
DISTRIBUTED AND COLLABORATIVE

SYNTHETIC ENVIRONMENTS

Chandrajit L. Bajaj and Fausto Bemardini
Department of Computer Science

Purdue University
West Lafayette, IN 47907

{bajaj,fxb }@cs.purdue.edu

 GI-CP-

6£%o

,, £ / ' • (

Introduction and Overview

Fast graphics workstations and increased computing power, together with improved interface
technologies, have created new and diverse possibilities for developing and interacting with synthetic
environments (Refs. 1-6). A synthetic environment system is generally characterized by the following

components:

• Input/output devices that constitute the interface between the human senses and the synthetic
environment generated by the computer. Several degrees of immersion are possible, ranging from
simple stereoscopic view of an image on a CRT display to a total immersion in which a head-mounted
display, sound and haptic devices (force and torque feedback, tactile stimuli) are used.

• A computation system running a real-time simulation of the environment. This can sometimes
be subdivided in several subsystems; for example, a simulation module running on a supercomputer
coupled with a scene creation and a rendering module running on a graphics workstation.

To achieve an acceptable level of realism, the display subsystem must generate at least ten

frames per second of high quality graphics. For complex environments, this goal is still far from being
reached. Nonetheless, synthetic environments have already been applied successfully in such diverse
fields as: operations in hazardous or remote environments, through telepresence; molecular modeling;
flight simulations; battlefield simulation; architectural walk-throughs; surgical planning; collaborative

design; education and training; entertainment; and many others.

A basic need of a synthetic environment system is that of giving to the user a plausible
reproduction of the visual aspect of the objects with which he is interacting. It is well known that
populating a synthetic world with objects, whether they be spaceships in a science fiction movie,
prototypes in a manufacturing design, or replicas of existing real-world objects in an architectural walk-
through, can be extremely time consuming. Not only must it be possible for the user to move in the
environment, but updating in real time his or her view of it. To convey the impression of an
immersive, active presence in an environment, a real-time simulation of the physical behavior of the
various components of the environment is necessary. Moreover, in many applications the user should
be allowed to interrogate objects about their associated properties, and to interact with them; for

example, modifying some of their properties to support what-if scenarios.

The goal of our Shastra research project is to provide a substrate of geometric data structures
and algorithms which allow the distributed construction and modification of the environment, efficient
querying of objects attributes, collaborative interaction with the environment, fast computation of
collision detection and visibility information for efficient dynamic simulation and real-time scene

display. In particular, we address the following issues:

• A geometric framework for modeling and visualizing synthetic environments and interacting

with them. We highlight the functions required for the geometric engine of a synthetic environment

system.

247

• A distribution and collaboration substrate that supports construction, modification and
interaction with synthetic environments on networked desktop machines.

248

Geometric Engine

A critical subsystem in all synthetic environment systems is the geometric engine, or the
software module responsible for creating a realistic view of the simulated world, and for allowing user
interaction. In a typical scenario, a system requires the display of several objects that move and must
behave realistically. A user wanders in the environment, constantly changing his or her point of view.
Other users (or actors) may be sharing the same environment, and a suitable representation of them
could be required. The users interact with objects in the environment; for example, touching their
surface to pick and query an object, grabbing and moving them, or simply colliding with a wall of a
room. Simulation of even the simplest form of dynamic and interaction requires collision detection and
contact analysis. Fast display of complex environments requires efficient visibility computation.
Querying and interacting with objects requires rapid point location and local shape control. In short,
the geometric engine of a general-purpose synthetic environment system should provide efficient data
structures and algorithms for:

• shape representation
• dynamic object insertion and deletion
• object animation (motion, non-rigid transformation)
• object location and closest point queries
• collision detection and contact analysis
• visibility ordering and culling
• view-volume clipping
• multi-resolution representation
• real-time high-quality rendering

• other operations required by specific applications (e.g., set operation and interactive shape
control for collaborative design).

We want to explore the use of data structures suitable to support the operations listed above in a

complex, constantly changing environment. Several types of data structures that partially satisfy these
needs have been proposed in the past. However, they have mainly been used in Computer-Aided
Design (CAD) systems or other special-purpose applications, and not as an infrastructure for a

complex, dynamic and general-purpose environment. Often, CAD systems use boundary
representations (Breps) to describe the geometry of the object being modeled. Breps are well suited to
the implementation of the most common modeling operations. However, when this representation is to
be used in a general-purpose synthetic environment, it has to be supplemented with additional

structures such as octrees or bounding volume hierarchies to achieve the required efficiency.

Several variants of the octree data structure have been proposed, and be used either as a
superimposed search index on existing representations of geometry, or as the main representation
scheme in the system (Ref. 7). The simplest variant (and usually the one requiring the most space) is
the region octree. In a region octree, a cubic domain is split at each node in eight equal sub-cubes. The
decomposition continues recursively for each node that requires a further spatial refinement. Leaves of
the octree represent empty or solid regions of space. The major drawbacks in the use of a region octree
for representing the geometry are that it is an approximation (unless the object is constituted by
mutually orthogonal planar faces only), and its size. Another octree variant is the PM octree (PM
stands for Polygonal Map); each leaf corresponds to a single vertex, edge or face. The only exception is
that a leaf may contain more than one edge (face) if all edges (faces) are incident on the same vertex. A

PM octree usually requires much less storage than a region octree (Refs. 8 and 9), and it permits an
exact representation of polyhedral models. PM octrees support a large suite of modeling operations,
and several methods are known to convert CSG or Brep models to PM octrees and vice-versa (Ref. 7).

A K-d-tree (Ref. 10) (where K is the dimension of the domain space; in our case we will deal
with 3-d-trees) is a binary tree in which internal nodes partition the space by a cut hyperplane defined
by a value in one of the K dimensions, and external nodes, or buckets, store the points in the resulting
hyper-rectangles of the partition. They allow O(log n) insertion, deletion and point query operation.
The semi-dynamic variant introduced in Ref. 11 allows constant expected time deletion, undeletion,
nearest-neighbor searching and fixed-radius near-neighbor searching. When used to model the
geometry of an object, they suffer some of the same disadvantages of region octrees in that they can
only approximate the geometry of general objects. However, they have been successfully used in
precomputing viewpoint-independent visibility and illumination information for large models of
buildings to speed up a successive interactive walk-through phase (Refs. 12-14). Changes in the
environment would require a new processing of the visibility information.

Binary Space Partitioning Trees (BSPT) (Ref. 15) are a generalization of K-d-trees. In a
BSPT, the cutting planes associated with the internal nodes are not constrained to be orthogonal.
Constructing a BSPT representation of one or more polyhedral objects involves encoding the polygonal
faces into a binary tree of cutting planes. Notice that affine transformations on the encoded object or
groups of objects do not change the tree structure, but requires only the application of a transformation
to the plane equations. The spatial ordering encoded in the tree can be exploited for the speedup of
intersection and visibility computation. Moreover, when a BSPT is properly constructed it offers a

multi-resolution representation of the object: as one descends a path in the tree, the bounded region
decreases its size monotonically. The effectiveness of this technique in practice has been proven in

several applications.

Unstructured tetrahedral grids are extensively used in finite element analysis and triangulations
are pervasive in computational geometry. The use of simplicial complexes as a general approach to
representing geometric shape has been advocated by several authors (Refs. 16 and 17). We are
currently investigating the use of three-dimensional regular (a weighted variant of Delaunay)
triangulations, coupled with efficient point location data structures, to provide the functionalities needed
in a synthetic environment. A representation based on Hierarchical Simplicial Complexes has recently
been proposed (Refs. 18 and 19) (see also an extension to a hierarchy of cell complexes (Ref. 20)). In
our scheme, the top-level triangulation subdivides the space in tetrahedral cells (with the associated
search structure). Each cell contains an object (or a group of objects), and these are described by other
triangulations. The scheme can be recursively used to achieve the level of detail in the decomposition
needed by the application. Using a hierarchy of triangulations has several advantages. Regular
triangulations are acyclic with respect to visibility ordering (Ref. 21). This means that, given a
viewpoint, it is possible to order the cells of the complex in a sequence such that if A obstructs B, then
B precedes A in the sequence. This property is preserved in a hierarchy defined as above. Moreover, a
hierarchy of simplicial complexes naturally defines a multi-resolution representation of the geometry,
and allows fast point location and other types of queries when associated with appropriate data
structures.

A three-dimensional regular triangulation can be built incrementally via point insertion and

topological flipping. Additionally, a history DAG can be used to allow efficient point location and
associated queries. Moreover, a Power (weighted Voronoi) diagram (eventually of order k), can be
easily computed to allow fast answers to closest point queries. We are considering the use of several
variations of this approach. A possible version of the data structure consists of using a Delaunay
triangulation that conforms to objects boundaries. When a new object is inserted in the environment,
the triangulation is updated to accommodate all its faces. Methods to construct conforming Delaunay
triangulations in 2D and 3D by inserting extra points are known (Refs. 22-26). However, while a
polynomial bound on the number of extra points is known for the two-dimensional case (O(m2n), for
m edges and n vertices (Ref. 23)), whether such a bound exists for the three-dimensional case is still
an open problem. Weatherhill (Ref. 26) reports statistics from experiments with the three-dimensional

249

algorithm that show a reasonable behavior on models used in real applications. This scheme is
restricted to polyhedral objects (curved surface objects can be approximated by small planar faces).

In a different scheme, the triangulation is used as the domain for implicit piecewise-algebraic
surfaces (Refs. 27-31). In each tetrahedron containing a piece of some object's boundary, a
polynomial functionflx, y,z) of degree n (where n is usually small, often n -<3) is defined, and the
piece of surface is implicitly given byf(x,y,z) = 0. The surface patches can be made to join with some

degree of continuity (for example, C 1 or C2), by using interpolants of appropriate degree. For n = 1,
in particular, the surface pieces are planar polygons, and the representation resembles the PM octree,
where the cubic cells are replaced by tetrahedral ones. This approach has the advantage of allowing a
compact representation for curved objects. Moreover, it makes possible the use of a more "relaxed"
condition on the conforming triangulation. This needs not to conform to the object boundary, but
simply contain a set of tetrahedra suitable to define the piecewise surface. An implicit piecewise-
algebraic surface is suitable for interactive local control. In a three-dimensional synthetic environment,
one could very naturally make use of three-dimensional widgets to allow an intuitive control on the
surface shape.

Networked Distribution and Collaboration

We advocate the approach of integrating a collection of function-specific tools into a distributed
and extensible environment where tools can easily use facilities provided by other tools (Refs. 34-36).

Isolation of functionality makes the environment modular and makes tools easy to develop and
maintain. Distribution lets us benefit from the cumulative computation power of workstation clusters.
Tool-level cooperation allows us to exploit the commonality that is inherent to many scientific
manipulation systems. An enabling infrastructure of communication and interaction tools, display and
visualization facilities, symbolic processing substrates, and simulation and animation tools saves
avoidable re-implementation of existing functionality, and speeds up the application development.

The Shastra environment consists of multiple interacting tools. Some tools implement scientific
design and manipulation functionality (the Shastra Toolkits). Other tools are responsible for managing
the collaborative environment (Kernels and Session Managers). Yet others offer specific services for
communication and animation (Service Applications). Tools register with the environment at startup,
providing information about the kind of services that they offer (Directory), and how and where they
can be contacted for those services (Location). The environment supports mechanisms to create remote
instances of applications and to connect to them in client-server or peer-peer mode (Distribution). In
addition, it provides facilities for different types of multi-user interaction ranging from master-slave

blackboarding (Turn Taking) to synchronous multiple-user interaction (Collaboration). It implements
functionality for starting and terminating collaborative sessions and for joining or leaving them. It also
supports dynamic messaging between different tools. Tools are thus built on top of the abstract Shastra
layer which is depicted in Fig. 1.

250

Kernels Session Managers Applications

i
I

I
The SHASTRA Layer

Collaborative
Substrate

#
d

; Data Comm.
#

Substrate
J
d

Network
Substrate

Figure 1 - The Shastra Layer: A connection, communication and collaboration management
substrate. Shastra tools inter-operate using facilities provided by this layer.

The SHASTRA collaborative scientific environment provides mechanisms to support a variety
of multi-user interactions spanning the range from demonstrations and walk-throughs to synchronous
multi-user collaboration. In addition, it facilitates synchronous and asynchronous exchange of
multimedia information which is useful to successfully communicate at the time of design, and to share
the results of scientific tasks, and often necessary to actually solve problems. The infrastructure
provides facilities to distribute the input of low computation tasks - to obtain the parallelism benefit of
distribution, and the output of compute intensive tasks - to emphasize sharing of resources among
applications. It provides a convenient abstraction to the application developer, shielding him from
lower level details, while providing him with a rich substrate of high level mechanisms to tackle

progressively larger problems.

251

Figure 2 - Distributed volume visualization from a large data set (left). Shared Visualization (right).
A group of researchers uses Sha-Poly to share volume visualization images of a head

with cutaways (top center and right) and a cadaver (center).

A teleconferencing approach to modeling and analysis of empirical data is presented in Ref. 35,
where the authors hypothesize about a collaborative scientific visualization environment. A discussion

of an interactive visualization environment for three-dimensional imaging is presented in Ref. 36,
where the authors adapt the electron microscope to perform as a computer peripheral. An environment
like Shastra makes it convenient to build collaborative visualization and manipulation facilities that
support resource sharing in a distributed setting.

Figure 3 - Collaborative customized hip implant design (left). A designer uses the Shastra collaborative

tool Shilp to interactively create a geometric model of a hip implant (top right) by generating cross-
sectional contours of the implant (bottom center and right) from a sectional model of the femur (center)
created in Vaidak (another toolkit of the Shastra suite). A video conference supports communication

(right). Several steps in the design optimization.

Shastra Architecture

Tools in Shastra are built with the underlying idea of inter-tool cooperation. Every tool is

abstractly composed of three layers. The Core is accessed through any of the Interfaces via a Mapper.

252

Theapplication-specificCoreimplementsthefunctionalityofferedbythetool. AbovetheCoreis a
functionalInterfaceMapperthatinvokesfunctionalityembeddedin theCorein responseto requests
from theGraphicalUserInterface,ASCII Interfaceor theNetworkInterface.It alsomapsrequeststo
altertheuserinterfaceor to sendmessageson theNetworkInterface.TheMapperisessentiallya
commandinterpreterthatinvokesregisteredeventhandlerswheneventsof interestoccur. Tools
registereventhandlerswith theMapperfor eventstheyareinterestedinandunregisterthosethatcease
to beof interest.Theseparationof CoreandInterface,thatof functionandinterface,makesit easyto
build multi-usersystemssinceit enablesthemaintenanceanddisplayof sharedstateatauserinterface
via remote commands in a distributed system.

The GUI is application-specific. The ASCII interface is a shell-like front end for the tool.
Tools communicate with other tools in the environment via the Shastra substrate, through an abstract
Network Interface. This implements the underlying messaging system that provides connection and

transport facilities. The Network Interface multiplexes multiple simultaneous network connections and
implements the different application level communication protocols. Functionality available at a
network interface is relayed to the communication substrate using a signature that specifies callback
functions for the different kinds of network events in which the tool is interested. The signature
provides an abstract interface to remote systems and describes functionality offered by the tool. It also
serves as a regulatory mechanism since different levels of service can be offered at different interfaces
by specifying the appropriate signatures.

Tools

Kernels Session Brokers Services Toolkits
Manaeers

Application Engine

Interface Mapper .,_

GUI ASCII Network Interface

Collaboration Substrate Initiate, Terminate, Join, Leave, Invite ...

Communication Substrate Send. Receive...

Models. Audio, Video. 2D & 3D Graohics. Imaoes. Text ...

Connection Substrate Connect, Disconnect ...

Figure 4 - High level architecture of a tool in the Shastra environment.

To take advantage of the integration facilities of the infrastructure, the Core uses the Network
Interface to access functionality already implemented in other tools. The main benefit from this setup is
modularity and reuse - tools isolate the functionality they offer and provide a functional interface to
peers. The high level block architecture of tools in Shastra is depicted in Fig. 4. The architecture
makes it easy for tools to connect to other tools and request operations, synchronously as well as
asynchronously.

These architectural guidelines accord us the benefit of uniformity since all tools are built upon a
common infrastructure and have identical connection, communication and collaboration mechanisms.

253

The concept of cooperation awareness thus pervades the architecture. The entire set of connected
Network Interfaces of Shastra tools manifests itself as the abstract Shastra layer at runtime (see Fig. 4).
It maintains the collaborative environment, provides access to functionality of different systems, and
provides facilities for initiating, terminating, joining, leaving and conducting collaborations. The
connected network interfaces of Shastra tools comprise a distributed virtual machine on which we build
problem solving applications.

The enabling substrates use the event paradigm to provide functionality. Tools use the
application programming interface of the substrate to cause request messages to be sent over
connections. Tools interested in any event register handler functions for it with the Mapper. The

handler functions are invoked when that event is received. This allows tools to take action appropriate
to the event when it occurs.

Session Model

In this model, a Session is the unit of collaborative activity. A Session is essentially a Context
without an Interface. Session Model based collaborative tools are implemented in our Collaboration

Model by instantiating a Session which causes the setting up of connected shared Contexts in multiple
tools. These shared Contexts are collaborative task-aware. Events that are associated with low

computation tasks are routed to the Session Context which relays them to all shared Contexts. Events
that are associated with compute-intensive tasks are acted upon in the tool Context, and the associated
Triggers are routed to the Session Context. Context State changes generate Triggers that are routed to
tools and update views at their Interfaces. The implementation is depicted in Fig. 5.

Session Model

t V t

Context

T.!
' _ Router

! "-.

. = _.

i _ Phvsical Interaction

'-.-..__..... i- j
Session
Context

i
Context !

v v

Connection and Transoort Svstem

- -llb Looical Interaction

&i

i •
i

c0 ,,ex;i--
i

¥'ir
," Router •

,41 lb. Control Flow

Figure 5 - Session model of collaboration.

Since Sessions are collaborative task-aware, they can choose between centralized and replicated
data management facilities based on the number of sites in the collaboration, degree of dependence
between collaborative tasks, and performance of the underlying mechanisms. Collaborative tasks are
thus implemented in the shared Context and State of a Session. Simultaneous interaction is supported
from multiple distributed interfaces.

254

A majoradvantageof thisapproachis thatSessionscanbemadepersistentsincetheyare
delinkedfrom userleveltoolsandinterfaces.Theycanbesavedandrestartedandthussupport
asynchronousandsynchronouscollaborativeinteraction.Also,participatingin collaborativetasksis
furthersimplifiedsincetoolsdonothaveto keeptrackof groupmembershiporsetup routing
information.ToolscreateContextsthataresharedwith theSessionContextwhentheyjoin aSession
andtearthemdownwhentheyleave.

Runtime Environment

Collaborative Sessions, or Sessions, are instances of synchronous multi-user collaborations or
conferences in the Shastra environment. A collaboration in Shastra consists of a group of cooperating

tools regulated by a Session Manager, the conference management tool of Shastra. One Session
Manager runs per collaborative session. It maintains the session and handles details of connection and
session management, interaction control and access regulation. It keeps track of membership of the
collaborative group and serves as a repository of the shared objects in the collaboration. It supports a
multicast facility needed for information exchange in a synchronous multi-user conferencing scenario.
It has a constraint management subsystem that resolves conflicts that arise as a result of multi-user
interaction, enabling maintenance of mutual consistency of operations. It has a regulatory subsystem
that controls synchronous multi-party interaction and provides a floor control facility based on turn-
taking. Every Session Manager implements functionality to service the following session control

requests:

• Invite - Request to invite a tool to an ongoing session.
• Join - Request to join an ongoing session.
• Remove - Request to remove a tool from a session.
• Leave - Request to leave a session of which the tool is a member.
• End - Request to terminate a collaborative session.

It also serves the following interaction control requests:

• Format - Request to set session format.
• Capabilities - Request to set access regulation capabilities.
• Interaction Mode - Request to set interaction mode for the session.

• Request Floor - Request to get floor control for the session.
• Release Floor - Request to release floor control for the session.
• Assign Floor - Request to assign floor control for the session.

A collaborative session in Shastra is started by a tool when it sends the Session Start message to
the local Kernel. This causes the instantiation of a Session Manager for the incipient session. The

initiating tool becomes the Session Leader. A tool sets the session format using the Format message.
Sessions may be Formal, where participation is by invitation only, or Informal where any tool can
dynamically join the conference. The Leader assigns capabilities of other participants for collaborative
activity in the session using the Capabilities message.

The interaction mode for a session is specified using the Interaction Mode message. Interaction
can occur in the Regulated or Free mode. In the Regulated mode, tools request and relinquish the floor
using Request Floor and Release Floor messages. The leader can explicitly assign floor control using
the Assign Floor message. In the Free mode, interaction is regulated via capabilities assigned to
session participants. Capabilities are described in a later section. Other tools are invited to participate
in a session by sending them the Invite request via the Kernel. Tools can dynamically join ongoing
sessions by sending the Join message to the relevant Session Manager via the Kernel. The Session
Manager uses session format information to control dynamic incorporation of tools. The Leader can

255

remove a participating tool from the session using the Remove message. Tools can discontinue
participation in the session by sending the Leave message to the Session Manager. A session is
terminated by the Leader using the End message.

Application-specific Session Managers for different collaborative tasks are created from the
basic Session Manager that provides application independent connection, communication and

collaboration control facilities. Such session managers support additional messages for collaborative
operations specific to the application.

-bc _} :'f Kernel ",

r_L/" Front ,---

,?,.. Uanaoer y,' | _// I /

-_ TT f "--_11 f-- _ ,, -7. _ /
_. Front _,._n -{ Front _ I I '/ Front "_ _ _ _ _ /

.........................."t...."' .-: ; '--,'" '"J,'
. ..'_S_ss_on...."!_ _ I

Host . Manaaer ''_1 _ Front !

f.... . _ --_

_ ##T.. - ' . #
/ - . _' ,_/ Session . P.
,\ I-rent , i_.'. Manaaer ,

Session Link

Control Link

_> Client/Sewer Link

•-_. -" Peer/Peer Link

Kernel

Figure 6 - Information flow in the Shastra environment.

.

.

.

.

5.

References

MacDonald, L. and Vince, J., Interacting with Virtual Environments, Wiley Professional
Computing, Wiley, 1994.

Thalmann, N. M. and Thalmann, D., Virtual Worlds and Multimedia, Wiley Professional
Computing, Wiley, 1993.

Wexelblat, A., Virtual Reality: Applications and Explorations, Academic Press Professional,
1993.

Special Issue on Virtual Environments, IEEE Computer, Vol. 28, No. 7, July 1995.

Special Issue on Virtual Reality, IEEE Computer Graphics and Applications, Vol. 14, No. 1, Jan.
1994.

6. Special Issue on Virtual Reality, IEEE Spectrum, Vol. 30, No. 10, Oct. 1993.

256

.

.

.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Samet, H., The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA,
1990.

Ayala, D., Brunet, P., Juan, R. and Navazo, I., "Object Representation by Means of Nominal
Division Quadtrees," ACM Trans. Graph., Vol. 4, No. 1, 1985, pp. 41-59.

Brunet, P., and Navazo, I., "Solid Representations Using Extended Octrees," ACM Trans.
Graph., Vol. 9, 1990, pp. 170-197.

Bentley, J. L., "Multidimensional Binary Search Trees Used for Associative Searching,"
Communications of the ACM, Vol. 18, No. 9, 1975, pp. 509-517.

Bentley, J. L., "K-d Trees for Semi-dynamic Point Sets," Proc 6th Annual ACM Symposium on
Comput. Geom., 1990, pp. 187-197.

Teller, S. J. and S6quin, C. H., "Visibility Preprocessing for Interactive Walkthroughs," Comput.
Graph., Vol. 25, No. 4, July 1991, pp. 61-69.

Teller, S. and Hanrahan, P., "Global Visibility Algorithms for Illumination Computations,"
Computer Graphics Proc., Annual Conference Series, Proc. SIGGRAPH '93, ACM SIGGRAPH,
1993, pp. 239-246.

Funkhouser, T. A. and S6quin, C. H., "Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual Environments," Computer Graphics Proc., Annual
Conference Series, Proc. SIGGRAPH '93, ACM SIGGRAPH, 1993, pp. 247-254.

Fuchs, H., Kedem, Z. M. and Naylor, B., "On Visible Surface Generation by a priori Tree
Structures," Comput. Graph., Vol. 14, No. 3, 1980, pp. 124-133.

Paoluzzi, A., Bernardini, F., Cattani, C. and Ferrucci, V., "Dimension-Independent Modeling with
Simplicial Complexes," ACM Transactions on Graphics, Vol. 12, No. 1, Jan. 1993, pp. 56-102.

Edelsbrunner, H., "Modeling with Simplicial Complexes," SIGGRAPH 94 Course Notes, ACM
SIGGRAPH, July 1994.

De Floriani, L., Falcidieno, B. and Pienovi, C., "Structured Graph Representation of a
Hierarchical Triangulation," Comput. Vision Graph. Image Process, Vol. 45, No. 2, Feb. 1989,
pp. 215-226.

De Floriani, L., "A Pyramidal Data Structure for Triangle-Based Surface Representation," IEEE
Computer Graphics and Applications, Vol. 9, March 1989, pp. 67-78.

Bertolotto, M., Bruzzone, E. and De Floriani, L., "Acyclic Hierarchical Simplicial Complexes,"
Proc 5th Canadian Conference on Comput. Geom., 1993, Waterloo, Canada, pp. 279-284.

Edelsbrunner, E., "An Acyclicity Theorem for Cell Complexes in d Dimensions," Proc 5th Annual
ACM Symposium on Comput. Geom., 1989, pp. 145-151.

Weatherill, N. P., "Integrity of Geometrical Boundaries in the Two-Dimensional Delaunay
Triangulation," Communications in Applied Numerical Methods, Vol. 6, No. 2, Feb. 1990, pp.
101-109.

Edelsbrunner, H. and Tan, T. S., "An Upper Bound for Conforming Delaunay Triangulations,"
Proc 8th Annual ACM Symposium on Comput. Geom., 1992, pp. 53-62.

257

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Hansen, A. J. and Levin, P. L., "On Conforming Delaunay Mesh Generation," Advanced

Engineering Software, Vol. 14, No. 2, 1992, pp. 129-135.

Tan, T. S., "An Optimal Bound for Quality Conforming Triangulations," Proc lOth Annual ACM
Symposium on Comput. Geom., 1994, pp. 240-249.

Weatherill, N. P., "Efficient Three-Dimensional Delaunay Triangulation with Automatic Point

Creation and Imposed Boundary Constraints," International Journal for Numerical Methods in
Engineering, Vol. 37, June 1994, pp. 2005-2039.

Bajaj, C., "Surface Fitting with Implicit Algebraic Surface Patches," Topics in Surface Modeling,
H. Hagen (ed), SIAM Publications, pp. 23-52.

Bajaj, C., "The Emergence of Algebraic Curves and Surfaces in Geometric Design," Directions in
Geometric Computing, R. Martin (ed), Information Geometers Press, Winchester, UK, 1993, pp.
1-29.

Bajaj, C., Bernardini, F. and Xu, G., Adaptive Reconstruction of Surfaces and Scalar Fields From
Dense Scattered Trivariate Data, Computer Science Technical Report CSD-TR-95-028, Purdue

University, 1995.

Bajaj, C., Bernardini, F. and Xu, G., "Automatic Reconstruction of Surfaces and Scalar Fields
From 3D Scans," Computer Graphics Proc, Annual Conference Series, Proceedings of
SIGGRAPH 95, ACM SIGGRAPH, 1995, pp. 109-118.

Bajaj, C., Chen, J. and Xu, G., "Modeling with Cubic A-patches," ACM Transactions on
Graphics (to appear). •

Anupam, V. and Bajaj, C., "Collaborative Multimedia in Scientific Design," IEEE Multimedia
Journal, Vol. 1, No. 2, 1994, pp. 39-49.

Anupam, V. and Bajaj, C., "Shastra: An Architecture for Development of Collaborative
Applications," International Journal of Intelligent and Cooperative Information Systems, Vol. 3,
No. 2, 1994, pp. 155-166.

Anupam V., Bajaj, C. and Schikore, D., "Distributed and Collaborative Volume Visualization,"
IEEE Computer, Vol. 27, No. 7, 1994, pp. 37-43.

Carlbom, I., Hsu, W., Klinkner, G., Szeliski, R., Waters, K., Doyle, M., Gettys, J., Harris, K.,

Levergood, T., Palmer, R., Picart, M., Terzopoulos, D. Tonnesen, D., Vannier, M. and Wallace,
G., "Modeling and Analysis of Empirical Data in Collaborative Environments," Communications of
the ACM, Vol. 41, No. 6, 1992, pp. 73-84.

Mercurio, P., Elvine, T., Young, S., Cohen, P., Fall, K. and Ellisman, M., "The Distributed
Laboratory, Communications of the ACM, Vol. 41, No. 6, 1992, pp. 54-63.

258

Information Visualization - Beyond
Traditional Engineering

James J. Thomas

Applied Physics Center
Battelle Pacific Northwest Laboratories

Richland, WA

259

