INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International
200 N. Zeeb Rd., Ann Arbor, MI 48106
FLAMMABILITY AND PHOTO-STABILITY OF SELECTED POLYMER SYSTEMS

Polytechnic Institute of New York

Ph.D. 1981

University Microfilms International 300 North Zeeb Road, Ann Arbor, MI 48106
FLAMMABILITY AND PHOTO-STABILITY OF SELECTED POLYMER SYSTEMS

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY (Chemistry)

At the

POLYTECHNIC INSTITUTE OF NEW YORK

by

Jeelin Lo

June 1981

Approved:

[Signature]

Department Head

May 1, 1981
Approved by the Guidance Committee

Major: Polymer Chemistry

Eli M. Pearce, (Chairman)
Professor and Head
Department of Chemistry

Yoshiyuki Okamoto
Professor
Department of Chemistry

Minor: Polymer Science and Engineering

Jovan Kjovic
Assistant Professor
Department of Chemical Engineering

Additional Member:

Bernard O. Bulkin
Professor and
Dean of Arts and Sciences
Microfilm or other copies of this dissertation are obtainable from

University Microfilms
300 N. Zeeb Road
Ann Arbor, Michigan
48106
Jeelin Lo was born on [redacted] in [redacted] Province of Taiwan during the civil war in China in late 1949, and completed his primary, high school, and college education. He moved to the Province of Taiwan during the civil war in China in late 1949, and completed his primary, high school, and college education. He received his B.Sc. at Fu-Jen Catholic University in Taipei, Taiwan in 1971. After two years' military service in China he joined the Polytechnic Institute of New York in September, 1974 and continued his education in Chemistry.

During his tenure as a graduate student he was awarded a Teaching Assistantship and a Research Fellowship until June, 1981, at which time he completed the requirements for the Degree of Doctor of Philosophy.

The author is currently a member of the Society of Plastics Engineers as well as the American Chemical Society.
DEDICATION
To My Parents
ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Professor Eli M. Pearce for his guidance and encouragement during the course of this research. The author is deeply grateful to Dean Bernard J. Bulkin for his helpful discussions and guidance in the FT-IR studies.

The financial assistance from AMP Incorporated, the Army Research Office and the National Aeronautics and Space Administration is gratefully acknowledged.
AN ABSTRACT

FLAMMABILITY AND PHOTO-STABILITY
OF SELECTED POLYMER SYSTEMS

BY

Jeelin Lo

Adviser: Eli M. Pearce

Submitted in Partial Fulfillment of the Requirement for the Degree of
Doctor of Philosophy (Chemistry)
June 1981

A systematic approach to the improvement of the flammability of epoxy resins, bisphenol-A polycarbonate, poly(butylene terephthalate), and Nylon 6.6 by introducing halogens and loop functionality into the flame retardants is described. The phthalides (the loop functionality containing molecules) include 3,3-bis(4-bromophenyl)phthalide, 3,3-bis(4-chlorophenyl)phthalide, and phenolphthalein. The phthalide containing epoxy resins are synthesized and characterized in comparison with the bisphenol-A epoxy resins in terms of flammability in the copolymer systems. The resins include diglycidyl ethers of phenolphthalein, bisphenol-A, tetrabromobisphenol-A, and tetrabromophenolphthalein. The vaporization of the phthalide additive in the polymers is observed in Thermal Gravimetric Analysis. The flame retardancy is primarily due to the presence of halogens. In the poly(butylene terephthalate) system, the cleavage of the C aromatic-Br bond...
of the flame retardant additive enhances the crosslinking reactions between the aromatic rings resulting in an increase of char formation. In the epoxy resin systems, loop functionality contributes to char formation to a larger extent. The interaction between the epoxy resin and poly-(butylene terephthalate) follows the mechanism of insertion of the oxirane ring into the ester bond. This mechanism is studied by FT-IR.

The investigation of the thermal properties of the char-forming phenol-formaldehyde resins is conducted to provide information for the systematic design of high temperature flame-resistant phenolics. NMR and FT-IR are used to characterize the oligomeric resins and the cured resins. The curing agents used in the study include formaldehyde, s-trioxane and terephthaloyl chloride. The brominated phenolic resins are found to have higher oxygen indices with lower char yields. The nonhalogen-containing phenolic resins give a linear relationship between char yield and oxygen index according to the following equation:

\[
\text{O.I} = 2.4 + 0.57 \times (\% \text{ char yield at } 800^\circ \text{C N}_2).
\]

The differences in structure of the cured resins are observed from the FT-IR spectra. The s-trioxane cured resins contain long chain ethers and cyclic acetals along with the methylene linkages. The terephthaloyl chloride cured resins are crosslinked through the hydroxyls and contain the inter- and intra-molecular ester linkages.
In the study of the photo-Fries rearrangement, the fluorene-based polyarylates prepared include 9,9'-bis(4-hydroxyphenyl)fluorene isophthalate (BPF-I), 9,9'-bis(3,5-dimethyl-4-hydroxyphenyl)fluorene isophthalate (BCF-I), and 9,9'-bis(3,5-dimethyl-4-hydroxyphenyl)fluorene isophthalate (BDMFP-I). The formation of the o-hydroxybenzophenone moiety upon UV irradiation of BPF-I and BCF-I can be observed in the UV and IR spectra. The degradation of the polymer structure of BDMFP-I is due to its inability to rearrange into the o-hydroxybenzophenone structure which can function as an internal UV-stabilizer. A mechanism for this degradation is postulated based on the evidence from the IR spectra.
Table of Contents

Abstract

1. Introduction
 1.1 Elements in Flame Retardation
 1.2 Structure-Flammability Relationship
 1.3 Flame Retardant Additives
 1.4 Modified and Flame Resistant Phenolic Resins
 1.5 Photo-Stability of Fluorene-Based Polyarylates
 1.5.1 Basic Approaches
 1.5.2 Polymer Photo-Rearrangement

2. Experimental
 2.1 Standard Procedure for the Preparation of Phthalides
 2.2 Phthalides Used as Additive in Polymers
 2.3 Standard Procedure for the Preparation of Epoxy Resins
 2.3.1 Preparation of 4,5,6,7-Tetrahydro-phenolphthalein
 2.3.2 Epoxy Resin Preparation
 2.4 Characterization of Epoxy Resins
 2.5 Brominated Epoxy Resins Used as Copolymers in the DGEBA System
 2.6 Epoxy Resins/Poly(butylenes terephthalate) System
 2.7 Standard Procedure for the Preparation of the Oligomeric Phenol-Formaldehyde Resins
 2.8 Characterization of the Oligomeric Phenol-Formaldehyde Resins
 2.9 Standard Procedure for the Crosslinking of Phenol-Formaldehyde Resins
 2.9.1 Crosslinking Through Ester Linkages with Terephthaloyl Chloride
 2.9.2 Crosslinking Through Methylene Linkages
 2.9.2.1 Crosslinking with s-Trioxane

Page

1
2
4
7
9
13
13
17
19
19
20
21
22
23
24
26
30
30
30
32
32
32
32
TABLE OF CONTENTS (Continued)

2.9.2.2. Crosslinking with Formaldehyde

2.10 Characterization of Cured Phenol-Formaldehyde Resins
2.11 Preparation of Fluorene-Based Polyarylates
2.11.1 Preparation of Bisphenols
2.11.2 Preparation of Polyesters
2.12 Studies of Photo-Fries Rearrangement
2.12.1 Irradiation Chamber
2.12.2 UV Spectroscopic Studies
2.12.3 FT-IR Spectroscopic Studies

3. Results and Discussion
3.1 Flame Retardants Containing Loop Functionality
3.1.1 Effects of Phthalides on Thermal Properties of Polymers
3.1.1.1 Bisphenol-A Polycarbonate System
3.1.1.2 Poly(butylene Terephthalate) and Nylon 6.6 Systems
3.1.2 Effects of Phthalide Containing Epoxy Resins on the Thermal Properties of Polymers
3.1.2.1 Epoxy Copolymer Resins
3.1.2.2 FT-IR Studies on Curing Reactions of the Epoxy Resins
3.1.2.3 Epoxy Resin/Poly(butylene terephthalate) System
3.1.2.4 FT-IR Studies of DGEDEP/Poly(butylene terephthalate) System
3.1.3 Conclusion
3.2 Phenol-Formaldehyde Resins
3.2.1 Structural Studies of the Oligomeric Resins
3.2.2 Number Average Molecular Weight Determination

Page 33
Page 33
Page 33
Page 33
Page 37
Page 37
Page 37
Page 37
Page 38
Page 38
Page 38
Page 48
Page 52
Page 52
Page 55
Page 62
Page 62
Page 69
Page 70
Page 70
Page 93
TABLE OF CONTENTS (Concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 Thermal Properties of Cured Phenolic Resins</td>
<td>94</td>
</tr>
<tr>
<td>3.2.4 Conclusion</td>
<td>104</td>
</tr>
<tr>
<td>3.3 Photo-Fries Rearrangement of Fluorene-Based Polyarylates</td>
<td>105</td>
</tr>
<tr>
<td>3.3.1 UV Spectroscopic Studies</td>
<td>105</td>
</tr>
<tr>
<td>3.3.2 FT-IR Spectroscopic Studies</td>
<td>110</td>
</tr>
<tr>
<td>3.3.3 Conclusion</td>
<td>118</td>
</tr>
</tbody>
</table>

Bibliography

xii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thermal Analytical Data of Polymers Containing Phthalide Additives</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Thermal Analytical Data of Epoxy Resins</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Thermal Analytical Data of Poly(butylene terephthalate) Containing Different Epoxy-Resin Additives</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Number Average Molecular Weights, (\bar{M}_n), of Oligomeric Phenolic Resins</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Thermal Analytical Data of Phenolic Resins Crosslinked via Methylene Linkages</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>Thermal Analytical Data of Phenolic Resins Crosslinked via Ester Linkages</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>Char Yields as a Function of Degree of Crosslinking of Phenol-formaldehyde Polymer</td>
<td>101</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Effect of Aromatic Structure on Char Yield</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Correlation Between CI and Cr</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>DSC Thermograms of DGEPP</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>DSC Thermograms of DGTEBPP</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>DSC Thermograms of DGTEBA AND DGEBA</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Schematic Diagram of Reflectance Attachment</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Effect of 3,3-bis(4-Bromophenyl)phthalide Additive upon Char Yield of Bisphenol-A Polycarbonate as Measured by TGA at 10°C/min under N2</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Effect of 3,3-bis(4-Chlorophenyl)phthalide Additive upon Char Yield of Bisphenol-A Polycarbonate as Measured by TGA at 10°C/min under N2</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Phenolphthalein Additive Upon Char Yield of Bisphenol-A Polycarbonate as Measured by TGA at 10°C/min under N2</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>Relationship of Oxygen Index with Additive Content in Bisphenol-A Polycarbonate</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Infrared Spectra of HCl (A) and the Gases Evolved Between 300°C-400°C in a TGA Measurement of Bisphenol-A Polycarbonate Containing 30%, 3,3-bis(4-Chlorophenyl)phthalide (B), IR Gas Cell: 250°C.</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>Effect of Phenolphthalein Upon the Thermal Stability of Bisphenol-A Polycarbonate as Measured by DSC</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Effect of 30% of 3,3-bis(4-Bromophenyl)phthalide on Char Yield of Kylon 6,6 as Measured by TGA at 10°C/min under N2</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>Effect of 30% of 3,3-bis(4-Bromophenyl)phthalide on Char Yield of Poly(butylene terephthalate) as Measured by TGA at 10°C/min under N2</td>
<td>51</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TGA Thermograms of Epoxy Resin Copolymers Cured with Phthalic Anhydride (A) DGEBA/DGETBPP (50/50). (B) DGEBA/DGETBPA (50/50); N₂. 10°C/min.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Infrared Spectra of DGEBA/DGETBPP Cured with Phthalic Anhydride (A) Initial Mixture. (B) after Curing at 100°C for 30 min. (C) after Curing at 100°C for 2 hr. (D) after Additional Heating at 160°C for 1 hr. KBr Pellet; 25°C.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Difference Spectra Obtained from Figure 16 by Subtracting the 1510 cm⁻¹ Band to the Base Line</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Infrared Spectrum of DGEBA</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Infrared Spectrum of DGETBPP</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Infrared Spectrum of DGETBPA</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Infrared Spectrum of Phthalic Anhydride</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Infrared Spectra of DGEBA/DGETBPA Cured with Phthalic Anhydride, (A) after Curing at 120°C for 1 hr. (B) after Additional Heating at 170°C for 25 min. (C) Cured Resin. KBr Pellet; 25°C.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Difference Spectra Obtained from Figure 22 by Subtracting the 1510 cm⁻¹ Band to the Base Line</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Infrared Spectra of Poly(Butylene terephthalate)/DGETBPP (A) Melt Mixture (B) Sum Spectrum Constructed by a 0.5:1 Addition of the Individual Spectra of DGETBPP and Poly(Butylene terephthalate)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Difference Spectrum Obtained from Figure 24 by Subtracting the 1770 cm⁻¹ Band to the Base Line</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

Figure No.	Description	Page
26 | NMR Chemical Shift Region for Different Functional Groups of Phenol-Formaldehyde Resins in Dilute Solutions in Acetone | 72
27 | NMR Spectra of Phenol-Formaldehyde Dimers | 74
28 | NMR Spectrum of Phenol-Formaldehyde Resin in d-Acetone | 75
29 | NMR Spectrum of p-Bromophenol-Formaldehyde Resin in d-Acetone | 76
30 | NMR Spectrum of m-Bromophenol-Formaldehyde Resin in d-Acetone | 77
31 | NMR Spectrum of p-Chlorophenol-Formaldehyde Resin in d-Acetone | 78
32 | NMR Spectrum of m-Chlorophenol-Formaldehyde Resin in d-Acetone | 79
33 | NMR Spectrum of p-Cresol-Formaldehyde Resin in d-Acetone | 80
34 | NMR Spectrum of m-Cresol-Formaldehyde Resin in d-Acetone | 81
35 | NMR Spectra of an o-Chlorophenol-Formaldehyde Polymer (A) and the Corresponding Dehalogenated Polymer (B) | 83
36 | IR Spectra of (A) PF, and (B) X(C)pCPP | 85
37 | IR Spectra of (A) pCP, and (B) mCP | 86
38 | IR Spectra of (A) pEPFP, and (B) mEPFP | 87
39 | IR Spectra of (A) pCPP, and (B) mCPP | 88
40 | IR Spectra of (A) PF, (B) PF Cured with Formaldehyde, and (C) PF Cured with Terephthaloyl Chloride | 90
41 | Correlation of Oxygen Index and Char Yield of Phenolic Resins | 98

xvi
LIST OF FIGURES (Concluded)

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>IR Spectra of (A) X(T)mCPF, (B) X(F)mCPF, and (C) X(F)PF</td>
<td>102</td>
</tr>
<tr>
<td>43</td>
<td>UV Spectra of BPF-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.</td>
<td>106</td>
</tr>
<tr>
<td>44</td>
<td>UV Spectra of BCF-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.</td>
<td>107</td>
</tr>
<tr>
<td>45</td>
<td>UV Spectra of BDMPF-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.</td>
<td>108</td>
</tr>
<tr>
<td>46</td>
<td>Changes in Absorbance at 350 nm with Irradiation time : (A) BPF-I, (B) BCF-I, and (C) BDMPF-I</td>
<td>109</td>
</tr>
<tr>
<td>47</td>
<td>Infrared Spectra of (A) BPF-I, (B) BPF-I after 60 min. Irradiation and (C) Difference Spectrum B-A</td>
<td>111</td>
</tr>
<tr>
<td>48</td>
<td>Infrared Spectra of (A) BCF-I, (B) BCF-I after 60 min. Irradiation and (C) Difference Spectrum B-A</td>
<td>112</td>
</tr>
<tr>
<td>49</td>
<td>Infrared Spectra of (A) BDMPF-I, (B) BDMPF-I after 60 min. Irradiation and (C) Difference Spectrum B-A</td>
<td>113</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>DGEBA</td>
<td>Diglycidyl Ether of Bisphenol-A</td>
<td></td>
</tr>
<tr>
<td>DGETBBA</td>
<td>Diglycidyl Ether of Tetrabromobisphenol-A</td>
<td></td>
</tr>
<tr>
<td>DGEPP</td>
<td>Diglycidyl Ether of Phenolphthalein</td>
<td></td>
</tr>
<tr>
<td>DGETBPP</td>
<td>Diglycidyl Ether of Tetrabromophenolphthalein</td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>Oligomeric Phenol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>mCPF</td>
<td>Oligomeric meta-Chlorophenol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>mBPF</td>
<td>Oligomeric meta-Bromophenol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>mCF</td>
<td>Oligomeric meta-Cresol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>pCPF</td>
<td>Oligomeric para-Chlorophenol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>pBPF</td>
<td>Oligomeric para-Bromophenol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>pCF</td>
<td>Oligomeric para-Cresol-Formaldehyde Resin</td>
<td></td>
</tr>
<tr>
<td>X(F)-</td>
<td>Crosslinked with Formaldehyde</td>
<td></td>
</tr>
<tr>
<td>X(T)-</td>
<td>Crosslinked with s-Trioxane</td>
<td></td>
</tr>
<tr>
<td>X(C)-</td>
<td>Crosslinked with Terephthaloyl Chloride</td>
<td></td>
</tr>
<tr>
<td>BPF</td>
<td>9,9'-Bis(4-hydroxyphenyl)fluorene</td>
<td></td>
</tr>
<tr>
<td>BPF-I</td>
<td>Polysisophthalate of BPF</td>
<td></td>
</tr>
<tr>
<td>BCF</td>
<td>9,9'-Bisresol-fluorene</td>
<td></td>
</tr>
<tr>
<td>BCF-I</td>
<td>Polysisophthalate of BCF</td>
<td></td>
</tr>
<tr>
<td>BDMKPFP</td>
<td>9,9'-Bis(3,5-dimethyl-4-hydroxyphenyl)fluorene</td>
<td></td>
</tr>
<tr>
<td>BDMKPFP-I</td>
<td>Polysisophthalate of BDMKPFP</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The growing use of polymers in a variety of applications has created a great deal of concern over their performance in many aspects including flammability and photostability.

The initial goals of the research in flammability are mainly focused on the flame retardation of polymers and not their flame proofing due to the balance of properties required in these systems. As a result, many flame retardants and flame retardant polymers have been and still are being developed.

Recent advances in space and other technologies have continued the development of high temperature resistant polymers. Theories and approaches in synthesizing these polymers are mainly based on structure-flammability relationships.

One objective of this work is to utilize the structural features of some high temperature polymers in designing new and better flame retardants. An attempt has also been made to introduce halogen systematically into the structure of high temperature phenol-formaldehyde resins and to study their flame retardation.

Developments in the area of organic photochemistry have given assistance to the interpretation of photodegradation processes and to the search for novel methods of stabilization. Consequently, many "tailor-made" stabilizers are being developed for specific polymers. However, the use
of monomeric stabilizers has some critical limitations: (1) incompatibility with the polymers, (2) potential migration of the additives, (3) impairing the mechanical properties of the polymers, (4) extractability and "blooming".

Taking this into account, the syntheses of photoresistant polymers have considerable interests. Stabilizing groups can be introduced into the polymer during the synthesis and function as internal stabilizers. In this study the nature of this type of stabilizing process in fluorene-based polyarylates has been investigated. The interpretations are based on the spectroscopic observations.

1.1 Elements in Flame Retardation

Upon examining the different means of achieving flame retardation, a number of guidelines have been established. The ideal flame-retardant polymer system should have (1) a high resistance to ignition and flame propagation, (2) reduced smoke generation and low toxicity of the combustion gases, (3) durability, (4) acceptability in appearance and properties for specific end-uses, and (5) little or no economic penalty\(^1\).

A brief anatomy of a combustion process can be shown by the following scheme:

- Heating
- Combustion
- Decomposition
- Ignition
- Consumption
The burning of a polymer requires a heat source which causes degradation and decomposition of the polymer. Decomposition leads to the formation of various fragments which are susceptible to ignition and combustion. Heat generated from the combustion process supports further decomposition of the material. Flame retardation can be achieved by interrupting the burning process at one of the arrows shown in the scheme. At stage A decomposition of a polymer is usually initiated by oxidation resulting in the formation of active free radicals. This process can be interrupted by chain transfer agents, such as amines, phenols and halogen compounds. Materials used in stages B and C to prevent ignition and combustion usually are the chemicals which can develop noncombustible gases, such as H_2O, hydrogen halides, CO_2 and NH_3 when decomposed. These noncombustible gases may act as gas-phase diluents for the combustible decomposition products obtained from the polymer. In addition to being a gas-phase diluent, the water released from materials, such as $\text{Al}_2\text{O}_3 \cdot 3\text{H}_2\text{O}$ can also dissipate the heat generated at stage E and thus inhibit the burning process. There are materials which are active in the condensed phase to prevent ignition and combustion. Such materials can form nonvolatile char or glassy coatings which minimize the oxygen diffusion to the polymers and also reduce the heat transferred from the flame to the polymer$^{(2)}$.

There are many ways to measure the flammability of a material. A test that has been widely used on a laboratory
scale in recent years since its initial development in 1965 is the Oxygen Index (OI) test. In the OI test, the material in the form of either a rod or a sheet is clamped vertically and ignited at the top, so that it burns in a candle-like manner in an upward-flowing mixture of oxygen and nitrogen. The oxygen concentration of the gas is then adjusted until the minimum level for sustained burning is reached. The OI is then defined as:

\[OI = \frac{100 \times [O_2] - ([N_2] + [O_2])}{([N_2] + [O_2])} \]

where \([O_2]\) and \([N_2]\) are the volume concentrations of oxygen and nitrogen, respectively.

1.2 Structure-Flammability Relationship

A number of studies have been concerned with developing correlations between the structure of the polymers and their char formation. Char yield thus becomes an important measurement in flammability studies. It is defined as the char residue in weight % at 800°C in a Thermal Gravimetric Analysis under nitrogen atmosphere. Parker, et al. have correlated char yield with the number of moles of multiple bonded aromatic rings per gram of polymers (Figure 1). Van Krevelen has developed a linear relationship between char yields and oxygen indices of polymers (Figure 2) and a prediction of the amount of char yield from the number of aromatic units in the polymer. Besides aromatic structures, char formation can also be increased by introducing cyclic functional side groups (cardo groups) in the polymers. Such polymers are termed
Figure 1: Effect of Aromatic Structure on Char Yield.

Figure 2. Correlation between O_1 and C_H. 1. Polyformamide; 2. polystyrene; 3. polypropylene; 4. aluminum; 5. acrylic; 6. polyester; 7. PET; 8. nylon; 9. polyethylene; 10. PPO; 11. polycarbonate; 12.boron; 13. Si and F; 14. phosphorus; 15. carbon.

"cardo polymers". These polymers have been the subject of an excellent review (6). Systematic studies on cardo polymers have begun with the syntheses of high molecular weight polyarylates from phenolphthalaein and various dicarboxylic acids in 1961 (7). So far numerous cardo polymers with various cardo groups (see below) have been synthesized:

It has been found that the presence of cardo groups in different hetero- and cardo-chain polymers endows them with not only enhanced thermal stability but also excellent solubility, which is of particular importance in aromatic polymers with rigid chains.

1.3 Flame Retardant Additives

For the evaluation of specific contribution of cardo-group containing additives to the thermal behavior of polymers, a series of compounds based on the phthalide group have been synthesized. The effects of varying amounts of the phthalide additives on the flammability of bisphenol-A polycarbonate, poly(butylene terephthalate), and nylon 6,6 have been studied by thermal analytical techniques and Fourier Transform Infrared Spectroscopy (FT-IR).

Flame-retardant resins can also be used as the additives incorporated into nonhalogenated resins in order to impart some useful degree of flame retardancy to the
material. One example is the use of tetrabromophthalic anhydride polyester resins in nonhalogenated polyester resins\(^8\). Using a polymer resin as a flame-retardant additive has the advantage that the additive would not subsequently leach out of the system once the resin system is crosslinked. In addition it can be easily mixed with a polymer resin at a variety of levels depending on the degree of flame retardancy desired for a particular application.

The syntheses of flame retardant epoxy resins of tetrabromo- and tetrachloro-bisphenol-A have been reported in detail\(^9,10\). The use of tetrabromobisphenol-A epoxy resin as an additive in the acrylonitrile-butadiene-styrene copolymer system\(^11\) and polycarbonate system\(^12\) has been reported in the literature. These halogenated resins, however, are too viscous for many applications\(^13\). Cardo group containing epoxy resins, on the other hand, are mostly solid resins due to the fact that the cyclic side groups increase the glass transition temperature \(T_g\) of the polymer\(^14\). The solid resins provide no unusual problems in sample handling and formulation.

The diglycidyl ether of 4,5,6,7-tetrabromophenal-phthalein (DEB3PP) has been synthesized and copolymerized with the diglycidyl ether of bisphenol-A (DGEEA) and evaluated as an additive in poly(butylene terephthalate). The DEB3PP/DGEEA system actually forms a copolymer once the resin is cured by phthalic anhydride. The evaluation
of the cured DGETBPP/DGEEBA copolymer in terms of thermal properties is based on a comparison with the system using the diglycidyl ether of tetrabromobisphenol-A (DGETBBA).

The degree of curing has always been an important factor in determining the properties of the final products. It is also important to monitor the curing reaction in order to adjust the curing conditions. For this purpose FT-IR has been used to follow the curing reactions. In addition, the spectral subtraction routine is applied to the determination of the changes in chemical structures.

In the poly(butylene terephthalate) system the curing is caused by the interaction of the oxirane ring with the ester groups and proceeds by the mechanism of "insertion" of the fragment of the oxirane ring into the ester bond without scission of the molecular chain of the polyester(15). The effects of various amounts of DGETBBA and DGETBPP on char yield and oxygen index of poly(butylene terephthalate) are compared.

It is also interesting to know how much contribution to the flame retardancy is due to the presence of bromine in the resin. The diglycidyl ether of phenolphthalein has been synthesized and formulated in the same fashion as that of the brominated resins. The analysis of the results gives an evaluation of the effectiveness of bromine and cardo groups for flame retardation.

1.4 Modified and Flame Resistant Phenolic Resins

That phenols and formaldehyde react has been known as far back as 1872 by Bayer(16) and others. The substances
obtained by these investigations were merely of theoretical interest and no attempt was made to utilize them commercially. With the advent of cheap commercial formaldehyde, Kleenberg (17) continued the investigation and obtained a cross-linked, insoluble resin by the reaction of an excess of formaldehyde in the presence of hydrochloric acid. Luft (18) was the first one to develop technical applications for curable phenolic resins. The process involved an acid catalyst, i.e., sulfuric acid, and a suitable solvent system, such as a mixture of formalin and glycerin. The resin was able to be molded or drawn into threads. In 1907 Baekeland applied for his "heat and pressure" patent (19) for the processing of phenol-formaldehyde resins. This technique made possible the worldwide application of phenolic resins.

The conditions, mainly pH and temperature, under which reactions of phenols with formaldehyde are carried out, have a profound influence on the character of the products obtained. Resol resins are the products of the reaction between phenol and an excess of formaldehyde (1:1.5-2) in the alkaline pH-range (20). Initially, phenoxide ions are formed from phenol under alkaline conditions. Delocalization of the electron pair on the oxygen ion results in increased electron densities at the o- and p-positions. This effect leads to substitution of phenol by electrophiles at the o- and p-positions. The first-step product, o- and p-methylolphenols (see below), are more reactive towards
The methylolphenols then undergo self-condensation to form dinuclear and polynuclear phenols in which the phenolic nuclei are linked by methylene groups. The crosslinked polymers are obtained simply by heating.

Novolak resins are normally prepared by the interaction of a molar excess of phenol with formaldehyde (1.25:1) under acidic conditions. In the first step, the formation of a hydroxymethylene carbonium ion from methylene glycol occurs:

\[\text{HO-CH}_2\text{-OH} \xrightarrow{H^+} \text{CH}_2\text{-CH}^+ + \text{H}_2\text{O} \]

The second step is the addition of the hydroxymethylene carbonium ion to phenol.
In the presence of acid the initial products, o- and p-methylolphenols, are present only transiently in very small concentrations. They are converted to benzylic carbonium ions which rapidly react with free phenol to form dihydroxy-diphenylmethanes (24-26).

Polynuclear phenols are produced by further methylocylation and methylene link formation. The final resin can be cured by the addition of a crosslinking agent.

Cured phenolic resins have good heat stability, resistance to most chemical reagents, and good mechanical properties. The principle uses include thermosetting molding powders, laminates, adhesives, binders and surface coatings. The highly crosslinked fiber named Kynol (27) has been developed from phenolic resins and is largely used in flame-proof apparel.

The thermo-oxidative resistance of phenolic resins can be further improved by chemical modifications. The
following methods have been used\(^{(28)}\).

1. Etherification or esterification of the phenolic hydroxyl groups,

2. Complex formation with polyvalent elements (Ca, Mg, Zn, Cd, \ldots).

3. Replacement of the methylene linking groups by heteroatoms (O, S, N, Si, \ldots).

The present study is initiated with a view to making modifications of the flammability behaviors of phenolic resin by using substituted phenols. Also, esterification of phenolic hydroxyl groups has been applied to the system by using terephthaloyl chloride as the curing agent. This makes possible the crosslinking of \(p\)-substituted phenolic resins. Modification by esterification has also been reported by Lei\(^{(29)}\) in the synthesis of \(p\)-chlorophenolic fiber. The crosslinking of the fiber involves reactions between the hydroxyls and the diazid chloride.

1.5 Photo-Stability of Fluorene-Based Polyarylates

1.5.1 Basic Approaches

Polymers containing certain chromophores can absorb light followed by photochemical reactions which function as one mode for the dissipation of the absorbed energy. Such photochemical reactions have included the formation of free radicals, photoionizations, cyclizations, intramolecular rearrangements, and fragmentations.

Many polymers have been protected against photo-degradation by the addition of stabilizers. These additives have been of two general types: light screens and ultra-
violet (UV) absorbers. Light screens function either by absorbing damaging radiation before it reaches the polymer surface or by limiting its penetration into the polymer bulk. Coatings and pigments are classified as light screens. Carbon black is by far the most effective pigment. Its effectiveness can be attributed to a combination of being light screen and an absorber through energy dissipating mechanisms in its polynuclear aromatic structures (30). The UV absorbers functions by absorbing and dissipating UV irradiation through photo-physical processes. Most important is the internal conversion process which changes electronic energy into vibrational energy by a radiationless route without a change in spin multiplicity ($S_1 \rightarrow S_0$, $S_2 \rightarrow S_1$). It has been a major proposed mechanism for photostabilization by additives such as o-hydroxybenzophenones (I), o-hydroxyphenylbenzotriazoles (II), and salicylates (III) (31).

![Chemical structures](image)

These compounds have a common structural feature, the intramolecular hydrogen bond. The photo-stabilization mechanism is considered to be the result of a rapid charge-transfer transition,
which may be facilitated by the strong intramolecular hydrogen bond (32, 33).

The protective action has also been found in the case of resorcinol monobenzoate which is almost as effective as 2,4-dihydroxybenzophenone. The comparable effectiveness is due to the fact that resorcinol monobenzoate is converted by sunlight into 2,4-dihydroxybenzophenone by a photo-Fries rearrangement (34).

The photo-Fries rearrangement has been first reported by Anderson and Reese (35) in 1960. A simple example is the rearrangement of phenylacetate in ethanol to give α- and β-hydroxyacetophenones and phenol:
The rearrangement has been found to occur for many derivatives of phenol:phenyl esters (35-37), arylalkylcarbonates (38, 39), phenoxyacetic acids (40), and hydroxyphenyl cinnamates (41).

A recent review of the photo-Fries rearrangement has been published by Bellus (42).

Two mechanisms have been proposed for the photo-Fries rearrangement. Anderson and Reese (43) have suggested a "molecular" pathway, involving a bridged intermediate of type (I)
A similar intermediate is considered for the para-rearrangement. Kobsa(36) and Finnegan and Mattox(37) have proposed a "cage radical pair" intermediate (II), in which C-C homolysis is followed by the attack of the resulting acyl radical on the ortho or para position of the phenoxyl radical with subsequent enolization.

1.5.2 Polymer Photo-Rearrangement

It has been demonstrated that many photochemical reactions shown by small organic molecules can be induced in polymers when the same chromophores are bonded to a polymer backbone(44). The rearrangement of poly(4,4'-diphenylol-propane isophthalate) to o-hydroxybenzophenone moieties can be taken as a typical representation of the photo-Fries rearrangement in a polymeric system(45).

\[
\begin{array}{c}
\text{CH}_3 \circ \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\text{CH}_3 \circ \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\text{CH}_3 \circ \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\end{array}
\]

\[\text{hv} \rightarrow\]

\[
\begin{array}{c}
\text{O} \overset{\text{CH}_3}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\text{CH}_3 \circ \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\text{CH}_3 \circ \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \overset{\text{C}}{\text{C}} \overset{\text{O}}{\text{O}} \overset{\text{O}}{\text{O}} \overset{\text{CH}_3}{\text{C}} \\
\end{array}
\]
In the work of Cohen, Young and Markhart (46), the photo-Fries rearrangement products in poly(aryl esters) and Poly(aryl carbonates) are considered to be the internal UV stabilizer of the hydroxybenzophenone type. Korshak et al. (47) have also reported the synthesis of polymers capable of self-stabilization.

It is suggested that the rearranged polymer functions as a coating to prevent further deterioration of the polymer bulk.

In the present work we have investigated the chemical changes which occur during the UV irradiation of fluorene-based polyarylates. The derivatives of fluorene-based polyarylate substituted in the phenol ring ortho-positions by methyl groups have also been synthesized and studied. The results have provided an insight into the structural requirement for producing photo-Fries rearrangements in polymers.
2. EXPERIMENTAL

2.1 Standard Procedure for the Preparation of Phthalides

\[
\begin{align*}
\text{C}-\text{Cl} + 2 \text{R} & \xrightarrow{\text{AlCl}_3} \text{R} \text{Ph} - \text{O} - \text{R} \\
(R = \text{Br, Cl, OH})
\end{align*}
\]

Phthalides prepared for the study include 3,3-bis(4-bromophenyl)phthalide, 3,3-bis(4-chlorophenyl)-phthalide, and phenolphthalein.

To a mixture of (0.25 mole) of phthalic chloride (Aldrich) and 78.5 g (1.50 mole) of bromobenzene (Aldrich), 16.7 g (0.125 mole) of anhydrous aluminum chloride (Fisher) is added in small portions. A few drops of thiophenyl chloride (Aldrich) are added as co-catalyst. The mixture is charged into a 500 ml round bottom flask connected with a reflux condenser and heated in an oil bath with stirring at 110°C for 24 hours. The reaction mixture is then steam distilled to remove the unreacted bromobenzene. The residue left in the flask is extracted with hot dilute hydrochloric acid to remove aluminum salts. The residue is then filtered and washed with dilute sodium chloride solution. The product is dissolved in hot acetone and decolorized over decolorizing carbon. One crystallization from acetone gives 96.5 g (87%) of fine light yellow crystals. Further purification gives
white crystals, m.p. 184.5-185°C. IR: 1860 cm$^{-1}$ (γ-lactone), 1080 cm$^{-1}$ (BrC$_6$H$_4$). TLC: one component.

Anal. Calcd. for C$_{20}$H$_{22}$O$_2$Br$_2$: C, 54.10; H, 2.71; Br, 36.02.
Found: C, 54.25; H, 2.68; Br, 36.15.

3,3-**Bis(4-chlorophenyl)phthalide**

Yield: 90%

m.p.: 154.5-155°C. (Baeyer96) reported 155-156°C

IR: 1760 cm$^{-1}$ (γ-lactone), 1096 cm$^{-1}$ (ClC$_4$H$_4$).

TLC: one component.

Anal. Calcd. for C$_{20}$H$_{22}$O$_2$Cl$_2$: C, 67.68; H, 3.38; Cl, 19.97.

Found: C, 67.33; H, 3.44; Cl, 19.74.

The same product was obtained in 84% yield by Blicke et al.97, Bradlow et al.98 reported the preparation of 3,3-bis(4-fluorophenyl)phthalide in 92% yield by the similar method. The para-isomers are considered to be the main products.99

2.2 Phthalides Used as Additive in Polymers

Bisphenol-A polycarbonate (Polysciences), Nylon 6,6 (Monsanto), and poly(butylene terephthalate) (AMP) are selected for the study. Polymer films containing phthalides are cast from trifluoroacetic acid and dried at 25°C under vacuum.

Thermal Gravimetric Analysis (TGA) measurements of the resulting films are made under nitrogen using a Du Pont 950 Thermal Gravimetric Analyzer and 950 Thermal Analyzer.

Oxygen indices are taken by using General Electric CR 280 FM 11B Oxygen Index Flammability Gauge. Infrared spectrum of the gaseous products is taken on a Digital FTS-20E Fourier Transform Spectrometer.
2.3 Standard Procedure for the Preparation of Epoxy Resins

\[
\text{HO-R-OH + ClCH}_2-\text{CH-C\textsubscript{2}} \overset{\text{NaOH}}{\longrightarrow} \]

\[
\text{CH}_2=\text{CH-CH}_2=\text{O} \left[\text{R-O-CH}_2-\text{CH-O}\right]_n \text{R-O-CH}_2-\text{CH-C\textsubscript{2}} \]

\[
\text{R} = \begin{array}{c}
\text{CH}_3 \\
\text{C} \\
\text{CH}_3
\end{array}
\quad \text{DGEBA}
\]

\[
\begin{array}{c}
\text{Br} \\
\text{C}
\end{array}
\begin{array}{c}
\text{CH}_3 \\
\text{Br}
\end{array}
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\quad \text{DGEBA}
\]

\[
\begin{array}{c}
\text{Br} \\
\text{C}
\end{array}
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\quad \text{DGEP}
\]

\[
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array}
\quad \text{DGETBPP}
\]
2.3.1 Preparation of 4,5,6,7-Tetraiodophenolphthalein

![Chemical Structure](image)

Approximately 29.5 g (0.35×10^{-2} mole) of tetrabromophthalic anhydride (Aldrich) is added to 46.6 g (0.5 mole) of purified phenol (Aldrich) in a 500 ml round bottom flask connected with a reflux condenser. To the mixture 10 g (0.07 mole) of zinc chloride and 1 ml of thionyl chloride are added. The flask containing the reaction mixture is then immersed in an oil-bath and heated to 150°C with stirring. Hydrogen chloride gas is evolved during the first few hours of reaction. After 48 hours the reaction mixture turns dark and viscous. The resulting mass is then steam distilled to remove excess phenol. The solid residue is collected and dissolved in a large amount of 2N sodium hydroxide solution. The solution is filtered through Celite and precipitated into a large amount of dilute hydrochloric acid solution. The precipitate is collected and washed with distilled water. The crude material is dissolved in acetone and decolorized over charcoal followed by reprecipitation in distilled water. Repeated recrystallizations from hot 95% alcohol are performed by careful saturation of the clear solution with distilled water. Colorless powders, m.p. $314^\circ C$ (DSC) is
obtained. The yield is over 90%.

Anal. Calcd. for C_{20}H_{10}Br_{4}: C, 37.90; H, 1.59; Br, 50.42. **Found:** C, 37.78; H, 1.71; Br, 50.00.

The NMR spectrum shows a symmetrical AA'XX' pattern for the aromatic protons (see below), indicating that phenols are para-substituted.

![NMR Spectrum](image)

2.3.2 Epoxy Resin Preparation

To a 50 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser is added 28 g (4.4x10^{-2} mole) of 4,5,6,7-tetrabromophenolphthalein and 81.7 g (8.8x10^{-2} mole) of distilled epichlorohydrin (Aldrich). The reaction mixture is heated with stirring to 80-90°C. The 40% NaOH solution (8.8x10^{-2} mole) is then added dropwise over a period of 30 minutes. The reaction mixture turns from deep purple to orange color in 2 hours. After another one hour the reaction mixture is cooled and filtered. The clear aqueous upper layer is siphoned off and the resin is slurried with 200 ml of distilled water. The mixture is heated at 60-80°C. After settling, the aqueous layer is again siphoned off. This washing procedure is repeated several times until 100 ml of the wash water consumes less than 0.15 ml of 0.1 N HCl upon titration (indicator: Methyl Red). The resin is vacuum distilled at 120°C. The resin solidifies
upon cooling. The solid resin is then dried at 100°C at reduced pressure overnight.

2.4 Characterization of Epoxy Resins

Diglycidyl Ester of Bisphenol-A (DGEBA)

This resin is characterized by using ASTM D-1652-73 method. The solid resin is heated to melt and filtered through glass wool. To a solution of 10 ml of 50 volume percent of chlorobenzene in chloroform, 0.5 g of the resin is added. The solution is stirred with a magnetic stirrer. Four drops of 0.1 percent of crystal violet (4,4',4''-methylene tris-(N,N-dimethyl-aniline)) solution in glacial acetic acid is used as the indicator. The solution is titrated with 0.1 N of hydrogen bromide in acetic acid (standardized by 0.4 g of potassium hydrogen phthalate). The solution turns from light green to red indicating the end-point.

\[
\text{Weight per epoxide equivalent} = \frac{(W)(1000)}{(S-B)(N)}
\]

\(W\) = Weight of sample
\(S\) = Milliliters of HBr used in titrating sample
\(B\) = Milliliters of HBr used in titrating blank
\(N\) = Normality of HBr.

The weight per epoxide equivalent of DGEBA is found to be 192 g.

Diglycidyl Ether of Phenolphthalein (DGEPP)

Weight per epoxide equivalent: 247.

Diglycidyl Ether of Tetrabromobisphenol-A (DGBPBA)

Weight per epoxide equivalent: 860.
Diglycidyl Ether of Tetrabromophenolphthalein
(DGETEPP)

Determination of epoxy content of DGETEPP by ASTM method has failed to provide a reliable result due to the ambiguous end-point upon titration. Another procedure for determination of epoxide equivalent by the pyridinium chloride method is used.

Exactly 0.317 g of epoxy resin is dissolved in 25 ml of 0.2 N pyridinium chloride-pyridine solution (16 ml conc. HCl per liter of pyridine) in a round bottom flask connected with a reflux condenser. The solution is heated to reflux with stirring for 25 minutes. After refluxing, the solution is cooled with the condenser in place. Fifty ml of methanol is added through the reflux condenser and let drain. The solution is then titrated with 0.5 N standardized methanolic NaOH to a pink end point of 15 drops of phenolphthalein.

Weight per epoxide equivalent = \(\frac{(16)(\text{sample weight, g})}{(\text{g of oxirane oxygen in sample})} \)

Grains of oxirane oxygen in sample = \((A-B)(N)(0.016)\)

\(A = \text{Milliliters of NaOH for blank} \)
\(B = \text{Milliliters of NaOH for sample} \)
\(N = \text{Normality of NaOH} \)
\(0.016 = \text{Milliequivalent weight of oxygen in grains.} \)

The weight of resin per epoxide equivalent is found to be 537 g.

\textbf{Anal. Calcd.} for \(C_{26}H_{16}Br_4 \): C, 41.86; H, 2.43; Br, 42.84; Molecular weight, 746. \textbf{Found:} C, 41.63;
H, 2.54; Br, 39.84; Average molecular weight, 805.

$\text{MNR (} \delta \text{):}$ 6.85-7.22 ppm (aromatic protons)
2.73-2.91 ppm (\(-\text{CH}_2\))
3.23-3.35 ppm (\(-\text{CH}^-\))
3.64-4.28 ppm (\(-\text{OCH}_2^-\)).

The DSC traces of the uncured resins (Figures 3-5) are taken on a DuPont 910 Differential Scanning Calorimeter and 1090 Thermal Analyzer. The absence of T_m in DGEPP and DGETBPP suggests that both resins are highly amorphous. The appearance of an endothermic glass transition in DGETBPP is due to the "hysteresis effects" caused by slow cooling (after vacuum-oven dried at 70°C) and subsequent fast heating (10°C/min temperature run). The glass transition temperatures (T_g) of DGEBA and DGETBBA are resolved by quenching the samples at the molten state (T_m) followed by 10°C/min temperature runs. Crystallization of the samples does not occur fast enough at this heating rate to give endothermic melting curves. The melting peak of DGETBBA reappears after annealing the sample at 115°C for 12 hours.

2.5 Brominated Epoxy Resins Used as Commoners in the DGEBA System

Equal amounts of DGEBA and DGETBPP (or DGETBBA) are mixed at 120°C with a calculated amount of phthalic anhydride (0.6 equivalent per equivalent of epoxy group). The resin is initially maintained at 120°C for one hour and is then cured for 1-2 hours at 170°C-180°C. The curing reaction is monitored by taking the sample out of the batch at the various stages of cure and examining the changes of absorbance in the IR spectrum. The cured resin is characterized by TGA and OI.
Fig. 3: DSC Thermogram of UGEPP
Figure 4: DSC Thermogram of DGETBPP.

- Original Sample
 - T_g: 60.9°C
 - T_m: 72.2°C
 - T_s: 71.1°C

- Quenched Sample
 - T_g: 63.7°C
 - T_m: 60.9°C
 - T_s: 74.8°C

- Annealed Sample: 75°C, 12 HRS
 - T_g: 63.7°C
 - T_m: 60.9°C
 - T_s: 73.8°C

Temperature (°C) vs. Heat Flow (mW)
Figure 5: DSC Thermograms of DGETBBA and DOEBA.
2.6 Epoxy Resins/Poly(butylene terephthalate) System

Samples are prepared by mixing poly(butylene terephthalate) and the additive resins at the specified weight ratios and are melted with stirring in the aluminum dishes. Char yields and oxygen indices are taken. The reactions between DGETBPP and poly(butylene terephthalate) are followed by FT-IR. IR spectra are taken on the thin films of the samples coated on the aluminum plates using a Reflectance Attachment (Figure 6).

2.7 Standard Procedure for the Preparation of the Oligomeric Phenol-Formaldehyde Resins

The phenolic monomers used in the syntheses include phenol, o- and p-cresols, m- and p-chlorophenols, and m- and p-broccophenols.

One mole of phenolic monomer, 66.2 g (0.83 mole) of a 37.8% aqueous solution of formaldehyde, and 1.5 g of oxalic acid are reacted by refluxing at 95-97°C with stirring. The precipitation of the resin is observed during the reaction. Excess water and the unreacted phenolic monomer are removed by vacuum distillation. The solid resin is then dissolved in menthol and precipitated in a large amount of acidified water (pH 3.4). The precipitate is collected, washed with water, and dried under vacuum at room temperature. The resins are obtained in 80-95% yield.

2.8 Characterization of the Oligomeric Phenol-Formaldehyde Resins

The melting points of the resins are determined by DSC. The number-average molecular weights are determined by NMR.
Figure 6: Schematic Diagram of Reflectance Attachment.
using a Varian HR/FTC IT-220 proton NMR spectrometer. The number of repeating units is calculated from the ratio of the total aromatic protons and the hydroxyl protons to the total number of methylene protons.

2.9 Standard Procedure for the Crosslinking of Phenol-Formaldehyde Resins

2.9.1 Crosslinking Through Ester Linkages with Terephthaloyl Chloride

To a resin kettle equipped with two dropping funnels and a mechanical stirrer is added 5.0 g of oligomeric resin (containing 2.7-4.8x10^{-2} mole of phenolic hydroxyls) in 300 ml acetone (Aldrich, distilled). Excess (9.6 g, 4.7x10^{-2} mole) of terephthaloyl chloride (Aldrich, recrystallized from hexane) in 100 ml acetone is slowly charged into the solution. Simultaneously triethylamine (9.6 g, 9.5x10^{-2} mole) is added dropwise into the reaction mixture over a period of 15 minutes. The reaction is kept at room temperature for 12 hours. At the end of the reaction the crosslinked resin precipitates from the solution. The product is washed successively with acetone, distilled water, dilute ammonium hydroxide solution, distilled water, dilute oxalic acid solution, water, and acetone. The final resin is then dried under reduced pressure.

2.9.2 Crosslinking Through Methylene Linkages

2.9.2.1 Crosslinking with s-Trioxane

To a resin kettle is added a solution of 5.0 g of oligomeric resin, a large excess (36.0 g, 0.4 mole) of s-trioxane, and 3.0 g of p-toluenesulfonic acid in 200 ml of
bis(2-ethoxyethyl) ether. The solution is heated at 95-100°C with stirring for 48 hours. The cured resin is then washed with distilled water and methanol, and dried under reduced pressure.

2.9.2.2 Crosslinking with Formaldehyde

To a resin kettle is added 5.0 g oligomeric resin, 200 g of 37.8% formaldehyde, and 3.0 g of 2,6-dichloro-phenol. The mixture is heated to 92-94°C and refluxed with stirring for 5 hours. The cured resin is then washed with distilled water and methanol.

2.10 Characterization of Cured Phenol-Formaldehyde Resins

Selected samples of cured resins are analyzed by FT-IR. Thermal properties are determined by DMA and DSC.

2.11 Preparation of Fluorene-Based Polymerlates

2.11.1 Preparation of Bisphenols

1. 9,9'-Bis(4-hydroxyphenyl)fluorene (HPF), $R_1 = R_2 = H$
2. 9,9'-Bisresol fluorene (BRF), $R_1 = CH_3$, $R_2 = H$
3. 9,9'-Bis(3,5-dimethyl-4-hydroxyphenyl)fluorene (BMPF), $R_1 = R_2 = CH_3$
Bisphenols are prepared by following Morgan's (50) procedure. Excess phenol, cresol and 2,6-dimethylphenol are used in the condensation reaction with fluorenone. A small amount of mercaptoacetic acid is used as co-catalyst. Dry hydrogen chloride is bubbled through the reaction mixture for 20 minutes while the reaction is kept at 140°-150°C. At the end of the reaction the viscose mass is washed with hot water several times and dissolved in NaOH solution. The product is obtained by titrating with concentrate HCl. One recrystallization from toluene gives white crystals.

BPP: m.p. 224°-225°C, yield 56%.

Anal. Calcd. for C_{25}H_{18}O_{2}: C, 85.71; H, 5.11; Found: C, 85.62; H, 5.21.

NMR (δ): 6.78 ppm (phenolic protons)
7.10-7.80 ppm (fluorenyl protons)
8.10 ppm (hydroxyl protons)

BCF: m.p. 110°-111°C, yield 70%.

Anal. Calcd. for C_{27}H_{22}O_{2}: C, 85.71; H, 5.81; Found: C, 85.21; H, 5.43.

BEMPF: m.p. 271-272°C, yield 35%

Anal. Calcd. for C_{27}H_{26}O_{2}: C, 85.71; H, 6.40;
Found: C, 85.52; H, 6.26.

NMR (δ): 2.13 (methyl protons)
6.73 (phenolic protons)
7.10-7.72 (fluorenyl protons).
2.11.2 Preparation of Polymers

1. Polyisophthalate of 9,9'-bis(4-hydroxyphenyl)-fluorene (BFF-I); $R_1 = R_2 = H$

2. Polyisophthalate of 9,9'-bisresol fluorene (BCF-I); $R_1 = CH_3; R_2 = H$

3. Polyisophthalate of 9,9'-bis(3,5-dimethyl-4-hydroxyphenyl)fluorene (BCYFP-I); $R_1 = R_2 = CH_3$.

The polyarylates are synthesized by interfacial polycondensation using the procedure similar to that for the polytetraphthalate of 9,9'-bis(4-hydroxyphenyl)fluorene. For a typical run, 3.5 g (0.01 mole) of BFF, 1.6 g (0.04 mole) of sodium hydroxide and 2.1 g (0.01 mole) of tetraethylammonium bromide are dispersed in 120 ml of water in a blender. To this mixture is added quickly with vigorous
stirring 2.03 g (0.01 mole) of isophthaloyl chloride in 30 ml of 1,2-dichloroethane. After stirring for 3 minutes, the addition of 200 ml of n-hexane is made. The separated polymer is collected, washed with water and dried. The product is redissolved in methylene chloride and precipitated in 500 ml methanol to yield 4.0 g (95%) of polymer.

BPF-I

Anal. Calcd. for C_{33}H_{20}O_4: C, 83.50; H, 4.17; Found: C, 83.79; H, 4.76.

- n
inh : 0.91 (0.45 g/dl, methyl chloride, 25°C)
- T_g : 265°C
- T_d : 500°C
- Char yield, 800°C: 59%
- OI : 37.

BPF-I

Anal. Calcd. for C_{35}H_{24}O_4: C, 80.6; H, 4.72; Found: C, 82.6; H, 4.76.

- n
inh : 0.25 (0.45 g/dl, methylene chloride, 25°C)
- T_g : 287°C
- T_d : 520°C
- Char yield, 800°C: 40%
- OI : 36.

BDMPP-I

Anal. Calcd. for C_{37}H_{28}O_4: C, 82.84; H, 5.22; Found: C, 79.77; H, 5.36.

- n
inh : 0.85 (0.45 g/dl, methylene chloride, 25°C)
- T_g : 315°C
- T_d : 510°C
- Char yield, 800°C: 34%
- OI : 35.
2.12 Studies of Photo-Fries Rearrangement

2.12.1 Irradiation Chamber

The equipment for photo-Fries rearrangement consists of a power source (Hanovia 27801), an ultraviolet light source (Mercury-Xenon Compact Arc Lamp, Hanovia 508B0090) with 1000 watts of power and a lamp housing system (Schoeffel Instrument Co., LH 152 N Lamp Housing).

2.12.2 UV Spectroscopic Studies

Polymer samples are dissolved in methylene chloride (Aldrich, distilled) to make 5.0×10^{-4} M solutions. After the initial UV-Visible spectra are taken the quartz cuvettes containing the sample solutions are then placed in the irradiation chamber for irradiation. Spectra are taken after certain periods of irradiation time.

2.12.3 FT-IR Spectroscopic Studies

The aluminum plates coated with polymer films are subjected to UV irradiation. Infrared spectra are taken before and after irradiation, using Reflectance Attachment.
3. RESULTS AND DISCUSSION

3.1 Flame Retardants Containing Looz Functionality

3.1.1 Effects of Phthalides on Thermal Properties of Polymers

3.1.1.1 Bisphenol-A Polycarbonate System

Table 1 summarizes the values of char yield and oxygen index for all the polymer samples incorporated with different amounts of additives. Bisphenol-A polycarbonate containing phthalide additives show slight weight changes in TGA at 800°C as compared to the polymer without the additives. The amount of weight change actually corresponds to the amount of additives incorporated into the polymers indicating the additives are not active in the condensed phase. The TGA curves (Figures 7-9) show two areas of weight losses corresponding to the evaporation of phthalides and the decomposition of the polymers (discussed later). A plot of oxygen index as a function of the percentage of three different phthalide additives in bisphenol-A polycarbonate is illustrated in Figure 10. The substituted bisphenyl phthalides are found to increase the oxygen index in a linear fashion with increasing weight % of the additives. In substituted phenylphthalalides the relative order of effectiveness is Br > Cl > CH, based on the slope of the plot.

Although a large body of research into the mechanism of halogen fire retardants have been reported, considerable uncertainty remains concerning the relative importance of
Figure 8: Effect of 3,3-bis(4-Chlorophenyl)phthalide Additive upon Char Yield of Bisphenol-A Polycarbonate as Measured by TGA at 10°C/min under N₂.
Figure 9: Effect of Phenolphthalein Additive upon Char Yield of Bisphenol-A Polycarbonate as Measured by TGA at 10°C/min under H2.
Figure 10: Relationship of Oxygen Index with Additive Content in Bisphenol-A Polycarbonate.
hydrogen halide gas versus free radical reactions. The role of hydrogen halide as the primary inhibiting species in gas-phase reactions is supported by the fact that the inhibiting effect (as measured by the flame velocity) of bromine (Br₂) and chlorine (Cl₂) in a carbon monoxide-oxygen flame can be increased by the addition of hydrogen (H₂)(51,50). The halogens are considered to be dissociated or converted to HX molecules. The diatomic halogen molecule is hence not expected to be the inhibitor, but rather the halogen atom or HX molecules(56). Nevertheless, Penimore and Martin (53) have found that the injection of hydrogen chloride or chlorine into the oxygen-nitrogen mixture used in their oxygen index measurements has little or no effect upon oxygen index. The inhibiting effect is found only when chlorine is substituted in the polymer. The halogen flame inhibition can not be considered to be only due to the blanketing and cooling actions of the gases evolved since certain halogen containing materials are much more effective than inert gases such as carbon dioxide and nitrogen(54). Therefore, the actions of halogenated fire retardants are mainly chemical in nature. The mechanisms associated with polymer combustion and its suppression has been reviewed by Warren(55). Rosser et al.(57) have proposed a mechanism for the suppression of the gas-phase radical reactions. It consists of the replacement of the radical chain carriers by less reactive halogen atoms (X⁺).
where HR represents the fuel or other hydrogen containing species. The substitution of X for H and OH results in a reduction of diffusion of such species and the possible exothermic propagation reaction:

$$OH^- + CO
ightarrow H^+ + CO_2$$

and chain branching reactions:

$$H + O_2 \rightarrow OH + O^*$$
$$H_2 + O^* \rightarrow OH + H^*$$

Creitz (58) has indicated, however, that the halogen acids might not be the primary inhibiting species based on the experimental results that the inhibitor (HX), when added to the fuel, is little more effective than the equivalent amount of nitrogen (59). It appears that the halogen acids can not survive under the oxidizing conditions in the reaction zone. It is more likely that the inhibition takes place in the oxygen-rich, recombination region which is outside of the reaction zone of a diffusion flame. Removal of the active oxygen atoms accounts for the inhibition effect according to the following mechanisms.

$$O^- + X^- + M \rightarrow OX + M^-$$
$$O^- + X_2 \rightarrow XO^- + X^-$$
$$O^- + OX \rightarrow X^- + O_2$$
$$XO^- + OH \rightarrow HX + O_2$$
The relative effectiveness of the various halogens as flame inhibitors has been found to be directly proportional to their atomic weights, i.e., $F:Cl:Br:I = 1.0:1.9:4.2:6.7$ (60). Perhaps the differences in efficiency among the halogens can be explained by the differences in bond energy (61) (C-X bond energy in Kcal/mole: C-F, 107.0; C-Cl, 66.5; C-Br, 54.0; and C-I, 56.5).

Infrared spectra (Figure 11) of the pyrolysis gases from the TGA experiment on bisphenol-A polycarbonate containing chlorophthalide show a trace of HCl formation at the early stages of heating. The weight loss in the range of 300°-400°C (Figure 8) may be due to the evaporation of the additives.

The chemistry of additive phenolphthalein in bisphenol-A polycarbonate involves reactions taking place at 160°-180°C. This is clearly shown by the Differential Scanning Calorimetry (DSC) thermogram (Figure 12) of the sample. The weight loss starting from 120°C in TGA thermogram (Figure 9) may be due to the evaporation of water which is proposed to be one of the possible products of the following reactions:

$$R_1OH \rightarrow R_1^+ + \cdot OH$$
$$\cdot OH + R_2H \rightarrow H_2O + R_2^+$$

(R$_1$OH: phenolphthalein; R$_2$H: polymer)

Consequently phenolphthalein changes the mechanisms of pyrolytic degradation of the polymer and alters fuel production process resulting in flame retardation.
Figure 11: Infrared Spectra of HCl (A) and the Gases evolved between 300°-400°C in a TGA Measurement of Bisphenol-A Polycarbonate Containing 30% 3,3-bis (4-Chlorophenyl)phthalide (B). IR Gas Cell; 25°C.
30% Phenolphthalein in bisphenol A polycarbonate

Phenolphthalein (1°C/min)
[0.1°C/min]
3.1.1.2 Poly(butylene terephthalate) and Nylor 6.6 Systems

The bromophthalide additive in poly(butylene terephthalate) leads to an increase in char yield and an increase in oxygen index as indicated in Table 1. The condensed phase activity can be attributed to the loss of bromine and the crosslinking of the aromatic rings of the additive and the polymer by free-radical coupling reactions:

\[
\text{Br-} \text{C} - \text{R} - \text{C} - \text{Br} \rightarrow \cdot \text{C} - \text{R} - \text{C} - \cdot + 2 \text{Br} .
\]

\[
\text{Br} - \cdot + \cdot \text{C} \rightarrow \cdot \text{H} + \text{C} - \cdot .
\]

\[
\cdot \text{C} - \text{R} - \cdot - 2 \cdot \text{C} \rightarrow \text{R} - \text{C} - \text{C} - \text{C} - \text{R} .
\]

Nylon 6.6 does not provide crosslinking sites resulting in an unchanged char yield.

The char forming activity is reduced due to the evaporation of the additive in the 200°-350° range as indicated in Figures 13 and 14. This result leads to an
Table 1.
Thermal Analytical Data of Polymers Containing Phthalide Additives

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Additive (a)</th>
<th>Parts by Wt. %</th>
<th>Char Yield % at 800°C, N₂</th>
<th>Oxygen Index %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisphenol-A Poly-</td>
<td>None</td>
<td>-</td>
<td>20.7</td>
<td>21.5</td>
</tr>
<tr>
<td>carbonate</td>
<td>3,3-bis(4-Bromo-phenyl)-phthalide</td>
<td>10</td>
<td>17.7</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>17.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>13.3</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>3,3-bis(4-Chlorophenyl)-phthalide</td>
<td>10</td>
<td>17.3</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>15.8</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>13.6</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>Phenolphthalein</td>
<td>10</td>
<td>21.0</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>29.0</td>
<td>26.0</td>
</tr>
<tr>
<td>FBT</td>
<td>None</td>
<td>-</td>
<td>1.1</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>3,3-bis(4-Bromophenyl)-phthalide</td>
<td>30</td>
<td>2.6</td>
<td>31.0</td>
</tr>
<tr>
<td>Nylon 6.6</td>
<td>None</td>
<td>-</td>
<td>5.9</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>3,3-bis(4-Bromophenyl)-phthalide</td>
<td>30</td>
<td>6.1</td>
<td>32.0</td>
</tr>
</tbody>
</table>

(a) 3,3-bis(4-bromophenyl)-phthalide

3,3-bis(4-Chlorophenyl)-phthalide

 Phenolphthalein
Figure 13: Effect of 30% of 3,3-bis(4-Bromophenyl)phthalide on Char Yield of

Nylon 6.6

Additive

T. °C (CORRECTED FOR CHROMEL ALUMEL THERMOCOUPLES)

N

B

17.6 mg

1.16

0.8 mg

800

2.6%
Figure 14: Effect of 30% of 3,3-bis(4-Bromophenyl)phthalide on Char Yield of Poly(butylene terephthalate)
expectation that less volatile material such as an oligomeric additive should retain its effectiveness at high temperature. In the later sections it will be demonstrated that a high degree of char forming ability will result with the incorporation of an epoxy resin additive.

3.1.2 Effects of Phthalide Containing Epoxy Resins on the Thermal Properties of Polymers

3.1.2.1 Epoxy Copolymer Resins

Summaries of the thermal analytical data of the phthalic anhydride cured DGEBA, DGEBTBA, and DGEBA/DGEBTPP resins are shown in Table 2. The presence of DGEBTBA in DGEBA leads to an increase of char yield from 7.3\% to 13.6\% and an increase of oxygen index from 21 to 31. The TGA thermograms in Figure 15 show no sign of the evaporation of the additives. The char formation mechanism is similar to the one described previously. The increase of char formation has been observed in other halogenated polymer systems such as styrene-vinyl benzyl chloride copolymers\(^{60}\) and chlorinated aromatic polyamides\(^{61}\). In these systems the cleavage of the C\(_{aromatic}-\)Cl bond enhances the cross linking of the aromatic rings.

The replacement of DGEBTBA by DGEBTPP in the copolymer resin leads to another increase in char yield from 13.6\% to 22\% and an increase in oxygen index from 31 to 34, suggesting that the loop functionality of DGEBTPP contributes to char formation and overall flame retardancy of the resin.
<table>
<thead>
<tr>
<th>Resin (a)</th>
<th>Bromine Content, %</th>
<th>Char Yield, % at 800°C, N₂</th>
<th>OI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEBA</td>
<td>0</td>
<td>7.3</td>
<td>21</td>
</tr>
<tr>
<td>DGEBA/DGECBEA</td>
<td>45</td>
<td>13.6</td>
<td>31</td>
</tr>
<tr>
<td>DGEBA/DGETBPP</td>
<td>50</td>
<td>22.0</td>
<td>34</td>
</tr>
</tbody>
</table>

(a) Cured with phthalic anhydride.
Figure 15: TGA Thermograms of Epoxy Resin Copolymers Cured with Phthalic Anhydride

(A) DGEBA/DGEBFPP (50/50) (B) DGEBA/DGETBBA (50/50); N_2, $10^\circ C/min.$
3.1.2.2 FT-IR Studies on Curing Reactions of the Epoxy Resins

The curing reactions of DGEBA/EGTBP with phthalic anhydride are studied by infrared spectroscopy (Figure 16). The curing reaction involves opening of the anhydride ring by an active hydrogen (64):

\[
\begin{array}{c}
\text{\textbf{O}} \\
\text{\textbf{C}} \\
\text{\textbf{C}} \\
\text{\textbf{O}}
\end{array} + \text{H}_2\text{O} \rightarrow \begin{array}{c}
\text{\textbf{O}} \\
\text{\textbf{C}} \\
\text{\textbf{C}} \\
\text{\textbf{O}}
\end{array}
\]

The initial reaction is addition esterification:

\[
\begin{array}{c}
\text{\textbf{O}} \\
\text{\textbf{C}} \\
\text{\textbf{C}} \\
\text{\textbf{O}}
\end{array} + \begin{array}{c}
\text{\textbf{O}} \\
\text{\textbf{C}} \\
\text{\textbf{C}}
\end{array} \rightarrow \begin{array}{c}
\text{\textbf{O}} \\
\text{\textbf{C}} \\
\text{\textbf{C}} \\
\text{\textbf{O}}
\end{array}
\]

The bands near 1850, 1765, and 715 cm\(^{-1}\), which decrease in intensity during the curing reaction, are related to the structure of phthalic anhydride. The increase in intensity of the band near 1070 cm\(^{-1}\) results from the formation of an ether linkage. The crosslinked structure is formed at the expense of oxirane rings of the epoxy resins. Accordingly, the oxirane ring breathing adsorptions at 1260 and 910 cm\(^{-1}\) decrease in intensity. The changes in intensity are clearly demonstrated in the difference spectra obtained by subtracting the 1510 cm\(^{-1}\) band (semicircle stretching of the benzene ring) to the base line (Figure 17). The spectra of the individual components are shown in Figures 18-21.

Similar changes in the infrared spectra are observed during the curing reaction of DGEBA/EGTBP with phthalic
Figure 16: Infrared Spectra of DGEBA/DGRTLPP Cured with Phthalic Anhydride
(A) Initial Mixture (B) after Curing at 100°C for 30 Min. (C) after Curing at
100°C for 2 Hr. (D) after Additional Heating at 180°C for 1 Hr. KBr Pellet; 25°C.
Figure 17: Difference Spectra Obtained from Figure 16 by Subtracting the 1510 cm^{-1} Band to the Base Line.
Figure 18: Infrared Spectrum of DGEBA. Reflectance Attachment.
Figure 19: Infrared Spectrum of DGETBPP, Reflectance Attachment.
anhydride. The decreases of bands at 1850, 1765, 1250, and 715 cm\(^{-1}\) associated with phthalic anhydride are shown in Figure 22. The sample after curing at 120°C for one hour already shows the presence of an additional band at 1070 cm\(^{-1}\) (ether linkage) which does not increase much after further heating, indicating that the curing reaction is near completion. The difference spectra are shown in Figure 23.

3.1.2.3 Epoxy Resin/Poly(butylene terephthalate) System

The thermal analytical data of poly(butylene terephthalate) containing different epoxy resin additives are shown in Table 3. By comparing the data one can find that DGEPP and DGETBBA have an equivalent influence on oxygen index. However, the loop functionality of DGEPP increases the char yield. The presence of bromine in DGETBPP causes a slight decrease in char yield and an increase of oxygen index by one unit as compared to the DGEPP system.

If one takes into account the char yields of the additives, the actual increased char formation will be 11.5\%, 6.9\% and 9% from DGEPP, DGETBBA, and DGETBPP, respectively. The values are obtained from the differences between the experimental char yields and the calculated char yields in Table 3.

3.1.2.4 FT-IR Studies of DGETBPP/Poly-(butylene terephthalate) System

The spectral changes which occur upon heating the mixture of DGETBPP and poly(butylene terephthalate) at melting are shown in Figure 24. In order to compare the spectrum of
Figure 22: Infrared Spectra of DGEBA/DIETUA Cured with Phthalic Anhydride.

(A) after Curing at 120°C for 1 hr. (B) after Additional Heating at 170°C for 25 Min. (C) Cured Resin. KBr Pellet. 25°C.
Figure 23: Difference Spectra Obtained from Figure 22 by Subtracting the 1510 cm\(^{-1}\) Band to the Base Line.
Table 3.
Thermal Analytical Data of Poly(butylene terephthalate)
Containing Different Epoxy-Resin Additives

<table>
<thead>
<tr>
<th>Additives</th>
<th>% Weight</th>
<th>Char Yield, % at 800°C, N₂</th>
<th>Oxygen Index, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>DGEPP</td>
<td>30</td>
<td>20, (8.5)⁽ᵃ⁾</td>
<td>27</td>
</tr>
<tr>
<td>DGETBBA</td>
<td>30</td>
<td>10, (3.1)⁽ᵃ⁾</td>
<td>27</td>
</tr>
<tr>
<td>DGETBPP</td>
<td>30</td>
<td>18, (11)⁽ᵃ⁾</td>
<td>28</td>
</tr>
</tbody>
</table>

⁽ᵃ⁾ Calculated values based on 30% contribution from the char yield of the additive (DGEPP, 26%; DGETBBA, 8%; DGETBPP, 34%).
Figure 24: Infrared Spectra of Poly(Butylene terephthalate)/DGEBP
(A) Melt Mixture (B) Sum Spectrum Constructed by a 0.5:1 Addition of the Individual Spectra of DGEBP and Poly(Butylene terephthalate).
the mixture with that of the original sample, a sum spectrum of DGETBPP and poly(butylene terephthalate) (Figure 24) is constructed by a 0.5:1 addition of the individual spectrum. A new band at 1130 cm\(^{-1}\) associated with ether linkage (C-O-C) is observed. The newly formed ester bond (O-C) shows a band at 1295 cm\(^{-1}\). The decrease of the band at 1250 cm\(^{-1}\) associated with oxirane ring breathing absorption is clearly observed. As a result of the stiffer structure, the carbonyl C=O shifts to 1735 cm\(^{-1}\).

Opening of the oxirane ring in DGETBPP results in the formation of -OH groups so that the increase in intensity of the bands in the region of 3400-3600 cm\(^{-1}\) is observed.

These spectral changes are clearly demonstrated in the difference spectrum (Figure 25), obtained by subtracting the 1770 cm\(^{-1}\) band (lactone ring stretching vibration) to the baseline. The positive difference bands at 1130 cm\(^{-1}\) and 1295 cm\(^{-1}\) are observed. The decrease in intensity of the band at 1250-1260 cm\(^{-1}\) and a shift of carbonyl absorption are also clearly resolved. The change in the degree of crystallinity of poly(butylene terephthalate) caused by the melt process is demonstrated by the appearance of a sharp positive difference band at 730 cm\(^{-1}\)\(^{65}\). The subtraction criterion for the reduction of the 1770 cm\(^{-1}\) band to the baseline is to eliminate one component (DGETBPP) from the mixture. The other component may leave a few difference bands in the spectrum. For this reason the difference spectrum shown in Figure 25 is contracted 5 times to avoid confusion.
Figure 25: Difference Spectrum Obtained from Figure 24 by Subtracting the 1770 cm⁻¹ Band to the Base Line.
From the above analysis, the interaction of DGETBPP with poly(butylene terephthalate) may be assumed to proceed according to the following mechanisms (15):

\[
CH_2=CH-R_1 + R_2-CH_2-CH_2-CH_2-CH_2-O-C-Ph-R_j \rightarrow \]

\[
+ CH_2-CH-R_1
\]

\[
R_2-CH_2-CH_2-CH_2-CH_2-C^{--}O--C-Ph-R_j \rightarrow \]

\[
R_2CH_2CH_2CH_2CH_2-C^{--}CH-R_1 \quad 0-C-Ph-R_j
\]

The final product is completely soluble in phenol at elevated temperature. Further heating of the sample at 300°C for 3 hours after mixing leads to insoluble materials attributed to a crosslinked structure. The increase in char formation is indicative of the formation of the intermediate compound during the heating process that is capable of altering the mode of decomposition of poly(butylene terephthalate).

3.1.3 Conclusion

Small molecules containing loop functionality used as additives do not affect the char formation of bisphenol-A polycarbonate. The increased flame retardancy appears to be mainly due to the presence of halogens. However, in poly(butylene terephthalate) the cleavage of the
Aromatic-Br bond of the flame retardant additive seems to enhance the crosslinking reactions between the aromatic rings resulting in a higher char yield.

The only apparent evidence for the char-forming activity due to loop functionality is found in the epoxy-resin systems.

3.2 Phenol-Formaldehyde Resins

3.2.1 Structural Studies of the Cis-cyclic Resins

In the syntheses of phenol-formaldehyde resins, numerous different types of reactions may occur. Among these are hydroxymethylations of phenolic rings:

\[
\text{(I)} \quad \text{OH} \quad + \quad \text{CH}_2\text{O} \quad \rightarrow \quad \text{OH} \quad \quad \text{CH}_2\text{CH} \\
\]

Further reactions of the hydroxymethylated phenols, II, with formaldehyde gives hemiformals and polyformals,

\[
\text{II} + \text{CH}_2\text{O} \quad \rightarrow \quad \text{OH} \quad \text{CH}_2\text{OCH}_2\text{CH} \quad \text{CH}_2\text{O} \quad \rightarrow \quad \text{OH} \quad \text{(CH}_2\text{O})_x \text{CH}_2\text{C} \\
\text{(III)}
\]

\[
\text{HO(CH}_2\text{O})_x\text{H} + \text{CH}_2\text{O} \quad \rightarrow \quad \text{HO(CH}_2\text{C})_{x+1}\text{H} \\
\text{(IV)}
\]
Diphenylmethane-type methylene bridges (V) and dibenzyl ether-type bridges (VI) are the products of condensation type reactions:

\[\text{I} + \text{II} \rightarrow \text{(V)} \]

\[2 \text{II} \rightarrow \text{(VI)} \]

The mechanisms and the rates of these reactions mainly depend on pH, type of catalyst, and temperature \(^{(66)}\). As a general observation, resol resins contain appreciable methylol and ether groups, while novalak resins contain very little methylol and ether groups \(^{(67)}\).

Model compounds have been studied by Woodbrey, et al. \(^{(68)}\). The results (Figure 26) show the different chemical shifts in NMR spectra for different type of methylene bridges. The shift differences observed between methylene protons of \(\alpha\)- and \(p\)-hydroxymethyl groups are primarily due to the strong intramolecular hydrogen bonding between \(\alpha\)-hydroxymethyl and the phenolic hydroxyl groups.

The methylene bridges formed during the condensation of phenol and formaldehyde can result in three different forms designated as \(\text{para-para}'\) (I), \(\text{ortho-para}'\) (II), \(\text{ortho-ortho}'\) (III) depending upon the positions of the
Figure 26: NMR Chemical Shift Region for Different Functional Groups of Phenol-Formaldehyde Resins in Dilute Solutions in Acetone.

hydroxyl groups on the adjacent aromatic rings relative to the methylene bridge.

\[
\begin{align*}
\text{(I)} & \quad \text{(II)} & \quad \text{(III)} \\
\text{HO} & \quad \text{OH} & \quad \text{OH} \\
\text{CH}_2 & \quad \text{CH}_2 & \quad \text{CH}_2 \\
\end{align*}
\]

Hirst, et al. (69) has assigned the chemical shift for each of these three different configurations in dimers (Figure 27). The chemical shift of 3.75, 3.89, and 3.97 ppm observed for the methylene resonance in I, II, and III, respectively, are typical for larger moieties, and they form the basis for interpreting the data obtained in our studies.

Figures 28 to 32 contain the 220 MHz NMR spectra of the phenol-formaldehyde oligomers showing clearly hydroxyl, aromatic, and methylene resonance peaks. The spectra of cresol-formaldehyde oligomers (Figures 33 and 34) show the methyl resonance peaks. The splitting pattern of the absorption bands are not very well defined. This is in part a result of the large number of isomers even with relatively low molecular weight resins. For example, there are 13,203 linear isomeric structures for a polymer having only ten phenolic units tied together with methylene bridges through ortho or para-positions (70). As a result, there is a lack of complete equivalence of all the protons in a polymer chain.

The absorptions due to the phenolic hydroxyl protons are usually in the region from about 8.00 to 9.25 ppm. The
Figure 27: NMR Spectra of Phenol-Formaldehyde Dimers.

Figure 29: NMR Spectrum of α-Bromophenol-formaldehyde Resin in d-Acetone.
Figure 30: NMR Spectrum of 5-Bromophenol-Formaldehyde Resin in 6-Methone.
Figure 31: NMR Spectrum of 2-Chlorophenol-
Formaldehyde Resin in d-Acetone.
Figure 32: NMR Spectrum of m-Chlorophenol-Formaldehyde Resin in d-Acetone.
Figure 33: NMR Spectrum of p-Cresol–Formaldehyde Resin in d-Acetone.
Figure 34: NMR Spectrum of m-Cresol-Formaldehyde Resin in d-Acetone.
aromatic protons observed in the region from 6.25 to 7.50 ppm. The methylene protons (except for those of para-substituted phenolic resins) can be resolved into peaks due to o,o', o,p', and o,p'-methylene bridges (Figures 28, 30, 32, and 34). The ortho-ortho' resonance is observed as a shoulder on the ortho-para peak (Figure 28). In some of the m-substituted phenol formaldehyde oligomers these peaks are resolved (Figures 32 and 34). Similar observations have been found by Hirst (79) (Figure 35).

The substituent groups have altered the chemical shift of the methylene protons slightly. Differences in shift are related to the field effect arising from the substituents (71). The methyl groups (+I) move the chemical shift of methylene protons to higher field (3.87 ppm for PCP). On the other hand, halogens (-I) move the chemical shift to lower field (3.93 ppm for p3PF and 4.00 ppm for pCPF). The effects of halogens are in agreement with the order of electronegativity, that is, Cl > Br. For non-substituted and meta-substituted phenol-formaldehyde oligomers the chemical shift of methylene protons of a particular linkage, for example, ortho-ortho' methylene bridge, also increase in the order of electronegativity of the substituents: -Cl (4.25 ppm) > -Br (4.12 ppm) > -H (3.87 ppm) > -CH₃ (3.75 ppm).

The field effect arising from the electronic dipole moment of the substituents is dependent on the orientation of the dipoles and charges with respect to the C-H bond.
Figure 35: NMR Spectra of an o-Chlorophenol/Formaldehyde Polymer (A) and the Corresponding Dehalogenated Polymer (B).

The meta-substituents are at the para-position with respect to the methylene protons, therefore, they have a greater influence on the chemical shift of the methylene protons than the para-substituents. The possible side products such as, hemiformals, polyformals, and the dibenzyl ether type of bridges will give rise to absorptions in the 4.70-5.20 ppm region (68). These absorptions are not found in the NMR spectra of all the samples being studied.

Infrared spectra (Figures 36-39) reveal further details of the structure of phenol-formaldehyde resins. Many articles have appeared in the literature on the identification of phenolic resins by means of infrared spectroscopy (72-76). Secret (67) has summed up the available results in the field and supplemented these with his own findings. Those results provide useful information on the assignments of absorption bands in this study.

Both the phenolic and aliphatic hydroxyl groups absorb strongly in the region of 3600-3100 cm⁻¹. The weak absorption due to the aromatic CH appears at 3010 cm⁻¹ and may be masked by the hydroxyl absorption in the case of mCFP (Figure 39). The aliphatic hydrogens can be observed as a weak peak at 2900 cm⁻¹. The 1600 cm⁻¹ band involves "quadrant stretching" of the benzene ring C=C bonds (77). The intensity of the absorption is dependent on the nature and position of the substituents. The absorption is stronger for meta-substituted phenols because of the dipole moment change provided by the
Figure 36: IR Spectra of (A) PF, and (B) X(C)PCPF. KBr Pellet.
Figure 37: IR Spectra of (A) pCF, and (B) mCF. KBr Pellet.
Figure 3B: IR Spectra of (A) pBPf, and (B) MBPF. KBr Pellet.
Figure 39: IR Spectra of (A) pCPP, and (B) mCPP. KBr Pellet.
unsymmetrical substituents. Two bands in the region of 1550-1400 cm\(^{-1}\) are due to semicircle stretching of the benzene ring\(^{(78)}\). The band at 1450 cm\(^{-1}\) is stronger in the meta-substituted phenolic resins. The band between 1400-1300 cm\(^{-1}\) is assigned to the OH deformation of phenol\(^{(78)}\). This band is absent in the spectrum of X(C)PP in which the hydroxyl groups are reacted with terephthaloyl chloride, while it remains in the spectrum of the resin cured through methylene linkages (Figure 40). Substituted phenols give rise to an absorption band in the region of 1300-1180 cm\(^{-1}\) due to C-O stretching vibration of phenol. Depending on the positions of the substituent the intensity and the position of the absorption of phenols vary. Detailed correlations are made for alkyl phenols in solution\(^{(80)}\). The meta-substituted phenol absorbs strongly at 1300-1250 cm\(^{-1}\). The band at 1100 cm\(^{-1}\) arises from the ether groups\(^{(67,81)}\).

\[\text{OH} \quad \text{CH}_2-\text{O-CH}_2 \quad \text{OH} \]

Aldehydes can develop by splitting of the dimethylene linkages\(^{(82)}\):
Figure 40: IR Spectra of (A) PF, (B) PF Cured with Formaldehyde, and (C) PF Cured with Terephthaloyl Chloride. KBr Pellet.
This mechanism offers an explanation for the existence of a weak band near 1710 cm\(^{-1}\) in the spectrum of the cured resin (Figure 40). One strong absorption band that is present in the spectra of all the phenolic resins of normal phenol and para-substituted phenols is at about 815 cm\(^{-1}\) due to the in-phase out-of-phase C-H bending vibrations of the substituted benzene ring\(^{(73,74,76,83)}\). The para-substituted phenols (1,2,4,5 substituted benzene ring) also exhibit a strong absorption band at 860-875 cm\(^{-1}\). This assignment is in agreement with that of Richards and Thompson\(^{(74)}\), Bender\(^{(83)}\), and Lucchesi\(^{(73)}\).

The infrared spectra of phenolic resins cured with formaldehyde and terephthaloyl chloride are shown in Figure 40.

In the formaldehyde cured resin the changes are observed as an increased absorption at 2900 cm\(^{-1}\) from the methylene CH stretching, 1700 cm\(^{-1}\) from the aldehyde carbonyl groups, and 1060 cm\(^{-1}\) from the methylool groups\(^{(67)}\).

This result is in agreement with the crosslinked structure.
The curing of phenolic resins with terephthaloyl chloride may have occurred inter- and intra-molecularly with hydroxyls to form esters as suggested by Lei and Khannia (29).

The resulting resin is expected to give absorptions at 1735, 1260, 1190, and 1065 cm⁻¹ due to the carbonyl groups, the ester C-O groups, β-C-O, and C-O-C, respectively (24).
C-H bending vibrations of para-substituted benzene ring of the curing agent give rise to a sharp band at 1010 cm\(^{-1}\), where the 2 and 3 hydrogens move clockwise while the 5 and 6 hydrogens move counterclockwise\(^{(85)}\). The sharp band at 720 cm\(^{-1}\) is assigned to the aromatic ring of the phthalate\(^{(87)}\).

3.2.2 **Number Average Molecular Weight Determination**

For unsubstituted phenolic resin the structure is assumed to be the following simplified form:

\[
\begin{array}{c}
\text{HOCH}_2 \\
\text{[} \\
\text{CH}_2 \\
\text{]} \\
\text{[} \\
\text{OH} \\
\text{CH}_2 \\
\text{]} \\
\text{CH}_2 \text{OH}
\end{array}
\]

The various NMR integrals are defined as follows: \(A_1 \) = relative number of hydroxyl protons; \(A_2 \) = relative number of aromatic ring protons; \(A_3 \) = relative number of methylene protons; \(n = (A_1 + A_2)/A_3 \). The ratio, \(m \), increases as the repeating unit, \(n \), increases.

The value of \(A_1 + A_2 \) will increase from 6 (when \(n = 0 \)) to \(6 + 4n \), and the value of \(A_3 \) will increase from 4 (when \(n = 0 \)) to \(4 + 2n \). The value of \(m \) can be expressed in terms of \(n \):

\[
\frac{6 + 4n}{4 + 2n} = m
\]

Therefore, the value of \(n \) can be calculated from:

\[
m(n + 1) - 2n - 3 = 0
\]
and the number-average molecular weight, \bar{M}_n, is obtained:

$$\bar{M}_n = 106n + 154.$$

For mono-substituted phenolic resins the value of \(n \) is given by:

$$m(2n + 4) - 3n - 5 = 0.$$

The number-average molecular weight for each different resin can be calculated from the following equations:

- $m\text{BPF}, p\text{BPF}$: \(\bar{M}_n = 185n + 233 \)
- $m\text{CPF}, p\text{CPF}$: \(\bar{M}_n = 140n + 188 \)
- $m\text{CF}, p\text{CF}$: \(\bar{M}_n = 120n + 168 \).

Table 4 shows the results obtained on the phenolic resins by using the above methods.

It should be noted that the calculations of \(m \), \(n \), and \(\bar{M}_n \) assume the absence of cyclic structures and branched isomers. The assumption may become invalid for some higher molecular weight resins. Also, the errors accompanying determinations of \(m \) and \(n \) increase greatly with increasing bridging contents and the molecular weight.

3.2.3 Thermal Properties of Cured Phenolic Resins

Summaries of the thermal analytical data of the phenolic resins crosslinked by formaldehyde and terephthaloyl chloride are shown in Tables 5 and 6, respectively. The oxygen index is plotted as a function of char yield as shown in Figure 41. An approximate correlation between oxygen index and char yield is found among samples containing no halogens according to the following relationship:
Table 4.
Number Average Molecular Weights, \bar{M}_n, of Oligomeric Phenolic Resins

<table>
<thead>
<tr>
<th>Resin</th>
<th>α</th>
<th>n</th>
<th>$\bar{M}_n \times 10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>2.07</td>
<td>13.2</td>
<td>1.53</td>
</tr>
<tr>
<td>mBPF</td>
<td>1.44</td>
<td>6.33</td>
<td>1.40</td>
</tr>
<tr>
<td>pBPF</td>
<td>1.45</td>
<td>8.00</td>
<td>1.71</td>
</tr>
<tr>
<td>mCPF</td>
<td>1.48</td>
<td>23.0</td>
<td>3.42</td>
</tr>
<tr>
<td>pCPF</td>
<td>1.45</td>
<td>8.00</td>
<td>1.31</td>
</tr>
<tr>
<td>mCF</td>
<td>1.42</td>
<td>4.25</td>
<td>0.67</td>
</tr>
<tr>
<td>pCF</td>
<td>1.43</td>
<td>5.14</td>
<td>0.78</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Crosslinked Resins</td>
<td>Char Yield, % at 800°C, N₂</td>
<td>Oxygen Index, %</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>X(T)PF</td>
<td>57</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>X(F)PF</td>
<td>56</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>X(T)mCPF</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>X(T)mCPF</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>X(F)mCPF</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>X(T)mBPF</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>X(F)mBPF</td>
<td>41</td>
<td>75</td>
</tr>
</tbody>
</table>
Table 6.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Crosslinked Resins</th>
<th>Char Yield, % at 800°C, N₂</th>
<th>Oxygen Index, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>X(C)PP</td>
<td>44</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>X(C)mCP</td>
<td>34</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>X(C)pCP</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>X(C)mCPP</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>X(C)nBP</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>X(C)pCPP</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>X(C)pBPP</td>
<td>37</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 41: Correlation of Oxygen Index and Char Yield of Phenolic Resins.

% OI = 2.4 + 0.57 (% Char Yield at 800°C)
\[\% \text{OI} = 2.4 + 0.57 \text{ (\% char yield at } 800^\circ\text{C)}. \]

Depending on the experimental conditions such as the sample forms and the criteria for the oxygen index measurements and the temperature defined for char yields, the intercept and the slope of the curve vary. Van Krevelan obtains the following equation:

\[\% \text{OI} = 17.5 + 0.4 \text{ (\% char yield at } 850^\circ\text{C)}. \]

In general, brominated phenolic resins are found to have higher oxygen indices with lower char yields. The reason has been discussed earlier in terms of a gas-phase radical suppression mechanism and the loss of Br from the structure. The para-substituted phenolic resins cured via ester linkages give higher char yields and oxygen indices than the meta-substituted resins. The differences can be related to their reactivity towards crosslinking agents. In any one of the following proposed mechanisms (87) for the condensation of phenols and acid chlorides in the presence of tertiary amines, the acidity of phenols plays an important role:

\[
\begin{align*}
&\text{Ph}^+\text{NR}_3 + R'-\text{C-Cl} \\
&\text{PhOH} + \text{ClR-N-C-R'} \\
&\left[\text{PhOC-C-R'} + \text{R}_3\text{N}\right]
\end{align*}
\]

\[
\begin{align*}
&\text{O} \text{C-R'} + \text{R}_3\text{K} \cdot \text{HCl}
\end{align*}
\]
Therefore, the para-substituted phenols which usually have smaller K_a values than those of the meta-substituted phenols may result in a higher degree of crosslinking. The degree of crosslinking has been found to have a direct influence on char formation (Table ?)(89).

The results also show that s-trioxane-cured resins have lower char yields and oxygen indices than those of the corresponding formaldehyde cured resins. The infrared spectrum of $X(1)_{mCPF}$ (Figure 42) shows a strong ether absorption at 1100 cm$^{-1}$ which is observed as a weak peak in the spectrum of $X(P)_{mCPF}$. The methylole absorption at 1000 cm$^{-1}$ is relatively stronger. The bands at 1250-1200 cm$^{-1}$ and 940-900 cm$^{-1}$ (strong) are the characteristics of aromatic ether such as methylene-1,2-dioxybenzenes (α-O-CH$_2$-O-β)(90). The relatively low intensity of the OH stretching absorption indicates that hydroxyl groups are involved in the s-trioxane crosslinking reactions. From the above observations the mechanisms for such reactions can be assumed to proceed the following way:
Table 7.

Char Yields as a Function of Degree of Crosslinking* of Phenol-formaldehyde Polymer

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Phenolic Hexa</th>
<th>Sol. Fraction</th>
<th>Char Yield, % at 800°C, N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-a</td>
<td>-</td>
<td>1.00</td>
<td>43.2</td>
</tr>
<tr>
<td>1-b</td>
<td>8.3</td>
<td>0.76</td>
<td>50.2</td>
</tr>
<tr>
<td>1-c</td>
<td>6.9</td>
<td>0.51</td>
<td>51.2</td>
</tr>
<tr>
<td>1-d</td>
<td>4.2</td>
<td>0.41</td>
<td>58.9</td>
</tr>
<tr>
<td>1-e</td>
<td>2.8</td>
<td>0.21</td>
<td>62.9</td>
</tr>
<tr>
<td>1-f</td>
<td>1.9</td>
<td>0.09</td>
<td>64.7</td>
</tr>
</tbody>
</table>

Curing by hexamethylenetetramine (hexa) at 157°C under Ar.

J.A. Parker and E.L. Winkler, NASA Tech. Rept. TR R-276 Nov. 1967
The final cured resins contain aliphatic ethers, methylols, methylene linkages and cyclic acetals.

3.2.4 Conclusion

The structures of the oligomeric phenolic resins have been studied by NMR and FT-IR spectroscopy. The oligomeric resins consist mainly of methylene linkages joining at the ortho and para positions of the phenolic nuclei. NMR spectra also provide an approximate estimation of the number-average molecular weight.

The crosslinked resins are made by using formaldehyde, s-trioxane and terephthaloyl chloride as the curing agents. The structures of the cured resins are studied by FT-IR spectroscopy. The formaldehyde cured resins contain a small amount of methylols and dibenzyl-type ethers. Based on the evidence from the infrared spectra the reactions between s-trioxane and the oligomeric resins are assumed to proceed via cyclic acetal formation along with the conventional crosslinking through methylene bridges. Methylols and benzyl-type ethers are predominant in the structures.

Crosslinking of the oligomeric resins can also be achieved through the reaction of terephthaloyl chloride. The curing reactions may have occurred inter- and intramolecularly with the hydroxyls to form ester linkages.

The thermal analytical data demonstrate the improvement in oxygen index due to the presence of halogens in some of the resins.
3.3 Photo-Fries Rearrangement of Fluorene-Based Polyarylates

3.3.1 UV Spectroscopic Studies

The UV spectra of the polymers in methylene chloride are recorded periodically during the irradiation (Figures 43, 44, and 45). An increase in absorption in the region from 325 to 375 nm with a maximum at 355 nm for EFF-I and BCF-I are related to the hydroxybenzophenone structure if one takes into consideration the fact that low-molecular substituted benzophenone derivatives absorb in the region from 300 to 400 nm depending on the type and position of the substituent in the structure (91). The absorption maxima of polymeric benzophenone also differ markedly from one another (45, 92). By comparing Figures 43 and 45, the increase is found to be less in the case of BCF-I. In the spectra of BEMPP-I (Figure 45) only slight changes in the region of 325-375 nm are observed. A more direct comparison of the changing rates is shown in Figure 46. The curves result from plotting the absorption at 350 nm for each sample as a function of irradiation time.

With the polyarylates examined in this work, the structural requirement to produce the photo-chemical-Fries rearrangement under UV irradiation is the presence of at least one unsubstituted position on the phenol rings ortho to the ester groups. Thus, BEMPP-I does not rearrange under the irradiation conditions. The substitution on one-half of the ortho-positions of the phenol rings with the methyl groups
Figure 43: UV Spectra of BPP-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.
Figure 44: UV Spectra of BCF-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.
Figure 45: UV Spectra of HMPF-I in Methylene Chloride Solution before and after Irradiation for Different Periods of Time.
Figure 46: Changes in Absorbance at 350 nm with Irradiation time: (A) 8FF-I, (B) BCF-I, and (C) BDMPP-I.
(e.g., BCF-I) apparently reduces the formation of α-hydroxybenzophenone.

3.3.2 FT-IR Spectroscopic Studies

Infrared spectra shown in Figures 47, 48 and 49 for the samples before and after 60 min. irradiation provide further information on the structural changes resulting from the rearrangement. The difference spectra are generated by digitally subtracting two spectra on a 1:1 basis assuming no change in thickness of the samples after irradiation. The absolute changes are obtained with the scale expanded 5 times.

In Figure 47 the OH stretching vibration is observed as a weak band in the region near 3300 cm⁻¹. Broadening and weakening of the band are due to the intramolecular hydrogen bonding between the hydroxyl group and the carbonyl group at the ortho position⁹³. The intermolecular hydrogen bonding causes a slight shift of the ester carbonyl absorption towards a lower frequency at 1745 cm⁻¹⁴⁷. The positive peak at 1630 cm⁻¹ in the difference spectrum is attributed to the highly polarized hydroxybenzophenone carbonyl group⁴⁵,⁴⁷. The ester C-O bond breaking involved in the photo-Fries rearrangement is observed as a decrease in intensity of a band at 1290 cm⁻¹. The most notable change in the difference spectrum is the increased absorption in the phenolic OH deformation and C-O stretching regions around 1220 cm⁻¹ which also represents the β-C-O vibration⁹⁴.
Figure 47: Infrared Spectra of (A) BPF-I, (B) BPF-I after 60 min. Irradiation, and (C) Difference Spectrum B-A. Reflectance Attachment.
Figure 48: Infrared Spectra of (A) BCF-I, (B) BCF-I after 60 Min. Irradiation, and (C) Difference Spectrum B-A. Reflectance Attachment.
Figure 49: Infrared Spectra of (A) BDMPP-I, (B) BDMPP-I after 60 min. Irradiation, and (C) Difference Spectrum B-A. Reflectance Attachment.
It is proposed that irradiation of BPF-I occurs with molecular rearrangement to form a new polymer compound, in part, of linear α-hydroxybenzophenone moieties as the products:

\[
\begin{align*}
\text{BPF-I} & \xrightarrow{\text{hv}} \text{Polymer} \\
\text{BCF-I} & \xrightarrow{\text{hv}} \text{Product}
\end{align*}
\]

The spectral changes of BCF-I upon irradiation (Figure 48) are almost identical to that of BPF-I except for the less intense peak at 1630 cm$^{-1}$ indicating the formation of α-hydroxybenzophenone is inhibited by the substitution of one of the ortho-positions in the phenol ring with the methyl groups. This is in agreement with the result from the UV spectroscopic observations.

A complete inhibition of the Fries rearrangement may occur in BDNPF-I. Figure 49 indicates no formation of
hydroxybenzophenone (1630 cm⁻¹). Free hydroxyl groups are observed as a strong band at 3300 cm⁻¹. The hydroxyl groups are most likely to be the phenolic type which also gives rise to a sharp peak at 1220 cm⁻¹ due to ß-CH stretching vibration. The slightly decreased band at 2920 cm⁻¹ indicates a loss of aliphatic hydrogens presumably from the methyl groups. A decreased absorption peak at 1745 cm⁻¹ and an increased absorption peak at 1710 cm⁻¹ are observed, suggesting the formation of an aromatic aldehyde at the expense of the ester group. The cleavage of the ester C-O bond is also evident, indicated by the negative difference band at 1290 cm⁻¹. Based on the above analysis the following reaction scheme is proposed for the UV degradation of BCMFF-I.

\[
\begin{align*}
(I) & \quad \begin{array}{c} \text{CH}_3 \end{array} \quad \begin{array}{c} \text{C} \end{array} \quad \begin{array}{c} \text{O} \end{array} \quad \begin{array}{c} \text{O} \end{array} \\
\downarrow & \quad \begin{array}{c} \text{CH}_3 \end{array} \quad \begin{array}{c} \text{CH}_3 \end{array} \quad \begin{array}{c} \text{C} \end{array} \quad \begin{array}{c} \text{C} \end{array} \quad \text{UV} \\
\end{align*}
\end{align*}
\]

\[
\begin{align*}
(I) & \quad \begin{array}{c} \text{CH}_3 \end{array} \quad \begin{array}{c} \text{C} \end{array} \quad \begin{array}{c} \text{O} \end{array} \\
\downarrow & \quad \begin{array}{c} \text{CH}_3 \end{array} \quad \begin{array}{c} \text{CH}_3 \end{array} \\
\end{align*}
\begin{align*}
(II) & \quad \begin{array}{c} \text{C} \end{array} \quad \begin{array}{c} \text{C} \end{array} \\
\end{align*}
\]
\[(I) \rightarrow (V) + (VI) \]

\[(I) + (IV) \rightarrow (VII) \]

\[(II) + (IV) \rightarrow (VIII) \]
The quinone structure (IX) may account for the yellow color of the irradiated sample. In the study of photo-degradation of a polycarbonate (95), a similar quinone structure (X) has been proposed as part of the degradation products.
3.3.3 Conclusion

An investigation of the photo-Fries rearrangement in fluorene-based polyarylates has been made. It is shown that the structural changes of the polymers having free ortho-positions on the phenol rings are connected with the formation of o-hydroxybenzophenone structures in the polymer as a result of the photo-Fries rearrangement. UV spectroscopy provides a direct detection of o-hydroxybenzophenone. Digital subtraction of infrared data obtained by Fourier Transform infrared spectroscopy has been applied in observing the chemical changes occurring in the photo-Fries rearrangement process. Substitution in the ortho-positions of the phenol rings results in a different route for degradation. The degradation products include the aldehyde moieties, phenols, and the possible quinone structures.

2. Ibid., p. 15.

14. M.S. Lin and E.M. Pearce, Unpublished work.

BIBLIOGRAPHY (Continued)

BIBLIOGRAPHY (Continued)

BIBLIOGRAPHY (Continued)

78. Ibid., p. 261.

82. Ibid., p. 48.

85. Ibid., p. 268.

86. Ibid., p. 292.
BIBLIOGRAPHY (Concluded)

96. A. Baeyer, Ann., 202, 76(1880).

