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Abstract

Quantum macroscopic motions are investigated in the scheme consisting of N-number of
harmonic oscillators in terms of ultra_power representations of nonstandard analysis. Deco-

herence is derived from the large internal degrees of freedom of macroscopic matters.

1. Introduction

How to describe motions of macroscopic matters in quantum mechanics is not only a very

interesting problem but also a very important problem to develop the present situation of theoret-

ical physics. Before going into the details we shall start from the question "What are macroscopic

matters?". One may characterize them in terms of the following three properties:

(1) The number of constituents N is very large and cannot be precisely counted in measurements.

(2) Every measurement of energy E of macroscopic matters is accompanied by experimental mar-

gin of uncertainty AE and an enormous number of different quantum states are contained within

the energy uncertainty.

(3) Macroscopic matters are usually classical objects. This means that the density matrices de-

scribing their quantum states have no interference terms (decoherence mechanism exists.).

The first character indicates that we have no way to measure the precise number of the con-

stituents in realistic measurement processes. Furthermore we may say that the precise determi-

nation of the quantum states for all the constituents are impossible. This property has a close

connection with the second character. In usual measurements the energies of macroscopic matters

are not quantum mechanical order (O(h)) which disappears in the limit of li -. 0 (limn_o O(h)).

It means that every measurement of the energy of macroscopic objects may contain some uncer-

tainty AE which is in the order O(h). How to introduce these features in quantum mechanics is

the main theme of this paper.

An interesting possibility is to describe the macroscopic matters on the Hilbert spaces extended

by nonstandard analysis,Ill where infinity (o_) like N _ oo and infinitesimal (_ 0) like h --* 0

are treated rigorously. It should also be pointed out that quantum states of N constituents

which may be described by the direct product of the quantum states of the constituents such

that _I/g(rl, ..,rN) : I-IN=lCE_(ri) become ultra-products in the limit N _ c_. Then we can

represent the macroscopic states in terms of ultra-power representation of nonstandard analysis

by introducing some equivalence relation based on the ultra-filter on the ultra-products.

From the discussions of quantum mechanics on nonstandard spaces[2,3,4] we know that

(I) there exist new eigenfunctions called as "ultra-eigenfunctions" which are not described by the

301



superposition of eigenfunctions on usual quantum mechanics on real number space (7_), and

(II) in the limit h ---* 0 we can introduce infinitesimal energy uncertainties AE which are in the

order O(h). It is important that the introduction of such energy uncertainties is expressed by the

monad (infinitesimal neighborhoods) of real numbers on nonstandard spaces.

Now we may expect that we can describe macroscopic states in terms of new eigenfunctions

(ultra-eigenfunctions) containing the energy uncertainty AE ... O(h). In this paper I shall present

a solvable model to realize the above consideration.

2. Model

Let us investigate a system consisting of N-harmonic oscillators which are bounded around
N 2

a fixed point X0. The Hamiltonian is given by HN = _ Ei=l Pi + _ N - zj) 2 +
K N X 2-- _=x (x_- 0) , where m the mass of the constituents, k and K the oscillator constants, p_ and x_,2
respectively, stand for the momentum and position operators of i-th constituent. This Hamiltonian

describes the bounded N-oscillator system moving in the harmonic oscillator potential of which

center is at Xo. Our interest is focused on the relative motion between the fixed point X0 and the

center of mass(CM) of the N-oscillator system, because the motion will become the observable

as the motions of the macroscopic system in the macroscopic limit N --* c¢. The Hamiltonian

is separable in terms of the following choice of coordinates; R N = X N - Xo, pNn = [nx,_+l -
n 1 N

(_i=1 zi)]/_/n(n + 1), for n = 1,2, ..., g - 1, where X_ = _ _i=1 z_ is the CM(center of mass)
coordinate of the N-oscillator system. We can rewrite the Hamiltonian as

__ N-1HN _ 1 (pg)2 + (RN) 2 + _ H,, (1)
2raN

rt=l

H_ 1 2 1where ,., = y-_p,, + _(k + K)p_. The eigenfunctions for (1) are obtained as follows; HNqj N =

(ER + Eg:; where

N-1

 PN(ng, [P-])=  R(RN) 1-I (P-) (2)
n= 1

with [p,] _- [pl,p2,'" ",PN-_] , which satisfy HnCR = Earn and H,¢t. = e,¢t. with ER =

(nR + 1/2)_Rh (wn = _/KN/MN = V/'-K/m) and e,_ = (l,, + 1/2)wh (w = _/(k + g)/m). Note

that the eigenvalues of 'H N and E, H, are, respectively, given by E N = En + _ and e_ =--

N-1 (L + ½(Y 1))wh with L N-1= = E,=l l,_ and all the energies are of the order of O(h), i.e._n=l £n

E N _ Es _ _ _ O(h). We see that Es and e_ are not enough to specify the state given in (2)

uniquely. That is, there are many different states having a fixed value of e_, of which multiplicity

is evaluated as W (N, L) = (L+N-2)l .Ingeneralweshouldwriteeigen f unctionsspeci f iedbyEN and
LI(N-2)I

¢_¢ in terms of the suprepositons of those different states such that

L L N-1

qt_(EN;RN,[p,])=¢ER(RN ) _'_... _ 6_i__,.,L a([/,]) 1-I ¢'-(P,*) (3)
11:-0 |N-I=O lrt:l

with [l,] =- [l_, 12,..., IN__], where a([/.]) are the coefficients satisfying the constraint required from

the normalization _=0" • •_:L,N_,=0 6_u__-: _.,L la([/,])l_ = 1.
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3. Oscillator system in nonstandard spaces

Now let us study the limit represented by N _ c¢. The state given in (2) becomes an infinite

direct-product

 ER,L(R; =  ER(R) l-I (4)
n=l

The Hamiltonian (1) is modified as/2/: HR + _.=1/2/-, where in order to evade the divergence

_.=1 5 tuz in the limit of N --* oo/2/,, is taken asarising from the sum of zero point oscillations g-1 1

/:/. H.-'= _tu_. We have

(5)

where HR¢ER(R) = EntER(R), and CL : Lt_ with L = T__=I l,.. Note that, since l,, E J_f for

Vn E Af, then L E iV'.

Following the expression of (3), we can write the most general wave-functions for the macro-

scopic object characterized by the CM(center of mass) energy eigenvalue ER as

• (ER, [CL([ln])]; R, [p,_]) : ¢ER(n)¢([CL([l,_])]; [Pn]), where

L! L L

¢([CL([I.lll;[P_I) = __. __. __. ""6E.=I,.,L Cn([l.l) 1-I ¢'.(P-),
L:011=012:0 r_:l

(6)

L l is an arbitrary natural number (L! E Af) and the normalization condition is given by
EL! x-_L L

L=O z-_h=O _-:_12=0"""_,,=1 i,,,L ICL([In])[2 : 1. The expectation value of the total energy is obtained
y-,L! X--,L L

as < E >: ER + AE([CL]), where AE([CL]) -- Z-.L=O _1=0 _l_=o" " "6_=,Z.,L ICL([I,*])I 2 ¢L.

Now let us consider measurements of the CM energy. When we try to observe it by using

a photon as a probe, we have to measure it through the interaction of the photon with the

constituents. This means that we cannot measure the CM energy directly and then we have

to take account of the internal motions of the macroscopic object. In realistic measurement

processes for macroscopic objects, which will be carried out by using a photon flux composed of

many photon, we should consider that direct observable is the total energy rather than the CM

energy. In those measurements the total of the internal energy AE([CL]) -< E > - < ER > may

be understood to be the errors for the CM energy. Note that the errors should not be confused

with those arising from inefficiencies of detectors. We may conclude that we have always to take

account of the existence of these errors in the observed CM energies when we discuss the CM

motions of macroscopic objects which are studied in the classical mechanics.

In nonstandard analysis the error must be infinitesimal. Then as we take into account that

the center of mass energy ER and its angular frequency wR are observables represented by real

numbers, the possibility allowed here is only the following choice; "nR E *N'-Af, L E ]q', h _ 0."

/,From now on we define the macroscopic limit st,,,,_o by taking

N -1 _0 and h'_O. (7)

Let us investigate the equivalence relation introduced on the ultra-products. We can explicitly

write this equivalence relation for the macroscopic objects by using the ultra-filter in nonstandard

analysis as follows; CL([P]) : l-[.=1 ¢;.(P) with eL = _. l.t_a and CL'([P.']) = I'[.,=1 ¢1', (P.') with
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eL, = _,, I_,?UZ are equivalent (_---.,,_o), if and only if the number of n E .hf satisfying l,_ _ 0

and that of n _ EAf satisfying 1,¢ _ 0 are finite numbers. That is, it is represented as

eL +''4macro ¢I./, if and only if the sets of numbers defined by

(n EAf; l,, _ O) and (n' EAf; In, _ O) are finite sets of Af.

The physical space for the macroscopic motions is represented by S,,_._o(*7"l) = "7"l/_--*.,o_o •

Let us start from the most general expression of ultr_eigenfunctions satisfying

/:/_c(R, [p,_]) _,,_o E_Pc(R, [p,]), (8)

where st,,_o(E) E 7_ and _ 0, that is, it is observable in the classical limit. In the above equation

_c is factorized with respect to the CM motion and the internal ones as @c = ¢¢(R)¢([p,,]). Since

E have the freedom of the order of O(h), the general expression for the internal motions is

given as ¢([CL([ln])]; [/9]) -- Z-,L=0X"L!z-,h=O''X"L _t.L =0"" 6_=, t.,L CL([ln]) II,,=l ¢ln (P-), of which energy

expectation value is obtained as

L! L L

AE([CL([I,])]) - _ _ .. _ " " 6_._,,,,,L ICL([l,*l)lZeL "_ O(li) •
L=O lx=O 1. =0

(9)

We can derive the equation for the CM motions by operating the internal trace operation repre-

sented by the partial trace operation for all the internal variables (Vp), that is,

< ¢([CL([1,,I)I; [p]),H_c(R, [p]) >,_t,_= (HR + AE)_c(R) _-.,,_o HR¢c(R). (10)

As was shown in Ref.s[3,4], it is required for us to solve the equation only in the classical

region satisfying st,,_o(E-AE-V(R)) E 7"¢.+.In order to obtain stationary states represented by

¢bER (R) = Ne iW(R)/n, where N denotes the normalization constant, we can reduce the Schroedinger
.. t_ aaW 1 (dW_2 1 ^ 2

equation to that for W(R) as ,_'-_-_r _,,_-_o y-_-g-ffj + -_KR - (E - AE). This equation has

already solved in Ref.s 3 and 4 and is given in the classical region as

W(R) _ wE'aE(R) + l ihln(uEd'AE(R)) (11)

where Wff'tXE(R) = fR _/2M(E- AE- V(R')dR _, uEd'tXE(R) = _/2M(E- AE- V(R)) and

V(R) = _[(R 2. In the non-classical region we may take _c = 0. (In details for the deriva-

tion of _ffR and their orthogonality, see Ref.s[3,4].) It should be stressed that pc ER 2=l_c I inthe

classical limit gives the exact distribution for the ensemble of the particles moving in the potential

V(R), which is expected from classical mechanics.

4. Decoherence mechanism of ultra-eigenfunctlons

As was shown in the last section, the most general expression of the ultra-eigenfunctions has

the [CL([/,,])]-dependence. Through the observations of classical quantities written only by the

CM(center of mass) variables, we can not fix the coefficients [CL([/,])] at all. In other words

the CM energy is determined only within the error AE([CL([I,_])]), for which only the constraint

st,,,,_o(AE([Ct,([ln])])) = 0 is required. Therefore, we may introduce integration procedures

304



with respect to the coefficients[CL([I,])] in order to take off the apparent dependenceon those
unobservableparametersin the densitymatrices. It shouldbestressedthat this integration stands
for the averageover undeterminedenergyuncertainties AE and then it haswell-definedphysical
meaningandits introduction is not adhoc. Let usstudy this situation in the densitymatrix for the
followingsuperposedstateof two ultra-eigenfunctionswith differentenergies,st,_,_o(E - E') _ O,

_E,E';AE __ CE_rc_,T,E,AE -_ CE'--c_E"AE' where ICEI 2 -t- ICE'I 2 -_ 1. The density matrix is given by

[_ _* _IIE'AE_DE"AEt h.c.).p_,_,;AE= I_EI2p_,E;AE+ IC_,I_p_',E';AE+ _'E_'E,,=_ =_ + (12)

In order to obtain the density matrix for the CM motions which is independent of the coef-

ficients, we introduce the integrations with respect to the undetermined complex coefficients

[CL([I,])]. The number of the coefficients is counted as l_ - _LL/___0W(N,L), where W(N,L)

is the number of the different combinations for [/,]. The multiplicity W is same as that of the

equivalent internal wave-functions eL([/-]). Then we can rewrite the internal state ¢([CL([I,])])

as ¢(I; [p,]) = E_I C_¢I(Lo-]), where [CI] =- [C1, C2," ", Cw] are the new coefficients and Cs(Lo])

stands for the internal wave-function corresponding to the number I. Of course, they satisfy the

relation < Ca, ¢I, >= 6m'. The energy expectation value is rewritten by AXE([C1]) = E_I ICII2el •

Using these coefficients, we can write the integrations with respect to [CI] as follows;

W

_E,E' __ H / .12f, _t1"v _ E.E';AEtt _,I_k_l)Pc

I=1

(13)

where f d2CI stands for the integrals with respect to the real and imaginary parts of CI and G(CI)

is the metric function for (5'i satisfying the condition st,,,_o(I]_=l f d2_(C1) ¢vEI,=116'I'12)= 1 so as

to derive the normalization condition st,_o (Tr(_3E'E')) = 1. Since the metric should not depend

on the phases of (7I, we take as G(Cx) -- _(ICI[) > 0.

In the density matrix the integrations are written down as follows;

]QE]_E'* i* 'WE'aI_'R" W _'a_'R'" *1-I d_CL_(C')_,_,C"C;" / _.,,_:,,.,,E,.,,_,,,-,,x _'_' °, ' '- ,,' ' "¢,,([,o])¢i,,(L4),
I I' *" YUa _n)ua tn) (14)

where AxE = _]1, IC1']2el ' and AXE' = _]I,, ]CI"]2el ''. The diagonal term with E = E' is written as

1 f d2CiQ(lCs])[ _ ICvl=l¢,,l= + _] _] CvC;;,¢I,¢;,] INEI= (15)
H _ I' I' I"#I' / E,AStr,'_ E,AE' tn,V ua tn)ua _,r_l

The second term becomes zero because of the integrations with respect to the phases of Cs =

{C_le _ from zero to 2r. Then we can evaluate the diagonal term as

gt
_E'E'R / dlC,l_(IC, I)[_ ICi,121¢,,I_] (16)o _ , Lol)= II W,_(R)"

I P

Now let us estimate the interference terms. Taking into account that differences with the order

O(h) having no contribution in the st,,,o_o- operation are allowed in the expression of ¢_(R) and

also the order of the error AXE is O (_), we can use the following equivalent expression for W_'A_(R)
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in the classicalregion0 < st,_-_o( E- V (R ) ) e T_+; WE'_E (R ) _,_o f R _/2M (E - V (R_ ) )dR ' -

½AE([CID fR @E___(re)dR," Then we can write the off-diagonal term as

RER_.
pE'E' (R, [Pl) _"_o II/ d2C'g(C') __, _ C,,C_*,

I

x e-_ Y],'I'IC"I'w(I(E;R)-I(E';R))ei_(W_(R)-W_(I_))¢I,(_O])¢I,,([O])* , (17)

where uE(R) = _/2M(E- V(R)), WE(R) = fn _/2M(E- V(R')), f(E; R) = fR _dR'

and uE'AE(R) _rrmcro uE(R) are used. As same as the second term of the diagonal elements, the

terms with F -_ I" disappear by the integrations over the phases of CIs. The remaining terms

with F = I" include the following integrals with respect to IClls;

I-i f dlC,Ig(IC,I)e''°'l°'l" _ IC,'l2, (181
I=1

where al = -_(f(E; R) - f(E'; R))aJ _ 0 in the classical region. The normalization can be

rewritten as Eg,:,(< IC_,I_ > rI_, < 1 >) = (< 1 > )(E_,=_ < IC_,l2 >) = 1, where

< AI >=- f dlCIIg(IC_I)A_.Taking into account that this equation must be satisfied for arbitrary

number of W _ Af, it is reasonable to impose the following relations EI,=1 < ICI'I 2 >= 1 and

< 1 >= 1. We obtain the relations q1 - I < eil"_lc_l_ > I < < 1 >= 1 and I_=1 <

_¢ 12ICI'[ 2ei1'"'lc_'12 > I < }2I'=1 < 113I, >= 1 because of G(]CII) > 0 and Vas¢ 0 and ¢ 0 for

vIE Af in the classical region. We estimate the integrations as

flz

I_ (< ICi'l"e"'°'lc''l" > 1-I < eilallcll' >)1 < (q.,.,,)_'-"_,,,.,,_o 0, (19)
P=I I#P

where q,_ denotes the maximum number among qis and the last equality is derived from the

fact that q,_ < 1 and l_ goes to infinity in the macroscopic limit. ;Prom the above result we

know that the magnitudes of the off-diagonal terms in _3_'E' are infinitesimal and the contributions

from the off-diagonal terms are always infinitesimal in the evaluation of expectation values for all

operators (O) which are written only in terms of the CM variables. (In details, see Ref.5.)

5. Remarks

There is no space enough to explain the coherent states reproducing the classical trajectories

of the CM motions.We may conclude that the quatum states of macroscopic objects are well

described in terms of the ultra-eigenfunctions of quantum mechanics on nonstandard spaces. [5]
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