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Abstract

A new type of time-energy uncertainty relation was proposed recently by Anandan
and Aharonov. Their formula to estimate the lower bound of time-integral of the energy-
fluctuation in a quantum state is generalized to the one involving a set of quantum states.
This is achieved by obtaining an explicit formula for the distance between two finitely

separated points in the Grassman manifold.
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1. Introduction

We first review briefly the conventional time-energy uncertainty relation in quantum
mechanics. Let A be an ovservable without explicit time-dependence and [y(t)) be a
normalized quantum state vector obeying the Schrédinger equation with a hermitian

Hamiltonian H. If we define AA and 7,4 by

A = JGOTATH0) — GOIARD) )

= gwolape)| a4, )
and take the equation

d 1 , .

& WA = 2O 14, ] 1p(0) ®)

into account, we are led to the uncertainty relation [1]
h
TAbOH > o (4)

The quantity 74 is interpreted as the time necessary for the distribution of (¥ (t)|Aly¥(t))
to be recognized to have clearly changed its shape.

In contrast with the result given above, Anandan and Aharonov (2] have recently
succeeded in obtaining quite an interesting inequality. They consider the case that the

|¥(t)) develops in time obeying

(D) = HOWW) Q
WOWO) =1, ©)

where H(t) is an operator which is hermitian and might be time-dependent. They con-
clude that
t2
AE(t)dt > hArccos(|(¥(t) ¥ (t))) , (7)

t

where AE(t) is given by

AE(t) = \J(WOIHE () — (W) HE)p () . (8)

The inequality (7), which we refer to as the Anandan-Aharonov time-energy uncertainty

relation, has been derived through a geometrical investigation of the set of normalized
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quantum state vectors. The r.h.s. of (7) can be regarded as the distance between two
points in a complex projective space.
Here, we seek the generalized version of (7). We consider a set of N orthonormal

vectors {|¢i(t)) 14 =1,2,..., N} satisfying
<¢l(t)|¢7(t)> = 6ij H 21] = 1121"'aNa (9)

each of which obeying the Schrédinger equation (5). We define N x N matrices A(ty,12)
and K(t,t2) by

Aty ta) = (aii(ty, t2)) ,  aiyty, t2) = (Wa(ta)[¥;(t2)) (10)
K(ty, ) = At(t1, t2) A(ty, ta) (11)

and k;(t1,t2),1 = 1,2,..., N, to be the eigenvalues of K(¢,,t;). Defining the generalization
of (8) by

AEN(t)=\IVZ( ()| H (£ [9a(E) Z (s (I H ()N (12)

i=1 ij=1

we find that A€y (t) satisfies

AEN( )dt > h Z {zlhrccos\/n,(t],tg)}2 : (13)

The inequality (13) can be written in an operator form as

t)

[ VEEOHO, IO, POl

(14)
> \/Eh\/'ﬁ'({Arccos\/P(tl)P(tg)}2)
where P(t) is defined by
N
= Z_: FAONURGIN (15)

and Tr denotes the trace in the Hilbert space. The result (13) is obtained through a

geometrical investigation of the Grassmann manifold Gy mentioned below.
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II. Distance formula for the Grassmann manifold

Civen a Hilbert space h,we consider vectors [¢;),i = 1,2,..., N,belonging to h and

satisfying (;|¢;) = 6;;. We call the set

V= (W)l)all/)‘Z)aale)) (16)

an N-frame of h and the set
[¥] = {Yu:ue U(N)} (17)

an N-plane of h,where Vu is defined by
N N N
Vu = (3 [aua, D [Widuse, -, D [¥ehuen). (18)
i=1 j=1 k=1

It is clear that the [¥] and the projection operator P = S, |;)(¢i| are invariant under
the replacement ¥ — Wu. We denote the set of all the W’s of h by Sy. Then the set Gn

defined by
Gn :{[\II]:‘I/ESN} (19)

is known to constitute a manifold of complex dimension N(dim h — N) and is called the
Grassmann manifold.

To an N-frame U (t) = (Ju (L)), [¥2(t)), - - -, [¥n(t))) € Sn,0 < t < 1, there correspond
an N-plane [¥(t)] € Gn and a projection operator P(t) = SN () (t)]. Since the
eigenvalues of P(1) are equal to those of P(0) including multiplicities,there exists a unitary

operator W such that
P =WPOW, W=¢Y, Yi=Y (20)

We define the distance d([¥(0)], [¥(1)]) between two points [¥(0)] and [¥(1)] of the Grass-

mann manifold Gy by

A, [2 M) = Min Y], (21)

where ¥ is the set of hermitian operators specified by P(0) and P(1) in the following way:

v ={Y:Y =Y(P(0), P(1)) = =Y (P(1), P(0)) = Y',e"¥ P(0)e' = P(1)}.  (22)
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After some manipulations,we find that the distance is given by the formula

dﬂwwﬂJWUH%=JZZXAWdB¢EV, (23)

where k; is defined below (11) and satisfies 0 < k; < 1.

We also find that the above defined distance in Gy satisfies the property of distance:

d((¥], [2]) = d([®},[¥]) 2 0, (24)
d([¥),[2]) =0 <= [¥] =[], (25)
d([¥],[®]) < d(|¥], [E]) + d([=], [®]), (26)

for any [¥],[®],[Z] € Gn.

III. Time-energy uncertainty relation
The projection operater P(t) is defined by (15) and lws(1)),5 = 1,2,..., N, develops
in time obeying (5). We then have

PU+M:P@+%WMJWM

(dt)? dH(t)
2(ih)? { hi , P()) + (H (1), [H(), p(t)”} n

(27)

When [¥(0)] and [¥(1)] are close to each other, x;,3 =1,2,..., N, are nearly equal to 1.
Noticing that (Arccos\/k)* = 1 — & for Kk = 1, we see

d([ (1)), [¥(t + dt)]) J Nl—n, (28)

1

where k;(t)’s are obtained from P(t) and P(t + dt) by similar procedures to those of

previous sections. Since, in the above case, we have TrP(t) = N and

1ﬂPmPu+m»:§me (29)
(28) can be rewritten as
()], (¢ -+ db)]) = /2Te(P(E){ P(t) — P(t+dt)}). (30)
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Now we have

A o), 19+ do)) = 2 P W, [H ), POT)

_ |—‘£t—|\/Tr (P(&), HO|H(), PR)])

[

= ||dP(t)

(31)

It can be easily seen that the r.h.s. of (31) is proportional to AEx(t) defined by (12). Now

d((¥ (@), [¥(t + dt)]) = %AEN (t)]dt|. (32)

For finitely separated [¥(t;)] and [¥(t2)] in G, the triangle inequality (26) implies

we are led to

[ aeuoar> —héd([\v(tln, (W (t)]), ts = 11, (33)

The formula (23) then leads us to (13) or (14). For details , see [3).
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