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Abstract

The propagation of an intense femtosecond pulse in a Raman-active medium is analyzed.

An analytic solution which describes in explisit form the evolution of the light pulse is

derived. The field of an intense light wave undergoes a substantial transformation as the

wave propagates through the medium. The nature of this transformation can change over

time scales comparable to the period of the optical oscillations. As a result, the pulse

of sufficiently high energy divides into stretched and compressed domains where the field

decreases and increases respectively.

1 Introduction

The physics of interaction of intense ultrashort light pulses with nonlinear media has attracted

interest because of progress in subpicosecond-range laser technology and the attainment of laser-

beam power levels of terrawatt range (see, for example, [1]). The light pulse dynamics and the

medium evolution in an intense field differ qualitatively from the usual picture drawn by standard

nonlinear-optics perturbation theory. A fundamental distinctive feature of ultrashort pulses is

that their duration is shorter than the time scale of the response of the medium, so the interaction

definitely occurs in a coherent regime. The standard approximation of a slowly varying amplitude

and a slowly varying phase of the field becomes ineffective. A description of the interaction based

on the actual (instantaneous) field values is appropriate [2].

The Raman-active media can be effectively excited by a single femtosecond pulse because its

wide spectrum initially contains intense Stokes and anti-Stokes components of the field [3, 2]. The

qualitatively new interaction regime, so-called self-scattering, occurs for light intensities much

lower than the threshold ones for ordinary stimulated Raman scattering developing from sponta-

neous noise [4]. The estimations testify to the fact that the effective excitation of high vibrational

levels and even the dissociation of molecules in the field of an ultrashort electromagnetic pulse

can be observed using modern femtosecond lasers [5].

On the other hand, the shape and spectrum of femtosecond pulse should undergo a substan-

tial transformation as it propagates through the Raman-active medium. The description of pulse

evolution should take into account a substantial redistribution of the medium level populations

during the pulse duration that results in different interaction regimes for different pulse fractions:

either absorption due to Stokes scattering or amplification due to anti-Stokes component genera-

tion become predominant. The simplest model which is widely used in the theory of stimulated
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Raman scattering and includes the effect of medium saturation is the model of two-level nonlin-

ear oscillator. Within the framework of this model we succeeded to describe in explicit form the

evolution of high-power femtosecond pulse in Raman-active medium.

2 Solution of Wave Equation

We shall describe the dynamics of a Raman-active medium in the field of an ultrashort pulse by

a two-level model of a nonlinear oscillator [6]:

_2 + _ O-T + a2o =- 2--M E2P' 0--7 + T, - ha c3t" (1)

Here Q is a normal coordinate, M is the reduced mass, _ is the eigenfrequency of the equivalent

nonlinear oscillator (the Stokes shift), T1 and T2 are relaxation times, the coefficient O(_/aQ is the

derivative of the polarizability at the equilibrium value Q = Q0, and p is the difference between

the populations of the upper and lower levels (the value p0 = p(t = -c¢) corresponds to the state

of the system before the beginning of the interaction with the field).

Equations (1) are to be solved jointly with the wave equation. In the case at hand, in which

the interaction of the carrier pulse with only the scattered wave propagating in the same direction

is taken into account, the wave equation can be written

aE 1 i)E 47r OP

0--7 + - (2)c Ot c Ot

with macroscopic nonlinear polarization of the medium P = N (_-_) EQ induced by the field

E(z,t), where N is the density of the medium. We stress that the quantity E = E(z, t) in (1)

is the instantaneous value of the pulse field strength, not its envelope. The reduced form of the

wave equation (2) is provided by the fact that the stimulated Raman backward scattering is very

weak owing to the short interaction length of pulses moving in different directions [6].

We restrict the analysis to the case of the coherent interaction, in which the pulse duration

does not exceed the time scales of the response and relaxation of the medium _-p << _-1, T1, T2.1

Material equations (1) can then be integrated for an arbitrary time dependence of the field

E(z, t) and the solution looks like rotation of material variables

Ot - Po _ sign _-_ sin_(z,t). (3)

The phase _(z, t) of the material variable rotation is directly proportional to the energy of the

pulse fraction which has passed through the given space point z up to the given time t

0o[_(z,t) = _ (2h12M)-l/2 oo E2(z't')dt' (4)

1 Oa -1/2 2
1Strictly speaking the coherent regime of interaction is provided by the condition n0 = _ [_f'_](2h12M) E 0 >>

_, 7'1-1, T2-1, i.e., the analog of Rabi frequency of the two-level oscillator is the highest frequency of the problem.
For high-energy femtosecond pulses this condition as well as inequality rp ,_: 12-l , 7'1, 7"2 leads to the solution

(3), (4).
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From (3) it follows a strong nonlinear dependence of polarization on the pulse field and the wave

equation of the form

0--_ + c--_- 1 +/_c _ sin LP(z,t')dt' -- -_Esin kO, (5)

where/3 = -_N[Oa/OQl(h_/2Mc2) 1/2 is the inverse length of induced Raman self-scattering.

The nonlinear equation (5) allows an analytic solution describing in explicit form the evolution

of the pulse shape and spectrum [7].

Multiplying (5) by E and integrating it with respect to time one can easely obtain the equation

for phase _(z,t) (i.e., for current pulse energy)

0---_+-c-_ 1 + _c ooSin_(z't')dt' =/_(cos_-1). (6)

Let us regard the pulse field E(z, t) as a function of the spacial variable z and the phase qJ(z, t),

i.e., E(z, t) = E(z, q_). Taking into account that aE ak a_ a¢ aE a_ a¢Oz -- Oz + o_ az ' ot -- aq, at, we can finaly

rewrite Eq. (5) in the following form:

ok ok
Oz +fl(cosqJ-1) - flksinq_. (7)

This partial differential equation can be easily solved by integrating along characteristics on

which

ql(z,t) tan _0(r/)
2 (s)

tan 2 - qJ0(r/) '
1 + _z tan --

2

s0(r/)

E(z,t) = [ 3z ]' (9)1 +/?z sin _0(r/) + _ (1 - cos _o(r/))

where q%(r/) is the given phase at the boundary of the medium (i.e., the energy of the pulse fraction

which has entered the medium) which is connected with the field strength at the boundary by the
• Oc_ 1/2 _ t

relation qJ0(r/) = [_-_[(2h_M)- f-_oo E02(r/t) dr/. According to (8) the pulse fraction which energy
corresponds to the phase _0 = 2vn, n = 1,2,... moves through the Raman-active medium under

conditions of self-indused transparency, when the energy of the leading part of 2n-pulse absorbed

due to Stokes scattering completely returns to the trailing part of the pulse due to anti-Stokes

scattering. In this case the spectrum of the leading part of the pulse becomes enriched by long-

wavelength components of the field and the spectrum of the trailing part - by the short-wavelength

components. This analysis generalizes the results found on the basis of numerical calculations [2].

The characteristics themselves are given implicitly by the expressions

77 + O(z,r/) = t - z/c, oe(z.,,)=Z3z @' sinqJ0+-_-
off)

(10)

where _(z,r/)isthe nonlinear delay oftiwindividualparts ofthe pulse asit movesawayfi'om the

boundary.
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It is convenient to describe the evolution of the pulse shape by an effective frequency w(z, t)

of the pulse field oscillations. The value w(z, t) characterizes the density of field oscillations for

different parts of the pulse and its variation as the pulse propagates through the medium. It

follows from (10) that if we fix a small fraction of the pulse its duration Ar at the space point z is

connected with that one At0 at the boundary by the relation Ar = At0 (1 + 0_/0r/). The value

AT determines the field oscillation period at the given space point z, hence the effective frequency

of the field oscillations transforms in accordance with

w(z,t) = . (11)

1+ flz [sin + - cos

3 Femtosecond Pulse Evolution in Raman-active Medium

It can be seen from Eqs. (9) and (11) that the changes in the field E(z,t) and the characteristic

frequency w(z,t) over space occur identically. At the beginning of the pulse, when the phase

of the two-level oscillator satisfies _0 << 1 (i.e., when the energy of the pulse fraction which

has entered the medium is small), there are decreases in the field strength and the oscillation

frequency: E(z,t) = Eo(r/) (1 + flZkOo/2) -2 , w(z,t) = w0(rt) (1 + flZqlo/2) -2 . This case corre-

sponds to Stocks scaterring. Later, when the phase becomes greater than _r and reaches the value

arctan(-2/flz), the field and its frequency increase. The generation of anti-Stokes components of

the field thus becomes predominant. At _0 = 7r, the nature of the pulse transformation changes

again. At a given point in space at different times, corresponding to different characteristics (10),

we thus observe oscillations of regimes of compression and stretching of the field oscillation peri-

ods. The sequence of regimes of stretching and compression of the pulse with increasing value of

the incident energy reverses when we switch from an originally absorbing medium to an originally
inverted one.
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A descriptive way to analyze the pulse evolution is provided by Fig. 1. It is seen from (9)

and (11) that the nature of pulse transformation is determined by the sign of the expression in

brackets of the denominator sin k00 + _(1 - cos _0) = 2 sin _ _,02 tan + . If _0 < _r, we

(v)have tan > - _ for any distance z from the medium boundary. It means that the energy2
of such pulses can be only absorbed and the absorption is accompanied by the increase of the field

oscillation periods for any pulse fraction (and as a result, by the increase of pulse duration) and

by the shift of the pulse spectrum into the low-frequency region due to Stokes scattering.

If 7r < _o < 27r, there are two different regimes of pulse transformation. The leading pulse

fraction 0 < _0 < < _ = arctan (-2//3z) undergoes energy absorption and stretching of the

field oscillation periods and its spectrum becomes enriched with low-frequency components of the

field. The field in the trailing pulse fraction amplifies during the pulse propagation, the oscillation

periods decrease (that results in the compression of this pulse fraction) and the spectrum is

enriched with high-frequency components. For 2_r-pulse all the energy concentrates in the trailing

edge which is compressed as the pulse propagates through the medium. The same picture takes

place for pulse fractions 2rrn < _0 < 27r(n + 1).

Figure 2 shows an example of pulse evolution described by the solution (8)-(11) for _0 = 47r.

The input pulse represents a two-period fraction of a sine-shaped signal. Figure illustrates the

time dependence of the pulse field at different distances from the medium boundary. Thus, the

high-energy pulse is devided into the set of compressed powerful127r-subpulses the maximum field

strength and inverse width of which at large distances increase ,-_ (/3z) 2 according to (8)-(10).
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