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PREFACE

The fourth International Conference on Squeezed States and Uncertainty Relations was
held at Shanxi University, Taiyuan, Shanxi, China on June 5 - 8, 1995. This conference
was jointly organized by Shanxi University, the University of Maryland (U.S A), and the
Lebedev Physical Institute (Russia). The first meeting of this series was called the
Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College
Park, Maryland. The second and third meetings in this series were hosted in 1992 by the
Lebedev Institute in Moscow and in 1993 by the University of Maryland Baltimore
County, respectively.

The first three meetings in this series were called workshops, and the fourth meeting was
an international conference sponsored by the International Union of Pure and Applied
Physics (IUPAP) and by the International Center for Theoretical Physics (ICTP). At this
meeting, there were a large number of Chinese and Japanese participants.

The scientific purpose of this series was initially to discuss squeezed states of light, but
in recent years the scope is becoming broad enough to include studies of uncertainty
relations and squeeze transformations in all branches of physics including of course
quantum optics and foundations of quantum mechanics. Quantum optics will continue
playing the pivotal role in the future, but the future meetings will include all branches of
physics where squeeze transformations are basic transformation. This transition took
place at the fourth meeting of this series held at Shanxi University in 1995

The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the

principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O.
Box 132, H-1052 Budapest, Hungary.
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SQUEEZED STATES AND PARTICLE PRODUCTION
IN HIGH ENERGY COLLISIONS

Bindu A. Bambah
School of Physics
Univ. Of Hyderabad Hyderubad-500134,India

Abstract

Using the ‘quantum optical approach’ we propose a model of multiplicity distributions in
high energy collisions based on squeezed coherent states. We show that the k-mode squeezed
coherent state is the most general one in describing hadronic mulitiplicity distributions in
particle collision processes, describing not oniy pp collisions but ete™, vp and diffractive
collisions as well. The reason for this phenomenological fit has been gained by wor<ing out
8 microscopic theory in which the squeezed coherent sources arise naturally if one considers
the Lorentz squeczing of hadrons and works in the covariant phase space formalism .

1 INTRODUCTION

Although Quantum Chromodynamics is widely believed to be the theory of Strong Interactions,
very few experimental results support this claim. In particular the behaviour of QCD at small
momentum transfer i.e low energies is not understood. This lack of understanding reflects itself in
the fact that particle production in high energy collisions cannot be explained within QCD. Given
the absence of a detailed dynamical theory of strong interactions , one can adopt a statistical
outlook and try to forecast macroscopic behaviour of a strongly interacting system given only
partial information about their internal states.Experimental information about hadronisation in
high encrgy collisions comes from the observation of jets of hadrons and the distributions of the
final state particles. By using analogies with quantum optical systems one can get information
about the types of sources( Chaotic, ooherent, etc) that are responsible fur hadronic emission.
Also, by using adapting another quantum optical effect such as the Hanbury-Brown Twiss effect
one can study the size and lifetime of the emitting region. This information can then be used to
put restrictions on the microscopic theory pursued from the quark-parton end [1].

The experimental quantities amenable to the quantum statistical approach are: the multiplicity
Distiibution of final state particles (PIONS)given by

o
P, = — 1
Ve @
where o, n-pion cross-section, the number of particles produced per unit rapidity diV/dy , where
y = ln(%‘"[) is the rapidity which plays the role of timne in pion counting experiments, the
moments of P, and the two pion correlations which are analogous to Hanbury Brown Twiss effect
for pions in rapidity space.



In particular, the quantum optical models are based on the assumption that multiparticle
production takes place in two stages. In the initial stage formation of an excited system (fireball)
which consists of a number of well defined phase space cells or 'sources’ which then hadronize
independently. In these models an ansatz is made about the statistical nature of these sources
and the resulting multiplicity distributions are compared with data (2], [3]. Table 1. gives the
comparison of various quantum optical models.

Table 1: Comparison of Quantum Optical Models of Multiplicity Distributions

Nature Of Source Density matrix Probability Two pion
One Source (Coherent State Rep) Distribution Correlations
Pla) = Lexp oM | p = z%mém Geometrical g(0)=2
Pla)=6*(a—-a') |pwm= M' =T Poissonian g?(0) =1
P(a) = =5 Prn = rT-':)—rr /04 | Glauber-Lachs | 1< g%(0) < 2.

b L"(ﬂli»gl):
K sources
Gaussian (Chaotic) | pan = j:‘: ,(—,r%-)"——h—); Negative Binomial | "”
Coherent +Chaotic | pan = Fiiae Perina-McGill »ome

vl | -
’“’[ L (am)

2 The Phenomenological model

Experimentally there exists a large class of data (vp) and low mass diffractive data that have
mulplicity distributions with sub-Poissonian Statistics. Thus we seek a more general distribution
than the ones given in table 1. A clue as to the appropriate distribution is that charged pions
occur in pairs Furthermore the most general Gaussian source characterised by Gaussian Wigner
Function . These facts point to the use of Squeezed Coherent states.

We find that the k-mode squeezed state |a,r >= |a), 71 > |az,72 > - - - |Jax, 7a >

characterised by the multiplicity distribution:

Pk =T1P, Zn, n 2

Pnk - e{—ko’(l+z)](l - zz)kﬂ(g)n

Hl T n-hz(ﬁy)zzm
m!(n — 2m)!

m=0

( ’I+r );
%—.7". (Y+1)--(y+(m-1) ;=1

y
g



and the second order correlation function:
2sinh*(r) + (2a® + 1)sinh?(r) — sinh(2r)
k(a? + sinh?(r))?

is the most general distribution that fits a wide range of data [4]. If r > 0 there are regions where
92(0) < 1 and the distribution is narrower than Poissonian. If r < 0; g2(0) is always greater then
1 showing distributions which ere broader than Poissonian.

Hadronic distributions in pp collisions show broader than Poisonnian multiplicity distributions
with a long multiplicity tail, which gets broader and broader with the increase of energy. The
k = 3 mode distribution for # = 13.6, z = —0.20 and # = 26.1, x = —0.35 respectively fit
corresponding ISR (62.2Gev) and UAS (540Gev) data, a for each of these is thus fixed.

To fit neutrino induced collisions in which the distribution is super-Poissonian ((%) <1), k=
3,z = 0.5 fit data well. e*e™ collisions are fit by the k=2 squeezed coherent distribution with r
close to zero . (nearly Poissonian.)

9:(0) =1+ @)

3 The Statistics confronts the Dynamics

We would now like to conjecture on the reason for this success and find an overlap with dyamical
models. We search for incoming states of the hadronic fireball which will give rise to SQUEEZED
COHERENT DISTRIBUTION. The candidate dynamical model of hadrons, which we find is
appropriate is the covariant phase space model for hadrons which is a revival of Feynman et. al’s
relativistic harmonic oscillator model{5] Kim and Wigner pointed out that the covariant harmonic
oscillator madel is the natural language for a covariant description of phase-space [6], [7]. In this
paper, we use the covariant phase space distribution description of relativistic extended particles
to give a phenomenological description of multiplicity distributions in the high energy collisions
of hadrons

Wave functions without time-like oscillations can be constructed by using the unitary repre-
scntations of the Poincare group and imposing a covariant condition[8]. In this model two quarks
bound together by a relativistic harmonic oscillator potential mapped onto O(3,1) invariant har-
monic oscillator equation. The ground state wave function ¥§ in the Lorentz boosted (primed)
frame is

¥o(z') = le~"J¢(z) (@)
where K3 boost generator along the z axis,
... 0 0 .
1\3 l(..a-t- + tb-:;) (u)

and 5 = Tanh~Y(3)
In *Quantum Optical’ language, using light- cone variables we have:

w=(t+2)/V2 v = (t-2)/V2 3
Then in the Lorentz-transformed frame:

4 kA 7 -
q, - P4 g, =€"g,

’ - -
W =e " v =¢M t7)



Introducing creation and annihilation operators

0 0
a‘=u+£....a,=v+g
a,=u-—6—u ...... a,:v—g

we find that the wave function ¥2 = ¢(v',v’) is a two mode squeezed state.
V(') = 10,8 >=10,n >v 10, -1 >
The excited state is given by:
In, 8 >= (al,)"I0,7 > (a})*I0, -1 >
The condition for absence of time-like oscillations in the hadronic rest-frame
(¢, — &)jn,8 >=0.

The physical wave functions are

¢£(u’,v’) = In:ﬁ>= i: ( ::' ) In—m.n >y 'mv /L

m=0

in the Fock-space representation

B = 5 3 () Gusmeml) G-V, 002

a2 m=0
Where [9]:
_ m4n m!n! tanh(n_) m
Gam = (=1 (G (=5 =)
xmmlg-?l (Tm’%m A

XA: @Nm/2 - N)i(n/2 = »)!

for n,m even and

Gn,m=(—l)2}2_3ﬁ( min! )(tanh(n))z.,%_,__l

cosh(n) 2
mmlz;:'%ﬂl ( n‘n;-"(n) ) ’
~ @2\ + 1D)(m=-1/2-X)(n-1/2-))

X

8)

(9)

(10)

(11)

(12)

(13)

(14)

for nym odd. Gnm is non zcro for both n,m even or both nym odd , thus excitations of quarks
occur in pairs. and tne Lorentz squeezed vacuum is a many particle state . The above suggests



the identification of Hadronic sources in terms of squeczed states.
In the ‘fireball picture ' the Wigner function of the scurce is , {10]

Wu,v,¢u. ) = (':')23-“"","“—"ﬂzﬂ'”v’ﬂ"d)
X mZ::O ( r?: ) (—1)"La-mle™s® — €| Lmle~" — €]} (15)

The number distribution for 1 particles in the n*® excited state.

A= 3 3 (0 ) (16)
LHa=lm=0
w o (mM tamh(on),
CR T SR
X F(—n,lg,m)cos“'(-(-m;i) (17)
where: min(la/2.(m~12)/2 _=4_ )2
F(—n,l2,m) = st} (18)

A2=:o (Al — 2X)(m — I — 2A)!

The cosine terms imply P; vanishes when |m — l,| or jn — m — [;| is odd. so that the excited each
of oscillator modes is excited in pairs.

If each pair is associated with a two quark bound state(pion), the excited state con-
tains pair correlated pions!!!

4 Results and Conclusion

The picture emerging is as follows the distribution of the fireball results from the excitation of
oscillator modes of the colliding hadrons. This excitation takes place in pairs. Modes de-excite
statistically emitting 2 pairs of quarks which we identify as two pions The phase space distribution
of the fireball:

| <n,fln, -8 > = (2n) / dudvW2 (4, v, gu, o)W 3 (1, ¥, Gu, G0) (19)

Probability of emission of m particles from two independent populations 1 and 2 corresponding
to cach of the incident hadrons. forming an overlapping distributions is given as:

Pn= )Y P\ ..P% (20)
m'=0

Total probability distribution thus becomes a product of the probability distribution of four
squeczed sources:

Pn= Y P (1) Pt (=) Prny (1) Py (-7

m;+-ma+matmy=m



For target Projectile collisions ' = 0 thus the probability of emitting n’ particles is:

£20)(5)

X (—l)+(p!(n—-m)!m!(n’—p)!)"’ 1 (tanh(n))g;g(_l)ﬁ,"_;,

cosh(n)' 2
(;.,T,jm)"*
Z, <2 2u)(p/2 - wWUZ5R — p)i(m/2 - Ni(252 — M)

As 3 increases the distribution gets broader .

For Central Collisions 8 = §' and by plotting m Py, vs.Z2:for different values of 3 we see that
the distributions become wider and skew symmetric as the value of 3 becomes larger. This is
cons:stent with the variation seen in experimental data.

The total probability distribution for the two nucleon system for n pions is:

P

k/2
Z IIP"(n) ): [1P2(=n) (21)

where k=6 for nucleon-nucleon collisions , k=4 for zx collisions and k=3 for vp collisions (with 5
positive).

We include final state interactions in a simple fashion by assuming that the effect of interaction
is to add coherence into the final state. This is consistent with the fact that in particle collisions
experimental data shows some amount of coherence, especially in the low energy region , among
the emitted particles. With the resulting density matrix we obtain the mutiplicity distribution for
a varicty of collisions and compare to data. The distribution we get is:

k/2
P= ¥ [lPs=eian 5 []Psers(a,n) (22)
Yoni=n i Yori=n §

Where the average number of particles emitted by each mode is given by:T; = a? + Sinh%(n)
Above distribution fits the CERN ISR 62.2 GeV and UA5 540 GeV data. The k=3 distribution is
compared with vp data. The data is well reproduced by the distribution. For e*e™ collisions we
take k=2 because the intermedeate state is the virtual gq state formed by the colliding electron
and positron.

In terins of hadronic final states the LEP energy (/s = 100 GeV) is equivalent to the SPS
energy (/5 = 546 GeV ) as far as total mutiplicitics are concerned, in so far as =" (LEP)

= PP (SPS) =26 .
For the same value of 7 much narrower distribution for e*e~ distributions than the Pp distributions.
This is consistent with recent LEP data [11].

We can make some predictions for higher energies such as those observed at the LHC and
SSC. Since widening of the distributions is related to the squeezing paramcter 7 the lorentz boost
of the hadronic fireball, at C.M.S. energies of 20 TeV and above we have a large 8 value and



higher modes will be excited. The multiplicity distribution for ultra-high energies is very broad
and skew-symmetric. plot iP,vs.§ for Pp collisions for 7t = 50

We can also calculate the Bose-Einstein Correlations of pions in this model by using the two
mode state. Ongoing work is in progress to establish the connection of this model with QCD
using the light cone formalism {12]. In this formalism it is also easy to incorporate temperature
dependence by using Thermal Squeezed Coherent states. These would be of interest in heavy ion
collisions.
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COHERENT STATES FOR KRONECKER PRODUCTS OF NON
COMPACT GROUPS:

FORMULATION AND APPLICATIONS
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Abstract

We introduce and study the properties of a class of coherent states for the group SU(1,1)
X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the
SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These
are the generalization of the ‘Barut Girardello’ coherent states to the Kronecker Product
of two non-compact groups. The resolution of the identity and the analytic phase space
representation of these states is presented. This phase space representation is based on the
basis of products of ‘pair coherent states’ rather than the standard number state canonical
basis. We discuss the utility of the resulting ‘bi-pair coherent states’ in the context of four-
mode interactions in quantum optics.

1 FORMULATION

1.1 Coupling of Pair coherent states in the fock state basis

For two mode systems the traditional SU(1,1) coberent states which have been extensively studied
in the context of squeczing have been the Caves-Schumaker states (1], defined by the relation

¢ >= exp(¢a'd' - ¢*ab){0,0 >, 1)

In addition to these states many authours [2] [3] have considered the SU(1,1) coherent states of

two mode systems or the ‘pair cohcrent states’ which were simultancous cigenstates of ab and
te — bib

a'a

abl(»‘l> = CK:q>p
l¢.g> = ql¢.q>. (2)

These can be mapped onto the SU(1,1) group by means of the two Boson realisation:

K} = altt, K{ =ab, Ki = %(a'a +bb+1), (3)



which form an SU(1,1) algebra with the commutation relations
[kt k7] = -2K; , [K: K] = £k (4)

The conservation law for Q, is related to the Casimir operator C for the SU(1,1) group; which
can be written as

C= 101~ ('a - b9?) = (1 - @)). (5)

Thus the eigenstate of @, is also an eigenstate of C and the pair coherent state is related to the
eigenstate of K| by Barut and Girardello.

These generate a representation D® that correspond to the positive discrete series representa-
tion of SU(1,1) {4]. In the number state basis, this corresponds to the basis states |n + q1,71 >,
where

(af )nl +a (b" ) iig

Iny + @, >= 10,0 >, (6)

T () + )

The pair coherent state in the number state basis labelled as |(;,¢; > is
|C1'91 >= N'“ i ——q‘—'——lnl +q1,m >, (7)
ny =0 \’n]!(n] + ql)!

with 12

Ny = [(1a) ™ I, @] - 8)

These states constitute a complete set in each sector ¢; and the completeness relation is given by

J 62 1, @GDK kDI g >< Gl )

for the normalized states .
We now consider the group obtained by the addition of two 3U(1,1) generators defined for four
modes a,b,c,d.

K* =o' +cMdt = K} + K},

K- =ab+cd=K; + K7,

K* = %(a'a+b‘b+c’c+d'c'+2) = K} + Kj.
K*K- + K~K*)

|
C= 2

- K2 (10)

The ‘bi- pair coherent states’ or the coherent states for the Kronecker Product are now the eigen-
states of K~ ,C,, C; and C . If we restrict oursclves to the positive discrete scries representations
of SU(1,1) then the Kronecker Product D% X D% i.e the Clebsch Gordan series for SU(1,1) given
by
o
D"XDv .. N DY (11)
g qitq2td

Thus a given representation in the Kronecker product is fixed by ¢, qi,¢2

12



The cigenvalue problem that we wish to solve is

K™I(,g>=¢l¢,g> :CIa>=(1/4—*/9)¢,.q> . (12)
In terms of the product number state basis |n;, + qi,n; > |ng + g2, ny > we get:
) k
|C»ﬂ,fh,‘12 > = Nn (C) %
k=0 [(K)/(k + 2n + ¢, + g2 + 1)}
X Z qu,::?.zz‘,':.+k6(m+nz.n+k)|nl +q1,m > n2 4+ g2,m2 > . (13)
nin3

we get an expression for the Kronecker Product states in terms of the CG coefficients in the photon
number basis.

1.2 Clebsh Gordan Problem in the pair coherent state basis

Consider the four mode bases of the Hilbert space characterised by the product of two pair
(SU(1,1) coherent states |(), ¢ > |¢2,g2 > . Since these coherent states form an overcomplete set
any vector in the four mode Hilbert space can be expanded in terms of these states. In particular
the coherent state of the product SU(1,1) X SU(1,1) |¢,q > can be expanded directly in terms of
the unnormalized states

o0
a
ICI)Ql >> = In+QI,n>;
VE) ;;n!(n +q)!
0

m
Koz >> = 3 e |m 4 gym > . (14)
m=0 y/m!(m + ¢g2)!

The completeness relation for the unnormalised states |¢;, ¢i >> can be deduced from (2.18) to be

[ B2 K 211G & >><< Gl = 1 (15)

The unnormalised states have th- dvantage that the operators K¥ and K? can be expressed as
differential operators. The completeness relation and resolution of the identity ensures that the
product states |¢,,q1 >> [{2,92 >> form the bas‘s states for D% XD% and any four mode state
|¥ > can be expanded as

Y >= / << ,q1 << G, @Y > [Ga >> [C2, g2 >> d2o(G)d2o(C2). (16)

In this representation the quantity << (i, q1, 2zetas, g2|% > is an analytic function ¥(¢f,¢;,q1,q2)
and the operators K, and K; act as ifferential operators on this function. In particular the
colierent state vector |(, g > in this four mode hilbert space can be written as:

1$.9,91,q2 >= / << 1, q << 2, @20, 0 > Gy >> G2, ¢2 >> d20(Ci)d?a(C2)- (17)

This becomes the equivalent of the Clebsch Gordon equation in the pair coherent state basis
and the quantity The overlap function << (i, q1l¢2q21¢, ¢ >= f(¢},{3.{q1,¢2) is the equivalent

13



of the Clebsch Godon coefiient for the SU(1,1) COHERENT STATE BASIS. The action of the
generators of SU(1,1) X SU(1,1) on f is given by

(KE+ KD = (G +8)f
(K +K;)f = ((5%<ql+<;a%.+<a—‘z§(qa+<;5‘2—5u (18)

On the other hand
Ki=¢f ;Cf=|(1-¢)/4f (19)

Thus we get the following two differential equations for f:

d .0 0 L0,
[TG(QI+C132?)+5§(92+425§)]J =¢f,

and

e e 62 f
Cl Cz(Y a(o a(o )

_ [ (th+¢12+1)2
"[Z' 4 ]f

Solving these two equations we get [5]:

f = << CI,QI7C2:q2IC,q>>

= NG+ G LG+ GG + GRS (20)

N is the normalisation . Thus the state |(,¢ > can be obtained from the relation:

qu >= '4”_12’/dQCl/d2C2KQ|(2Kl|)qu(2K2i) << Ch(IhCz.tth»q >> Khm >> |<2|QZ >> (21)

This is the Clebsch Gordon form for the product basis of Coherent states of SU(1,1) X SU(1,1).

It is interesting to note that by substituting the values of |{i,q1 >> and |{2,¢2 >> given in
equations (14) and using the expansion for the Jacobi Polynomial as well as the expansion of the
Bessel function I, and carrying out the various integrations we have:

o ¢
y > = N 51!1 fn,n
e &, (e + 0 22,7

. 3
[m!nz!. (nl(z ilz;)('"i‘ + g2)'k! (m+q@)i(n+ q)Y)

1
Y e T O = i =Dl = = i 7 g i + 90 ™ > Ima + a2,ma 122)

14



By comparisoa with expression [13] in the previous section we have:

n nitng!, (ny + )z + g2kt
At = G| (@ o

(-

Which is the Clebsch Gordon coefficient for the canonical number state basis for SU(1,1)XSU(1,1)

|
(72 + m)l(n — m)!(ny — m)l(ny — n - m)!(n +q —m)!

(23)

2 SubPoissonian Properties of SU(1,1)XSU(1,1) coher-
ent states

To give an idea of the Sub-Poissonian nature of these states let us consider a special case which
is useful in physical applications. Consider the case q; =¢2=0;q=1;{#0

In this special case , we start with equal number of photons in t,he modes a and b and in c and d.
Then

x [(k+ 1)'(k)'] nima
where (|(|)'/2
T )

The single mode probability distribution F,, and the mean number of photons < n, > are given
by

. i
nx(() N2I<I2 Z (n + n + l)'2 ’ (26)
and iC1T={21¢))
24
<™= SnaK, “

A measure of the non-classical nature of the distribution is given by Mandel’s Q parameter , which
for the mode a is given by
_o<nl>—(<n >)P-<n >
Q= <ni s> (28)
21C11(2K¢1) _ <12 29)
32K 2h(2¢)

In fig. 1 we plot Q .vs. [{|. For values of |[{|] < 2, Q is negative showing the departure from
the Poisonnian. The joint probability distribution P, 4+», can be calculated from P, ,, by the
relation:

N2 2%k
Pk: Z 6n|+u-;kPmn3 = IICI

nimg MR T (k4 1)! (30)



The average value < k > is given by:

Kt (211
e T @)

In figure 2 we plot Pi.vs.k and compare it to the corresponding Poisscnian with mean value < & >
and it is clear that the distribution is sub Poissonian.

3 Physical Applications

SU(1,1)XSU(1,1) states are useful states in dealing with physical systems involving four modes
of the radiation fields. The physical problem could be the passage of two-beams of light each
having two polarisation modes passing through a medium in vhich there is a competition between
the ron-linear gain due to an external pumping field and the non-linear absorption[7] [8],[9]. The
states generated are precisely the states considered in this paper. Let each beam contain both left
and right circularly polarised photons. Let a b, a ,b denote the creation and annilation operators
for RIGHT circularly polarised ::otons from beam 1 and beam 2 and c, d, ¢!, d'denote the creation
and annihilation operators for LEFT circularly polarised photons in beam 1 and beam 2. The
master equation describing the dynamic behaviour of the fields resulting from the competition
between two photon absorption and four wave mixing can be shown to be:

dp/dt = ~K/2(0"0p — 20p0" + p0'0) - i [G(O" + 0), 4] 13 (32)

Where G denotes the four wave mixing susceptibility. Where K is related to the cross-section for
two photon absorption and O = ab+cd. Defining an operator C=0+2iG/K We have:

dp/dt = —~K[2(C'Cp + pC'CC - 2CpC?") (33)

Whose steady state solution: Cp = 0 with p = |¢ >< 9| so that: Clyp >= 0 implying that
Ol >= -2G/Klp > or (ab+ cd)|y >= AjY > Where A = -2iG/K Thus the steady state
solutions of the master equations are eigenstates of the operator 0. Furthermcre, if we now
impose the condition that the initial state is one in which the diflerence in the in the the number
of photons in the two polarisation modes of each beam is a constant, with q being the constant
for the right circularly polarised photons and q being the constant for the left circularly polarised
photon in beam 1 and bean 2, the states | > are just the SU(1,1) X SU(1,1) coherent states.
Another examples of processes where four modes of the radiation field are important involve
phase conjugate resonators and the process of down conversion in the field of a standing pump
wave[6] .In the latter case, the forward wave will produce the modes a and b and the backward
pump will give the modes ¢ and d. The Hamiltonian for such interactions will have the form

H = (¢jab + ;cd + c.c), (34)

where ¢; and ¢, are the forward and backward fields. Again the relevant coherent states are the
eigenstates of the operator
“=(ab+cd)= Ky + K;. (35)
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Abstract

We consider a model for nondegenerate cavity fields interacting tirough an intervening
Boson field. The quantum correlations introduced in this manner are manifest through their
higher—order correlation functions where a type of squeezed state is identified.

1 Introduction

Squeezed state generation of electromagnetic fields provides a means of reducing uncertainty in one
electric field quadrature at the expense of a larger uncertainty in its conjugate partner [1, 2]. It is
one realization of nonclassical states (ideally, minimum uncertainty states) that has received wide
attention. Ordinarily. in single or multi-mode squeezing, the fluctuations of linear combinations
of the field operators are considered [1}; however, Hillery {3] introduced quadratic combinations
of the Seld operators as a type of higher-order squeezing [4]. The higher-order combinations are
examined to help elucidate the nature of the phase space occupied by the squeezed states.

We consider a two-mode model originally developed to study stimulated Raman scattering
(5, 6]. In a cavity environment the model has features of amplifiers {7, 8] in which quantum states
are rendered macroscopic and therefore, classically measurable, while at the same time the fields
retain some quantum mechanical correlations. The introduction of both Stokes and anti-Stokes
fields indirectly coupled through a Boson field, whose origin stems either from phonons or weak
atomic excitation of the medium, is an interesting two-mode quantum system. It differs from
several previous two-mode systems, eg. 1, 8, 9], because the two modes are coupled through the
intermediate field that acts like a reservoir.

The emphasis of this paper is placed on higher-order squeezing found in the fields because
squeezing of the linear combinations of the operators is not present in this model. A more complete
discussion of the results can be found in [10]. The type of higher-order squeezing found is in the
variance of the variables defined by Hillery, so—called sum or difference squeezing variables; they
are used to infer that quantum correlations exist between the electromagnetic fields and the Boson
fields.
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2 Model

We investigate the model Hamiltonian for a stimulated Raman scattering process with undepleted
laser field ez, which can be treated classically. The fields in the interaction are the Stokes field.
subscript €, and anti-Stokes field, subscript A, that are coupled through a Boson field with
multiple modes [5, 6):

M= hwsa'sas + thaLaA + : hwma'a,am - Z(hggel,a'sa},, + hoc‘el,akam + h.c.). (1)
1 1

This model has a bath of Bosons, eg., phonons that have excitation energies spread over a range
of frequencies. In this mode! the Bosons are responsible for coupling the electromagnetic fields
and for introducing damping, as well.

In order to calculate various moments we determine the characteristic function of the operators
in normal-ordered form. The normal characteristic function after reducing the intermediate reser-
voir in the dynamical equations is expressed as an average over an initial distribution of complex
amplitudes {£s, €4}, which is the coherent-state representation for the initial field operators,

Cn(Bs,Ba,t) = (e-Bs(')Wslz-Bn(')lﬂalzi-(Dsnll)ﬁ;ﬁ;ﬂ.c.]+[ﬁs€§-(¢)*ﬁa€;(‘)°c-¢-]) , (2)

where we assume that the detuning parameter A = wg — (ws + w,4)/2 is equal to zero and define

Es(t) = us(t)es +vs(t)€a,  €a(t) = ua(t)a + va(t)Es.

The angular brackets denotes the average over the initial states of the Stokes and the anti-Stokes
fields. The coefficients in the above expressions are obtained from solution of the Heisenberg
equations of motion and the subsequent reduction of the Boson modes in the normal characteristic
function using disentangling theorems. Letting I' = (vs — 74)|EL|?/2, where the laser field is
Ey = ep exp (iwit) and the parameters

s = 2xlg(we)Pp(ws),  7a = 27|s(ws)[*p(ws),

introduced from the Markoff approximation with the Boson excitation frequency wp = wp — ws,
the results are

1
us(t) = PO (1se™ —qa);  ua(t) = P—— (1s — 14€™);
vs(t) = —va(t) = ;_\”5':‘(8?: — 1)ei2L+¥s-va),
s = TA
1 YAy

Bs(t) = ——————(42(e** ~1)+2 1—elt +__ezr:_l;

s) = s (5™ - 1) 21574 ) + )
Ba(t) = (7:—_'{1:—‘)2(8“ -1+ ;Z"—_n%(l - Yy;

Vv 1 .
Dsat) = XE4 (.,s (e - 1) = 15™) + v (e 1)) eaortvsva) (3)

The phases are defined by E; = |E|exp(idL),9 = |g|exp (i¥s) and « = |x]exp (t¥4).
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The usual definition of the two-mode operators is a linear combination of the creation and
annihilation operators. However, we find that the model discussed here does not yield the usual
squeezed state correlations between the Stokes and anti-Stokes fields. The coupling through the
reservoir is aiso expected to degrade the coherence developed between the Stokes and the anti-
Stokes fields during evolution. It is, therefore, surprizing that the ficlds do display quantum
coherences in the higher-order correlations between the fields. To show this we adopt of the
definitions of sum squeezing and difference squeezing used by Hillery {3].

2.1 Sum Squeezing
For sum squeezing we define the operators
| .
Vi = 5(ALAl 4+ Asa), Vo= S(AbAl ~ AsAy). (@)
The product of their standard deviations, AV;, satisfies the Heisenberg inequality
1
AV AV, > i (Na+Ns+1). (5)

The operators are in a quantum state, said to be sum squeezed in the ¥} direction when the
variance of V] satisfies the inequality

(AVQ)? < (Na+ Ns+1). (6)

To determine whether the dynamics produces a higher-order squeezed state, we define the shifted
variance

1
8V = (AW) - 3 (Na+Ns+1); (M

which is negative in the region of the quantum state.
The moments of these operators are calculated by using the characteristic function and the
result for the sum squeezing shifted variance of V; is

V2 = }({(csmu(t»z + 4Dsa(t)Es(t)éa(t) + 2(Dsa)? + 2D5,Es(t)a(t) + c.c ]
+ 2 [I6s(t)a(O + Bs(O)l€a(®) + Ba()lEs(t) + IDsa(t)? + Bs(t)Ba(t)])  (8)
- i— (€s(t)€a(t) + Dsa(t) + c.c.)?.

2.2 Difference Squeezing
For the definition of difference squeezing, define
W____I_AA? 'A __1 t a4t
1 2( sAy + AAL), We = 2(A$AA AgApy). (9)

The state is diffcrence squeezed in the W, operator when the variance of the operator satisfies the
inequality ({Ns) > (N4))

]
(AW;)? < n (Ns — Na). (10)
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The moments are calculated from the characteristic function, as discussed already it tnhe previous
subsection. We also define a shifted variance of W, in analogy with Eq. (7)

§W2 = (AW,)? - ji-(N,. — Ns) (11)

which is negative when the state is squeezed along the W, direction. For the difference squeezing
variable W; we have the following expression

Wy = %([(53(3)&(0)2 +2D5,()Es(6)a(t) + c.c| + 2 [IEs(t)ealt)? + Bs(O)a(t)?  (12)
+  Ba(t)ies(t)? + |Dsa(t)[? + Bs(t)Ba(t) + [a(t)? + BA(‘)]) - ';‘ (Es(t)€a(t) + cc)’.

3 Results

There are several parameters occuring in the model and appearing in Section 2. The dynamical
parameters, i.e. those appearing in the evolution equations have been previously defined. We note
that the detuning is assumed to be small in our model and this parameter is set to zero. The
initial states of the fields represent another set of important parameters. The choice of an initial
state for the Stokes and anti-Stokes fields is dictated by experimental conditions. We restrict our
discussion to combinations of two experimentally useful initial states: the coherent state and the
chaotic state. Using one of the choices, we examine the quantum correlations developed betwwen
the electromagnetic fields; of course, other situations, such as, a Fock state or a squeezed vacuum
state could also be identified. The Boson field is considered to be in a chaotic state with an average
number of excitations fig; when the Stokes and/or anti-Stokes fields are in a chaotic state, then
their phases are randomized and their statistical properties are also represented by their average
photon number fis and fi4, resp. When the Stokes and anti-Stokes fields are in coherent states,
in addition to the average photon number, the phase of the fields, ¢s and ¢4, is also needed.

The plot of Figure 1 is a display of the shifted variance of the operator V; versus the interaction
time t for the three different values of the phase ¢ = 2¢; — s — ¥'4. The Stokes and anti-Stokes
fields are both initially in a coherent state, ns = n4 = 2, and the reservoir is in the vacuum state
fiv = 0. The time has been scaled to the product, 7|EL|?, where Ey is the laser field amplitude
and in the results presented here we set ¥ = 75 = 7,4, i.e. the damping constants are equal. The
region of the curves with negative ordinate values corresponds to the case when light is V;-sum
squeezed. The phase value of ¢ = 7 /2 continues to decrease as the interaction time increases which
means that for large times squeezing occurs near the point ¢ = /2. As the average number of
excitations is increased in the Boson reservoir, the region for squeezing deteriorates.

When both the Stokes and the anti-Stokes fields are initially in a chaotic state, the sum
squeezing variable V; still shows squeezing and the phase ¢ = 7/2 is very robust to the values of
the initial state (Figure 2). We note that the initial value of the shifted variance has been changed
by the initial chaotic state of the variables.

No squeezing was found for the variable W), either with coherent or chaotic initial states.
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Figure 1: Plot of the sum squeezing shifted variance versus the interaction time for initially
coherent Stokes and anti-Stokes fields. The phase ¢ = 2¢, + s — ¥4 has the values 0, z/2 and
.

4 Summary

In this paper we have examined a special model for the interaction between two modes in a
cavity mediated by a Boson reservoir field (5, 6]. We find sum squeezing, a form of higher-order
squeezing, over a range of interaction times and initial states. There are two salient features of our
results; first, the intermediate field has a continuous spectrum of a reservoir, but still the two fields
develop quantum mechanical correlations; and second, the quantum nature of the correlations is
not manifest through the usual first order or even simple higher-order correlations among the
operators, but through special combinations of the field operators.

There are other models where the fields are mediated by either electronic or acoustic fields,
eg. a polariton or Brillouin scattering model {5, 6, 11}; these processes are analogous to the
present model where the directly coupled fields are not detected in an experiment. In such cases
experiments designed to measure higher-order correlations can reveal the underlying quantum
correlations induced through the fields.
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Abstract

I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the
“squeezed” Q function. This propagator leads to squeezing in one of the phase-space variables
and anti-squeezing in the other. By noting that the Q function is related to the Wigner function
by a special case of the above propagator, I am led to a new interpretation of the Wigner function.

1 Introduction

The Wigner represeutation of any operator A is defined by
o0 .
Waipa) = [ (@-alAlg+a) e Pda=Tr(AW(p,q)), M

where the rounded kets are eigenstates of the position operator, Q |z) = z |z), and W(p,q) = [%3,
|g + a)(g — a|e**Pda is a unitary and also a Hermitian operator, which can be interpreted as a
Aisplaced parity opezator [2]. The Wigner representation yields functions of two variables, p and
¢, . b may be looked upon as phase-space variables. These “Wigner functions” have interesting
prope ‘es and are useful for various calculations [1]. The Wigner functions are often referred to
as pseuao-probability functions, because they can take negative values, even when A is a positive
operator, A > 0, such as the density operator p.

In contrast, the Husimi or Q representation (3] yield nonnegative functions for positive operators
A: These functions are defined as follows

Q(A;p,q;¢) = (pa:{ | A | pg:() = Tr(A Tl(pg;¢)), where Il(p,g;}) =|pg; () pg;¢| (2)
are projection operators on ti.c squeezed states |pg; ), which are defined by [4}
Ipa;¢) = D(p,@)S({)I0) , where ( =ye® (—00 <y < o0) (3)

and |0) is the ground state of a specific harmonic oscillator, aJ0) = 0. (i.e. a is the annihilation
operator with a definite frequency wy; Henceforth, we set i = m = wg = 1, for simplicity.) In (3)

D(p,q) = exp[-i(qP - pQ)] (4)
is the displacement operator which generates the coherent states when applicd to |0), and

S(¢) = exp B ((a’2 - (‘az)] , (a = Q:;;P)

is the squeezing operator, where the squecze parameter y vanishes in the coherent-state limit.
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If A is a density matrix p, then its Q function Q(p;p,q;¢) can naturally be interpreted as a
probability distribution. To emphasize this fact, the Q functions were denoted by P in [5, 6],
instead of Q here.

For simplicity, I shall from now on discuss only squeezings which are pure boosts, without
rotation, i.e. with ¢ = 0 in (3), and use the squeezing parameter A := e? instead of y.

The Q and the Wigner functions are related as follows {1, 6}:

QAip, g N = [ B expl-A1p - ) - Mg - VI W(AF, ). (6)
F

In this paper, I shall first recall in Sec.2 that the Q functions (2) satisfy the partial differential
equation (7). This equation describes how the Q functions Q(p,q; A) get changed in phase space
(p, q) as the squeezing parameter A is increased. In Sec.3 I define a forward-backward propagator
for this equaton. Finally, in Sec.4 I show that the Gaussian factor in the integral (6) is equal to
a special case of the above propagator. This fact will yield th~ new interpretation of the Wigner
function.

2 The Pseudo-Diffusion Equation

In previous papers |5, 6], it was shown that the Q functions, and other quantities, obey the following
partial differential equation

2
Olp,a: M QUi ) = [a% -3 (5"’}, - ggp)] QUip N =0, where A:=é¥, (1)

where y is the squeezing parameter, as defined in (3). Eq. (7) was called [5, 6] pseudo-diffusion
equation, because (a) it resembles the diffusion equation in 2 dimensions |7}, where the parar :‘er A
plays the role of time, and (b) the coefficients of gg and gy in (7) have opposite signs. Ther-.ore,
this equation describes a diffusive process in the p variabYe and an infusive one in the ¢ variable
for all X. In this way a thin distribution along the g-axis get continuously deformed into a thin
distributi in along the p-axis, as A is increased from 0 to oo.

3 Solutions by Separation of Variables

The pseudo-diffusion equation {7) was solved by two methods [6]: by Fourier transform and by
separation of variables. I shall now recall the latter method: Writing the solution as a product of
two functions, Q(p,q; A) = 6(p, A)¥(q, A), where @ depends only on p and A, and ¥ depends only
on q and A, we get

1 _1fo 118# 18
0=35%¢ az(a-z a—pﬂ‘?'a_cﬁ])”
1/ 9 1 62 1 0 1 8
< i -im) -3 (o) een. o

Since the first term in (8) depends only on p and A, while the secord term in (8) depends only on
g and A, we conclude that each of them must be equal :0 a function of A only, which we denote
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by f(A). In [6] the soluticns for f(A) # 0 were discussed. But for my purposes here, I shall only
consider the case f(A) = 0. For this case equation (8) yields the following two equations:

o 10
(0,\'3'-611’)0@;» -0 @

9 1 & 1{ 0 18
('a‘?ﬁa_«zz)w(q;'\)zﬁ(m_ﬁq_’)w(q;'\) = a0

where & = —h 52+ was used in (10). We see that # obeys a 1-dimensional diffusion equation in

p, where 4 plays the role of time. Similarly, ¥ obeys a diffusion equation in g, but with }A~!
playing the role of time. The solutions of the diffusion equation are well known {7]. In particular,
the propagators of Egs. (9) and (10) are specific solutions, given by

(p—lf)’]
A-pu |’

1
Gilp—p,A-p) = —-————exp[-
T(A-u

ior A>u, (11)

Gi(g—¢,x"'-07))

I S (a-¢)
(A= — 0~ exp A1 — o1 3 for A<o. (12)

Clearly, the products of the above two propagators yield a different solution of the pseudo-diffusion
equation (7) for every 4-tupel (¢/, ¢, u,0):

Glp-v.q-dihpo) = Gilp-p,A-p) Gilg-¢, A1 =07")  for p<Ar<al
! (-7 (@-¢)%1 \
7 /(A= g)(A-1-o-1) exp |- A-p G PP Y

I shall call these G functions two-sided or forward-backward propagators of the pseudo-dittusion
equation (7), because they involve the two squeezing parameters, u and o, which are cn opposite
sides of A\. In particular, these G solutions have the proper limit when A is approached from
opposite directions:

lim G(p - pl:q - ql; A: B, 0) = 6(’) - p’)‘s(q - q,) . (15)

p—A—€, 0=A+te

Since the heart operator Q is a linear, any superposition of the above 2-sided propagators will
also be a solution of the pseudo-diffusion equation. In particular, if we fix the squeezing parameters
p and o and integrate only over p’ and ¢/, we get solutions of the form

f(p,q;A,A)=//dp’dq’G(p-p’,q—q';A,u,a)fi'p',q';u,o), for o>A>p, (16)

for any given function f(p,q; i, o), provided that the intcgrals (16) exist.

4 The New Interpretation of the Wigner Function

An extreme case of the 2-sided propagators (14) is obtained by choosing 4 = 0 and ¢ = 00. These
squeezing parameters correspond to the values —oo and +oo of the y = 4 In X variable, respectively.
For this choice of 4 and @, ) is free to take any positive velue oo > A > 0. Moreover, the square-root
factors in the two propagators cancel out. For this case, Eq. (16) becomes

WU oxpl-a"'p - )~ Na= ) S, d:0,00),  for A>0. (17)

eaaN = [

-
a7



If we compere (17) with the well known relation (6) between the Q function .nd the Wigner
function, we realize immediately tha. these twc functions are simply related by the special 2-sided
opagator G(p — ¢/,q — ¢; 1, 0,00). Therefore, we are lud in a natural way to the interpretation
thet the Wigner function is a Q furction, whick is squeezed to y = +00 in the g variable and
arli-squeezed to y = —oo iR the p varighle.

Note that by applying the following relation

/%expl-‘\"(p-p’)’ly(p') = exp [%g;] 9(p) , for A>0, (18)

to (17), we obtain s formal solution ,(p, g; A, A) of the pseudo-diffusion equation (7), in terms of a
differential operator applied to an arbitrary function g(p, ¢) = f(p,q;0,0) of p and ¢:

Ip.a\A) = exp[ (Dp’ mq,)]f(p.q.(lw) (19)

One can essily check, by simple slifferentiation with respect to A, that this formal solution satisfies
the pseudo-diffusion equation (7). In particular, if g(p, g) is equal to the Wigner function of an
operator A, then f(p,q; A, A) is the corresponding Q function. This formal relatonship between
*hese two functions was noted by Husimi {3].

As an application, we note that the relation (6) bolds for every operator A, so that the come-
spouding two operators in Eqs. {1) and (2) aze also related by the above special propagator:

.00 = [ FE expl-2"0p - - Mg - DI WG, ) (o)

5 Conclusions

A one-sided propagator, which we would get for example from (14) by choosing p,0 < A, is not
suitable for the pseudo-diffusion equation (7), because one of the Gaussian factors in (14) will blow
up ot infinity. By showing that a special 2-sided propagator takes the Wigner function into a Q
function, I concluded that the Wigner function can be regarded as a Q function, which is squeezed
backwards (;z = ™ ia the p variable and forwards (o = 00) in ¢ variable.
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Abstract

Generalized coherent states for general potentials, constructed through a controlling
mechanism, can also be obtained applying on a reference state suitable operators. An explicit
example is supplied.

1 Introduction

After the scminal works of Glauber, Klauder and Sudarshan (1], relevant generalizations and
extensions of coherent states have been introduced, both in a group-theoretical framework [2],
and in the direction of squeezing phenomena {3].

Moreover, a celebrated approach for general potentials was given in the case of classically
integrable systems by Nieto and collaborators [4].

We have tackled the problem of building generalized coherent states from a point of view which
can be useful also in a wider context [5]. In fact, if an interesting physical behaviour has been
singled out for a quantum system, one can search for a controlling device which allows for its
realization; we call this approach Controlled Quantum Mechanics (CQM) [6].

To this aim we use the methods of stochastic mechanics {7] [8]; however, we will show that
these states cau also be obtained in the standard operatorial approach.

2 The coherence constraint

We proceed now to appiy the scheme of CQM to the problem of generalized coherent states. We
will use in the following the notations E(.) and < . >, respectively, for the stochastic mechanics
and quantum mechanics mean values, sending back to [6] for the code of correspondence.

We scarch for states which are constrained to follow classical-like dynamics:

4 <p>=Fl<i>Ai
)
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%Afi =G(< §>,484,1),

where F, G are known functions and A4 is the dispersion. A particular, but interesting, case is
associated to constant dispersion.
If ® denotes the potential associated to our states, the Ehrenfest equation

d — —
-;t-<p>--<V<I>> (2)

always holds. Then we can write the above dassical-like constraint in the more transparent form
< VO >= VO(z, t)|su<s> + OF(< § >,A4,1)
3)

& 8i=Gl< >80,

where 6F is a known function. We note that for harmonic potentials this condition is always
satisfied in the strict sense, that is with F = 0.

However, for non-harmonic potentials the above condition becomes a true constraint. How
this constraint can be imposed?

In the framework of stochastic mechanics the mean deterministic motion of the quantum
process is ruled by the current velocity v(z,t), while quantum fluctuations are associated to the
osmotic velocity u(z, t).

A given choice of v(z,t) singles out a whole class of quantum states, all sharing a common
mean motion. In our case, then, the constraint must be imposed through a suitable choice of the
current velocity.

The natural choice is given by the following form of v(z,t)

iz = B@ + E D 2ag @
which is associated to the standard harmonic oscillator coherent and squeezed states [9]. We can
expect, in fact, that these states are a sub-set of the whole class of states selected by the form (4),
and that all these states exhibit mean classical-like motion in the sense of Eq.s (3).

Note that, in conventional quantum-mechanical formalism, choice (4) corresponds, through
my = VS, to ti.» well known quantum mechanical coherent phase

S=<p>as ABZASI2P2 0 ot sy, (%)

In order to find explicitely the form of the searched states, we must take into account the
constitutive couple of equations

atP = "V(p‘U),
(6)
ma_Mma ko
aS + 7 v 3 u 2Vu &,
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that is the continuity equation and the Hamilton-Jacobi-Madelung (HJM) equation respectively.
Ingerting expression (4) in the first of the Eq.s (6), the selected states result to be all the states
with a (normalizable) probability density of the (" wave-like”) form

-E
pat) = g-eapl2R@) . €= D, ™
with the corresponding form for the associated osmotic velocity
(A Vo_ 1
= (30)~F = 5,0 ®

iFrom the expressions (5), (7) for S and p we obtain the wave functions of the generalized states

¥(zt) = pmesp(RO)esn(3S) (9)

Now, inserting Eq.s (4), (8) in the HJM equation (6), taking the gradient term by term, and
computing the resulting identity in £ =< § > (or in z = 0 if the potential is singular), we can
simply verify that the classical-like constraint is fulfilled. Then, our aim is reached.

Finally, the HJM equation, with the inputs of Eq.s (4), (8), gives as output the controlling
potential ®.

It is immediately scen, however, that ® must be in general a function ®(z,t| < ¢ >, A§) also
of < § > and Ag; namely, in order to control the coherence of the wave packet, it is nceded a
feed-back mechanism, which allows for readjusting the system at any time.

Let us now look with greater detail at the problem of spreading. Two choices are possible,
that is constant or time-dependent dispersion.

a) Constant dispersion
If we require A§ = const., the general relation

8380 = m{E(g) - E@EQ)} (10)

forces the current velocity to assume the "classical” value v = dE(q)/dt = E(v), which is exactly
expression (4) when dAq/dt = 0. Then our states in this case are the unique solution of the
problem. Note that the right member of the last equation is connected to the quantum average
of the position-momentum anticommutator [9].

b) Squeezing

If a time dependence is allowed for Ag, one can ask the following question: are states (9) the
natural generalization of the harmonic oscillator squeezed states? The answer is positive, due the
following considerations.

First of all, a "stochastic squeezing condition” AgAu = Kh/2m is satisfied, where K? =
(4m? /K*) E(G*(€))-

Morcover, if we consider the whole quantum uncertainty product for our states, it is immedi-
ately proved (10}, using Eq.s (4), (8), (10), that

2
(BI85 = m¥(A0P{(Aa)* + (AvP) = K*o + (89 (FAG). )
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We see, then, that the uncertainty structure in this case has the same form as in the harmonic
oscillator squeezing states, with the only diflerence of a rescaled Heisenberg part.
Finally, the dispersion satisfy the equation [10}
& . K% i~-<d>
EﬁAq = A ‘ig— < ¥ Ve >, (12)
which is the natural generalization of that of the harmonic case [9].
Eq.s (11), (12) assure controlled squeezing.

3 Displacement and squeezing operators

One can now asks two questions:
-can we construct states (9) directly in the standard quantum mechanical formalism?
-how we can choice in the whole ciass of states (9) the physically interesting states?
We can answer both questions in the following way (10}
Consider a reference stationary state ¥g, for example the ground state of a physically relevant
potential V.
Consider moreover the standard displacement and squeezing operators

D, = exp{aa' - a’a},
(13)

Sa4 = exp(5(a® - )},

which are used to construct the harmoaic oscillator coherent and squeezed states, and write them
in terms of the position and momentum operators

D. = expl 3 So(t)}ezp{3 Pi}ezp{~ 3 @},

(14)
Saq = explitf a5} + S5,
with
Q=<§>-<{> , P=<p>
(15)
a i a
10 =-gingd . o) = Fu- 2501 &
Then it is simple to verify that the states
Vo(z,t) = (DaVo)(z, 1) (16)
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and o
(DaSag¥o)(z,t) (17)
belong to our class (9) respectively i.: the case of constant dispersion and in the case of squeezing.
This answers not onlv the first question, obviously, but also the second one. In fact, we now

have the following scheme, which will be clarified by the subsequent example.

Given a physical system described by a potential V, we can choice as reference state, for
example, its ground state ¥,.

Applying on it operators (14), we obtain generalized coherent packets, whose centers follow
the classical dynamics ruled by the potential V.

Inserting then the current and osmotic velocity associated to these states in the HIM equation
(6), we obtain the controlling potential & which allows, through the feed-back mechanism, to
retain states (9).

V and ® must not be confused: the first (V), in fact, is the original potential, for example a
molecular one, for which we want to construct generalized coherent states, while the second (®)
simply describes the controlling device, that is it supplies the feed-back prescriptions needed to
retain coherence.

4 Example

We develope now an explicit example.
Putting for simplicity A = m = 1 in the following, let us consider the potential

1 1
Viz)= sza:z + = (18)
and choose as reference state its ground state
¥o(z) = NobaPexp(~ 5wz} (19)

where N is a normalization constant.
Applying on {19) the operators (14), we obtain the generalized coherent states

¥O(z,) = (DoSaeto)(@.) = zerp(RE)exp(iS) (20)
where S is the phase (5) and
R(€E) = —a€? + 2In(at?) + inb, (21)
with a, b suitable functions of w.

Inserting in the HJM equation (6) expression (4), and the osmotic velacity associcted to (20)
through Eq. (8), we obtain for the center the classical equation

d . __ _ 2 - 7(t)
5 <P>=-w (t)<Q>+<q>3’ (22)
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and for the controlling potential the form

o(z,t| < §>,49) = -;.;w’(t):c2 + h(t)z + %% + 9(t), (23)
where 2
(1) = 2o’ - AGT' 2544 L (t) =6(A4)". (29)

We see from Eq. (22) that the center follows just the classical motion associated to the potential
V, Eq. (18), as previously claimed.
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Abstract

Lorentz boosts are squeeze transformations. While these transformations are similar to
those in squeezed states of light, they are fundamentally different from both physical and
mathematical points of view. The difference is illustrated in terms of two coupled harmonic
oscillators, and in terms of the covariant harmonic oscillator formalism.

The word “squeezed state” is relatively new and was developed in quantum optics, and was
invented to describe a set of two photon coherent states [1]. However, the geometrical concept of
squeeze or squeeze transformations has been with us for many years. As far as the present authors
can see, the earliest paper on squeeze transformations was published by Dirac in 1949 [2], in which
he showed that Lorentz boosts are squeeze transformations. In this report, we show that Dirac’s
Lorentz squeeze is different from the squeeze transformations in the squeezed state of light. The
question then is how diffecent they are. In order to answer this question, we shall use a system of
two coupled harmonic oscillators.

Let us look at a phase-space description of one simple harmonic oscillator. Its orbit in phase
space is an ellipse. This ellipse can be canonically transformed into a circle. The ellipse can also
be rotated in phase space by canonical transformation. This combined operation is dictated by a
three-parameter group Sp(2) or the two- dimensional symplectic group. The group Sp(2) is locally
isomorphic to SU(1,1),0(2,1), and SL(2,7), and is applicable to many branches of physics. Its
most recent application was to single- mode squeezed states of light [1, 3].

Let us next consider a system of two coupled oscillators. For this system, our prejudice is that
the system can be decoupled by a coordinate rotation. This i3 not true, and the diagonalization
requires a squeeze transformation in addition to vne rotation applicable to two coordinate variables
[3, 4). This is also a transformation of the symplectic group Sp(2).

If we combine the Sp(2) symmetry of mode coupling and the Sp(2) symmetry in phase space,
the resulting symmetry is that of the (3 + 2)-dimensional Lorentz group {5]. Indeed, it has becn
shown that this is the symmetry of two-mode squeezed states [6, 7]. It is known that the (3 +
2)-dimensional Lorentz group is locally isomorphic to Sp(4) which is the group of linear canonical
transformations in the four-dimensioral phase space for two coupled oscillators. These cannnical
transformations can be translated into unitary transformations in quantum mechanics [7].
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In addition, for the two-mode problem, there is another Sp(2) transformation resulting from
the relative size of the two phase spaces. In classical mechanics, there are no restrictions on
the area of phase space within the elliptic orbit in phase space of a single harmonic oscillator.
In quantum mechanics, however, the minimum phase-space size is dictated by the uncertainty
relation. For this reason, we have to adjust the size of phase space before making a transition
to quantum mechanics. This adds another Sp(2) symmetry to the coupled oscillator system [8].
However, the transformations of this Sp(2) group are not necessarily canonical, and there does not
appear to be a straightforward way to translate this symmetry group into the present formulation
of quantum mechanics. We shall return to this problem later in this report.

If we combine this additional Sp(2) group with the above- mentioned O(3, 2), the total sym-
metry of the two-oscillator system becomes that of the group O(3, 3), which is the Lorentz group
with three spatial and three time coordinates. This was a rather unexpected result and its math-
ematical details have been published recently by the present authors [8]. This O(3,3) group has
fifteen parameters and is isomorphic to SL(4,r). It has six Sp(4)-like subgroups and many Sp(2)
like subgroups.

Let us consider a system of two coupled harmonic osciilators. The Lagrangian for this system
is

L= % {ml:'tf +myis - AT} + B'zd + C’zlxz} , (1)
with
A>0, B >0, 4AB-C?>0. @)

Then the traditional wisdom from textbooks on classical mechanics is to diagonalize the system
by solving the eigenvalue equation

A - m;w’

c B -C;,wz l =0 )

There are two solutions for w?, and these solutions indeed give correct frequencies for the two
normal modes. Unfurtunately, this computation does not lead to a complete solution to the
diagonalization problem. The above eigenvalue equation seems similar to that for the rotation,
but it is not.

Let us go back to Eq.(1). This quadratic form cannot be diagonalized by rotation alone.
Indeed, the potential energy portion of the Lagrangian can be diagonalized by one rotation, but
this rotation will lead to a non-diagonal form for the kinetic energy. For this reason, we first have
to replace z, and z; by ¥, and y; with the transformation matrix

(x.) = ((me/mx)‘/‘ 0 ) (yn ) @
T3 0 (mi/m2)* ) \ 32 )
In terms of these new variables, the Lagrangian can be written as
mim; ¢, . 1
L= l_;-:{yﬂy%}-§{Ay?+3y§+6‘yxyz}, (5)

with

B|= 0 \/m;/mz 0 B

c 0 0 1

(T a0
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The Lagrangian of Eq.(5) can now be diagonalized by a simple coordinate rotation:

(5)=(Sana oma) () ®
with c
tan(2a) = e )

In this Lagrangian formalism, momenta are not independent variables. They are strictly propor-
tional to their respective coordinate variables. When the coordinates are rotated by the matrix
of Eq.(6), the momentum variables are transformed according to the same matrix. When the
coordinates undergo the scale transformation of Eq.(4), the momentum variables are transformed
by the same matrix. Thus, the phase-space volume is not preserved for each coordinate.

Let us approach the same problem using the Hamiltonian

1 p? P 1.2 ’.2 '
H=_{—+==4+Axz1+Bz;+Cx\x2¢. (8)
2{m my

Here again, we have to rescale the coordinate variables. In this formalism, the central issue is
the canonical transformation, and the phase-space volume should be preserved for each mode. If
the coordinate variables are to be transformed according to Eq.(4), the transformation matrix
for the momen:-. should be the inverse of the matrix given in Eq.(4). Indeed, if we adopt this
transformation matrix, the new Hamiltonian becomes

H= Az} + Bz} + Criza} . (9)

1 s a1 1
W AUREIRER
As for the rotation, the rules of canonical transformations dictate that both the coordinate and
momentum variables have the same rotation matrix. The above Hamiltonian can be diagonalized

by the rotation matrix given in Eq.(6).
We can now consider the four-dimensional phase space consisting of variables in the following

order.

(X1, X2, X3, Xa) = (T1, %2, P, p2) - (10)
For both the non-canonical Lagrangian system and the canonical Hamiltonian system, the mode-
coupling rotation matrix is

cosa sina 0 0

_ | —sina cosa 0 0
R{a) = 0 0 cosa sina |’ (1)

0 0 —sina cosa

On the other hand, they have diflerent matrices for the scale transformation. F:r the canonical
Hamiltonian system, the matrix takes the forn.

0 e 0 0
S-— (TI) = n 0 e 0 4 (12)
0 O 0 e”



Here, t' = position and momentum variables undergo anti-parallel squeeze transformations. On
the other hand, for non-canonical Lagrangian system, the squeeze matrix is written as

e 0 0 0
0 e 0 0
S+ ('7) = 0 eo e" 0 . ( 1 3)

0 0 0 e

We use the notation S, and S_ for the parallel and anti- parallel squeeze transformation respec-
tively.

If we rotate the above squeeze matrices by 45° using the rotation matrix of Eq.(11), the anti-
parallel squeeze matrix become

cosh#n sinhy 0 0
_ | sinhnp coshyp 0 0
S-(n) = 0 0 coshn —sinhpy (14)
0 0 —sginhn coshy
and the parallel squeeze matrix takes the form
coshn sinhy 0 0
__ | sinhy coshp 0 0
S+(n) = 0 0 coshnp sinhyp (15)
0 0 sinhn coshp

Now the difference between these two matrices is quite clear. The squeeze matrix of Eq.(14) is
applicable to two-mode squeezed states of light (7, 9, 10].

As for the squeeze matrix of Eq.(15), let us consider the Lorentz transformation of a particle
along the z direction:

z' = (coshn)z + (sinhy)t, ¢ = (sinh7)z + (coshp)t. (16)
Then the momentum and energy are transformed according to
P’ = (coshn)P + (sinhn)E, E' = (sinhn)P + (cosh ) E. (17)

If we regard z and ¢ as the two coordinate variables, the four- component vector of Eq.(10) takes
the form

(Xh x21X3)X4) hd (Z,t,P, E)‘ (]8)

'Thus, the parallel squeeze matrix performs a Lorentz boost. According to classical mechanics
of coupled harmonic oscillators, this transformation appears like a non-canonical transformation.
Then, is the Lorentz boost 2 non-canonical transformation? The answer is NO.

We would like to show that the Lorentz boost is an uncertainty- preserving transformation
using the covariant oscillator formalism which has been shown to be effective in e..plaining the
bhasic hadronic features observed in high energy laboratories {11]. According to this model, the
ground-state wave function for the hadron takes the form

Yo(2.t) = (%)1/2 exp {—% (z2 -+ tz)} , (19)
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where the hadron is assumed to be a bound state of two quarks, and 2 and ¢ are space and time
separations between the quarks. If the system is boosted, the wave function becuines [11}

Yn(z,t) = (1)1/2 exp {-% (e‘z"uz + 7 ,‘} X (20)

n

where

u=(z+t)/V2, v=(2-~1t)/V2

The v and v variables are called the light-cone variables [2]. The wave .unction of Eq.(19) is
distributed within a circular region in the uv plane, and thus in the zt plane. On the other hand,
the wave function of Eq.(20) is distributed in an elliptic region. This ellipse is a “squeezed” circle
with the same area as the circle. The question then is how the miomentum-energy wave function
is squeezed.

The momentum wave function is obtained frem the Fourier transformation of the expression

given in Eq.(20):

1 .
000,20 = (57 ) [ ¥z, 0) exp {~i(quz — qot) . (21)
If we use the variables:
Gu=(g0—a:)/V2 g =(00+q)/V2 (22)
In terms of these variables, the above Fourier transform can be written as
1 .
&n(q:,G0) = (Zr-) jal)n(z,t)exo{—z(quu + gyv) }vudv. (23)
The resulting momentum-energy wave functior. 1s
1\/2 Ly opa, o)
$n(g21 o) = (;;) exp{—§ (g} +e %) - (29)

Because we are using here the harmonic oscillator, the mathemetical form of t}:e above momentum-
energy wave function is identical with that of the space-time wave functio.a given in Eq.(20). The
Lorentz-squeeze properties of these wave functions are also the same. This certainly is consistent
with the parallel squeeze matrix given in Eq.(15), and the Lorentz bnosts appears like a non-
canonical transformation.

However, we still have to examine how conjugate pairs are chosen from the space-time and
momentum-er.2ergy wave functions. Let us go back to Eq.(21) and Eq.(23). It is quite clear that.
the light-cone variable u and v are conjugate to ¢, and g, respectively. It is also clear that the
distribution alung the ¢, axis shrinks as the u-axis distribution expands. The exact calculation
leads to

<ul>~gd>=1/4, <v*><¢>=1/4 (25)

Planck’s constant is indeed a Lorentz-invariant quantity, and the Lorentz boost is a canonical
transformation.

Because of the Minkowskian metric we used in the Fourier transformation of Eq.(21), the non-
canonical squecze transformation of Eq.(15) becomes a canonical transformation for the Lorentz
boost. Otherwise, it remains non-canonical. Then, does this non-canonical transformation play
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a role in physics? The answer is YES. The best ki.own examples are thermally excited oscillator
states [12] and coupled oscillator system where one of the oscillator is not observed (13, 14]. These
systems serve as simpl