of wave packets optimal shaping for the control of the chemical 
reactions was considered in (18-21). 

Our goal now is to show how this dynamical squeezing effect can be put to use in another way 
for the duration measurement of a femtosecond laser pulse. Following [22], we shall consider the 



excitation of a Franck-Condor transition in a molecule by a sequence of two femtosecond phase- 
locked Gaussian-shaped pullc .: 

E r MI 1 
E = - 2 8  ' + + a e ~ ~ - ~ ( t -  ~ ~ i ] e x d - i Q t l +  c.c.. "1 

separated from each other by the time interval T .  Here a is a possible additional complex 
c o e f f i i t  betureen the pulses: a = laladip). As it was demonstrated experimentally in [22] it is 
possible to change the time interval T. keeping constant the value of phase p . 

We shall assume that due to the electronic transition only a spatial shin of the harmonic nuclear 
potentials occurs in the molecule. The adiabatic Hamiltonians describing molecular vibrations in 
the initial (i) and excited (e) electronic states have the form 

where E ~ , ,  are the electronic energy levels. It is convenient to rewrite Eqs. (2) and (3) expressing 
and @ through the phonon creation and annihilation operators: 

hmv 
i=,/=(b 2m0 b )  j = i / = ( b  2 b ) .  (4) 

Then 

A nondimensional coupling constant g. which appears in Eq. (4). is equal to the ratio of the 
Franck-Ccmdon shift to the amplitude of zero vibrations. The Hamiltonian (5) can be diagonalized 
by means of the unitary displacement operator 

0 = exp(-g(b. - b)i. (7) 

- 

It is easily seen from Eq. (8) that the ground state vibrational wave function of the molecule in 
the initial electronic state has the form 

1s) = 40). (9) 
where 10) is the phonon vacuum. which coincides with the ground vibration state of the 
electronically excited molecule. Let us note that the displacement operator acting on the vacuum 
state gives the coherent state. Then Eq. (9) simply means that the ground state wave function of the 
harmonic oscillator being placed in the shifted potential is a coherent state. 

7 k  awe of zero tempemme. We shall assume that initially at r = -m the molecule was prepared 
in the state 1 i)(@,), v. .-re I i )  is the electronic wave function of the unexcited molecle. ARer the 
resonance interactic., with the field ( I )  the wave function of the molecule will have the form - .  

I Y . ~ ) =  l i ,r)lai,t)- i ( E ~  . d L r )  lc, ~ ) I V ,  l), 
2Au 



Eq. ( 10) is derived in the first-order perturbation theory. Here d, , . is the dipole matrix element of 
the electronic transition. which is a-sumed to be independent of the vibrational coordinate in 
accordance with the Condon approximation, and 1 v,r), the unnormalized vibrational wave 
function of the excited molecule. Due to (1 ) this wave function consists of two terms 

1v.r) = I v .  . t )+ a I V  .I). (1 1) 
e functions I V  .r) correspond to the vibrational wave packets king excited respectively by 

each of the subpulses in ( I). Generally. the wave functions I V. .i) and ) v .i) are not orthogonal and 
their overlap depends on the delay time T between the subpulses. This opens a possibility to 
observe the delay time dependent interference dkcts in the physical processes which are 
determined by the population of the excited electronic state of the molecule. For the sake of 
explicitness we shall assume that the measuring quantity is the quantum fluorescence yield of the 
excited molecule. In the case of the transition in the pure electronic system (without a vibrational 
degre of freedom) functions I v .  .I) are reduced to numerical amplitudes 

where S = E, /ti - E, /& - Q. The dependewe of the excited state population on the delay time 
between the subpulses in this case is of a trigonometric character: 

In the remainder part of the paper we shall consider how the accounting of the molecular 
vibrations changes Eq. (1 2). The general expressions for functions I V ?  . I )  are given by 

Using (7) and (9) it is convenient to transform the wave functions (14) into the form of a 
distributed coherent state [I 3) 

W 
IP ' . . i )=  yexp(Ti6 $1 f r 2  T r)lO). (IS) 

R 

Time dependence of the Heisenberg displacement operator D(i) in (1 5) is determined by the 
Hamiltonian (6). To evaluate the time integral in (15) now it is possible to use the well known 
Fock-space expansion of the coherent state 40) (23). As a result we have: 

1 n, r) = exp(- inaw){n) . 
where l f i )  are the Fock-space eigenfunctions of the harmonic oscillator. Comparing Eqs. (12) and 
(1 6) it is easy to see that the coefficients at l0,1) in ( 16) coincide with the amplitudes V . . Exact Eq. 
(16) is convenient for the numerical calculations. Another way to evaluate the integral ( 1  5) is based 

on the replacement of the cchermi state ~ ( 1 ,  T - i )10) = 1 



I-ge i 4 f ~ r 2 ' ( ~  -irvt,)), which is possible when ">>a. In [13,15J it was shown that the integration 

k ( I 5) in this case can be performed in the operator form, and la& to  the result: 
I . w z e r p ( f i F ) ~ ( r  * X)S(~ t %)10). 

In (17) the normalizing factor W is the absorption spectrum of the electronic-vibrational 
transit ion: 

B and S are the unitary displacement and squeezing operators: 
ru A a(,) = (1 - ?)[ha B, ( t )  - l ~ ( t ) ~ } .  

b ( r )  = exp(-itvr)h, 

S(r) = exp{f In(%) [MI)' - b-(r)']}. 

The action on the vacuum state of the operator 6s gives an ideal cohaent r q u d  state in which. 
pera l ly .  the mean position and momentum of the oscillator have nonzero value, the uncertainties 
of the position and the momentum are not equal to each other and their product has the minimal 
possible value. In the a-plane of the coherent states each of the vectors I E . r) can be considemi a 

m ellipse uniformly moving along the circle with the radius ={I-'%:). and keeping the 

orientation of the axes in the rotating frame. At moments r , for which the arguments of the 
operators in (1  7) are equal to the integer number of the vibrational periods, the values of the ellipse 
main axes are equal to  the non-dimensional uncertainties of the position and the momentum with 
the small axis comesyonding to the uncertainty of the position: 

If the coupling constant is large enough (g>> I). then the wave functions I v.. I) are located at a 
sufficient distance from each other, and are approximately orthogonal except for the caw when the 
time delay between the subpulses appears to  be equal to an integer number of the periods. From 
geometrical considerations it is clear that when the delay time between the subpulses gains an 
integer number of the vibrational periods. the overlap of the vibrational wave! functions IV, .r) and 

I V  . r )  can be observed in the a-plane as the approaching of two ellipses along the direction of their 
big axes. So it is likely to expect the following qualitative effect of the molecular vibrations on the 
interference picture given by Eq. (13): (i) the dependence of the population of an excited state on 
the delay time between the subpulses should be more pointed in comparison to the trigonometric 
dependence in Eq. (13). (ii) while the delay time approaches the integer number of the periods the 
interference picture should be sensitive to the quantum state of the molecular vibrations, and the 
squeezing effect can be seen due to the dependence of the interference picture on the subpulse 
duration. 



2K nl 
Let us put T=- + r in Eqs. (15). (16). where r . is a small deviation from the integer number 

(W 

of the vibrational periods, and evaluate the population of the excited state. In accordance with 
Eqs. (1 5) and (16) one finds 

u2 j- (1 + la12)Md + 
1 

( v ~ v )  = u]dvex{i& - xqz i :zmm . r d  ' '211tu . r ' 5 

L o r .  " . hf(q+r)+abe" * , M ( ~ - ~ ) J  

where ~ ( 4 )  = ( 4 ~ '  (o )D(c)~) .  and 

,, n! o 

While deriving Eq. (2 1) we haw performed the integration over the summary time +(I, + I, ') . The 
e 

remaining integration in (21) is carried out over the difference time r ,  - I, = q. The vacuum average 
of two displacement operators in (21) frequently arises in the theory of Franck-Condon transitions 
and can be evaluated, for example, using the coherent states method [23]: 

M ( 4  ) = enp(g2 ( r im< - I)]. (23) 
It is worth noting that Eq. (22) can be received from (21) by expanding in (23) the exponent in the 
powers of g2 e x d i e ) .  Due to the condition u >> cu integral in (21) can be evaluated 
asymptotically (by the steepest descent method (241). To do that one can expand the index of the 
exponent in the powers of 5 up to the second order terms: 

1 2 2 2  
M(e)=exda2&-ig  4 ). (24) 

Substituting (24) into (2 1) and performing the integration, one obtains 
r 2nm8 brr2r) 

(v~Y)= w { I + ~ , '  +da,expL-i(kJ]cm[p+7+7,}. BO 

Equation (25) describes the interference between the vibrational wave packets within a single 
molecule. Depending on the experimental conditions, i.e. the values of p, 6, and m, this 
interference can lead to a sharp peak (constructive interference), or to a down-fall (destructive 
interference) in the fluorescence dependence on the delay time between the subpulses. The new and 
the most constitutive feature of Eq. (25) is the dependence of the interference peak width yo on the 
reciprocal pulse duration u. Within the range of pulse duration 02 << uZ << 2g2w2, where, in 
accordance with Eq. (20). the squeezing effect is the most considerable, the width of the 
interference peak approximately equals to the subpulse duration yo = u '. This gives a practical 
possibiiity to use this effect for the duration measurement of a femtosecond laser pulse. The fact 
that the dependence of the interference peak width on the pulse duration is indeed the consequence 
of the dynamical squeezing effect becomes clear if we note that the second order expansion in Eq. 
(24) is equivalent to the first order expansion over t ,  t in Eg. (15). In the limit of extremely 

. - 

short pulses t4' >> 2g20 ' Eq. (25) coincides with that previously received in [20]. In that limit the 



interference peak width does not depend on the pulse duration: yo s ( f iKa,)*'  .It should be noted. 
that the limiting interference peak width is achieved for those laser pulses, during the action of 
which the initial vibration state of a molecule in the process of electronic excitation has no time to 
change. The effect of the aynarnical squeezing in this limit is absent. The picture of the interference 
peak as the function of the variables r and u, numerically evaluated with the help of Eq. (22). 
can be seen in Fig. I .  

7Xe case of mmzem teqmwfme. In the case of nonzero temperature we shall assume that the 
initial vibrational state of the molecule is described by the equilibrium density matrix. The 
population of the excited electronic state in this case can be evaluated in the second order 
perturbation theory for the density matrix. An expression for the nonequilibrium density matrix of 
the phonons, arising due to the excitation of a Franck-Condon transition by a single laser pulse 
was obtained in [I 1, 141. In the present paper we need to calculate the trace of an analogous 
density matrix. appearing due to the action of the field (1). It seems to be ewdent, that the 
expression for this trace will have the form of Eq. (21) with the functions M(c) replaced by 

( ~ ( 4 ) )  = Mlao+(ao(r)] = exdnl[(n+ 1 ) ~ ' ~  + m  fe - U- I]), (26) 
where po is the equilibrium density matrix of phonons, and k, the thermal equilibrium phonon 
number. The Fourier expansion of (Me)) is given by 

n 
*" Z+l 2 (~(0) = Z (i) &(zg2 JG!! e~A-~ ' (2 i i  + I) + i n e l .  

IF- on 

where I, is the modified Bessel function. A generali.*ation of equation (22) for the case of a 
nonzero temperature has the form 

To evaluate the integral in Eqs. (21). in analogue to the case of the zero temperature, we shall 
expand the index of the exponent in Eq.(26) in the powers of 6 up to the second order terms. In 
this way we find that the effect of finite temperature in Eqs. (18) and (25) is manifested in the 
replacing coefficients Bo and yo by 

,/u2 + 2g'cu2(ui + 1) 
B = Ju2 + 2 p 2 r 2 ( ~  + 1) , Y = 

ugm JziG (29) 

From (29) one can see that the temperature growth leads to the extension of the area of linear 
dependence of the interference peak width on the laser pulse duration. Accordkg to. Eq. (29). 

15' = [2g'ru2(2fi +I)]-'' can be considered as the limiting value of pulse duration for the range of 
this linear dependence. It is interesting to estimate the value of %' for a real physical system. To do 

this we shall use the data for I, molecule from [22]. Taking g2 = 6.4. 2A/, = 3Wf~ and T = 3W°K . 
we obtain i!,' .r 7fi. The natural upper limit for u*' is the inverse vibrational frequency o'. In the 
experiment (22) the laser pulses of about 50fv duration have been used. In accordance with the 
given estimate the pulses of such duration belong to the area where y z u I .  



In conclusion note that the measurements of the interference peak width aimed at determining 
the duration of a femtosecond laser pulse represents only Gne of the possibilities to use the 
intramolecular interference phenomenon of the vibrational wave packets. Another interesting and 
important possibility is the observation of the wave packet distortions due to the intramolecular 
propagation. This problem we are planning to consider in our forthcoming paper. 
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Abstract 

Coherent states on the the m-sheeted sphere (for the SU(2) group) are used to defir- 
analytic representations. The corresponding generators create and annihilate cluste' t > f  

m photons. Non-linear Hamiltonians that contain these generators are considered and +,leir 

eigenvectors and eigenvalues are explicitly calculated. The Holstein-Primakoff and SrL *.anger 

formalisms in this context are also discussed. 

1 Introduction 
111 recent work 111 we have generalised two-photon states into m-p~idton states. Previously 
m-photon states have been considered in 12, 31. The approach of ref. !2] is related to the 
Hamiltonian 

H = wa+a + X(a+)" + X*am (1) 

and is known to have several difficulties. Our m-photon coherent states are more related to 
those of ref. 131. Our approach is heavily based on the theory of analytic representations 
and it goes far beyond previous work 14-71 in the sense that it uses them in the context of 
Riemann surfaces. 

In refs. 11) we have studied m-photon slates in connection with !h.t m-sheeted complex 
plane (for the Heisenberg-Weyl group) and the m-sheeted unit disc (for the S U ( 1 , l )  group). 
In this paper we extend these results to the SU(2) case. Using our formalism we calculate 
explicitly the eigenvaluee and elgenvectors of the Hamiltonian 

where Jim), J ! ~ )  are SU(2) generators that move an electron up or down by m steps. 
Rom a mathematical point of view the work is a contribution to the study of highly non- 

linear Hamiltonians. It has been motivated by recent develcpments in conformal field theory 
181, but of course the details are very different here. Only simple cases of m-sheeted Ricmann 



surlsces have been consideeed m far. but the final goal is to extend this work to ntore complex 
Riemann surfaces aad solve very large classes of highly non-linear HamilLonierrs. We b e l i  
t.bt this arn become a major tool in the study of --linear Hamilroaisns. 

In tbe amtext of condemd matter the Hamiltoniens d d e r e d  hem describe rr-particle 
drretsrlag. Pairing d particles plays an iqortmt role in supduidity and supemductiviry 
cad the more generd m-particle c l ~  studied hem, could be usefi11 in the study of nea 
phases in coadensed matter. 

2 Analytic representations in the extended com- 
plex plane (SU(2) group) 
SU(2) d i e m t  states in a finite-dimeasbnal Hilbert space H2,+,, aredeAned in the extended 
complex plane (which is the stemgr&c projection of a sphere) as: 

Let if) be an arbitrary (m) SUL& in HZj+1: 

Its Baqpann analytic repcwmtatioa in Lbe extended complex plane is the lollowhg 
polynomial (of d e r  2j): 

The scalar PI iuct d two such functions is detined as: 

The SU(2) generators are represented as: 

SU(2) transformations on j ( z )  of equ(5) are implemented through the Mobius conformal 



3 Analytic representations in the m-sheeted ex- 
tended complex plane 
The formalism devebped in the previous section is ged i sed  here by n?placing z by zm. 
In order to have -bone mappings we introduce appropriate Riemenn surfaces: an m- 
sheeted complex plane and an m-sheeted exkded complex plane. The paint z = 0 is a 
branch point of order m - 1 in all three cases. We also have cuts along the lines 

We shall call sheet number S(E) of 8 complex number a the 

w k  IP stands for the integer part of the number. s(z) takes the integer values from 0 to 
m-1 (modulo m). The Hilbert space is (2j + 1)dimensionai and we only consider cases where 
the 2j + 1 is an integer multiple d m 

The states bn) can also be relabeled as: 

where IP and REM stand for the integer part and d n d e r  of the indicated division, 
correspondingly. The Hilbert space H2j+r can be dero~:@ as: 

The SU(2) coherent states of equ(3) are generalised iato coherent states on an m-sheeted 
covering of the SU(2) group, defined as follows: 

They ate SC(2) coherent states within the Hilbert subspace H,(,). A resolution of the 
identity in terms of tl~ew states is written as follcws: 



Tbe metric -(z) comes from the metric of equ(7) wltb o replad by zm. Using the states 
(19) we define the extended B q p m n  -tlon in the rngheeted complex 
plane of the arbitrary state lj) of equ(4) as: 

f(z;m) is a polynomial of order 2km=2j-(m-I) and &s analytic at the inaerior of eacb sheet. 
The d a r  product is given ae 

Substitution of z by zm in (8) gives the operators: 

[dm), Jim)] 
[@ , J!?] 

[dm), J!"'] 
J(;.')(d; kh) 

Jlr)lnd;klr) 
Jp)ld; kh) 

Tbey act as SU(2) generatom within HI and tbedore they move the state Ijn) upwards or 
downwards by m steps. SU(2) transfomatbns on the f(t;m) of equ(22) are implemented as 
generdised Mobius confond mappings: 

4 Applications to m-photon states 

We consider the Hamiltonian: 

(m) H = UJ,  + A J $ ~ )  t A J- 

Its eigenvectors and eigenvalues are: 

1 Hu,(e, BlmL; kh) = { [ I  - I(m - l)lw + rh)um(fl, 4)Imk kh) 



5 Holstein-Primakoff and Schwinger formalisms 
The operators J p ) ,  Jim), J:"') studied lo this paper can be mnnectod with the creation and 
annihilation operators of m-photons 4, & studied explkitly in [I J, through the lidstein- 
Primakdf and Schwinger f-Iiims. In the Holstein-Primakoff case: 

In the Schwinger case the operators Jim), J!.), Jim) are expressed in terms af two modes 
BS: 

a L ,  are rn-photon creation and annihilation operators for the mode A; and aL, ag are 
ordinary creation and annihilation operators for the mode 5. Terms like akAao describe 
the conversion of one B-photon into m A-photons. Inserting (41) ,  (42)  into the llamiltonian 
(35) we get other Ilamiltonians whose eigenvalues and eigenvoctors we can calculate. 

6 Discussion 
Previous work on coherent states in the m-sheeted extended complex plane (for the Heisenberg- 
Weyi group) [lj, has been extended to the m-sheeted sphere (for the SU(2)).  They havc been 
used t o  define analytic representations and study highly non-linmr Hamiltonians that de- 
scribe m-photon clustering. Nrther  work should be directed to more complicated Riemann 
surfaces and their possible use in the study of even more general classes of non-linear Ilamil- 
tonians. 
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We build Quantum wave packets as dynamically controlled systems. It is useful bo use, 
to this aim, Stochastic Mechanics, x probabilistic simulation of Quantum Mechanii. 

1 Introduction 
We I d  P t time evolution of a physical system from the point of view of dynamid control theory. 
Normally we solve motion equation with a given external potential and we obtain time evolution. 
Standard examples are the trajectories in classical mechanics or the wave functions in Quantum 
Mechanics. In the mntml theory, w.e have the configurational variables of a physical system, we 
choose a velocity field and with a suited strategy we force the physical system to have a well 
defined evolution. The evolution of the system is the "premium" that the controller receives if 
he has adopted the right strategy. The strategy is given by well suited laboratory devices. The 
con td  mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to 
retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave 
packets by control theory. The program is to choose the crracteristics of a packet, that is, the 
eq~ation of evolution for its centre and a controlled dispersion, and to give a building scheme hm 
some initial state (for example a solution of stationary Schroedinger equation). It seems natural in 
this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.] 
121 PI. It is a quantization scheme different from ordinary ones only formally. This approach 
introduces in quantum theory the whole mathematical apparatus of stochastic control theory. 
Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like 
problems. ifre apply our scheme to build two classes of quantum packets both derh eZ generalizing 
some properties of coherent states [4]. 

2 Stochastic Mechanics 
We give a brief outline of S.M.. A way to introduce S.M. can be the following. We consider 
a diffusion process with diffusion mefficient v(q, t). q(t) is a stochastic dpa..,ica: va~iable. We 
introduce its associated Ito forward and backward equations 



In the above stochastic differentid equations v(+) and v(,) are respectJvely forward and backward 
drift fields, and w is the Wiener process. We can equivalently d d e r  f a d  Fokker Plan& 
equation 

6rP(q, t) = vAp(q9 8) - W+)P (3) 

and the correspondent backward one with v(-1. Far q(t) are also defined the amnotic docity 

and the current velocity 

The simple identity holds 

The sum of the Fokker-Planck equations, using (S), gives us the continuity equation: 

thus e x p d n g  probability storage. Now if we assign "a priorin v(+) or q,), the difbion pmxsa 
so introduced is completely determined. By the integration of Ito equations (equivalently of Fdcker 
Plmck equations) we have the complete evolution of the dynamical stochastic system under study. 
A notable (5) inequality to take in account is the following 

Id derives by the nondifferentiability of the process. We remark that diffusion proasses are not 
time reversal invariant. There is, however, a time reversal a p p d  to diffusion p-, thus 
introducing a very different class of difiusiom. In this different way Ito equations become a 
kinematical condition to complete with a suitable dynamical principle. It comes simple to add ea 
a dynarnical condition a variational principle. Namely, choosing the following mean r e g d h l  
Eulerian action A: 

where Q(x, t) denotes the external potential, taking smooth variations, with the continuity equa- 
tion (7) taken as a constraint, after standard calculations we obtain Hamilton-Jacobi-Madelung 
(H- J-M) equation 

The current velocity is fixed to be a gradient field v = VS/m, with S(z,t) a d a r  field. This 
class of diffusion processes have time reversal invariance and is commonly appelled "Stochastic 
Mechanics". S.M., in fact, presents us as a generalization of classical mtchanics in which ordinary 
classical trajectories become probabilistic. There are many applications of S.M. (biological popu- 
lation segregation, bode law, planetary atmosphere, stochastic neurodynarmcs); it ia then a theory 
interesting for itself. It is well known that the equations of S.M. show, also, some interesting link 
with the equations of Quantum Mechanics. 



3 Quant urn Mechanics and Stochastic Mechanics 
Mow we introduce an interpretative scheme in which phenomenological previsions of S.M. coincide 
with that of Quantum Mechanics for all experimentally measurable quantum effkts. S.M., in this 
view, k a quantization d ieme different from ordinary ones only formally, but completely equiv- 
alent from the point of view of physical interpretation. Stochastic Mechanics can be interpreted 
as a probabilistic simulation of Quantum Mechanics giving a bridge between Quantum Mechanics 
aud stochastic diflerential calculus. Defining now the complex function 9 = f iexp  [aS/h], where 
p and S are the same that satisfy the equations of Stochastic hlechanics, and choosing u = e, we 
immediately have that the continuity equation (7) together with the dynarnical equation (8) care 
equivalent to the Schriklinger equation. The correspondence between expectations and correlations 
defined in the stochastic and in the canonic pictures are 

A9 = Aq , (Afi)2 = m21(Au)2 + (Av)'! - 
The following chain inequality holds: 

In the above relations ij and fi denote the position and momentum abservables in the Sdirodinger 
picture, (.) denotes the expectation value of the operators in the given state 9,  E(.) is the expec- 
tation value of the stochastic variables associated in the Nelson picture to the state {p ,v) ,  and 
A(-) denotes the root mean square deviation. 

The chain of inequalities (I]), i-e. the osmotic uncertainty relation and its equivalence with 
the momentum-position uncertainty, were proven in Ref. 161. 

4 Ehrenfest equation and quantum packets 

It is opportune to give a brief outline of the standard arguments about wave packets motion. It 
is usual to start with the Ehrenfest equation. The argument is the following. In order to have a 
wave packet following a controlled motion, that is the packet motion may be likened to the motion 
of classical particle, it is not only necessary that its position and its momentum follow the laws 
of classical mechanics, but we must control the dimensions of the packet; it must remain small or 
controlled at  any time. In fact (we pose on = 1, ti = 1/2), if we look at Ehrenfest equations 

and 
dL 
pE(9) = -E(V@), 

(written directly in the stochastic formalism), it is immediately seen that all the moments of p 
are implicated through the mean values. We can see this in an intuitive manner. Consider the 



motion of a particle in an external potential @. In order to have a classical-like motion the "rightn 
Ehrenfest eauation should be 

If we take Taylor expansion of V*, all the moments are contained in the E M e s t  equation aa a 
matter of fact. Now it is necessary to obtain a set of equations that rule the evolution of moments. 
It is not difficult to see thai it is satisfied the following set of equations 

They are interesting by itself. horn these equations it is possible to connect moments and the 
external potential. This set of equations has in general a very complicated structure, namely, we 
have infinite coupled equations, and only in some particular case the equations collapse to a finite . 
number (for example when p has some gaussian behaviour, as in our examples). The equations 
express the fact that the positional dispersion is controlled by the whole density. The equation to 
consider, in general, is the equation for positional Entropy 

5 Controlled quantum packets 
Now we illustrate the scheme to build controlled quantum systems. We prove that it is theoretically 
possible, choosing a well suited control device, to have packets with a well defined motion and form. 
This point of view is not new; namely the coherent states and in particular the parametric oscillator 
are, in an opportune sense, linearly controlled systems in which the equation for dispersion depend 
by the coefficients of the e;rte.nal potential. The general scheme of control we introduce is non- 
linear. Our idea is the following. If we select a particular current velocity, we &cmw ,in fact, 
the phase of the wave function and, as a consequence, we choose the caracteristica of the motion 
of the centre of the packet. Moreover, a choice of current velocity selects a class of solutions of 
continuity (Fokker-Planck) equation. The(H-J-M) equation becomes in this scheme a constraint 
to retair~ time-reversal invariance, giving us the controlling device. Now we build two classes of 
controlled quantum packets as example. We need some initial condition po for probability density; 
it can be a generic L' function and we can choose always that it satisfies a stationary Schriidinger 
equation with @o as external potential. In the first example we take the current velocity selected 
as that of coherent states 171 

As second example we impose gaussian behaviour simply balancing current and osmotic velocity : 



6 Generalized coherent states 

We have already introduced the first example as generalized coherent states [7] [8]. If we insert 
the current velocity in continuity equation (7) we 8olve in a very simple way and we obtain: 

Now we can examine the Ehrenfest equation, and then (H-J-M) equation that now is become an 
identity. It is not difficult to see that 

is the external potential in the stationary Schrijdinger equation of which po is a solution, @ is 
the state dependent control device. Inserting now our current velocity (19) in the eq.(l?) we see 
that 

E(1og p(x, t)) = - log Ag. (22) 

The whole positionai entropy come by dispersion and this means that the set of eq.s (16) is 
close. We can extract from eq.s (18)-(20) one equation for Aq, and all the others depend from 
this last one. The equation is: 

lPAq a -=-- 
dt* Aq3 E(CVQ) 

where a is a number. The Ehrenfest equation becomes for this states 

The couple of equations (24), (25) comes from equation (22) taking the first and second order of 
Taylor expansion. It is, also, significative to write Ito equation for this class of stochastic processes 

dq(t) = E(v)dt + udw. (25) 

They are associated, as Glauber states, to Wiener processes with a drift that is solution of the 
classical Eherenfest equation (25). For more details see 191. 

7 Controlled gaussian wave packets 
Now we give our second example [lo]. If we insert the current velocity (22) into the continuity 
equation (7) we have the following Fok ker-Planck equation 

whose general solution is 



Now, also in this case it is possible to verify that Eknfes t  equation is classical-like; it sufficient 
to control the fist and second moment. The equation for positional entropy is very simple as in 
the first example, and we have the following control potential: 

where G(y,() = po(y) exp[(y - [)2], and N(t) is a generic time function. Also in this case the 
Ehrenfest equation is classical like. It is not difficult to see that 

Using this identity and expanding (28), by the first and second order one obtain Ehrenfest equation 
and the coupled equation for dispersion. Note that the Ito equation is now 

dA9 dq(t) = E(v)dt + v-dw. 
dt 

This wave packets are Gaussian modulation of the initial state. The equations are all implicit if 
we do not specify the initial condition. 
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SOLVA5LE qUANTUM MACROSCOPIC MOTIONS and 
Dk'CiXiERENCE MECHANISMS 

in QUA3tTl if .i MECHANICS on NONSTANDARD SPACE 
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Institute of Physiu, Uniuersity of Tsukuba, Ibarak; 305, Japun 

Abstract 
Quantum macroscopic motions are investigated in the scheme consisting of N-number of 

harmonic oscillators in terms of ultra-power representations of nonstandard analysis. De!tm 
herence is derived from the large internal degrees of freedom of macroscopic matters. 

1. Introduction 
How to describe motions of m a c ~ p i c  matters in quantum mechanics is not only a vwy 

interesting problem but alsc a very important problem to develop the present situation of themet- 
ical physics. Before going into the details we shall start from the question "What are macroscopic 
matters?". One may characterize them in term3 of the following three properties: 
(1) The number of constituents N is very large and cannot be precisely counted in measurements. 
(2) Every measurement of energy E of macrwmpic matters is accompanied by experimental mar- 
gin cf uncertainty A E  and an enormous number of different quantum states are contained within 
the energy uncertainty. 
(3) h.lacroscopic matters are usually classical objects. This means that the density matrices de- 
scribing their quantum states have no interference terms (deooherence mechanism exists.). 
The first character indicates that we have no way to measure the precise number of the con- 

stituents in realistic measurement processes. bhthermore we may say that the precise determi- 
nation of the quantum states for all the constituents are impossible. This property has a close 
connection with the second character. In usual measurements the energies of macroscopic matters 
are not quantum mechanical order (O(h)) which disappears in the limit of tr -, 0 (lirnrc-0 O(tr)). 
I t  means that every measurement of the energy of macroscopic objects may contain some uncer- 
tainty A E  which is in the order O(h). How to introduce these features in quantum mechanics is 
the main theme of this paper. 

An interesting possibility is to describe the macroscopic matters on the Hilbert spaces extended 
by nonstandard analysis,[l] where infinity (00) like N -, oo and infinitesimal (sz: 0) like h 4 0 
are treated rigorously. It 410. Id also be pointed out that quantum states of N constituents 
which may be described by the direct product of the quantum states of the constituents such 
that 9 N ( ~ I l  . . , rN)  = n?=, #&(r,) become ultra-products in the limit N -r oo. Then we can 
represent the mdcroscopic states in terms of ultra-power representation of nonstandard analysis 
by introducing some equivalence relation based on the ultra-filter on the ultra-products. 

From the discussions of quantum mechanics on nonstandard spaces[2,3,4] we know that 
(1) there exist new eigenfunctions called as " ult ra-eigenfunctions" which are not described by the 



superposition of eigenfunctions on usual quantum m a n i c s  on real number space (R), and 
(11) in the limit tr -, 0 we can introduce infinitesimal energy uncertainties AE which are in the 
order O(ti). It is important that the introduction of such energy uncertainties ia srpreseed by the 
monad (infinitesimal neighborhoods) of real numbers on nonstandard spaces. 

Now we may expect that we can describe macmcopic states in terms of new eigenfunctioru 
(ultra-eigenlunctions) containing the energy uncertainty A E  - O(tr). In this paper I shall present 
a solvable model to realize the above consideration. 

2. Model 
Let us investigate a system consisting of N-harmonic oscillators which are bounded around 

a fued point Xo. The Hamiltonian is given by HN = f c-l pF + & El E~,(u - x,)' + 
K N  T c=, (zi-X0)*, where m the mass of the constituents, k and K the oscillator constants, f i  and 1, 
respecbrvely, stand for the momentum and position operators of i-th constituent. This Hamiltt~nian 
d d b e s  the bounded N-oscillator system moving in the harmonic millator potential of which 
center is at &. Our interest is focused on the relative motion between the fixed point Xo and the 
center of mass(CM) of the N-oscillator system, because the motion will become the obgedle 
as the motions of the macroscopic system in the macroscopic limit N -, oo. The Hamiltonian 
is separable in terms of the following choice of coordinates; R~ = Xz - XO, & = [nz.,+l - 

q)]/ J G j ,  for n = 1.2, ..., N - 1, where X g  = + xEl I, is the CM(center of mass) 
coordirlate of the N-oscillator system. We can rewrite the Hamiltonian as 

1 NK N-1 

H N  = -(p')? -(RN)Z + 1 H", 
2mN ' 2 n=l 

whew H, = + ?(k + K)d, .  The eigenfunctions for (I) are obtained as follows; H N 9 N  = 
(ER + w h m  

with [~n] I [PI, fir - -, pN-lj ,which satisfy HRdR = ERaR and Hn& = &#I,, with ER = 

(n, + 1/2)wnlr (UR = J ~ M N  = \fi) and G, = (1. + 1/2)wh (u = ,/mi). Note 
that the eigenvalues of ' H  and Hn are, respectively, given by EN = ER + ef and cf r c-: r, = (L + ?(N - 1))wh with L = =-/ ln and $1 the energies are of the order of O(h), i.e. 
EN - ER - ef - O(h). We see that ER and ef are not enough to specify the state given in (2) 
uniquely.  hat is, there are many different stat* having a fixed value of r r  , of which multiplicity 

Ingenercrlwe~~dwiteeigen f uwtimspeci  f k+EN and is evaluated W ( N ,  L) = L,( N-211 . 

c f  in terms of the suprepositons of those different states such that 

with [In] i [11, !2, - -, wliere a([l,]) are the coefficients satisfying the constraint required from 
L the normalization c:=,-, . ZIN-,* la([ln])12 = 1. 



3. Oscillator system in nonstandard spaces 
Now let us study the limit represented by N -, m. The state given in (2) becomes an infinite 

direct-product 

The Hamilt.onian (1) is modified as fi = krR + fin, where in order to evade the divergence 
arising from the sum of zero point oscillations c,~:: ifw in the limit of N -. m ~n is taken as 
& = ?in - &,I. We have 

where H R * ~ ~ ( R )  = ERaER(R), and r~ = L b  with L = GLl ln. Note that, since Zn E hf for 
Vn f Af, then L E N. 

Following the expression of (3), we can write the mast general wave-functions for the macro- 
scopic object characterized by the CM(center of mass) energy eigenvalue ER as 
*(ER, [CL([ln])]; R, [&a]) = *ER(R)~((CL(I~~])];  [Pn]), where 

Lj is an arbitrary natural number ( L f  E I\/) and the normalization condition is given by 
L ~k~ G ~ = ~  .-.6xn=1 L,L ICL([L])(2 = 1. The expectation value of the total energy is obtained 

as < E >= ER + AE([CL]), where AE([CL]) & o ~ f , = o ~ : = o .  . - ~ m = l ~ , ~  ICL([L])P cr. 
Now let us consider measurements of the CM energy. When we try to observe it by using 

a photon as a probe, we have to measure it through the interaction of the photon with the 
constituents. This means that we cannot measure the CM energy directly and then we have 
to take account of the intemd motions of the macroscopic object. In realistic measurement 
processes for macmcopic objects, which will be carried out by using a photon flux composed of 
many photon, we should consider that direct observable is the totd energy rather than the CM 
energy. In those measurements the total of the internal energy AE([Ct]) =< E > - < ER > may 
be understood to be the prrors for the CM energy. Note that the errors should not be confused 
with thxie arising from inefficiencies of detectors. We may conclude that we have always to take 
account of the existence of these errors in the observed CM energies when we &sc~lss the CM 
motions oi  macroscopic objects which are studied in the classical mechanics. 

In nonstandard analysis the error must be infinitesimal. Then as we take into account that 
the center of mas energy ER and its angular frequency w~ are observables represented by real 
numbers, the >ossibility allowed here is only the following chgice; "aR E *he-Af, L E n/, h 0." 
~Fkorn now on we define the macroscopic limit st, .,, by taking 

Let us investigatt the ,quivalence relation introdu ed on the ultra-products. We can explicitly 
write this equivaleqce relation for the macrwcopic objects by using the ultmfilter in nonstandard 
analysis as follows; ~ L ( [ P ] ,  = n,, #ln(p) with CL = L, Lhw and # L I ( ~ / ] )  = P,~=I (A#) with 



CL, = L, lL,tw are equivalent (*-), if and only if the number of n E N satisfying I, # 0 
and that of n' E Af satisfying I,,* # 0 are finite numbers. That is, it is represented as 

(n E N; 1, # 0) and (n' E M, In# # 0) are f anite sets o j  N. 
The phydcal space for the macroscopic motions is represented by &(*'H) = *H/ -,,,,- . 

Let us start from the most general expression of ultra-eigenfunctions satisfying 

where &(E) E U and # 0, that is, it is observable in the classical limit. In the above equation 
Qc is factorized with respect to the CM motion and the internal ones as 3, = @c(R)&(bj) .  Since 
E have the freedom of the order of O(h), the general expression for the internal motions is 

L @ven as )([CL([LBI; bl) = E ~ ~ C ~ = ~ - . E ~ ~ . . ~ ~ ~ = , ~ , L  C~(ll.rl)n-~ 4tn(b)* ofwhiehenerg~ 
expectation value is obtained as 

We can derive the equation for the CM motions by operating the internal trace operation repre- 
sented by the partial trace operation for all the internal variables ("p), that is, 

As was shown in Ref.s[3,4], it is required for us to solve the equation only in the classical 
region satisyng stw0(E- AE- V(R)) E U+. In order to obtain stationary states represented by 
@p(R)  = NI'~(~)"', where N denotes the normalization constant, we can reduce the Schroedinger 

R a w  equation to that for W(R) as ismm B-~ & (g)? + f KR? - (E - AE). This equation has 
already solved in Ref.s 3 and 4 and is given in the classical region as 

where w:*~~(R) = sR J ~ M ( E  - A E  - V(R1)dEI, u Z A E ( ~ )  = J Z M ( E  - AE - V(R)) and 
V(R) = AKR? In the non-classical region we may take 9. = 0. (In details for the deriva- 

f? tion of ae and their orthogonality, see Ref.s(3,4].) It sh~uld be stressed that pc = I2 in the 
classical limit gives the exact distribution for the ensemble of the particles moving in the potential 
V ( R ) ,  which is expected from classical mechanics. 

4. Decoherence mechanism of ultra-eigenfunctions 
As was shown in the last section, the most general expression of the ultrlleigenfunctions has 

the [Cr, ([I,])]-dependence. Through the observations of classical quantities writ, ten only by the 
CM(center of mass) variables, we can not fix the coefficients [CL([L])] at all. In other words 
the CM energy is determined only within the error AE([CL([L])]), for which only the constraint 
~t-~(AE([C~([lnj)])) = 0 is required. Therefore, we may introduce integration procedures 



with respect to  the coefficients [CL([ln])] in order to take off the apparent dependence on those 
unobservab1e parameters in the density matrices. It should be stressed that this integration stands 
for the average over undetermined energy uncertainties A E and then it has well-defined physical 
meaning and its introduction is not ad hoc. Let us study this situation in the density matrix for the 
following F lperposed state of two ul tra-eigenfunctions with different energies, st-*(E - G)  # 0, 
q E.P;AE = CE*?*" + C E ' * $ ~ ~ ~ ,  where lcE12 + lcs l 2  = 1 .  The density matrix is given by 

In order to obtain the density matrix for the CM motions which is independent of the coef- 
ficients, we introduce the integrations with respect to the undetermined complex coefficients 
[CL([L])].  The number of the coefficients is counted as w 1 ~2, W(N, L) ,  where W(N, L) 
is the number of the different combinations for RJ. The multiplicity w is same as that of the 
equivalent internal wave-functions rbL([ln]). Then we can rewrite the internal state t$([CL([d])]) 
as t$(I; b]) = xEl C I # l ( k ] ) ,  where [CI] = [C1,C2,. . ., Cw] are the new coefficients and t$I( lp] )  
stands for the internal wave-function corresponding to the number I. Of course, they satisfy the 
relation < h, 41. >= 6 1 , ~ .  The energy expectation value is rewritten by AE([CI]) = ~ z ,  ICI12y. 
Using these coefficients, we can write the integrations with respect to [Cl] as follows; 

where J&CI stands for the integrals with respect to the real and imaginary parts of CI and G(C1) 
is the metric function for CI satisfying the condition st-.(nZ, J r'lO(C1) lC1.1~) = 1 SO as 
to derive the normalization condition st-, (~r(6:"))  = 1 .  Since the metric should not depend 
on the phases of CI ,  we take as G(C1) = &E(ICII) > 0. 

In the density matrix the integrations are written down as follows; 

( 1 4 )  
where AE = El, IClt12rr and AG = Ell' ICl~~12rl~~. The diagonal term with E = E' is written 

The second term becomes zero because of the i;~tegrations with respect to the phases of CI = 
ICl leu' from zero to 2n. Then we can evaluate the diagonal term as 

Now let us estimate the interference terms. Taking into account that differences with the order 
O(h) having no contribution in the st-,- operation are allowed in t! e expression of Q: R and 

b h E ( R )  also the order of the error A E  is O(h), we can use the following equivalent expression for W, 



in the classical region 0  < stM0(E-V(R)) E R+; W:&'(R) I" J ~ ~ I T -  
A I) sR d Then we can write the off-diagonal term as 

,-4 x l ,  1 ~ 1 c , . 1 ~ ~ t n r n n - ~ ~ ~ ; w ) ~ ~ ~ ( w ~  (R)-W~(R))+~,  (W )+ltO~b~)+ (17) 

where d ( R )  = @-, Wf(R) = sRfihf(lZ- V(R1)), j(E;R) = sR J*~K 
and U ~ * ~ ( R )  ev0 u$(R) are used. As s a m e  as the stcond term of the diagonal elements, the 
terms with It # I" disappear by the integrations over the phases of CIS. The remaining terms 
with I' = In include the following integrals with respect to IGls; 

where a, = -A( 2 f (E; R) - f (E; R))w $ 0 in the classical region. The normalization can be 
rewritten as xr=,(< IC1tI2 > c 1 >) = (< 1 >w-l)(~$'=l < ICj012 >) = 1, where 
< A1 >= j dlCI IG((CI [)AI. Taking into account that this equation must be satisfied for arbitrary 
number of w E N, it is reasonable to impose the following relations E$-~ < 1C10l2 >= 1 and 

k c 1 >= 1. We obtain the relations ql = ( < e'"1lc1Ia > I c < 1 >= 1 and I xr.r c 
1c1, 12egta~t PI# la > I < Cj0,l * c JCp12 >= 1 because of E(ICjI) > 0 andVal # 0  and $ 0  for 
' 1  E h( in the classical region. We estimate the integrations as 

where q,, denotes the maximum number among q ~ s  and the last equality is derived from the 
fact that q- < 1 and w goes to infinity in the macroscopic limit. jRom the above result we 
know that the magnitudes of the off-diagonal terms in @Fp are infinitesimal and the contributions 
from the off-diagonal t e r n  are always infinitesimal in the evaluation of expectation values for all 
operators (0) which are written only in terms of the CM variables. (In details, see RRf.5.) 

5. Remarks 
There is no space enough to explain the coherent states reproducing the classical trajectories 

of the CM motions.We may conclude that the quatum states of macroscopic objects are well 
described in terms of the ultra-eigenfunctions of quantum mechanics on nonstandard spaces.151 
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Abstract 
This paper discusses a physical meaning of the standard quantum limit (SQL) in quantum 

decision theory. It will he shown that a necessary condition for avercoming the SQL is  
quantum interfercnce. 

1 Introduction 

The problem of finding the best quantum measurement process in order to  distinguish quantum 
states is called quantum decision theory which was devised extensively by Helstrom, Yuen and 
Holevo as quantum aspect of communication theory. In this theory, the measurement process is 
tre9:ed as a black box, and it is described by a probability operator measure as a simple math- 
e,.;atical aenera!ization of the Born statistical postulate[l]. The discrimination among quantum 
states is one of the interesting topics in quantum optics snd related fields, because they require 
the control of the qi.iarituli~ rncasurer~lent process to find better r,leasurement apparatus. So it 
is interestins to clarify che relation between the abs t r~c t  description of quantum measurement 
prxcsses a d  it,s phvsical correspotxlence. 
Recently, Usuda and fIirota[2] pointed out that the performance of the decision error probability 
for binary pure state signals can be improved by means ~f received quantum state control con- 
sistirlg of the Kcrr rrlediu~rl a ~ l d  the cor~ventional homodyne system. Then Sasaki, Usuda, and 
Hirotz(3j verified that the improvement of the performance is caused by q11antu:n int.  ~ 5 .  ence 
clfect. Thus, quantum decisioii theory has predicted a possibility of overcoming the s:.t.ndard 
quantum limit. Hotvever, we have not yet understood what it means in ge~eral .  1% shall clarify 
in the present paper the physical meaning of the improvement of the decision error probability by 
control of the quantum measuremerlt process. 

2 Quantum interference 

According to che quantum m~lcl~anics, any state vector represents a realizable physical stat?. Wnen 
ihe state is represrqted by a linear superposition, we can find the quantum interfercnce between 
the superpos-4 states as follows: 



w h  N is a nomdization constant. The third term represents the quantum inberference. This 
cmeqmnds to the fact. that the quar~turn probability is isaffected by offdiagonal dements of th 
density operator d a coterent superposition state. On the other hand, in the -turn meamre- 
ment process, if the ~nemirzment process i td f  generates the superposition effect from rr standard 

{IY)), 

then the resulting interference term represents ttte macroscopic quantum interference effect by the 
quantum measurement itself. Here the macroscopic means that the interference berm is dearly 
observed. 

3 Decision problem for quantum states 

We first give a brief survey of qcanturn decision theory. The theory is formulated on the of 
the quant wn probability dcscri bing the quantum measurement processes. According to qusnturn 
probability theory, measurement processes can be classified as standard and jperalized px.acesses. 
The standard quantum rnea31lrement process is described by the spectral theorem of von Neumann 
as fdlows: 

where 8: density operator, A: observable in the quantum system. 
Any observable A and state 4 induce a mapping from a quantum state to a classical probability 
measure. On the other hand, the gentralized quantum measurement process is described by the 
prhbil i  ty operator measure (POM) dh(x) which satisfies to the following on& tions[l]: 

i = ] dh(z) and d h  (x) 2 o . (4) 

In general, dfi(x) is not a projection-dud measure (PVM). Then the marnu~ment probability 
is given by 

Based on the above formulas, one can define the decision operator for decision among the quantum 
states. Let {A)  be c. set of quantum states representing M signals. The pmbability of decision is 

where is called the decision operator. This is a probability operator measure (POM) as follows: 



= and f i j 2 0 .  
j 

This is the discrete case of the generalized resolution of identity: Eq(4). The optimization in the 
quantum decisim problem is formulated as follows: 

P. = min 1 - E&'Ik(j, R,) . 
tfi)} 1 1  I 

If the decision operators consist of PVM of the signal o b s d l e  given by a specific basis, 

where I;. (xd) is a Wald's decision function, then they are called the standard decision operators[4]. 
In this case, the optimization is only for H'ald's decision function, and we do not need quantum 
decision theory. Decision operator based on different observations of the signal is called "gener- 
alized decision operator." In this general case, the role of decision and measurement process is 
embedded into a decision operator, and we do not separate out an observable. In general, we have 
PVM or POM. The whole process is treated as a black box, and this is called Helstrom-Holevo 
formalism[ll. 

4 Standard quantum limit in decision theory 
Here we give the definition of the standard quantum limit. Suppose we fix a single signal observable 
and generate the M different signals with different quantum state. Basically, modulation scheme 
will be set as such a way. Minimum error probability based on the standard decision operator of the 
signal observable will be called the Standard Quantum Limit (SQL)[4]. If the signal observable is a 
set of non-commuting observables, then the minimum error probability based on the simultaneous 
measurement for such non-commuting observables is called the SQL. Or it is equivalent to that 
based on standard decision operator on the Naimark extension space. In this case, the standard 
decision operator is constructed by PVM of corresponding signal observables on the extended 
space. 
Our definition is convenient to evaluate how new scheme is ditTerent from it as conventional one 
in the measurernent process. In this definition, signal quantum state does not play so important 
role. We emphasize that the SQL is given for each system with various quantum states. 
Let us give some examples. For a single observable, the binary PSK with cohei-ent states is a 
typical example. In this case, the signal observable corresponds to the quadrature amplitude xc 
or x ~ .  The SQL is given by a homodyne receiver corresponding to Ixc)(xc) or (x8)(x81. However, 
if we send more than two classical phase informa'.ion of light wave, for instance, ternary PSK and 
quarternary PSK, then the SQL is given by a heterodyne receiver or an optical costas-loop system 
based on homodyne. When the quantum state is squeezed state, the SQL is for the squeezed 
state. But the measurement process which give the SQL is the same homodyne receiver. So we 



say the SQL is for a system with squeezed state. If the state for the fixed modulation scheme is 
different, we will say it is the SQL for that state. Our problem is that when the signal observable 
or modulation signal is prepared, by controlling the measurement process we get performance 
better than expected in classical communication theory. Here we are concerned with the physical 
meaning of overcoming the SQL. We would prove the next conjecture: 
*In order to overcome the SQL, the quantum interference e m t  by the quantwn measurement 
pnocess 4s necessary. " 
The proof is following: The SQL average error probability is 

Here, from Eq(8), the SQL means bounds when quantum fluctuation can be treated as a o m i d  
noise and a classical decision theory is applied to them. As a result, a generation of a quantum 
effect is required by different measurements to get result better than the SQL. To overcome the 
SQL, for P, < P4sQL), one has 

Since the decision operators can involve a classical effect, we should choose operatars representing 
a qc vlturn effect from the various measurement schemes. Fkom this point, to choose the different 
schemes from the standard decision process, which give a quantum effect, has a possibility to 
bring a mul t  better than the SQL. That is, we can say that the quantum effect which does not 
have classical interpretation is an essential requirement to overcome the SQL. However it is clear 
that the different measurement schemes from the standard do not mean better measurements. 
~Fkotn now on, we discuss what kind of quantum effect is necessary. If [aj, $(sa)] = 0, then 

hj can be represented by the same PVM as the signal observable. Since is the optimum 
among the class of decision operators consisting of the PVM of the signal observable, we require 
[G, IIj(,] # 0 to overcome the SQL. The detail logic of the proof was given by Ban[S]. We 
check physical meaning of the above statement. Let us discuss here only case that the signal 
observable is a single one and the non-commutativity of standard decision operators and new 
operators can be described by applying a certain unitary operator as follows: 

Here we require from Ban's result 

It means that u must be generated by operators which do not commute with the signal observable 
and also commutation relation of the generator of 0 and A is not c-number. The unitary operator 
is represented from Stone's theorem by 



Then 

where h(x, y) = (sly). 
If we want to overcome the SQL, at least each term of error probabilities must satisfy the following 
inequality : 

and 

These inequalities are the requirement for the new decision process to get below the SQL. We can 
see , I?,,,,,] # 0 in order to obtain the error probability below the SQL, because 
if it is commutative operator, the inequality becomes inverse. Thus the requirement to be the 
non-commutativity is clear. Furthermore, in order to hold the inequalities, the probability of the 
overlapped region of the both signals must be reduced. It is possible by only quantum interference 
effect (see Ref.[6]). The j K(y)h(x, y) (yl$l)dy in Eq(15) is, in general, regarded as the superpo- 
sition on the coordinate of y. The superposition has a potential to give a quantum interference, 
because this corresponds to Eq(2). By the square of the absolute value of the above term, the 
modified measurement probability of the original probability: )(@1)x))2 based on the quantum in- 
terference may be obtained. We can easily understand, however, that even if the decision operator 
is non-commuting with &(W~), we cannot always obtain the macroscopic quantum interference. 
For example, even if (xand y) are physical quantities with non c-number commutator, it does not 
always give the macroscopic quantum interference which shows reduction and increase of prob 
ability on the standard basis. That is, it sonletimes provides only a kind of transformatio~l of 
function. In this case, we have no hope to ovtbrcoine the SQL. This means that v;e rnuat find z 
decision operator which gives the macroscopic quantum interference from non-commuting decision 
operators. 



5 Conclusions 
We have clarified the followings: 

1. The physical meaning of the SQL is given. 

2. To overcome the SQL is caused by the quantum interference effect in the quantum measure- 
ment process. 

3. A physical meaaing of the POM involves the quantum interference in the quantum mea- 
surement process, though it has been regarded as unsharp measurements like the random 
decision, convolution effect or cross correlation efft:ct with other uncertainty[?, 81. 
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Abstract 

The optimum measurement processes are represented as the optimum detection operators 
in the quantum detection theory. The error probability by the optimum detection operators 
goes beyond the standard quantum limit automatically. However the optimum detection 
operators are given by pure mathematical descriptions. In order to realize a communication 
system overcoming the standard quantum limit, we try to give the physical meanings of the 
optimum detection operators. 

1 Introduction 
The purpose of the quantum detection theory is to realize a communication system with its 
performance overcoming the standard quantum limit (SQL). Standard quantum limit is often 
referred as a detection limit achieved by classical detection theory, so that overcoming the SQL 
is purely quantum mechanical effect. To go beyond the SQL, the quantum measurement process 
must be generalized to the probability-operator measure (POM) 11, 21. The optimization of 
the POM to minimize an error probability results in "the optimum detection operator" which 
expresses not only a n~easurement process but also a decision process. However the optimum 
detection operator works as a mapping from a signal quantum state to a decision result, so that 
its physical meaning is not evident. In order to realize a communication system whose detection 
performance is quantum mechanically optimum, investigations into the physical meanings of the 
optimum detection operators are indispensable. 
Recently we have derived some analytical solutions of the optimum detection operators and our 
group gave the physical example overcoming the SQL by means of the quantum interference 
[3, 4, 51. In this paper we would like to interpret the physical meaning of the optimum detection 
operators as the quantum interference. 

2 Summary of Quantum Detection Theory 
The significance of the quantum detection theory is the prediction of a receiver whose signal 
detection performance is superior to the conventional ones optimized by the classical detection 
theory. The bound between the quantunl and classical detection theories is well-known as "the 
standard quantum limit: SQL" which is rigorously defined as follows:[6] 



Definition. 1 
Standard quantum limit is defined as the minimum error probability achieved by the quantum 
measurement based on the orthonormal spectrum measure of the signal onservable. 

Namely, the SQL can be obtained by quantum mechanical re-descriptic~r of the conventional mea- 
surement processes with the optimum decision rule. To go beyond this limit, signal measurement 
processes must be generalized quantum mechanically. The generalized measurement process is 
represented by the probability- operator measure (POM), fij, which is a non- negative Hermitian 
operator satisfying the resolution of identity. 

Because of the resolution of identity, POM can include the meaning of a decision process and such 
a POM is called "a detection operator." Therefore, the measurement of a signal quantum state, 
j,, by a detection operator, 4, gives a conditional probability, PGli), as follows: 

This probability represents the signal decision probability to be ' j '  while the received signal is 'i'. 
The error probability is also given by signal quantum states and detection operators. 

where (, is a prior-probability for 6th signal. 
The quantum detection theory is the optimization theory for these detection operators to 

minimize the above error probability. There are several formulae to find the optimum detection 
operators. For example, necessary and sufficient condition for the optimum detection operators 
based on the quantum minirnax strategy is as follows [7]: 

4 [<,b, - ti&] fi, = O,Vi, j, 

f - tiPC 2 O,Vi, 

where P is called "the Lagrange operator" defined by 

A solution of the above formula goes beyond the SQL automatically. The practical derivation of 
the optimum detection operators has been carried out for some signal sets consisting of linearly 
independent quantum states 131. In the derivation process, the following Lemma by Kennedy plays 
an important role [ l ,  81. 



Lemma 
When the signal quantum states are linearly independent, the optimum POM for the error prob- 
ability is indeed projection-valued. 

Therefore in the cases of the quantum signal sets with pure states, the optimum detection operators 
are orthogonal projectors on the signal space. 

nj =2 I~j)(wjl and (wilwj) = bij. (9) 

where (w,) is called "a measurement state." Since the measurement states are the orthononnal 
bases in the signal space, signal quantum states, I$,) : (bi =; I$.) ($,I), can be represented by 
measurement states. 

A f 

I+*) = xplw,), 
j= 1 

where zfi is a parameter defined by 
xji (w,I$i)- 

Then it is possible to represent the relation between the s ipa l  quantum states and the measure- 
ment states in the matrix form. 

Inversely, the measurenlent states can be represented by signal quantum states. 

Hence the problems for the optimum detection operators, Eqs.(5-7), are turned into ~;.,t. :hraic 
equations for parameters {x ,~ ) .  

As an example, let us consider the Binary Phase Shift Keyed (BPSK) signal with coherent 
states. The signal quantum states are given by I$J,) = la), Ids) = 1 - a). The optimum detection 
operators can be obtained as follows 131: 

The measurements by these optimum detection operators show the error probability going far 
beyond the SQL. These optirnum detection operators look like the Schrodinger Cat states [9] 
consisting of the signal quantum states, la) and I - a ) ,  SO that the quantum interference may be 
occurred there. 



In general cases, the optimum detection operator can be dso represented by a coherent super- 
position state with signal quantum states from Eq.(13). 

where tji is an element of a matrix i t , ]  representing the inverse matrix [xji]-'. The conditional 
probability given in Eq. (3) becomes 

Here we can see the off-diagonal elements generated from the optimum detection operator. Then 
there is a question "Can we regard this measurement process as a quantum interference by exis- 
tence of these off-diagonal elements?" According to the general sense of the quantum interference 
off- diagonal elements should be generated from a density operator representing a signal quantum 
state. Hence in the following sections, we verify whether the optimum detection process can be 
interpreted as a quantum interference. 

3 Quantum Interference 
To specify what is the quantum interference, we follow the conventional definition (101 

Definition.2 
When the quantum probability is affected by the off-diagonal elements of a density operator 
representation of some coherent superposition state, it is called the quantum interference. 

In detail, a coherent superposition state is represented by 

where k,, is a normalization constant. Then its density operator representation is as follows: 

The quantum probability obtained by a certain measurement, dE(x), results in 

When the off-diagonal elements remain in the quantum probability, it is called "a quantum inter- 
ference," where the off-diagonal elements are given in the form 



Therefore the quantum interference can be in sight by existence of the off-diagonal elements 
from a density operator. I n  the case of the optimum detection operators, however, the off-diagonal 
elements are generated from a measurement process as itself. If the notations of density operators 
and the optimum detection operators can be exchange, then we can interpret that the physical 
meaning of the optimum detection operator is the quantum interference. 

4 Density Operators and the Optimum Detection Oper- 
ators 

The conditions for an operator to be the optimum detection operator are as follows 111: 

1. Non-negative Hernli tian operator (condition to be POM). 

2. Projection on the signal space (after Kennedy's Lemma). 

r 1 2 = f l ,  and l l f i = l .  (22) 

On the other hand, the fcatures of density operators are Ill] 

1. Non-negative Hermitian operator. 
6 = pt  2 0. 

2. n a c e  is equal to unit. 
n - p =  1. 

As a result, it is possible to exchange the notations of the optimum detection operators and density 
operators. 

(25) 

Applying this operation to the condi tiorla1 probability in Eq. (16), 

we can say that the above conditional probability contains the off- diagonal elements from the 
density operator, j5,. Hence we can say that the optimum detection process generates the quantum 
interference. In other words, when the error probability by the optimum detection goes beyond 
the SQL automatically, the quantum interference is also used there automatically. The optimum 
measurement state plays an equivalent role of the Schrodinger Cat state as itself. 



5 Conclusions 
The physical interpretation of the optimum detection operator which represents the optimum 
measurement process has been investigated. It is the quantum interference caused by the optimum 
detection operator as itself. Because the optimum detection operator is represented by a coherent 
superposition state consisting of signal quantum states. While this result is derived under the 
restriction that signal quantum states are linearly independent, we assume that any optimum 
detection operator generates the quantum interferencw as itself and uses it as much as possible to 
reduce the error probability. 
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Abstract 

Itre analyze a modified version of the "AgBr" Hamiltonian, solve exactly the equations 
of motion in terms of SU(2) coherent states, and study the weak-coupling, macroscopic limit 
of the model, obtaining an exponential behavior at all times. The asymptot'c dominance 
of the exponential behavior is representative of a purely stochastic evolution and can be 
derived quantum mechanically in the s~called van Hove's limit (which is a weak-coupling, 
macroscopic limit). At  the same time, a temporal behavior of the exponential type, yielding 
a "probability dissipation" is closely related to dephasing ("decoherence") effects and one 
can expect a close connection with a dissipative and irreversible behavior. We stress the 
central relevance of the problem of dissipation to the quantum measurement theory and to 
the general topic of decoherence. 

1 Introduction 

Decoherence and dephasing have become very important co~lccpts in quantum theory. Because 
'decoherence' technically means the elimination of the off-diagonal elements of the density matrix, 
n system described by such a diagonal density matrix should exhibit a purely stochastic behavior 
and we naturally expect a close connection with a dissipative and irreversible behwior. 

On the other ha .d, the temporal evolution of a quantum mechanical system, initially prepared 
in an eigenstate of the unperturbed Hamiltonian, is known to  be roughly characterized by three 
distinct regions: A Gaussian behavior at short times, a Breit-Wigner exponential decay at inter- 
mediate times, and a power law at long times [l]. It is well known that the asymptotic dominance 
of the exponential behavior is representative of a purely stochastic evolution and can be derived 
quantum mechanically in the weak-coupling, macroscopic limit (the so-called van Hove's limit) [2]. 
One ma; cxpect a close connection between dissipation and exponential decay. Such a connection 
has been recently emphasized by Leggett [3]. The Gaussian short-time behavior is in itself of 
particuiar significance due, in particular, to the so-called quantum Zeno effect [4, 51. 



In this note, an exponential behavior at  all times is derived for a solvable dynamical model 
16, 71 in the weak-awpling, macroscopic li:- 181. We shall emphasize the important role played 
by van Hove's diagonal singularity in the present model, together with the central relevance of 
the p d l e r n  of dissipation to the quantum measurement theory 191 and to the general topic of 
h k c e  [lo]. The piwent derivation of the exponential behavior differs from the one given in 
fLf. 181, in that no use is made of scaled variables. 

A temporal behavior of the exponential type, yielding a "probability dissipation" is closely 
related to dephasing effects and is a rather common feature of the interaction between microscopic 
and macrampic systems. In this context, the present model is very interesting, because the 
measurement p m  is ofken viewed as a dephasing process and "decoherence" is regarded as 
a consequence of the interaction with ( m a c m p i c )  measuring devices, within the framework of 
quantum mechanics. 

2 The 'AgBr' model 
We shall base our discussion on the AgBr model 161, that has played an important role in the 
quantum measurement problem, and i ts  modified version 171, that is able to take into account 
enemvexchange processes. 

The modified AgBr Hamiltonian [7] describes the interaction between an ultrarelativistic par- 
ticle Q and a 1-dimensional N-spin array (D- system). The array is a caricature of a linear 
"photographic emulsion" of AgBr molecules, when one identifies the down state of the spin with 
the undivided molecule and the up state with the dissociated molecule (Ag and Rr atoms). The 
particle and each molecule interact via a spin-flipping local potential. The total Hamiltonian for 
the Q+D system reads 

1 " N 

HQ=@, Ho = 5hwx (1 +a:"'), H ' =  C V ( P - G )  [opexP(-i:5) +h.c], ( I )  
-a= 1 R--- 1 

where HQ and HD are the free Hamiltonians of the Q particle and of the "detector" D, respectively, 
H' is the inter ~ction !iam.iltonian, fi the momentun1 of the Q particle, 4 its position, V a real 
potentid, r, (n = 1, ..., N) the positions of the scatterem in the array (x. > and o!;) the 
Pauli matrices acting on the nth site. An interesting feature of the above Hamiltonian, as compared 
to the original one 161, is that we are not neglecting the energy HD of the array. This enables us 
to take into account energy-exchaiige pmcessea between Q and D. The original Hamiltonian [6] is 
reobtained in the w = 0 limit. 

The evolution operator in the interaction picture can be computed exactly [7] as 

u(t,t') = e iHot/he-aH(t-f)/he-iHot'IR 

and a straightforward calculation yields the S-matrix 
N 

sINl = lim U ( t ,  t') = n qn1 = exp 
t--00 
:*--a0 n= 1 



where u = (ms(wx/c), sin(m/c), 0) and V06 = j'", V(x)dx. The "spin-flip" probability, i.e. the 
probability of dissociating one AgBr molecule, reads 

If the initial D state is taken to be the ground state ( 0 ) ~  (N spins down), and the initial Q 
state is a plane wave, the final state is 

This enables us to compute several interesting quantities, such as the visibility of the inter- 
ference pattern obtained by splitting an incoming Q wave fwction into two branch wave., one 
d which interacts with D, the energy "stored" in D after the interaction with Q, as well as the 
fluctuat.ion around the average. The final results are 

where F stands for final state, p = 1 - q, and the trivial trace over the Q particle states is 
suppressed. The arrows signify the weak- coupling, macroscopic limit N -4 oo, qN = f i  = finite 
(7J. All results are exact. It is uarth stressing that qN = E represents the average number 
of excited molecules, so that interference, energy and relat.ive energy fluctuations "gradually" 
disappear as A increases. Observe also that (5) is a generalized [SU(2)] coherent state and becomes 
a Glauber coherent state in the A' -, oo, qN = finite limit.. 

Our next (and main) task is t.o study the behavior of the propagator. U'e start, from Eq. (2), set 
t' = 0 for simplicity, and return to the Schriidinger picture by inverting Eq. (2). The exponential 
is easily disentangled by making use of SU(2) properties. We get 

where a, = ar,(Z, 1) = $ V(3 + d' - xn)dtf/h. Notice that the evolution operators (2) and (7) as 
well as the S-matrix (3) are expressed in a factorized form: This is a property of a rather general 
class of similar Harniltonians 11 11. 

Let the Q particle be initially located at position d c' xl (xl is the position of the first scatterer 
in the linear array) and be moving towards the may with speed c. The initial D state is again the 
ground state of the free Harniltonian H D  (all spins down). This choice of the ground state is 
meaningful from a physical point of view, because the Q particle is initially outside D. 

The propagator 
C(x, x', t) ( X I  @ ( o ( ~ - ' ~ ~ ' ~ I o ) N  @ Is), (8) 

can be easily calculated from eq. (7). We placc for simplicity the spin array at the far right of the 
origin (xl > 0) and consider the case where potential V has a compact support and the Q particle 
is initially located at the origin x' = 0, i.e. well outside the potential region of D. We get 



This result is a c t .  Notice! that the "spin-flipn probability (4) is 9 = sin2 &(oo) = sin2(GQ/k). 
We consider again the weak-coupling, macrascopic limit 

and set 
x, = X I  + (n - l)A, L = z* - x l  = (AT - l)A. 

The following derivation is different h m  the one given in Ref. (81. We keep L finite and 
consider t h  continuous limit AIL -, 0 as N -, oo. A summation over n is then replaced by a 
definite integration 

For the sake of simplicity, we restrict our attention to the case of &shaped potentials, by setting 
V(g) = (VoQ)G(y). We get 

- -(- l?(ct - = exp (-: [T ~ ( Z N  - d)e(cl - 21) + ~ ( d  - ZN)]), (13) 

where 8 is the step function and the arrow denotes the weak- coupling, macrascopic limit (10). 
This bring about an exponential regime as soon as the i n h c l i o n  stunk Indeed, if XI < d < X N ,  

where to = x l / c  is the time at which the Q particle meets the first potential. Notice that there is 
no Gaussian behavior at short times and no power law at long times. Observe that IGI2 is nothing 
but the probability that Q goes through the spin array cmd leaves it in the ground state. 

It is well known 11, 41 that deviations from exponential behavior at short times are a con- 
sequence of the finiteness of the mean energy of the initial state. If the position eigenstates in 
eq. (8) are substituted with wave packets of size a, a detailed calculation shows that the expo- 
nential regime is attained a short time after to, of the order of a/c, which, in the present model, 
can be made arbitrarily small. Moreover, a detailed calculation (by H. Nakazato), making use of 

b square potentials of strenght Vo and width 6 yields, for XI + t < ct < r~ - 5. 

In this case, the exponential regime is attained a short time after to, of the order of the width of 
the potential V. The regions t - to + O(a/c) and/or t - to + O(b/c) may be viewed as a possible 
residuum of the short-t ime Gaussian-like behavior. For this reason, the temporal behavior derived 
in this Letter is not in contradiction with some general theorems [ I ,  41. 

What causes the occurrence of the exponential behavior displayed by our model ? This is a 
delicate problem. Our analysis suggests that the exponential behavior is mainly due to the locality 



of the potentials V and the factorized form of the evolution operator U. On the other hand, there 
are also profound links between the limiting procedure amsidered in this letter and van Iiove's 
"X2T" limit (2). Work is in progress in order to clarify different aspects of this issue. Let us briefly 
discuss them. First of all, the evolution operators (2), (7) and the S-matrix (3) are expressed in a 
factorized form: This shows that the interactions between Q and adjacent spins of the array are 
independent, and the evolution "starts anew" at every step. This suggest the presence of a sorb of 
Markovian process, which would justify the purely dissipative behavior (14). At the same time, 
the role played by the energy gap w deserves to be clarified: w plays undoubtedly an important 
role by guaranteeing the consistency of the physical framework, as discussed in [B]. On the other 
hand, the connection between the exponential "probability dissipationn (14) and the (practically 
irreversible) energyexchange between the particle and the "environment" (our spin system) is a 
very open problem and should be investigated in detail. Leggett's remark (31, about the central 
relevance of the problem of dissipation to the quantum measurement theory makes the above topic 
very interesting: Indeed, ir our opinion, the temporal behavior derived in this note is certainly 
related to &phasing ("decoherence") effects of the same kind of those encountered in quantum 
measurements. 

Second, it is worth discussing the link between the weak-coupling, mammmpic limit qN = A = 
finite considered above and van Hove's "X2T" limit [2], leading to the master equation. The 
interaction Hamiltonian H' has nonvanishing matrix element only between those eigenstates of 
Ho whose spin-quantum numbers differ by one. As discussed in 181, this causes van Hove's so-called 
diagonal singularity, because for each diagonal matrix element of I f a ,  there are N intermediate- 
state contributions: For example 

On the other hand, at most 2 states can contribute to each off-diagonal matrix element of Ha. 
This ensures that only the diagonal matrix elements are kept in the ud-coupling, macroscopic 
limit, N + oo with t,N < OC, which is the realization of diagonal singularity in our model. 
The link with the X2T limit is easily evinced from the following reasoning: The free part of the 
Hamiltonian is HQ = cp̂ , so that the particle travels with constant speed c, and interacts with 
the detector for a time T = Llc, where L 2 NA is the total length of the detector. Since the 
coupling constant X r g a &R, one gets X Z T  = $NA/c a qN. Notice that the "lattice spacing" 
A, the inverse of which corresponds to a density in our I-dimensional model, can be kept finite in 
the limit. (In such a case, we have to express everything in terms of scaled variables.) As a final 
remark, we stress that the limit N 4 oo with qN < oo considered in this note is physically very 
appealing, in our opinion, because it corresponds to a finite energy loss of the Q particle after 
interacting with the D system. 
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Abstract 

The simplest possible photon-number-squd states containing only two photons and 
exhibiting sub-poissonian statistics with the Fano factor approaching 0.5 have been used for 
a proposal of a loophole-free Ben experiment requiring only 67% of detection efficiency. The 
states are obtained by the fourth order interference first of two downconverted photons at 
an asymmetrical beam splitter and thereupon of two photoqs from two independent singlets 
at an asymmetrical beam splitter. in the latter set-up the other two photons which nowhere 
interacted and whose paths never crossed appear entangled in a singlet-like correlated state. 

1 Introduction 
In 1985 Chubarov and Nikolayev [I] showed tha t  quantum states with sub-poissonian statistics of 
photons interfering a t  a beam splitter (in a polarization experiment) violate the Bell inequality. 
Analyzing their result Ou, Hong, and Mandel (21 s h o u d  in 1987 that  a pair of downconverted 
photons interfering in the fourth order a t  a symmetrical beam splitter should violate the inequality 
to the same extent although they exhibit poissoinan statistics. In 1988 Ou and Mandel[3J carried 
out the experiment and gave, together with Hong, its correct theoretical description in Ref.[4]. 
(The description of Ref. [3] was erroneous.[5, 61) PaviEii and Summhamrner provided in 1994 
a theoretical description of two pair spin entanglement at a symmetrical beam splitter which 
would enable a loophole-free Bell experiment with 83% detection efficiency. On the other hand, 
in 1989 Cmpos, Saleh, and Teich [?I, in effect, pointed out that not only two (or more) photons 
incoming to the beam splitter from the same side (as with Chubarov and Nikolayev) but also two 
photons incoming from the opposite sides (as with Ou and Mandel) and interferening in the fourth 
order a t  an asymmetrical beam splitter (the simplest photon-number-sqeezed state) exhibit sub- 
poissonian statistics with the Fcno factor (the ratio between the variance and the mean of the 
photocounts) changing from 1 to  0.5 as the ratio between reflection aqd transmission coefficients 
changes from 1 to  0. A theoretical description of the interference a t  an asymmetrical bean] splitter 
was given in 1994 by Pavieit [6]. In Sec. 2 we show how one can use such a beam splitter to devise 
a loophole-free Bell experiment with a detection efficie~icy a. low as 67%. In 199.5 it was pointed 
out by PaviEii: [8] that two pair spin en!i;r:g!r-rc:rt it! nrl asymmetric-al b e ~ ~ ~ l  +pl:t :- I r. :.:,I;:( s 2 

preselected loophole-frcc Bell 6771 i:spc.ri:~:(::rt i n  %r.  :J we prescrlt such ;~;i { . x j ) c . . i i : i c  ::. 
- ' Permanent addless lnterr~et mpavic~cQdomints ptiy.hr 



2 Simple sub-poissonian correlations 
To describe the behavior of the photons at  a beam splitter in the spin space we follow the d t s  
obtained in Pavitit [6,8]. The signal and idler downcollvetted photons emerging from a nonlinear 
crystal of type1 (see Fig. 1) are pardlelly polarid [3]. Because of this s 90° rotator b introduced. 
Since the sigral and idler photons have random relative phases, we will have no interferemere of the 
second order but only of the fourth order which we describe in the second quantization formalism 
following Refl. [6,8]. The actions of beam-splitter BS, polariaer Pj, and detector D j  (j = 1,2) are 
taken into account by the outgoing electric fields M given in Ref. (81. For a realistic elaboration 
by means of wave packets we refer to M. [5,8]. We only stress here that these equations remain 
unchanged insomuch that all experimental w a t e r s  are absorbed by q and r below. 
Tbe probability of joint detection of two ordinary photons by detectors Dl and D2 is 

for = z2 in Fig. 1, where E~ (j = 1,2) are as given in Rdl. 15, 8). s = i,ivl r = 9, rr and rv 
r=r, 

are reflection coefficients, I, and t, are transmission coefficients, and 7 is detection efficiency. The 
probability tells us that the photons appear to be in a nonmaximally correlated state whenever 
they emerge from two different sides of BS. The singles-probability of detecting one photon by, 
e-g., Dl and the other going through P2 and through either D2 or D2A without necessarily being 
detected by either of them is 

The singles-probability of detecting one photon by Dl and the other p ing  through P1 and 
Dl (without necessarily being detected by it) is (assuming t ,  = 1,) 

Let us see the effect of these results on the violations of the Bell inequality 5 5 0 where B is 
defined by 

where P ( 4 )  - P(&, oo) [as given by Eq. (2)] and P(B2) = P ( w ,  82). To be able to use Eq. (4) we 
have to have a perfect "controln of all photons at BS. If we do not have it, we have to subtract 
Eqs. (3) (for appropriate angles) from Eq. (4) in order to take into account that detectors cannot 
tell one from two photons when they both emerge from the same side of BS. 

By a computer optimization of angles we obtain Max[B](r,r]) surfaces as shown in Fig. 2. The 
values above the B = 0 plane mean violations of the Bell inequality. As shown by the lower curve 
in Fig. 3, for controlled photons, for r = 1 hfaz!Bj = 0 yields q = 0.828427 and for r -, 0 we 
get a violation of the Bell inequality for any efficiency greater then 66.75%. The efficiencies for 
uncontrolled photons are shown as the upper curve in Fig. 3. We see that uncontrolled photons, 
i.e., the ones that also may emerge from the same sides of BS as well, violate the Bell inequality- 
starting with 85.8% efficiency-in opposition to the widespread belief that "unless the detector 
can differentiate one photon from two ... no indisputable test of Bell's inequalities is possible." [9] 



FIG. 1. Beam splitter set-up and MZ-I1 set-up (when inset MZ-I1 is put in place 
of NL; accordin: to Kwiat el al. [9]). As birefringent polarizers P1 and P2 may serve 
Nicol or Wollaston prisms (which at the same time filter out the uv pumping beam 
in case of hIZ-11). Pinholes ph determining the frequency (wo/2)  of signal and idler 
coming to the beam splitter BS and assuring that only one downconverted pair appears 
a t  a time are positioned as far away from the crystal as possible. 

FIG. 2. The surface showing maximal violation of the Bell inequality for the 
optimal anglrs of t l ~ e  polarizes. All the values above the B = 0 plane violate the Bell 
ineqrrality B 5 0, where B is given by Eq. (4).  



The afore-mentioned "control" of all photons can be achieved best if photons never emerge 
from the same side of a beam splitter and this is what Kwiat et al. [9] aimed at. We obtain 
their set-up by substituting the nonlinear crystal in Fig. 1 with two type-I1 crystals (MZ-I1 
inset in Fig. 1) which downconvert two collinear and orthogonally polarized photons of the same 
average frequencies (half of the pumping beam frequency). The crystals are pumped by a 50:50 
split laser beam (filtered out before reaching detectors) whose intensity is accommodated so as 
to give only one downconversion at a chosen time-window. Since one cannot tell which crystal a 
downconverted pair is coming from, the state of the photons incoming at the beam splitter must 
be described by the following superpasit ion 

1 

where 0 5 j 5 1 describes attenuation of the lower incoming beam. 
The probability of both photons emerging from the same sides of BS is 

whem '-' stands 'or tl = 22 acd '+' for 21 - zl = L/2 where L is the spacing of the interference 
fringes. 

The probability of both photons emerging from the opposite sides of BS is 

p(e1, d2) = q 2 ( ~  8, sin e2 T f sin 81 cos OZ)~,  (7) 

where '+' stands for XI = t.2 and '-' for q - zl = L/2 .  This gives the same 11 curve as shown in 
Fig. 3 but, in order to collect data for the probabilities in B in Eq. (4), we must be able to Ucontrol" 
single pairs of photons so as to prevent them to emerge both from the same side of BS. This means 
that the conditions r,r, = j t,t, and t,t, = f r,r, from Eq. (6)  should be simultaneously satisfied 
what is however clearly impossible for j < 1. Thus, contrary to the claims of Kwiat et al. 191, the 
only way to make use of f < 1 is the crosstalk t, = r, = 0 for either zl = 2 2  or zz - zl = L / 2  
and this is apparently difficult to control within a measurement .[9] It therefore turns out that the 
set-up is ideal for a loophole-free experiment with maximal singlet-like states, i-e., with f = 1 
and q > 83% but that attenuation (f < 1) is not the best candidate for Bell's event-ready [lo] 
preselector. We therefore propose another "event-ready set-upn which dispenses with variable f 
and offers a more fundamental insight into the whole issue. 

3 Preselected sub-poissonian correlations 

Schematic of the proposed experiment is given in Fig. 4. Two afore-discussed set-ups MZ-I1 1 
and MZ-112, fed by a split laser beam act as two independent sources of two independent singlet 
pairs. As shown above, for 22 - zl = L / 2  photons appear only from the opposite sides of the beam 
splitters of MZ-I1 1 and MZ-I1 2.  Two photons from each pair interfere at the beat1 splitter of 
the event-ready preselector and as a result the other two photons appear to be in a nonmaximal 
singlet state although the latter photons are completely independent and nowhere interacted. The 
state of the four photons immediately after leaving MZ-11 1 and MZ-I1 2 is 



efficiency 
Mnimol etnciencles at r beam splitter 

FIG. 3. Minimal efficiencies. Lower plot: q's as obtained for B = 0 from Eq. (4). 
Upper plot: q's ah obtained for B = r[sin2(20i) + sin2(202)]/2 from Eqs. (1-4). 

FIG. 4. Proposed experiment. As the event-ready preselector serves a bear11 splitter 
with detectors Dl, D l A ,  D2 and D2' as shown in Fig. 1. hlZ-I1 1 and XIZ-I1 2 arc 
devices as shown in Fig. 1 with  hIZ-I1 from the inset substituted for KL; they serve 
as sources of singlet pairs. As birefringent polarizcrs P1' and P2' may serve LVollaston 
prisms (which at the same time filter out the uv pumping beam). 



The probability of detecting all four photons by detectors Dl, D2, Dl', and D2' is thus 

for zl = 12 where E, are aa given in Reff. P, 81, A = Q(t)lnlQ(t)p? and B = Q ( r ) l ~ Q ( r ) ~ ;  here 
Q(Q)~, = qrsinOi cos 8, - 9, ~ 0 8 8 ~  sine,. 

For O1 = 90" and O2 = 0' Eq. (9) yields (non)maximal singlet-like probability P(01t,e2t) given 
by Eq. (1) which permits a perfect control of photons 1' and 2' and which is much more appropriate 
for the whole issue than Eq. (7), because the former reflects total spin conservation and quantum 
mechanical nonlocality while the latter satisfies the Bell inequality only inasmuch as it  belong 
to a non-product state [ll]. This means that Dl and D2-while detecting coincidences-act as 
event-ready preselectors (101 and with the h d p  of a gate (see Fig. 4) we can extract those 1' 
and 2' photons that are in a non-maximal singlet state, take them miles away and carry out a 
loophole-free Bell experiment by means of Pl', Dl', Dl", P2', D2', and D2'L with only 67% 
efficiency in the limit r -+ 0. Thus, one might also view the experiment as a realistic device for 
teleportation of Bennett el al. 1121 
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Abstract 

A geawdizatioe of the entropic for~ir~rlatiorr of the Uricettainty Principle of Qlranttlii~ Me- 
rliarlics is roasiclere<l witli tile i~~trccli~rtion of tlie q-entropies recently ~)rrrposecl by Tsdlis. 
Tlre conrotnitarrt gencralizetl tlrezqttre is illr~stratetl for tlie rase of 1)11aw and nrinrber opera- 
tors ia Qr~alitrln~ Optics. Isteresting resrtlts are obtainetl wlielr making use of q-entropies as 
tlre l)a.4s for cnr~str~~rtiag g~nrralizecl e11trol)ic rr~rcertaitity Ilieasrrcs. 

1 Introduction 
TIie 1Jnc~rtailrty Fritlc.il>le (1 1 P)  (-an Ile statc~tl (~r~aiiti tatively i11 t lie followi~lg fasliioll 

wliere U is ill1 estiniation of tlie r~ncert;iiuty in  the result of a sil~~tlltaneons memurea~eot of two 
i~ic-oml>atil,Ic= o l ~ ~ r v i ~ l ~ l f i  A nstl B, wliea tlie systml is in a state It/)). What the 1JP asserts is that 
srlcll a11 estilllation is li~ilitetl hy atr irretll~c.il,le lower bot~ncl, tile illfilllrl~ll L?, wllicl~ tllerely clepe~icls 
on Imtll 01)erators. ZA llllrst attain a fixed ~l l i l l i t l i r~ l l l  valr~e z 0) if a11d oldy if 111,) is a com~~lon 
rigrnstate of A a~itl El ;\lid P vallislles w l l r ~ t  tlie ol~srrvitl~les share at least one eigenvector. 

The extension of Heiseril)crg's it~t~qtriility to tlescril>e tlie I.lP for arbitvnvy pairs of ol,erabors 
(wlieri tlreir cornlllrttirt.or is riot it r -~ i i~~ i l l~e r )  has I>eeo rritic-ized becar~se its r.11.s. is r~ot a fixed 
lower hor~t!rl [ I ] .  hfrtc-11 elfort II:IS heen tlevotctl to I ) r ~ s r ~ ~ t  qr~iu~titiitive forrllrllatio~ls of tlle UP 
(see, for c*.uatlllde, refs. [I]-($1). t\ ('t't~tri\l i ( l ~ i ~  111itIer1yi11g tl~ese works is t l ~a t  the tliost natural 
nieas:lre o f  ttirc-c-rtaiilty is ~~rr.c.isc*ly tllr rttissirrg iltjot.ritcrtioa [S] that ren\nios once a me; s . zment 
is 1\1irclc~. 

1)c~rrtsc-li first ~)rcq)osc-rl [ I ]  tlre rlse t.' ! ; l l i \ ~ ~ t l t ) t i ' ~  iirforr~iittio~~-tl~eol.y eatl.opy [3] ( $ ( { p i ) )  G 
- zEl pl 111 p t ,  for ittly l)r~I,i\I)iIity ~Iistri1111tiu1~ { p i } )  to lileiisllre r r~lc~r t  ~ i ~ ~ t y ,  ill tile i:owi~lg \qvay 



the other limid, a trr~ift~rtn clistrilr~tio~i { I /R)  c-bariwterizes a situatio~i of " ~ ~ ~ a x i m v m  ig~lorarrce", 
with S( A; $J) = $,,, = 181 N .  

It has bee11 shown [ I ]  tliat Ul satisfirs 

with c = sup, I(.ilb,)(. It was mot~jectt~ml first by Kraus [:B] u ~ d  dn~wnutratrd later by Muaca 
a i d  lJffi~rk (4) that a hetter b a n d  can Iw give~r, 

Krarr a~m-ificdly collsitlertvl having two cant ylcrtrcnlrry obwrvables: exact kriowleclge of the 
arecrorrerl value of otre of them iniplies ~aax i~ i i t~a i  ~lrcertaiaty in the other measure~~eut ,  and 
c o n q ~ i ~ i t l y  I(~ilbj)l = l / n ,  for dl i, j = I , .  . . ,N.  

It see11t.q natural to  look for dterl~at ivr  clewriptiol~s of tlie 1JP express4 ill eutroyic temw. 
In Section 2, we ~lralyze the ql~atlbitrtive f o r ~ n t ~ l a t i o ~ ~  of nucertainty in the spirit of I~~fornlation 
Theory, with the air1 of the rececitly introtlrtrd Tsallis' eatrol~y (101, wliich is regarded as infor- 
matio~i meastire [l I]. Wr ;"11~trate n*i t l ~  a siarl~le cxa~l~plt., aa~nely tlie 1~1ia.w-nunrber uncertainty 
meastires withi11 tlie Pegg- Bar~lett for~nalis~n. aacl or~tlitle sorite c-o~irlusions in Section 3. 

2 Tsallis' entropy as measure of uncertainty 

A quite interesti~ig ge~ieralizatio~~ of the cueveetio~lal entropy for111 bas be11 recently advanced by 
Tsallis j10). For atby nortiializ~l ~,rol~al>ility clistril,trtio~i { p ) ,  Tsallis' entropy r e d s  

wilere q is any real ~ r r ~ ~ l l l ~ e r ,  c-llirracterizing a 1,artic.ular statistics. (The st1111 ~iirlst be carried out 
over 11o:t-zero ~?rol>aljilitirs.) Tile q --+ I li~iiit of (2. I ) yields the Boltz11ia1111-Slia~~aio~~'~ 1oga.ritIi111ic 
exl~essiurl. 

Tlw pllysics is aa extensive one only for q = 1 [lo, 121. Tsallis' e~itrolby is rclatect to tile Illore 
fanliliu Ritiyi's nltropy lq SP = (11111 + ( 1 -q )S , ] ) / (  I - '1). A r ru~ ia l  differe~ice distinguislirs these 
two allcraatiac e11t I-opirs, Ilowevrr. Tsaliis' entrol)y always possesses a clefinite concavity, being a 
rol~c-avt~ (co~ivex! ftlllrticn~ of tite ~,rol,;tl,ilities for q > 0 ( q  < O), wliicli is not the case for Rknyi's 
unr. It is ~ I I I I P  t l ~ r  Ct,rlllt-r the ge~~eralizt-tl et~troj)~)' rerently ernldoyed in several distinct physical 
contrxtt. Tltt* gei~c~ralizecl statistic-s as.;oc.iittrd to 12.1 ) Ilas I ~ e e ~ i  showti to satisfy appropriate 
for111s of F / ~ I ~ . P ~ I ~ P s ~  tlieorrtil [ I  I 1. Jikytirs' i~ifol.~i~atic)t~-t Ii(~0ry (Ii~ality relat io~~s 11 11, VOII Neuman11's 
t=qrratiol~ 1131. ancl tlte Ilt~rtttir tio~l-tlissipiitic,tt tllrorelil 11 4 ,  IT,], amolig otl~ers. H-tbeore~ns and 
irreversibility Il;rv+- I,rcv~ il l  tllis c-o~t~ler-tiotl also disc-rrssetl (16. I i ] ,  as well as a ~~ossible cosnec- 

r . ti011 wit11 q~laat.r~~lt grot t l )~  [IS], for it~st;~t~t.c.. I llis I I ~ I I ~ - X ~ ~ - I I S ~ V C  statistit-s 11as allowed, withill an 
i~stropl~ysirirl c.c,ri:+*xt. t o  ~ I v r t  I O1ll tn  tllr it~i~l>ility of' tlte c-ol~vt*~ltior~;~l. extensive otlr, to adequately 
tleal (witi~o~lt iijiittitic.~) \\-ill, ct-11-gtnvititli~lg stellar systc~llr,, i l l  wliat c~tistituteci the first yllysical 



apl~licatioe of the q # I-tlreory [I!)]. A s ~ o ~ i t l  irlqdicatioa refers to Livy flights, relevant for a 
variety of syste111s rBj. 

So~rre properties of tihe 9-entropies are: i ) .qq > 0 for any q ancl {I), } , with Sq = 0 for yi = dice 
(certainty); ii) Sq rrac-lies the e-:trenu val~~e (1  - N1-q)/(q - 1) for every q and yi = 1/N 
(quiprobability); iii) .qq is a II~IB-iacreasisg ft~sctior of 9 > 0 for each (14); iv) For two it~de- 
ptrtlnrt clistril~tltio~is {pi} and (sttcln that the joint prol~allility is 14, = ~ d ) ,  it verifies that 
-qq({~ijI) = *'q({l)i}) + *"q({~$)) + (1 - 9)*~q({ l~ i ) )~~q({ l~~}) -  

We co~~sider tlre new entropy as measure of uarertaisty. Let us recdl first that Heisenberg's 
relation, as well as tlre eattopic relations give11 above, refer to it8dcyttdcnt measuretrretrts of 
tlie observahletc k a~rcl B orr diffewst raicrosystetrts in the *me state I$). Tlre UP s t a h  that 
tlie  robab ability clistrill~~tiolrs ohtaiaecl wlinr  Id)) is projected on the correslm~ldiag eigenbases 
ran~iot Le lmtlr arlBitrarily peakel. give~i oprraturs A and B usufGcinrtly ~ron-anrmuting" (31. 
Tlre l~~rcertai~ity aieasrlre aylwaring in eq. ( 1.2) takm into wcaunt the total i~ifor~lration entropy 
assc~ciatecl to two indel~eodent prohahili ty distril~t~ tions. Sha~rnon's e~rtropy is additive and U1 is  
jtrst .q(i) + . ~ ( b ) .  \y, it,tnwl~tr-c. rtow Tsitllis' eittrupy to rltrastlre the ar~routit of uncertainty, in 
the sanie spirit. Tlre gr*~rc.r;tiize!c.cl exlw~ssioo rezuls 

where q is a positive para~r~eter a~irl tlre eatrupim are give11 by (2.1) for tlre probability sets 
{pA,,! a110 ( p i i J ) .  It is i~~ri~imliately see11 that 2.4, 2 0, with U, = 0 if aatl utrly if 19) is a colnnloir 

eigtrstate of A and B. Hrsiclrrr this. Idq lrever exreds ( I - N2('-9))/(9 - I ). ( We nlmtio~r that these 
icleas can be extentid to cleal with pairs of ol~servables wi tlr co~rti~rr~orrs spectra. However, one 
1rr11st be careful wlre~~ clefiaiae, the (generirlizrtl) iafor~iratioa eatropy for  ion-discrete distributions 
{ti(.)} 117,211.) 

A (weak) 11ur11,tl (-it11 Iw i~t)ln>stvl VIJ (2.2). ~~a~ilely 

wliic-li liulcls for any q > 0. By rrc.-otlrst. to Riwz' tbeore~ir (as r~setl it1 ref. [4]), it can lw denrou- 
strated that A I ~ e t t ~ r  I ~ o t l t i r l  k ~ r  Idq exists, at least ill tlie region 1 / 2  5 (I 5 1: 

3 Example and conclusions 

We shall itl~ply our irleaq to tllr plrase atit1 ~ i t~~ i i l~e r  operators ia Quaotnnr Optics. Tile treatment 
of optical states can Iw accotn plishecl by recourse to tlie Pegg-Barnett ( PB) formalism p2]. This 
implies working in a finite bnt arbitrarily large (.q -+ I)-cli~rietrsiotial Hilhert space 'Ha+' spanned 
hy the 1ir1111ber states (O),, (I),,. . . ,(R),, a11d takitl~ the 1i111it .q --, 00 at tire end. The ffcnnitiair 
phase operator is clefitretl as 



Tlie correspouding eigeavallles am 8, = 80 + 'Lr*u/(s + 1). (Hcscaltet, the arbitrary reference 
plmr will be a t  m1u.l to 0.) The phase atrd n u m k  operators, 6 and fi, are mutually 
co~rrple~rwrtary,, wit lr overlap c: = 1 /&TI. 

It is found that. for a system in a state I$) E ?is+'. ~ ~ ( 4 .  N; +,r) 2 In (r + I )  which di- 
wb-I a -, oo. In order to extract sonre iofor~iiatioa out of tLis relation, Abe examiued (51 tlie 
artropy differences fronu a certaii~ refewnce state before going to tire iafiuite-s litnit. Number and 
pbase eigenstates (which rrrtt~crlly s~rtrttate that inequdity) wert?. chosen. Within tbe franrework 
of Tsdlis' i~rfortlration ctrttol~y, for a given q > 0 and a state J#,),, for instance, the eutmpies are 
giver by ~ ~ ( 4 ;  &,r) = 0 ancl ~ ~ ( f i ; ~ ~ ,  r )  = (1 - (r + 1)'-9)/(q - I). (h~rsequrntly, 

Thr .satire ol~tdtrs for a rirrtirlwr eigeastak. We stress that, considering get~eralizecl infon~ration 
entropies with 9 > 1, tlrc tli\.ere;ence i ~ r  the rcacertaioty for I I I I I ~ I ~ W ~  or phase states is rettmwd. 

Let 11s cvrsider tile gc~wraliuul e~rtn~pic 11ncr.rtai11ty Ilre=cIm for a sysklrt p r e y 4  iu a phase 
a-olrereat state (P( 3). Thew states, rw-etrtly fou~rd l~y  Krtiur ~ l ~ d  Cber Pl], are given by 

whew i G J-) 2 is a m1r1l~k.x trt~~rdvr urcl the tranrializiug f~~nrtiotr is give, by e.(r) = 
C:=o xR/w!. The prt~jwtior:~ of a PB P( :S oa ~~l inw ant1 rr~a~lwr eigeastates am 

respectively, with t ~ t ,  tt = 0, I ,  . . . , .o. 
Thr 6 - N Hdw~rlrrg's iuty~mali ty has Own diwr~ssed for the .o = I caw (2 I]. We have analyzed 

tlre sl~ayes of tlre ~ ~ l i i ~ w  atlrl ~ruuil~er q-rntrul~ies, for 111a1ry clifleretit val~~t?s of 3. Within a given 
statistical frarie of i11Cx y, tlrr rlitrolries ~ ~ ( 6 ;  r,r)  nral s,(N; z, .o), will tlel,md ou both it1 and 
r. Tlw ro~iryle~ire~rtari~ms of 4 air$ /ir is rlritrly .-,I. Tlrr phase nrtroyy va~iishrs both for 1.1 = 0 
(as it slio1r1<1 for tlre va~tlllni 1)lra.e state I&,)) and for ):I stlflirie~~tly large. Tire nunrber entropy 
ha.. a rr l l i r i i~r r r r~ i r  in  tlre iater~rircliate regiolr (tbme PCS for whicli the et~tropy approadr zero can 
Iw interpretetl as "~iitnrlwr-like" states). Tliose states are also of relatively low ttncmtainty. It can 
be -11 tlrat ( I  - (.o + I)"q)/(q - I )  is a lower I~ouocl for tlre geoeraliwd i~tlcertainty areasure 
(set. el. (2.4)). Tlris is ol~taitrtul for arl~itrary size of tlie PB spacr, .q, or statistical parameter, q. 
Fig. 1 clirplays tlrr q-nrtrupirs nstl tlrr 11nrertai11ty ~ ( 4 ,  N; z, s) a.5 a f111rrtion of ltl, assunlip 
particular valrres fur 1x)tIi (I ar~tl .q. 



FIG. 1. F1ra.w alltl trllllrlwr rl-tr~tropies a114 gelamdizml ~tllcertail~ty measure, for a 
FB P(S, as a f~lnc.tioa of ~olarr-llc-~.. 

As a concl~lsioa, g~eeraliwtl eatrupies recmtiy iatmcl~tcml by T d l i s  have k u  d i s c u d  in 
order to estalllisb gvlreral ~~ocertaia ty relatiolis for the ~neasnre~:lerit of two qtranttrm incon~patible 
d w r v a h l e .  Nulrrlwr irlrcl p11;~w qwratnrs witlrilr tire Pa-Bartrett forrrla1isnr have I w ~ n  investi- 
gated ill soltie detail. Itltrrestiag reslllts are ul~tai~lecl wlael~ laihki~ig 11.w of q-eattopies a% tile basis 
for r c~~~s t r~~c - t i~ tg  ~t-~~c-ti~liztrl etrtro1)ic ~ll~c-rrtail~ty 11rea91tre. 
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QUANTUM LIMITS IN INTERFEROMETRIC GW ANTENNAS 
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We &muss a model for intderometric CW aatenaas illamina.ted by a laser beam and 
a vacuum s q u d  fieid. The sensitivity of the antenna will depend on the properties of 
tbe radiation entering the two  ports and on the optical characteristics of the interferometer 
components, e.6. mirrors, beam-splitizr, lenses. 

1 Introduction 
An important ingredient for improving the sensitivity of Michelson interferometric gravitational 
wave detectors (GWD) is using appropriate states for the light beams illuminating its two input 
ports. In interferometric measurements the quantum noise is due to the fluctuations of the number 
of photons and to  the random motion of the mirrws induced by the radiation pressure. The GW 
signal is extracted from the spectral density of the output. 

Purprwe of this paper is to  discuss the dependence of the sensitivity of an interferometric 
GW antenna on the photon-noise and radiation pressure noises. In particular we will consider 
an interferometer driven by a fluctuating l a m  beam and a squeezed-vacuum field generated by a 
degenerate OPO driven by the second harmonic of the laser beam. Particular attention will be 
paid to  the influence of phase and amplitude fluctuations of the laser beam. 

2 Michelson interferometer 
We consider a Michelson interferometer with two mirrors MI and M2 suspended at the ends of 
two arms. The vertices of MI and M2 are located on the axes y and x passing through the origin 
0, while the beam splitter is centered on 0 (see Fig. 1). 

In order to account for aberration effects, we will model the interferometer as a multimode 
device: we consider two groups of beams entering through the ports PI ,  P2 (Fig. l ) ,  described by 

alee with lstituto Nazionale di Ottica (INO) 



Figure 1: Michelson's interferometer. B.S.= beam-splitter; WM aberration regions due to the 
mirrors; WB-s. aberration regions due to the beam-spli t ter; F.D. = frequency doubler; O.P.O.= 
Optical Parametric Oscillator; il,.i* = in-fields at the port 1.2; &,.&, = fields at the mirror 12; 
El,, E, = out-fields at  the port 1,2. 

t t the operators (ir,, , i,, ), (tii,, i a )  with j = 0,1, . . . , N - 1, acting on a Hilbert space 'H, = R,, @'Ha,, 
with ?&,, = Hi:) @ . . . @ ')i:!"-'), i = 1.2. More specifically, the modes relative to port PI consist 
of Causs-Hermite beams travelling along the x-axis with waist in 0, 

The pair of indices Im will be denoted by il. Analogously, for P2 we consider a similar family of 
Gauss-Hermite beams propagating along the y-axis with waist in 0 (see Fig. 2). 

Passing through the beam-splitter, the input beams transform in two fields at MI, M2 described 
- t * t  by (i,,, b,,), (bh, 6,) with j = 0.2,. . . , N - I, acting on a Hilbert space % = ' H b ,  @Uh, such that 

t t H4 = ~ r ' g .  . .@?ti:-') and two outgoing beams described at PI, P2 by (E,, , iJ, ), (in, ta) with j = 
0.1,. . . , N - I. acting on a Hilbert space U, = R,, 8 R,, where, again, 71,  = 'Hc) 8. . . @ NY-'1. 

For the sake of notational convenience, we introduce the bold symbols i; = i,, @it, = ( ) , 
for indicating the pair of i-th modes relative to PI and P2 respectively. Analogously, we introduce 

the vector A z ( ) . With the same meaning, we will introduce the vectors 8 and C for 

a N - I  

the operators 6, and E,, relative respectively to the mirrors and the output ports. 



Figure 2: Schematic of Gauss-Hermite beams. 

. . . . . . . 

Assuming the fraction of energy lost during the passage through the interferometer be indipen- 
dent of the mode considered, B and C can be redefined as vectors proportional t o  the actual ones 
and carrying the same energy of A. In view of the energy conservation, the linearity and time 
invariance of the antenna, the outgoing vector C can be related to  the ingoing one A by the 
unitary matrix U, 

C=Cf .A ,  (1) 

. . . . . . . 

with 

.................. I-....... ........... 
PI , 

I , ......"..."..... . ............. Z 

I 
B. s.. : . . 

M2 m, 

where each U,, is a 2 x 2 matrix. Moreover, to preserve the bosonic commutation relations, / I  
must be a symplectic matrix, that is U E Sp(2N, R) and U,, € Sp(2 ,  R) .  

From now on we will consider an interferometer illuminated by two TEMoo gaussian modes 
on ports PI and Pz respectively. This amounts to considering an input state vector of the form 

where 10, >= loi, > lo,, > indicates that the modes i,, i2  are unexcited ground state. As a result 
of the propagation through the imperfect interferometer, the states of all these modes will be 
mixed up to some extent. So that, a mode initially in the ground state will be partially excited 
at the output ports. 

In view of (3), it is worth splitting 3.1, in the product 3.1, = ?fa, @ R,,, whith R,, relative to  
the fundamental modes entering the two ports, and ?la, relative to  the remaining 2N - 2 modes. 



In the same manner we will write A s 

B and C. 
Analogously to ( I ) ,  the fields B at the mirrors will depend linearly on A 

whith V a unitary linear transformation V r . Physically, V describes reflection 

and transmission at  the beam-splitter , followed by propagation through the interferometer arms. 
Then, it can be expressed as the product 

where K describes the aberration-free beam-splitter, 8(8s) is the aberration matrix relative to the 
beam-splitter itself and 8 is the interferometer arm delay matrix. 

Introducing the N x N matrices lij = 6i1j16i,h, Tmj = 6,,,&,,, , and the 2 x 2 matrices &I, k2, 
we can write K, whose elements are 2 x 2 matrices, as 

K = ei6(cos y 00 1 + sin 7 01 1). (4) 

with oo,ol Pauli matrices. The aberrations of the beam splitter are modeled by including at 
the two output faces two transparencies characterized by the aberration eykonals W(5s)(xl z )  and 
W(Bs)(~, I) for the faces perpendicul~r to y- and x-axes respectively. Otes), representing the 
aberration eykonal phase factor, is symmetric with respect to the exchange of the pair of indices 
il,i2 with jl,  jz, 

where 

The symmetry of the O(Bs, matrix is a consequence of the identities Wtesli,,j, = W(Bs),l,il 
"d W(~s)ia,ja = W(BS)~,Q . 

Finally, the timedelay matrix is diagonal 



I 0 
with a. = ( ) , representing the phase delay of the iI,,-th Gauss-Hermite mode 

hitting MI,?. In particular, 

where 64,,,(> 0) stands for the delay of the i-th Gauss-Hermite mode with respect the phase 
delay k L1 ,* of a plane wave. 64Gw1 represents the gravitabional wave (64cwl = - 6 4 ~ ~ ~ ) .  The  
other terms stand for : (i)  64(auap)=noise transmitted to  the mirrors through the suspensions, (ii) 
64(mir)= noise caused by the vibration modes of the mirrors, (iii) 64(w,,)= pressure fluctuations 
in the partially evacuated pipes of the interferometer arms, and (iv) ddlr,)= radiation pressure 
noise. 

As a result of the reflection on MI and Mz, the different modes propagate toward the exit 
ports, by retracing the same paths followed before. Then, 

where @(M) is the mirror aberration matrix. 

3 Interferometer output 

The interferometer output is proportional to  the expectation value of the difference I hctwcen the 
photo current.^ detecttd at the ports 1 and 12 respectively 

where S is the unitary self-adiinl operator S = U t  - a3 - I!. 
Introducing the quantity Ii3 r I\" . a3 - 11' = cos(27)a3 1 - sin(2y)02 i (sec 15q. 4 )  and 

assuming an input state of the form (3). it. yelds 

where S(c, I -$in wl - cos 603. wit,h 4 2(& - &,), is thc matrix in absence of aberrations 
and 67 = 0. wvhiie S,,,,) E olal + 02a2 + 03a3 descrihcs the effects of the aberration5 and thc 
deviatior~ f ron~ the ;:,ndition of exact equipartition of tht* incident intensity between tl lr '  two B.S. 
ontp11ts. 

i t N o ~ v  int,rorluci~lg the q t ~ a ~ l t  i i  irs :II = eoi  . al - no . .-\? = (lo . n2 . oo . = e,, . n:, . ac, 
and consicli~ing an intc~rft-rometer opirrating on a dark fringe, wcn call express the p l ~ o t o c ~ ~ r r c ~ ~ t  I 
as 1 I(,,) + I,\!. that i s  as t 11c SIIIII  o f  a det,crr~iinistic part I ( d )  =< > [ 6 ~ ~ 1 1 . -  + as]  tleyelitlitlg 
on tht* (;\\ signal and thc ;tl,errations, and a rloise delwncli~lg part 



In particular, as regards to the radiation pressure noise IN,,,,. the mirrors MI and M2 can be 
considered as multiple damped pendula driven by known time dependent pressure forces, 

with r M ( t )  the impulse response of the mirrors. Accordingly 6&(rp)(t) = k(yl(t) - x2(t)) = 
rM * (bt . u3 . b), having indicated with rM* the convolution integral (13). So That = 
(-l)k+l(rM + A2) < A3 > . 

4 Fourier analysis of the interferometer output 
In most GW antennas the signal is extracted from the frequency spectrum of the photocurrent 
I = + IN. Therefore, the sensitivity of the interferometer depends on the autocorrelation of I, 

having considered and IN as indipendent. 
The limiting sensitivity of the antenna will be obtained by equating the Fourier component 

SCW(o) of <: I(d), :> at  the frequency of the gravitational wave to the noise component, 
SGW((J) = S N ( ~ ) /  < A3 >2 

I The noise terms IN ,,,, , N(pre,l are mutually independent, so that 

where SI, S2, S3 are the Fourier transforms of the convolutions <: A], A1 :>, <: A2, A2 :>, <: 
6A3, &A3 : >, while S12 and S2] represent the Fourier transforms of the convolutions <: A], rM + 
A2 :> and <: I'M * A2,A? :> respectively. 

The beam ii2, entering the port 2 of our interferometer, is generated by a degenerate parametric 
oscillator (OPO) excited by a pump beam ti,, obtained by duplicating the laser beam & I .  entering 
Pl. In the following we will treat irl(t) = e~~)m as a classical field (semielassicai u.alysis) 
whose instantaneous phase #(t) and intensity fluctuations 6nl(t) = nl(t)- < nl >l will Ire assumed 
to be both Gaussian and mutually independent stationary processes, with autocorrelations < 
( 4 ( ~ )  - 4(0))2 >= u:(ITI), < 6nl(r), 6nr(0) >= u;C,(lrl) with a: =< ( 6 n 1 ) ~  >. 

The evolution of the the field operator ii2 has been derived by Collett and Gardiner 1131 for a 
classical coherent pump. We have integrated C.-G. equation of motion of h2 by representing the 
pump as 4, = lle2'e+2'6nI and applying the WKB method. 

The expectation values or the Eq.(14) have been obtained by averaging over the noise entering 
the OPO and the laser field amplitude and phase. 

In partic~~lar,  as a consequence of the classsical approximation for 6, we can write 
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Abstract 

Wk show that a model, recently introduced for quantum nondemolition measurements 
of a quantum observable, can be adapted to obtain a measurement scheme which is able to 
slow down the destruction of macroscopic coherence due to the measurement apparatus. 

1 Introduction 
One 01 the most important limitations in the observation of quantum coherence at macroscopic 
level is the possibility of generating at least to  macroscopic quantum states which show the quan- 
tum c ~ h e h  rencc. Siucc the seminal work of Yurke and Stoler 111 it becomes clear that a Kerr 
medium could be used to generate such states a t  optical level. They showed, indeed, that  the 
unitary e~*olution of an initial cohcrerlt st.at.e. interacting with a Kerr medium with a well defined 
length, vill produce a superposit.ion of coherent states. For instancc an  initial states la) will 
gcnerat e the supc.rposi t ion 

after an iritcract.ion titlic to  = ; r / ( 2 Q )  ~vhcrc R is the strcnght of Kerr nonlincarity. At well dcfirled 
short cr t irncs t hrcu or i~iorc col~cn:rlt s t i l t c~  twild dso he generated 11 I .  'This, of course, rcqttircs 
the prccisc kno\vIccIge ol thc Icngth of the tnvdiurn (or interaction tinic). It is a190 well known. 
all({ was slio\vn in grt:ai dctnils by Dnnicl ancl Afilbnni 121. that as soon k~ orlc t.akcs illto accolnlt 
t llc loss iri t hc Iicrr rnccti1111l t l i t .  gc-ncrat ion of t hosc st atcs 1s sucidcnly inlii1)i t cd. Thus, thc? t)c.st 

shoul(i ln. t o  have n litbrr mc~tliii~n \vi l l i  high nonlirlc~nrity to loss ratio. Rcccritly 1.31. qr~,\dratrlrt* 
scl~ic(w"r ligl!t ivils obi;crvc*ti i l l  scnlicorlri~:ct I )rs at frtqucncies lcss than l~alf o f  band gap, ivhc~rt! 
largr ratios of riorllincal i t ?  t o  1055 rnrl I)(. obt i l i ~ ~ e d  141. Then, semiconductors could bc t h ( b  hozt 
11,-ilia t o  pc~rlt~rc~tt1 thi* slil)(*r.l)c).;itio~~ o f  st;ll(-s hc*c.a~ise of the, I a r g ~  ratio of thc nnnlini-ar ph;wc> 
shift to I 11(, opt iciil II)S.S(\+ v:111~ 11 111 I llr r('!>ort~(1 (-xprriment (31 was t:xtiti~atcd grcatcr tlian 100. 
Flirt I I ~ T I I I ~  , I  ( B .  i t  II'N I M * ~ \ I I  I ( V * ~ ~ I I I  iy I ,  I I : 11at i i  ~ l~ i i~~i -s \~p(! r~>os i t  i o r ~  4 ,f ~ I I , ~ C I  (-bscopic st , i t  (IS. wit 11 
i11tc.1 f ( b i c , ~ ~ c  t +  f~ i11;rcus 51 111 111(5t'111 . (.o:1!11 1 ) c '  ~ I ' I I ( ' I . ~ I ~ ( ' c ~  i l l  i t  Kcrr nicvli~in~ ~ ~ i r  11 1 1 ~ -  ;tl,ovc ratio or 10, 



when one uses a squeezed bath to model the loss. In this context it was also shown that s squeezed 
bath could be realized by a suitable feedback [6]. M m ,  it was also shown (71 that by using 
a time modulation of the Kerr nonlinearity one could obtain the coherent superposition without 
the precise knowledge of the length of the medium (or interaction time) by only adjusting the 
phim of the time modulation. However, even though we auld asmime that such a macroscopic 
supqxsition (or quasi-superpsition) has been generated, oame should have some experimental 
apparatus suitable to observe the interference pattern. Yurlae and Stoler [I] pointed out that 
any unavoidable dissipation, introduced by the measurerrren6 process, will suddenly destroy the 
interfkmnce fringes which are the signature of the coherent superpodtion. Kennedy and Walls [8;, 
following a suggestion of Meaxzi and To- (91, showed that a ptme-sensitive experimental 
apparatus, like the one modeled by a squee%ed bath, might preserve the macrogcopic coherence. 
In the present paper we will show that such an expePimental device a d d  be phisically realized by 
using an appropriak quantum nondemdition (QND) model, introduced by Alsing, Milburn and 
Wdls [lo], when one takes into account the detunings of the coupled modes with respect to the 
cavity t9umdmistic Irequencies. 

Maryland 20771, U.S. A. 

The Model 
We consider a cavity supporting two different modes, with annihilation operators a and b. The 
two modes are coupled by a nonlinear crystal, so that (in the interaction picture) 

where X f  = ( a 8  + ate-%) /2 and Yy = (be* + bte-*) /2. This interaction could be achieved 

by, for example, a crystal with a X(2)  nonlinearity in which two processes driven by classical 
fields, amplification at the frequency w, = we + a, and frequency conversion a t  the frequency 
wd = W, - q, have equal strengths [lo). Because of the QND condition, when the "metern mde  
b is heavily damped a t  rate b, one can monitor the quadrature Xc of the signal mode a just by 
performing a homodyne measurement of a quadrature Ya of the mode b. In fact, when > Cc, 
(damping rate of the a mode) the homodyne photocurrent I ( t )  can be directly expressed in terms 
of the "instantaneous" mean value (X[ ( t ) ) , ,  conditioned on the result of the measurement [l 1 , 121, 

where 7 is the efficiency of the homodyne detection and < ( t )  is a Gaussian white noise with 
( t ( t ) t ( t t ) )  = a(t - t'j. 

The QND-mediated feedback model of 16, 111 is obtained by taking part of the output horno- 
dyne photocurrent I (t  ) and fccding it back to the cavity so to add a driving term ITjb(t) = hgI ( t ) , b  
to the a mode Hamiltonian. The constant g represents the gain of thc feedback process and 
XI = (aed + ate-'') /2. If  one adiabatically eliminates the mctcr mode b and applies the lfarko- 
vian feedback theory rccent.1~ developed by \Iriseman and Xlilbum (131, the dynamics of the a 



mode can be exactly determined, and in [ I  11 we have shown that in the unstable regime the 
demherence time of an optical Schriidinger cat can be appreciably increased, so to  facilitate its 
dewtion. 

In the present paper we reconsider this model and we eliminate the electro-optical feedback 
loop. We simply detune the two modes in the cavity, so that their uncoupled evolution is no more 
driven by the standard vacuum bath term alone, but by 

. ~ q  = + ( 2 4  - atop - pota) - i [&ata,p] 

and an analogous expression hdds for the b mode. The effect c,f the two now= detunings 6, 
and a can be intuitively described in terms of an "internal feedbadc" mechanism, because the 
detunings mix the tam quadratures Xt and Y, with their respective r / 2  out of phase quadrature, 
so that any variation of Xc is "fed back* to the Xt dynamics itself by the joint &.ion of the 
detunings and the nonlinear coupling. Pnnrided that the adiabatic condition kb > k, is satisfied, 
the homodyne measurement of the quadrature Y6 alloars monitoring the a mode quadrature Xt 
alao in the presence of nonzero detunings. In fact, when & # 0, Eq. (3) generalizes to 

so that from the homodyne photocurrent it is still possible to reconstruct the marginal probability 
distribution of the quadrature Xc, which is the quantity usually consided for revealing the 
interference fringes associated to an optical Schrainger cat. U'e haw therefore the model defined 
by the following master equation for the density matrix D of the two modes 

where the superopcrator C (i  = a, b) is given by (4). 1% shall now see that all the interesting 
results obtained for the feedback model of [1 l] (the preservation of macroscopic quantum coherence 
in particular) can also be obtained with this simpler model. 

Eq. (6) can be exactly solved, because the Wigner function of the tar, modes evolves according 
to the Fdcker-Planck equation for a four-dirnensional Ornstein-Uhlenbeck process [14]. Anyway, 
the analytical expressions in the general case are very cumbersome and therefore we shall ex- 
plicitely discuss only the adiabatic limit k+ > k, where the meter mode b can be adiabatically 
eliminated, and which, as we have seen above, is the most interesting case for our purposes. After 
the adiabatic elimination of the b mode, one gets the following master equation for the a mode 
reduced density matrix p 

where r =L ~ ' k h / 2 ( k i  t- 6;), F = X2db/4(kt + 6;). 



3 Macroscopic Coherence 
Hr, will now focus on the detection of optical Slriidinger cat8 rbther than on their gewatian, end 
thedore we shall assume that at t = 0 a superpiition of cohered states of the a rrrode has been 
d d y  prepared, i-e., we consider an initial condition p(0) = Nag(a)(/9I. The exact time eve- 
lution from this initial state can be obtained with the same method of /I 11 and it is better expssed 
in te rm of the normally ordered characteristic hnction x(A, A'; t )  = 'It (dt) exp(Aat) mp(-A'o)) 

x(A.  A*; t )  = Nm&3lo) exp {Ba(t)A - A(t)X' 
4 



We see that the system is stable and reaches a steady state if and only if 

In the stable case, the stationary state is described by a Gaussian density operator of the form 

where Z is a normalization constant md the equilibrium parameters rn and n can be written as 

where the asymptotic values u, and ~c, are easily obtained from (11) and (12). An interesting 
aspect of this stationary state is that i t  can show arbitrary quadrature squeezing. For example, 
the stationary variance of the quadrature Xt is given by 

and one has squeezing when < 0 and h/AF, < 16b/6,,1. It is easily seen that when 6, = 0 
no squeezing is jmssible, while for 6, # 0 but t$, = 0 extra noise is added to the system. The 
possibility to obtain squeezing with this model is thus only due to the existence of detunings, 
which give a sort of implicit feedback. 

4 Interference Fkinges 
Let us now focus on the detection of the interference fringes associated to a linear superposition 
of coherent states. These fringes can generally be seen from the marginal probability distribution 
of the quadrature X c ,  P ( x c )  = ( x c ( p ( t ) l q ) ,  where Ixt) is the eigenstate of X€ with eigenvalue 
xc. As we have seen above, this probability distribution can be reccnstructed from the homodyne 
measurement of the meter mode b and its general expression csn be easily obtained from the 
characteristic function (8) (8, 1 11 



where 

As a special case we consider the initial superpition trated by Yurke and Stoler (11, produced 
by the unitary evolution of a coherent state in a K e n  medium 

~ ( 0 )  (n) 
- 1 -&, - - 

2 (e la) + e*141 - a)) (ehl4 (a1 + e-&l4(-o~) . 

With this choice (19) simplifies to 

The first two terms &(xc, t )  describe the two Gaussian peaks corresponding to the two coherent 
states I f a )  of the initial superposition and they are explicitely given by 

where 

The third term in (23) describes the quantum interference between the two coherent states, where 
the function 

gives the probability oscillations assodated with the interference fringes and the factor I(al - 
a) I*') = exp {-21a12q(t)) describes the suppression of quantum coherence due to dissipation. It is 
clear that this suppression is practically immediate for macroscopically distinguishable states (i .e., 
large la)), unless q(t) 21 0. It is therefore important to analyze the behavior of this decoherence 
function ~ ( t ) ,  which is equal to 

Ib be more specific, if we want to determine the conditions under which the detection of macro- 
scopic quantum coherence is facilitated, we have to compare ~ ( t )  with the corresponding demher- 
ence function of a standard vacuum bath, which is given by (81 



This function shows that in the standard case, after a time t cz 1/(2b), it is h ( t )  z 1 and 
therefore the quantum interference is quickly washed out. On the contrary, in the present model 
it is possible that q( t )  assumes much smaller values, so to significantly slow down the destruction 
of the interference pattern. 

5 Conclusions 

Differently from a very large part of the literature on optical Schtodinget cats, we have focused 
on their detection rather than their generation because, as realized since the paper by Yurke and 
Staler [I], to dct.ect a linear supe rp i t  ion of macroscopicdly distinguishable states is more difficult 
than to create it. To the best of our knowledge, only the p a p r  by Brunc el al. 1151 affords a 
detailed discussion of both aspects. our opinion, Brune large number oj atoms reconstruction of 
the probability distribution reveuling the contrary shows how to prepare a fully op t id  detection 
scheme b e d  on a very simple model. o m  a promising way to both naeasumments and detect a 
linear superposition of wherent states. 
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Abstract 

Within the frame of the recently introduced phase space representation of non relativistic 
Quantum Mechanics, we propose a Lagrangian from which the phase space Schriidinger 
equation can be derived. Fkom that Lagrangian, the associated conservation equations, 
according to Noether's theorem, are obtained. This shows that one can analyze quantum 
systems completely in phase space as it is done in coordinate space, without additional 
complications. 

In this paper, we make use of a recently introduced phase space representation of non relativistic 
Quantum Mechanics[l] which complies with the requirements for a quantum representation. This 
allows the researcher to investigate quantum dynamics in the same dynamical space in which 
classical dynamics is commonly studied. Some advantages of this approach is a better comparison 
between quantum and classical dynamics, a better understanding of quantum effects and the 
possibility of analizing quantum systems completely in phase space in the same way as it. is done 
in coordinate space, without the complications found in other approaches.[2, 31 

In this approach to non relativistic Quantum Mechanics in phase space, the operators associ- 
ated to the momentum and coordnate operators are F - p/2 - i td laq  and Q - 912 + iha/ap, 
respectively. As expected, these operators do not commute with each other, in fact, [Q, PI = ah. 
Then, the phase space Schrodinger equation is given by 

where I' = (p, 9 )  denotes a point in phase space and (I? I $~t)  denotes the phase space wave function. 
This is the equation which governs the dynamics of the phase space wave packet and should be 
solved in order to find eigenfunctions, eigenenergies, etc. 

Worth mentioning is the set of phase space eigenfunctions found for the harmonic oscillator, 
(from here after, we use dimensionless units) 

hinctions which involve the phase space version H n ( r ;  a) of Hermite polynomials, with recursion 
relationship Hn+ (I'; a) = 2u(I'; a) H n ( r ;  a) - 4na Hn- I (r; a) ,  where u ( r ;  C X )  = (1 /2 + a)q - a (  112 - 



a ) p ,  and -1/2 cr 5 1/2. These polynomials have similar properties as the usual one-variable 
Hermite polyl?ornials but now in phase epaoe This is in contrast with other sets introduced in 
previous works. [4] 

The wave function in coordinate space $(q) can be recovered from the wave function in phase 
space $(r: a )  by means of the projection $(q) = exp(ipq/l)$(r; a)&, and the w~*.ve function 
in momentum space +(p)  can be obtained from the wave function in phase space by means of the 
projection $(p )  = J?: exp(-ip4/2)$(ri a)& 

The diagonal matrix element of the quantum probability conservation equation is 

where $ denotes the density operator, and where we have assumed that the potential function 
can be written as a power series in its argument, V ( q )  = C;==, V,qn. Note that Eq. (3) is a 
combination of the corresponding equations in coordinate 

and momentum 
6 8 00 n-1 

a @ I ~ I ~ ) = - C ~ : C @ ~ ~ l @ - ' - l  IP) , 
'p n=l I=O 

spaces, providing an alternative description of quantum dynamics. 
For a density operator of the form j? = C*,, P($, X )  I $)(x 1, we introduce the Lagrangian 

where 11 and x are wave functions in phase space. By means of the methods used for continuous 
systems,[5] this Lagrangian leads to the Euler-Lagrange equations 

and 

equations from which the Schriidinger equation and its complex conjugate in phase space are 
obtained. 

In order to obtain the conservation equations derived from this Lagrangian, we make use of 
Noether's theorem, [S] which leads to 



where z is any of the variables t ,  q or p. 
Now, b. (9), for x = t., leads to 

a ao n-l a3y) -- xVnx!Jt(r' 1 Q'H&-'-' 1 I') = R ( r I  T) 1 I') . 
'P n=1 l=o 

For x = q, Eq. (9) leads to 

and, for x = p, Eq. (9) leads to  

It has been pointed out[l] that the classical analog to the quantum density (I' I 6 I r )  is 
the classical density p(r;  t), so, we can ask for the classical analogs to  the quantum conservation 
equations derived previously. These classical analogs are obtained by taking the time derivative 
of the densities of interest and combining the resulting equation with Hamilton's $ = -alf/aq, 
q = 6H/ap, and Liouville's dplat = -paplag - F(q)dp/ap, equations. The classical energy 
conservation equation so obatained is 

Note the close resemblance that the above equation has with Eq. (lo), the difference being 
the symmetrizz~ion of the classical products Hp(I'; t), pHp(r;  t), F(q)Hp(r; t), with F(q)  = 
- C=I nvnqn-', and [av(q, t ) / a ] ~ ( r ;  t) 

The conservation equation for the momentum density pp(r; t) is 

which is the classical analog to Eq. (11). Note that the quantum density corresponding to 
pp(r; t)  is %(I' I (P - B')$ I r ) ,  the quantum density m&esponding to- $p(r; t) is 9 1 ( ~  1 
P [(P - P*)@ + p ( ~  - P*) ]  I r ) /2  and xr=, V, xy;, R(r I Q ~ ( P  - P*)@@-'-~ I r) is the quan- 
tum analog corresponding t o  F(q)pp(r; t). It would be very difficult to gess the correct quantum 
densities without the help of a Lagrangian and Noether's theorem. 



The conservation equation for qp(I'; t )  is giver. by 

which is tohe classical analog to Eq. (12). Note that the quantum density corresponding to 
op(I'; t) is %(I' I ( - ) 1 I'), the quantum density corresponding to pqp(I';t) is %(I' I 
f i  I(0 - Q*)@ + KQ - @)I 1 r)/2 and V, xy!' R(i' I Q"(Q - Q*)&-l-l I l') is the quan- 
tun1 analog corresponding to F(g)qp(I'; t). I t  would be very difficult to gess the correct quantum 
densities without the help of a Lagrangian and Noether's theorem. 

With these results, we can see that one can analyze quantum systems completely in phase space 
and in the same way as it is done in coordinate space, without the need of further comyiications, 
increasing our confidence in this representatan. 
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ON A NEW DETECTION SCHEME 
FOR XI-ARY ORTHOGONAL COHERENT STATE SIGNAL 
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We propose a new receiver for M-ary orthogonal coherent -state signal. It is shown that 
tbe proposed feceiver performs better than a photon counting rerciver as to signal detection 
error probability criterion. It is also shown that the ermr probability of the p ropod  receiver 
is almost minimum for the signal. 

1 Introduction 
Recent det~lopment of techrtology of the optical commonicatic,n system brought the error p rob  
ability of the system almost to the standard quantum limit "SQ1.-. which is the classical error 
performance limit of an opt.ical con~mlrnication system. It is well known. howewr. that ultimate 
error performance limit of optical communication system is far below the SC)L[12!. In order to 
overcome the SQL, quantum phenomena of optical signal, which is one of t h e  most remarkable 
difference from a communication system using radio frequency carrier: have to he utiliwd in the 
detection process There have been sev~ral proposals of detection schemes overcoming the SQL 
for several signaling schemes[3-12;. 

Optical M-ary orthogonal signal, cspetially optical M-ary pulse position modulation (PPM). 
ha9 a great potential for a very low-energy communication in deep-space data transmission. So far, 
many authors reported the system perforrnance[l4, 1.5:. In these investigations, a photon counting 
receiwr has been cmployd as a detect.ion scheme. Because, its construction is very simple, and 
it brings good channel property. The error probability of the wceiver for the signal in a coherent- 
state, however. is much larger than !.he minimum error probability. which IS predicted hy t.he 
quantum dctcction throry113,16]. A s  far as the author knows. there is no proposal for receiver 
superior to t hr photon count.ing rccei~rr for t.11is signal. 

'I'he main prlrpose of t,his paper i n  to propose a new detection scheme for an optical ;\I-ary 
orthogonal coherent-statr signal. which is superior to a photon counting receiver. By comparing it.s 
crror probability with thc minim~lm error probability. it is shown that it performs quasi-optimally. 

2 Proposal of a New Receiver 
I'ulse positinr~ n ~ o d l ~ l a t i o ~ ~  (I 'P\ l j  signal~ng is onc of thc typical ort t~ogo~al  signals. 11) a PPh! 
signalink a syn~l,ol o f  time rli~rat.ion 'I' consists of 31 time slots of duration I ; ( = .  T / : V ) .  Each 



symbol has only one pulse, and tben information is transmitted by the position of the pulse. 
if PPM signaling is employed for the optical communication system, a laser is pulsed at the 
transmitter during the slot having the pulse. Therefore, the prlsed slot is in a cohereot state, and 
the other m - 1 slots are in vacuum states. Then, a symbol S, (for i=l ,  2, . . . , M) is expressed 

where M, is an average photon number contained in one optical pulse. At the receiver side, a 
&wc has to decide the position of the pulsed slot among M slots in the symbol. For this 
purpose, a photon counting receiver has been employed as a detection scheme. In this case, the 
pulse position is determined by finding the slot with the maximum photocount among them. 
If the system is under the quantum noise limit, where no external noise exists, jhotm number 
fluctuation of an optical pulse may cause a symbol detection error. Because of the Poiasonian 
statistics of photon number of coherent state, photons are never counted during unpulsed slots. 
However, no photoa may be counted during the pulsed slots. This occurs with the probability of 
e-N. In this case, the detector can not determine the pulsed slot. If one of M symbols is selected 
randomly, an symbol detection error happens with the probability of 

On the other hand, the minimum error probability of the M-my orthogonal coherent-state 
signal is given by[13,16] 

By comparing this with the error probability of the photon counting n~e ive r ,  it is found that the 
exponent of the former is twice as large as the latter. What causes this difference? As shown in the 
deviation of Eq.(2), there remained no information about which of 1U signal has been sent when 
a photocount of the pulsed slot is zero. That is, the photon counting receiver does not examine 
whether the incoming signal is I*, > or l t i y l  > ( j  # i ) ,  but does whether I$, > or n:, 10 >,. In 
order to examine whet.her the incoming signal is It$, > or I*, > (j # i ) ,  and to make its error 
probability to approach to the minimum error probability. the information that all the M - 1 
unpulsed slots are in vacuum sates as well as that the pulsed slot is in a coherent state should be 
used for symbol detection. 

For this purpose. we propose a new detection scheme. The block diagram of the proposed 
receiver is shown in FIG.1. The receiwr consists of a local laser, a highly transmissive beam 
splitter, a photon counter, an optical shutter and its feedback control system. Frequency of the 
local laser is identical to that of signal field. and its phase is shifted by n [ran.] with respect to  the 
signal of pulsed slot. 'The intensity of the local ficld is prepared so that its part reflected by the 
beam splitter is the same as the transmitted part of the signal. .4ssuming that the transmission 
coefficient of thc beam splitter is nearly equal to unit, the combination process can be considered 
as displacement process of coherent component. I,et a (laI2 = 3,) be complex amplitude of the 
pulsed slot. then the conditional qliantum state of the combined field is giwn in 'Table I. 



TABLE.1 Conditional quantum state of combined field. 

Beam Splitter 

I State of shutter I open 
r 1 - 1  PUW S I O ~  

FIG. 1. Block diagram of proposed detection scheme. 

cloae I 
la > 

Using this construction, the receiver operates in the following way. 

1. At the beginning of each symbol, the shutter is open. 

2. A photon number of combined field is counted during each slot individually. 

3. If no photon i s  counted during a certain, say "dth" , slot, the feedback control system switches 
the shutter into close from the next, "i + lst", slot till the end of the symbol. 

The symbol is decided by the following rules. 

i. If the shutter is closed at the i th slot and no other photons are counted after closing the 
shutter till the end of the symbol, a symbol S, having an optical pulse a t  the i th slot, is 
decided as the transmitted symbol. 

2. If some other photons are counted in the tth time-slot after closing the shutter, a symbol S, 
is  selected. 

In the case when S, is transmitted. if one or more photons are c o ~ ~ n t e d  during every first i-1 
slots, the combined fieid of thc rth slot is in a varllum state. and thcn no photona are counted 
during the slot .  Therefort.. the sht~tter is c l m ~ d  frarrl t hr i - 1st slot, so that. no other photons arc 
detected till the end of thc rymbol. In this caw, .5', is deciricd as thc transmittcd symbol by thc 



decision rule 1, and errors never occur. On the other hand, when a symbol S, is transmitted, if 
no photon is counted in a certain, say "jth" (j < i), time-slot, and the shutter is closed from the 
j+lst time slot, no photon is counted during from the j+ls t  to i-1st slots. However, some photon 
may be counted during the ith slot, whose combined field is in a coherent statc. ) - o >. In this 
case, Si is also decided correctly as the transmitted symbol by the decision rule 2. If no photons 
are counted during the ith slot in the previous case, SJ is decided incorrectly, and which cruses a 
symbol detection error. The symbol detection error from S, to S, occurs only for j < i with the 
probability given by 

P(S,IS,) = e-'" (1 - cNs) d l -1 )  f o c j < i  

By summing P(S,)Si) with respect to j from 1 to i-1 , we obtain conditional symbol detection 
error probability Pe(S, ) as follows: 

This is symbol-dependent. Averaging these symbol-dependent error probabilities with respect to 
a priori-probabilities, we obtain average symbol detection error probability. For equally probable 
signal, an average error probability is given as follows: 

3 Numerical Results 
Symbol detection error probability of the proposed detection scheme is shown as a function of 
signal energy :V, for symbol lengths hf of 64 and 256 in FIGS. 2 (a) and (b), respectively. Those 
of optimum-quantum receiver, and a photon counting receiver are also shown. It is found in F1C.2 
that the proposed scheme is superior to a photon counting receiver on error probability. It is also 
found that the proposed receiver performs almost optimally. I t  is easily shown that the error 
probability of the proposed receiver is approximately only twice as large as the minimum error 
probability for N. > 1. FIC.3 compares the symbol detection error probabilities of the three 
receivers as a function of block length .%.I for an average photon number ;V, of 15. It can be seen 
from FIG.3 that error probability of the photon counting receiver is almost symbol-length inde- 
pendent, while those of the other two receivers are increasing functions of the length. Though the 
advantage of the proposed receiwr over the photon counting receiver becomes less as the length 
increases, the proposed receiver is  much better than the photon counting receiver for practical 
use, i.e. M 5 1024. It seems from these results that we can expect the proposed detection scheme 
to  perform ultimately low-energy opt.ical communication. 



(a) M = 64 (b) ~ 2 5 6  

FIG. 2. Symbol detection error probability properties of proposed detection scbeme compared 
with two classical receivers and minimum error probability. (a) is for M=64. (b) is for M=256. 

Symbol Length logr(M) 

FIG. 3. Error probability dependence on block length M for the case that ,Vs is 15. 

In this paper, we proposed a new detection scheme for the ;M-ary orthogonal coherent-statcsignal. 
The error probability of the scheme was derived. It was shown by comparing its error perfor~nance 
with those of several receivers that  the proposed receiver is superior to a photon counting reccivcr. 
and it performs almr t optimally. 
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Abstract 

Several quantum cryptosystems utilizing different kinds of nonclassical lights are de- 
scribed which can accommodate high intensity fields and high data rate. However, they are 
all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. 
A squeezed light homodyne detection scheme is proposed which, with present-day technol- 
ogy, leads to more than two orders of magnitude data rate improvement over other current 
experimental systems for moderate loss. 

The following is the second half of my talk "Squeezing, vacuum fluctuation, and all that" 
given a t  the Fourth International Couference on Squeezed States and Uncertainty Relations held 
in Taiyuan, China, June 1995. The  first half consists of a brief review of sqeezing, a discussion 
of its coherence properties, the reality of vacuum fluctuation, and a t.reatment of the photon 
localization problem. At least two of these topics require a quantum field treatment that I cannot 
go into here, so I will just concentrate on quantum cryptography. 

Quantum cryptography [l]  -[7] is a very interesting and novel approach to  secure communi- 
cation with eigenstates of nonconlnlt~tirig observables as carriers of information to assure secrecy. 
In all the concrete optical realizations of such systems which have been studied theoretically or 
experimentally so far [2] - [i]. either single-photon eigenstates orweak coherent states with less 
than one average photon per mode are employed to provide security f8). Such systems not only 
face serious practical limitations in their detection, they are also inherently data-rate r~mited, 
especially after large t ra~ls~~l i ss ior~  attenuation in possible applications such as the INTERNET. 
However, from an abstract point of view, two sets of states having the same linear geometry in the 
Hilbert space of states have the same security in principle. Thus, it is quite possible to  describe 
stmrig-signal cl11ant111n cryptosyste~ns. i.e.. systems with quantum states that ?re macroscopically 
di?it inguishabl~. which are as secure as the. ones that have been proposed. In the following we will 
describe several such system\ irivolvirig  ionc classical lights [9]. I'nfortunately. such equivalent set5 
of states behavc very differc~~tly i l l  loss depending on the field intensity. In all tlie followir~g sys- 
tems. one c.annot maintain <:it l~er  t 1 1 ~  strong-signal or the high-rate characteristics in the  prt-sc8ricc. 
of thc ltsllal linear loss. :\ltlic)~~ql~ n general proof is not yet available, the cvidcnce indicates I tiat 

there is no strong-signal c111a11t l l r l l  (.1.~-1)to*!.stern that would futictio~l properly in loss, for the salilc 
kind of reasons a s  t he clitfic~~lt  ic.5 i l l  p,cv~c~s;~t irig and olxerving tllac~.oscol)ic s~~perpositions of qlliirt- 
t ~ l r l l  s t a t ~ s .  'l'l~is f ~ a t  I I I ( ~  01-1, I t ' i t l ls  to s t s ]  i o ~ ~ s  ol~staclrs iri  t rnrisrilitting 1110r~ t11;111 1 hit ppr nlodc 
~ t * c ~ ~ r ~ l y ,  altlio~~gli i t  i\ 1 1 t ) t  t.I(*,11 tvI:,tt t I I ~ ,  S ~ ~ r ~ ( l a r i ~ ~ ~ ~ t a l  ratr I i r r ~ i ?  i s .  :Is a s~~ii t l l  cor~~pi%r~satifi~i,  a 
currently irnl~lctiic~~tiiI)lt~ 3y\t t -111 is ~ ) ~ ~ o ~ ~ o - t v I  \vl~icIi niay hr of practical iml)ortancc. 



Consider the following standard quantum cryptosystem [2] with a single polarized photon in 
four different possible polarization states, 

where I 1 > I  is the photon number = 1 eigenstate of a vertically polarized light mode, I 0 >2 

the vacuum state of the horizoritally polarized light mode, so that the two states of (2) are the 
single photon eigenstates of the corresponding diagonally polarized light modes. A sender, Adam, 
picks the basis ( I )  or (2) a t  random for transmitting a single bit 12 the legitimate user, Babe, 
who would choose to measure (1) or (2) also randomly. After comparison in another public 
channel to match basis, they would succeed in communicating on the average 1 bit per use. 
An eavesdropper, Eve, cannot duplicate a copy of the transmitted state and wait for the public 
measurement announcement, because the four possible states in ( I )  and (2) are nonorthogonal 
[lo]. Similarly, Eve cannot use a quantum measurement to  determine without large error which 
state was transmitted; thus any state she re-sends after measurement would induce large error 
in the otherwise perfect bit correlations between Adam and Babe, who could therefore detect 
the eavesdropping via various public iorrns of comparison. Apart from the practical difficulty of 
generating and detecting single photons, the data rate of this system is reduced to after suffering 
an energy loss 1 - 9 due to  transmission attenuation, detection quantum efficiency. and whatever. 
If the optical system has bandwidth W, i.e., a total number of W adjacent frequency modes per 
polarization per second. the data rate becomes bits per second assuming perfect detection. In 
the coherent-state realizations of this scheme with energy S < 1, the data rate is further reduced 
to 9SU'/2. Because of the snlallness of this rate in practice, especially when the loss is large, it is 
important to investigate the possibility of rate increase for a single mode. 

Clearly, the state vectors 

where < y'. I 4 >= 0 in each mode 1 and 2 have the same Hilbert space geometry as (1)-(2) in the 
sense of equal inner products. and t~erice tlic same security in principle. A strong-signal scheme can 
be obtained. say. by using photon riu~nber eigenstates I > = I  n >, I d >=I 0 > or more generally 
I t /~  >= I n l  >, I 4 >=I nz > with (nl - 1 j 2 )  >> 1 for macroscopic distinguishability. Note that 

j; ( 1  11 > I  I 0 >2  St I 0 > I  n > I )  are not the rlunlber eigenstates of the diagonally polarized light for 
n > 1. 111 a sirigle pair of motles, one call increase the data ratc I>y utilizing / II,, >= 1 n + An > 
, 19, >=I n > while keeping An >> 1. If .Y >> 1 is the upper bound on the photon numbers 
that can be used in a mode, sucll a scheme would have a data rate of Flog? ( 1  + N - An) hits 
per second. Such high rate call alsc he obtained for a lossless system \.;a conjugat,e coding [ I ] ,  
in whicli thc first basis contains A' orthogonal states and each 5 ,  .jte in t.he secorld basis is some 
!inc.ar ron~linatiorr of all thc :I' states in tlie first. N'hile it. is possible to sr~ggest concrete optical 
realizations for certain nun11)(~ s ta tc  srtl>esl~ositions. it is not cltar liow t h e  X-state buperpositiorls 
in conjugate codirig niay be gel~eratt!cl. In  any case, all such strperpositions degenerate quickly in 
loss as presently den~onstratcd. 



I t  is well known [Ill-[12] that linear combinations of macroscopically distinguishable coherent 
states are very sensistive to loss: they degenerate into a mixture of the states very readily. In a 
way, number states fare even worse. In the present context, this means the cryptosystem would 
be incapacitated entirely as the second basis degenerates into the first. Let the lossy system he 
represented by [I  31- [14] 

i b = r I b  + (1 - t ) )  c (4) 
where c is the photon annihilation operator of a vactium mode, a and b the input and output 
mode operators. For a pair of independent modes suffering t.he same loss 1 - 7, each would be 
represented by (4) with different a, 6, c . For ( rl, >=I n >, 1 4 >= 0 >, the difference Ap between 
the two density operators resulting from passing the two superposed states of (3) through (4) can 
be conveniet~tly calculatcd via eqns (6)-(7) of ref [Is], with the result 

which goes to  zero exponentially in 11. If I i. >=I ni >, I 4 > = I  112 > in (3). a similar but more 
complicated result is obtained with the eigcnvalues of Ap = f 2qn1+"2. For the single-mode system 

the eigenvalues of the superposed state difference Ap in loss are f Jii"'+n2. Since two equiprobable 
states can only be discriminated with probability equal to the positive eigenvalue of Ap from 
quantum detection theory 1161, such superposed number state schenies are useless with even a 
tiny amount of loss. 

The coherent-state superpositions in the following 4-sta!e scheme 

can, at least in principle, be obtained from a Kerr medium (17). For large tat,< a I -a >= 
exp(-2 I a 1') is nearly zero and the states (7) would perform in practice like an orthogonal 
scheme such as (6). For the general coherent-state superpositions in the following scheme 

where ;V; are normalization factors. the resulting density operator difference Ap in loss is 
proportional to < J F i j  ol I G o 2  > which goes to zero exponentially in 

1 
(1 - q)a  I a1 - a2 1. TO avoid this sensitivity to loss, (al - aZl has to be chosen small and 
the resulting data rate for (7 )  or (S)  would be comparable to coherent-state sysytems such as 
{If n >) or {If a >; If ia > 1. although (7 )  or (8) may be more secure because of their similarity to 
the s~ngle-photon scheme [7]. If one illcreases the rate in such systems by displacing the amplitude 
with (m f in)ao for integers 1n.n a11d a real oo with qa; 2 10 to assure near orthogonality 
of the displaced states, which can be readily accomplished experimentally, the resulting rate is 
increased to - log(qS) for large available energy S >> a:. However. Eve can split off a small 
fraction of the signal and determine 1 1 1 ,  n fairly closely, thus obtaining many bits of information 
probabilistically so that such systems do not. truly have a high secure rate. 



Consider the following 4-state cryptosystem with two 2-state bases given by two-photon co- 
herent states (TCS) (131 or pure squeezed coherent states which can readily be generated over a 
considerable range of parameters [18), 

where I p,u;a  > is the I @;p,u > of ref [13] with mean field a = pm@- u p  and p,u ,a  are 
all chosen real. In (9), the signal is in the small noise quadrature. As an approximate form of 
conjugate coding for the two conjugate field quadrature operators whose eigenstates have infinite 
energy, consider the extension of (9) to the scheme 

From eqn (3.25) of ref [13], 1 < p, v; f a  I p, -u; f P > l 2  = exp(- la - PI2) and 

1 < p ,  u; m a  I p, -u; nia > l2 = (p2 + u2)" exp{-(n2 + m2)a2/(p2 + u2)) (11) 

Thus (p2 + u2) cannot be too large from ( l l ) ,  and a also cannot be too large or else Eve can 
determin2 the state by a phase insensitive linear amplifier followt?d with beamsplitting or by 
heterodyne detect ion with the following signal- to-noise ratio in the quadrature containing the 
signal (191 

In general, one has to assume that Eve may tap at 9 = 1. 
When the correct quadrature is detected with homodyne detection, the signal-to-noise ratio is 

[131,[191 

One must also require that at q = 1, the homodyne SNR obtained by Eve with a beamsplitter 
of transmittance c is sufficiently small so that she cannot quite resolve the state even after the 
measurement announcement with a probability larger than, say, PF = 0.25, while the induced 
reduction in the SNRhOm for Babe from (13) to 

is already sufficiently large that Babe can detect the eavesdropping from the increase in her error 
rate. However, even for small c Eve can locate to within a few states among one basis of ( lo) quite 
well, unless a is so small that the data rate is strongly affected. Thus, a large number of secure 
bits cannot be derived from the use of (10). Nevertheless the potential of homodyne syst-ms can 
be seen from the following two examples. 

Consider (9) with a2 = 0.8, u = 0, 11 = 1. The homodyne detection probability of error [19] 
is Pe = er f c ( d m )  -. 0.037. If Eve tries to resolve the four states with optimized heterodyne 
detection, it is readily shown from classsical detection theory that the resulting error probability 
is > 0.2 which is easily detected by Babe. Amplification and beamsplitting would lower Babe's 
SNR too much at the present signal level. If Eve taps off just a fraction - 0.089 of the field 



to wait for measurement anr~o~~ncemcnt  so that the resulting optimum quantum receiver [I61 for 
binaray coherent states yields an error probability of 0.25, that would already change Babe's error 
rate to 0.044 via ( lo) ,  a 25% increase. With lo4 transmissions, this means an increase of 3.64 
standard deviations of error in an asymptotic standard Gaussian distrubution , which occurs with 
only a probability - Comparing to the photon detection system [5], [6) with a2 - 0.1 
and considering the fact. that close to an order of magnitude inlprovement in the photodetector 
quantum efficiency can be obtained from high efficiency photodiode for homodyme detection, this 
yields almost two orders of magnitude improvement in the data rate. For the TCS system (10) 
with rn = f 1, f 3, crZ = 1, ( p  + v ) *  = 4, r] = 0.5, and with the homodyne error probauility 
among the four states in one basis still given by P, = erfc( d m ) ,  Eve cannot exclude the 
possibility of any state with ( = 0.04 which already induces a 3-standard deviation difference in 
Babe's err - rate for lo4 transmissions, and c = 0.1 is required for YF = 0.25. The data rate 
is now increased by a factor of - 400. The disadvantage of these schemes is that by raising 
the signal level, the initial beamsplitter attack puts a limit on the transmittance q below which 
the eavesdroppping cannot be detctctc-d. This can be amended by setting the threshold of the 
binary decision a t  a higher lcvel a ~ l d  making no decision below it, which of course reduces the 
data  rate, or by decreasing a which would also lower the data rate. Apart from the sensitivity 
of homodyne detection versus photon counting technology, part of the above improvenrent is due 
to more elaborate signal processing which can also be adopted in photon counting systems. Note 
that as in the direct detection case, the presence of a small error probability for Babe would reduce 
the information rate from the original data rate by a small fraction. Also, Eve could obtain some 
probabilistic informat ion without being detected, which can be eliminated by Babe via "privacy 
amplification" [5] that would further lower the information rate. However, for sufficiently long 
keys there is no need to  eliminate Eve's probabilistic information. A detailed study c: h e  various 
possibilities will be given elsewhere. 
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Abstract 

The dependence d the quantum fluctuation of the output fundamental and second- har- 
monic waves upon cavity configuration has been numerically calculated for the intracavity 
fquencydoubled laser. The results might pmvide a direct reference for the design of sqtmz- 
ing sybtcrn through the second-harmonic-generation. 

PACS numbers: 42.50.D~. 42.6.5.1iy 

1 Introduction 

The SHG is a highly efficient process for prod-icing the squeezed state light. The generation of 
squcrczd light by SHC in a passive cavity has 'hen studied intensiwly in theory and e~~er imen t i ' -~ l .  
Some authors have discussed the nonclassical propert.ies of the output fields from an intracavit y 
frequency-doubled laser. Most of them consider an idea laser ~ j * s t r n 1 ~ - ~ ~ .  

For the experimental physicists, it is interding to  analyze the in on classical properties of the 
out put optical fields from a realistic int racavity freqxacy-doubled laser system. In this paper, 
the intensity fluctuations spectra of the fundamental and the SH wave in output fields have been 
calculated. The dependences of the intensity fluctuations oil the configuration of the laser cavity 
and the l o ~ s s c s  in the cavity haw b . n  discussed. These resu! ts will provide a direct reference for 
thc: design of squizer  w ~ t h  SHG. 

2 Fundamental and SH fluctuations spectra 

The system H=P consider here is a single-ended resonator that contains a laser m d u m  and a X(')- 
nor.linear crystal. The laser is pumped by a coherent laser source and the fundamental f equency 
mode ( 2 1 )  and SH frequency mode (a = 2wl) are coupled by a X(2)-nonlinearity. Based on Lax- 
Lollisell laser t.heory161 and in the rotat ing frame, the semiclassical equations of motion for this 
systcnl are given by: 

a1 = (-71 - zAl)al + kalaa + 9a1 
1 + bla1I2/g 

whtrc 01. - 2  is t,he complex amplit.ude of fundamental and SH wave, A1 = i ~ 1  - WL and A2 = 
a*2 - 2i;t are t.hc dct.un~ng betwen the cavity modes and the lasing transition UL, y1,72 are the 



cavity damping rates, g is the pump parameter, b is the saturation parameter of the laser medium, 
R is the nonlinear coupling constant 

The constant k depends on the nonlinearity of the cystal and the configuration of the cavity. V 
is the mode volume, I is the nonlinear crystal length, L is the cavity length. 

It is useful t o  introduce the real parameters 9, and q, to describ the real and imaginary parts 
of the field a, respectively. 

In the stationary state, +he real variables are the solution of the following equations: 

whereas the imaginary parts sre taken as zero ql = a = 0. 
When the pump parameter g approaches the critical value15~ 

the phase variables q, become unstable and the system presents self-sustained oscillation. We are 
interested in the regime below the threshold of the instabilities, in which the equations of motion 
(1) and (2) can be linearized around the stationary state given by equations (Sj and (6). 

At the case of resonance (A = 0), we obtains expressions for the outgoing amplitude squeezing 
spectra of the fundamental and SH wave at the analytic frequency R. When the phase angles 
eiual to zero the optimum squeezing can be obtained. setting Go as the shot-noise level.-we 
have: 

1 - R, 87s ($I& I - ,**) (711 + n2) 
Sl(R) = - 1 - RI + LI D (8) 

R, is the reflectivity of the output coupler at  the frequency w,. L, is the rest losses per 
roundtrip in the resonator that include absopt ion, scattering and residual transmission through 
mirrors other than the output coupler. m, is the cavity damping rate which only depends on 
the output coupler loss ( I  - R,),  y, is total cavitv damping rate which depends on total losses 
(1 - R, + L,). the equations, it can been seen that the squeezing increase when the rest 
losses are decreased. 



3 Numerical calculation and discussions 
Following numerical calculation was procased according to our realistic experinlcntal setup and 
parameters. The experimental system is shown in Fig.1 

Fig. 1 

A Nd:YAC laser medium and a nonlinear crystal KTP are contained in a semimonolithic laser 
cabi ty. One side of Nd:YAG crystal was coated as the input coupler (MI). The length of Nd:YAC 
and KTP both are 5mm. The input coupler is high reflectivity for both fundamental and SII 
waves and the output coupler (11f2) is high reflectivity for the funciamental wave. Former works 
k 5 1  have indicated that the squeezing increases with pump paramter. Considering g < g,, we 
chose the pump parameter g = logs-I. that corresponds to the pump power of 2W in our system, 
to  discuss the depcndcnce of the squeezing on the configuration of the cavity and the reflectivity 
of the output coupler for SI I wave (R2). The saturation parameter b of laser crystal is 0.29", the 
rest losses of fundamental wave is 0.5% and the rest losses of Stf wave is 1%. 

Fig.2 shows that the squeezing degree of th SH wave at zero analytic frequency as a function 
of the cavity length and R2. Here the curvature radius of output coupler is designated as 30mm. 
It can be seen that for the designated curvature radius we can find an opt i~num R2(R2 = 88%) 
and an optimum cavity length (L = 23mm) to get the maximum squeezing (S2(0) = -0.21). 
For a certain R2 there is a mrrspontfc.nt optimum cavity length which is a near half-concentric 
configuration. 

In Fig3 the curvature radius o f  output coupler is taken as 100rnm. In t.his case R2 = 92% 
L r= 46mm should be an optimrim option which is a near half -confocal cavity other than above 
new ha1 f-concent ric. 

Fig.4 is the squeezing spectra of the fundamental wave (1) and the SIi wave (2) as a function of 
analytic frequency St at the above-merit ioned optimum configurations of the cavity. For Fig.4(a) 
p = .U)mnc, L = 25mm and R2 = 88%; for Fig.4(b) p = 100mm, L = 46mm and R2 = 92%. 
In this designed systetii the sqlieezing of the fundamental wave is much less than SII wave. The 
xluc~zing bandwidth in Fig.4(n) is larger than Fig.4(b), so that in the experiment the length of 
laser cavity should be chosen a9 short rts possible to  obtain higher intracavity densit.y of power, 
larger sclucezing band width and more compact configuration. 



4 Conclusion 
We have calculated the dependence of quantum noise squeezing upon the reflectivity of output 
coupler and the length of cavity in the intracavity- doubled laser. The results might provide some 
rekrences for designing squeezer with intracavity SHC. 
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Figure Caption 

Fig. 1 The laser configuration 

Fig.2 The dependence of squeezing at fl = 0 upon the reflctivity R2 and cavity length with 
p=30mm 

Fig.3 The dependence of squeezing at R = 0 upon the reflctivity R2 and cavity length with 
p = 100mm 

Fig.4 The squeezing spectra for the fundamental wave (1) and SH wave (2). (a) p = 30mm, (b) 
p = 100mm 
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Fig3 The dependence of sqaeahg at fl.0 upon the 
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Fig.4(b) The squeezing spactra for the fundamental 
wave (1) and SH wave (2) ( p= l h )  
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Abstract 

Solid state laser sources, such as diode-pumped Nd:YAG lasers, have given us CW laser 
light of high power with unprecedented stability and low noise performance. 1,1 these lasers 
most of the technical sources of noise can be eliminated allowing them to be operated close 
to the theoretical noise limit set by the quantum properties of light. The next step of 
reducing the noise below the standard limit is known as squeezing. We present experimental 
progress in generating reliably squeezed light using the process of frequency doubling. We 
emphasise the long term stability that makes this a truly practical source of squeezed light. 
Our experimental results match noise spectra calculated with our recently developed models 
of coupled systems which include the noise generate4 inside the laser and its interaction 
witn the frequency doubler. CVe conclude with some observations on evaluating quadrature 
squeezed states of light. 

1 Quantum models of coupled systems 

Earlier quantum models considered only one system at a time, one resonator or one laser, 2nd 
predicted the noise properties of such a system in isolation. Using the ideas developed by Gardiner 
and Carmichael [I] we have developed aigorithms which allow us to describe coupled systems. 
Examples include a laser pumped by another laser, a laser locked to a passive linear ~r nonlinear 
resonator (such as a frequency doubler or optical parametric oscillator), or a laser locked to another 
laser. This new technique is an extremely powerful tool to evaluate the performance of rea!istic 
systems, which usually consist of several ccwpled components, and it was applied to simulate the 
experiments described in this paper. 

2 Removing excess laser noise 

It is possible to actively suppress most of the excess technical noise from the laser, including 
the intrinsic relaxation oscillation, using electro-optic feedback. Such a circuit, with t. suitably 
designed feedback characteristic, will suppress classical fluctuations in the laser Ii3ht [2] but cannot 
suppress quantum noise. In fact there is actually a penalty to be paid for the noise suppres:iion: 
in spectral regions originally free of excess noise, such as well above the relaxation oscillatior., the 
feedback adds classicai noise - particularly when the feedback gain is high [3]. Improverrients to 
direct detection feedback can u ~ l y  be made by replacing the beam splitter with a nonliqear optical 
component, such as a Kerr medium or a frequency doubler 141. 



An alternative technique is to passively suppress the noise at higher frequencies by passing the 
laser through a narrow bandwidth cavity. This arrangement, typicall; known as a mode cleaner 
because the cavity improves the spatial properties of +':? beam, acts a s  a low pass filter for the 
laser noise. The impact of the mode cieaner can be s e ~  . :"ig;lre la. Trace A s h o ~ s  the amplitude 
noise spectrum of the laser used in our experimznt z c e  B shows the output noise spectrum 
after a mode cleaner of bandwidth 800 kHz. (The sp,ue is the moduli tion peak used to lock the 
mode cleaner). There is a sigfiificant improvement, with light wch ing  the quantum noise lirilit 
a t  8 MHz, as opposed to beyond 50 MHz. 
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FIG.13. Intensity noise >pectra. A )  direct from laser B) after passage through 
mode cleaner 

FIC.lb. Experimental lbyout for generating squeezed light via frc quency doubling 

Amplitude squeezed light 
Having shown that it is possible to remove the technical ie-ise from a practical light source, 
the question becomes is it possible to produce a practical tight source with reduced quantum 
fluctuntions? (In this paper we will concentrate on reduction of amplitude fluctuations.) 

'!'his can be done with a diode laser which converts electric current to light with a high quantum 
efficiency. Currents are a flux of tosons, and thus the Poissonian limit does not apply: st; L L ~  
currezt regulators generate currents with Poissonian statistics (and thus fluctuations) well below 
the standard quantum limit. In turn this can be wed to drive a laser and generate light with sub 
Poissonian statistics [5j However to date, such systems have relatively poor spatial properties 
and are limited to the red region of the spectrum. 

An attractive alternative to diode lasers is to use a nonlinear medicm to generate bright, 
amplitude squeezed light directly. Frequency doubling was one of the first processes which was 
explored for squeezing (61. .4 long sequence of t,echnological improvements was requ~red to improve 
the reliability of these systems. To date, passive monolithic singly resonant cavities have proved 



to be by far the most stabtc systems for noise =uppression fi]. In our experiments i8j the doubling 
xaterial is monol~thic %fgO:L1Nb0~. The end faces are curved, poiished and dielectric coated to 
form high reflect~vity cavity mirrors. .A dtt-de pumpel C'.%' Nd:YAG iaser operating at I t 3 3  nrn 
is iocked to  this r soca tor  and pumps it with z 100 mkr of power. The doubler bas a conversion 
efficeucy greater than 50%. The squeezed light, at 532 nm. is picked off with a dichroic mirror 
and is d e t e c t 4  at a ba!anced pair of detectors ( a  self-homodyne detectarj. See Figure Ib. 

TIME I &uta) 

FIG. 2a. Theoretical and experimental noise spectra for doubler. 
FIG. 'Lb. Reliability trace. Degree of squeezing is constant over a 5 hour period. 

Figure 2a shows the results of a scan of the detection frequency. Trace .A is the predicted 
squeezing foi SliG when illuminated with a coherent state. an example of an unrealistic model 
based on a s~ngie system. It predicts best noise suppression s t  zero detection frequency. The 
width of the noise spectrum corresponds to the linewidth of the doubler. Trace B shows the 
e ~ ~ e r i m c n t a i  results. after allo\vine, for the nonideal detection efficiency (a 6-5 %). kVhilst the 
agreement at  large detection frequencies is reasonable. the prediction of good noise suppressiorl at 
low frequenzies is c l ea r l~  wrong. The noise properties of the real laser dominate. 

Trace C shows the results of a model which sirnuitanmusly describez the iaser and the doubler: 
it is in excellent agreement with t.he measured results. TIle parameters for the laser madel are 
derived from dilect v asurement 3f the laser output. no f ~ t h e r  adjustment to the parameters a te  
required when used in the coupled model. To access greater squeezing we placed a mode cleaner 
between the laser and the doubler and locked it to the laser. The prediction for the coupled 
system of three cavitie (laser. mode cleaner and dcJb!er! is s h o ~ n  lr. trace D. the corresponding 
exi>eriment.al rcsults are shown in trace E (again allowing for nonideai detection efficiency). Both 
the improvement :?I squeezing and the qreement bet- .een theory and experiment is exce!!ent. 
a - a r t  f ~ o m  the frequent:; window from 5 to 10 >!Hz where we see a ;cries of we!! defined technical 
zoise spikes. ;nost likely due ?o acoustlc resonaces in the doublir,g crystal. Figure I b  shows the 
resuits of the reliability t-st. Observed squeezing of 1.1 dB  12.2 dB ib~ferred) was measured at 
11.16 hiHz over a 5 hou: period. In ail. these- results demonstrate the validity ~f our model for 
coupled systems and show tha t  bright squeezlna greater than  2 dB car1 be reliably obtained. 



4 Evaluating quadrature squeezed  stair?;^ ;,f light 
In the previous sectioo we obtained excellent quantitative agreement between theory and ex- 
periment. Curiously neither the theoret icaI model nor the experimental results we used truly 
quantified the state of the light - infc:natioc was th--:;.a away. In this section we examine this 
issue in some detail. 

Broadly speaking there are two classes of model.., full and linearised. The starting point for 
both is the same, the difference arises in the approki- ?ations made in the latter to evaluate the 
effect of the nonlinearity. Either model will give a two dimensional probability or quasiprobability 
distribution that describes the state of the light. (In the remainder of this discussion we will 
consider the Q representation and its corresponding Q function.) F d l  models use a full quantum 
mechanical description, covering both average mean d u e s  and fluctuations, to describe the com- 
plete state of light Pue to computing and mathematical limitations, these models ace mainly used 
to describe states mf low photon n u m k  (such as squeezed vacuum). The resulting Q functions 
may be aysmmtric and may show negative curvature. In linearised models, the mean d u e s  of 
the quadratures are evaluated by solving the semiciassical equations. The fiuctuations are treated 
as perturbations, and only terms linear in ffuctuatio~l., are considered. This allows consideration 
of high photon states, but lirnits the rrrodel to predicting miy symmetrical Q functions. As we will 
see, the standard measurement taken with a homodyne detector is well matched to the simplified 
predictions of the linearised theory. 

Now consider the experiment. In CkV squeezing measurements the experimental signal is 
the phase dependent noise current from the hamodyne detector. This is normally analysed with 
a spectrum analyser to give the phase and frequency d e w d e n t  variance of the noise current, 
V,,,($, U ~ ) .  For an arbitrary state of light no direct and uaique mathematical conversion exists 
between the measured noise variances of the light ~ 3 d  the oredicted Q function. However, sowe 
important features of the Q function can be inferred. 

For a coherent state [(AX:) = (AX;), (AX:)(AXi) = 1) the probability distribution is a 
symmet:ic two dimensional Gaussian with a full width half maximum. 6.Y(4,w) = 1, centred 
around the point given by the long term averages u, (where d and o are the detection angle 
and frequency respectively). By convention a contour is drawn at the full width half maximum 
of this probability distribution. For any projection angle the root mean square value of the 
distribution (i.e. the square root of the variance) is trivially equal to the separation of the contour 
front the centre of the  distribution. The contour is a circle. 

Squeezed states are those where the symmetry between X1 and X2 has been broken by some 
nonlinear process. in other words the fluctuations in X1 and X2 are no longer independent but 
are correlated. For a mininum uncertainty squeezed state ((AX:) # (AX:)? (AX:)(A.Y~) = 1) 
the distribution is still a two dimensional Gaussian, but the contour is now an ellipse. Note that 
such a two dimensional Gaussian function has Gaussian cross s e c t i ~ ~  for any angle d. Once an 
elliptical contour is assumed, which is true for any mininum uncertainty state, measured variance 
V,,,,(~,~J) and contour dX(qi.w) can still be related point by point. 

For a squeezed state witt excess noise ((AX:)(AXi) > 1) the shape of the Q function can 
vary significantly from the previous cases. Without specifying the specific squeezing process, no 
simple assumption about the shape or the symmetry of the contour nor the shape of the various 
cross sections through the Q function, c;n be made. The connection between vcurrmt(d,~) and 



6X(O ,w)  is no longer local. The value of Vmrremt(d,w) depend. s-, all parts of the probability 
distribution. T h e  projection of the entire function, not just one specific cross section a t  d, must 
be taken into account when determining the contour points (and thus the Q function shape) from 
t he variance V,,,, (4, .J)- 

There are three courses in such a situation. To date the most common course has been to  simply 
assume that the Q distribution is Gaussian / the contour is an ellipse. Mrhilst unsatisfactory, 
by definition this gives good agreement with the linearised models rriost often used to  describe 
experiments as they only produce Gaussian distributions / elliptical contours. In fact one can 
only interpret the variance V,,,,,t(#,u) as the limit to  the extent of the distribution function in 
the direction 6. The second course then is to obtain a rough idea of the contour tbr the Q function 
by taking every value of V,,,,(O.u) and converting and plotting it as t o  two tangents with 
the separation [V,,,,,:!d.u~)]'/~. The actual distribution will lic inside the perimeter bounded by 
these tangents. The  shape and size of the  contour can theri be estimated from the plot. This can 
be done easily with ty pica1 variance dataig]. 

The third approach is to  measilre the Q function directly and was pioneered by the group 
of Raymer et. al. :10j with pulsed sources of squeezed light. At fixed o, maily pulses are  
recorded and a full histogram of the energy of the pulses is constructed. This gives not only 
the variance of the fluctuations but the full distribution function at that acgle, Using data  
from various angles the Q function is tornographically reconstructed. Each pulse is a mode of 
the light and is constructed of a complex mixture of frequencies. In CM' squeezing the measured 
squeezing, and therefore the measured Q function, is highly frequency dependent. (The intracavity 
squeezing value / probability distributron is for a mode of light - it can be related to  the measured 
extracavity squeezing spectrum of the light field via the inputjotitput forrxlalism of Collett and 
Gardiner I1 11). The arlaiogous experiment is thus to  look at only one frequency of the phase 
dependent noise current from the horndyne detector. This can then be sampled and digitised t o  
build up a histogran. of the photocurrent fluctuations. This is repeated for a number of angles 
and the histograms are then in the tornographical reconstruction. This technique was recently 
demonstrated successfully to analyse the squeezed vacuum / low photon squeezed light produced 
by a CLV optical parametric amplifer / osciliator :l'Lj. 

To conclude, mininum uncertainty states are we;i described by linearised theories, and well 
emluated by current measurment techniques. States with excess noise. such as a Ktrr  squeezed 
state. cannot be accurately described by a linearised model - interesting (non Gaussian) features 
are lost. Furtherrr~ore, currept measurement techniques will also miss these ir~tcresting features. 
Sew nlodeis and experimental techniques are required. Table I summarises t h e  salient points. 



TABLE I Summary of Section 4. 

5 Conclusion 

Theory 

' Distrib. 
charac. 

Detect. 

Monlin. 
system 

Strong squeezing of bright, short wat-elength, light has hem demanstrated and found to be ex- 
tremely reliable. We have developed models thit  describe the behaviour of, and account for 
the interaction between, the variaus elements in a realistic system and find excellent agreement 
with experiment. Vie conclude that current theory and measurement techniques will need to be 
extended to properly evaluate the next generation of nonclassical light experiments. 
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Mininum Uncertainty State 
Linearised theory / quadratic 
Hamiltonian gives exact result 

(AXt)(AXi) = 1 

Q function is a 2 dimensinal Gaussian. 
Any cross section is gaussian 

Contour line is an ellipse 

Contour/Q function defined by the two 
parameters r and & 

Distance from contour to centre is 
ax(&! = l l zv(9)  

Conversion of V(4) to contour . 2nique 
Homodyne detector and spectnqrn 
analyser gives V, , ,  and V , ,  which 
define contour and Q function uniquely. 

Any system with nonlinearity constant 
across distributicn function 
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State with excess noise 
Lineariseti theory is not sufficient. 
Full quantum theorj / higher order 
higher order Hamiltonian required 
(AX:)(AX,l) > 1 

Q function has an arbitrary shape 

Contour shape is arbitrary 

Definition of cortour/Q function 
requires many parameters 

Distance from contour to centre can 
be greater or smaller than l/2V(&) 

No unique conversion of V(4) to contour 
Requires tomography to describe Q 
function. Conditional distribution 
constructed from homodyne output for a 
given LO angle. Tomography requires a 
range of LO anles. 
System where nonlineariy varies across 
distribution function (e.g. singularity) 
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The amplitude and transverse quadrature component squeezing of coherent light in high 
Q cavity by injection of atoms of tw~photon transition are studied. 

The Colubcv-Sokolov master equation and generating function approach are utilized to 
derive the exact variances of photon number and of transverse quadrature component as 
function of t. The correlation functions and power spectrums of photon number noise and 
of output photon current noise are also investigated. 

1 Introduction 

In this work, the amplitude squming as well as the transverse quadrature component squeezing ot 
coherent light in high Q cavity by injection of atoms are investigated. The interaction is assumed 
to be ttnwphoton transition type and the initial mean photon number JV is assumed large. 

The interaction interval T for iridividual atom is taken the faverable value ~ / g ,  where g denotes 
the effective coupling constant between the atom and the single mode light. This value makes 
each incoming atom to ani t  two photons during passing the cavity. 

Our approach is based on Golubev-Sukolov master equaticir.lll. Since this equation was doi~b~ed  
by Rcnkert and ~zazewskii~l for it may give negative probabiliiies. We will do some discussion on 
it first. To our view, even if Colubev-Sokolov equation does r.ot have the meaning as a common 
diflerent,ial equation, it is able to give correct mean values, variances and correlation functions of 
appropriate quantities, when it is utilized along with generati~~g function method. In this work, 
this approach is not only used to derive photon number varancc, :he power spectrums of steady 
photon number noise and of output photon current noise, but alsc is generalized to study the 
squeczi~lg of transverse quadrature component. 

In the investigati~n of photon number variance, we find that, in the case that the steady mean 
value of photon fi, is much larger than the initial mean value of photon A', the ratio (An(t)*)/(n(t)) 
will fir3t drop to a vaiue ~vhicl~ is much sri~aller than its stel.2~ state value 112, and then turns up 
to approach 112. 



In the investigation of squeezing of transverse quadrature component, we get that its variance 
square is expressed by (n(t))/lN, hence the correspondent steady value 8,/4N m ~ + e  e i k  
smaller on larger thatn the standard value 1/4. It is interesting to note, this steady value is 
related to the initial parameter N. Furthermore it does not depend on whether the injection b 
regular or poissonian. 

2 Model, Golubev-Sokolov master equation and gener- 
ating function approach 

We assume that the initial state of light in the h igh4  cavity is single mode coherent light with 
mean photon number N > 1. The irrjected two level atoms are in upper level, they interact with 
the cavity field by resonant two-photon transition: w~ = 2w. 

The change of density matrix of photon field due to its interaction with a single atom initially 
in upper level is described by 

F a  lage N, m -d n for important p, are also large, so that gr,/(rn+ l)(m+Z) may be 
approximated~31 by gs(m + i), etc. If we take the value of r as i then eq.(l) turns out to be 

m-n 
(6~) -  = (-1) ~m-2,n-2 - (2) 

which means each atom emits two photons during passing the cavity, namely the quantum &- 
ciency of photon production equals one. 

We assume that the atoms enter the cavity one by one and at  most one atom in the cavity 
every moment. Therefore after injection of k atoms, p will change to  (1 + f)kp. 

If the injection is of poissonian statistics with r as mean injection rate, the average number of 
injected atom during the interval t -, t + dt will qua1 K = rAt. ~husl'l  

Kk 
p(t + At) = x e - K T r ( l  + 4)'p = eacp(t), 

leading to 

This is just the pumping term in the well known Scrllly-Lamb masier quation. 
For regular pumping, k itself is a definite number, k = rAb with r denoting the injection 

rate.Therofore 
p(t + At) = (1 + ~)'*~p(t)  = e r/ tln(l+f J At! 1 ( 5 )  

which leads tol'l 
M t )  
dtlpmp = r[ln(l + &)lp(t) 



for regular injection. By adding the cavity damping term, Golubev and Sokolov got the equation 

in which r denote the cavity damping and the ihermal photon is assumed negligable. 
Benkert and Rzazewski foundw that this equation gives negative when it is solved by 

d letting z p ,  = 0 to derive the steady values of p,. Let us see where this problem might come 
from. For regular injection rAt equals k therefore must be larger than 1. Thus At cannot be 
taken as arbitrarily small. This i :~  turn means eq.(7) may not be a diflerential equation of common 
sense, one ought to avoid by setting 2 be zero to  get the steady value of p. Because of stepwise 
increase of r t ,  th stiiik!y steady value of p may not exist. 

In practice, or usually only needs to calculate the expectation values, varicances or correlation 
functions of some relavant quantities. In this case it is better to evaluate these valttes directly 
rather than through evalua4;ing p, first. Generating function aproach is especially *ood for this 
purpose. In this work this appnach will be used n ~ t  noly t.o study the amplitude squeezing 
(photon number squeezing) but also generalized to study tlie squeezing of transverse quadrature 
component. 

3 Photon number squeezingl41 

Golubev and Sokolov, as well as some other authors, expanded the logurithm In(1 + is) end 
trancated at  the second order of 2: 

~ . -h .~an I ' l  and the present author161 has shown independently that for evaluating the variance 
square (An2(t)), this treatment is correct. The result so obtained is identical to the exact solution, 
but it is not so for evaluating (An(t)3). In general, for calculating of (~n ( t ) ' ) ,  one needs to  expand 
In(1 + 6 )  to 1 terms to get the correct value161. 

As did in Refll], we introduce the generating function for (An2(t)) as 

By utilization of eqs. (7) and (B), we get the equation for G ( z ,  t) as 

This is a partial difference equatio~ of first order, its general solution is expressed by one of 
B C z t  its special solution mutiplied by ihe general solution of equatiln = I'(1 - z ) e .  The 

latter w~ll be determined by the requirement of initial condition. The desired solution so obtained 
expressed by 

G(z, t) = G ( ~ ,  O)ef(' n t ) ,  (11.1) 



where 

The values of (n(t)) and (An2 (t)! are easily obtained from G(z, t ) :  

The steady values of (An(t)) and (An2(t)) exist.By letting t = oo, one get: 

If we define q(t) as (An2(t))/(n(t)), then its steady value 11. will be ?, the same as one photon- 
transition subpoissonian lasers. 

Eqs.(l2) can be checked in the special case of ideal cavity (I' = 0)131. 
The ~ ( t )  defined above has different behavior for x ( r  KIN) > 1 or < 1. In the latter case 

q(t) drops from its initial value and monotoniccilly tends to the steady value 112. In the former 
case q(t) first drops down to a minimum value h i n  less than 112 and then turns up to approach 
112. For z > 1, q,,,,. zz fi < 1, therefore the correspondent state may be closed to the photon 
number eigen state. 

The steady state correlation function g(t) defined as following 

can also be evaluated by a generating function F(z,t). F ( z , t )  satisfies the same differential 
equation as eq.(lO), but has different initial conditions: 

The g(t) so attained is 

The power spectrum of the steady state output photon current noise is related to g(t), in the 
case that the damping of the cavity field is mainly due to output, its expression will be 

The correlation function (An(t l)An(ta)) for arbitrary t and ti can also be calculated by similar 
approach141. iFrom it we obtaln the power spectrum of steady state photonnumber noice as 

P 

which mairlly ties in low ftcquency region, in contrast to Pl(w) given above. 



4 The squeezing of transverse quadrature component. 

\Ve are now generalizing the generating function approach to investigate the squeezing of quadra- 
ture components of ii. 

Let a, the eigen value of iL for the initial photon state, he real number, then iL1 = ;(a + 611, 
1 B2 = B(B - Bt)  will be the longittidinal and tranvcrse quadratare components respectively. 

The mean value of longitudinal quadrature component is giveren by 

In our model (Gp)n,n+l = - ~ ~ - 2 , ~ & - 1  - Pn.n-1, which absolute value is not small as compared with 
Ipn,n+ll. Actually it is almost twice as large as Ipn.n+ll. And tht: sign of [(l + ii)kp]n,n+l varies 
alternately betwccn positive and negative as k varies. Because of these features, the evolution of 
(iil(t)) could not be desci.ibcd by differential equations. The situation of transverse quadrature 
component is different. In olir case (a2(t)) remains to be zero. \Ye may generalize the generating 
function method to investigate its variance square, which is expressed by 

As before, x, fi+ 1)(11+ 2)pn,n+2(t) may be approximated by z n ( n  + i )hn t*( t ) .  Define 

then 

Nrc see that only first ordcr derivative appears in eq.(21), therefore it is enclugh~'~~l~ to take just 
one term in the expansion of ln(1 t li).  The equation of G2(t, t )  can be derived accordingly, solving 
it as before, we get. Cn(rt + i)pn,n+2(t), which in turn yields 

This result, riiay also be chcckctl in the spccial case of ideal cavity. Setting e-rt S 1 - I't in eq.(22), 
we get 

which is the same as that gii1e11 i l l  Rcfl3J by a completely different approach. 
One ma;. show from m1.(22) that (Aa?(t)?) - j may be positive or negative, depending on 

whether (11,)/1\: is larger or srnallrr tlian one. The steady value of ( A U ~ ( ~ ) ~ )  is given by 



which may be much larger or much smaller than 1/4. The latter means, in certain sense, deep 
suppression of phase noise. 

It is interesting to note that the stationary value (Aa~( t )~) ,  is still related to the initial pa 
rameter N. 

It is also interesting to note that ( A ~ ( t ) ~ j ,  unlike (An(t)*), has no concern with whether the 
injection is regular or poissonian, since in the above derivation, ln(1 + ii) is allowed to he replaced 
by 6. 

This work is part of the project supported by the Chinese Doctoral Program Foundation of 
the Institution of Higher Education. 
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Almmct 
In this paper, We study the abmic dipale squeezing in the correlated two-mode two-photon 

JC model with the field initially in the correlated two-made SU(1 , I )  coherent state. The effects 

of detuning, field intensity and number difference between the two field modes are investigated 

through numerical calc.~lation. 

1 Introductioar 
The production and nonclassical properties of quantized electromagnetic fields and their 

interaction with matters Itave been the topics of fundamental importance in quantum optics, and 

both saw remarkable development in the past decade. In the first aspect, the correlated two- 

mode states of radiation fields, s ~ c h  as the two-mode squeezed s t a t 4  13, the pair coherent 

state[2] and correiated two - mode S U  ( I , I )  coberent s t a t 4  31, have rtcciv a great deal of 

anertions among researchers. These states usually display nonclassical properties including field 

sq~~eezing .antibunching and sub -poissonian photon statistics. In the other aspect. the theoretical 

model for the interaction of correlated two-mode fields and a two-level atom, better known 

as thc generalized Jaynes-Cummings model[4], was investigated for field squeezing and atomic 

dynamic$51. However, little attention has been paid to the atomic dipole squeezing in these 

systems. 

It is well known that the atomic dipole squeezing, in much the same way as  the field 

squeezing, is the reduction of fluctuation of one component of the dipole moment while keeping 

the uncertainty relations with the other component at the s,me time. As it is shown[6] that 

squeercd &tom radiates squeezed lights, it is of importitnce to study the squeezing of the atomic 

variables. In the present paper, we devote a study to the squeezing of the atomic dipole moment 

in the correlated two- mode two- pb.oton JC model. 

2 The Hamiltonian and State Vector 
We consider a system comprising of a two-level atom interacting with the correlated two 
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-mode, two-photon field. The Hamiltonian for the system in the dipole and the rotating-wave 

approximation is given by the following expression, 

H=W,.O,/~+W, (a:al+ 1 /2) +o,tafa ,+l /2)  +ii(a:a:o- +o+ataz) , (h= 1) ( 1 )  

where 0,. is the atomic transition frequency, o, is the frequency of the field of mode i; a,(a:) 

and a,(a:)are the field annihilation (creation) operators of the two modes,respectiveIyjo, is the 

atomic inversion operator and nt are the atomic transitian operators ; >. is the atom-field coupling 

constant. 

We assume that the atom is initially in the colrerent superposition state of the excited state 

; C> and the ground state I g>, and the field in any correlated two-mode state. The initial 

atom- field state is given by 

?c. (O)>=  ( A(O)>@ I F(O)> 

B B 
where A>=cos - 1 e>+ehsin - I g>=A, 1 e>+A, 1 g> 

2 2 

and : F(O)>=Z C,., I n+q,n> 

At any time t>O, the state vector of the system is found from the Hamiltonian(1) to be 

- 

+A,CCn qexp(-ilo,(n+q) + u p 1  }G, ( - n+q,n> 
r - c  

with 

3 Atomic Dipole Squeezing 
We define the slowly varying atomic dipole operators as 



1 
I T , = - -  (n+exp(-iw,t)-o-exp(io3))  (5) 

- 2i 

which correspond to the dispersive and absorptive parts of the dipole moment, respectively. 

The atomic state is said to be squeezed if the variance satisfies the condition 

This condition can be rewritten as 

In carrying out the numerical calculations, we assume that the initial field is in the correlated 

two-mode SU ( 1 , l )  coherent state " 

-. , * q .  :& < (n+q) ! . ; I  :<" 1 n+q ,n>  F(0 )  >= (!  - 1 < ' 3 - .- (8) 
n-(  n!q! 

where := -th(H,/Z)exp(--iw) and where 0 <8<= and O<cp < 2n. For simplicity,we 

set q = O .  Also we focus on the effects of detuning,photon number and the number defference 

between the two modes on the atomic dipole squeezing. 

We assume the atom to be initially in the ground state. In the case of on-resonance 

excitation, the dispersive part of dipole moment does not squeeze, as is shown by the theoretical 

expression of the squeezing function S , .  The evolution of S. vs reduced time A t far different 

photon numbers (N ,) and number differences (q) are shown in Figs. 1-3. It is evident from 

Fig. I , where q=  0, that S1 exhibits cxactly periodic fluctuation behavior,with periodic time 

i. t = x .  Good squeezing for 0 ,  is found in the case of weak initial field with NL= 1,  as shown 

in Fig. l a ,  where n is squeezed almost all the time except when i.t=kn (k=0,1,2--**-*).  

With the initial field becoming more intensive, both the digree and duration of squeezing grow 

smaller. (Fig. 1) 

Whcn there is number difference between the two modes, the time evolution of S, no longer 

shows periodic behavior (Figs2-3). In  weak initial field cases, for example N1= 1 (Fig. 2a. 

Fig. 3a) , the flu?tuations of S ,  are small and squeezings recur. The first squeezing in the case 

of q =  I lasts longer than that of the case q = 5 ,  but larger and longer squeezings recover in 

the case of q=5. In both cases the degree and duration fo squeezing get smaller as the initial 
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field becomes more intensive. As it is observed from Fig. 3b and Fig. 3c,only short and small 

squeezings occur when N,=5 and 10. 

The above results reveal that atomic squeezing is both intensity and phase dependent of the 

initial field. Two identical field modes (q=O) , which mean that both modes have identical 

number and phase distributions, resul: in periodic fluctuation and squeezing. On the other hand, 

two different field modes (q = 0) lead to nonperiodic fluctuation and w :aker squeezing effects. 

The time evolution of S, and S, for different off-resonance ex:itations b and for q= 1 

and N,= 1 are shown in Fig. 4 and Fig. 5 respectively. It is seen that both S, and S, squeeze 

recurrently and alternatively. When the detuning is larger, the fluctuation and squeezing become 

smaller due to weaker coupling between field and atom. We have also studied the cases when 

q is large and found that squeezing exists only for small detuning (not shown). 

4 Conclusion 
In surnmary,we have investigated the atomic dipole squeezing for the correlated two -mode 

two-photon JC model with the field initially in the correlated two-mode S U ( 1 , l )  coherent 

state. It is shown that in the on-resonance excitation and when the numbers of the two modes 

are equal, periodic squeezing is found for the absorption part of the dipole . Good squeezing 

is observed when the atom is initialy in the ground state and the initial field is weak . As the 

number of photon in mode 2 and the number difference grow larger, the degree and duration 

of squeezing decrease . In off-resonance excitation* both a,and a, exhibit squeezing effects . 
Detuning generally displays the effects of reducing fluctuation and squeezing even revokes for 

large detuning . 
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Abstract 

The two-photon transition (6S112+6D512) of atomic Cesium is investigated for excitation 
with squeezed vacuum generated via nondegenerate parametric down conversion. The two- 
photon excitation rate ( R )  is obser~red to have a non-quadratic dependence of R = a12+ b l  on 
the incident photon flux ( I ) .  reflecting the nonclassical correlations of the squeezed vacuunl 
field. 

1 Introduction 
Over the last two decades, there has been great progress in the generation and application of 
manifestly quantum or nonclassical states of the electromagnetic field. Spectroscopy with such 
nonclassical light can reveal new optical phenomena associated with the interaction between the 
nonclassical fields and matter. In this paper, we report the first experimental observation of such 
a novel field-matter interactions, namely two-photon atomic excitation using squeezed vacuum 
light. 

It is well known that the two-photon excitation rate ( R )  can often be expressed in tern15 of 
the second-order correlation function of the driving field 111. For classical light, this rate depends 
qua.dratically on the incident photon flux (I). In contrast, it is theoretically predicted that the 
quantum correlations of a squeezed state can enhance this rate so that it depends linearly on 
I in the limit of small photon flux [2. 3, 4, 51. More generally, the two-photon excit.ation rate 
versus incident photon flux of a squeezed vacuum field is well approximated by the combination of 
quadratic and linear components, as R = aIz  t 61. As a realization of this theoretical prediction, 
we have investigated the two-photon transition (6S112-+6P312-+6D512) for trapped atomic Cesium 
with squeezed vacuum light, and found a non-quadratic dependence of the excitation rate on the 
incident photon flux. 

'Department of Applied Physics, Tohoku University, Sendai 980-77, Japan. 
21nstitute of Physics and Astronomy, Aarhus University, Aarhus C, DK-8000, Denmark. 
3Department. of Physics, tlniversiiy of M'aikato. Hamilton, New Zealand. 



2 Experiment 
The squeezed vacuum light is generated from a tunable optical parametric oscillator (OPO) [6] 
pumped under subthreshold condition. The pump beam is the second harmonic of a Ti:Sapphire 
laser (X=883 nm), the frequency of which is locked (f0.3 MHz) to the two-photon resonance 
6SlI2,F=4 -, 6DSl2,F=6 of atomic Cesium. The OPO is tuned to generate two frequencies 
(Xl=852 nm and X2=917 nm) in resonance with the transitions 6SlI2,F=4 -' 6P312,F=5 and 
6PSl2,F=5 -, 6Ds12,F=6, respectively. The doubly resonant condition of the OPO cavity (linewidth 
-8 MHz) to the two frequencies is identified by monitoring the parametric gain of an auxiliary 
beam from a diode laser at 852 nm which is locked (f 0.3 MHz) to the 6Sl12 -) 6P312 resonance. 

The output from the OPO is focused with a waist of -10 pm onto Cesium atoms in a magnet- 
optic trap (MOT) [7], which has a diameter of -200 pm. The population of the upper excited state 
(6D5i2) is measured by observing the fluorescence at 917 nm (6DS/1-+6P3/2) with an avalanche 
photodiode. By chopping the brapping beams of the MOT at 4 kHz, we measure two  counting 
rates R1 and R2, the rates with the trapping beams on and off, respectively. Since the trapping 
beams provide appreciable population of 6P312, R1 provides a measure of the incident photon flux 
at 917 nm, while R2 is proportional to the two-photon excitation rate driven by the squeezed 
vacuum field at  852 nm and 917 nm. 

Since the counting rate R2 is very small (5  1 s") in the region of interest, specid care has 
been taken to eliminate and to determine accurately residual backgrounds. We used two different 
techniques to measure the background for a particular run. First, the magnetic field for the MOT 
is switched off thus eliminating the trap. Second, an interference filter is placed to block the 
852 nm beam thus eliminating the two-photon transition. In both cases, no difference in results 
is discerned within an accuracy of fO.l/s, indicating that there are no systematic offsets in the 
background levels within the precision of our data. 

Results and Discussion 
We have performed several individual runs of the experiment, each of which took up to 10 hollrw 
for the actual data acquisition. In Fig. 1 is shown one example of the experimental plot of R2 vs. 
R1, where (a) and (b) are taken with approximate coherent state excitation and squeezed vacuum 
e;.cltation, respectively [8]. For the coherent state excitation (a), the dependence of R2 on R1 is 
well described by the simple quadratic relation, R2 = a'R:, with the significance level ( a )  of 0.86. 
However, for the squeezed vacuum excitation (b), the data tend to depart from the quadratic 
form in the low intensity region. In fact, the data for (b) are well described by a combination 
of quadratic and linear components, R2 = aR: + bR1, with the significance level of a=0.69, 
while the simple quadratic fit can be rejected because of the far smaller value of the significance 
level (a=0.07). In Table I, significance levels calcdated for five recent experimental runs are 
summarized. One can see that the function R2 = aR: + bR1 produces the largest significance 
levels for every experimental run and that it is the only acceptable one. The existence of the 
linear component is consistent with the theoretical predictions [2, 3, 4, 51, which take account of 
the quantum correlations between the two fielde (A1 and X2) of the squeezed vacuum. 



FIG. 1. Two photon excitation rate ( R z )  versus excitation intensity ( R , ) .  
(a) Excitation with approximately coherent light, and (b) excitation with squeezed 
vacuum. Solid curves indicate the fitted functions of R2 = a'Rt and R2 = aR: + bR1 
for (a) and (b), respectively. Dotted curves for (b) are asymptotic linear and quadratic 
components. 

In addition to  the measurement of R1 and R2, we also record the parametric gain (G) of the 
OPO at 852 nm. By using the relationship between G and R1 (or R2) ,  one can deduct the "knee" 
position where the linear and quadratic components give equal contributions [9]. The average 
value of the knee position Gknee for five experimental runs is Gknee= 1.36f 0.09, and each value 
shows reasonable consistency within the statistical error. This value is to be compared with the 
theoretical expectation Cknee=1.7, which is obtained from numerical integration of the Master 
Equation appropriate to our system [lo]. Although the measurements give somewhat smaller 
values and the reason for that is not clear at present (111, the agreement between the measured 
and theoretical values of the knee position is not unreasonable. Furthermore, the consistency of 
the measured values strongly indicates that the observed dependence of R2 on R, is due to the 
properties of the light emerging from the OPO, and not to some spurious effects. 



TABLE I. Significance levels for three trial functions R2 = aR: + bR,, R2 = atR;, 
and Rz = a"R: + c. (A)  to (E) are the values for particular experimental runs, and 
(Total) for all the data scaled together as described in the text. 

Experiment R2 = a R i  + bR1 R2 = a'R: R2 = aHR: + c 
A 0.001 0.0002 0.002 
B 0.69 0.07 0.44 
C 0.33 0.0005 0.05 
D 0.89 0.32 0.48 
E 0.51 0.004 0.11 

Total 0.03 2 x 10-lo 0.003 

By using the simultaneous measurements of R1, R2, and C, one call combine all our experimen- 
tal da ta  onto a common scale, so that the measured variables ( R1, R2, and G) fit the theoretical 
value by means of a least-squares minimization. As shown in Table I (Total), the experimental 
data  thus scaled together can be fit by the function R2 = a R: + bR1, with the largest value for 
the significance level. Meanwhile, Ihe fit with the functions of simple quadratic (R2 = a'R:) and 
quadratic plus constant (Rz  = a"Rf + c) should be rejected because the significance levels for such 
fits are much smaller. Thus, we conclude that the experimental data do exhibit the predicted lin- 
ear component of the two-photon excitation rate versus incident photon flux. We believe that the 
linear dependence is characteristic of the nonclassical nature of the squeezed vacuum excitation, 
because we can exclude the possibility of a linear dependence for classics; fields in several broad 
cases [12]. 

In conclusion, we have made the first observation of a nonclassical effect on atomic excitation 
with a squeezed vacuum field. Our observations reveal a new regime of the field-matter interaction 
where the nonclassical nature of the field plays a role not heretofore realized. 
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Abstract 

I have investigated the evolution of the field entropy in the two-photon JCM in the 
presence d the Stark shift a m  examined the effects of the dynamic Stark shift on the 
evolution of the field entropy and entanglement bet*w?n the atom and field-hfy results have 
shown that the dynamic Stark shift plays an important role in the evolution of the field 
entropy in two-photon pmtsses. 

1 Introduction 

The twephoton Jaynes-Cununing model (11 describing the interaction of a single-mode quantized 
field with a two-level atom through intermediate state involving the emission or absorption is one 
of tile most intensively studied models in quantum optics . In this model, when the two atomic 
levels are couple with compprable strength to the intermediate relay leve1,the Stark shift becomes 
significant and cannot be ignored 12-51. Puri and Bullough [3], A.Josh (41, Tahira Nasreen and 
Razmi (5i studied the influences of th.: Stark shift terms on the atomic inversion and dipole 
squeezing . Tahira Nasreen and ttaznli [5,8] discussed the e ect of the Stark shift on the Atomic 
emission and cavity field spectra in thc ttwphoton JCM .These works have shown that the 
dynamic S tvk  sh::t plays an important role for the prcperties of dynamics in two-photon JCM . 
On the other hand, recently much attention has been focused on the properties of the entanglement 
between the field and atom in the Jaynes- Curnmings model (JCM)[9-15l.Phoenix and Knight [9] 
have shown that the partial entropy is a convenient and sensitive measure of entanglement between 
the atom and field . The time behavior of the field (atomic) entropy reflects time behavior 
of the degree of entanglement between the field and atom in JCM . The higher the entropy, 
the greater the entanglement,the information concerning the field is obtained by measurement 
performed on atoms .For the two-photon JCM. Phoenix and Knight [l 11, and Buzek 1101 studied 
the evolution of the field entropy and the entanglement between the field and atom .The author 
1131 also examined the irlfluence of atomic coherence on the evolution of field entr lpy in two- 
photon processes .Howevcr,these results are obtained in the case the Stark shift is ignored .In this 
paper,to make the two-photon JCM closer to the experimental realization,I include the effect of 
the dynamic Stark shift in studying the evolution of field entropy and entanglement . The results 
far the entropy evolutiorl and entanglenlent incorporating the Stark shift are radically different 
from the resriltJ obtained in the absence of the Stark shift. 



2 The reduced density operator and the field entropy 
calculation formalism for two-photon JCM in the pres- 
ence of the Stark shift 

In this paper, the model considered consists of a single-mode cavity field of frequency w with 
an effective twelevel atom of transition frequency a through two-photon transitions in a l d e s s  
cavity. The excited and ground states of the atom will be designated by I +) and I -), mjmtively 
. I assume these states to have identical parity, whereas the intermediate states, labeled I j )  
(j=3,4, ...), are coupled to I +) and ( -) by a direct dipole transition and m located as to give rise 
to a significant Stark shift. The effective Hamiltonian describing s u d ~  a model has form [3] 

where I have chosen units such that tr = 1. &+and ii are the creation and annihilation operator 
dthecavityfield; & =( +)(+ I - I -)(- 1, S+ =I +)(- I ,ands- =I -)(+ Iaretheatomic 
flopping operatow.& and & are the parameters describing the dynamic Stark shift of the two 
1 4 s  due to the virtual transitions to the intermediate relay leve1,and g is the atom-field coupling 
constant . For simplicity ,I consider on-resonance interaction ,so that = 2w . By diagonalizing 

in the manifold of states I + , n) and I -, n + 2), the tirne-edution operator in the interaction 
picture can be obtaincd (51 

where I have written 

With 

I consider the at timc t = O  t l ~ e  atom is in  a collerclit superposition of the excited and ground states 



and the field is an arbitrary superposition of Fock states,so that a t  time t=O the density operator 
for system 

where 8 is the degree of excitation, p is the relative phase of the two atomic levels,F,, = F,Pm 
and F, are c d c i e n t s  in the Fock- state. At any time # > 0 the reduced field density operator 
far the system is given by 

The reduced density matrix Equation (7) has included the influences of the Stark shift and atomic 
coherence .Following the \yolk of Phoc~iix and Knight [S],the eigenvaluzs and eigenstates of the 
reduced field density opcrntor Eql~atior~ (7) may be obtained 

where 



b = ~inh"(~) .  (1 1) 

I arn obtained calculation formalism of the field entropy Sl(t) in terms of the eigenvalue uf of 
the reduced field density operator 

The field entropy Sf (t) given by Equation (12) shows that the field entropy depends not only on 
the field statistics parameters F,,m,but also on the Stark shift parameter r = (/31/&)'b and the 
initial state of atom. Especially whc PI = & = 0 ,Eq j 12) give the results of Rds[ll- 131 for K=2. 

3 Numerical results 
I now discuss the numerical results for the field entropy Sf ( t )  is given by Equation (17) when the 
initial field state is in the coherent state I a) 

with a =I a I exp(i0) and 1 a 12= fi, where /3 is the initial phase of the W d  and 3 is the 
average number of photons in the coherent state. Here I hope to learn about the roles played by 
the Stark shift . The numerical results of equation (12) are show in Figs. 1-3 for different values 
of the Stark shift parameter r and different the initial states of the atom with fi  = 20 . 
; Figure1 Fig. 1 Effects of the Stark shift on the evolution of the field entropy. 8 = 0 ,atom 
initially in excite state,field in t3e coherent state with mean photon numbers ri = 20 ,(a),no Stark 
shift (al = & = 0 );(b),r = l(P1 = &) ;(c),r = 0.5 ; (d),r = 0.3 

; Figure2 Figs.2 Effects of the Stark shift on the 
evolution of the field entropy. 0 = n/2 , cp - 213 = 0 ,atom initially in trapping state, the rest 
parneten as Figs.1. (a),no Stark shift (PI = & = 0 ); (b),r = 1(PI = A) ;(c),r = 0.5 ;(d),r = 
0.3 ; Figure3 Figs.3 Effects of the Stark shift on the evolution 
of the field entropy. The same as Figs.2 but cp - 2P = n/2. (a),no Stark shift (PI = & = 0 ); 
(b),r = 1(P1 = A) ;(c),r = 0.5 ;(d),r = 0.3 3.1 Atom Initially in the excited state h 
Figs. 1 (a) ,I have the case 0 = 0 (i.e. the atom is in the excited state) and 13, = 132 = O(i.e. in 
the absence of the Stark shift) ,corresponding to the evolution of the field entropy in the standard 
two-photon JCM obtained by Ref(l1- 131 .I note that the field entropy evolves at periods ?r/g,when 
t = nnlg, (n = 0,1,2,3 ...), Sf(t) evolves to the zero values and the field is completely disentangled 
with the atom, while when t = (n+ 1/2)lr/g. Sf(t) evolves to the maximum value,and the field is 
strongly entangled with the atom . The results for the evolution of the field entropy Sl(t) in the 
presence of the Stark shift are plotted in Figure l(b)-(d). In Fiep.l(b),the Stark shift parameter r 
is given as l(name1y O1 = P2 ), this correspond to the case the two levels of the atom are equally 
strongly couple with the intermediate relay level . By making a comparison between Figs.l(a) 



and Figs.l(b), 1 find that the evolution of the entropy is almost similar for both cases. Tbis 
result comesponds with the fact that in two-photon processes,the Stark shift creates an effective 
intensity dependent detuning AN = & - PI [16]. When r = 1.0 , (namely = &)thus AN = 0.0 , 
the Stark shift does not affect the time evolution of the field entropy . In Figs.l(c),I show the 
case r=O.S,in which the two levels have the unequal Stark shifts (PI < ).I note that the Stark 
shift leads to decreasing the values of maximum field entropy and increasing the values of field 
minimum entropy .It also results in increasing frequency of the field entropy vibration . As the 
parameter r further decreased (e.g.,r=0.3,see Figs.l(d)), the values of the maximum field entropy 
and the degree of entanglement of the field-atom further reduced . 3.2 Atom initially in the 
superposition states \+'hen 0 = n/2 and cp - 20 = 0 , the atom is initially in trapping state, 
the d u t i o n  of the field entropy are plotted in Figs.2 . Figs.2(,o) show the evolrrtion of the field 
entropy in the absence of the Stark shift while Figs.P(b) show the case that r=1.0 .I can see that 
under the condition the aton1 is initially in trapping state,the field entropy obviously reduced with 
comparison Figs. 1 (a) ,(b) in where the atom is initially in excited state, and the evolution of field 
entropy in the case r= 1.0 is almost sanle as that in the absene of the Stark shift .Figs.lL(c) and 
Figs.2(d) show the evolution of Sf(t) in two cases that r=0.5 and r=0.3,respectively. As is visible 
from the figures, the effects ol the dynamic Stark shift are more pronounced when r deviates 
from unity .On the other hand,when atom in initidly trapping state,as r decreased,the values of 
maximum field entropy increased, indicating that the Stark shift leads to increasing the degree 
of entanglement betwen the field and atom, which is contrary to the case the atom is initially 
excited state . The results for the evolution of the field entropy S,(t) as 8 = ~ / 2  , cp - 20 = n/2 
and various values of St.ark shift parameter r are presented in Figure 3 .In these cases, I note 
that the nlaximum field entropy always remains at its maximum values, regardless of the chosen 
value of r . A possible explanation for above behavior of field entropy evolution can be performed 
in terms of the Bloch vector in semiclassical theory [17] in the next section . 

4 Semiclassical interpretation of the evolution behavior 
of the field entropy 

I can find that the larger the extect of the Bloch vector's motion,the greater the values of the 
maximum field entropy by examining the evolution of field entropy in semiclassical version . By 
replacing the field annihilation operator a by the c number v = &exp[i(wt-P)] I get semiclassical 
version of eq.(l) 

The motion equations of operators Sc (< = +, -, z)can be written 



where 

is an effective detuning created by the Stark shift . Define the two slowly varying operators which 
involve the coherence between the two atomic states 

where ib is a phase angle that may be chosen a t  will . The atom in terding with the field obeys 
the optical Bloch equation 

Where S(t) is the Bloch vector for the atom 

and &(t) is the driving field vector,which can be by using eqs.(l4)-(22) 

Generally S(t)  pmxsses in a cone about &(t). The extent of Bloch vector's motion is largest when 
S(t) and &(t) are orthogonal and minimum when S(t)  and &(t) are parallel or antiparallel.Thus 
the time evolution of the Bloch vector is quite different for different initial preparations. If the 
atom is initially coherent superposition state given by eq(5), the Bloch vector at time t=O can be 
expressed 11 71 

1 1 1 
S(0) = sin(0) ms(O - (p), - sin(0) sin(* - (p), - m(t9)) , 

2 2 (24) 

For simplicity,I lct = (p,the initial Bioch vector in this case is on the x-z plane. When the 
atom is initidly in excite state (0 = 0 ),the initial Bloch wctM S(0) = {O, 0, )) and the vector 
a ( 0 )  = {2@, 0, AAN) . Under this condi tion,the extent of Bloach vector's motion is dependent 
of the eflective detuning AN cmatd  by the Stark shift . When PI = & = 0 (in the absence 
of the Stark shift) or r = l.O(PI = A) , AN = 0 , the vector S(0) and n,(0) are orthogonal 
and the extent of Bloach vector is t l c  maxin~um for these two cases so that the maximum field 
entropy always remains a t  its maximum value and the degree of the entanglement of atom-field is 
the largest (see Figs.l(a) and (b)). With r reduccd,Anr increasd,S(O) and 0,(0) are no longer 
orthogonal and the extent of Bloach vector's motion is reduced .This leads to the values of the 
maximum field entropy and the degr.ce of cntanglcment of atom-field decreased as the Stark shift 
parameter r reduced under the condition the atom is initidly in excite state . When the atom 
is initially trapping state (nmnely 0 = f ,  q - 24 = O),Bloach vector S(0) = {), 0,O). ns(0) = 
{2@,0,nAn).The motion extent of S ( t )  is also dependent of the cffcctive detuning AN . When 



PI = & = 0 (in the absence of the Stark shift) or t = l.O(P1 = &) , AN = 0.0 and the vector S(0) 
is parallel to 52s(0),thc motion extent of the S ( t )  tends to zero,and the \dues of the maximum field 
entropy obviously reductd (see Figs.z(a),(b). With parameter r decreased,A~ increased and the 
vector S(0) and &(O) are no longer parallel . The greater the efTective dctuning AN (the smaller 
the parameter r), the larger the extent of the S(t )  ,this leads to the values of maximum field 
entropy and the degree of entangleme~lt of the atom-field increased as parameter r decreased (see 
Fii.2(c),(d)) under the aton) is initially in trapping state . hrthernlore,when 8 = r/2 ,relative 
phase p - 2D = r /2  is choscn,S(O) = {i, 0, 0), R(O) = {O, 2gfi. fibn) are completely orthogonal 
irrespective of values of AN . Thcrcfore,at this case,the extent of S's motion and the values of 
maximum field entropy are independent of the influences of the Stark shift, and are maximum at 
all(see Figs.3(a)-(d)). 
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Tbe figure captions 

Figs.1 Effectsof the Starkshift on theevolutionofthefieldentropy. 8 = O , a t o m i n i t i d y  
in excite stde,field in the coherent state with mean photon numbers f i  = 20 ,(a: no Stark shin 
(& = & = 0 );(b),r = I(& = &) ;(c),+ = 0.5 ;(d),r = 0.3 

Figs.) M a t s  of the Stark h i f t  on the evolution of the field ecntropj. 6 = +I2 , p - 2/9 = 
0 ,stom initially in trapping state, the reat parameters as Fig.1. (a),no Stark shift (a = = 0 ); 
(b),r = l(B1 = &) ;(c),r = 0.5 ;(d),r = 0.3 

Fig6.3 Effects of the Stask shift on the evolution of the field entropy. The same as F i . 2  
but (p - 28 = ai2. (a),no Stark shift (a = = 0 ); (b),r = I(& = &) ;(c),r = 0.5 ;(d),r = 0.3 
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Experimental Observation of Thermal 
Self- Modulation in OPO 

Jiangrui Gao Hai Wmg Changde Xie Kunchi Peng 
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Abstract 

The thermal self-modulation has been observed experimentally via SHG in OPO. the 
threshold pump power for the thermal self- modulation is much smaller than that of the 
nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction 
for the self- pulsing. 

PACS numbers: 42.65.K~ 

1 Introduction 
In recent years the interest in the continuous optical parametric oscillators (OPO's) has been 
renewed because of their ability to generate nonclassical states of light effi~ientlyl~~~l. The bright 
amplitude squeezed light have been produced from the single and double resonai~t OPO's through 
second-harmonic generation ( S H G ) ~ ~ # ~ ~ .  Due to technical problem, especially thermal instibility, 
the double resonance system waa not stable4. Therefor it is necessary to study the thermal effects 
in OPO's 

In 1978 K.J.McNel1 et. al. predicted the self-pulsing behaviour in the intensity of the sec- 
ond harmonic mode for sufficient strong coherent input to the fundamental mode151. Plenty of 
theoretical papers in this subject has been published but so far there is no experimental result 
to be presented to our knowledge. We designed a ring OPO to realize self-pulsing experimen- 
tal. Although a similar intensity modulation phenomenon between Lne second harmonic mode 
and the fundamental mode has been observtd the oscillation period was totally different with 
that pr bed by McNell et. al.. The theoretical analyses showed that the intensity modulation 
record . . . us derived from the thennal effect in the nonlinear crystal. We named it thermal 
self-mc  ati ion. The thermal self-modulation effect .--,n be explained by means of the phase m;s- 
matching of SHG during the crystal temperature rising due to the absorption. 0 u experimer: 
points out that the threshold of the thermal self-modulation is much lower than that of the sell- 
pulsing giving in ref.[5] for the cryotals with the large absorption to the second harmonic wave 
such as LiNWs.  The thermal effect prevents from demonstrating experimentally to the nonlinear 
self-pulsing predictions. This might be the reason of that why the experimental observation has 
not been finished until1 now. In this paper we shall present the experimental results of the thermal 
self-modulation and compare the threshold power of the thermal self-modulation with that of the 
nonlinear self- pulsing. 



2 Experimental set-up and result 
We designed a ring OPO cavity to prevent the laser source from being desturbed by the feedback 
light. The pump source is a treguency- s tabl id  cw ring Nd : YAG laser. The output power of 
1 . 0 6 ~  waveletgth up to 3W can be available. The experimental scheme is showen in Fig.1. 

Fig. 1 

The OPO consists of four mirrors: MI and Ad2 ate the input and output couplers respectively with 
the m t m  radii of 20mm and SOrnm, M3 and MI are the plane mirror with high refEectivty 
for both fundamental and second harmonic waves. The total length of ring cavity is 15cm. The 
transmissivity of input ampler MI for the fundamental wave is TIm = 4% and it is highly refiectiw 
for harmonic wave. The output coupler M2 is highly dect ive  for both waves. A MgO : L i N b a  
of size 5 x 5 x 25an was wed as the nonlinear q&al for SHG. The cr~lstal was placed on the 
common eunature centre of MI and M2. A half wave plate HP placed h. t  MI was used to dign 
the poSarbation of the input pump light for optimum phase-matching. A beam splitter S following 
M2 stpant& the leakage light from M2 to two parts of 1.06pm and 0.- wavelengths. The 
detedma Dl and D2 respectively rec+wl the secoad harrnonc wave (0.53pm) and the fundamental 
wave (l.Mpm), then their power w e  analysed with the oscillascope (0s). The experimentally 
meamred finesses of the OPO are 103 for 1.06pm wave and 136 for O.!Bprn SH. 

When the pump power were lower than 2.4W the increases of pump power results in the 
increase of SH power as usual. Once the pump power were over 2.4W the transmission curve of 
pump power prwented the M-type (see Fig. 2).  

The peak of SH wave wm corresponding with the dip of M-type curve for the fundamental wave. 
Raising the pump power continuously when input poww is aver 2.7W the intensity modulation 
p h e ~ ~ ~ z ~ e r a  between the second harmonic mode and the fundamental mode were obsemed. The 
Fig. 3 (a) elid (b) are the reaxded experimental modulation curves at the pump power of 2.7W 
and 3W. The period of modulation is about the order of millisecond. During reaxding this 
curvea the cavity of OPO was locked in the pump frequency. By controlling the temperature of 
the crystal the cavity operated in near double resonant situation. 

3 Discussion to the experimental results 
The period of modulation (mS) in above experimental curve is 3 orders longer than that predicted 
by K.J.McNel1 et. 81. (@)(61. Therefor they are totally difkrent phenomena Usually the thermal 
response time is at the order of mirGsecond. We consider that the observed intensity modulation 
derived from thermal effect. The absorptivity of the crystal used in our experirner& for SH wave is 

= G.O12/m which is much higher than that for the tundamentd wave, so that the abmrption 



for 1.06pm wave can be neglected, i.e. the crystal is heated up only through the absorption to SH 
waw. Due to that the refractive indexes n, and n, of crystal are the function of temperature, the 
heating up of crystal must result in the phas ? mis-match then the intensity of SH wave decreases 
and that of the fundamental wave increases. During the reduction of SH intensity the temperature 
of crystal drops down. When the temperature return to the phase matching point, the intensity 
of SH wave restores to the maximum. The temperature change between phase mis-matching and 
matching point results in the thennal self-modulation. 

Based on experiment observation we calculated the critical temperature rising ATd and the 
phase mis-matching (At)  for the thermal self-modulation. The nonlinear equation of motion far 
the slowly varying amplitudes ol and a 2  of the fundamental and the second harmonic waves in 
OPO are written as follows: 

al = -ylal+ Goalaz + E (1) 

where 71, 79 are the cavity damping rates for a, and a2 modes. E is the pump ptuwneter 
ccumsponding to the power of the coherent driving field. Go is the coupling coefficient at  perfect 
phase matching. For our system yl = 7 x lo', .y2 = 4 x 10' and Go = 57.15. Substituting 
above parameters into eqs. (1) and (2) and taking 2.7W as the critical pump power we get the 
intrachvity intensity of SH wave with whicb the thennal self- modulation starts. If the absorbed 
power of SH wave per unit volume is q the temperature rising at  the radius r in the Gaussian 
beam due to the absorption is expressed as: 

& AT, = - exp 
4k 

t is the thermal conducttivity of crystal, is the spot size of the SH beam in crystal. Integreting 
AT, through the beam spot we obtain the average temperature rising m: 

ATo is the temperature rising at  the centre of beam (r = 0). The phase mis-matching (Ak) 
resulting from the temperature rising is equal to: 

hne A is the wavelength of fundamental wave, 3 and 3 are the ternperatwe coefficients of 
refractive indexes respectivly for the fundament wave with ~rdinary polarization and the SH 
wave with extraordinary polarization. For LiNb03 crystal we have PI 



Where At is the d trip time in the cavity. UUsing above given pammtem we have: 

Pa = 238W (10) 

Clearly Pa ia much large than the critical pump pot~er for the thermal &-mod&. 

4 Conclusion 
The phaae makhing condition foP SHG in OPO may be disturbed by the thermal effect. When the 
ahaption of cryetal for SH wave is large the tbreabald pump power for th thermal self-modulation 
is nnr& lawler than that too the nodinear df-pulsing predicted in r&[5]. For making- 
W y  the nodhu  self-pulsing the crystal with quik low abaxptian br both fun* d 
SH waves has to be choeen. Of course the @ must also have high nonlinear c d i k b t .  T'hb 
might be the resecw#1 of that the nonlinear aeU=pulsing has not been observed experimentally ao 
far. 

References 
[I] S.F.Pereira, Min Xiao, H.J.Kimble, and J.L.Hall, Phys. Rev. A 38, 4931 (1988). 

[2] A.Heidmann, R J.Horowia, S.Reynaud, E.Giwbino, and C.Fabre, Phys. Rev. Lett 59,2555 
(1 987). 

[3] P.Kun, R-Paschotta, K.Fiedler, and J.Mlynek, Europhya. Lett. 24, 449 (1993). 

[4] RPaschotta, M.Cllett, P.Kun, K.Fiedler, H.A.Bachor and J.Mlynek, Phys. Rev. Lett. 72, 
3807 (1994). 

[S] K.J.McNel1, P.D.Drommond, and D.F.Walls Optica Cornrnun. 27, 292 (1978). 

(61 M.Okada, S.1eiri IEEE J.  QE7,469 (1971). 

[7] A.Yariv, Quantum Electronics, John Wiley k Sons Inc., Second Edition (1975). 

[8] M. J.Weber, CRC Handbook of Laser Sci. and l'ec. CRC press Inc. (1973). 



Figure aption 

Fig.1 The experinrea$al mbup 

F i g . 2 T h e o u t p u t ~ o f O m a t p u m p ~  P = 2 4 W  

Fig.3 The output amm of Om at pump pclarer (a) P = 2 . W .  (b) P = 3W 
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OPTIMAL SIGNAL EXWIUlXON IN OPTICAL SENSORS WITH 
NA!!lWUL SQ-G OF VACUUM NOISES 

~ o f d g m i f r f i o n a B P r o e ~ o n ~ q t t 8 l i t y ~ ~ i 8 O f  
gertimporturceinmodernphyiaa E t m m r i a u e a r l m ~ e a t o c h e m e ~ L a h W  
Qu8ntum Limit (SQL) an form remoldon (11 : 

where g is squeaiq d c i e n t .  In this contribution a scheme with inferna (natural) squeezing 
h propod for opticd ensor. 

Optid sensor in the moet simple modi1cation is a mirror attached to mechanical monafor 
and illuhatd with coherent p u m ~  field. Umd schemes memuring the phaae of reflected pump 
field (i.e. one qtlsdrattue component) haw the limit of resolution of force acting on mechanical 
system 8ooording to (1). On the ofher hand d d  wave is in squeezed state (natural squeezing) 
due to nonlinear interaction of the field and the mirror and a coefficient of squeezing could be large 



(4). F b r s u c h u y 8 t e m t w o q ~ o f ~ w a ~ a t s ~ .  Onequadmtumamhb 
ab the signal (asvitatiod disphment of mecbrnicd odlbor)  and the noiee and the other 
d y o f t h s h  U a i n g ~ o f n ~ i n ~ ~ o n e # n i n c r w a e ~ - ~ n o i e e  
~ s n d ~ ~ S Q L . A ~ ~ i n f h i s ~ e m u e f ~ h c O m b i n s f t i i o ~ 3 d  
~ a t ~ r s a t n e r r i t h ~ t 9 a c t i ~ r a t h a t h . n t h c ~ d d d ~ .  Such 
~ W ~ O f ~ ~ b e ~ u c Q d v i a ~ o f r a 8 ~ ~ w ~ p h ~ m o d ~  
bcd oecimor field. 

T h t ~ a c h e m e ~ ~ d e r i n [ S , 6 ] .  H ~ t h e m o d ~ o f l o c d ~  
does not depend them on g m h t i d  t i g d  fbm t h e d m  the optima fltmtion procedure 
clrnnntbersefissd. 

Let the tdkth d c i e n t  of the mirror be r w 1. The incident and d d  fields one can 
bbe in the Wuwing Swm: 

where A ( z , ~ )  md B(z,t)  are c m p k  amplitude opemtom of the fields (k = ( ~ / c ) .  Let fim 
#implicity 

A(0, t )  = A0 + ~ ( t )  - jqt) (4) 
where & = (2&a/S)AQ - bmpliadc d the pump with p m w  Pa,* = 1%OR [ohm) - midance of 
dracqmce, S - ~ ~ a ~ ~ d p u m p b , ~ r ( t ) r a d ~ t ) - o ~ o f f i e l d ~ a o m p o n ~  
* ~ p p . f r i x ( ~ ~ t h i e f i e l d i n t h e ~ u m e t o t c )  

In linear -011 ( I )z I< 1,) a(t),Q(t) I< 4) one csa obtain (conetaut term b omitted) 

whaG(p) = [~ (#+ -+w ' ) ] - '  - d d a d U r t o r b . l l $ n f a n c t i o n , p = d / ( & ) , b =  
H / M , 4  = KIM; A - ~ & / ( a c f ,  M, K and E are dynamic4 puvn- of medumicd d a t o r .  
Plwrx F(t) actingon rnachmicd oscillator have thahlldngform 

F(t) = F.(t) + Fp(t), (8) 
where F,(t) b d g d  force and Fp(t) is m mean white Gaudan procsm, with covdana function 



The procsee F,(t) cormponds to saro temperature thenad noise of mechsnid odlatot or any 
other white noise. 

Using eqe. (6,7) one a. obtain qmfd density matrix for q u a h t m  components 8, and &: 

Rom eq. (10) one can see that the no& in tro qtudnhua mmponents Bl E & have nonzero 
c4md8tion WU(ju). 

Optimal mdvcr on the baae of the reftor output dgul [Bl(t),&(t)r mwt comtruct a 
Mowingfrurctional~(timeofobeenm&ionO<t<T) 

where is arbitrary acde cdlicient, &(t) and pz(t) are the refemoe signals de6iaed bg the 
d a l l ~ ~ o f i n t e g r s l ~ ~  

where K-(t - T )  = < &,(t)&.(T) >IFd - M cordation matrix elements of time stationary 
miow in quadrature components & and &,tn,n = l,2. 

U8ing a -on of Vadablc8 in eq. (11) 

rn(t) = Q(t) ~ ( t ) ,  = Q(t) ~ ( t )  
oac can obtain 

Let a field of local odlatm be E(t) - &(t) -(wt + ~ ( t ) ) .  Then for a photoammt I'(t) 
in dual d e w  d e m e  one can obtain fk ~ ( t )  = (p(t) [8] 

I*(t) a Re [ B(0, t ) ~ . ( t )  1 = 4(t)&(t) (16) 
Thia photacumnt acte on an input of the optimal raceivar. 

h m  eqa. (14)-(16) one can coneider that bw load odlhtar field without amplitude modula- 
tion &(t) = donrt the optimal receivar can be r&md either in the fotm of correlation receiver 
with mkena eignal a Q(t) or in the form of coilcordant filter with trader function [r j  



ah- 

d W-(ju) ia the apectml d d w  matrix cormpondbig to K,(r) (cf. (lo), (12))$w(jw) b 
the 6pectml of the signall F.(t). 

Tddng into -ant eqs. (13), (17) one can obtain opfima moduhtion functions for the d e m e  

sad pl(t),l)t(t) depes.d on the aigd h n  a a m h g  to eq. (19). 
The aipl-to-nobc ratio m &s the meamemat of Z (cf. eq. (14)) in the aaeumption of 

unlimited time of obammtion one can obtain fnrm eq. (17). (18) 

where rc P NO(Wk)-' a I/%. When the pump pwlr kmum the i n 0 d  of the n o h  due 
to mmum ffuctuatiune demmm and the d t i v i t y  (20) spproacb the limit which depends only 
on the didpetion in mechanical ayutem. 

~ t b d r n ~ o l r i n g f h s f f h b ~ ~ e b d n o t d y ~ ~ ~ t ~ d ~  
b u t 5 0 9 l ~ k ~ d e t e c t c u a o u e l l .  f n f h i s ~ t h e t r a d e r f u n c t i ~ G ( p ) i n  
eq. (6) murt be w e d  for b e  muma gsvibtional .nfeans and the noisa F,(t) in up. (7), (8) 
w i l l b e ~ t h ~ n o i a e o f f r e e m s u a ~ o n .  



References 
(1) C. M. Csvw, K. S. Thome, R W. P. D m ,  V. D. sandberg auld M. Zimmr-rman, Rev. Mod. 

Phyn., 62,341 (1980). 

[2) V. V. Klslrgio and V. N. Rudeah, Sov. Phys. JETP, 67,677 (1988). 

[3) V. V. Kulagin and V. N. Rndenko. N u m  Cimenfio C, IOC, 601 (1987). 

[4] c. M. Pirrrud, S. b m d x ,  A. Hddm-, E. Gincobin0 and S. Rsynsud, Phye. Rev. 
A 49,1337 (1994). 

[S] S. P. Vptddn,  E. A Z u h  and A. B. bdatelto, Optics Communications, 109,492 (1994). 

[6) S. P. V y a t c b h  and E. A. ZubaM, Optics (bmrnunicatim, 111,303 (1994). 

m H. Vau "hux, D d d h ,  1E&imeLion tmd M e  m(PlenuniRees ,  N.Y.-L., 196%). 

[8] J. H. Shspiro, WEE J. Quantum Electronim, QB31,237 (1985). 



NEXT 
DOCUMENT 



REGULAR AND CHAOTIC QUANTUM DYNAMICS OF 
TWO-LEVEL ATOMS IN A SELFCONSISTENT 

RADIATION FIELD 

L.E.Kon'kov and S.V.Prants 
Pacific Oceanological lnslitrrte 
Russian Academy of Sciences 
69004 1 Ifladivostok, Russia 

Abstract 

Dynamics of two-level atoms interacting with their own radiation field in a single-mode 
high-quality resonator is considered. The dynamicd system consists of two second-order 
differentd equations. one for the atomic SW(2) dyna~nical-group paralneter and another 
for the field strength. With the help of the maximal Lyapunov exponent for this set we 
investigate numerically transitions from regularity to deterministic quantum chaos in such 
a simple model. Increasing the collective coupling constant b = R K N ~ ~ ~ I L ,  we observed 
for initially unexcited atoms usual sharp transition to chaos at 6, 2: 1. If we take the 
dimensionless individual Rabi frequency a = R / ' h  as a control parameter. then a sequence 
of order-to-chaos transitions has been observed starting with the critical value a, 2 0.25 at 
the same initial conditions. 

1 Introduction 
When studying field-matter interactions it is usually of i~iterest to  consider the possibility of 
controlling the temporal behavior of the field and/or the atomic subsystems. Sap, in resonator 
quantum electrodynamics. it is important to drive the interaction between atoms, moving ti~rough 
a cavity, hnd a quantizied field mode in such a way to  attain specified states of the electro~tiagnetic 
field (Fock, coherent. squeezed, and so on) in the cavity and/or desirable states of atoms leaving 
the cavity. It is inexplicitely supposed that we are able, in principle, to attain any desirable state 
(which is accessible, of course. in quantum mechanics) under an appropriate control. 

However, it has been shown in resent years [ I ]  that beyond the rotating-wave ayproxiniation 
even the simple model, conisting of N two-level atoms interacting with their own radiation 
field, may detnonstrate i~~lpredictable temporal behavior in the sense of deterlllitlistic chaos. Our 
previous results [2] have shown that e\en slight modification in a model, describing this interaction, 
could create dramatic artifacts. The purpose of this work is to  treat the routes to deter~ninistic 
chaos in the framework of the dynamical-symmetry approach which has bee11 proved to bt. useful 
in investigating regular dynamics of a variety of quantum models [3],[4]. 



2 Dynamical SU(2) model 
We consider an ensemble of N identical two-level atoms placed in a single- mode high-quality 
resonator with the volume V .  Each two-level system is described by the SU(2)  Hatllilto~~ian 

in which the operators satisfy the usual commutatio~l relations 

[5, &I = f R*. [R+, R-1 = 2&. 

and o is the atomic transition frequency that coincides with the resonator frequency. The  indi- 
vidual Rabi frequency Q is given by - 

dE;o Q=- 
t i '  

where d is the dipole moment of the ato~ilic transitiou. Atonls interact self-consistently by dipole 
interaction with an electric field, whose strength is written in the form 

where & is the constant amplitude and s(t  ) the dimensionless variable, 0 < E 5 1. 
We treat the field a6 initio semiclassically, assuming that it satisfies the usual Maxwell equation 

where P = Nod < R+ + R- > is the polarisation created by atoms, No = N / V  is the density of 
atoms in the m n a t o i  . Substituting r = urt , we can wr ik  the eq.5 in the dinle~rsionless fortn with 
the derivative with respect to  T 

We have introduced following to [ l ]  the ditnensionless co~lstant 

characterizing the energy exchatrge between the atomic ensemble and the field. 
In addition another dimensionless constant 

will be used t o  investigate transitions from order to chaos in our model. The  expression (8) is 
simply the dimensionless individual Rabi frequency. 

In the dynannical-synm~etl y approach, each two-level atom is govert~ed by the followitlg single 
equation for the SU ( 2 )  c. lmplex-valued group parameter (51 



The derivatives ie (10) are also ciefinwi with respect to  t. 
T l ~ u s  we have two coupled osrilators (9) and (6) describing tlie self-co~~sistc~rt i ~ ~ t e r a c t i o ~ ~  

between two-level atonis atrd a sisgle-aloclc classic-al field. i h v r i t i ~ ~ g  (!)) iuld ( t i )  in t l r t b  e c , l~ iva l r t~ t  
tirst-order forill. we obtai~r the followi~~g aonliaear dy~la~!iical systna 

Signs - and + i ~ r  the last g l~a t io r l  of ( 10) refer to  tlie initially ~~~iexc.ittul ;..MI rxc-it4 ittoitis, 
respectively. 

The  atom-field system (lo) obeys two collservitiun laws 

It should be noted that the variables rl z Rcg and 12 l m g  are not indepeadeet [5] .  Therefore 
we have three itwiieperrde~it real variables. that is the ~nininlum q u i t ~ c t  for cham [GI. 

For two-levei atoms the dyna~niral s_vstern (10) is equivalent to the usually actoj>td Maxwell- 
Bloch equations. Let us introduce the cortlponents of the Bloch vector 

where cl arid c2  are thc probability atnylitudes of lower and upper states rmpc-tively. On tibe 
other hand these comlm~~eats  can be expressed in terms of the variables r and y a\ follows 

Thus we can rewrite ( 10) in the sta~~darcl Maxwell-Bloch form 



3 Numerical results 
Our tilde1 yossrw~1.. two rotltwl pameters a and b. We will n u ~ ~ w r i ~ a l l y  treat Itere transitions 
from order to chaos varying one of them in a certain r a n g  and keeping a? other coastant. Chaos 
will be diagnosed with the help of the olwinnrl Lyaputmv exputrelit A, which is a quatrtitativrr 
characteristic of detertnit~istic chaos describing the rileall rxpone~ttal rate of divergence of two 
initially adjacent trajectories in a phase space [6]. The sign of A gives up a reliable criterion to 
distinguish betweell regular and chaotic dynaailics of a system in question. When it is oeglibly 
small the motion is said to be regular. If A beonws positive for a certain range of values of a 
mntml parameter a system is cllaotic for this range. Chaos nlay also be ronfir~ned by conti~~uous 
power spectra 

Fig.1 Themaximal Lyapunouqommtasafrndion 
d the control parmeter b far initidiy unoxdted 
atoms. ar0.25 1P. 

Fig3 The maximal Lyapunov expent as a W o n  
of the oonhd parameter a for initially unexdbd 
atoms, brl 

Fi$4 The maximal Lyapunov exponent 8s a fundion 
of Wte control parameter 8 for ~rnbany mated 
awns, b=l 



By varying the collective coupli~rg paraaieter 6 we, in fact* cliaage the density of atotils Nu in 
a cavity. Numerical integratio~r sllows that the maximal LYA~UIIOV exptie~rt A k o n i e s  positive 
when b exceeds a critical value be. Its magaitude depends t.s.w~ttially 01) i~iitial c-o~~ditio~~s.  I t  is 
e n  from Fig.1 that b, 2 1 for irritially unexcited atoms. For initially excited atutrta (Fig.2) tlw 
maximal Lyapunov exponent becomes positive for much sti~aller critical value of b. 

We have observed a quite different transition to clraos with clraotic rel~i~nes alterlratitrg luiiong 
regular regimes when varyi~rg tlie iudividual di~ilensionless Kabi freque~rcy u and tixiiig the ya- 
ran~etet 6. Fig.3 arrd Fig.4 de~noestrate such a behavior for i~litially unexcited and excited atonls. 
respec ti vel y. 

Outlooks 
We have denionstrated two possible routes to chaos in the interactiu~r of two-level atoms with their 
own radiation field. Fro~ri a more general points of view, we have 01,servt-d nu~~ierically order-to- 
cham transitiotrs in tlrr system of two couyltd aoali~rear oscillators (6) and (9). At Iwr. fmm a11 

ahtract p i n t  of view, we have treated suclr transitio~rs in  a systenr consisting of tlre "drivenn 
SC!(2) group treated as a 11011li1rear dynaniical system. Thus, tlie results, obtained ia this work, 
are applicable in a more ge~reral context. They may be applied witla sliptrt ~~idificatioes to iuly 
driven physical (clie~~ucd, biological. ecological, etc) syste~ir with the underlying SI ' (2)  dyaanrical 
symmetry. 
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Abstract 

We calfulated the force to whch Cs atoms are subjected in the onedimensional magneto-optical trap 
(ID-MOT) and properties of this force are also d m .  Several methods to increase the number of Cs 
atoms in the ID-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in 
the ID-MOT. 
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1. INTRODUCTION 

Laser cooling and trapping of neutral atoms is one of the most active research fields in 
physics in this decade . Several kinds of neutral atom traps have been achieved 
experimentally ' I '  ,one of which is the magneto-optical trap(M0T) whose basic principles 
were discussed in detail in Refs.[2] and (31. The MOT is formed in the intersection of three 
orthogonal pairs of counter propagating laser beams with opposite circular polarization A 
pair of anti-Helmholtz coils is used to generate an inhomogeneous magnetic field. whose 
zero point coincides with the center of the intersection region where a stable potential well 
is formed Atoms confined in this volume will experience a damping force and a restoring 
force. MOT has become almost a standard technique for obtaining large number of cold 
atoms due to its large depth, large trap size and long trap lifetime. A lot of theoretical and 
experimental work has been camed out since Raab et al.I2' first achieved MOT in 1987. In 
1990, Wieman et al ''I built a MOT into which for the first time Cs atoms were loaded 
directly from low pressure Cs vapor in a quartz cell and this greatly promoted the research 
on MOT At present about 10" atoms can be trapped in MOT with a density of 10" 
atomdcm' lS1 and temperatures below the Doppler limit I6l . In recent years, the research of 
MOT has been concentrated on two aspects (1)investigating the properties of MOT with 
the aim of increasing the number and density of trapped atoms and lowering the 
temperature so as to optimize the performance of MOT as a source of cold atoms. (2)using 
MOT to carry out some fundamental or applied research work such as atomic fountain"' . 
cold atoms col~ision'~' , atomic interfer~rnetry~~l and Bose-Einstein condensation, etc. 

A simple case of a fictitious atom with a .I ,  = 0 -+ J ,  = 1 transition in the 1 D-MOT 
*project supported by National Natural Science Foundation of China. 



In this paper we use a simple method to deal with this problem and have got some 
valuable results. 

In section 2 we calculate the tbrce as well as the capture and escape of Cs atoms in 
ID-MOT ; in section 3 we continue by analyzing tl$ btures of the fore and we present 
several measwes to increase the number of Cs atoms in MOT; finally in section 4 we give 
a conclusion and some comments on our fbture work. 

2. CALCULATION OF THE FORCE AND THE MOTION OF Cs ATOMS 

A. Calculation of the force 

The force that an atom experiences in a laser field 

where < > represents the mean value, V = B - E is given by the interaction Hamiltonian 
between the induced electric dipole 6 of the atom pd the dectric field vector d of the 
laser. The authors of Ref[lO] analyzed the force of a fictitious atom with 
J ,  = 1 + J ,  = 2 transition under a' -a- configuration. The transition used for 
cooling and trapping of Cs atoms is 6S,,,, F, = 4 + 6P,, , F, = 5 and the schematic 
diagram of the corresponding energy levels is shown in Fig. 1'"' . 



There are several kinds of mechanisms which contribute to the total force exerted on Cs 
atoms in the case of complicated energy level structure . The most important two are , 
namely , the scattering force and the polarization gradient forca'l By extending the 
result of Ref [ lo] to the case F, + F, = F, + 1 ( the contribution of the excited-state 
population is taken into account in the calculation ) , we have 

where p:' =< F, ,m, 1 pl F, ,m, >, pf' =< F, .me[ pl Fe ,me > are diagonal elements 

- of the density matrix, S, ,, , , - n2 1 2  
is the saturation fact0r.R = 2 d E ti ' ' 

+ r 2 , 4 .  J n . m r l  

is the Rabbi frequency, (C:; )' is corresponding normalized transition probabilities 

dS 
shown in Fig 2, ,,,, = S T kV + [mg, - (m f l ) g , ] p , X -  is the relative frequency 

dx 
detaining, is the frequency detaining, k is the optical wave vector, v is the atomic 
velocity, p, is the Bohr magneton,g, and g, are the g factors of the ground state and the 
excited state. respectively , and j3,,,-, = (F, ,m(p(< ,m - 2)exp(-21kVt) represents the 

coherence between sublevels of the ground state. 

r F' In formula (3) . - ( p v l  - pz, )s-,.. , (c:*I ) represents the scattering rate for 
2 " . - - F ,  

o photons by spontaneous emission and L 5 (p2)  - p, )s...-, (c:-' is that for o - 
7 
" m = - F ,  

photons The atom will obtain a momentum hk or -tlk if it scatters a o* photon or a o - 
photon , respectively The net effect is that the atom will experience a scattering force 
ftfrctcr 

From formula (4) , we know that fgrrd is due to the off-diagonal element p,,,-2 , that is  , 
the coherence between sublevels of the ground state Fig 2 shows the stimulated 



absorption-stimulated emission process which contributes to the coherence under a' a ' 
configutation. 

m'm- 1 

p~ Fig.2 Stimulated process between &sorption-stirnula sublevels of the ground emission 
mg=m state of Cs wrder a'd ' conf,guration . m,=m-2 

The authors of Ref[lO] also pointed out that f& would contribute dominantly to the 
force experienced by an atom only when the condition (6,,,, - 6) < r* ( I-' refers to 

the optical pumping rate. The condition can also be written as AV=T'k , bX=AT'(g, 
d~/dx)" ) is satisfied. We may neglect the effect off&, if this condition is not hlfilled. 
Taking the Cs atom for example, with T'<O.SMHz uhder the condition 6= -10 MHz $1  = 
4mw/cm2 , dB/dx = ImT/cm , g, (6Sllz F = 4) = 0.25 , g, (6P3n , F' = 5 ) = 0.4 , the 
velocity range is AV<0.45m/s and the spatial range is AX< 1 mm. Such a small interaction 
range makes fw negligible and we can keep only the term off- when discussing the 
process of capture and escape of Cs atoms. 

It can be seen fiom formula (3) that Lt, only rerdes to the diagonal elements of 
density matrix so we can use rate equations to calculate it. Taking into account the effect 
of spontaneous emission, stimulated emission and stimulated absorption, we have the 
following rate equations'"' 

and the normalization condition 



After obtaining the steady solutions pz) and p?) to the above equations we can 
calculate the scattering force exerted on a Cs atom under different physical conditions. 
Fig.(a) shows the influence of light intensity;Fig.3(b) is the variation of force with different 
laser detuning;Fig.3(~) shows the forces as a hnction of the magnetic field gradient at a 
fixed point in space In these figures, the X-axis represents velocity in rnfs and the Y-axis 
is the force in units of hkT ( it equals to 4 x  lo-*' N for the transition Cs 6Sla +6P312 ). 

(a) For curves in the direction of the 
arrow, from lower to upper, 1 4  27, 
1 1 ,  4.4 ,18, 27mW/cm2, at A = 
- 10.6 ~ M z ,  B=OT 

(b) For curves rn the hrection of the 
arrow. from right to left, h = - 10.6. 
-21.2 , -42 4 MHz. at 1=4 .4m~/cm~.  
B=OT 

(c) For curves in the d~rection of the 
arrow, from right to len , dB/dx=O 5 . 
1 , 1.5 mT/cm , at I = 4 4 m ~ l c m '  . 
and A = - 10 6 MHz. The d~star~ce 
to the center of the trap is Icm 

Fig 3 The force expcrienced by a Cs atom under different conditions 

Fig 4 shows the position dependence of the scattering force on a Cs atom with 
different velocities The X-axis is the position and the Y-axis represents the force as in 
Fig 3 



0.5 

0.2 

3 ::: 
\ Fig.4 The scattering force of a Cs ae9m with 
h-o. 1 different velocities . For curlcs in the 

--.2 dinction of the arrow . from I& to right 

- V= -4.5.0.4.5 m/s. at I= I. 1 inwlcm2 . ' 3.0 -2.0 -1.0 0.0 1.0 2.0 5.0 A = -10.6MHz , dB/&= 1 mTlcm 
x/- 

From Fig . 3(a) it can be seen if an atom is stoppsd at the center of the MOT and has a 
small velocity , we can obtain 

From Fig 4 , we derive that if an atom has zero velocity and is near the trap center, 
then 

Therefore when both X andv are relatively small, we may rewrite f,,, approximately 
as 

where K and a are the string constant and damping coefficient respectively This is 
the typical form of force in a potential well with damping 

B Calculation of the capture and escape sf CS atoms 

Before the calculation, we would like to explain several related conceptc and introduce 
two important parameters . In practice the MOT is three dimensional and is formed at the 
intersection of six laser beams The size of the MOT is determined by the radius of the 
laser beams We will then also use the radius of laser beam as the spatial range of ID- 
MOT The atom is considered to be trapped if it finally stops at the trap center The 
maximum velocity of atoms captured at the edge of the MQT is defined as the capture 
v '?city VE . Mainly due to collisions with fast background atoms , trapped atoms at the 
center of the MOT may obtain enough initial velocity to be knocked out of the trap The 
min~mum initial velocity is defined as the escape velocity V, 



For the calculation of the pamm%ers of motion the Cs atom is treated as cJassical 
particle its dynarmcal behavior obeys the Newton's second law . The force is obtained by 
the approach discussed above Afier integrating the equations of motion by the Rungo 
Kutta algwithrn we obtain curves showing variation of the velocity and position of a Cs 
atom in the process of capture d escape Fig Sja) shows the variation of the position . 
in the capture process The motion of Cs atoms with diffetent initial velocities is given 
where the atoms' initial position is supposed to be at the edge of the trap . Fig . S(b) shows 
the variation of the velocity in the same ptocess . Finally Fig 6 presents the same arrves 
in the escape process Here the atoms' initial position is assumed to be at the trap's center 

(a) Vanacloo of pos~cm (b) Vanaim of wiocit) 
Rg 5 The v a m m a  of postwn and vcloc~q In rhc prooess of caprum For CUIVCS m the drroanwr 

o f t h e m .  fromlrpperlolot ,a.tht~nrtd~tloa~~aV,=O. 10. 1258. 15.20mls.1he 
&us of & k r  beam a 2cm. I = 4.4 m ~ k m '  . A = - 10 6 MHz. dBldx - I mTtm 
Fromthestcunes . w e b n  V, = 12 58 mls . 

(a) Vanatlon of posruon @) Vanat~on of veloc~ty 
Fte 6 Thc vanalron of pocitlon and \~loclty In the process of escape For curves In rhc direcr~on 

of thc arrow , from uppcr to Imci. V, = 5.7 5.9 08 .lo, 20 mls llre parameten of laser 
arc thc same as Wsc tn h g  5. From lhcsc curves \,T see that thc escape teloc~tj evaluates 
to bc V, = 9 08 nds 

i'. and ' J ,  are determined respectively in the following way first , we set the velocity 
range to be [Omis, 2Gm1s] , which , according to our calculation , cover the value of V, 



and V, ; then , the velocity range is step by step deaeasad by the dichotomy ; M l y  , we 
get tbe approximate values of V, and V, fbt a velocity raqe smaller 'hn O.Olm/s The 
magnitude of V, and V, is related closely to the number of trapped atoms 

where r is the radius of the laser beam , p is the average velocity and a is the cross 
section fix a trapped atom to be knocked out of the trap by a background atom.Obviously 
, a decreases with V, . From (1 I) , we %now that for a large number of trapped atoms it 
is benet id to increase V, and V, by c b p g  the trap parameters 

3 . DISCUSSION 

A . The p:opdes of the force in MOT 

A Cs a t m  exp iaces  three kinds of hrces in MOT . These are the gravitational f m  
the m o s t a t i c  fom and the optical tbrce . The magnetostatic force is caused by the 
inhomogeneous magnetic fieM When dB/dx = 2 mT/cm , a cs atom in the Fa = 4,ma = 4 

suMevd obtains an acdemh of about g (gravitational acceleration ) The optical force 
is due to the interaction between the lrght and the atom . For A = - 10.6 MHz and I = 
4rn~lbrn' , the acceleration caused by this force is abut  103 g , whch is much grater 
than that by the gravitational force and the magnetostatic force Therefore , we could 
neglect the gravitational and the magnetostatic force 

As discussed above,both &,-, and f& contribute to the optical force tn the I D-MOT 
The capture and escape of atoms are mainly determined by the fonner due to its large 
interaction range of velocity and space . Even though fe has a smaller ~nteraction range 
than that of L but it acts in this veq small range much stronger on the atom (101 
When atoms in MOT reach a steady state , they consentrate at the trap center with very 
small velocity amplitudes In this situation , the temperature and density of atomic cloud 
are determined by !& 

B Contribution of Zeeman effect and Doppler effect 

In MOT the origin off  ,, is due to the different relative deruning for a' and a- 
photons This imbalance between the absorbed photons fiom opposite directions results in 
the net scattering force But an atom in the MQT can not tell whether the relative 
detuning is caused by the Zeeman effst or by the Doppler effect , because there is certain 
equivalence between these two effects on their contributior, to the net force When 
Zeeman splitting between 5n = 2 sublevels of a Cs atom excited state in compensated 
by Doppler shift , i e 



then the relative detuning for o' light is the same ss that for o- , Therefore the scattm 
rate of photons is equs) in both directions , under which circumstance the atom 
experiences no force , 

By substituting (12). (13) into ( lo) ,  we obtain 

which indicates the equivalence between the Zeernan effect and the Doppier eiqect , i.e. K 
is proportional to a It also shows that they both are dependent on  the parameters of the 
laser field (dehming and intensity ) However they are different in that K is proportional 
to dB/dx whereas a is independent of  dB/dx . which indicates that the scattering fkce 
originates in the inhomogeneous magnetic field . Under the condition of small V and X the 
calculation is simplified and we have obtained the approximate formula for a and K (see 
appendix for detail ) 

C The relation of the force on the parameters of MOT 

We will concentrate our dtscussion on the effect of the laser intensity I , the tiequency 
detuning A , the radius r of the laser beam and the gradient of the magnetic field dB/dx on 
the scattering force in MOT 

From Fig.3(a) we know that for small intensities the force increases sharply with the 
laser intensity When I > 1,6'r -' = 4.4m W / cm ' ( i e. So = 1 The saturated intensity 
for the cycling transition F, = 4,m, = 4 + Fe = S.me = 5 is I, = 1.lm W I cm' ) , the 
intensity has only a small influence on the force S , ., , , increases with the laser intensity 
but the population difference p?' - p::, will become small due to  the saturation effect . 

Therefore the influence of laser intensity is diminished due to the compensation of these 
two effects with each other Fig .3(b) shows that the capture range of velocity increases 
with laser detuning Since the volume of the MOT is determined by the radius r of the 
laser beam , increasing r may increase the volume efficiently , Fig 3(c) shows the effect of 
the magnetic field gradient At a point far from the trap center , atoms will be cooled to 



~ ~ # l - t ~ ~ ~ v e l o c i t y .  Thecurveofthefbraisasynmretricabout itszero point,  whkhis 
csusedbytheditkmceofg-fktorbdweartheupperand thelower state. (Upper state 
6P,,,F = S,g, = a 4  ; h state 6S,,F = 4,g, =a25 ) . From Fig.3(c) we know that 
kreashg the @ent dB/& tends to deamw the damping force, whereas the string 
constant K incnases with dB/dx(See (16)). This situation sets a certain limit on the value 
of mdx. 

D. S e v d  measures to increase the aumber of trapped atoms 

Webaveknown that imeashg~hens i ty  will not increasethe number oftrapped 
atoms if P b  6' r -' . Under the &tion of I = b 6* T " , enlarging r (the radius of the 
laser beam) may increase the vohune of MOT and bmming 6 ( laser dehmhg ) may 
increase the vel* capture w. AAer r and 6 being determined. we use the condith 
L1 0 as *a limit on the value of dB/&. Among all the relative detunings , 6  a.I(V = 
0 , X = r ) = 6 + A" dB/dx is the biggest one. If it is negative, i.e., (note that 6 < 0) , 
the condition will be sathdkd 

All in all, we think that the fdlowhg methods may increase the number of trapped 
atoms: (I)  increasing the detuing; (2) enlarging the radius of the laser beam as possible as 
to keep I s: 10 6' r " ; (3) dB/dx = -A 6 ( ~  1)-' when r and 6 are determined 

4. CONCLUSION 

The promties of MOT have been studied profoundly for years. On the basis of these 
studies, we used a simple method to calcdate the force and motion of Cs atoms in ID-  
MOT. The approxime formulas for a and K are given in the case of small velocity and 
volume and the characteristics of the fbrce and the contribution of Zeeman effed and 
Doppler &a are also discussed The condition to  increase V, and V, upon which we 
may build an efficient MOT are given 

However in this paper we don't discuss the problems about the atomic density and 
equilibrium temperature in MOT, because the approximate method we used does not 
include f + and atomic momentum diffusion. Thus it cannot be applied to  calculate the 
atomic density and temperature. Furthermore the theory of density and temperature in 
MOT is quite complicated because ii requires the consideration of various effects, which 
are not easy to evaluate Anyway the related work is in proceeding. 

The authors are gratehlly indebt to Prof. Wu Jike of Department of Mechanics, 
Peking University and Dr Zhang Wenqing of Institute of Physics. Academia Science 
Sinica for their instruction and help with the wmputer program 

APPENDIX 

At first, we give the cited definition of the saturation factor 



and the relative detuning when X is small cm be rewritten as follows 

Finally the approximate population difference between the upper and the lower state is 

where p c  is the population of sublevels of the ground state in the case of wry weak light 

intensity under a ' 4- configuration and the calculated results are presented below 

After combining (3). (a 2) and (a 3). we have 

- A k r  Q :  I 2  
.fli.,,.. - - I  p;;l((.;;-'): - 

2 ( 1  + S,,) (6 - k v ) :  + r z  1 4  a 

By substituting the values of p z  and corresponding C-G c o d f c i a s  

and using the approximate condition 6-kV = 6+kV r 6 for very small V as well as formula 
(a 1) , finally we obtain 
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The Multiphoton Interaction of "A" Model 
Atom and Two-Mode Fields 

Tang-I<un Liu 
Department of Physics, Hubea Nonnal College, Huangshi,.$95002, P. R. China 

Abstract 

Starting from the C.T.Ws criterion on non-classical effects in two-mode fields,the author 
of this paper have studied the system of two-mode fields interacting with atom by means of 
multiphotons, discussed the ~ron-classical statistic quality of two-mode fields with interactioa. 
Through mathematical calculation, we've come to rcalize some new rules of nonclassical 
effects of two-mode fields which evolue with time. 

1 Introduction 
The non-classical effects of field is very interesting topic in quantum optics,and for a long time the 
interaction of atom with field,and its quantum statistic quality have been paid extensive attention 
bo.Since E.T.Jaynes and F.W.Cummings put forward an ideal model of interaction of two-level 
atom and one-mode fieldlli strictly resolved by pure quantum methods, people have done lots of 
mxarch on J-C Model in quantum optics these years, for example,interactions of two-level atom 
with one photonl4,two- photonsPl and multiphotons14'~,etc. Because one atom may often have 
multiple levels,and plenty of experiments require the consideration of a third level, people have 
naturally proceeded the J-C Model to the third level and discussed the interaction of t b l e v e l  
atom with one field.(These are called broad J-C Model),one photon process and multiphdon 
process,and as a result discovered many non-classical phenomena with different quanli ties'for in- 
stanc.,those of revival-collapse as well as squeezing of field and antibunching,et~.I~-~~~ 
The significance of studying J-C Model and broad 3-C Model exist in the realization of the respec- 
tive quantum dynamics qualities of atom and field when they interact. Though people have done a 
great deal of research on J-C Model, their research is restricted to the resonance and non-resonance 
of one or two-photofi, not covering the function of K(> 2) photons. We have already discussed 
the quantum statistic quality of mdtiphoton process1121.~y adopting the broad J-C Model and 
using density operator, we have obtained the mean-photon number value in this paper,and then 
discussed the quantum statistic quality of interaction of three-level atom with two-mode fields 
according to the criterioi~ on non-classical e~Te:..s put forward by C.T.Lee and consequent found 
some new evolution rules. 



2 Theoretical model 
Let's think about the system of the interaction of "A" atom with two-mode fields,l a > b given as 
common upper level,/ b > and 1 c > are given as lower levels, the state \rector of atom are taken 

I c > and I b >, ( a >-and I c > is &at& with mode 1 and mode 2, between the ( b  > and 
( c > is forbiddenness of a transition. On mnditian of resonance {w, - wb = klQl, y - w, = k z a )  
and RWA, the Hamiltonian of the system is expressed as 

H = h(H0 + Ha) 
the free part of which is 

and the interacting part is 

where,~~,i+~ are the transition operators of atom,s,i (i= 1,2,3) is the level projection oprators 
of atom,%, and G(i= 1,2) are the annihilation and creation operators, and angle frequencies of 
t5e mode i field, Xi is the coupling constant of atom and  field,^, , and w, are the correspondence 
frequencies of ( a >,I b > and I c > ,kl and k2 are the photon number of absorption or emission 
in transition process of atom between I a > and ( b >, 1 a > and I c >. 
Because Ha and Hht are the motion constant, then 

Itlo, H . 4  = [Ho, HI = (Hd, HI = 0 

so,in the interacting picture, there exists 

= e"'Ct~ae' 'H~t  - - Hint 

evolution operator of time in interacting picture is 

U ( t )  = e ~ ~ ( - i f ~ ! ~ t )  



where the factors of density matrix p(0) of the initial system of atom and field is given, the 
average value of physical quantities of the system can be obtained from 

If t=O,the atom is in the comrnon upper state I a >, the two-mode fields are in coherent states 
1 a, > and 1 0 2  >, and possae their respective mean photon numbers = I  a1 I' and =( q la, 
the initial density matrix of atom and fields of the system can be shown as 

where the initial density operator of field 

the mean photon numbers of two-mode fields can be ~ained from(6)-(9) 

and 

where 



3 The Statistic quality of Beld 
In genera1,the non-classical effects of field include squeezing statelantibunching and sub-Poisson 
di~tribution~which have been experimented. In 1990,C.T.Lee put forward the definition of second- 
order correlation function at zero time in identical arbd different modes in the two-mode field 
bheory.The definition goes as: 

where < d2) > is the second factorial moment of the photon nwnber.Therefore we have @)(o) = 0 
for a coherent radiation, since it has a Poisson distribution of photon numbers, when c12)(0) > 0, 
we call it intrarnode photon bunching, which is always true for classical radiation; and, in con- 
t r a s t , ~  have intramode photon antibunching when d2)(0) c 0,which is possible only for non- 
classical fields.ln analogy to Epn.(lS), we call it intermode photon bunching, if m have c!? > O p  
intermode photon antibunching if c~:)(o) < 0. C.T.Lee also put forward the criterion of second 
order non-classical effects about two-mode radiation fields,the criterion is: 

the smaller the D!:), the deeper the non-classical degree of twemode radiation fields. 
Now let's discuss the evolution rules of d2)(0), C$2)(~), C!f (0) and DK) in cine of given initial mean 
photon numbers n1 and A2, transition photon numbers kl and k2. Let XI = X2 = A, = p 2  = 0,we 
can see: 
(a) When initial strength of two-mode fields is weak,H1 = 'I2 = l.the transition photon number 
kl = k2 = 1 or 10, the evolution curves of @)(0) and c~)(o)  are the same. In kl = 4 = 1 process, 
there is cyclic fluctuation of intrarnode photon antibunching and bunching, and there is always 
intermode photon antibunching, and begin D!:) > 0, then there are non-classical effects, which 
become deeper and deeper as time increases,whth fluctuatic;.i being weak, getting close to oblique 
line to the right below. In kl = k2 = 10 process there is not intramode photon antibunching, but 
then is intermode photon antibunching for C$'(0), and there is D\:) < 0 from beginning to end, 
the evolution curves are irregular. 
(b) When initial strength of the field increases,fiil = ?i2 = 10, and k1 = k2 = 1, there are alway 
intramode photon anti bunching, the revival- collapse henomena of the evolution curves are o b  8 vious, there is intermode photon antibunching for CB2 (O),and D(,$ c 0,the evolution curves are 
steeper compared with(n). When tl = k2 = 10, C!~)(O) and c ~ ) ( o )  are both bigger than zero,but 
there is intermode photon antibunching for  and D::) < 0, the evolution curves fluctuate 



faster, compared with the above. 
(c)When initial strength of the field ;R1 and Hz are constant, and the transition photon numbers 
is changed. If nl = Yi2 = 1, kl = 1, k2 = 10, there is alway intramode photon antibunching for 
a2)(0), but not for ~(11)(0), there is alwav intermode photon antibunching for C!il(0), there is 
DE) < 0 from start to finish, all arnplitucies of evolution curves increase. If kl = 1 0 , 4  = 1,the 
evolution curves of C?)(O) are pictured as C$)(O), curves of G2)(0) as G2)(0), curves of @(o) 
and ~ g )  are as the above. When the transition photon number is given, the initial strength of 
the field is changed, if kl = k2 = 1, El = 0.1, n2 = 1, the evolution curves of CP(0) are pictured 
as fl'(0) in (a)@, = n2 = kl = 4 = I),but the wavy curves are parallelly shifted down, and 
the amplitudes increase a little, and c ~ ) ( o )  are pictured as @(0) in (a). If nl = I ,% = 0.1,the 
evolution curves of c!~)(o) and c ~ ) ( o )  are reversed compared with the above. There sre anti- 
bunching for c $ ( ~ )  and non-classical effects for ~ g ) .  

4 conclusion 

The result of the paper continues to show that the non-classical effects of twemode fields inter- 
acting with "A" atom by means of multiphotons are not only related to the initial strength of 
two-mode fields,but also absorption or emission the number of photons in the transition process be- 
tween atomic 1evels.h t he same time an interesting phenomenon of mode-competition exists,under 
identiecl conditions, two modes have identical status in the modesompetition, and c ~ ) ( o )  and 
@) (0) reveal identical emlu tion rules. Different conditions ,namely identical number of photons 
trans, t,, 5etween atomic levels but different initial strengths of tmmode fields,or different num- 
ber of phc ns transition between atomic levels but identical initial strength of two-mode fields 
will all lead ro the generation of the phenomenon of mode- competition. On the other hand, the 
more the transition photons. the more disadvantageous they are to register where fields enter 
non-classical effects. 

References 

[lj E.T. Jaynes,F.W.Cummings,Proc.IEEE.51 ,89(1963). 

(2) P.Meyster and M.S.ZubairylPhys.lett.89A,39O(1982) 

[3] G.Compagnc ,Peng Jinsheng and F.Persico, Opt.commun.57 41 5(1986). 

[4] A.S.shumovsky,Kien M l e  and E.I. Aliskenderov,Phys.lett . 124A,351 (1987)# 

[5] P.Zhou and J.S.Peng,Optics Acta.10(9),837(1990). 

[6] H.Li and T.K.Liu,Quantum Electronics, Supplementnry.9,19(1992). 

171 G.X.Luo and G.C.Guo,Chinese Laser.17(2),99(1990). 

[8] P.Zhou,Optics. Acta. 12(7) ,583(1992). 



[9] X.S.Li,Z.D.Liu and C.D.Gong,Phys.Acta.36(12) 18(1988). 

[lo] Y.N.Peng,Z.D.Liu and X.S.Li,Optics Acta.9(1),18(1988) 

[l l]  Z.D.Liu,Phys.Acta.36(12),1641(1987). 

112) T.K.Liu,H.Li and Z.D. Liu,Quantum Electronics.9(2), 136(1992). 

[13] C.T.Lee,Phys.Eiev. A42(3) ,1608(1990). Phys.RRv.A41(3),1569(1990) 



NEXT 
DOCUMENT 



Generat ion of squeezed light ~lsirig photorefract ive  
degenerate two-wave mixing 

Yajun Lu Mei j~an  Wu i n -  i Zheng Tarlg and Shiqun Li 

Ucpt. of Modern Applied Pllysics. ?':.irlqtma IJniv., Rc;jir:g 't V3Y84, China 
'Institute of Physics, At adcrnia S i ~ l r a ,  Be~;ing tf1:X)SO. China 

Abstract 

\Ye present a quantum nonlinear modet of tucrwave mlxinq In a lassies photorefractive 
n~ed.um A set of equat.kuns describing ttre q..ant~:n? nonlinear coupl~ng fdr  the field operators 
IS obtained It is found that, to the second power term, the comnlutation relationship 
15 maintamed The expectat~on values for thc photon number concur 1~1th those of the 
classical electrornagnetrc theory when the lnltial intensit~es of the two beams are strong 
\Ve dsn calculate the quantum fluctuations of the two beams initially In the coherent state. 
\Vrth an appropriate choice of phase, quadrat.ure squzz~ng or number sta te  squeezir,: can be 
produced. 

PAL'S numbers 42 654 Hw ,4?.50.Dv, 42.50 LC 

1 Introduction 

The phctorefractive effect in electro-optic crystals. a phenomenon in which the  local index of 
refraction a changed by the spatial variation of light intensity [I: ,  has been studied extensively for 
its potential in many applications. Tlre fundamental process may be described as follows. When 
the rrystal is illuminated w 'th a spatially modulated intensity pattern, free carriers (for example, 
electrons) are nonunifrornly generated due to the photoionization of impurities (generally, which 
may be doped). The impurities that can be ionized and provide free carriers a r e  called donors. 
Once thesc dcnors are io~ized they can serve as trap sites which capture electrons. The eiectrons 
can Lz transported by diffusion or drift and become trapped a t  these sit.es. The trapped electrons 
csn then be re-excited excopt for those in the dark region. Thus a space-charge separation is 
created. which leads to a space-charge field. Such a field induces a change in index of refraction 
via t h e  Pockels effect (linear electro-optic effect). creating an index grating. The  presence of 
such an index grating will in turen affect the propagaticn of these beams. Crystals such as 
Lt.l'bOg. HaT103. S B:V, BSO, GaAs and I n  P, are efficient media for the generation of the 
photorefrac t ive effect with relatively low intensity level (eg., 1 W/cm2) .  

Uany different nonlinear optical phenomena in photorefractive media have been studied. 
These ~nciude wave mixing, phase conjugation. self-oscillation, photorefractive resonance, etc. 
The fundamental photorefractive process 13 two-wave mixing (TWM). in which two beams in- 
terscBct inside a photorefractive midia. A statioqary index grating is formed which is sptaially 



shifted lr /2 relative to the intensity pattern. Such a spatid phase shift leads to nonrecipro- 
cal energy transfer when these two beams propagate through the medium. The basic classicai 
electromagnetic theory explaining the nonlinear interaction involved is already well established. 
Much attention has been focused on its applications including photorefractive resonatore, non- 
reciprocal transmission windows, self-pumped phase conjugators, laser beam clean-up, optical 
interconnection, etc. Although a number oi cases of TWM have been analysed, a quantum 
theory is not available and photorefract iw non-classical effects have not been discussed. In this 
paper we present, to our knowledge for the first time, a quantum treatment of two-wave coupling 
in a lossless photorefractive medium. 

2 Quantum model of photorefractive TWM 
A typical geometry for studying tw-wave mixing is shown in Fig.1. IJnder certain circum- 
Stances, two beams of light can interact in a photorefractive crystal in such a manner that 
energy is transferred from one beam to the other. This process is atso known as two-beam 
coupling. The signal and pump waves, of amplitudes A, and A, respectively, interfere to form 
a nonuniform intensity distribution within the crystal. Due to ihe nonlinear response of the 
crystal, this nonuniform intensity distribution produces a refractive index grating within the 
material. However, this grating is dispiaced from the intensity distribution in the direction of 
the positive (or effective electmoptic coefficient) crystalline c axis. -4s a result of this phase 
shift, the light scattered from 4 into A, interferes constructively with A,, whereas the light 
scattered from A, into A, interferes destructively with A,, and consequently the signal wave is 
amplified whereas the pump wave is attenuated. 

sttanuated Fig.1. Typical geometry for study- 
ing t w d ~ e a m  coupling in a photore- 
W v e  crystai 

ampii f ied -- 
An ideal quantum model for degenerate two-wave mixing may be constructed as follows. 

Consider the effective interaction Hamiltonian 

where X' is the effective interaction coefficient for the nonlinear process, A and B are the Boaon 
t operators for two modes with frequency w. = wb. Factor (A B + B ~ A )  represents the interference 

of two modes (21. The TWM can be understood from the following physical picture. Mode A is 
generated accornpan;ed by the annihilation of mode B, due to scattering from the grating induced 
by the interference. In other words, mode B is "scatteredn by the grating in the direction of beam 
A, to yield mode A, which ie responsible for the eaergy coupling. The Heisengerg equations 



of motion for the field operators A and B may be easilly obtained from H e / , .  Making the 
conversion z = vt for propagation along the z-axis at a velocity v ,  we can write the equations 

where x = x ' / v -  We find the field operators satisfy the Boson commutation rules. From the 
equations of motion for the photon number operatore N, and Nb 

we can show that the total photon number is constant throught the process. In the short path 
approximation, the solutions of Eqs.(2) and (3) for the field operators with expansion up t o  the 
quadratic ( ~ 2 ) ~  term is 

B(r)  = b - 2i(X*r)bta2 - iz(x + X')6a+a 

- I xz 1' [(4btb2 + b)ata - (2bt - b)at2a2 + (bt2a2 + u?'b2)b + 2btb2j (7) 
- ~ ~ ~ ~ * ' ( b t ' b o ~  + at'u2b/2 + a t d / 2 )  + y2(53at2 + bat202/2 + bat a /?) ]  

where a and b are the input field operators, respectively. It may be seen that,  to  the quadratic 
term, the field operators still satisfy the commutation relation 

In order to  test our quantum model for photorefractive TWM, we may derive the expectation 
values for the photon number in each beam and verify if the result of the quantum calculation 
concur with those of the classical electromagnetic theory. When the two beams are initially in 
the coherent state i a) and ; p)  with 

we obtain 



where 6 ,  & and 6, are phase angles, depending on the initial condition. We take - 6, = r 
and write I ,  =f  a 12, Ib =/ /3 1 2 ,  then obtain 

(Nb) = I., + I b  - (N.4 (15) 

According to  the classical electromagnetic theory, the coupled equations for photorefrac tive 
TWM can be written as 13; 

dl1 - -  I1 12 - -7- 
dz I ,  + I* 

where I ,  and I2 are the intensities of b e a m  1 and 2, respectively, and y is the coupling constant 
with 

Here n, is the depth of index modulation related to the electrwptic coeficient, 28 is the angle 
between the two beams inside the medium and 4 is the phase that indicates the degree t o  which 
the index grating is shifted spatially with respect t o  the light interference pattern. 

By examiaing the coupled equations, we note that I2 is an increasing function of z,  provided 
y is positive. This indicates that the energy is flowing from beam 1 to  beam 2. The direction 
of energy flow is determined by the sign of y, which depends on the orientation of the crystal 
axis. The solution for the intensities Il(zj  and 12(z)  are 

where 11(0) and Iz(0) are the input intensities of beam 1 and beam 2, respectively, and I. is the 
sum intensity with lo = 11(0) + 12(0). In the short path approximation. the solutions can be 
expanded to the quadratic (?z)' term as 

I2(z)  = l o  - I l ( 2 )  (22) 

Comparing Eqs,(l4) and (15) with Eqs.(21) and (22). we find that t h e  results of the quan- 
tum theory are consistent with those of the classicai theory. so lor.g a h  I ,  (Oj = I , ,  Iz(0)  = 

I*,  7 = 4 i x I s?nr$Io and I ,  >> 1, Is >> 1. When the input intensities of the  two 

beams are strong, the effective fianliltonian Her can give and atcurdtc. desc ription of the en- 
ergy exchange phenomenon in photorefractive two-wave mixing, as shown in Fig.2. We can 



thus cc.r~clude that our quantum model for photorefractive TWM is reasonable and successful. 

Fig.2. The intensities of two beams versus the effective interactton length (YZ). 
Dashed curve the intensities of the classical electromagnetic theory I! and I s ,  from 
Eqs.(l9) and (20). Solid curve: the quantum average photon number N, and Nb.  
The initial intensities I ,  = 10', I2 = lo6> respectively. 

3 Quantum statistic of photorefractive TWM 
To discuss the photon number fluctuations af the quantized field we consider the variance 
( . l i ~ , * ( r ) )  or the Fano factor 

where ;A,v,~(z))  = (l\i12(z)) - (N,(z))* and j = a, b. To obtain the above expression we need 
to find the expectation values for   AN,'(^)) and (AN,'(z)). When the input fields are in the 
coherent state ; a) and 1 &, after some tedious calculation we may obtain the expectation values 

where we have taken S - 6, = n. Here d, = *; corresponds to the maximum energy coupling 
between the two beams. Eqs.(l4) and (15) show that the energy flows from beam A to beam 
B when 4 E i0,rj. This indicates that A is the pump beam and B the signal beam. Let d, = i, 
we rewrite Eqs.(24) and (25) as 

The Fano factor plotted against the effective interaction length ~z is shown in Fig.3, where 
3 = 4 j x j sin410. We see that the pump mode A can be in a squeezed number state, whereas 
the signal mode B becomes super-Poissonion at  the some time. 



Fig.3. Fano factors of beams A and B versus 
effective interaction length 7z lor coherent state 
inputs. Dashed curve. Fa. solid curve: Fb. The 
initial intensity ratio rn = = Fa shows 
the sub-Poissornan 

Moreover, the signal mode can never becomes squeeeed(at least for our solution expanded to 
the second order). The degree of squeezing in the pump mode depends on the initial intensity 
ratio rn ( h e n  we define m = ) . If m is large (for example, loo), then r he d q r m  of sguwing 

I L ( O )  
will be very small (in the short path approximation). This is reasonable as the energy coupling 
has little effect on the intensity of the pump modes, so the quantum fluctuations will not be 
reduced greatly. 

The quadrature phase amplitudes of the two beams are defined as 

t 
B z + B  (21 B r -&*I xb= ' I 2  h = [I2, (29) 

When the input field are in the coherent state, the field variances may be determined explicitly 
to be 

With an appropriate choice of phase, both modes can produce quadrature squeezing. For exam- 
ple, when4 = r /2 ,  hb = r and 60 = 0, it is obvious that (AX.*(Z)) and ,axb2(z)) may be less 
than f in the short path approximation. The variances plotted against the effective interaction 
71 are shown in Fig.4. We see that both modes can be in the s q u e e d  state. Furthermore, there 
is strong dependence on which of the input modes is strong. The degree of squeezing in the pump 
mode is great when the initial intensity ratio m is mall,  as shown in Fig.4. In the reverse case, 



if the pump mode A is strong, then the degree of squeezing in the signal mode B will be great. 

Fig.4 Thc vartances   AX,^), ! : ~ 1 6 ~ ; ,  ( A x C ~ ~ ,  and ( A Y ~ ~ )  when both input field 
are initially In the coherent state, with m = &. Dashed curves- the variances of 
X component. which show quadrature squeezing. Solid curves the variances of Y 
corrnonent . 

4 Conclusion 

In conclusion, we have presented a quantum model of photorefractive TWM, which can well 
describe the energy exchange phenomenon in T WM. A set of coupled mode equations is obtained 
and solved in the short path approximation We have also calculated the quantum fluctuations of 
the two modes and find that when both modes are initially in the coherent state, the pump beam 
can become sup-Poissonian, due to the photon flux in the energy transfer. The same qualitative 
result was also obtained in our previous approach from a set of simplified field equations 141. 
With an appropriate choice of phase relationship, quadrature squeezing can be produced. 
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E -  rmyammm.em;t.in 

The micromaser has been exbemdvely studied as a s o w  of 

rzdiation f i eb  having various mnchssical pmperties. One such 

propety is t b  sub-Poissonian nature of the radiation field 

which has been experimentally demonstrated in t.bis dynadcs 

tll.TMar device h c l l v e s  a microwave cavity of high quality 

factor Q end cooled down to sub-Kelvin tamperatme. In the 

camrentiorral micmmaser, two-level Rydberg atoms in their upper 

states are pumped into the cavity at such a rate that at most one 

atom at a time is allowed t o  interact with the cavity field The 

very first atom encounters the field at thermal equUlbFium. 

A f t e r  t h e  interaction, the field evolves under the influence of 

i own reservoir  until the next aton enters the W t y .  The 

process repeats itself with a repeatation time t - T + t 
C cav 

w h e r e  T is the atanrfleld interaction time and t 
cav 

is t h e  

duration between successive atoms. t is flrred whemas t 
cav 

is - 
random following a Poissonfan pump with an average t - 10R where 

C 

R is t h e  number of atoms entering t h e  cavlty per -nd. We find 

t h a t  t h e  cavity field is coupled t o  t a t o m  during T only 

whereas it is coupled to  its reservoir during thet e n t i r e  dmation 

t . Rence, t h e  nonciassical ~ t u r e  of t h e  Meld would be vepy 
C 

sensit ive t o  the cavity field damping. 

The theory of micromaser  proposed in Ref.121 is capable of 



h d d n g  the effoct of reaecvoirchduced int,e~actiom even 

dww the she- dwation t on the evolution of tb aavity mid. 

~ t s  m n c e  on t h  n o r m  v.r- v - i<<n%*r) l> /~F  
C v < 1 for sub-Poissodm fleIds > h clearly evident in tlm 

Fi(.<l). The ~~~ enrbodon oorrstPnt between the two rnrdry 

levels ~ - 4 4 0 0  tix <dot-, 4.4 llz <-, and Oa <hrW. The 

daskdot-dot curve repmmenta the results for the ideal situation 

7 i.e no daap- whatsever. 

N' 
Fig.1. Variation of v with N, the number of atom 

streamed though the cavity d d n g  photon Ufetim4 

fo r  the exprimentd setup in Ref.til. 7- m c . ,  

and cwi ty  temporatum Tdb K. 

The above description ia for th. . t o m s  being in their upper 

statmi at t h e  t ime  of entering the cavity, In st*ad, if the atonmi 

a m  in a coherent auperposltion of two masing levels at  the 

be@mln( of interaction, it cm induce a p information to 



the cavity field. This may result in the squeezing of a 

quadrature of the radiation Meld. 

The two-level Rydberg atoms, at the time of entering the 

cavity, aw in a coherent superposition 

(tp > = al.) + Plb> (1) 

of their upper C 1s) > and b w e r  < Ib> > statem. W e  assume 

through out this paper that a and (3 a m  real. The transition 

frequency between the levels is in reso- with the s-le 

eigenmode of the cavity at f-ncy a. W e  represent the atom by 

the Pat& pseudo-spin operators obeying the coromrtation relation 

CS',S-I - 2s'. cavity field is represnted by t.b -tion 

< -tion ) ope~ator  a < a* 3 w h i c h  satisfy the commutation 
t ralatio;? [a* I - 1. The atom-field iteraction is then dven by 

the well-known Jaynes-Cuinmi~ hunlltonian MI 

where g is is the coupling constant. 

In a frame rotating at w the equation of motion for the 

composite atonrfield s v s t e m  can be taken t o  be 

The effect of the heat-babh at the temperatme T > 0 is 

introduced through the tam in tho P W k  function <h. x - 0/29 
is half the bandwidth of the eigerrmode. The effect of atomic 

reservoir is not included here it hPsl boen seen in Ref.C2b> 

that the slgnlflcant inf"luenco corns f h m  the cavity damping. 

We follow the procedwe in R e f . 0 )  to get an expressiort for 

time derivative of the density operator for  the field only in 

photon number represwatation i.e. p =<nipinr. The multing 
n m  

expression gives, in tk steady-state, the continued fractions 



m'n,rn''n-i,m-i fos dl n wd m wNah ia 
n,m 

X o~ Y <O indicates squeezl~ in tbat qudrat.me. 

Our numerical study of X md Y as a fUm%ion of g ~ ,  pump 

rate N and othm pawne+teran reveals i n t e r e s t ~ . r e s u l t s  for ww 
which w e  dlrply in Q. C2> for a cavity with +/p0.8lxloa. The 

experhemt in Ref. Zfl had the same value of rv'g but the cavity 



temperatme was at TW.5 K. Firufe 2 Hcabes that T mecis to be 

further reduced to  observe in the cavity fiaId.The 

curves a, b and c in the Fig. C2) are for ':, 0.15 K and 
0.11 K mpectively. The c o m w p o ~  thermal at the 

a v i t y  mode fr%quency ti) ~Lh16.01, 0.001 a d  0.OOOi. Fig. 

(2) shows t h a t  the squee* in a quadrature per&&s ?.--. -her 
Y 

pump rate N fo r  lower tempera%-. 

The photon disCribution of the -ty field is, in gemsal, 

peaked at  various n at temperatmes such as in Fig. (2). T b s e  

states 1x0, are known r trapped stat.. C4l.Tbse can be . . d l y  

analysed fop an ideal cavity C Q=m ) which reveal that* the 

u of polarized atoms. a trapped vacuum state (0)  of the cavity 

field results for grm a?A for T 1? 0.1 K. With cavity dissipation 

included, it is difficult t o  notice directly t trapped atates 

of the cavity field in Eq. (4). Huwever, f r o m  our numerical 

study, we rrofice in  the case of FLg.C2c), f o r  lower p4..mp rate N, 

the cavlty field ls almost in the trapped vacuu. t state and the  

unce~ta tnty  product of its two quadratures a and a is close to 
x Y 

that f o r  a minlmm u n c e ~ t a i n ~ y  state. 

In condusfon, w e  have shown t ha t  t he  radiation field in th 

m i c ~ m a s e r  cavity presentlv in operation 111 may be -mezed if 

pumped with polarized atoms. With both a and (3 considered real, 

we show squeezi.y in the a quadrature. Ira Refs. 1 ,  the a 
Y X 

-atme hah: been shown squeezed as a and P are out  of phase by 

nfilowever, it is difficult t o  make a quantitative cornparisan 

with the  resuits  in Ref. t!!l as t he  squeezing there  been 

studied in various types of fields which e assumed t o  be 

present in an ideal cavity, t h a t  is Qrap dming the entire  

repeatation time t . In the present paper, the  squeezing is in 
C 

the steady-state field evolved f ~ o m  the  action, same in 



a m v e n t i d  nd-, with %be effect of Caaty -am 

inebuQd durin( the snGira trt* 
C OOV' 

T h s s t o r r r s r t t h a t i n s o f  

entdng fhs cavity is PPqmed, imbed of &tn( in fhs 

s b t e , i n a p o h r h e d s t . t s ~ t h t / 3 < < a  
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Abstract 
For small photon numbers. trapping states ate difficult to detect 

due to the influence of the collective effects. We find that if the atoms 
are injected with atomic polarization. the micromaser becomes more 
insensitiw to these efiects. In particular, the squeezing properties of 
the cotangent states are basically unchanged. 

Recent work studied the effects of having two simultaneousand fully inverted 
atoms ir! t h e  one photon micrornaser cavity. and found t.hat the trapping 
states were strongly disrupted by these effects for a low photon numberl2. 3). 

Here we w111 describe the cooperative effects of polarized atoms on the trap- 
ping states and squeezing properties of the cotangent states[qIijf 1). 

The Harniltonian of the two atom field system, in the Dipole and Rotating 
wave approximations is: 

where g is the one atom- field coupling constant and a, and 0 2  the atomic 
PauIi spin operators for atom one and two respectively. Here we assume 



exact resonance between the field and the atoms. 

Let us denote by le)i and lg),, i = 1.2 the excited and ground state of the 
i-th atom. 

The system can be described by the basis: 

Tbe time evolution operator of the systc m rFn be calculated in a simple way. 
It is: 

A -iaS -iaS B 
-isat  D E -iSa 

D - iSc 
Bt -iatS -iatS A 

where 

where Ar i s  the interaction time during which the 2 atoms are present in the 
cavity. 



We assume that a t  t = 0 a first atom enters the cavity and a secoqd one A! 
seccbnds later. 

The state of the system a t  the instant just before the first atom leaves the 
cavity is given by: 

whew I!l(At) is the time evolution operator of the Jaynes-Cummings Model 
and p, is given by: 

that describes the initial state of the atom. Next, we trace over the first 
atom and get the atom 2 -field density matrix. The  evolution of the present 
system is governed by the Jaynes-Cummings model. Two possibilities arise. 
One is  that the atom 2 leaves before a new atom enters the cavity or  a new 
atom enters before atom 2 leaves. 

U'tt may define various sequences as described by Figure 1. Sequence (a) (01 0) 
corresponds to  no atom-one atom-no atom sequence. Similarly, we may have 
a sequence (01210) (Figure I -b) or  (0121 210) corresponding t o  Figure I -c. 
ih discard events containing three or more sirnultanmus atoms. 



I At, I I A l i  I 

Figure1 .Poissonian injection of atoms. The arrow pointing upwards indicates 
an atom entering the cavity and a downwards arrow means that it leaves. 
(a)Ati + r,and we have either zero or one atom inside the cavity. (b) Ati 4 7, 
and Ati+, + rC.(c)At, 4 rC,Ati+l 4 ~ c ~ n d A t , + ~  + 7,. 

For each of these sequences, it is possible. through a tedious but straightfor- 
ward procedure, to write t h ~  field density matrix elements in terms of the 
relevant parameters of this system. 

In order to numerically simulate the process described above in a realistic 
fashion,we consider that the atomic arrival obeys a Poisson distributic,. We 
characteriz-. the atomic flux by a parameter p = (Ar)/rC, where (AT) is 
the average time between consecutive atoms and 7, the atomic flight time 
through the cavity. We also define the usual one photon trapping condition 
\- - d m 9 + ,  = qr ,  q being an integer number. 

Next, w e  describe some numerical results. The parameters used are p = 
15.6, N, = 10, (a(' = 0.9. 

In Figure 2-a we show the field density matrix elements after 1000 atoms 
crossed the cavity, and one can already see a small hill between n= 12 and 
18, clearly indicating that a the trap bad already : small leak. This effect 
is of course more dramatic, as one increases the atomic numbers to 2500 
(Figure 2-b) and N,,, = a000 (Figure 2-c). This set of three Figures clearly 



Fig. 2. Reduced field density matrix for y = lS.G, iVu = 4 and 101' = .9. (a) 
Natom = 1000. (b) Naom = 2500. (c) R.6,, = 5000. 



display the probability diffusion in phase space. 

The most important result in this work is shown in Figure3, where the Y- 
quadrature variance is shown versus atomic Number. The dotted line cor- 
responds to the squeezing of the cotangent states(41, and the full line to  
the present case. We observe that even for a relatively large atomic flux 
(p = 15.6), the squeezing property of the cotangent states are ez inmely  ro- 
bust to the coopemtive eflects, that otherwise seem to be verg destructive. 

In a future work, we would like to explore how the atomic measurement a t  
the outside of the cavity affects all the properties of the field discussed here. 



number 0 1  atoms 

Figure3.Cfariance of the field quadrat urc 1' versus the number of atoms of t hc 
cotangent st.ate(dotted line) and the present case(fu1l line). The parameters 
are the same as in Figure 2, except N,=10. 
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Abstract 

When an N-photon state enters a lossless symmetric bearnsplitter from one input port, 
the photon distribution for the two output ports has the form of Bernouli Binormial, with 
highest probability at equal partition ( N / 2  at one outport and N/2 at the other). However, 
injection of a single photon state at the other input port can dramatically change the photon 
distribution at the outputs, resulting in zero probability at equal partition. Such a strong 
deviation from classical particle theory stems from quantum probability amplitude cance!la- 
tion. The effect persists even if the N-photon state is replaced by an arbitrary state of light. 
A special case is the coherent state which corresponds to homodyne detection of a single 
photon state and can lead to the measurement of the wave function of a sirgle photon state. 

1 Introduction 

Interference effect of light has played an important role in the conceptual development of quantum 
theory. Richard Feynmann once wrote' that the Young's double slit experiment "has in it the heart 
of quantum mechanics". But the phenomena of interference do not simply stop a t  Young's double 
slit experiment and its variatisns. Much richer phenomena occur in higher-order interference2" 
when there are more than one particle involved in the process. For example, Greenberger et  al.' 
recently proposed new demonstration of locality violation by quantum theory with superposition 
state of three or more particles. 

In the meantime, along a quite different line, Ou and Mandele have investigated a startling 
quantum interference effect where a strong field interferes with a considerably weak field. It was 
shown3 and demonstrateds that for certain nonclassical fields, the interference fringe visibility does 
not change even though the ratio of the intensities of the two interfering fields is much greater 
than 1, in conflict with the intuitive picture from classical wave theory for interference. In this 
case, the  seeming!^ insignsficant weak field plays an essential role for the interference effect even 
though its intensity is negligibly small. Therefore, the presence of the weak field can dramatically 
change tt t. outcome of the result. 

In this paper, we will present another example of how existence of a weak field can make 
a significant difference. It deals with N + 1 photons with A' being a positive integer. We will 
consider a situation when arr N-photon state interferes with a single photon state with the help 



of a symmetric lossless beamsplitter (see Fig.1). A special case of N = 1 has been experimentally 
investigated as an example of fourth-order interference? However, quite different from the two- 
photon coincidence measurement technique used in fourth-order interference, we will exam photon 
probability distribution a t  two output ports of the beamsplitter. Although no interference pattern 
exists, the phenomenon discussed here attributes to quantum interference of multi-particle ( N  + I 
particles). We will also extend the discussion to an arbitrary state input in replacement of the 
A'-photon state. 

FIG. 1 .  Layout for the interference between N-photon state and a single photon 
state via tz beamsplitter. 

2 Photon Probability Distribution for a Symmetric Loss- 
less Beamsplit ter 

It is well-known that when a number of particles, say N, enter a 50:50 lossless beamsplitter from 
one input port, the particles are randomly sent to the two output ports with equal probability, 
resulting in the simple Bernoulli binormial distribution as 

N1 is the number of particles exiting from output port 1 while N2 is for port 2 .  In the case 
of photon, the above result suggests that each photon acts independently as a classical particle. 
The wave behavior of light does not show up here because of the absence of superposition. This 
distribution has its maximum when N1 = N2 = N / 2  (equal partition). So it is most likely to find 
equal number of photons on each side oi ihe beamsplitter. For large N and INl - N21 << N .  
~ q . ( l )  becomes 

which is a Gaussian. The extra factor of 2 is because Poifi,, N2) = 0 for ever- other value of 
N ,  - N2. 

Next, we let a single photon state enter the input port i of the :)earnuplitter. 1% will look 
for the probability P , ( N , ,  N2) that Nt photons exit at o u t p ~ t  port 1 while the other idz photons 



at port 2 ~ i t h  NI + NZ = N + 1. Le* us for a brief msrnent consider thc* outcc.me from classical 
particle theory. As a classical pcrticle, the input single photon will have 50% of probability going 
~ u t  at eithcr ports. Berausr the single photon is indepe1:dcnt of thc other A' photons, we simply 
add the prohal>ilities to obtain the final res~llt: 

w!:ich is in the exactly same form as that in Eq.(l) .  Therefore the existence of Ine single phot,n 
at the other port does riot influence the photon probsbility distribution a t  all. The single photon 
fram port 1 acts as i f  i t  . -e part of the N photons from tlie port 1 .  This is betause classical 
particles are independcni each other and it doesn't matter which port it etrtcrs. 

On the other hand, the outcoirie is totally diffelent if we treat the photons as quantuw particles. 
We cannot simply add thc probabiiities. The princip: . of quantum mechanics requires that the 
probability arripiitudes be added. For simplicity, let us first consider the case when iV is an odd 
integer and Nl --I N2 = ( A  + 1)/2. The probability amplitude has two contributions as shown in 
Fig.2: (a) the single photon input at port 2 goes directly to output port 2 while NI - 1 = (h'- 1)/2 
of the A' photons input at port 1 are reflected and go to ovtput port 2 and I V ~  = ( N + 1 )/2 photons 
to port 1, or (b )  the single yhoton is reflected and goes to output port 1 while N2 - 1 = ( N  - 1)/2 
photons bo to  o ~ ~ t p u t  port 1 and N2 = (N + 1)/2 photons are reflected to port 2. From Eq.(l), 
we find that thesc two possibilities have equal probability thus their probability amplitudes have 
equal absolute value. For their phases, however, be~ause there is a x / 2  phase shift for the reflected 
field and no phase shift for the t.ransmitted one at a symmetric beam splitter, the total phase shift 
. ~ h c  :%' + 1 I)hotot~s at the output ports will be different for thc two possibilities. Referring 

to Fig.1, w e  find that the total phase shift for the first possibility mentioned above is 9, -. 
(S. - l)x/2 = (!V - l)r/4 while for t.tie second possibility, qb = rj2 + N2n/2 = ( N  + 3)*/4. The 
phase diffe! 2nce between the two is thus vb - pa = K. 'I'herefore, the two probability 
amplitudes b i l l  cancel each sther, resuiting zero probabil~tj for lY1 :- N2 --- (IQ + 1)/2. This 
result is completely c l i f f ~ ~ r ! ~ ~ ~ t  from that of a classical particlc theory In Eq.(3).  As seen above, the 
probability ca;.c::llatior: at =. ;Trz results from the quantum interference of ;L' i- 1 particles. 

"'I 
IN? 

N+ I 

FIG. 2. Two contributznns to t h ~  output photon dlslrtbutzon. 



For the other cases when Nl # N2, w - cannot uso the simple argurnent as above. But we may 
derive the OL put state along the line of Rel.10 and find the probability distribution Pl(NI, AT2). 
Or we car) IIW the forn~r~la 

where 
= (til + i ti2)/&, A* = (62 + t iF!/d2 

are the annihilation operatots for the output modes for a symmetric lossless beamsplitter. The in- 
put modes represented by G I ,  a2 are in the state of (@) = IN)  1)2. After some lengthy calculation, 
we haw 

The above expression can also be derived from the general formula given by Campas, Saieh and 
Teich in Ref.11 for arbitrary numbers {nl. n2) of input photons a t  the two input ports, with the 
setting of r = 11%. nl = N, n2 = 1. When N, h',, N2 >> 1, Eq.(5) can be approximated by 

Notice that when N is an odd integer, Pl(N,,N2) = 0 for NI = N2 = ( N  + 1)/2, exactly as 
predicted from the simple argument of probability superpositiorr given In the previous paragraph. 
When N is an even integer, P1(N/2 + 1, N/2) = N!/2N*1jN/2 + l)!(,'V/2)! # 0, but because 
Pl(N/2 + 1. N/%) /  Po(#/:! + 1, N/2) = 1 / (N + i ) << 1 for N >> 1, cr the probability with 
a single photo11 input is much smaller tha2 that with m u d m  state input, the probabilities for 
Nl :Y2 are quite different in the two cases with or withodt the single photon state a t  port 2. 
Actually, the whole probability distribution in Eq.(5) is different from the p.-obability d i s ~  ?.bution 
in Eq. j 1 ), as - e n  in Fig.3. The maximum probability for P,(Nl, N2) occurs a t  J& - r \/iii 
or N, ( N  f n ) / 2  while for Po( N,, N2) it occurs at N, = .N2 = N/2. The existence of a single 
photon dramatically changes the pattern of the output photon distribution. 

FIG. 3. Output photon distribution for N-pnoton state input at prd I with (a) 
uacuurn state or (6)  single photon state at port 2 (N=f 9). 



3 Interference of a Single-Photon State with Arbitrary 
State 

The above quantum probability cancellatior1 effect due t o  a single photon state is not s t r i c t 4  to 
N-photon state as input state. Let us ctxisidcr an arbitrary state of light input a t  port 1. Its 
state is generally descrikd by the Clarrhc-r P-distribution P,,(o) .  Rut before goirrg into lengthy 
calculation, we may take a guess about the plloton distribution of tlre output fields by thc following 
argument: since the vacuum state and the single photon state are completely incoherent in the 
sense that they have a totally rand0111 phase distribution, the output fields due to intcrfemnct 
of one of these states with any other state will not h a w  any coherence information of the input 
state. Therefore, the output photon distribution of the beamsplitter will lose all the coherence 
information of the input state and will depend simply on the photon statistics Pi'' of the input 
state at qort I .  So combining this fact with Eqs.(l,S), we come up with the output photon 
distribr. : tns in the form of 

for vacuum input at port 2 and 

P,(IV], .hr2) = 
(XI + N2-  I ) !  2 p n  

~"!+&H,!,Y~! (N1 - N2) N l + h - l  

for single photon state input at  port 2. Of course, we may rigorously derive the output photon 
distribution by following the procedure described in Ref.10 to first find the state of the output 
fields of the beamsplitter in terms of the P-distribution. The  photon distribution for the output 
fields can then be calculated through Eq.(4). It can be shown that Eq.(7) is indeed the correct 
form for the output photon distribution. 

By comparing Eqs.(7a) and (7b), we easily find that Pl (N1 = N2) = 0 for single photon state 
input a t  port 2 while 

ec 

p~(Nl  = N2) = 1 
NI =O 

for vacuum input. Therefore, the existence of the single photon state a t  port 2 does make a 
difference in the output photon distribution even for arbitrary input state a t  port 1, and the 
probability for Nl = N2 is exactly equal to zero. The cancellation of the probability for Nl = N2 
is because of the destructive interference between the N photons and the single photon as we 
discussed above. 

In an actual experiment, however, it is difficult to  m w u r e  the complete distribution P ( N , ,  N3), 
but the distribution P(NI  - N2 = M) can be measured by balanced homodyne dete~tion.'~*'"rom 
Eqs.(7a,b) we find that 



for M 2 0. For M < 0, the symmetry between Nl , M2 in Eq.(7) leads to P ( M )  = P( - Ad). 
Next, we will e\.aluabe Pa(M), P1(M) for some special states. For N-photon state input with 

N >> 1, we have Pifl = 6,,N, and Eq.(8) gives results similar to Eqs(1,S): 

2 
2 5 -  

- M2/2N for M >> i 

2 M2 e-u2,2N -- 
m N  

for N >> 1 .  

For coherent state input, PP, = nne-"/n! with n being the average photon number. Therer?re, we 
have 

00 (2N1 + M)!  iiZN2+'"e-' = 
22N1+MN2!(Nl + M)! (2N2 + M ) !  

= e-"tM(fi) 
N2 =O 

a M2(2N1 + M - I)! jj2Nz+M-l e -1 - M 2  - -e-'IM(n), 
P1(M) = N? =O 22Nl+MN,!(Nl + M)! ( 2 4  + M - I)!  ti 

where I M ( i i  j is the Bessel function with purely imaginary argument and has the form of 

1 j* dq-*M+,fi-* , - 
,/zG 

eA-M2/2a when ii >> 1. 
-* 

Therefore, for large 6, 

Eq.(12) has the same form as Eq.(9) for large N besides the factor of 2 which is explained earlier 
right after Eq.(2). This is not surprising if we consider the fact that when the photon number is 
large, the interference scheme discussed above becomes homodyne detection scheme. Since both 
vacuum state and single photon state have random phase distribution, homodyne detections with 
N-photon state ( N  >> I )  and coherent state as local oscillators are equivalent. As a matter of 
fact, the output photon distributions will always have the form of Eq.(12) for any state as local 
oscillator, provided that the average photon number is large and photon number fluctuation is 
much less than average photon number (4- < < 6) .  We can see this point from Eg.(8): when 

c < ii, PG has a narrow peak around i t  and is a fast changing function as compared with 



other terms in the s~lnlmation. therefore I he wntribrlt ion to  t hc st~mmation is only from the fc-w 
terms around n, so that we can pull all othcr tert~is out of the sum, that is, 

li ! 1 C p;;,2 * -M2/2n * Zn(n/..' - h1)!(6/2 + M ) !  & 
F when n >> 1, (134  

and 3imilarly 
M 2  - M 2 / 2 f i  Pl(M)  -- e & ii when n >> 1. 

We can also understand this result from the fact that any fluctuation in local oscillator is cancelled 
in balanced homody~le detection scheme.I2 

Furthermore, if we set n -, oo, we can replace the discrete variable M with a continuous 
one defined by r = ~ l / &  and the probability distributions in Eqs.(lJa,b) lead to  probability 
densities of continuous variable J: as 

which correspond to  the square of the absolute value of the wavefunction for the ground state 
and single photon state, respectively. Thus by measuring P ( M )  in homodyne detection, we can 
deduce the wavefunction of the input state at port 2. This is exactly the technique of optical 
tomography used by Smithey et But here we applied it to a single photon state (input at  
port 3) and provd that  the outconle does not depend on the state of the local oscillator (input 
field at port 1 )  as long as  thc average photon number is large and the fluctuation is not very large 
for the local oscillator (i.e., the condition for the approximation in Eqs.(lSa.h)). 

However, there is an exception to  the above. It is well-known that for thermal light, we have 

so that ,/(ad) t f i  and we cannot use the approximation in Eqs.(lla,b). For thermal light, 
P: = nn/(fi + I)"+', so from Eq.(8). we have 

where I = n/2(n+ 1 ) and 3(0.4.r: z )  is the hypergeon~etric frlnction. \f7it.h some re-arrangement, 
wr  can prove that Eq.(15) have a simpler form as 



with q = 1 + l/ti - JmJti. For large ti. qM becomes c - M / ~  so that Eq.(15) is changed to 

Therefore, The output photon distribution for thermal light input is different from that of coherent 
state input. But the general trend in the change of the shape from Po( M) to PI (M) is similar in 
both states (Fig.4). The quantum interference effect due to single photon is the same. 

FIG. 4 .  Pmbability dutributlon Po,, ( M )  for the balanced homodyn~ detection of 
vacuum state and single photon statc tirith (a )  cohemnt state or (6) th~rmnl  state as 
local oscillator. n = 300. 



It is interesting to note that the weak nonclassical state (single photon state) plays an important 
role in the interference with a strong classical field (coherent state or thermal state) in contrast to 
the case discussed in Ref.3 where the nonclassical interference occurs between a stwng nonclassical 
field and a weak classical field. Eveti thorrgh the nonclassical field is weak here, the result is very 
nonclassical in the sense that the probability of detecting equal intensities in the two outputs is 
zero ( P , ( M  = 0) = 0). It can be proved that in the similar situation (one field is weak and the 
other is strong), classical wave theory predicts that the probability is largest for equal intensity 
output a t  the two ports. 

So far we have only discussed the single mode situations. In practice, we always have wide 
spectrum. Since two different sources of light are involved in the interference, the observation of 
the probability cancellation effect requires the overlap of both spatial and temporal mode structure 
of the two fields as well as near unit quantum efficiency of the detectors. 
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Reflection spectrum of two level atoms by an 

evmescent laser wave * 

Tan Weihan and Li Qingning 

Department of Physics, Shanghai University, 

Shanghai Institute of Optics and Fine Mechanics, Academia Scinica 

(P.O.Boat.800-41~,Shapg.hai 201800,Chi~) 

An exact solution and numerical cscol.tion of tbe nlledon of two level 3- by 

atomic mirror art presented. The curve of reflection coefiient again& Rabi frequency 

cacaloted abows some new features, and the physical mschmbm underlying is anal- 

ysed. 

PACS d e r ( s ) :  42.M).Vk, 32.80.Pj 

1 INTRODUCTION 

One of the fundsmentd problems in atomic optics is the redeetion and &&action of two 

level atoms by an evanescent laser wave-atomic mirrorll"'l. Via an adiabatic dressed- 

state approximation the problem was studied by Dentschmann , Ertmer arrd Wdlispj . In 
this paper an exact solution is presented by using the method given in one of the authors 

prwioas paper 1''. The carve of reatetion eocfacient against the Rabi fnqnency uhms 

some new features, the pbysied maehanism involved io udysed. 

*Project supported by tbt National N a ~ l  Science Foundation of China sad Joint Laborstay of 

Quantum Optica(Shaoghai lnaitutr of Optics and Fine Morhdcr, Academia Sinica/bt China Normal 



3 The Schr6dinger equation, Ware hnction, Nor- 

malination , and Solution 

A schematic diagram for an atomic mirror is shown in Fig.1. An atomic beam incident 

upon the surface of a dieleetic infcrscting ~ t b  the evanescent wwc in the x-y plane. The 

total Hamitonian H reads 

1 
When 8. , depending on the coordinate g, is the internal energy, -0: +pi) represents 

2m 
the translation energy of atom as a whole, and -8 b denotes the atom-laser coupling 

energy. The Schriidingtr equation of the atom reads 

The solution of Eq.(2) has the form 

Substituting Eq.(3) into Eq.(l), we obtain 

2 a ~  Now we introduce the Rabi frequency 0 = -, the normalhation frquency no = h 
hqa/m, and adopt the normalization 



71 - 7s = - - p,'Cfrn = hn dn) 
A0012 

9 

After nomahation, Eq.(4) assumes the forms 

Now we rewrite Eq.(6) in the form of Brst order differential Eqs. 

or briefly 

where 

The Laplace transformation of w(8 )  can be written as 

which leads to 

When the inverse transformation of Eq.(ll) is evaluated, the solntions u(y), v ( g )  can be 

derived immediately 

where u t ( 0 ) ,  u,fO), v,(O), v,(O) is the boundary values of u,(y), u, (y), v , ( y ) ,  vo (g) at the 
target surface y = 0. 



3 The boundary conditions and the reflection coef8- 

cient for atomic wave 

1 Spontaneous emission 

The spontaneous transition of excite4 atoms to  the ground state for large g, yeilds the 

condition for excited state wave function 

where 1 is the thickness of evanescent laser wwe, TI is the life time of atom and pe/m the 

velocify departure from the target. The typical datas are, A .Y O.Sy, TI = 10-8re~lpellm 3 

0.5m/rcel peJm TI x k o J n ~  sins 8 - 1 2 1.73, setting y, 2 7, the inequality Eq.(l3) is 

satisfied well. Using Eq.(13) to eliminate ueol veo in Eq.(12), we obtain 

8.2 Perfect adsorption of the atoms transmitted the target sut- 

face, non recoil 

This implies that, near the target surface, the ground state atoms have the travelling wave 

structure for small y 

Comparison with the analytical solution r,  for small 9 

f l ,  ( 9 )  = COS( f i 8 )ug0  + sin(fi9) 

6 V,o 

gives 

v,o = i f iu ,o  

Substitutinn this relation (17) into Eq.(12), we have ., ( 9 )  = (a,, (8)  + i J;JTu,a)r,o = r,oP,eit8 

P, = JUT+ 7a*ia, e, = tan- , @, s 
",I 



The wave structure of a,(#) may be also considered as the supperposition of incoming 

wave IAlei(fi~+v) and the reflected wave IBle-i(fip+*), i.e. 

which e e s  P A B ~ ~ J  = ]At+ 1B1 = lu,0l&u a t  f i g  + = nu, and PABmin = )A1 - lB1 = 
I ~ , ~ l p m ~ ~  at f i y  + p = (n + 1/2)r. Thus, the reflection coefficent R can be written as 

4 Numerical calculation and discussion 

4.1 Parameters 

Rtfering to  Eq. (5), the normalired parameters used in the calculation are 

1.96, 12.6 negative dct uning 
71,Yt  = 

12.6, 1.96 positive det rning 

4.2 Reflection coeatcient eaculated from Fig.2(a), (b) 
253.89 - 1.09 

R =  = 0.991 for positive detuning 
253.89 + 1.09 

5.156 - 0.928 
R =  = 0.695 for negative detuning. 

5.156 + 0.928 

4.3 Reflection coefficient R agaist Rabi frequency 0 Fig. 3 

1. The Rabi frequency I) very small, the reflection cofflcients R approaches to zero in the 

c a w s  of either positive or nagative detuning 

2. The reflection coefficient R for positive detuning is much higher than that for negative 

detuning. 

3. The R e w e  for negative detuning displays some oscillating featured with it's maxima 

a t  Q 12.5,25,37.5,50. a ., and the interval between successive maxima is All  r 12.5. 



4.4 The phyaical machenism 

We introduce a relative phsse shift 6, between the red and imagimaq part of wave function 

a, in Eq.(15), daring the atoms are departing from the target surface 

+1(d = %olcos(fig - dl) + i sin(,/% + 61)) 

h " \ / c ~ d ( f i #  - 5 )  + sjna(fi;t + 6,) 

The maxima of R occur a t  61 -- (n + 1/2)r/2, n rs: O,1 ,  .. The interval between the 

successive rnarcima dl is Ah1 r a/2. The cornprison of A h  with the observed interval 

Afl r 12.5 reminds us that the phase shifts 4 indnced am proportional to the Rabi 

frequency n, after 61 = r/4. In the initd stage, Afl = 0 - 12.5, the phase shifts induced, 

Ahl = 0 - 1~14, is relatively small in compari~on with 46, = a/2 sfder = a/4. 

In conclusion, the reflection coefscient R of two level atoms by evanescent laser wwe 

is studied through analytical solution and numerical eaculation. The carve R versus 0 

shows that R < 0.1 when S l  < 2.5 and R > 0.7 when l) > 37.0. Especially, iu the case of 

negative dttuning, an oscillatory feature with a period Afl = 12.5 appears. 



(q D.Wiaelurd and HSchmch, Bull. ArnPlg-sSoc. IW)(1975) 637. 

(r) VJ.Bdy&in, Y.S.LttokBw, Ya.B.Ovchinailtw and A J.Sidom, Phya. Rev. Lett. 
60(1988) 2137. 

Iq R.J.Cwk and RX.HiU, Opt.Comma.a3(1S2) 250. 

Igi RDcuteebman~, WErtmer and H.Wallis, Pkp. Rev. A 47(191)3) 2169. 

[fl Tan W e i ,  Tba Weihan, Zao Dongshag and Lia BAnhons, J.0S.A.B. 10 (1993) 1610. 



Fuel. StBemaQc diynm for an afomic mirror. 
Fig-a. The variation of p, versus 1 

(a) for poajtive detuning, yt = 13.6,% = 1.96,q = 1,n= 25.0 
(b) for negath &tuning, 71 = 1.96, r, = 12.6,q = 1, Q = 26.0 

Plg.3. Tk dat ion  of rekctioh ca&ienta R versus Rabi lnqaeney n 
(a) for pddivc dctrpnhg, = 12.6, .)r = 1.96, q = 1 

(b) for at@= d t t a h ,  yl = l.%, .yt = 12.6, r) = 1 
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QUANTUM INTERFERENCE EFFECTS 
IN MOLECULAR Y- AND RHOMB-TYPE SYSTEMS 

Hui-Rang Xia, Cen-Yun Ye, Jim-We Xu, Liang-En Iling 
Lseorotorly for Quantum Optics, N M  EihclrtioR Commision 

*rknent of Plip ia ,  &st G k a  N d  IlniversiQ 
Sanghi &WMe, C%R~ 

In this paper we mpmt the first obwwatbn of molecular population trapping in h r -  
level systems. Chstmdive  and destructive quantum interfeFewes bet- two sum-frequncy 
t-pbkm transitions in Y- and h m k y p e  fur--hel sys-, mpctively, im sodium 
molecules have been experimentally echievled by Wng only one laser source. Tbefr energy- 
level scbemes rue featured by tbe extremely near-mnant enba-t of the equal-frequency 
two-photon tmmitions, sharing both the initial aud the intermediate levels fbr the Y-type, 
and sharing bosh the initid and the final leveh for the rhomhtype systems. Their d 
spectral effects are to show seriously rest& Do+-free UV peak at the nominal location 
of the induced two-photon transition with visible fluorescence in rhomb-type schemo, and to 
show a strong extra W peak but null visible fluoresceme in the middle between the two 
dipole a l l d  tw+phmn transitions. 

1 Introduction 

In last three decades many physical phenomena have been discovered for a multi-lcwl quantum 
system drived by mherent light field. Among them, coherent population trapping (CPT) in a A 
-type and V- type threelevel system has been an interesting topic in the field of quantum optics for 
many years [l]-[8]. The significance of the topic, in addition to be interested by basic research for 
raaer-matter interactions, deals with the recently interested topics such as laser wit,hout inversion 
[9]-f 121, quantum interference and new phenomena [13]-(141. However, so far all of the experimental 
demonstrations for CPT are for a V-type three-level system in atomic sampies 13)-181 by using two 
sets of lasers. 

In this paper we report the first observation of molecular population trapping in four-level 
systems. We w molecules as the sample for taking the advantages of their abundant selectable 
gradual changing energy-level schems. Constructive and destructive quantum interferences be- 
tween two sum-frequncy two-photon transi tiona in Y- and rhomb-type four-level systems, respec- 
tively, in sodium molecules have been experimentally achieved by using only one laser source. 
Their energy-level schemes are featured by the extremely near-rsonant enhancement of the equal- 
frequency two-photon transitions, sharing both the initial and the intermediate levels for the 
Y-type, and sharing both the initial and the final levels for the rhomb-type systems. Their novel 
spectral effects are to show seriously restrained Doppler-free UV peak at the nominal location of 



the induced twbph0tt.m t r ~ d i m  witb visible fl-m in rhrbtype  schems, and to show a 
strang extra W peak but null visible fluorescence in the middle between the twr, dipole allowed 
two-photon transitions. 

2 Theory 
The d e m m  available in d u m  dimma hr our study is attributing 60 the ex ishm of the spin- 

orbital jmturbation between the mtatbd levels witb same J in the singlet and triplet states, 
located in available dye laser @ ~ ~ l s .  Such a mutual per%utbaticm can foam a pair of levels, not 
d y  elm each other but aleo with their wavefmctiom sharing. So that, ace they have pmper 
frequency location as the final level or as the intermediate k w h  fix near-rtmmdy mlwcd 
t~phodoo l  tmuiticn for the so d e d  Y-type or rhomb-type four-level systmm, mpe!ctivdy, they 
will show their ch-ic q w t ~ u n  inkdkmce effects in their oberervable bedape patterns. 
Indeed, we have found a series srherrres with gradually changing parameters in Nan fbr dudy each 
of the models. 

In the calculation with density matrix equations, we use the form of the interacting Hamil- 
toplian 

for the Y-type four-level system, where c and d are the perturbation coupled levels in the 
miecular high-lying states. Similarly, we use the interacting Hamiltonian of 

for the rhomb-type four-level system, where b and c am the perturbation coupled levels in the 
molecular intermediate states. Substituting these forms, instead of the known form as 

for two independent twc~photon transitions individually enhanced by the middle level b and c 
in two three-level systems, or the form a~ 



fa two independent two-phton transitions d i n g  separated upper levels in two three-level 
systems, we get different results. 

The calculation with Hi far the steady state solution of the density matrix equatioru r w d s  
the existing constructive quantum interference as showing an extra UV peak, origining lrom the 
ncm zero and non diagonal element (M jr O), and predicts its maximum location right in the middle 
between the two usual lines, according to H,'. The dependence of the term on the perturbation 
coupling coefficients is also obtained. 
The calculations with f i  for the steady state eolution of the density matrix equations r e d  

that the destructive quantum interference can completely cancel each other for their enhancement 
for the two-photon transition from a to d, origining from the non zero and non diagonal element 
(h # 0). The dependence of the phenomenon on the relative detunings and the signs between 
the two enhancements we obtained. 

3 Experimental Demonstrations 
The experiments are performed by using an Argon ion laser pumped single mode scannable dye 
laser at R6G and DCM dye regions and with a four-am stainless steel oven contining sodium. 
For study both 00nst:uctive and destructive quantum interferences mentioned above we much to 
find two serierses of the coupled levels consisting of @red spin-orbital perturbation levels with 
small separations from tens MHz to few CHz [15]-1181. 

We observed the constructive quantum interference characterized by showing a strong extra 
fluorescence peak with null visible emission in the middle between the dipole allowed signals of 
the sum-frequency two-phton transitions, as predicted by the calculations. The dative intensity 
of the extra signal to the dipole allowed signals is determined by the degree of the wavefunction 
coupling as shown by the upper traces in Fig.1 for two distinct cases : The left trace is for 20% 
wavehnction sharing, whereas the right for 40%. The observed serious pressure influnce on the 
signal intensity revealed the disparity pressure-shift among these levels. 

The destructive quantum interference was characterized by showing varying location of the 
Doppler-free peak on its Doppler-broadened peddestal, accompanied by the varying reduction 
(until complete null !) from the sharp UV peak, in a series of the observed near-resonantly 
enhanced two-photon absorption lines. The spectral patterns reveal that destructive quantum 
interference is dominated by the magnitudes as well as the relative signs of the detunings of 
the intermediate levels from two-phton resonance. The lower traces in Fig.1 present the degree 
different of the destructive interference for two distinct cases : The left trace is resulted by disparity 
detunings, whereas the right is with comparable magnitudes but opposit signs of the intermediate 
detunings. 

In conclusion, molecular population trapping in intermidiate and in high-lying Rydberg states 
can be sufficiently achieved, specially via the mechanism of quantum interference between ex- 
tremely near-esonantly enhanced two-photon absorptions, in comparison with that in atomic two- 
photon transitions. 
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Applhtian of Twin Bgauna in Mach-Zehnder Interf'erometer 
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Using the twin beanrri generated from parametric amplifer to drive 
tbe two part of a Mach-Zehnder inM-ter, it is shown that the 
udhmrn detectable optical phase shift caa be kugly reduced to tbe 
Hehemberg limit(l/a) which is far belaw the Shot Noise Limit(r/@ 
in the laage gain limit. The dependence of the minimum detectable 
p h m  shift on parametric gain and the iaeffieienb photodetectors has 
been discussed. 
PACS n u m b :  42.50.h, 42.50.h, 07-60 ',y 

1 Introduction 
As well known, the output signal of the Mach-Zehnder interfkrometer is sensitive to the relative 
phase sb i  between two 6 e b  travelliw down qaaated paths. The interferometers can be wed 
in *,he precision nmeesurements such ap optical gravitational wave and gynrscopy detector11 - 21. 
The sensitivity of interferometers relies on the ability to resolve extremely small relative shifts 
in the two path lengths. The smallest detectable phase shih in principle is determined by the 
quantum properties of the illuminating field. 

Usually the coherent state light is injected into one port of the standard intereferometer 
and the other one left unused. In this case the vacuum noise must enter the interferometer 
and the effect of zero-poi..t fluctuations in the vacuum is amplified by the mean intensity of 
the laser13 - 41, so that the minimum detectable phase shift is limited by the shot noise limit, 
i.e. (#sNL = I/&) rad, here n is photon numbers of the input coherent state during the 
measurment interval. Therefore increasing the strength of the input laser light can increase 
the resolution of the interferometer, which requires the huge and expensive laser sources and 
sometimes it is not avcilable. One possible device for enhancing the sensitivity is to replace the 
m u m m  state with squeezed light in interferometer. In the experiment with squeezed vacua 
performed by Min Xiao et. aljb], an improvement in the signal-to-noise ratio of 3.0dB ralative 
to the SNL has been achieved. M.J.Holland and K.Burnett show that the Heisenberg limit of 
sensitivity can be realized by driving the interferometer with two Fock state lights[b]. 

A research group of Kastler-Brossel lab in fiance has successfully generated the twin beams 
with optical parametric osclillator above thresheld and a perfect quantum noise suppression on 
the difference between the intensities of the two generated beams has been demonstratedl'l). We 
suggzst a device in which twin beams with same polarization orientation are respectively injecetd 



into the two ports d bkh-ZtLeadar interf- instead af the urrrod coherent amd vacuum 
eta-, therefbre the w i t i v i t y  of the interhtometer is improved to approach the Heisem- 
limit of I/n. 

% hterferometer with twin-beams 
The arrangnrent of the system is i l l d r d  in Fig.1, the signal d idler mode of twin beams 
are iqjected into on the first beam splittcr (B,) of M-2 in- through the two posts. 
Ad isaphseshiimsdiamset inoneofthepatb. Ahalf-9y~m+(A/%) b i d t o ~ t h e  
pdarisation. The intensities of output are detected by Dl and &, at last the flrsctaatloa 
spectrum of different photocurrent is snialjrsed by spectrtun ~~. 

the ralatienship between the input and output field operabm of the i n M ~  m: 

Where 6 is the measured phase shift, qd and are the lrmde operatote of twin beams 
psmated by the optical ,-wametric amplifer with same polatimat.ion orientation . The output 
-atom of ampliier is ralated to the input operators by the fdtawing formula: 

G fs thc power gain of amplifer. 
The intensity difference measured is proportional to: 

+d ad = cos 9 ( a ~ d a ~ '  - o, e, ) - isin #(Gala? - aide ) 
Taking artn = a? = a we obtain: 

< I.. > = 2lal' sin $ I ~ G ( G  - 1) sin 24 + (2G - 1) sin 41 

v < I- >=< (144 > - < (1-1 >¶ 

= 2(cm Q)'ia12 + sin 4 c d l a l 4 B  + (sin 9)'[[a14~ - la14~ + l a r ( ' ~  + Dl 

Where 

B = ~ ~ G ( c ( D  - 1) sin 20 

A = I[\IG(G - I)  in 2) + (2G - 1) sin 41' 



The S i b N o i s e  Ratio(SNR) is defined by 

We set sin8 - 4,cos 0 - 1 for the small 8, lalS m the average photon numbers (n) of the 
incident fields fat pasametric amplifier. 

Then we have 
[ ~ ~ ' A - R * C - R B - ~ ~ - ~ B ) - % ~ ~ O  (11) 

Because of 2n2A - n2C - nE - D > 0, the sdatitm d equation is 

A c w r d i i  to the equation (12) the m i n i  &tsctaMe phase shift (8-) as a b t k m  uf a 
is illustrated in Fig.2. The solid line is the Hekenberg limit, the dashed line and d o t d d d  line 
illustrate the minimum detectable phase tshift calculated with G = 2.3 x loT and C = 2.0 x 10'. 
We can see that for C = 2.3 x 10' and amidl photon numbers n, the mini- detectable phase 
shift is gratually approach to the H- limit. The larger the G is, the smaller the minihum 
detectable phase shift is. Bright twin beam of wavelength l.-m with power of 3mw haa been 
experimently obtained. With the twin bserns of 3mw the minimum debctable phase shift of 
10'16rd can be easily realid in the intedemmeter suggested by us, but if using the c o b t  
state the incident power of lOOOkw mmt be demanded. 

3 Inefficient photodetect ion 
A detector with quantum efschcy q L equivabt to a beamsplitter which mixes the input 
mode(a) with a vacuum mode(w), then the output mode from beamplitter is detected by a 
perfectly efficient detector[8]. 



j - k4k)P = q'a'(~ - ~ ) ( s h O ) '  + pSnilsin@me 

+2qZR(~8)' + qPd(s ia  I)' + 1'qm I)' 
+ q(1- q)RFsin@ + ~ ( 1 -  rp)roW + 41 - (1'BI 

H = 4(G - 1) 

h eq. (17) (18) we the bqdi ty :  

.- 
The 4 t i o s r  of eq.(l@)' * 

8 > m ' + \ / & P + u c t  
Fi.3 shams t8s o f r B c ~ ~ ~ ~ # ~ ~ ~ ~ t h a ~ g s i n  

reepsetivelyfor&tuctorwith~=1.addetsctotwithq=O.Q8. Wlmthegain(G)iscr##, 
the #& decrease, ia. the eeneitivity of ia d a d .  The aflact d iwfBriewy is very 
severe. T B c ~ i c o l o a i g i n d r b o r e ~ ~ i s L b . t t b c ~ t ~ ~ ) s t i a s r ~ ~ t h e  
t w i n b e s a r r s ~ a n d ~ ~ ~ o a r G . a d q .  ThercBoPcthequantamcesrrlati 
between twin beems is the key to redbe high d t i v i t y  detection. 



~ a p ; P e ~ ~ t s e ~ W t ~ ~ B B l l a e t i a t l w a c t a c t i o a d p h P c r e s l r i f t b y g l r i R t  
t W i n b e a m s 3 8 * i a p l l t f i e k d h ~ .  'PBe-ofU€eAliRhi#nr- 
~Montkgsindpevaaaettic~wlrich~tk(niaWdtlreagacrtrrm 
eil ici iyobdetectorsharrl ieen~bd. TBe~tivitydthesqptedcQevicebahmys~ 
tasa SNL md can tend to the Hekenbeqg limit fbr appropriate B.aemetera 
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Transient Sub-Poissonian Distribution for 

Single-M ode Lasers 

J.Y.Zkang, Q. Gu, L.K.TIan 

(Department of Physics, Northwest University, 

Xian, 710069, P. Re China) 

Abstract In this papet, the transient photon statistics for single-mode 

lasers is investigated by making use of the theory of quantvm electrodynamics. 

By taking into account of the transitive time r,we obtain the master equation 

for Jaynes-Cummings model. The relation between the Mandel factor and the 

time is obtained by directly solving the master equation. The result shows that 

a transient phenomenon from the transient super-Poissonian distribution to the 

transient sub-Poissonian distribution occurs for single-mode lasers. 

In addition, the influences of the thermal light field and the cavity loss on 

the transient sub-Poissonian distribution are also studied* 

Key words : single-mode laser ; Jaynes-Cummings model ; Transient sub- 

Poissonian photon statistics . 

1 Introduction 

As is well known, sub-Poissonian light field is a typical nonclassical light 

field. And it has widely applications to the v!traweak signal detection and to 

the optical communication etc. According to  the usual theory, there is no 

sub-Poisonian distribution for single-mode lasers. 

In this paper, the transient photon statistics for single-mode lasers is in- 

vestigated by making use of the theory of quantum electrodynamics. by taking 



into account of the transitive time t. the master equation for Jaynes-Cummings 

model and its solution are obtained. 

2 Master equation 

First of all, the interaction of one atom with the light field is taking into 

account. According to the theory of the quantum electrodynamics. for the 
h 

Jaynes-Cummings model the Hamiltonion has the following f ~ t r n ~ ~ ' ~ ( w i t h  --= 2n 

where a and a+ are annihilation and creation operators of photon; a+ and d are 

raising and lowering operators of the atom; o and a~ are the mode frequency 

and the transition frequency, respectively; 4 is the inversion papurition of the 

atom : g is the coupling constant between the atom and the field mode. 

The eignequation of the cxpcession (1) is given by 

H I @ > = E  I@>, 
where 

and 

The eignstates corresponding to expressions (3) and (4) are given by 

here 



where n denoting the photon number: a and b denoting the upper and lower 

atomic levels- 

All nonzero matrix elements of the evolving operator 

in the state In, a>= In> la> (a-a, b)  are given by 

a n = < n - t  1 ,b IU (T)  (n+  1 r b > ~ ~ ~ ~ 2 0 n e 4 ~ " : . + . i n ' 0 n ~ - m ~ 7  (11) 

and 

Assuming at the initial time t there is no correlation between the atom and the 

fidd, thus we have 

This means that the matrix elements of ~ ( t )  is the combination state In, a 

> and can be written as 

After r ,  the expression (15) becomes 

and 

In the photon number representation, the matrix elements of equatian 

(18) may be given by 

where 



where Irn>and (b> denotes the photon-number states ,and 

P,=<a(p.(t) Id>. (21) 

For the arbitrary initial state of the atom and the light field, u s h a  expres- 

sions (11)- (151, (20) and (211, we obtain 

Expression (22) is a generol form. For the laser system under considern- 

By taking into account equation (14) and the following expression 

Ian12+ Ibn12= Icm12+ I b s I L ~ l  (24) 

then equation (22) can be deduced to the following form 8 

U nder the coarse grain approximation, equation of motion for the density 

matrix elements are given by 

whett 

p (t' =Ned" 

denotes the distribution function of the interaction duration t between atom and 

field; N is a normalization constant; v stands for the atomic decay rate. 



Fain the norwrlization condition 

where 

T=VI (30) 

By substituting expression (25) into (26) and making use of Ref. [S].wa 

finally obtain 

= - v . ~ . ~ ( t >  { 1 - I d  T+P (9 1 dl - B.(+ )][I - Bm(+ )] 1 
0 

where nb is the average photon number of the thermal light field 1 C is the cavity 

loss 

Expression (31) is the master equation for the single-mode lasers. 

3 Numerical calculation 

In the case of res.,nance, master equation (31) can be reduced to  the fol- 

lowing form: . 
~ . * - ( t )  = - d l  - (A;m -b A : ~ ) ] A , ~ ( ~ )  



where 

In particular. for the diagonal matrix elementsD1 expresskn (32) may k 

further teduced to the following form t 

(a) 

where 

here 

and 



The photon stathtical properties of the 1-t field can be expressed by 

During the trnnsitnt processes, Maadel hctor Q>bt Q=O or Q<O oorrespend 

to transient super-Poissonha distribution, Poissonian distribultion or sub- 

Poissonian distribution, respectively. 

Time evolution of the Mandel factor may be obtained by making use of the 

expressions (34). (35) . (38) and (39). The numerical results are shown in 

Figures 1-5. 

Figure 1 shows that the t tans i~nt  6f;or~a statistical property passes from 

super-Poissonian distribution through Pobsonian distribution into sub-Pois- 

soninn distribution with the increase of a. 

Figure 2 shows that the maximum value of the Q drift apart Prom the right 

and decrease. At the same time, the velocity toward the trnnsient sub-Poisso- 

nian distribution is also quickened. 

Figure 3 indicates that the influence of the loss g on the Mandel factor is 

marked and the transient sub-Poissonian distribution will disappear when the X 

increase to some certain value. 

Figure 4 indicates that the thermal light photon number not only deerease 



sub-Pohsonbn distributian but also diminish the velacity kt toward sub-l)sis- 

S-iaF distributioa* 

4 B:kf discrrss&n 

In the present paper, we have studied the transient sub-Pdssonian distri- 

bution for s@k-mde lasers- The nsult shows that k r  shngk-aaode lsssrs th6 

sub-Poissonien distribution riay occur not only h the case of stotioaruy statem1 

but atso in the csse of transient state- 

As is well known, transient sub-Poisseairur photon statistics is a dmacter 

for the quantum light field- And its wpeanmm would deepen our kaorrbdge af 

tbe tight fkld essence. 
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Fig. 1. 

Caption of Fig. 1. Time evolution of the mandel factor for T - 1. I t R - 
100, p=n,=O, %-6 



Caption of Fls. 2. Time evolution of the mandel factot Pot T=l.lt R 
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Fig. 3. 

Caption of Fig. 3. Time evotutkn of the mandel factor for T - 1. I; R 

-100g n b = O l X = G r (  l p a O . 1 ;  ( 1 ) ~ = 0 . 5 $  ( 1 ) p = 0 . 8  



Fig. 4. 

Caption of Fig. 4. Time evolution of the Mandel factor for T = 1. 1 1 X 
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Abstract 

Phase noise of single mode laser diodes, either free-running or using line narroaring technique at 
room temperature, namely injection-locking, has been investigated. It is shown that brunning  
diodes exhibit wry large excess phase noise, typically more than 80 dB above shot-noise at 10 
MHs, which can be significantly reduced by the above- mentionned technique. 

PACS numbers: 42.50.Px, 42.50.Dv, 42.62.Fi 

1 Introduction 

Quantum intensity noise reduction of laser diode based on pump noise suppression has been 
extensively studied since 1984 111. Intensity squeezing of constant-current- driven laser diodes was 
obgerved for the first time by Machida et al in 1987 [2], and further improved to 8.3 dB in 1991 
[3]. This last result was obtained at 66 K. In 1993, it was shown by Ste l  and his group(4l that 
line narrowing techniques (see [5] and references therein) greatly helped in the noise reduction. 
Intensity squeezing of 1.8 dB (2.0 dB corrected) at room temperature was obtained by injection- 
locking the laser (61 or by feedback from an external grating (41. However, all the experiments 
r e d i d  so far were limited to measurement of intensity noise. How about the phase noise? In 
fact, in the early time in 1980's, Yamomoto et a1 [7] and Spano et d [8] studied the phase noise in 
lam diode, but they did not measure the phase noise with a reference to the standard quantum 
limit. 

It is well known that in injection scheme the slave laser locks its frequency, and therefore its 
phase to the master laser. To our knowledge, the effect of injection locking on quantum phase- 
noise d laser diodes has not yet been reported experimentally. In derence (91, it is mentioned 
that injection-locking of a regularly pumped slave laser could lock the phase of the slave laser 
to the master laser, reducing thereby the excess phase-noise leading to a minimum uncertainty 
state(true squeezed state), if the master laser has a shot-noise- limited phase noise. 

In this paper, we investigated the phase noise of laser diode, using injection-locking with a 
Ti:Sapphire laser. We have shown that the large excess phase noise of semiconductor lasers can 
be reduced by this technique. 



2 Experimental Set-up and General Features 
The laser diodes we have used are index-guided quantum weU GaAlAa lam diodes (model SDL 
54SH1 and SDL 5411-GI), operating at 850 and 810 nrn. The rear facet reftection c o a t  is 
%%, the front facet is AR coated with a reflection d c i e n t  of about 4%. The h e r  diodes cue 
temperature stabilid and carefully electromagnetically shielded. 

The free-running laser diodes have a rather low threshold of 18 mA and a differential quantum 
efficiency (slope above threshold) of 66%. The operating c m t  in the experbnta described 
below is typically 5 to 7 times larger than the threshold current. 
The injection-locking scheme is depicted in Fig. 1. The master laser is a Ti:Sapphii laser which 

is kquency stabilized (linewidth of 500 kHz) and both intensity and phase are shotnobe limited. 
It is injected into the dave laser by means of an optical isolator. The master beam enters through 
the escape port of the polarizer placed after the h a d a y  rotator. Locking is observed on a rather 
b d  power range1 of the master laser, from 1 to 4 mW. The direction of the master k s  must 
be carefully adjusted for optimum phase noise reduction. 

Phase Noise Detect ion Scheme 
The investigation of the phase noise of a laser beam requires a phase-to-amplitude converter, i.e. 
a device whose complex transmission T depends on the frequency w. In this work, we use Bor this 
purpose the reflection off an empty detuned Fabry-P6mt cavity as shown in Fig.2. When the rem 
mirror is highly reflecting, this system has the ad'mntage over a Mach-Zehnder interfenmeter that 
the mean field transmission I T(w = 0) I does not depend on the cavity detu@ng and is a l ~ s  
equal to unity. This makes shot-noise reference level independent of the analystxi quadrature. 
Phase noise analysis is then carried out conveniently for frequencies in the range. of the cavity 
bandwidth. 

Explicit expressions of the quadrature rotation after reflection off a detuned Fabry-Pht cavity 
are given in reference [lo]. A simple way to understand this effect is to have in mind that in Fourier 
space, the quadrature component X(w) can be written as 

The key point which yields a quadrature rotation is that the various frequency components at 0 
(mean field), w and -w do not undergo the same phase shift when the laser is scanned acme 
the resonance peak of the cavity. The quadrature rotation is zero in two cases : when the laser 
is tuned exactly on resonance, where the phase shifts for both frequency components f o cancel 
out., and when it is tuned far outside the peak, where all frequency components undergo the same 
p h *  shift of 0 or T.  

In our setup the Fabry-Pht cavity has a half-width at half-maximum (HWHM) of 8 MHe 
and a firhesse of F = 125. The rear mirror is highly reflecting, but its small leaks neverthelleas 
allow us to monitor the intracavity intensity to adjust the mode matching. One of the minor8 ia 
mounted on a piezo-electrical transducer, so that the length of the cavity can be scanned. 

*It should be rirentionned that only a small fraction (a few %) of this injected power is actually coupled to t h  
lesing mode of the diode due to the imperfect mode overlap. 



4 Experimental Results 
We have measured the quadrature noise of a free-running and injection-locked laser diode. These 
results are presented in Fig.3. The phase noise (quadrature angle 7r/2 with respect to the mean 
field) is inferred from the experimental curves by fitting them with a simple model (see reference 
1101). This model has a single adjustable parameter which is the excess phase noise. 

This value has then to be corrected for various losses : propagation from the output ol the 
laser to the detectors (3 dB), scattering losses inside the analyzing cavity (3 dB on resonance), 
imperfect mode-matching to the cavity (1 dB). 
The phase noise inferred at the laser output for the free-running diode and the injection- locked 

& m e  are respectively of 82 dB, and 46 dB above the shot-noise level. 
Let us compare these experimental results with the prediction given by the Sch~wlow- To\wnear 

model (1 11. Within this model, the phase noise normalized to the shot-noise level at a noise 
angular frequency w = 21r f is 

where I, is the flow of photon outside of the laser (photons/sec), tc is the cavity decay rate for 
intensity, cw is the line enhancement factor[22] (also called phase-amplitude coupling coefficient), 
and D is the Schawlow-Tomes phase diffusion coefficient defined as: 

'I 

The first term is the contribution of the vacuum fluctuation (shot-noise) and the second term 
is due to the phase diffusion assuming a random walk of the phase in the laser. 

Using the value of K deduced from the experiment2, one can calculate a theoretical estimation 
of the phase noise if the factor (1 + as) is known. Conversely, by using the experimental value 
of the phase noise, one can deduce a value of (1 + a2) = 10, which is in agreemer t with other 
measurements. However, the linewidth of the laser diode was also measured directly by sending 
the light through a Fabry-P&ot cavity with a linewidth (HWHM) of 2 MHz. We obtained D(1+ 
cr2)/(2a) = 2 MHz (HWHM linewidth). Using the value I. = 2.5 x 10" phot/sec corresponding 
to 60 mW laser output, the above model predicts D(1+ a2)/(27r) = tc2(1 + a2)/(87r10) = 50 kHz, 
which is significantly smaller than the measured value. This discrepancy could be attributed to 
jitter of the laser frequency due to power supply noise and thermal fluctuations. 

In the injection locking case, the phase noise reduction mechanism relies on the fact that the 
slave laser locks its phase to the one of the master laser [13]. The phase noise of this master laser is 
therefore of great importance. In this experime;lt we have used a frequency-stabilized Ti:Sapphire 
laser, which has a linewidth of 500 kHz and is both phase and intensity shot-noise limited a t  10 
MHz. CVe have observed a very significant phase noise reduction, from 82 dB to 46 dB for an 
injected power of 2 m W  (see Fig.S(b)). 

=The quantity 1/n is the lifetime of the photon in the laser diode cavity, calculated from the measured free 
qectral range of AX = 0.12 nm, and from the transmission coeflcient of the output mirrors (RI = 95% end 
R2 = 4%). This yields n = ( C A A / A ~ ) I ~ ( I / ( R ~ R ~ ) )  = 1.8 x 10'' a-I. 



Finally, let us emphasize that the quadrature noise defection scheme that we wed is expected 
to work well only Eor a true single-mode laser. This is not the case for so-called "singie moden laser 
diode, for which weak longitudinal side-modes am very noisy and can p l v  therelore an important 
role in the overall noise behaviour [14]. As long as the intensity noise power in the d r  mode 
is small with respect to the total phase noise power, which is generally the cefw in tke results 
described h, these effects can be neglected. However, one has to t e  cautious in mme cams. 
Fbr instance, it can be noti..-:d that the experimental trace of Fig.S(b) exhibits a slight asymmf* 
around its basis. This &ec& can be modelled simply, using an input coVBfimtx matrix such that 
the main axis of the noise ellipse ia not exactly the phase d s  (quadrature angIe n/2) but is 
slightly tilted. In our experiments, this small rotation effect has been observed for the iajection- 
locked laser, decreases as the driving current increases, and the drp on the right-hand side was 
always above shot-noise 1151. It is likely that a detailed analysis of this effect should include the 
contributions of the small modes, since intensity-phase correlations are -ti$ in this process. 

The intensity noise in this process was also measured and intensity squeezing was obtained and 
we have another paper to discuss shese effects in details (See E.Giacobinols paper in this hue). 

5 Conclusion 
In this paper we have reported on a detailed experimental analysis of phase noise of commercial 
laser diodes at room temperature. We have studied the free-running diode and the iqjectim- 
locking diode. The main result is that laser diodes exhibit a very large excess phase noise (up to 
80 dB abme shot-noise) and in the injection-locking scheme, the phase noise reduction rnedurnia 
involves the master laser, and wing a shot-noise limited frequency stabilized Ti:Sapphire laser, 
we obeerved a reduction of the phase noise from 82 dB to 46 dB above shot-noise. 
We believe that these results have important practical implications for spectroscopy and quan- 

tum optics experiments involving laser diodes. This results have also demonstrated that there is 
still a long way to realize the squeezed minimum uncertainty states with laser diodes. 
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The Amplitude Nth-Power Squeeeing 
of Radiation Fiekls in the Degenerate b m a n  Process 
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Deprhetrt of Phtsics, Xi'atc Jiaotmg U a h i t y ,  Xi'cuc, Sham& 71QQ49, PRC 

Jill-Fatlg Pau 
o j  Ph#siru, SbmIL6( Nonnul Ut&iwmdg# Lin/in, 5kmi O/lOa(, PRC 

h i  Xu 
hsW& sf I\hrc&ur Resta id ,  AecrdernL Sinica, SIumghai l!O1&00, PRC 

h tk paper we study the mplittscki Nth-pwer sqtwzing of radiation fields in the dqamate Ranma 
gmcas By ushg the modified &ive Ihi l toniat l  appwc41 rawltly suggested by us. We found that Y 
abe fieDd is hitidly tn a cwberent state it will not get squeezing for wty Nth--, if the Wd ie W y  
in a vmxum, it may get Nth-power squeezing. Tbr! time edut lo t l  of the fleld fluctueth aras 
alimmsd. Its dependences on ~~ N, meats Won nru* fi, and squeezing angle 6 are andpad. 

1 Introduction 

Squemd state of mdiatlua &kls have k e n  s%rocti cutwickably in recent yews. Jhides the Pornral 
sqmezh&ll it is elso pcssible t o  define higherunits tqrwziug. Houg sml  ande elm defined the ~~ 
apeaing, and ~illerylq intmd~~cuwl the atsplitritle squlutrl sq~wzilig. Mote recently, Zhang et alH 
the umplitude Nth-power sqtmzirrg( AhTPS), w11ic-h includes the norrtlal squeezing and the a m p l i t u i d e q d  
qwxzing as specld cam. All t k  trightr-orrler tqtm%ing hsve been shown to be independent m n c b  
sical features at radiation fieIdsIq. ANPS of radiatioal fields has bee11 studied in nr98y quantum agtics 
-Ir-l4. 

On the other band, tile degetwrate RMnan y~u(xs(DRP) is orw! of the most interesting two-photon 
iottmwtions between atoms and rarliatioli fic.kb, nnrl has been stucliwl i n t e a s i ~ e I ~ I ~ ~ - ~ q .  Usually, thts process 
wm &died by tbe full rnicnseopic HaluiltcmiAn a p p m a d 1 ( ~ ~ ~ ~ ) 1 ~ ~ ~ ~ l ,  and the ebfiwtiw Hamiltonhn 
a p p m a & ( ~ ~ A ) 1 ' ~ .  Generally spaking, FMHA gives exitc* wliltiot~, but it may be ~ Q O  compkated bo be 
used in some dtuatior~s. Althwrg;l~ EHA is siml,ler t l m  FMHA, i t  loses a pi- factor, it can not be used 
to deal with tbe quantities involving the uff4liagot1ol elwmrts o f  t l ~  density matrix. Ib overcome these 
&wkges we have euggestd a m d i f i ~ l  effective HtUr~ilkHlitrrr ~ L ~ ) ~ ) ~ ~ ~ C ~ ( M E H A ) I ' ~ J .  

In this paper we use MEHA to struly ANPS of radiation fields in DRP. 

2 The Degenerate Raman Process(DRP) 

The DRP refers to the interactiotl k m n  a A-type three level atoms and a siagle mode of a rdetbn 
W(Q3.1). 

The modikl  effective Hemilrc~iian for D W  in il7I 

HEN = XR+n(Ie >\ 91 + ly >< el) (2) 
is the dective Hamiltonian(wt~en the tletruring is wty itu-ge, ale cat1 eliminate the upper level di&&lcelly 
and obtain it) and 

HS = -u+a(filly > < 91 + &)e >c el) (3) 



lb.4) = 4 i q o q ' * ( t )  + c(t)@(ol m 
Supp&g ioitdally the atom is in the state Ig), i-e. C'(0) = I, ead Ca(0) = 0, and kt = gr = 8 for 

=m 
P&(T) = * M - i ( n  - rJ)rrlaos(n - a' (8) 

tnnaichT= At. R ~ t h a t t b e d ~ e l e m e a t s p , m i a d ~ e n t d ~ m e m d W a h e ~  
~ b u t l o D f u a c t r o n o f i n i t s a l ~ .  

S The Amplitude Nth-Paver Squeedng(ANPS) 

'ige amplitude Nth-power squeexing of a miiatkn1 field is defined in terms of the follawlog qumtkhd 

Zl(N)  and &(N) sat* the amlsl~tatkw relatiot~ aari the uncertaiuty relation 

The fleld is sad to be Nth-lwwer sqtreezexl if 

Here we introduce a parametex l a r d  s c p w a ~ l  ciegm S$(N)  

where C(N) a d  Di(N) are defined ryi 

Tben the Reld is Nth-power ~ c ~ t i w m l  if D i ( N )  < 0, (S'i(N) < 0). S,(N)  = -1 cornponds to 100% 
equeexlng. In the following scxtloti we will st~idy ANYS i ~ r  DIG'. We will consider several kinds of initial 
ftaM states. 



4 ANPS in DRP 
4.1. Ebr an Initial Coherent State 

then we have 
ffar'(T) = %(&ed-i(n - d ) ( T  - (,)jms(n - nl)T 

Wlk c8n find 
D l ( N )  = 4 f i N s i r r 2 ( ~ ~ ) s i i l ' i  N(T - &)I 

Hle see that in a degenerate birran prt- tire field will uot get N t h - j m r  squeeaiag if it is initially in a 
ahrent  state. 

4.2. FroF an Initial Squeezed Vacuurn 

where ii is the mean photon nutnkr is the sq~tt?ezitlg angle of the initial field. Then we have 

We see that only even-plioto~~-~ri~n~ber states csrri be fount1 in a wlueaet1 vacuum. The photon-number 
dlsbribution function is 

p&C = /hhb.'bc = a?#bo'h& (a) 
For N = odd = 2M - 1(M = 1,2,3,  ...) we fiat1 

h ( 3 )  = ci{fi2(sil + 3) + sln(n + I ) J ~ S ( W  - ~ € ) C O S ( G T ) )  (22) 

We can show that (&(2M - = [Dl(SM - l ) l b d  can be nmaller than zero, but ID1(2M - 1)k.w = 
[&(2M - l)]C=o can not be smaller that1 ze~u. Tlii(i shows that we can have squeezing in Zl(2M - 1) 
components for ( = 0 and in Z2(2M - I )  a~mpunents for C = T ,  but we have not squeezing in Z1(2M - 1) 
components for < = n and in Z2(2A4 - 1 )  a)inponentu for ( = 0. 

Far N = even = 2 M ( M  = 1,2 ,3 ,  ...) we I ~ v e  



We can ehow that (D2(2M)IC,,, = [&(2M)lC,u car1 be ~nmller than mm, but ID1(2M))+, = [ D I ( ~ M ) ] ~ - ~  
carr aot be smaller ttlm wm. This sliows that we cat1 11aw ~upezing in Z2(2M) components for both € = 0 
cad 4 = a, but we car) 11ot get al~tening It1 Z1(2M) cwmlmtients fur ( = 0 and 4 = u. 
We are also interested in the optimal scltteezitrg. 

We see that [S(N)lnrio 4 0 when fi  < 1, n11t1 IS(N)),l,~, --, -1 (1WA squiming) when ii > 1. 
To see the features of the field Aucttutiorr mole clewly, we haw h u e  r)u&caI calculation and drawn 

some Qpms(Fig.2-TO). h m  these figurw we we the! folluws: 
1. Generally, the field fluctuation cmillibtes ~)c?riotlicJly, arid the osloillation frequency is propotbional to 

N(Fig.2-9). 
2. For a given A, the oscillation e~nplitucle dwn?~~yc.. w N iticm't! (Fig.2-5). 
3. For a glven N, the ( ~ ~ i l l i ~ t i ~ ~ ~  unplitutle i~icr- as 7; increases, but [S(N)lmin changes smaller 8s A 

i- (Fig.6-9). &.irr -' -1 wh(*~l A > 1(Fig. lO). 

5 Conclusion 

In this paper we have etuciied ANPS of rwliatiorl fields irr DHP by itsing MEHA. We found that if the field 
Le initially in a coherent state it will  lot get Luliieming it1 any Nth-power; if tile field is initially in a s q u d  
vacuum, it may get Nth-power licluetzing. Tlie wlatiora betwen tlie time evolution of the field fluctuation 
with N, fi, and 6 are dirrcud. 
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Figiure Captions 

Fig.1 Schematic diagra111 of the tkgencrirtt. A-typo tl~~.t.e-le\el i ~ t t m  i~lteroctian with a singlemode field. 
w: frequency of field; 6: i l t o ~ ~ l  fieltl tletol~i~~g. 
Fig.2 S1 vs T. ?r=0.1 a: N=l; 1: N=3 
Fig.3 S1 vs T. fi=1.0 a: N=l ; b: X=3 
Fig.4 S2 vs T. R=0.1 a: N=2; b: N=4 
Fig.5 S2 vs T. ii=l.O a: N=2; b: N=4 
Fig.6 S1(l) vs T. a: fi=0.1; b: A = 1.0; c: fi = 5.0 
Fig.7 S2(2) vs T. a: ii=O.l; 1: A = 1.0; c: ii = 5.0 
Fig.8 S1(3) vs T. a: i6=O.l; 1: A = 1.0; C: f i  = 5.0 
Fig.9 S2(4) vs T. a: fi=O.l; b: Ti = 1.0; c: f i  = 5.0 
Fig.10 [S(N)j,,i, vs fi. a,b,c,d co~-rap&~ldm to K=1,4,3,4 spuutiwly. 
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ON THE T?3EORY OF HIGH-POWER ULTRASHORT PULSE 
PROPAGATION IN RAMAN-ACTIVE MEDIA 

M. Beleuov (deceased). V. A. Isakov, A. P. Ksnavia, and I. V. Smetanin 
P. N. L c M e v  Phgrsid fnslitutt, R~vssierz Acedemp of Sciences. 

krinrlk'i h s p .  53, Moscow 1 ! 7924, Russia 

Tbe propagation of as intense kmtoseamd palse in a Roman-active medium is analyzed. 
As analytic du t ioa  r h i d  describes in explidt fi;wm the evolution of the light palse is 
derived. The field of an intense light wave uudetgoes a sabstantial t r a n s h a t i o n  as the 
waw propagates through the medium. Tbe nature of this troostbnnatioa can change over 
time sales comparable to tbe period of tire optkal osdliotioox. As a result, the pulse 
of sufficieatly B i  energy divides into stretdied and compressed domains where the fieM 
decwses and inmaties respectidy. 

1 Introduction 
The physics d interactio~ of intense u l t r lubr t  light puiscs with nonlinear media has attracted 
interest because of progress in subpicoeecond-range laser technology and the attainment d laser- 
b m  power levels of terrawatt range (-, for example, [I]). The right pulse dynamics and the 
medium evolution in an intense fieid differ quditatiwly from the usual picture drawn by staodard 
nonlinear-optics perturbation theury. A fundamental distinctive feature of ultrashort pulses is 
that their duration is shorter than the ';me scale of the response of the medium, so the interaction 
detinitely occurs in a cohcreut regime. ,be standard approximation of a slowly varying amplitude 
and a slowly varying phase af the field becomes ineffective. A description of the interaction based 
on the actual (instantaneous) field values is appropriate 121. 

The Raman--cti\.e media can be effectively excited by a single femtostcood pulse because its 
wide spec t r~m initially contains intense Stokes and anti-Stokes components of the field 13. 2). The 
qualitatively new interaction regimc, so-called self-scattering, occurs for light intensities much 
lower than the threshold ones for ordinary stimulated Raman scattering develoq-ing from sponta- 
neous noise 141. The estimations testify to the fact that the effective excitation of high vibrational 
levels and even tbe dissociation o; molecules in the field of an uftrashort electromagnetic pulse 
can he observed usi1.g modern femtosecond lasers IS]. 

On the other hand, the shape and spectrum of femtosecond pulse should undergo a substan- 
tial transformation as it propagates through the Raman-active medium. The description of pulse 
evolution should take into account a substantial redistribution of the medium level populations 
during the pulse duration that results in different interaction regimes for different pulse fractions: 
either absorption due to Stokes scattering o: amplification . c to  anti- <tokes component genera- 
tion become predominant. The simplest model which is wideiy used ir. the theory of stimulated 



ItYtban scattering aad iacludes the dect of medium satwalk is tbe model of two-led d i n -  
ear oscillator. Within the framework of tbis model we mcxeeded to describe in explicit losm the 
evdution of high-power femhaecwtd pulse in Raman-active medium. 

2 Solution of Wave Equation 
We shall describe the dynamics of a Ranran-active medium in the fiad of an ultrashort pulse by 
a t w l d  d l  of a nonlinear oscillator [6]: 

Hem Q is a normal coordinate, M is the reduced maas, R is the ~ ~ c y  of tlre equivalent 
d i n e a r  oscillrrk# (the Stokes &a), TI and Ti are duration times, the ad6cient &/@ is the 
derivative of the polarisability at the equilibrium value Q = 9% and p is the dilkmnce between 
the popuiath of the upper and lower k i d s  (the d u e  = A t  = -00) axresponds to tbe state 
d tbe iystem bcbrr the beginning of the interaction with the Md).  

Eqaations ( I )  are to be d v e d  jointly with the wave quation. In the case at had, in which 
the iateractioa d the carrier p u k  with ooly the scatted wave propagating in the same directicm 

~ - 

is taken into account, the wave equdioa can be written 

with macmopic nodinar pdarizatioo of the medium P = N (e) EQ i n d d  by the W d  
E(z,t), where N is the density of the medium. We stress that the quantity E = E(z,t) in (1) 
is the instantmeas value of the pulse field strength, not its envelope. The reduced farm of the 
wave equation (2) is provided by the fact that the stimulated Raman backward scattering is very 
weak owing to t& short interaction length of pulses moving in different directions [6]. 

We restrict the analysis to the case of the coherent .ateradim, in which the pulse duration 
does not ex& the time scales of the response and relaxation of the m d u m  r,, < 0" . TI, T2.' 

Material equations ( 1) can then be integrated for an arbitrary time dependence of the field 
E(z, t ) and the solution looks iike rotation of material variables 

The phase * ( z ,  t) of the material variable rotation is directly proportional to the energy of the 
pulse fraction which has passed through the given space point t up to  the given time t 

1Strictly epeaking the eohmnt regime of interaction i) provided by the condition (b = il@l(2MY)-'I2@ > 
Q,r1,T', i.c., the analog of Rabi frequency of the two-level oseillatar ia the bighat frequency of the problem. 
For high-energy femkmcmd p u b  'hie condition as well aa inquelity r,, ( Q" , TI, T2 leads bo the solution 
(31, (4). 



From (3) it follows a strong nonlinear dependence of pdarieatiott on the  pulse field and the wave 
equation of the form 

sin 0 ( z ,  t') dl'] = -BE sin I), 

where @ = f N 1 aO/i9Q I (IR/2MZ)'/* is the inverse length of i n d u a d  Raman self-scattering. 
The nonlinear equation (5) allows an analytic solution describing in explicit form the evolution 

of the pulse shape and spectrum [7]. 
Multiplying (5) by E and integrating it with respect t o  time one can easely obtain the equation 

for phase @(z, t )  (i.e., for curtent pulse energy) 

Let us regard the pulse field E(z, t ) as a function af the spacial variable z and the phase q(z, t ), 
sea# a s - a & -  i.c.. E(r, t) = E(:, 9). Taking into account that $ = + K. a a , we can finaly 

rewrite Eq. (5) in the following form: 

This par t id  differential equation can be easily solved by integrating d o n g  characteristics on 
which 

* o ( d  
*(z, f tan - 

tan - = 2 
2 *o(d ' 1 +Bt t an -  

2 

E(z? t )  = Eo(9) (9) 

1 + [sin *O(r)) + $ (1  - ca*o(q))] ' 

where qo(q) i s  the given phase at the boundary of the medium (i.e., the energy of the pulse fraction 
which has entered the medium) which is connected with the field strength at the boundary by the 
relation h ( q )  = 1% (2hRM)-'1' 12, Ei(r)') dr)'. According to (8) the pulse fraction which energy 
corresponds to  the p I, ase ibo = 2rn .  n = 1-2.. . . moves through the Raman-active medium under 
conditions of self-indused transparency. when the energy of the leading part of 2r-pulse absorbed 
due to Stokes sc~t te r ing  completely returns to the trailing part of the pu1.w due to  anti-Stokm 
scattering. In this case the spectrum of tcle leading part of the pulse becomes enriched by long- 
wavelength components of the field and the spectrum of the trailing part - by the short-wavelength 
components. This analysis generalizes the results found on the basis of numerical calculations !2]. 

The characteristics themselves arc given itnplicitly by the expressions 

where @(:. q )  is the nonlinear deiay ot' t r r c s  inci i~idu~ll  parts of the priisc. a:. i t  rn0tc.s ;itvay from the 
boundary. 



It is amveaiient to &mibe the d u t i o n  of the pulse shape by an effective frequency w(z, t )  
of the pulse fieM ouciUations. The d u e  w(z,t) charadeaims tbe density of tield ascillatioes foo 
different parts d tfie + and its h a t i o n  as tbe p u b  pmpagaks through the medium. It 
follows h.om (10) that if we fix o small fraction of tbe puke its duration AT a t  the space point z is 
mnected witb that one AT@ at the boundary by tbe r e l a t h  AT = AT@ (1 + &I&). Tk value 
Ao detemb~ the field ogeillatirrar period at tbe given space point z, henee tbe &8ctive hequency 
of the field o s c i l l a t i  transforms in a c w  witb 

3 Femtosecond Pulse Evolution in Raman-active Medium 
It can be seen froPn Eqs. (9) and (11) that the changes in the field E(z,t) and the chamderbtic 
frequency w(z,t) over space occur identically. At the beginning of the pu:zo, when the phase 
of the t w o - I d  oscillator satisfies +a < 1 (i-e., when tbe energy of the pulse fraction which 
bas entered the medium is small), there are deaeasa in the field strength aod the axillation 
frequency: E(z.t) = &(q) (1 + Bz*0/2)-', w(z. 1) = ~ ( q )  (1 + Bzla/2)-'. This case mnt 
s p d s  to SLodts d n g .  Later, when the phase becomes greater than r and reaches the value 
arctan(-2 / Bz), the 6eld and its frequency increase. The -ation of anti-Stokes components of 
the field thus b e c m  predominant. At riro = r ,  the nature of the pulse transformath changes 
again. At a given point in space at different times, curresponding to different characterktics (lo), 
we thus observe oscillations of regimes of compression and stretching of the field oscillation peri- 
ods. Tbe sequence of regimes of stretching and compression of the pulse with increasing d u e  of 
the incident energy reverses when we switch from an originally absorbing medium to an originally 
inverted one. 



A deseriptivr !ray to aadyae the pulse evdu tbn  is provided by Fig. 1. It  is men from (9) 
and (1 I )  that the nature of pulse transformation is determined by the sign of the expression in 

brackets of the denominator sin h + $(1 - cah) = 2sin3) [(tan ?)-I + $1 . If qo < r ,  we 

hve (tan ?)-I > -9 f w  any distance z from the rnedium boundary. It means that the energy 
of such pulses can be only absorbed and the &sorption is accompanied by the increase of the W d  
oscillation periods for any pulse! fraction (and as a result, by the increase of pulse duration) and 
by the shift of the pulse s p ~ b ~ m  into the low-frequency region due to Stokes scattering. 

If n < 8@ < 2r ,  there are two differeat regimes of pulse transformation. The Wing pulse 
fraction 0 < 9, < < 9; = duetan (-2/Bz) undergoes energy absorption and stretching of the 
W.d oscillation p d s  and its spectrum becomes enriched with low-frequency components of the 
field. The field in tbe trailing pulse fraction amplifies during the pulse propagation, the -illation 
periods decrease (that results in the ampression of this pulse fraction) and the spectrum is 
enriched with high-frequency components. For 2n-pulse all the ,mergy -centrates in the trailing 
edge which is c o m p d  as the pulse propagates through the medium. The same picture takes 
dace for pulse fractions 2 r n  < qo < 2n(n + 1). 

Fig..rre 2 shows an example of pulse evolution described by the dution (a)-( 11) Cot eo = 4r. 
The input pulse represemts a two-period fraction of a sine-shaped signal. Figure illustrates the 
time dependence of the pulse field at different distances from the medium boundary. Thus, the 
high-energy pulse is devided into the set of compressed powerfull 2~-subpulses the maximum k l d  
strength and inverse width of which a t  large distances increase - (fit)* according to (8)-(10). 
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Abstract 

Spontaneous radiation in dissipative gas medium such as plasmas is investigated by 
Langevin equations and the modified Ureisskopf-Wigner approximation. Since the refrac- 
tive index of gas medium is expected to be nearly unity, we shall first neglect the medium 
polarization effect. We show that absorption in p1asn:as may in certain case modify the 
Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for 
relatively low temperature plasmas and also r pit in the A coefficient-temperature curves. 

In the next, the effect of medium polarization is taken into account in addition. To our 
surprise, its effect in certain case is quite sigr'5~ant. The dispersive curves show different 
behavious in different region of parameters. 

1 Introduction 
This work is motivated by an effect called by the original authorsl'l as "quenching of Einstein A 
coefficient": the ratio of tiyo line intensities 1(5805A) and 1(312A) from a common upper level of 
C,v is reduced by an order of magnitude when the eletron density N, changes from lO1*/cm3 to 
1019/m3. But there is some dispute about the interpretation of their experiments. Our work is 
to see whether this effect is possible theoretically. 

Physically, spontaneous emission is resulted from atom (ion) with "vacuum" electromagnetic 
field, therefore Einstrein A coefficient is a characteristic parameter of the total atom-field system, 
not just of atom itself. Its value may be different for different enviroment, such as cavity, or, in 
our case, the dissipative medium. 

Our approach is based on Langevin equations121. R'e don't use Fcrmi golden rule to calculate 
the emission rate as did by Barnett et because the rzdiating ion and radiated field do not 



make up a closed system, their states both before and after the emission proam are nod 8tationary 
&tes. 

j h  Langevin equations an emission rate operator is defird, and a part of it, the sponta- 
neous emission rate operator may be ~epanrted out. 

Since the refractive index n(w) of gas medium is expected to be nearly 1, we shall W, in SgC 
11, neglect the effect of medium polarization, which will be taken into consideration in Sec 111. 

2 The effect of medium absorption on Einstein A coefFi- 
cient 

Since in this section we take n(w) = 1, both the frequencies and wave hctions of light modes are 
the same as in vacuum. The reduction of Einstein A d c i e n t  is thepetore not by tihe alteration 
of modes of e.m. field but is caused by alteration of dynamics: the relevant operatars now do 
not obey the Heisenberg equations but obey Langevin equations instead. We &dl see that the 
frequency dependence of photon decay parameter will play an importance role in the present case. 

We haw argued141 that the tl!reelevel ion problem may be reduced to two-level ion problem, 
the only exception is the calcuistion of population numbers among the levels, in which all the 
levels involved must be taken into amount. 

In considering the emission of a particular ion, the whole plasmas other than the radiating ion 
will be regarded as a reservior, its effects are described by the damping and fluctuation terms in 
the Langevin equations: 

where S* are usual atom level-changing operators, ~3 is the half of population difference operator: 
s3 = :(P; - f i ) ,  dk, is the photon absorption operator of mode (k, j ) ,  j is photon polarization 
index. The free-varying phase factors have been separated out from the photon operators and 
atom level-changing opraiors. 

\tre have defined121 on emission rate operator i(t) as that part of -* which is caused by 
the interaction with photons, with the result 

Solving eq(l.1) to get 61,(t)  and substituting it into eq.(2), one may separate out the sponta- 
neous emission rate operator j,(t) from i(t): 



The Weisskopf-Wigner approximation now takes the modified formw 

Substituting it into eq.(3), we get immediataly 

Eq.(5), after taking the expecting value, is just the Einstein formula ' ~ r  spontaneaus emission 
with as the new A coefficient. 

Taking real part of eq. (4) and integrating it over t' from -00 to t , we get@! 

where y is the usual Einstein A coefficient in vacuum, wp is the plasma frequency and w,- denotes 
a cut-off frequency representing the limit of dipole approximation. 

We see that ?/y is determined solely by photon decay parameter ~ ( w ) ,  with no direct reference 
to atomic parameter. This is contrary tc. the conjectur of Aumayr et allq. 

When K is small and independent of w, the right hand side of eq.(6) will reduce to 1. 
Actually, in plasmas, r: is contributed by the inverse Brernstrahlung of free electrons and 

selfabsorption of ions of tbc same kind as the radiator. Both are w dependent, but only the latter 
is important unless at very high plasma electron density (- lo2'/&). So we shall only consider 
the latter, which will be denoted by K,(w), in the following. 

K,(w) is expressed by 

where NI represents the ion density, rT is the total width of the spectral line, Pl and Pz are the 
average populations of the lower and upper levels. We have approximated the line profile by a 
Lorentzian shape in eq.(7), actually the profile is convolution of a homogeneous broadening (Stark 
broadening) and an inhomogeneous broadening (Doppler broadening). 
The frequency behavior of K / ( u )  is characterized by a peak at  w = w. It is this behavior 

which may cause significant reduction of ?/y. 
To explain this, we simulate the variation of K, with w by a simple stepwise function 

with rn > K;. 
If in the whole range K I ( W )  either equals KO or equals K;, the integral in the eq.(6) will amount 

to ;;wo The curve has a larger height but a smaller width as compared with that of 
.&;, SO both gives the same integral value when substituted in eq.(6). But the situation of 
stepwise function eq.(8) is different, comparing it with the above mentioned constant cases, it  is 
not difficult to understand why the steptvise function will reduce thc integral value. 



One l n a ~ ~  use K(W) z K:(*) to ~ d e  the integration interval of important contribution in 
eq.(6). If K:(W) drops down rapidly in this region, then the reduction will be latge. Since rT/2 
sales the interval of significant variation of fif(u), it fo l lm that tha ratio of these two & 
rT/2ICl(@) determines the amount of reduction of T/y. The smaller the value of ) [ l T / ~ ( ~ ) ,  the 
heavier will be the reduction. 

In this way, we see that the atomic parameters do affect the value of Einstein A coefficient, 
but in an indirect way. 

The numerical results are as follows. For line X = 5805a, q/r is almost kept to be nearly 
1 in the whole range from N, = 1015/d to N, = lp/cms, because rT/2tcI(@) b large, 
sin= the &tor PI - P3 in eq.(7) is very small in this case. The mul t  for line X = 312A is 
shown in Fig 1. In low density region, rT is mainly contributed by Dopper broadening 80 that 
it is independent of N,, and this in turn makes K:(w) proportional to N,. Therefore when N, 
increases, I'*/~K~(*) becomes smaller, leading to the drop of q/y. But when AT, goes beyond a 
d u e  about 1.5 x 10'~/cm~,  jl/? turns up, because is gradually dominated by Stark broadening, 
so that it is proportional to N,, which in turn leads to N,-independence of tcl(*). As the result, 
there is a pit or hollow in the curve 717-N,. 

The dependence of j.17 on temperature is also interesting. By a similar analysis, we have 
argued14i that there will be also a pit or hollow in the curve jl/.y-T. 

3 Einstein A coefficient with index of refraction taken 
into account 

We begin our discussion by deriving the plasma.' refractive index from microscopic equations. 
First we omit the contribution of free electrons which is less important. 

There are numerous ions in the plasmas, the effective coupling constant for ion I and e.m. field 
has a position-dependent factor eik.X'". 

In gas, the orientation of atomic dipole (d)?, is random, yielding lgk, l2 independent of j, 

where 
(3k = kc. 

\Ve define a collective atomic operator as usual 

the equation for il, (t) will be of the form 

^ ( I )  
111 the ease of steady-state plasmas, rye may approximate t l ~ c  S, in the equation of s + , ~  by 

its avcraqe value ;(& - P I )  plus a flucttiation terrn. This leads to 



We see from egs.(ll) and (12) that % and turn into each other. 
To derive the expression for index of refraction n, we may assume, as usually does in classical 

electrodynamics, that s + , k j  will do forced vibration following 4 except a fluctuation termlBl. By 
this, we get an expression for Stmkj from eq.(12). Substituting it into eq.(l 1), yields 

where w denotes the actual frequency of ii;,. 
According to the definition, the real part of what inside the square brackets is just e q d  to w. 

Thus we get an equation for w: 

The expression of index of refraction follows immediately, 

The imaginary part of what inside the square bracket will be The expression so obtained 
for a&) is the same as eq.(7), -cept rT is replaced by r. The difference lies in that rT in eq.(?) 
d,eady contains the contribution of Doppler broadening. 

We may generalize the above result by including the contribution of plasma free eletrons. 
Besides, since in the present case the wave number k is real , the cperator 4 decays with 

A 

time, S+ ,k j  must also do damped vibration accordingly. This means that w in eq.(14) must be 
analytically contiued to complex value which will be denoted by R: 

in which r is also replaced by rT as in eq.(7). 
This is a third order equation for R, it allows us to derive R = w + atc for every given real value 

of wk(wk = kc). We will choose the root whose real part is nearest to wk for photon. In the case 
of X = 5805A, no problem appears. The so obtained curve w- is like the usual dispersion curve 
of gas. In this case the affection of medium polarization on 'j. is indeed very small. 

In the case of X = 312A, the situation is different. For certain range of N,, the dispersion 
curve for photon and for collective atomic dipole (St&) are totally mixed in the resonance region. 
This means the quantum of the polarization field has coupled to photon to form polaritone as in 
solidsb71. In this case, the affection of medium polarization is significant. 

The occurence of such situation depends on the relative strk ~gth  of coupling and damping. 
To show explicitly, let us examine the simpler case without contribution of free electrons. Now R 
satisfies a second order equation. The two roots at  wk = wo are 



where A 

just the pruduct of the two couple constants between and S+& in eqs.(ll) and (12). 
When a < +I'$ (weak coupling), the red part of the two roots given by eq. (17) equal each 

other, corresponding to the u d  case as A = 5805A. On the other hand when a > #"$ (stmy: 
coupling), the real parts of the two roots are different, corresponding to the situation of polariton 
formation. It is interesting to note that 

therefore the two conditions -*j < 1 and a > dr+ almost mmpend to each other. Namely 
the region of polariton formation will mver the region of the pit discussed in last section. 

This work is a part of project supported by National Natural Science Foundation of China 
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Abstract 
'I'he notion of atomic coherent states is extended to the case d multikvel atom collective- 

Based on m m k  coherent mates, a hdomorphic repmentation for atom collective states snd 
operators is defined. An example is given to illustrate its application. 

1 Introduction 
Atomic coherent states have been introduced in quantum optics for more than twenty yead-4. 
They are the analogue of boson coherent states and exhibit appmximate classical behavior when 
the mean atom numbers on the relevant lewd are large. But until now such states are anly 
available for collective of t-level atoms. We have extended this formulation to mult i ld  c a d .  
Since many optical processes involve atoms of three or more levels, it is expedd that this extension 
m i l l  play a role in the theory of such processes as cascade s u p e r f l m c e  and superradiant lesing. 
In addition, like the photonic counterpartsfq , the atomic coherent states may alm be used to &!he 
a holomorphic represeiltation. In come cases, it is convenient to use this representation to treat 
the dlective interaction of atoms with the light field. 

We shall give a brief introduction of our work in the following. 

2 Multilevel atomic coherent states 

For concreteness let us consider the fully symmetrical states of N three-level atoms. In Fodt 
representation, such states are denoted by ln3,n2,nl), where n ~ ,  nl, nl are numbers of atoms in 
the upper, middle and lower lewl respectively. The observab!es of l-th atom may be e x p d  
dy the generators il:) the p u p  ~ ~ ( 3 1 ,  where ijk are level-change operaton lor j # k ,  and are 
population operators for j = k. The collective atomic operators Sjt is defined sa 



~ ~ k m i ~ h t u r d l d & ~ c o o h n d ~ b y ~ . a d u ~ t l ~ ~ C f * ~ ~ o n  
(0,0, N). T b  latter Minition is somewhat mom c b  to that d photon ahrent state. 

T b e ~ o b p a r c u n e t e n , a a n d ~ c c m b e ~ f n # n h ~ d ~ o b ( n ~ ) ,  (m), 
(na) and (S,) kg'# k: 

(ns) : (w) : (n1) = 1 : l ~ l '  : Wlf, (3) 
d the phase of a and /9 are just thase of (Sm) ad (&) mpedively. 

If both and 181 are of order 1 ,  namely all (n3), (w) and (nr) are of order M. then dl 
)-"h)F areoforder &. Tbis d t s c o a f u n t h t  UomicEobssddrtatad to i3ddhk), 

display drtesical behavior when (nj)'s p o w   large^ 
Thesta tes* thdihta ,@are~- todother .  ButtteeybrmancrvePoompleLe 

set in the discussed subspace. We have found the weight betion 

WlCh that 
J B ~ ~ P B  t t l~l ,  l~ ) la ,  B)(QBI = 1- (5) 

The above dicussion can be extended to other subspaces. It b also easy to be exkuded to 
atoms with more level#. 

3 Atomic holomorphic representat ion 
Like bomaic case, one can define an atomic holomor~hic representation based on srtaDnic coherent 
states. We shall illustrate this interesting mncxvi i:! the simplest case, a collective of two l e d  
atom, and consider the fully symmetrical subqwx. 

A hoi-hic representation employs a holomrmrrphic f'unction j (a') which is d y t i c  in the 
whole a' plane to represent every state in the disc& subspace. 

Acburily, f(ae) is a polynomial of order N, a .:ather well behaved func~ion. Acaxctiagly, ead~ 
atomic operator will be represented by a hoIo~r~rphic functior. of two cromplex variables a' and 
fl. Wc shall do some explanation in the follcwing. 

The mmpletness of the tawlevel atomic coherent states in the discussed subspace is e x p r d  

By this, we get 



in which 

N 
2 ND f (a*) = ( 1  + I Q I ~ ) ~ ~ ( Q ~  j )  = (1 + lo( ) E ( a l N  - n, n) (N - n, n ln ,  

-0 

where (JW - n, n) denotes the Fock state in the fully symmetric subqwe. 
Invoking the well known value of (a jN - n, n), we get 

with 

Similarly, we can expand any atanic operator f by la)@I as 

Th operation of f on a state 1 j )  is described as fd lms .  Let 

then the holomorphic representation g ( a b )  is given by 

hthermore we have shownw that in ho!ornorphic representation the dlective atomic operators 
s+, 3-, & may be also represented by differential operaks as &, ( N a b  - a*'&), (Q - a*&) 
wher operating from left, and as (No - ' ) , 6, ( f - P&) when operating from right. 

To our knowledge, there is only one prob 7 em which have been solved analytically for arbitrary 
value of N, namely a collective of two-level atoms in an external fieldm-m. This problem on 
be d v e d  in a comparatively easier way by our fom~ulation. Let us see the simpler case of no 
detuning. 

The atomic density operator b now obeys the master equation. 



In our halomorphic representation, this equation mqr be taken as 

+ ( c c  witha -8). (1s) 

Foa the steady-state solution, we expand p(ae,/Y) d n g  to eq.(11.2): 

Substituting this expansion into eq.(15) and e t i n g  the right-hand side be zero, we obtain a 
recurtion relation for h, which can be solved analytically to give 

The due of poo is determined by norma,lization. 
The density operator ii is then given by 

The extension of holornorphic repmsmtation to three or more l d  atoms is obvious. 
This work of one of us (C. Cq) is supported by the Chinese Docboral Pmgram Foundation d 

the Institution of Higher Education. 
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GENERATION OF ANTIBUNCHED LIGHT BY 
EXCITED MOLECULES IN A MICROCAVITY TRAP 

F. De Martini, G. Di Ciweppe and M. Mamnx;o (*) 
Dimimerobo di Fisiaa and Istitu~o lVhzh& l Fisim hhrcIeare 

~ m ~ € a *  rlt' Rarrra "LQ ~ l o p o  ", ,001 It@ 

The active m i c r o d t y  is adopted as an &cient sowlce of non-classical tight. By this 
device, excited by a mode-locked laser at a rate of 1 0  MHz,  hgbphotons am generated 
over a single field mode with a n o d a s b l  sub-poissonhn distribution. The process of 
adiabatic teqding within a &-step Franck-Condon rndearlar optical-pumping 
mechanism, c- m our case by a quantum e f h k q  very dose to one, -es a 
P U ~ P  self 'on process leading to a striking wwpezbg effect. By a replication of 
t h e b a s i c ~ a c b t i o n p n r a t a b e a m d q u a n t u m  photon Irr>-mtes (Fock 
states) can be created. The new process represents a sjgrrificant advance in the modem 
fields of basic quantum-mchanical man, quantum communication and quantum 
~ o g r a p h y  

1 Introduction 

The gemration of non-classhl tight is an important topic of modem physics since it provides the 
basic toois for the investigation of finciamental processes involving the quantum interferometry of 
particles. Furthermore, on a more technological peqxstive, the realization of a reliable source of this 
kind of radiation is today considered to be an essential f b a t u ~  of any realistic advanced program 
involving quantum cryptographic communication and, possibly in the future, quantum computation I f .  

For this purpose the method of pump self-regularization has been adopted in the past within a fkw 
dynamical processes to provide the sub-poissonian chamcter of the generated light '. These 
essentially are: the electron-charge induced antibunching process acting within the excita~on of a 
semiconductor laser ' and the Rabi dynamics in resonant-fluorescence with excitation of single atoms 
in a beam, in a trap or in a solid hoe! '". The use of the latter process is very diicult in practice 
because of the delicate high-resolution spectroscopic techniques needed for the resonant ex3tation 
of confined single atoms in space, of the hard problem of discriminating a very weak beam in the 
presence of a strong one at the same wavelnlgth and, mod important, of the inefficiency of the 
process sinc: the weak resonan; scattering occurs in all spatial directions. In this letter we 
demonstrate that these problems can indeed be overcome by a novel, efficient single-molecule 



pump seW-rcgularizetim scheme and by makine use of a gnut oombinarion of optical techniques 
partiany b a d  on the peculiar properties of the nthcavity in the context of atomic qmntamm 
emission (SpE) '. The result is a new, efbcient pentor of a non-classical single-photon state that 
can be tmsfonned into a quantum Fack I@-state gonerator. 

Letusouthe ourmethad by m h h g t o t b e  ~ t n o l e e d e c o ~  AtbgbOIIIIzbre720 
molecule absorbgad emi t thgdat ionat  A,qda,and 71=2d mqm&dy,was excited 
within a s i n g ! t ! o n g i t u ~  mkmmity, witb witbnte~nt dimension m ~ l ,  finem 
Elm, and termhated by two parallel, p b  (or mbrors, i 1 2 )  highly dlechg a 
71 ( ~ c l r i I ~ ~ 1 ) r a d  tmqmmtat  & < A .  Becaused t)i)b*popny,the~CitltPDd the 
amlacute could indeed be l a  within a s d  volume V 4 . g  about equal to As a tbe i a m c h n  
ofthe cavityactinlafyer w i t h t h e W  regionof a 3 a u f 4 b c d k i a g  theesDcitasionfionra 
pdsed laser beam opemthg at A,. In the best adgumhi the Ma was excited by r oolf isb 
w e d  (CPM) bser ~ a t ~ = 6 1 5 n m r s c q u e n c e o f e q u a l p u l s e s , ~ m a s  

also -.ried out, 8 ~ -  but with &mom critical quknentsfbr the panmetem 8t, E, at 

5 4 3 2  nm, with a &= 5 nsec, ~ 2 0  Hz, pulead beam SHG by a Nd-Yag Q-mkhd laser. The 
selected active system was a molecular solution m &ene-glycol, a very viscous s o b  at 
T=3000K , with concentration in the range p=10'%10" ud, absorption cmswwdon 
q&p2.10'an' and fie+- S ~ E  timev&= l K a r 4 ~  atkssmbdo. 1-102- I! 
which the micmavity is tuned. Furhmore, vlery irnpormit,the selected molecule had a sinlglet hi- 
level optical pumping quantum efEiciency q vay dose to one '. W d  a calibrated p and well stined 
and kighty filtered solution, to avoid any molecular dustahg, the search kr the dnglc-mold 
excitation coaditi~n was acunnplished by transversal displacements of the lens h s  in the 
microcavity active plane. Once bund, this codtion kept M y  stable m time at T=300"K albeit a 
long term stability was o W e d  by the systern at 10°K by a closcd-cycle Joule-Thomson 
cryostat. According t~ a useful property of the mimawily with m=l and to its actual geometry, 
the light emission took p l a a  avet two counter-pmpagating plane-wave modes with vectors k and 
Y- -k odmpnal to the mbm.. '. As Br as the brdc dynamics is concsmeed, since the quantum- 
diciency of the molecuIar irbsorption-anission cycle is q 4, we may say that virtually e w y  
pump photon extracted &om the laser beam, i.6.. with p o i d u .  statistics, at is m-edmd at a 
&#erent 1 over k or k', with an antibunched charader because of pump-reg dab tic^ and then 
detected. Precisely, the oved pump-regularization misea bmn the synergy of scud pmcems: the 
~ g u ~  excitation of a dngle molecule and the "cycle scKreguraiation" due to the 6nite time 



taken by tlre excitation to cycle adiabatically through a 4-level system M r e  restoring de-excitation, 
as we shall see. The latter process may be somewhat related to the laser squeezing model proposed 
by Rib& d. The statistical character of the output beam was a s x s d  by a Hanbury-Brown 
Twigs (HBT) apparatus shown in Fig. l while detection was provided by two cooled (RCA3 1034-A) 
pbtotubes, PM13, with quantum efliciencies El% 5 2  0.12, average noise rde ~ 1 0 0  Hz. The data 
analysis was d e d  out with a gatad SR400 photonauntet or, when necessary, by charge 
ilrtqmtion at the PM anodes. In a d d i i  to this atpetimem, an equivalent Hanbury Brown-Twiss test 
mas also canid out by adopting an active mi-* witb Rl=R2 . with no use of any e x t d  
beam-splitter, the two arms of the HRT interfkmmetet being simply provided by the two output 
modes It, kg, as shown by Fig. 1. 

Fig. 1. Collision-hlse-Mode-Lockad laser-excited microcavity and Hanbury 
Brown-Twiss apparatus. 

,Irese ones may be interpreted as corresponding to the two pure momentum-states that fonn the basis 
of the quantum superposition representing any single-photon cavity excitation. This novel experimental 
condiguration apptars conceptually interesting as it suggests to interpret the microcavity as a new 
kind of active beam-splitter. 



3 Quantum description of the antibunching process 

Let's look more closdy at the coupling process, by assuming a symmetrical cavity, mu1 and a 
momentum-state superposition of the podrmred emitted photon over the modes k, ks with 
cmespondhg m d y  commuting omom: 8 Tdk* 'I. 

The normal-ordemd bniltonian of the system is: 

A - h d 6  P +h{$'i+8"6') + ~ k ~ , ~ - i ~ , 8 ' ( 6 ~ - - i ~ ( $ ' + i * ' ) ~ + h . c .  (I) 

6 the sh@e-rnode pump field operator, K, . K rrh appmpriate coupling parameters 
proportional to conespondii Rabi fiequmcies np Q, rp3 the microcavity field- haar, 

jig= 1 ix j  1 (i,j - 0 to 3) the transition operators relative to the 4 - I d  system modding the rd-t 
fkatures of the Franck-Condon dynamics of the single molecule. The system evolution is simplitled by 
d y i n g  it sepamtdy in the two 2dimensiond H i k t  subspaces spanned by states (I I>, I D ) ,  
( lo>, 1 3 9  since their rrrpktivc dynamics are only connected by a roto-viirational but relaxation 
process via a single coupling parameter: yl/T2 t5.10" dl 12. The mndtion opr*on are: 

is(0-1.  (2')- 1 l><ll in thesubspaces where the usual spincommutation ~ h o l d f ~  
primed and unprimed operators. This allows a detailed study of the main features of the evolution of 

3 the &sorpt idssion cycle responsible b r  the self-regularhion dynamics . In particular, the 
SpE fiom l e d 3  is characterized by a cavity-enhanced, quasi-exponential decay parameter: 
P 2 i  1 R 1 ~c(AoK*(~)]  where c(Ao) is the complex Heitler's betion '5 fir ~ u r  system: y >>T. 
By assuming that at the initial time of any (square) St-pulse, t =O, the molecular excitation is in the 
ground state, < itl, *l, the dynamics is analyzed by a Torrey type formulation leading to the 
relevant statistical averages invoIvin8 the 6eld emitted and detected at the retarded time t'=(t+z/c) 
by a detector placed at a distance z from the cent3 of the cavity, on its axis ". For instance, the 
intensity <: i (tS):> radiated after excitation by a sequence of equal Mpllsa, with 8t<c~'  and time 

interval At d l :  
*(D 

<E- (z, t') E+(& t') > = K repT<i+ (t)ko(t)>, repTu<t) :on x,, u(t - n At) Is. (2) * 
For t %t is found: 

<A+(t)ir-(t)> = A{ 1- exp(-3y61 l2) cos(A &) + B exp(-3ySt /2) sin(& M))exp(-T t), (3) 

with: A=[ 1 ((C4 1 2- (fl'. A - (312)[y 1 4 1 I( 1 n , I +2y2)I2, B =( 1 Q, 1 - Sp/2)1(3yI) for y. 
Note that with the parameters corresponding to the CPM excitation in our experiment, each laser 

61-pulse is a n-pulse for the overall dynamics, since: QpT2 4 6  opa/(y 6t 5 hap)]' >l, Qp6t E n. 



M-pulse is a xpu l a  for the overall dynamics, since: CZpT246 apt/(y st hp)]* >I, Qdt n. 
Then, if a single molecule interacts with that pulse, the excitation does not have time to cycle more 
than once within the Clevel system, leading to the emission of no more than one photon for each 
Gt-pulse. This is precisely the origin of the mechanism of self-regularization and determines the 
tantibunched character of the emitted radiation 16. With the excitation provided by longer pulses 
Gt-1K, the n-pulse condition becomes very critically dependent on all parameters and there is the 
possibility of multiple cycles within b with a Poisson-type multiple emission 9. The above analysis 
is completed by the evaluation of the degree of second-order coherence: 

This relevant quantity is evaluated, as usual, by first expressing the emission intensity average 

<it+(t+~)i-(t+z)> as 41 linear superposition of molecular raising-lowering operator averages 
evaluated at time t . Then, the second-order correlation function appearing at the numerator of 
g(2)(t) is evaluated with the help of the qumtum regression theoreni '"". In view of the spontaneous 
emission dynamics involving the states 1 3>, lo>, we may write the intensity average in the simple 
form: 

<k+(t+z)%-(t+z)> = PI (T ) f $2(r).<k+(t)ii-(t)>, (5) 

where PI (I ), P2 (r ) are evaluated by solving the master equation accounting for the emission 
process. This leads to a straightforward evaluation of gm(r ). This quantity is given here for a 
4-level molecule, for 7 <At and for two extreme Gt-pulse excitation conditions, Gt<<l/T : 

(a) excitation by a single Gt-puise: : g" ' ( t~[  13 I (7 ) I PI )I=[ 1 - ap(-  rr)] 
(2) 

(b) excitation by a sequence of st-pulses, rate ~ t "  : g (~)=rAt.[l- exp(-rr)J/[l- exp(-rAt)]; 

(2) 
rAt>l. We see that in both cases is g (0) = 0, as expected. In order to account formally for the 
experimental parameters involved in the HBT test, an equivalent quantum photodetection theory may 

be umweiently expressed in terms of the coincfdence parameter a introduced by Grangier a". 
Within the context of our work, this parameter is defined in terms of the probabilities of registering, by 
two detection channels 1, 2 relative to the output ports of the HBT beam-splitter, coincidence- and 
single-signals for each St-pulse and within a gate interval At, starting at t: 



For single mode excitation of the beam splitter. Ah<-I, we obtain by quantum theory ' : 

whas 6 represents the p m m e s  of the source field and 6 ir the nonnal-ord* operator. By 
the n-state expansion: 8-& p.1 n)(n 1, a is ihally obtained some relevant photon distributiom: 

3'' - - exp(-iS) a = 1 2) Coherent: P, - ( 

being R -  I r 1 T'- I t I the optical parameters of the (loss-less) beam splitter and Tf the average 
number of photons emitted after each excitation Gt-~~1st. By a first order oxpansion of a, the second- 

order correlation fiurction may be expressed in the form: gm(~) = [ a - B(R))*[A(H)~' , where: 

(1) 
According to the theory, for n=l is: g (0) = a = 0. 

4 Experimental result 

The parameter a is plotted in Fig. 2 for the three cases Vs. If and thp molecular p ax, tbr our 
experimental conditions. 
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Fig. 2. Coincidence parameter a (if) as firnction of the number of photons 
~ r . 1 ; ;  .ed after each exitation pulse and of the molecular concentration. The time-gate of the 
1 X'f -gparatus was: At, = 1 nsec. 

NU;? u Fig. 2 the p o d  experimental verification for R>1 of the theoretical curve expressing a 
(X) in the sub-phizsonian condition, viz., implying the pure n-state distribution: P, = 6,*,. These 

r~sults of the HBT experiment show that an increasing sub-Poisson character cf the output 
radiation is padually established for p vaqing over two-order of magnitude, I d i n g  for p7* 10" cm" 
to the striking figure a = g " ) ~ I  = 0 for n=K =l. This last result has beea obtained at T=300°K with 

a 50%-50% beam-splitter within a run involving a number of counts equal to 1.5*104 by each 
detection channel. Within this run no coinciden~s were detected. The fither experimental points in 
Fig. 2 were determined approximately by the same number of counts. 

5 Conclusion 

All this provides the first demonstration that, under appropriate conditions, it is possible to conceive a 
~nacroscopic quantum device that emts, over a single output radiation m ~ j e  a single-photon per 
pulse, with a quasi &teminis;ic generation of a quantum radiation state, at repetition rates as 
high as 100 Mnz and with a quantum efEcienq close to one. This result leads to still more 
important consequence. The single-molecule excitation process could be straigthforwardly 
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geamed at that active center is direded, with estimated eficiemcy 4 >96% , over either one of 
the two output modes k, k' in spite of the limited optical continment provided by the Bmgg 
&lectors at large emission angles tesped to z, vie. to the direction of k (Fig. 1). When needed, 
the use of me totally reflecting microcavity minor, R=100% allowed the excitation of om& me 
external mode, k URbr the givesr eqmhental conditions just@@, for Q*TPI,  the adoption 

of a quantum Rabi dynamb, and the &ckcies q +1, 4 el, it is assumed that the result 
a====*~0)4) implies a sk&-molde &on in the actiw region. For a very p m b h y  

account ofthepmseat work, involving 10% c~citatiua p~ 6t r 5@10*a cfi: M. hkmxo d 
F. De IWartini, m: Qwmtm I ~ m m e t r y ,  ed. by F. De Martini, G. Denardo and A U h g e r  
(Wd Sciesrtific, London, 1994). 

[lo] H. Ritsch, P. Zoller, C. W. Gardiner and B. F. Walls, Phys.Rev..A44,3361 (1991). 

[l I ]  It is fbund that, under sho~-puk exci!ation, the beam emitted by an OKatine 720 active 
microlaser keeps the same polahtion of the pump beam for a time &emtined by the mokdar 
reorientational diffirsion (A.Aiello, F.De Martini and P.h(latalolli, subm. fbr publ.): this may be a 
luckydiscoverybrdeed. I n f i r c t a , t h e p o s i i t y o f ~ t h e ~ o n o f t h c  e m h d  
photon may represent a fiuther important property of the aduptd molecular system within the 
pfaentnewmeohod. 
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Abstract 
We briefly review quantum mechanical aad semidadeai descriptions of experiments 

Om meamrements demonstrate the v b b t h ,  at macmsmpic intensities, of each of these 
ineqdties. We she+ that their vioUon, although weak, &n be demonstrated through 
photodetector current amarhce -8 on camdated sub-Poismmian Poissonian, 
and super Pohoxhn light beams. Such beams are readily generated by a tandem array of 
b h d e m i t t i n g  semiconductor junction diodes. Our metmuemexits utilise an electrically 
canpled atray of one or more i&ared-emitting diodes, optidly coupled to a detector array. 
The emitting array is operated in such a way to gemrate highly correlated beams of 
vetidle photon FaD Psctor. Becaune the meesutancnts are rnade on time scales long 
cormpemd with the k t  order cohaenee time and with detector areas large compared with 
the cormponding coherence areas, k t  d e r  intdertmce effkcts are negligible. 

The first and second hequatities nre violated, as expected, when a sub-Poissonian light 
beam is split and the intensity fluctuations of the two split beams are measured by two 
pbtodetettora and s u ~ l y  cram-corrdated. 

The third inequality is violated by bunched (as well as antibunched) beams of equal 
intensity provided the meamued cross correlation d c i e n t  exceeds (F - 1)/F, where F is 
the m e d  Fano Factor of each beem. We also investigate the violation for the case of 
unequal bmm.. 

1 Theory of The Macroscopic Violation 
The f b t  inequality addresses the correlation between the intensity fluctuations in the two beams 
emerging from a 50/50 optical beam splitter. ~oudon['] gives the standard quantum result for a 



single mode besm with mean photon number, < n >: 

aad ~ a a l ( ~ 1  obtains the same result by heating the photon beam as a beam of classical distin- 
guishable pa,rticles, subject to B e m d  partition. In the absence of interference noise, that is  
for a broadband, multimode, incokereot sontee on time scales long compared with the coherence 
time B D ~  with detector areas large campared with the coherence area (~eichlq), this treatment is 
j d i k d  (as it is also for a single mode situation). It is evident h m  expansion of equation (1) 
that may be written: 

This form shows that any violation, (a value less than unity) requires sub-Pokcmian variance! 
(F < 1) and must be weak in the macroscopic limit (n > > 1). Nevertheless macmsapic 
violation can be readily demonstrated in a Hanbury B m  type d e n t  using a siagle light 
emitting diode driven fmrn a high impedance m c e  (~dwardsb1). The same umiigaration serves 
to show violation of the seamd inequality- Both these violations can be deduced from the m e a d  
covariance between the macroscopic pBotocurrents il , ip for tbe split beams. 

As pointed out by Loudodll, violahn of this inequality is a faodamental quantum d t  
d t i n g  from the photoelectric detectian of either the transmitted or the d a t e d  photon. As 
we shall see however, Landon's assdon  that "non-classical ettects tend to be most marked tor 
beams with small well defined numbas of photonsn is (rather surprisingly) apparently not true 
tor the third inequality: 

which is vigbted at nmcmscopic intensities for bunched and unbunched beams as d as for the 
antibunched beams for wbiclthe &rt inequality is weakly violated at macroscopic intensities. 

It is well known that the Cauchy-Schwam inequality with time delay d between the two beams 
is M.(sl*ls) 

(2) 2 
k 2  (ell S II!?(o)&'(o)~ (4) 

where di) is the second-order coherence function. For t = 0, we have the tollowing inequality if 
we use a " classical particlen desuiptiod21: 

That is 
<nln2 >'s (<+ > - < nl>)(< 4 > - < n2 >). 

In order to triolate the Cauchg-Schwam ineqaality, we ahodd have 

So that we have 





1 Violation For Twin Beams Generated by Coupled LED'S 
Figure 2 shows the amqement adapted by Edwards['*fl to 
beams. 

generate quantum c~rrelated twin 

Figure 2: Series-ctmnmted inbared emitting diodes (L2656) axdgud to generate 
positively correlated intensity fluctnatiom. 

hmFigure2,wehaveil=i2andm =w,wi ld= iaand<iL>=<&>.  Thecadation 
d c i e n t  is given by 

< ildv > 
(12) 

This can beeasily shown to be - 

Here 8 in the Fano Factor at the bource and 

is the Fano Factor m e a d  at the detectors with quantum ejlticiency, q. 
Recall that the macroscopic violation tor F1 = Fz = Fo was given by 

that ie 



A violation parameter, A can therefore be written as 

3 Experiment a1 Results 
Refening to Figure 3, these measurements were performed at room temperature using two series 
connected Hamamatsu type L2656 infrared emitting diodes. The Fano factors were measured as 
shown with a swept frequency spectrum andyser. Correlations were measured digitally. 

F i p e  3: The d a t e d  twin beams are generated by light emitting diodes, Dl,D2. 
Tungsten lamps, Ll, L2, provide shot noise reference carrenta in the pin diode detectors 
Pl,P2, aad light emitting diodes, respectively. Switch, S provides unbunched (UBN), 
bunched (BN) and anti-bunched (ABN) twin beams with detected Frura factors me* 
sureti by the spectrum analyser. The quantum diciencies are determined directly from 
the measured DC currents. 



~ e d d t r s r e h i o ~ ( I , t o + n i t h a - & ~ h ~ e d b d t h e  
-tion pammtm for a quaatam & h c y  of LO%, ar employed for dl memmmnb with the 
emaption of the laft hsnd point (12%). Them d t s  are in good agreeunani with the theory. 

We have e x k d d  themW con- .iddion of the Caucby-Schwua inequrlities (-1). We 
B a r c d c r i r s d a ~ ~ & ~ h t h e ~ c r i d . t i o n d a C S I b w t ~ i n ~ t l i g ; h t  
~ d n g a ' ' d u r i c r l p u t i d e n  model. W e h a o e r h o r n t h a t ~ C S I ~ ~ h t ~ r e l y  
~kd,bonchati , incohemlt twinbscMI. 
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b t h   in^^ Ctmkmce on Qorotum Elec tda ,  \rimma, Atrrt&, MoG7 (1992). 

[7] P.J. Ed-& and G.H. Pdlud, Phys. Rev. Lett. 69,2867 (1092). 
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Abstract 

A model of a single-mode field, initially prepared in a coherent state, coupled to a twelevel 
atom surrounded by a nonlinear Kerr-lib medium contained inside a very good quality cavity 
is considered. We derive the photon number-phase uncertalnty relation in the evolution of 
the field for a weak and strong nonlinear coupling respectively, within the Hermitian phase 
operator formalism of Pegg and Barnett, and discuss the effecta of nonlinear coupling of thr 
Kerr-like medium on photon number-phase uncertainty relation of the field. 

1 Introduction 
Recently, Agarwal d a1 11) have considered the propagation of a single-mode resonant field through 
a nonlinear Kerr-medium. Bukk et al[2] have dealed with a combination of two models: the 
Jaynes-Cummings model (JCM) describing the interaction of a single-mode cavity field with a 
single two-level atom, and a nonlinear Kerr-like medium inside a cavity which may be modelled 
by an anharmonic oscillotor[1,31. Particularly, they have showed that with increasing nonlinear 
coupling the period between the revivals of the atomic inversion is shortened and ita time evolution 
becomes more regular. Besides, they also clescribed the squeezing of the cavity mode and the time 
evolution of the photon-number distribution. 

As is well-known, the phase properties of light field is vety important in quantum optics. Lately, 
Pegg and Barnett[4-61 have shown that an Hermitian phase operator of radiation field exists. It 
can be constructed from the phase states. This new phase operator formalism makes it possible 
to describe the quantum properties of optical phase in a fully quantum mechanics. Gerry[7] haa 
studied the phase fl\~ctuations of coherent light interacting with the anharmonic osdllator wing 
the Hermitian phase operator. Gantsog et d[8,9] have studied the phase properties of self-squeezed 
states generated by the anharmonic oscillntor, elliptically polarized light propagating through a 
Kerr medium and a damped mhtumonic oscillator using the Hermitian phase operator. 



In this paper we consider a generalized JCM with an additional Kerr-like medium, namely, a 
combined model that comprises the JCM and the enharmonic oscillator model (AOM) used to 
describe a Kerr medium. We deal with not only the field-Kerr medium interaction, but also the 
field-atom interaction. We derive the photon number-phae uncertainty relation in the evolution 
of the field for a weak and strong nonlinear coupling mpectively, within the Hermitian phase 
operator formalism of Pegg and Barnett, and discuss the effects of nonlinear coupling of the Kerr 
medium on the number-phase uncertainty relation of the field. 

2 The model 
We consider a model which consists of a single two-level atom surrounded by a nonlinear Ken-like 
medium contained in a high-Q single-mode cavity. The cavity mode is coupled to the Kerr-like 
medium as well as to the two-level atom. The Kerr-like medium can be modelled as an anharmonic 
oscillator [1,3]. In the adiabatic limit, the effective Hamiltonian of the system involving mly the 
photon and atomic operators in rotating-wave approximation, is[l,2j 

where a and a+ are the annihilation and creation opreators of the field mode, Sf and S are the 
spin-flip and inversion operators of the atom respectively, g is the field-atom coupling constant 
and x describes the strength of the quadratic nonlinearity modelling the Kerr medium, is the 
frequency of the atomic transition, the frequency w is 

Where w, and wk are the frequency of the field mode and the anharmonic oscillator modelling the 
Kerr medium respectively, and X is the field-Kerr medium coupling constant. 

To isolate the effects of tlie nonliiiear coupling of the Kerr medium from that of the finite 
detuning, we restrict in the case of the resonance (i.e., wo = w). Let us assume that the atom is 
initially in the excited state le > and the field mode is prepared in a coherent state 1.2 >. The 
initial state vector 1+(0) > of the system is 

where 
b,, = e~~(-fi/2)(n"/n!)'/~. 

In the interaction pi~ture, the state vector of the system at a later time t is found from the 
Hamiltonian (2.1) to be 



where lg > is the ground state of the atom, Q,, is the generalized Rabi frequency defined by 

It is obvious that, for x = 0, the state vector Ipl(t) > given by Eq(2.5) describes the dynamics of 
the ordinary JCM. 

3 The phase variance of the cavity field 
Baed on the Hermitian phase formalism of Peg, and Barnett[$-61, The complete set of s + 1 
orthonormal phase state is defined by 

where 8, = eO+ 2wrn/(s+ I),  rn = 0,1,2, - - . , s, and em is an arbitrary real number. The Hermitian 
phase operator is given by 

1 

Clearly, phase state 19, > are eigenstates of &I with the eigenvalues 8,. The eigenvalues Om are 
restricted to lie within a phase window between 80 and (Bo + 2w). It has to be noted That, after 
all expectation values of the phase variables associated with the phase properties of the fieA have 
been calculated in the finite (s + 1)-dimensional space, s is allowed to tend to infinity. The phase 
distribution of the state given by Eq(2.5) is 

with the expectation value and the variance 

We choose the reference phase O0 = - ns/(s + I), and introduce a new phase label /.L = on - 8/2,  
which goes in integer steps from (-42) to (912). Then the phase distribution becomes symmetric 
in p. In the limit as s tencls to infinity, the continuous phase variable can be introduced replacing 
12w/(s + 1) by 8 and 2n/(s + 1) by (18. Then we can find a continuous phase distribution 

+ BIbn~ sin[(n - n')O + (n2 - n2)xt]]), 

where 



hction P(8,t) is nmmabd so that 

If h(3.9) is mhtituted into Eq.(3.6) and the ammath in Eq(a6) L replamd by an epprrapri&e 
~ o w e r t h e * n , ~ c a n ~ y ~ t b e p h e s e ~ ~  

WE will a d d e r  two limit arses: 
( l ) ThenaaL~loolineat~~w~isdelinedbyhdfim~>>x$R~,nitb~>> 2. 

Inthiecrraethe~Rabifrequencycanbeappmb&das  

TbePl using Eqtx(3.9) and (3.10) and repking the summation in Eq-(3.6) by en 
~ ~ n , w e o b t a i n  

A d n g  to Eqs43.4) and ( 3 4 ,  using Eq.(3.12), and taking into accoutrt &, = 8 + 8, we can 
dmctly6ndanexpect&cmvelueofthepheee~anditavarienr# 

(21% &mng nonlinear coupling which ie W e d  by the amdition flii < < $ft2, with a>> 1. 
In thie case the generalid Rabi frequency can be epprOJdmated aa 

where 



~ a e e ~ t b e a ~ d u e d ~ p h a r r e i s n o t e q u $ 6 0 t h e i n i t i $ ~ t y ~ , e n d ~  
pbevarinnoeiaalwepemhancd. F o r t h e d M l t r l i c e r c o u p b g , t l t e ~ o f t h e a h n # ? .  
vari- ie proportional to (gt)8/rlA, thie is d m k  to tbat of the resooaw# M d  in cohmmt state 
JCMjlO]. ~ t h e s t r o n g ~ ~ , t b ~ d t h e ~ ~ m i e ~  
to &w)'. Obviously, the emhanammt of the pbea# variance in the strory nonlinear coupkg 
csse i shrgerthanthat inthed~ool lp l ingcese .  

4 The number-phase uncertainty relation 
It ia not difkdt to c a l d  the wariance of the photan-number for the state dven by Eq.(2.5). 
Usingh=a+a,fortheweakndinear~plingweobtain 

jFfrom Ekp(3.14) and (4.1). we find t h t  the ~ m b a - p h ~  -ty a011 is 

We see that, the unaxtainty product during the evolution is expanded. The expamion ot the 
uncertainty product is fast in sttong nonlinear ooupling awe. This is aimilar to thet of the 
self-squeead state gmemkd by the adwmmk odl&m(8]. This occurs because both the 6el& 
atom interaction[ll] and the field-Kerr medium interaction are nonlinear, moreover the nonlinear 
interaction strength of the latter is larger than that of the former. 

5 Summary 
In the present paper we consider a generalized JCM in the pmence an s d d i t i d  Kerr-lib 
medium. we have derived the photon number-phase uncertainty relation in the evolution of a 
resonant field for a weak and strong nonlinear coupling, within the Hermitian phaee operator 



brtdisrn of Pegg and Barnett. We have shown that the nonlinear cmpbng of the cavity mode to 
Kerr-like medium leads to the enhancemenb of the phase varianm of the field and the expamh of 
the uncmtainty product. Particularly, the expansion of the ummthty product is in &rang 
mlinear coupling am. W have i n d i d  that this L dmilat to that of the selfqmezd st& 
generated by the anharmsnic oscill&or. We have also i n d i d  that the nonlinear interaction 
strength of the field-Kerr medium b larger than that of the ~~. 
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Abstract 
Tbe Phasedynarniarl properties of tbe squeed vacuum state i n l e n s i t y ~  interact- 

ing with the t w d e d  atom in an ideal cavity are studied using the Hermitian phase opaata 
M l s m .  Enact general expresions lat the phage distribution and the asmdabd expec- 
tation value and variance of the phase operator have been derived. we have a)so o b W d  
the d y t i c  results of the phase variance fm two special cases-dy and strongly s q d  
vacuum. The results calculated numerically sbon that sguedag bas 8 signifhot e&ct oa 
tbe phase properties of squeezed vacuum. 

1 Introduction 
Tbe squeezed state exhibits phase d t i v e  noise properties. W m ,  it is important to examine 
the phase properties of s q d  state of light. Recently, Sanders et alfll, and Yao(21, and Fan et 
d[3] have studied phase properties of the ideal squeezed state using Susskind and Glogower phase 
operator fodism[4] .  V' et d(5j have reexamined the phase properties of the qmxed 
vacuum state, particularly, the weakly squeezed vacuum state using the phase-operator fcumalism 
of Pegg and Barnett[6-81. However, they have not considered the fieldgtom interaction. Dung 
et al(9J and Fan et aII10-111 have studied the phase properties of a coherent light interacting 
with a two-level atom. BuZek[l2] has studied the time edu t ion  of the squeezing and the atomic 
population inversion in the Jaynes- Cummings mod4 (JCM) with intensi ty-dependent coupling 
with the squeezed vacuum state. 

In the present paper, we will study phase properties in the JCM with intensity-dependent 
coupling with a light field initially prepared in the squeezed vacuum state using Pa-Barnett 
phasesperator formalism. The results calculated numerically show that in such a model how the 
squeezing have an effect on phase properties. 



In ta# momnt aree, the exact bohrtioa Ba an initid state I@(O) > given by Eq.(27), is 

S The phase pmpertiee 



< A* >= x(k- < 6. t). 
rn 

(as) 

WolR we cboom! the damce phme &B = q - as/(s + I), end intmniW#d e new p8crse leb$ 
~ = m - s / 2 , ~ ~ i n ~ ~ h - s / 2 a w f s / 2 .  W b e P s ~ t o ~ w e  
-@U/(U~- 1) bydOand2~/(8+1) be. ~ w e t b d a n d ~ ~ ~  

The numerical cahhtioa results of formula (3.6) are &own in Fi l .  In Fi.1, th p b e  dis- 
tributicws ere plotted against 8 in the paler c t x d h k a y s t e ~ n .  It h~ h 41, th& e~ 
r = O , t h e ~ ~ b U ~ h a e a l ~ d r d e ~ k 9 g v d ~ o b r .  Asrismtequelk, 
m, the bifutctrtion of the phese distribution appears. At T = 0, as r is increesed, the circle 
dupe splits into two sepuate lea= (F@l(a)). AB the mtem&ion b turned a, this drde shape 
spaits into four qarak leaves which rotate and chmge its shape (Fig.l(b) and (c)). The hrgpr 
t h e ~ p a r a m & r i a , t h e m 0 ~ e o b v i o u e t h e ~ ~ b u t b n 8 p l i t s .  A t ~ = a / 2 , t b s h  
d k  diatdibutione bearme 4prrin two gatdlite dbtributiona and rotate by a/2 &xu (bs &ate d 
T = O(F&.l(d)). At T = u, the shape af P(0,r) b tbe mum as that at T = 0 (Fig.l(a)), and tm am. 

U i n g  Eq.(3.6), and tepledng ths summation in Etp(3.4) and (3.5) by an epptorffe intqd 
B w ~ t r a r i a i b t e 8 , o v e a t h e ~ - r t o r , d ~ ~ ~ u t ~ = # + q , f a ~ l i m i t a s a  
mula to infinity, we obtain 

< 4. >= @/2, (a81 



The numerical calculatian r d t a  of the variance of phase given by Eormuia (3.9) are illustrated 
in Fig.2(a). As r = 0, the phase variance of vacuum state is equal to a2!3. which reftects random 
phase character. As r # 0, the phase variance sham periodic dlation around 9/3.  The latgw 
the squ- parameter is, the larger the oscillatid amplitude of phase variance is. Tbc phase 
variance ia calculated xuuneridy m a hct ion of r aad plotted in Fig.8 for diflerent valuee of 7. 

\Ilfe me that the variance is departure fn#n s2/3 as r is incl.eased. 
In the limits of d r ( d y  q d  vacuum) and larger r (sbngly q u e e d  vecuum), - ~t4.(3.9), = find tespectively 

5 d a r  3cushr 5 d 2 r  7 1 
A2 = tanh2r(l - -,- - -7 + --T + -,-), 

12 slnh r 8smh r 12 sinh r  12mnh r 

3 9 d 7 r  6 3 d 5 r  2 4 5 d a r  5 3 9 4 r  4 = tanh4r(l - -T - -,- - -,- - - 
112 sinh r 224 slnh r 896 d r 1?92= 

The numerical calculation results of the variance of phaee given by fmulas (3.10) and (3.1 1) 
are illustrated in Fig.2@). We me that F'ig.2(b) coincides d l  with Fig.2(a) plotted by em& 
h l a  (3.9). 



Fig.1. The phase distribution P(8, 
against 8 in the polar coordinate system 
values of r and different values of r. 

7 )  
for 

plotted 
various 

Fig.2. Plot of the phase variance < A@: > as a 
function oft for different dues of r. (a) according 
to exact fonmula (3.9), (b) accordity to approxi- 
mate formula (3.10) for r = 0.2,O.S and (3.11) for 
r = 1,s. 

Fig.3. Plot of the phase variance < A83 > es a 
function of r for different values of T.  
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Abstract 

We haw investigated the intensity noise of single mode loser diodes, either free-running or 
using different types of line m i n g  techniques at room temperature. tVe have meas~uPd an 
intensity squeezing of 1.2 dB with grating-extended cavity lasers. and 1.4 dB with injection 
locked lasers (respectively 1.G dB and 2.3 dB inferred at the laser output). tVq have observed 
that the intensity noise of a free-rumling nominally single mode laser diode res~~lts from a 
cancellation effect Letween large onticorrelated fluctuations of the main mode and of weak 
longitudinal side modes. Reducing the side modes by line narrowing techniques results in 
intensity squeezing. 

1 Introduction 

Quanttun noise in the intensity of a light beam can be viewed as the result of the random distri- 
bution of photons in the beam. It can be fully suppressed if the field is in a particular state where 
the number of photons is known perfectly. a phvtirn number state. The reduction uf the intensity 
noise below the standard q u a n t ~ m  noise is then done at the expense of increased fluctuations in 
the phase, which is completely undetermined for a number state. Photon number states contain- 
ing more than one photon have never been produced. Hotvever. specific non classical states of 
the light in which the intensity fluctuations are reduced have been generated using several kinds 
of methods. One of them relies on the fact that part of the quantum noise in the laser emission 
comes from the random character of the pumping process. which can be suppressed in some cases. 

Quantum noise reduction ir. laser emission based on pump noise suppression was first predicted 
in 1984 [I]. Semiconductor lasers are particr.darly well suited for the implementation of this idea (21. 
Ftathe~more. laser diodes are widely 1.1sed and are considered as powerfill and convenient tools in 
the field of telecommunications [3] and spectroscopy [4]. Their main advantages are compactness. 



energy efficiency. tunability. and low intensity noise. It is the latter property that can be brought 
into the quantum domain by driving the laser with a current wwphose noise is wvell belcrwv shot-noise. 

Since the noise in an electrical current is limited by thermal noise. it is easy tu have a ndse 
in the driving current that is well below shut noise. If the quantum efficiency of the carrier to 
photon conversion is high enoi.lgh. the electron statistics of the pumping can be transferred to the 
light emission. yielding sub-poissonian operation of the laser. Quantum noise in the intensity of 
constant-current-driven laser diodes was observed fur the first time by Machida et ul in 1987 IS). 
and fiuther improved to 8.3 dB in 1991 161. But the very mechanisms capable of explaining why 
some laser diodes and not others generate sub-shut-nuise light remained unclear. 

Actually. uther factors than the constant current supply can be important for the noise re- 
duction. In 1993. intensity squeezing ww*as observed with so-called "single mode" commercial laser 
diodes by Steel and his group 17-81. It wvas shown that line narrowing techniques greatly helped in 
the noise reduction by further suppressing the wveak but very noisy longitudinal side modes. We 
have investigated intensity noise of laser diudes. using \*arioiis methods for line narrowing. includ- 
ing injection-locking with another diode laser and feedback from an external grating. The best 
intensity squeezing a t  room temperature was 1.4 dB (2.3 dB when corrected from the detectiun 
efficiency). and was obtained with injection-locking. 

In order to explore the sole of the line narrowing processes in squeezing mirre precisely. we 
have investigated the noise properties of the individual side modes. The arguments given in refs 
[i. 81 tended to suggest that the less powverfi.11 these side modes are, the less they tvill cont~ibrite 
to the total intensity noise. However. this argument ignores possible correlations between the 
mrides. which were demonstrated for instance by 1nu1.1e et a1 (91 for milltimode semiconductor 
iasers. CVe have showvn that the noise of the free-running diode lasers resirlts from a cancellation 
effect betwveen very large anticorrelated flucti.latiuns of the main mode un une hand. and of manv 
weak 1ongit.udinal side modes on the uther hand. CVhen line-narrowing t.echniylles are used. 
the total intensity noise goes below the shot-noise ievel [7. 8. 10). Lilt we show that. in some 
cases. the sub-Poissunian character of the light can be due to a cancellation effect Letwveen large 
anticorreiated noises of the vario1.i~ modes. Thus s1.h-shot-noise operation uf these lasers does not 
always correspond to single mude squeezing. 

2 Experimental set-up 
The laser diodes wve have used are index-guided quantum well GaAlAs laser diodes (model SDL 
3422-H1 and SDL 5411-Gl). Appropriate electrical filtering is insed on the powver supply in order 
to stabilize the current. The free-running laser diodes have a lw threshold of 18 mA and a 
differential qitar~tum efficiency (slope above threshold) of 66%. The operating current in the 
experiments described below!? is typically 5 to 7 times larger than the threshold current. and the 
resulting high overall quantum efficiency is at the "rigin of squeezing. Sir squeezing mas fuund in 
similar experiments performed un laser diodes with higher threshold (80 mA). which operate only 
twice above their threshold. 

The quantum noise in the intensity is measured in the standard way with a balanced detection 
[ll]. The beam going out of the laser is split in twwu equal parts by a beamsplitter. Each output 
of the beamsplitter is sent into a high efficiency (90%) photodiode. The amplified XC signals. 
proportional to the noise signals. are either sribtracted or added by a RF +/- powver combiner to 



measure the shot-noise (in the difference positi~n) and the intensity noise !in the slim position). 
CVe haw then s >nt the laser beam through a high 1-esolutiun monochromator (Jobin-l'von HR1000) 
which allowed us to clearly separate the different mddes. We have measured the noise both befure 
and after the spectrometer. 

3 Intensity squeezing 
Intensity squeezing in the laser diodes was obtained by using constant current supply and line- 
nwrowving t,echniques. either cavity extension with an external gating. or injection-locking with 
another laser. 

Tunpenuun 
stabilization Collimatioa a 

Laser diode k!L 

Figure 1 : (a) external grating stabilization scheme; (b) injectiun locking scheme 
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The extended-cavity laser diode is shown in Fig. 1. The beam going out uf the laser diode is 
collimated with a f = 8 mm objective placed in front of the output facet of the diude. The cavity 
is extended to 10 cm with a reflection holographic grating reflecting the first urder into the cavity, 
while the 0 order goes out of the cavity (Littrow configuration). The efficiency of the grating is 
60% in the 0 order (output coupling) and 24% in the first order (feedback to the laser). with 16% 
losses. The alignment of the grating is critical. When it is achieved. the threshold uf the laser is 
lowered from 18 to 13 mA and the DC power cjf the side modes goes down to -60 dB Ielo~v the DC 
power I... L! main mode. while the total intensity noise is decreased Lelotv the shot-noise letel. 

The :tion-locking scheme is depicted in Fig. l(b). The master laser is either an external- 
grating -,ode laser or a Ti:Sapphire laser. It is inject=.; into the slave laser by means of an optical 
isolator. The master beam enters through the escape pvrt of the polarizer placed aftt r the Farads! 
rotator. Locking is observed on a rather broad potver range of the master laser. from 1 to 4 mCV. 

We have investigated intensity squeezing in the two cases described above. Xoise spectra were 
recorded for w-arious si.ipyly currents. Squeezing was observed fur currents higher than 50 mA 
( I l l t h  = 2.8) for the injected laser and 30 mA (Illu, = 2.4) for the extended calrity laser. at  noise 
frequencies from 1 to 30 MHz (limited by our detection bandwidth). The noise, measl.ired with a 
resolution bandwidth of 1 >IHz. was nearly constant from 7 MHz to 30 MHz. 
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laser PBS 
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To noise 
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The optimum squeezing was observed in the injection-locking scheme. At 7 l\.IHz. with a 
driving cunvnt of 130 mA. we obtained a noise reduction of 2%. i-e. 1.4 dB. Taking into account 
the total detection quantum &ciency of 65% from the k r  output power trj the phutodiude 
current (through the optical isolator). n.e infer a value of 2.3 dB at the output of the laser diode. 

The best squeezing obtained with the grating-extended cavity is 25% (1.2 dB) at 30 MHz and 
110 mA. frum which we infer a 1.6 dB noise  ducti ion at the output of the grating. The fact that 
the queezing is better with the injection-locking scheme can be attributed to the large losms due 
to the grating. 

T h e  numbers are similar to those of refs. [?, 81. They are below the theoretical maxima 
expected frwn tho q w t u m  efficiency of the b r .  which are respectively of 58% (3.8 dB) at 
130 mA for the injected laser and 42% (2.4 dB) at 110 mA for the grating-extended cavity. 
Actually, the ratio between the intensity squeezing and the current-to-cur~vnt dliciency goes 
towards a maximum asymptotical value of 0.75. instead of the expected unity value. The authors 
quoted above obtained comparable values for this ratb. This non-unity value can be attributed 
to additional noise sources in the semiconductor devices which are not included in the simple 
theoretical prediction mentionned above. 

4 Intermode correlat .on 

-70 . 
0 23 40 60 80 100 120 140 160 

mode number 

Figure 2: Power of individual lollgitudinal modes for a driving current of 80 mA. On the x-axis each 
mode is labelled by a number. the number 0 corresponding to the main mode. (0  : hse-running 
laser. o : injection-locked laser. r : extended cavity laser). 

The f ree-ming laser diodes apparently operates on a single mode. However. the longitudinal 
side modes have a nun negligible y~wer. the closest ones being only -10 to -25 dB below the main 
mode (Fig. 2). For the free-running laser. the ywer irf une of the &st side modes is typically -25 



dB bmvr than the one of the main mode (see Fig. 2). and the total parer in the side modes is 
about -18 dB below the main mode. 

As far as the noise of the individual modes is concerned, we have h w e d  that the intensity 
noise of the main mode alone is much higner than the total intensity noise. For example. for a 
driving current of 80 mA the main mode exhibits an excess noise of + 39 dB. while the total 
intensity noise is only 2 dB above SNL. The intensity noise of the s i b o d e s  is then expected 
to be comparable to the intensity noise of the main mode despite their much weaker power. To 
check this assumption. we compared the noise of the main mode alone to the noise of the main 
mode plus tn.o side modes. four side modes. etc. For this measurement. the output slit d the 
spectrometer ~ m s  kept centered on the main mode. and was progressively opened. Figure 3 shows 
that the intensity noise decreases. with steps corresponding to the point where symmetrical side 
modes enter the detector. This clearly demonstrates that the r>bse~wci total intensity fiuctuations 
results from a cancellation effect between the wry large anticorrelated fluctuations of the main 
mode and of the side modes. In fact. all of the 160 side mudes displa-yed in Fig. 2 contribute to 
some extent to this cancellation effect. 

Figure 3: Intensity noise of the fi-ee-running laser diode. t~ferred to the shot noise. as the outpat 
slit is opened. In the first section. only the main mode is detected. iiphile the tiw steps correspond 
to the entrance of the twu cotlples of side mwdes (-1.1) and (-2.2). The straight line at 2 dB shows 
the total intensity noise level (measwed Lefolp the spectrometer). 

As can be seen from Fig. 2. the power of the first side modes of the injection-locked laser IS 
reduced down to less than -45 dB below the main mode. while the total power in the side modes 
is -30 dB below the main mode. The total intensity noise refwsed at  the laser ol.itp~lt is notv 
squeezed by -2.3 dB below SNL (see [lo]). while the intensity noise of the main m d e  alone is still 
iirell above the quantum limit. The total intensity noise of the injection-locked laser again results 
from a cancellation effect among anticorrelated fluctirations of the main and side modes. In this 
case the sub-Poissonian intensity noise is not single mode squeezing. 

For the laser in the extended cavity configuration. the side mlides are silppressed fi.~rther. tu 
abuut -55 dB belo~ir the main mode (see Fig. 2).  which corresyvnds to a total s~de  mode poitter i ~ f  



-35 dB below the main mode. In that case. we haw noticed virtually no difkeme betawn the 
total intensity nvise and the wise of the main mode alone. In this caae. and unly in this case. it 
can be cmcluded that the side modes are actually negligible. and that true singlemale a q w d n g  
is -rated. 
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Competition eff' in atomic-molecular system* 

Jia Suotang, Qin Lijuan, Qian Zuliang,Wang Zugeq 
&prtmenf of P h y s i e s . h t  Ckim Normal Unitmsit9,Shngkcd -2 

Tbe cunperitioa effects among the pmmsam d atomic .lonbtloa, oprical pumped stim- 
ulated rediatioa(OPSR),fouf-wave frequency mixing (FWFM) sad mokuhr stimulated dif- 
hroe band radiation at the atomic tso-phdon temmce of 3S -, 4D in AfQs - Na mlxture 
were obmcd.  The dip at the two-photon remmce in the excitatioa spectrum far the 
diffuse-band radiation was interpreted as suppression d population in 4D state. 

1 Introduction 

The getmating and utilizing of mo1ecular diffilse-band radiation is an impartant subject for study- 
ing excimer lasers and atomic-molecular physics. The nvious mechanisms of producing rdecuh 
d i b b a n d  stimulated radiaton were developed, lor example, in atomic-mdearlar system the 
stimulated radiation from high-lying triple state to low triple state d d  be obtained by two- 
photon resonantly exciting atoms then following cdlision bettween atoms in high-lying excited 
state and molecules in the ground  tate el''^]. This is an efficient process of producing diffuse-band 
stimulated radiaton. Houvver there are others processes accompanying process of two-photon res- 
onantly exciting atoms: The photo-ionization process following two-photon resoamce,the stimu- 
lated radiation starting from high-lying excited state of atoms,four-wave freqwncy mixing process. 
The competition effect occtlring in alow processes resulted in decreasing molecular diffu9e- band 
stimulated radiation. In this not only finded optimum condition of producing molecular 
diffuse-band stimulated radiation but also understand dearly the interaction among nonlinear 
proasses through studying the competition effect. 

2 Experiment 
The laser beam from a Xd:YAG pulrped dye laser(Quanta Ray DCR-3D,PDL-2) was focused into 
the center of the crossed heat-pipe oven by an opt ica! system. Using RD590 dye, the output energy 

'Project Supported by the National Saturd Science Fundation of China 
and the Katural Sarncc hr~dation of Sl~nnxi Province of China 



d t b e t u n a b a e d y e ~ w a s h t  4 0 m J & t t h e m ~ ~ f r P m S 6 5 n m t o S B 1 n m n r i t h b  
widthebwt0.1un-1rrndpulsewidthd8rrs. ~ m i K t u r e ~ o f ~ c d ~ # I d i r r a r  
w a ~  produced by the W p i p e  oven mtaining pure sudium sample, the dennities of etamic d 
rrroleculardum~~dbythetem~~dthe<rren~. Anicmbatb* 
was instakl in the hetabpipe oven to measure p b b i i z a t i o n  signal whem optical d g d  beiwg 
d&cted. The bufkr gas was not filled in the oven. The radiation Irom the faward d h & h  d 
t h e ~ m ~ d B f t e r @ n g h ~ ~ , h ~ ~ ~ s a s B B d i a t o  
dumd B of the BOXCAR At the same time the ~ t i o o 1  signal plodud frwn bo-ph&m 
mmancethree-pbkm ionization was introduced by aae&ana?of 1OKOendsmt toc3uurnrrl A 
ofthe BOXCAR T h e o p t i d a n d t h e i o n i s a t i ~ w e r e ~ t o s e d b y ~  1 and2 
mpsxtively- The BOXCAR md the two d- were h@pd by a ph&dst& deLector es 
&vingaran$lpulsesignaloftklaser. B e c a u a e o f ~ d i f f e r e n t t , i m e ~ b e h a v i a s b o r ~  
a d  ianigation signals, the d i h t  time delay and gate widths of two gates wexe dxsm to get 
thehighersigd-noiserateofthea~valueafthesigmls. A l I ~ t s ~ p e r d r P m d  
under the ooadition that the k energy was stabilized, which was gummbd thn& monitaaed 
laser energy in the experiment. The error, which is b q h t  about by the Auctuatb of the ample 
teqmature, could be reduced with the help of high accuraq of the temperature amtdler. 

3 Results and discussion 
The part of energy-level diagram of atomic and molecular sodium is showrrz in Fi. 1. After atmnk 
d u r n  transition from the ground state 3s to 4D state produced by two- phdon ertdtath 
megponding to laser wavelength of 578.7 nm,there are some possible pmesses 
(1) The two-photon resonance three-photon ionization through the atoms in the 4 0  stabe a h d h g  
one more photon. 

Na(4D) + Iw hp Na+ + e- (1) 
(2) The optical pumped stimulated radiation owing to popdation intfersion between 40 and 3P 
snstes, 4 D and 4P states. 

(3) The fcur-wave frequency mixing by n lnliear interaction betwlleen pumping wave and optical 
stimulated .-adiation wave in the sodium vapor: 

where, ut, UIR, u,,, are the fteqt~etlcies of pumping optical wave,optical pumped stimulated . idia- 
tion wave and mtAsrent radiation wave respectively 
(4) The diffuse-bard stimulated radiation generated by transition from high-lying triplet stsbe 
populated bllrough allision between atoms in 4 0  state a7d molecules in the ground state. 



To understand the competition amorrg the reaction pmcese h under diflkmt tern- 
ture, the four kinds of signal were nreasured respectively. The change of excitation speehm - 
m u d  with temperature for producing the diffuse-band stimulated radiaticm of molecular sodium 
cule shown in Fig.2. For the ionization si@,optical pumped stimulated radiation signal, me+ 
mnemmts which is dmilas to Fig.2.wm-e also done! and the changes of t h  signah tit difkmt 
temperatures were also obtained.The result showed c1ealy:the optimum temperature was d i k w t  
fix pmducing the above signals. For example, the diffuse-band signal gradually a p p m d d  zem 3 
low temperature.But with increasing of the temperature, it not d y  increased at the two-photon 
msmmnm exciting of 3S -4 $Dl but also d d  be obsmd in the axtain mdength region aoare- 
spanding to &set of 3s -, 4D.When oven temperature arrived 380"C, the diffuee-band d i a k n  
signal d e d  maximum. As the temperature continusly inueases (350 - 3709, the diheband 
sipd at the position of atomic resonant excitation udened. Hawever, it mee on two sidesr of 
remnant excitation of atoms. As the temperature was above 4 IPC, the peak of atoanic mmant 
errcitation diqpeared.At 450"C,the "dipn ap& at the position of atomic remnant exdtatb. 
Such a phenomenon has been observed in our pnnrious wwk about molecular p o t s s i u m ~ .  
The changes of various signals generated by two- photon resonant excitation of atoms(3S 4 W) 
with temperature were shown in Fig.3 Within the temperature below 31W, then were t#o plo- 

cesses of atomic ionization and molecular diffuse-band radiation but OPSR and FWFM signals 
wedmed, the ionization signal started to  increase at 1300. It d e d  the maximum at the W C ,  
but diffuseband signal decreased; When the temperature was above 250C, the ionization signal 
started to decreas, but the diffuse-band signal increased-When the ionization vanished at 3WC, 
the diffuse-band signal reached the maximum. Apparently, there was the competition betwen 
tnphoton resonance three- photon ionization and the collisional population from excited 8 t h  
atoms to mdecules. 
In the range of 340 - 500". the ionization signal weakened but OPSR and FWFM signals starbd 
to inrrease,at 3900 both of them reached the maximum value, the diffuseband sign& started to 
fall fro13 the maximuni value. VJhen the temperature continused to increase, OPSR and FWFM 
signals reduced. This fact shown tLat in the temperature of 340" to 500°C, there were apparent 
competitions among the processes described in eq.(l) to eq.(4b). The presence of OPSR and 
FWFh,I depop:~lated atoms in 4 0  state. This led to decrease the population in high-lying states 
of molecule. The transmission spectrum of laser light passing the sodiunr vapor is shown in Fig.4. 
There was a intensl: absorption a t  the two-photon resonance excitation of atom but the diffuse- 
band radiation was shill small. This could also indicated that the population in 4 0  state was 
supprescd by other reaction processes. 

1jre should notice that with rising of temperature, the density of molecular sodium increased 
too. So the diffuse-banci radiation by twephoton exciting Na2 in wider rage of pumping wave- 
length could be produced. This have been proved in our previous paper151. In the present experi- 
ment, the dl ffilse-band stimulated radiation could be detected in the excitation wavelength range 
cif 577-580 nni. It  increased tvitf, temperature as shown apparently in Fig.2. At low tempera- 
tures, the diffuse-band radiation signal were composed of the intense signal got by two-photon 



excitation of Na and the d e n  signal got by two.photon excitation of h; with irrc(sleasiry d 
tmqmatwe, the signal of Naa also increased. At high tetnp#crature, the diffuse- band d g d  
produced by twphoton  excitation of N Q ~  was la~ge.  At the position of t~~~-photon remnant 
&aption of atoms,the possible reason for the appeamce of "dip" crrn be mi fdm: (1) The 
two-photon absorption of atomic sodium d e c d  the excitation of Wa4.(2) A h  atomic sodium 
being populated in 4 0  W e ,  the collisional transfer from atoms to molecules was decmsed. 

4 Conclusion 
The campedition among the processes in producing diffuseband by the a 2 o b i o d ~ a i f e r r e r g 3 r  
fztxn atoms to molecules, four-wave frequency mixing and three-photon ioniaatiosl were studied 
in experiment. At lowrrr temperatures, there was mainly the competition between dig- 
stimulated radiation and two-photon retionance three- photon ionisation of -At hi* tem- 
peratures, there was the interaction among the diffuse-band stimulated radiath, optid pumped 
stimulated radiation and four-wave frequency mixing; At huther hi* tempemtums, the *dip" 
at the pit ion of two-photon excitation of atoms for exatadion spectrum of producing d i f b e  
band radiation resulted from the chrent  process of optical prrrnysd sti* radiati<~ and 
fcwr-wave frequency mixing supressing the non coherent proce~s of d l i s i d  transfer energy from 
atoms to moIecules. 
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Captions of Figure 
Fi.1. The part of energy-level diagram of Naa and N3. 

Fi.2. The excitation spectra for generating diffuse band radiation fnnn transition 
of Pn, -, a 3 q .  

Fi.3. The dependence of four kinds of signal on temperature for two-photon 
transition 3s -, 4 0 .  

Fig.4. ~ansmission spectrum in sodium vapor at 4WC. 
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FOCK STATE GENERATION 
FROM THE NONLINEAR KERR MEDIUM 

W. Leoriski and R. k a i  
Nodinear Optics Division, Institute of Physics, Adorn Mi&eukz Uniuersity, 

Gmnwddzka 6, 60-780 Pornad, Poknd. 

Abet ract 
We discuss a system comprising a nonlinear Kerr medium in a cavity driven by an external 

coherent field directly or t)..ro*agh the parametric process. We assume that the system is 
initially in the vacuum state, and we show that under appropriate c~nditions, i.e., properly 
chosen detuning and intensity of the driving field, the one or two-photon t d  states of the 
electromagnetic field can bo achieved. 

1 One-photon state generation 
The model discussed here contains a nonlinear Kerr medium, described as an anharmonic oscil- 
lator, placed in a lossless cavity driven by an external coherent field. The coupling of the cavity 
field with the external field is governed by the following Hamiltonian in the interaction picture 
(we use units of ti = I): 

H-t. = e (& + kt )  , (1) 

where c denotes the strength of the coupling, whereas.& and Bt are the annihilation and creation 
operators of the cavity field, respectively. The Hamiltonian corresponding to the dynamics of the 
nonlinear Kerr medium in the cavity can be written as follows : 

where A is proportional to the third-order nonlinear susceptibility of the medium and A is the 
photon number operator. Our aim here is to determine the time evolution of the system. We 
assume that the system is initially in the vacuum state 10). Moreover, we assume that the external 
field driving the cavity according to (1) is weak, i.e. c < A. In consequence, we can treat the 
problem perturbatively with rapect to the small parameter c. 

Let us express the state of the system in a, Fock basis: 

This state vecto. duels the Schrodinger equation with the Hamiltonians expressed by eqs. (1,2): 



Applying the standard procedure to the state vector (5 )  and the Hamiltoniane (1,2), we obtain a 
& of equations for the probability amplitudes aj. Although thie set of equakions is infinite, it can 
be shown [ I ]  that due to the degeneracy of the Hamiltotliaa (2) and the weaham of the driving 
field the system dynarnica is restricted to the subspace of the degenerate stakes. In consequence, 
the evolution of the systems starts h r n  the vacuum 10) aod the only state that can be essentially 
populated with the driving field, a a d q  to (I), is the one photon state 11). The crucial point of 
our coneidaraaians is the fact that the unperturbed Haanilkmian for the Kerr procew (2) produces 
degenerate states (0) and 11). In practice, we deal here with a situation andogous to that d i d  
in the paper [2] and we can write the following equations of motion for the probability amplitudes: 

d 
i t )  = cal , 

Aesuming ao(t = 0)  = 1 and a, (t  = 0 )  = 0 we get the following solution for the probability 
aanplitudes 

We treab eq.(6) ae the m r d e r  solution. For thie order the amplitude a2 = 0. To obtain the 
formula for a2 we need hqgher order eolutions. We write the first-order formula for a*: 

where we have removed all te rms proportional to c2. Obviously, we are in a position to pesform 
this perturbative procedure due to the fact that the coupling (1) is we&, i.e. ( c  < A) .  Moreover, 
since we are inteaeeted in finding the time evolution of the probabilities raher than the amplitudes 
a,, we neglect the influence of the dynamica of the ata,te 12) ou the system as being proportional 
to 8 .  

To verify these reaulb we s h d  now perform a numeaid experiment and compare i b  results 
with t h m  baaed on formulas (6). This will be done similarly M in the paper [3]. 

The history of our syatem is governed by the unitary evolution opentor o ( t )  dtfned aa follows: 

Hence, the state vector l!P(t)) for ~tbitrary time t can be expressed as: 

For numerical calculations we use the number state basie, which is truncated aa to obtain sufficient 
numerical accuracy. 

Fig.1 showe the probabilities of finding the system in the vacuum (0) and 
one-photon states :I). We amume that for the time t = 0 the field waa in the Mlcuum &ate 



( 4 6  = 0) = l), and that the coupling (1) is weak, i-e., c = */SO < A (in units of X = 1). 

FIG. I Analytical solutions for the probabilities of the Mcuum (solid line) and one- 
photon (dotted line) states, and the mean number of photons (circle marks) obtained 
from the numerical experiment. The parameter c = n/50 (all parameters are measured 
in units of X = 1). X-marks correspond to the probabilities foundp in the numerical 
experiment. 

We see that our analytical results (solid and dashed lines) agree perfectly with those generated in 
the nurnericd experiment (star marks). The system starts to evolve from the vacuum and after 
the time t = 25 the probability lal12 = 1. This means that at this moment of time the field is in 
the pure one-photon state. For longer times the system returns to its initial state and starts to 
evolve in the same way as from t = 0. Moreover, we have plotted in Fig.1 the time dependence 
for the mean number of photons n(t) (dotted line) 

found in our numericid experiment. It ia seen that the behavior of n(t) reflects the evolution of 
the probabiiities and oscillates between 0 ad 1. One should keep in mind, however, that if we 
increase the strength of the external coupling the picture changes drastically. For this situation 
the perturbation procedure breaks down. In consequence, aa it is visible from the numerical 



experiment, higher n-photon Foek statm dart b play a significant rde. Fig.2 ehows the probability 
amplitudes for c = ~115. We sae thah the influence d the amplitude cmmepmding to the twe- 
pho&on atate banma visible and perturbs the dynadcn of the vacuum aad cme-phofoa etatea 
aignific~lldy. Of mume, results of the numerical experiment !mume diff-t fmm those obtaid 
d y b i c a U y  under aseumptiwl of week coupling. 

FIG. 2. The probability amplitudee corresponding to the vacuum (solid line), one 
photon (dotted line) and t-photon (dashed line) states. The strength c = ~ / 1 5  and 
the remaining parmetera are the same as in Fig.1. 

2 Two-photon state generation 
Now, we consider a system containing the nonlinear Kerr medium which ie parametrically excited 
by the electromagnetic field. The parametric excitation eeeme to be more euitabte far the experi- 
meatal realization of the model than the previous one. In this case the system is governed by the 
following Hamiltonian: 

H = Xn 2 (n - 2) + c ((at)' + (a)') , 

where the h ( i  - 1) is replaced by h(ii - 2). This replacement can be justified by the appropriate 
choice of the detuni~g. With such a choice of the detuning the statee 10) aad 12) are degenerate, 



and the parametric process, second term in (11). couples remxmtly the two efirbes Thii s 
that the dynamics of the system will be restricted to the two if the coupling is d c i e n t l y  
weak. Exeept for a specid choice of the detuning, the system discwed here reuembles that 
d k w d  by Milbwn [4], and Milburn and Hdmes [S]. However, their d involved eeriee of 
ulttashort excitations, whe- in this paper we assume continuous excitation. 

Applying the mane p d u r e  as that fw the one-phobn state generation case we get the 
fdlowing equations for the probability amplitudes: 

Vlfe again mume that ao(t = 0) = 1. In consequence the solutions for the amplituda q, and e, 
to which the dynamics is xstricted, are of the following h: 

FIG. 3. Analytical solutions for the probabilities of the vacuum (solid line) and 
two-photon (dotted h e )  states, and the numericdly found mean number of photons 
(dashed line). The parameters c = n/50, A = 1 .  Marks correspond to the numerical 
experiment results. 



O b v i d y ,  h u b  (13) are the aero-order d u h  anabgmdy m Cor the ooe-ph&m etate 
(eq.(6)). Moreover, rn shall pedotm numerical experiment and compare 'ta remits 6th those 
oieq.(la)itgain. ~ ~ - t h c u n i t m y ~ u t i t m o p a n ( a ~ ~ ~ t t ~ c t e d o r , ~ ~ ~  
the Hamiltonian dehed in (11). Fi.3 depicta the p d d i l i t y  amplitudes fa the vacuum )O) 
a d  twa-photcm etatee 12) obtained from the ag.(13) d from the numerical -maat. W 
~ ~ ~ ~ t W ~ ~ p e r t ~ ~ a n a l ~ i c a l d t s ~ d t h o s e o b ~ f r a n  
the experiment again. The system atarts its evolution from the vacuum state and dter the time 
t = r/ (2&) n 17.7 the two-photon Wdr state L rsubd. Motwver, the numerical d t a  

that the jrobabiEty for the four-pboton 14) state is praportjand to c3 c 3 10-3 and can be 
~ f a t t h e c a s e d i s c u e e e d b e r e .  

Wk have shown bere that it is possible to generate! the onephoton and two photon F d  by 
the use of nonlinear Kezr media placed in a loeelem cavity driveo by a week extend Md. TBie 
( p e r a t h  is d a t e d  with remaant tramitions between two F d  states and caa be desaiW 
analytically using standard perturbative p d u t e .  Yomover, we have performed numeric$ ex- 
periments that show uery good qpxmmt with the analytical solutions. Of course, our d d e m  
tions are b a d  on a very simple model, and one should redbe  that mmy difficulties, for instance 
damping p m ,  can k u r e  the model and make it d i fk l t  to r e a h  in practical expehents. 
Although it was not the aim of this paper to inmigate the influence of such obstacles, one should 
keep in mind the fact of their existence. A short discussion of these problems was given in (31. 
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The dissipation in lasers and in coherent date 
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L ThegenerelproecerrinL4eer 
Thc g e d  proeces in lams is dc%Qcd ia the photon number repmentation#. 

whem r is the matrix change optratioal2l a h  = f i - a  - f i ,  and PI, @a, - - -  are cbc eaUi- 

dents. In the same way as p&us papedq, we dtdtretd the genedry hnction Ge(r,t) 

eq-(l) 

Wi the .id oB generating function Go(r, I) the mess photon number < a >O and variance 

of photon numhtr < (Am)' >g can be evaluated 

Mow we include the cavity damping in the treatment, the eqaa6on (1) reads 

After some te!dioud eactrl.tion, h d y  we arrive at 

< (An)' >= (1 -pl) < r vo 



Am = An, < (An)' >=< (Am)a v ($1 

Bclarr the thrrahdd, Na a (Nl  + N3), pr 1, Poiwon 
above the tanahold, Ma 1 Nl ,  jzl 3: p/2 2 r/4, e u b P h n  
We have r photon nok reduction hetor 1/2 < 1 - jzl S Q/4 (with cavity damping). 

W a b ~ I ~  m m  (FkJ(b)) N4 0,p = Na/(Mt + Ma) 1.g =: Ni/(Atl+ 
No) = 1, thiu is ementiaRy r Poimn ~ b d o n .  

11. The dbdptive cohrra state and quantum intderence 
The cohertn$ sta* is de$ntd as the eigenstah of a d b a t i o n  operator a for a Bsrmonic 

oscillahr, what is the dgtnstate of annihirstion operator a Lr the harmonic oseia4tor with 



didpation? If we ust the classical sohtion a = ~ e - * " - ' ~  for the adhiration operator, 

cvidendy the commatation relation [a,at) = 1 ia violated. 

a = age - / I  + - -  = a o e ~ i ~ / ~ - ~ / a ~ t  + B 
0 

t 
(2) 

at = de(-im-w/a~r + 1 pt(tt)e(-in-~p)tt-fbde = ~e~-io/a-w/a~r 
0 

+ at 
The Upative coherent state (a >, corresponding to the dissipative harmonic oscillator 

may be dehed as 
810 >r= (a + 8)k >r 

< slat = (ae + fit), < a1 (3) 

The states la >d, 4 < a1 satisfying the deanition can be expn%td u, 

Bete a, at, la >, < a1 ue the mud operatom and coherent sbts  of harmonic oscillator 

d h o a t  Upat ion ,  tbe operators j9, Pt act on the &eat baa& only bat nothing &I do with 

b >, < al. 
4 < alo(a, at )la >,= O(a+ + B., a + B) (5) 

The 'quantum interference between two wave packetsw studied hen wt mean that 

there an fwo wave packets $1, $3 with it's centers initially located at x = fzo l  the 

temporal evolution of $1, sssumeslcuol 

The superposition of $1, +a gives 

and the probability density I ( z ,  1 )  is 



8 = 2zz0sinQt 

The density distribution l ( z ,  t ) is depicted in Fig.2. 

Now we consider the inflotnce on quantum interference when the damping u is taken 

into secount. In the weak damping limit, i.e. ut a 1, the classicd solution a = aoe-Y'/siu8 

may be use to  evaluate the probability I,(z,t), because the violation of commutation 

relation [a, at] = 1 is not seriously. 

when a 
I,, = - e+(r - cos flt)'] 

2% 

Q 
It, = - expi- (e + ~ ~ e - ~ l '  cos llt )'I 

2 r  

19, = 2zzo exp(- wt /2) sin llt 

If we use the quantum Langevin squation's solution (2) and rewrite a, at as 

a = (ao + 8) exp(-i0t - vi/2), b =6 expI(il3 + v/2)t']F (t')dt8 

t 
(12) 

a1 = (a! + $) exp(iI2t - &/2), 9 = lo exp[(-iO + v/l)l']~~(t')dl' 

horn tq. (12), setting yo = 0, we derive 

z = zoe-*/' eos flt + A ,e-"/' cos fit + A~G-*/' sin 0 t  

8 = zoe'*la sin Qt + Ale-M/a sin l l t  + Are-*/' cos Qt 

when 

B +  8' A, = - a-st  
2 ' At = - 

-2i 



Reftring to (II),  (IS), naturally leads to the foliowing formula for quantum Langevin 

equation's solution. 

I, = 11, +I*  +2,/7;;7;;coso, 
Q 

I,, = - exp(-(* - 2)a) 
2% 

e, = 228 

The mean amplitude and variance of vacuum Buctuation Ale-*", A,e-"la can be 6nd 

out 

< A1e-"D > = < >= 0 

h m  equ. (15) we write out immediately the distribution functions f (~~e '* / ' ) ,  f(Asc-"'Is) 

f ( ~ ~ e - " / ' )  = 1 

Jn(nu + i) (1 - C-"1 ~ X P  [- (nu (Ase-"/''a + !) (1 - c-") I 
Via f (Ale-"/'), f (A,C-*/') and (14) the expectationdue of density operator < I , (x ,  t )  > 
can be find out 

< I ,  (2, t ) > = / / f (~ le -* / ' )  f (A~~-"'/')I, (8, t ) d ~  , e -uc~'d~sc-ur~a 

(17) 
= I l ( 2 , t )  + Ia(z,t) + I,(z,t) 



where 

a (Z - ~ ~ t - * f i  nt)) 
I l (z ,q = 

2 ~ 4 1 +  (nw + 1 /2)(1- c-*) 1 + (n, + 1 /2)(1- c-*) I 
0 

Ir(z,t) = - (2 + z*e-.Y"' COB Ot)' 
2% J1+ (nw + 1/2)(1- r*) tq[-l + k+ 1/2)(1 -e-dl -1 

zit-* cot? CIt I eos(2~zoe-~/'  sL flt) 
1 + (% + ;)(I - e-d) 

If the Mccum b $queered b a deptt of In p,the d a n c e  of ~ 1 e - ~ / ' ,  ~ , c - ~ / '  reads 

The expectation value for sqatcscd mecam 0nctaation < I&, t )  > asstunes a similar 

formal. ur (17) * 

where 

x ..pi- 
p ( ~  - q e - Y " '  COB nt)) 

(r, + ! ) ( I -  e-*)(sins fit + pacosa fit) + p 1 

p(z + zoc-Y'la GOS ntIa 
- c-")(sin2 Ot + pa toss O t )  + p 1 



Z p l l +  (n, + !)'(I - r * ' 
eq{-(n,+ !)(I -e -d) ( in 'n  +pacosant)+p I' I 

ta(ly + ;) (1 - e-*)(pa + ea nt + p4 C O S ~  n t )  
"P { - (in' Ot + ps cos' R)[(n, + !)(I - cd)(i.' IU + pa cosa 01) + ~1 

[(nu + !) (1 - c H )  + p J 2 ~ y e - ~ / a  si. n t  
c06 { 

(n.+ !)(I - c a )  (sin' Qt + @a cosa flt ) + p 

The cdcrr).tion results for I,(x,t) arc shown in Fig.3 and a comparison between I, 
and I,, Ir shown in Fig.4. 
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MOBILITY OF ELECTRON IN DNA CRYSTALS BY LASER 
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Abstract 

The mobility of electrons in laser radiated DNA is closed to the energy transfer and 
energy migration of a biological molecule. Anhenius [lj has studied the conductivity of the 
electrons in a biological molecule. But his result is far from the experimental result and 
meanwhile the relation between some parameters in his theory and the micro-quantities in 
DNA is not very clear. In this paper, we propose a new phonon model of electron mobility 
in DNA and use Lippman-Schwinger equation and S-matrix theory to study the mobility of 
electrons in DNA crystal. The result is relatively close to the experiment result and some 
parameters in Arrhenius theory are explained in our work. 

1 Introduction 
Using paramagnetic resonance method. Gordy has s t l idid DNA and found that DNA has the 
yropcrty of semiconductor. Thcn Duchc.ncf2: ~ilcasurtld the cncrgy gap of DNA in 273-313 K and 
found the energy gap is less than 2t!v. Based on above cxpcriment rcsultb, Arrhenius deduced 
the eclriatioi~ of c4cctron conciuctivity in bio1ogi;lc-d molcciile. But his rcsult is not close to  the 
experinlctltal rt-sult. We find that the basic reason of this difference is that his explanation of 
electron transfer is not right. Wc think that Pullmam's consideration of the DNA molecule being 
a kind of DSA crystal is good[3]. We think that with electrons being excited to  the low energy 
lcvd in the condiiction band. the electrons will act strongly with optic frequency branch of DNA 
oscillation. Potential trough will form in the area where the electrons are. So these electrons 
will pass thc D X 9  Lrystal with the phonon cloud and electron and associated phonon cloud is so 
called polaron. This is our phonon model of electron mobility in DNA. Using Lippman - Schwinger 
equation . we get the clcctron mobility and our rcsiilt is Inore close to  the experiment result than 
Arrhenius'. 

2 Mobility of Electron in DNA 
By means of S -matrix in quantum field theory and Lippman-Schwinger equation[4][5] the polaron- 
phonon scattering has been discussed and thc scattering amplitude expressed by use of matrix 
elet~lctnts of  Initial and find t~igen statcs of haniiltonian. Then we calculate'thc mobility of electron 



in DNA crystals in tctrms of Lcv's hamiltonian and Gurari's polaron wave functionI6j . Lcut's 
hamiltonian[7] f q b r  electron-phonon interaction is as fc\lows: 

where af and ak -creation and annihlation operators for free phonons ,~  -thc branch frcqucncy 
of the yhonon for DNA crystal vibration, V -the volume of DNA crystal. n coclficients of 
refraction,co- static dielwtric constant,k wave vector of the phon0n.r and V - -coordinates and 
impulse operator of thc cltctron respectively. 

Gurari's wave function for polaron with impulse po and cncrgy pt/2mW may be written 

Finally with the aid of Lippman-Schwinger equation the expression for mobility p of the 
electron is derived ~ h i c h  is the function of matrix elements relating to initial and final states of 
scattering particles and eigen state of hamiltonian as well 

l e m  
p = - ( - ) ( - ) ' f ( a ) e *  

2aw m m' 

where x -Boltzmann constant, T -absolute temperature,m'-effective mass of polaron and 

in which x, is the root of the following equation 

Even if it is difficult to accurately measure the m and m', we still show that the result given in 
this paper is better than that given by Arrhenius. 



3 Conclusion 

In oiir cblcv.tron rllohility c.cll~atie)n (9 )  f ( a )  is a slow-variation filnc.tion . 0 is c.oiipling constant of 
clmtron-yhol~on . w is optical frcxluc:ncy of DNA ost:illatio~~ ant1 n~ is DNA lattice: mass. Using 
visiblo light . Szc:nt c-oalcl not fin,! the! c:lex:tron n1ol)ility h i ~ t  whc-n h.. nscd the! light of 3 0 0 0 ~ .  
110 fount1 t11c. plbc.ne)~actaon. Now wc- can ascw 1asc.r bcban~ (wavcrlcs~gth i 3 ~ ~ ~ k )  to o1,sc:rvc. thc 
movc. This is thc: rc.si1lt ii~clucccl I)y t11a1til)ltoton I)roc.cSss. Oar  rc*slrlt c.xplain sonrc. pirranlc.tt:r;: 
in Arr1rc:nius' rcsiilt. Tlrc. racliaticta of lwcr on DKA will not only rails(: tl~c. c-hang,! of c.lwtloa 
rlrobility in DNA \)at nlso ca~lsc! 011sagc:r 11onlinc:ar transfc:r incii~c.c:d by thc tc:n~pcaaturc: variation 
and rc.sl~lt in tbc. c-lta~~gc- in the- (-0-tt;insport systc:~~l of DYA. This c-liangcul DNA rimy bring at,oiit 
the- abnornr:ll ck~vctloplr~c~irt of c-cblls and c-nrsc: thc. oc-cilrrcStic-c: of c'a~~c:c:r. 
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Abstract 

In this paper, by the use of quantum biology and quantum optics, the laser induced po- 
tential variation of cell membrane has been studied. Theoretically , we have found a method 
of calculating the monophoton and multiphoton processes in the formation of the anomalous 
potential of cell membrane. In contrast with the experimental results , our numerical result 
is in the same order. Therefore , we have found the possibility of cancer caused by the laser 
induced anomalous cell potential. 

1 Introduction 
The ions of N u + ,  A'+. Caf+.  C1- and clcctrons exist outsidc and insidc a cell membrane. Tht: 
distributions of thcso ions are difftxcnt hetwecn the two sides[li. There-fore the mcmbranc poter~tial 
is related to thc unsytnrnc;trical ion distribntion. The clwtric field caused by the ion distribution 
will imposct a force on the charged particles passing through the membrane. The balance of 
ion ccncentration gradient, potential gradient , Na--pump and Ca-pump is the key condition of 
forming a normal co-transport system. Undcr this balance. thc free radicals. DNA. RNA and ATP 
can normally transport[2j[3j. Our study is to find the laser induced variation of cell membrane 
potential. Thc rcsrrlt shows that the anomalous potential variation will do harm to  the normal 
co-transport system and may prornotc: thc occurrence of an abnorrnal cell or a cancc:r cell. 

2 Multiphoton Process and Anomalous Potential of Cell 
Membrane 

By means of quantum optics and quantum biology, it is a new approach to study the occurrence 
of cancer induced by the anomalous membrane potential of laser radiated cells. Smith[4] and 
Bloch[5] have proposed a method for calculating the density of two-photon photoelectric current 
which is too local to explain the multiphoton photoelectric current of biological cell membrane. 

In the present paper the steps adopted for solving this problem are 1) the forced oscillation 
is induced by the interaction of laser radiation field-electrons in the cell: 2) dat: to the fact that 
exists thc surface potential of cell membrancx. the electron in forcetl oscillation absorbs photon and 



transition occ~irs. On the cell lrlembrane exists a potential wA(t  > O),  a t  thc samo timc laser 
radiation propagatc:~ along axis z and the vtxtor potential of o1cctro1nagnc:tic field is 

A, = a cos(kz - wt) (1) 

On account of tibat cnnc:rgy c1istriblitil)n oi c!l<:ctrons in a ccll at  thc ordinary tcmpcrature is not 
different far from that at  tl~ct a1)soliit~c aoro, Fttrmi cnc:rgy wf is aboiit severd cl~ctron-volts and 
thc vclocity c)f c:lvctrons woulcl bv 11l11ch smaller than tahi~t of light. wc! have tho soliition of the 
cauation 

2 2 
I: a iB iD 

4(r. t )  = r:zy[ip. r - i(c, t -)t]ezp[- sin 11 - - sin 2111 
4pc2 2 \ / A  4 t / A  

whcro 

Thc! wave fiinction illustrates that thc: electron in laser radiation field has a translation motion 
anti forced oscillation. Its transition Hamiltonian lindcr the action of the second quantization 
electromagnetic fidd is as follows: 

where 0 ' .  a -opc.rat.ors for the crclation and annihilation respectively. wk-photon frcqiiency char- 
act crizeci 1)y wavc vc.c.tor. Finally wc, oht ain tho dtmsit y of photoelectric. ciirrent for monophotc,~~ 
procc>ss ( 11 = 1 ) 

ar.ti for r?~~llt.iplioton I)TOC('Sh ( 1 1  = 2 , 3 . 4 .  . . \ 

where 
2 312 t21x - t 

2~ 112' Rn(O = [ n x ( x  - t r iIlr(ns - x + t2/6 - ns/2 + x - t2)/21 



As for the integral lilriit we take zero if ( x - n q )  < 0 otherwise should take d F .  / the: cffc:ctive 
tliickncss for cell ~ncmbrane, N ( w )  = [ a 2 w A ~ A ~ ] / 8 ~ c :  - -the photon n11nrI)c.r passing tliroiigh arca 
Aa within timo interval AT. 

3 Conclusions 

Using our thc>ory of ~~ronophoton and maltiphonton procc:ss . wc. calcnlatc~ tl. . ~~it?r~il)rant: yotc!ntid 
of an Ehrilic-11 ~:11[3;. Thc. cor:ciitions are: the power of lascr is 501iiw: the cbnorgy of photon is 
1.18ov and the. foc.11~ arcxl is 1 0 - ~ r n l ~  . Thc: thooretical rc:siilt of thc! i~no~iralous yotcntial is 10alv. 
In c.oniparisot~ wit11 tht. normal potential of an Ehrlich c(:11(40111v). w1iic.h is mcasurcd by a micro- 
probt:. thr cliffvro~ic-cl of tlrcsc! two potctntials is obvions. This (:hang(. of rl1c:nrbr;ulc ~ )o t cn t id  11iay 
calls(! a1,out 8 pcxrc.c!nt c-1i;r11gc in the Naf clistrihiition. This c.lrangc. will sc:rionsly ciisordcr tlic: 
normal cell trimsport s y s t c * ~ ~ ~  arrcl rc:sult in tht: abnormality of ;t c.c!ll. Al)ovc: proccss will caasc 
diffi~sions irncl rt:snlt it1 tht: c1raagc:s of niatcrial transport in tlic- c(:11. This passivo transport has 
l)(.t!xi studic!d [GI ant1 the, i~rflac~~icc. of tho passive- transport and c-o-transport. will bc: stucliod further. 
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Abstract 

The development of radically new technological and economically efficient methods for 
obtaining chemical products and for producing new materials with specific properties requires 
the study of physical and chemical processes proceeding at temperature of lo3 to lO4K, 
temperature range of low temperature plasma. In our paper, by means of Wigner matrix o 
quantum statistical theory, a formula is derived for the energy of quantum coherent oscillatiol 
of electron ground state in laser plasma at low temperature. The collective behavior wc (-4 
be important in ion and ion-molecule reactions. 

1 Introduction 
The low temperature plasma is characterized by a partial or complete Lnization of atoms and 
molecules. naturally such a plasma is quasi-neutral. Great opportunities for obtaining such a 
plasma, which from a chemist's viewpoint is temperature range, have arisen as a result for studies 
in the field of laserll]. Because of the development of laser techniques, the problem of cht:mical 
reactions in a plasn~a was found to be realizable a t  a substantially new technological level tha.n 
was possible Inany years ago when the first rather timid and technically imperfect attempts wt.re 
r~ndcrtakcm in this field. At present, the low temperature planma affords the possibility of con- 
ducting chernical precesses at temperature up to 104K, at pressures ranging from to 104atm. 
under both equilibrium and noneqvilibrium conuitions. The character r>f chemical conversions 
that occur a t  temperature of the order of scveral thousand degrees is largely determined by ther- 
nlodynanlic propcrtics of substat~ccs which take part in a rcaction a t  one or another of its stage. 
Given reliable therrnoclynamic constants. it should be possible to determine, in 111ost cases, optimal 
telnpcratr~re c:onditions for reactions, valucs of product yields expected, and energy indices of the 
proccss. At the sarnc? t i~nc ,  the corirse of reaction depends, as a rule, not only on the thcrmody- 
rlaniic propertics of a reacting systen~. Prior to ccnverting to equilibrirlm state. determined by the 
thcrnlcjdy~laniics of rcaction, thc systcm experiences a series ,)f intermcdiate stages. The rate at  
which t,he systerrr goes through these stages is determined by the kinetics of the process. That is. 



the ratcb o f  rrt.hic.vu~p r-llt~ilil)riun~ cnvrgy cfistribution acc9rdir.g rcb dc-grtr.s of frcwdom is dcttermincd 
by pliysit-id kinc=t:c:s and the. rato of achic-ving cqni1ih:iuxn chcmical ccmpc)sition i ilc!tctmintut by 
4-heniic-d kinctirs i2). In this (:as**. t hrl p.asma chclu~cai reactions are chitactcnwd by the strollg 
t~ir.taai cffccts r , f  t,hc factors of thcn physical iuld t-hemicai kinetics. 'The tcrxxiinal ratc: of setting up 
c:quii;briutl: cnclrgy ciist rli,uiicin act-ording to diffcrc:rlt r1c:grtx~ of  frmdor~i in some: casts liniits thc: 
possibility ~f using the classical t:r q w n t u n ~  111cthocis of chcnric.al kinc:tics based ~n assl~mption 
$)out cncrgp cfistribr;tion in the: rc~acting syst+m. In this papcx, thc: cmc-rgy of cohctrcat oscillation 
of  elct.tron grtwlnci htatr. i n  1aw.r ~r:asnia is ctt.rivt.4 in thc yrcst1ncc8 of nc:utraliaing 3at:kground. 
Lascr fic4ci and rtrllt-c-tivc* c.nhe.sict~r iri.t,zvior in laser ylssrx~a wv)r~!cl I,** i :~ipt , r ta~~t  in abovo physicd 
t r i l l  c*ht~xiiic.al klrlc*tii->. 

2 Quantum Cohesiou Oscillation of Electron Ground State 

We ohall study :tssc*:;~hiicr; c r f  chargi-cl i)artick in conditions such that thc: laws of classical mechanics 
arc' no Icrngc~ an  i~dc.!~~:~:t~ ai::,r*.)xix~~;ft~r+:i :a1111 tlaantr~ni c.ffects bt-c-omc important or cvcn dominant. 
The Icing range. Cn~~lornh intc.r+ciic,~t retain. \if course:. t!:c:ir 111ain propcrtics. which have l ~ : n  
irrvt.st:gxtt-t1 in (It-tail 1iowcvt:r. t!~c ~:~irt~ih:statioa of thew propcrtics will in general be different 
lit:(-ass*. ihc Caulo~ub cffc-rts iirc: comtinctl with and corrwtc:d by quantum mechanical cffwts. 
Tiie nlt,st ;-unvcnic-11t ~ n ~ t h o d  for cioing this is the: method of  second qnantization. In this paper a 
formula is dcri\t.ci for i ! ~ .  energy of quan tu~ :~  c.ohcront oscillation of dc-ctron ground state in laser 
p!as:na at low tcrnpc.~ zt  tit#. t ~ g  r1arar.s oi N'igncr i~latrix of quantum statistical theory. It  shows 
thr  cha1ig4 of strut-tcrt- o f  !hc gro11n11 state in 'ht! presence of long r a q e  Coulomb interactions. 
Wt* c-onsitit-r ! ht. nit , c i c , l  cd a gas of I-hargt-d y articlcs in ihe prescncc. of a continuous neut~alizing 
liaa.ic,oround. Tfic harniltol;l;?lt of thls systcm is : 

whexc k . - - q actB wavcJ t.c.c-tt>rs. u+ (hk ! and u(hk) are respectiveiy c-rcation ancl destruction opcr- 
i~tors of the yartir.lt: with momc.ntum hk. the normalized one particle wave function is 

T kllV;pq > hk+l-p-q = (8a3; 5 2 ) [ v k - q  + f i ~ k - p . l h l r + ~ - p - y  (4  

is tiit, F*bi~ricr transfortti of thc long range potential. Using Wigncr niatrixi3j and Mreyl rule.4; 
tllc, :.c,llt-c-tivc~ p a r t  of c.orrc*lation c*nc.rgy E of particles he~conic:~: 



wllcrc. k,. is a c-ritical vialet- of k. c is the. a1)solntc. va11:t. o f  tblcv-tron c-hargc. . w,, is cjuantizcd osc.illator 
f r t ~ j ~ ~ t ! ~ ~ ( : y .  H~t1c.c. t hc. final rc-st11 t is 

3 Conclusions 

T1:is rcsult has a t*xtrc.xtlc:ly si~ggc~stivc: forxl:. It shows that thc! c-oilc.ctivc- c-ontributi~n t o  thc  
gronnd stat(- cnncrgy is prrv-isc4y thv c3ac\rgy of a c:olloc.tio~~ of cl11antizc:cl ost-illators of frcqucncy u,,. 
It  c-onfirn~s claantit;~tivc~ly t11a. rc>t~lark. sllowing how cl~u.~) is tha- c:t~i~t~gc. of struc.t~:rc. of the: groatlet 
statcb in tltc' prcsse.rlc.c* of 1t~t1g rntlgc. intc.rac-tio~~. Tlrc- 1;ittc.r orgit11ixc: the: alotion of tht: particle in 
sllch a Way tllitt it higtlific.ill\t 1)WI of fllc' gfolltld stilt(? c'llc'lgj' e.ol~lCs fro111 l i t f ~ ~  gfC)lIpS of particle 
oscillatitlg in p11;rsc:~ci~'6'. This c.t)ht*sion is perhaps tl:c' I I I O S ~  ~l~i~r ; t ( : t~: r is t i~ '  fe:atur(> of the ~ollcctivt: 
bchavior of c.hitrgc*tl p;irticlc.. The. rat(* o f  iot~ization a t  a satfic-ic-etly high c~loc.troti conrc.ntration 
is dt*tc:r111incd t ~ y  that of Ki1ic:tic cBtic.rgy tra11sfc.r to  c.lr:c-trot1 in ttlastic c-ollisiotls. In t l ~ -  cau: of 
plastua i,roducc~ri 1)y ionizitrg irraciiatioe c)f a cold gits. ionixation will be: c.nsl:rc:d by a group of 
fast clcx-trons wit 11 an :Bnc-rgy irnpartcbtl Lv c~~:ission. whchrc. its collisiorrs of c:luct rons with hcavy 
particles will c!-. -;::tsc> tho kitleatic cmc:rgy of cJthc.tron to  t1it)sc: inducing no ionization. 
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Abstract 
A generalized exact optical bright solitary wave solution in a three dimensional dispersive 

linear medium is presented. The most interesting property of the Glution is that it can exist 
in the normal group-velocity- dispersion (GVD) region. In addition, another peculiar feature 
is that it may adtieve a condition of "zer*dispersionn to the .media so that a solitary wave 
of arbitrarily small amplitude may be propagated with no dependence on its pulse width. 

1 Introduction 

It is well known that there exist undistorted travelling wave solutions with arbitrarily shape 
in bulk linear media in the absence of dispersion effects. We-can call such a travelling wave 
solitary wave or soliton on the analogy of its definition in nonlinear science. In the presence of 
GVD, it has been proved that transmission of solitary wave or soliton can be achieved in cubic 
nonlinear mediz I1.21. This research for optical solitons has attracted considerable attention 
because of not only the properties of preserving their shape apd energy during propagation 
through a medium but their potential applications in ultra-high bit-rate optical communication 
and ultrafast signal-routing systems 131. Mathematically, these optical solitons are a particular 
solution of the (l+l)-dimensional nonlinear Schrainger equation (NLSE) or the equations, 
which can be transformed into (l+i)- dimensional NLSE. As is well-known, there exist two 
kinds of solitons in the (l+l)-dimensional NLSE: bright and dark solitons [l]. In physics, optical 
solitons can be classified as temporal and spatial solitons. In the case of temporal solitons, the 
GVD is balanced by self- phase modulation. In the spatial domain, a spatial soliton is better 
known as a "self-trapped beamn, in which the self-focusing effect counteracts the diffraction 141. 
In fact, the spare-time analogy between dispersion pulse compression in time and optical-beam 
focusing in space has been pointed out early in 1969 [5-61. When only diffraction or dispersion 
effects are considered, their governing equations are of the same structure under appropriate 
conditions. Now the four kinds of solitons (i.e. temporal bright, spatial bright, temporal dark, 



spatial dwk solitons) have been observed experimentally in optical fibers or in waveguides 12,7- 
131. Besides the (l+l)-dimensional NLSE, it is necessary to deal with the higher-dimensional 
wave equation when a pulse propagate in optical media under the combined effect of diffraction 
and dispersion. In this case, one would expect that there exist the so-called light-bullets (LC. 
stable, nondiffracting and nondispersing optical pulses) under certain conditions 1141. However, 
in contrast t o  (1 + 1)-dimensional NLSE, such a spatio-temporal solitonic solution has not yet 
been found even in theory due to the mathematical complexity of the higher- dimensional wave 
equations. On the other hand, the attempts of searching for multidimensional solitonic solutions 
in other kinds of optical media, such as exponential and quadratic media, have also been made 
115-171. Recen!.ly, we have proved, for the first time to  our knowledge, that an envelope solitary 
wave sol~t ion mar exist in a two dim~:nsional dispersive linear medium under certain appropriate 
conditions by taking into accourlt the transverse effect and dispersion effect simultaneously 1181. 
In this paper, we will generalize the results in a three dimensional dispersive linear medium. 
It is proved that undistorted transmission of optical pulses in the above mentioned media may 
be realized even in the presence of GVD under appropriate conditions. Unlike the conventional 
bright solitary wave in cubic nonlinear media, the present bright solitary wave solution can be 
obtLned in the normal (positive) GVD region. In addition, a peculiar feature of the solution 
is that it may achieve a condition of "zero-dispersionn to the media so that a solitary wave of 
arbitrarily small amplitude may be propagated with no dependence on its pulse width. 

2 Governing Wave Equation 

in the development that follows, we consider the propagation of pulses which are narrowly 
centered about a given frequency UO, and assume that the refractive index n(w)  is a s l c ~ ~ l y  
varying function of w in the vicinity of wo (which is generally true in situations ofpractical 
interest). It is convenient to represent the electric field intensity l ? ( ~ , t )  by a product of an 
envelope and a rapidly oscillating terms: 

where 2 is the polarization unit vector assumed to  remain unchanged during pulse propagation, 
q the reference constant of propagation along z direction and wo the carrier center frequency. 
Here we have restricted the development to be a scalar complex envelope function A(?, t ) .  
Now let us consider the propagation of an optical pulse described by Eq.(l) in bulk dispersive 
homogeneous linear media. After removing the terms describing inhomogeneity and nonlinearity 
of media in Ref. j151, we can obtain the governing equation for the complex envelope function 
A(<t). This three spatial and one temporal dimensions ( 3 ~ ~ 1 )  linear wave equatioll with the 
GVD term included can be written in the form 

where k F ~ n ( ; ~ ) / c  is the wave number, the primes indicate the derivatives with respect to 
d, and the subscript 0 indicirtrrs evaluation at the  carrier center frequency Iiere. as is well 



known (see, ~ . ~ . , [ l ] ) ,  k' is exparidcd around wo in Taylor series and only terms up  t o  second 
order are kept under the weak disvers.m approximation (! .c.,  the refractive index is a slowly 
varying function of wo).  

It is well-known that in t!le a5sencr of GVD (ki = O), there are "completew solitary wave 
solutions in Eq.(2). If the G.r D does exist (k," # 0), there will be no "completen solitary wave 
solutions in Eq.(2). It is generally believed that  the  pulse shape will be  distorted during its 
propagation. However, one will see in the following analysis that there may exist steady-state 
envelope solitary wave solutions in Eq.(2) under the combined action of transverse and dispersion 
effects. 

3 A solitary wave solution and its property 

In order to obtain a o. %a1 envelope solitary wave solution, let's introduce an &nsatz with a 
hyperbolic secant function profile 

where A. is the maximum amplitude of the optical envelope solitary wave solution. The pararn- 
eter 6 is the inverse of the group velocity, 6 describes the change of the wave vector, and Aw is 
the frequency shift. 
After substituting the ansatz (3) into Eq.(2), we can obtain three equations for the parameters 
a', j;, and Aw: 

6 - 6 =  kj'+kok:, (4) 

- - 
where the parameter 8 = {Bi,  p2, i3-3) has been replaced bv 9' = (8,' p2, .03 + q). 
If all of the parameters are reasonably chosen, we can expect to  obtain the cptical solitary 
wave solutions described by Eq.(3).  Fortunately, one can prove that ali of the parameters may 
physicaliy choose reasonable vallrc. Therefore, an optical envelope solitary wave solution can 
exist in Eq. (2 j .  
According to the vector relation ; 6 / I  L? > 6 - i?', substituting Eq.(4)-(6) into the relation, after 
tedious algebra calculation, we can obtain the condition: 

This means that  it is only in the normal (positive) dispersion region that the!. nliy evist opti- 
cal envelope solitary wave solutions in a dispersive linear medium. This pro+ rty is contrary to  
that of (1tl)-dimensional NLSE, in which the sech-like solitary wave solu. : -.: e;:ist ozly in the 
anomalous (negative) GVD region. The existence of present solitary wave solut ~ r r ,  indicates that 
the physical effects of transverse confinement seems to counteract the effect of ,~orr?al GVD. 
From Eq.(4)-(6) one can see that the parameters A. and T are not included in them. T.lis 



implies that the maximum amplitude A. is independent of pulse half-width r .  Therefore, the 
optical envelope solitary wave solution (3) may propagate through a medium with an arbitrarily 
small amplitude. This means, such a solitary wave has no limitation of threshold. 
Additionaly, in normal case, there b always dispersion in a practical medium, that mans k: # 0, 
this will lead to that the relation 1 ai 11 /? (# Z-2 is always satisfied. This implies that the prop  
agating direction of envelope amplitude does not coincide with that of wavefront. Therefore, 
the optical envelope solitary wave solution (3) represents an inhomogeneous wave. The angle 8 
of the two directions between envelope amplitude and phase can be written by: 

Comparing with the nonlinear method of utilizing the nonlinear dependence of refractive on pulse 
intensity suggested by Hasegawa and Tappert, the present one has three features as follows: For 
the first, the optical bright solitary wave can be achieved in the normal (positive) GVD region. 
This fiature can greatly extend the range of optical wavelength for realizing transmission of the 
bright solitary-wave. It is unnecessary to search for special light source, of which the wavelength 
lies in the range of anomalous GVD for optical guide materials. For the second, it may achieve 
a cmdition of "zero-dispersion", in which a solitary wave of arbitrarily small amplitude may 
propagate with no dependence on its pulse width. While the pulse amplitude A. is proportional 
to the inverse of pulse half-width r for the nonlinear refractive index case. This implies that 
the pulse intensity will increases rapidly with the decrease of pulse half-width (to the second 
order). Therefore, in realizing ultra-high bit-rate optical solitoll communications, it will finally 
meet the limit set by the damage threshold of optical guide materials and other nonlinear 
effetts. This difficulty may be overcome easily in our case as one may achieve ultra-high bit-rate 
transmission of pulses in optical sc\!iton communication systems, in which the pulse half-widt h 
is narrow enough while the intensity still keeps at  a low level. Besides above mentione& it 
may conveniently utilize all of the advantages of linear techniques (e.g. wavelength division 
multip1ex)in the future optical soliton communication systems. However, it should be noted 
that this solitary wave is homogeneous. What influence on the optical communication is it? It 
should be considered in the next work. 

4 Conclusion 

In conclusion, We have obtained an optical envelope optical solitary wave solution in (3+1)- 
dimensional dispersive linear wave equation. It is of the foliowing features: 
1) It is only in the normal (positive) dispersion range that there exists the solitary wave solution 
described by (3) in a dispersive linear medium. 
2) The optical envelope solitary wave solution represents an inhomogeneous wave. 
3) It may achieve a condition of "zero-dispersion", in which a solitary wave of arbitrarily small 
amplitude may be propagated with no dependence on its pulse width. 
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