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Abstract

Within the frame of the recently introduced phase space representation of non relativistic

Quantum Mechanics, we propose a Lagrangian from which the phase space Schr'6dinger

equation can be derived. From that Lagrangian, the associated conservation equations,

according to Noether's theorem, are obtained. This shows that one can analyze quantum

systems completely in phase space as it is done in coordinate space, without additional

complications.

In this paper, we make use of a recently introduced phase space representation of non relativistic

Quantum Mechanics[l] which complies with the requirements for a quantum representation. This

allows the researcher to investigate quantum dynamics in the same dynamical space in which

classical dynamics is commonly studied. Some advantages of this approach is a better comparison

between quantum and classical dynamics, a better understanding of quantum effects and the

possibility of analizing quantum systems completely in phase space in the same way as it is done

in coordinate space, without the complications found in other approaches. [2, 3]

In this approach to non relativistic Quantum Mechanics in phase space, the operators associ-
ated to the momentum and coordinate operators are/5 _ p/2 - ihO/Oq and Q _ q/2 + ihO/Op,

respectively. As expected, these operators do not commute with each other, in fact, [(_,/5] = ih.

Then, the phase space Schrhdinger equation is given by

a _ -in_ +v +in <rl¢_>/_(rlct) = _m
(1)

where P = (p, q) denotes a point in phase space and (F [ Ct) denotes the phase space wave function.

This is the equation which governs the dynamics of the phase space wave packet and should be

solved in order to find eigenfunctions, eigenenergies, etc.

Worth mentioning is the set of phase space eigenfunctions found for the harmonic oscillator,

(from here after, we use dimensionless units)

fel/4:o, o)e_j x,[_(1+ ]
io_pq]H.(r; _) (2)

functions which involve the phase space version H.(F; a) of Hermite polynomials, with recursion

relationship H_+I(F; a) = 2u(P; _)H,(F; _)-4n_H,__(P; _), where u(F; a) = (1/2 +a)q-i(1/2-
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a)p, and -1/2 _< a _< 1/2. These polynomials have similar properties as the usual one-variable

Hermite polynomials but now in phase space. This is in contrast with other sets introduced in

previous works. [4]

The wave function in coordinate space ¢(q) can be recovered from the wave function in phase

space ¢(P; a) by means of the projection ¢(q) +_= fJ_ exp(ipq/2)¢(P; a)dp, and the wave function

in momentum space ¢(p) can be obtained from the wave function in phase space by means of the

projection ¢(p) = f+_ exp(-ipq/2)¢(V; a)dq

The diagonal matrix element of the quantum probability conservation equation is

0 CO1 0 oo ,_-1 Ql_,_-_-i
_(rl_lr>- aq2[(rlP_lr>+(rlpPlr)]+_v_.(rl Ir> , (3)

= 1=0

where f3 denotes the density operator, and where we have assumed that the potential function

can be written as a power series in its argument, V(q) = _=0 V,,q". Note that Eq. (3) is a

combination of the corresponding equations in coordinate

0 l[(qlb_[q)+(q[_blq)] , (4)O(ql[_lq)- Oq2

and momentum

o o oo ,_, O,'i,O"-'-'
_(pl _ Iv>= _ ]Cv. ]C<pl Iv> , (s)

rt=l l=O

spaces, providing an alternative description of quantum dynamics.

For a density operator of the form _ = E¢,x P(¢, X) [ ¢)(X [, we introduce the Lagrangian

+ (6)
¢,X

where ¢ and X are wave functions in phase space. By means of the methods used for continuous

systems,J5] this Lagrangian leads to the Euler-Lagrange equations

6L _, OL p2 COL ^, ^ OL
a_ + Oz--_+ OP2---_+ V (q)o¢-_)¢ - 0 , (7)

and

COL _, OL p20L ^, ^ cOL
cOx--:+ a(_'x)-----:+ co(P_x)*+ v (q)co[,2--(-_)x],- o , (s)

equations from which the Schr6dinger equation and its complex conjugate in phase space are
obtained.

In order to obtain the conservation equations derived from this Lagrangian, we make use of

Noether's theorem,[5] which leads to

col _"cOf_ .cO¢ i¢cOx._
cOx - _]P(¢,X) 1.0-t_2X _xx 2 az]

¢,X

. .]+ -_ (P_x)°-x'°P2¢_ +-_z°xp2¢_ ¢o(^_oxx)

1 [__ _ ¢cO(_ "} dL+ _ (f_x)* *°f_¢ )*- X _ + _'¢- dx ' (9)
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where x is any of the variables t, q or p.

Now, Eq. (9), for x = t, leads to

01 P
_t_( rlg_lp>+_< IP(9_+_9) IF>

a _ "-1 O'//#Q"-'-' 09(0^
op _ v. _ _(r I I r) = _(rl --_-p I r)

n= 1 1=0

(10)

For x = q, Eq. (9) leads to

O1 15. IV)
0,:)q oe n-1

gp _ u. E _(r I Q'(P - P')_O "-'-_ I r/= 2_(r I P(_)/_ I r/ ,
= 1=0

(11)

and, for x = p, Eq. (9) leads to

01

a_(r I (Q - Q')_ Ir) + _(r I P [(Q - Q')_ + _(Q - Q')] I r)

o --'Ep v,,_ _(r I 0'(0- I r) = 2_(r I P_lr)
= 1=0

(12)

It has been pointed out[l] that the classical analog to the quantum density (r I _ I r) is

the classical density p(F; t), so, we can ask for the classical analogs to the quantum conservation

equations derived previously. These classical analogs are obtained by taking the time derivative

of the densities of interest and combining the resulting equation with Hamilton's 15 = -OH/Oq,

(1 = OH/Op, and Liouville's Op/Ot = -pOp/Oq- F(q)Op/Op, equations. The classical energy

conservation equation so obatained is

_--tHp(F;t) + ff--qpHp(F;t) + _---pF(q)Hp(F;t) - OV(q;t)Ot
p(r; t) (13)

Note the close resemblance that the above equation has with Eq. (10), the difference being

the symmetrization of the classical products Hp(P;t), pHp(F;t), F(q)Hp(F;t), with F(q) =

- _._=l nV.q r'-l, and [OV(q,t)/Ot]p(F;t)

The conservation equation for the momentum density pp(F; t) is

pp(r;t) + _p p(r;t) + F(q)pp(r;t) = 2F(q)p(r;t) , (14)

which is the classical analog to Eq. (11). Note that the quantum density corresponding to

pp(P; t) is _(P I (15_ /_,)_ I F), the quantum density corresponding to p2p(F; t) is _(F [

P[(P- P*)b+ _(P- P*)] IF)/2 and _=1 v. z,"__-o'_(r I Q'(P - P*)_@-'-I I r) is the quan-

tum analog corresponding to F(q)pp(P; t). It would be very difficult to gess the correct quantum

densities without the help of a Lagrangian and Noether's theorem.
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The conservationequation tbr qp(F; t) is given by

qp(r;t) + p(r;t) + F(q)qp(r;t) = 2pp(r;t) , (15)

which is the classical analog to Eq. (12). Note that the quantum density corresponding to

qp(F;t) is N(F [ ((_- Q*)_ [ F), the quantum density corresponding to pqp(F;t) is N(F [

P [((_- (_*)t_ + t_(Q - (_*)] [F)/2 and _'=1 is the quan-

tum analog corresponding to F(q)qp(F; t). It would be very difficult to gess the correct quantum

densities without the help of a Lagrangian and Noether's theorem.

With these results, we can see that one can analyze quantum systems completely in phase space

and in the same way as it is done in coordinate space, without the need of further complications,

increasing our confidence in this representaton.
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