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ABSTRACT

Differencing operators of arbitrarily high order can be constructed by in-

terpolating a polynomial through a set of data followed by differentiation of

this polynomial and finally evaluation of the polynomial at the point where a

derivative approximation is desired. Furthermore, the interpolating polyno-

mial can be constructed from algebraic, trigonometric, or, perhaps exponen-

tial polynomials. This paper begins with a comparison of such differencing

operator construction. Next, the issue of proper grids for high order poly-

nomials is addressed. Finally, an adaptive numerical method is introduced

which adapts the numerical grid and the order of the differencing operator

depending on the data. The numerical grid adaptation is performed on a

Chebyshev grid. That is, at each level of refinement the grid is a Chebyshev

grid and this grid is refined locally based on wavelet analysis.

1This research was supported in part by the National Aeronautics and Space Adminis-
tration under NASA Contract No. NAS1-19480 while the author was in residence at the

Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley
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1 Introduction

One can argue that high order numerical methods are appropriate for prob-

lems in 1) the direct numerical simulation of turbulence, see [17], 2) flows

with shocks and nonlinear physics, see [8] and 3) flows with smooth propagat-

ing structures such as those encountered in aeroacoustics. Assertion number

3) is based on convergence properties of the hp-refinement method in finite

elements, see [20], [1], [11], in which convergence is very fast for high order

polynomials as long as the function at hand is smooth. In addition, high

order methods are more efficient for long time integration of unsteady flow

problems, see [18].

This paper introduces a numerical method which combines very high

order differencing with a wavelet-based grid and order selection mechanism.

Here very high order differencing will be schemes of order greater than or

equal to 8, i.e., perhaps 16, 20, or maybe order 32. Such high orders of

accuracy can produce solutions which are very close to those produced by

spectrM methods. See [3] for a spectral method on arbitrary grids.

The numerical method introduced here is named the Wavelet-Optimized

Finite Difference method 2, or WOFD2. WOFD2 is an extension of WOFD,

see [15], [9], in which wavelets are used for grid refinement, see [16], for finite

difference schemes. The new method extends this scheme to very high orders

and also adapts the order of accuracy depending on the data.

Let us begin by studying various manners in which high order difference

operators can be constructed.

2 Generating Difference Equations

Given a vector of N numbers f how can we get an approximate value of the

derivative fr at the i- th point and how good will this approximatevalue be.

Generally speaking, the more elements around the i - th point of f that are

used to approximate f_ the better the approximation will be. Common finite

difference formulas are found by fitting aalgebraic polynomial of degree q lo-

cally around the i- th point of a vector f of evenly-spaced elements to obtain

difference approximations of accuracy q - 1. This section will generalize this

concept to find the difference equations of arbitrary accuracy on arbitrary

grids using algebraic, trigonometric, cosine and exponential polynomials. As



special cases, one can obtain all the usual finite difference formulas as well as

the Fourier collocation and Chebyshev collocation spectral differential ma-
trices.

Two methods of generating the differencing coefficients will be introduced.

The first method explains how to set up a system of equations which will have

as a solution the differencing coefficients. The second method is the deriva-

tion of differencing coefficients by interpolation. It is this second method

which is used throughout the paper for the actual generation of difference

equations.

2.1 Setting up a Linear System

The problem is to find a set of coefficients {rk} which combines the raw data

in a vector )? to provide an approximation to a derivative:

k=--right

f'(xj)= _ rkf(xk). (1)
k=le.ft

If we require the above equation to be exact for polynomials, algebraic,trigonometric,

cosine or exponential, then a linear system of equations can be solved to find

an appropriate set of differencing coefficients {rk}. Let b(x) denote a funda-

mental basis element from which a basis can generated by taking powers of

b(x): b(x) = x, b(x) = e '_, b(x) = cos(x), or b(x) = e_. That is, we require

that the derivative be exact up to a given order N on the numerical grid.

The system of equations to be solved for a centered differentiation stencil is
as follows:

L

n(b(xj)) -lb'(xj) = (2)
k=-L

LFrom this equation one can generate a system of equations with N re-

quirements, that N functions be differentiated exactly, and N degrees of

freedom, the N differencing coefficients rk. If one is near a boundary, then

the stenciled is biased. Since this type of system is well-known for algebraic

polynomials, an example for the less well-known trigonometric polynomials

will be given.

Consider a trigonometric polynomial on a 3 point centered stencil. The

first equation simply requires that the derivative of a constant be zero:

0 = r-1 + r0 + rl. (3)
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Note that is the same equation as for algebraic polynomials since (x) ° =

(e_*) °. The next two equations come from requiring that the n = 1 mode is

differentiated exactly:

ieZXO ----_r_l e-x-1 _ TO e*xO 431- Tie *xl. (4)

One now obtains the two equations from equating the real and imaginary

parts. These three equations can be solved for the three coefficients r-l, r0, rl.

Similarly, one can find the coefficients for higher order schemes by requir-

ing that more modes be differentiated exactly. Note that no restrictions were

placed on the grid. Differencing formulas can be found on arbitrary grids as

easily as they can be found on uniform grids. Also, note that the Fourier

spectral differentiation matrix can be found from the above procedure by

requiring that the grid be uniform and that the differencing formulas have

maximum accuracy on a given grid. That is, if one is working on a grid

of size 33 then require that the first 16 modes and the zero-th mode are

differentiated exactly.

2.2 Interpolation

A second approach, and the one used in this paper, is to generate differencing

coefficients by first interpolating a polynomial through a set of data, followed

by differentiation of this polynomial and evaluated at a grid point.

The main reason that differentiation was studied with a variety of types of

differentiation operators was to find out if there was any advantage to using,

say, trigonometric polynomials to differentiate as opposed to algebraic poly-

nomials when the function to be differentiated was for example a Gaussian

pulse. It seemed like an appropriate study to undertake given the current

research activity in the area or aeroacoustics where one is often confronted

with the need to computationally propagate some type of wave motion. The

thought was that perhaps trigonometric polynomials might have some ad-

vantage at propagating wave motion over the more common algebraic poly-

nomials. One of the conclusions of this section is that there is no advantage

and that one should simply use algebraic polynomials for the generation of

differencing equations. In fact, the only important issues involved with ob-

taining approximate derivatives is the order of the finite difference operator

and the density of the numerical grid.



The most important reference for this section is [7]. The following four

subsections will cite the interpolation formulas for the four types of interpo-

lation, and hence differentiation, considered in this section.

2.2.1 Algebraic Polynomials

Interpolation with algebraic polynomials is probably the most common form

of interpolation, and it is from this type of interpolation that common uni-

form grid finite difference methods can be found. Using the following for-

mula one can find the finite difference coefficients for an arbitrary grid and

of arbitrary order. One simply fits the polynomial to the data, followed by

differentiation of the polynomial, and finally one evaluates the polynomial

at the point of interest. The well-known Lagrange interpolation formula for

algebraic interpolation is,

n T_

Aj(x) = 1"I (x- xk)/ 1-I (xj - Xk). (5)
k=o,k#j k=o,k#j

Aj(xk) = *jk For given values w0, wl, ..., w,_, the polynomial

p,_(x) = y_ wkAk(z).
k=0

in P_ and takes on these values at the points xi:

= (7)

for k = O, 1,...,n.

2.2.2 Trigonometric Polynomials

As seen from the previous section, one can also generate difference operators

by using trigonometric functions as the fundamental interpolation elements.

The following is the appropriate Lagrange-type interpolation formula, see [7]:

For -_r < x0 < xl < ... < x2_ < _r then

1 1
Tj(x) = 1-[ sin-_(z-xk)/ _I sin_(x_-xk).

k=O,k#j k=O,k#j

(8)
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The function,
2n

T(x) = __, wkTk(x)
k=0

is the unique solution of the interpolation problem,

(9)

T(xk)=wk, (10)

for k = 0,1, ..., 2n. Again, one can derive finite difference coefficients by

interpolating to a function, followed by differentiation of the interpolation

polynomial and evaluation at the point of interest. The following section will

prove that such difference equations obey order properties just as the usual

difference equations derived from algebraic polynomials do.

2.2.3 Cosine Polynomials

The comparable Lagrange-style interpolation formula for cosine polynomials

is the following, see [7].

Given n q- 1 distinct points 0 < x0 < Xl < ... < x_ < lr. Set

cs(x)= II (cosx-cos k)/ II (cos  -cosxk). (11)
k=O,k#j k=O,k#/

Then C d is a cosine polynomial of order < n, Cj(x) = _,'_=oakcos(kx), for

which Cd(xk ) = _dk- Given n+l distinct values w0, Wl, ..., wn there is a unique

cosine polynomial of order < n, C(x), for which C(xk) = wk, k = O, 1,..., n.

It is

C(x) = _] wkCk(x). (12)
k=0

Note that _C(x)]0,_ = 0 since _Ck(x)[0,_ = 0 for all k. For this rea-

son, difference operators based on cosine polynomials will not be considered

in general, but will be compared in a later section to Chebyshev spectral

methods. As above, the differencing coefficients are found by first fitting

the trigonometric polynomial to the data, followed by differentiation of the

polynomial and finally evaluation at the point of interest.

5



2.2.4 Exponential Polynomials

The final polynomial to be tested is the exponential polynomial,

n

Ej(x)= YI @=-e='<)/ 1I (13)
k=o,_#j k=o,k#j

where the interpolation polynomial is,

and

E(x) =
k=0

(14)

E(xk) =w_. (15)

2.3 Truncation Error and Differentiation Accuracy

The purpose of this section is to illustrate algebraically that one obtains dif-

ferentiation order-of-accuracy properties for all four types of differentiation

operators which are similar to the standard order-of-accuracy properties ob-

tained with the usual algebraic interpolation. In short, if one interpolates

an N order polynomial then one obtains a reduction in differentiation error

of (_)N when the density of the grid is doubled. This order of accuracy is

obtained regardless of the type of polynomials which are used.

Recall that the remainder for algebraic polynomial interpolation is, see

[7],

f(x) - p,_(x) = (x - Xo)(X - zl)...(x - x,_) f(,_+l)((), (16)
(n + 1)!

where _ lies between the smallest and the largest xi. The following sec-

tion will show that a similar expression can be obtained for any polynomial

constructed from powers of a given function.

2.3.1 Truncation Error for Interpolation by Powers

There are some subtle issues concerning a general proof of truncation error

and accuracy for interpolation by a polynomial constructed from the powers

of a general function g(x), see [4]. The following demonstration will illustrate

the essentual algebraic steps that one follows to obtain accurcy while avoiding
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the subtle issues.In short, let the polynomial elementg(x) and the function

to be approximated f(x) be "well-behaved".

Let
?%

p(x) = ak(g(x))k
k=O

be the polynomial which interpolates f(x) at Xo, X_,...,x,_, p(zi) = f(xi),

then,

f(x)- p(x)= p(_+l)(()_ f(,_+l)(_)¢(x), (17)

where

¢(x) = (g(x) - g(xo))(g(x) - g(x_))...(g(x)- g(x,_)),

and where _ lies between the smallest and the largest x_.

(18)

Demonstration of Truncation Error: Note that much of this demon-

stration is the same as that which can be found in a standard numerical

analysis text for the remainder term in algebraic interpolation, see [5].

Define H(z) such that

H(z) = f(z) - p(z) - R(x)¢(z), (19)

where R(x) is defined such that H(x) = 0. Note that H(x,) = 0, for i =

0,...,n since p(z,) = f(x,) and ¢(x,) = 0. LFrom Rolle's theorem it follows

that there exists a point _ in the interval defined by the smallest and largest

xi's such that H(n+l)(_) = 0. This implies,

R(x) = f(,+l)(_) _ p(n+l)(_) (20)

Now put this back into the expression for H(z) and set z = x to get,

f(x) - p(x) - f(=+l)(_) _ p(=+l)(_)
¢(.+a)ff) ¢(x)- (21)

This is the desired expression. //.



Note that in the above demonstration that if the polynomial is algebraic

that p(_+l)(z) = 0 and ¢(n+l}(z) --- (/_ + 1)!, but for a general g(x) these

two functions are just a measure of the smoothness of the basic interpolation

element, g(x). f(,+x)(_) still remains a measure of the smoothness of the

function one is interpolating to, and ¢(x) is a function dependent on the grid
distribution.

2.3.2 Differentiation Accuracy

The primary interest here is to understand the behavior of the derivative

operators derived from the various types of interpolation outlined above as

the grid is refined. That is,

f'(x) - p'(x) = Q(_)¢'(x), (22)

where Q(_) = I("+1)(_)-p("+I)(_) and ¢'(x) will dictate the behavior as the_t-+l)(_)

grid is refined. It will be shown that the behavior of ¢'(x) is essentially

independent of the basic interpolation element g(x) and depends only on the

order of the interpolation.

Demonstration of Accuracy:

Let h denote the smallest spacing in the numerical grid, then

¢'(x0) = Ch" + h.o.t. (23)

where n is the highest power in the interpolation polynomial, and the point

x0 is an arbitrary grid point inside the interpolation stencil.

Demonstration: First of all,

¢'(Xo) =g'(xo)(g(xo)--g(xa)(g(xo)--g(x2))...(g(xx)--g(x,)). (24)

Expand about zero the function g(x),

g(x) = g(O) + g'(O)x + 9"(0)x2/2 + ... (25)

and examine the difference g(xo) - g(xx)

X 2_'4- Ill/OXt6tX3g  J/t (26)



Without loss of generality let one of the points be zero, say x0 -- 0, to get,

g(0) - g(xl) -- g'(0)(-Xl) -_-g"(0)/2(-x 2) -_ gt"(0)/6(-x3) _-..., (27)

or_

g(O) -- g(Xl) : --Xl(E g(m)(O) m--l), (28)
m---_ Xl

m=l

and one can see that the first term in the difference is linear. If x0 is not zero

then one obtains the factorization,

q-1

xq- yq= (x- y)(_ x'yq-l-'), (29)
i=O

and hence,

c_ m--1g(_)(o)
g(x0)- g(_l) = (x0- _,)(Z: m! Z: _o_r-_-k)•

m----1 k=O

(3o)

It should be clear that the first term in the difference g(xo) - g(x_) is the

linear term and that doubling the grid such that between every two points

another point is placed is, therefore, halves the distance to a first order

approximation. For each of the differences xi - xj there exists a constant c_,j

such that the difference,

x_ - x i = c_,jh (31)

can be expressed in terms of the smallest grid spacing h. Let C = I-[i_ 1 Coj

then it is, therefore, clear that

¢'(Xo) = Ch '_ + h.o.t. (32)

//.

Consider the following special cases which includes all the polynomial

types discussed above:

• g(x) = x, g(_)(O) = O, for m -_ 1

• g(x) = e_:, g('_)(O) = 1, Vm



• g(=) = e'-, = in

• g(x) = cos(x), g(_)(0) = 0, for ra odd and g('_)(0) = (-1) m/_, for ra
even

For a simple illustration, consider the following two examples of algebraic

and exponential interpolation.

Algebraic Interpolation

Consider the simple case of interpolatingan algebraicquadratic polyno-

mial p_(x) to a function f(x) at the grid points Xo < xl < x2: p_(x_) = f(xi),

i = 0, 1,2. The remainder term for some _, Xo _< _ _< x2, is

f(x) - p2(x) = (x - Xo)(X - xa)(x - x2)_f(3)(_).

Now, differentiate and evaluate at x = xl to get,

ft(xl) -- p'2(xl) = (Xl -- Xo)(xl -- x2)_f(3)(_). = Ch2f(a)(_),

(33)

(34)

where h = x 1 - x 0 : x 2 - x 1. If the grid is evenly-spaced then the differences

(x_ - xj) are some integer multiple of the smallest difference which one can

denote by h. If one doubles the number of grid points then each of the

distances (xi - xj) becomes half as large and the accuracy for this quadratic

example will be 2.

The General Statement for Algebraic Interpolation

In general, one can expect that algebraic polynomial interpolation with

a polynomial of order n, p,_(x), will produce a differencing operator of order

also of order n. This can be seen from the portion of the truncation error

which depends on the grid distribution:

1-I(x- x,). (35)
i----0

This product contains n + 1 terms. After differentiation and evaluation at a

point xk the product will contain n terms,

n--1

1-I(xk- x,). (36)
i=0

10



When the grid density is doubled by adding a point between every two points,

then each distance (xk - xl) will decrease by a factor of 2. The product of

these factors will be a multiple of (½)_ and hence the accuracy of n is achieved.

Exponential Interpolation

If, on the other hand, p2(x) is now an exponential polynomial then after

differentiation and evaluation one gets,

f'(xl) - p_(xl) = eXl(e zl - eX°)(e zl - e_)lf(3)(_) (37)
.J'.

Without loss of generality, let xl = 0. Then the product,

f'(0) - p_(0) = (e _1 - e_°)(e _1 - e_2) (38)

becomes

f'(0) - p_(0) = (z0 + z02/2 + ...)(z2 + z_/2 + ...), (39)

and one can see that if the distance to zero is halved and hence x0 and x2 are

divided by 2 that the leading order terms in each of the above parenthesis

dictates that the error will be reduced by 4 to a first order approximation.

Therefore, one can expect the accuracy to behave as it does for algebraic

polynomials. That is, doubling the grid points will decrease the error by

(1/2) _ to first order.

The General Statement for Exponential Interpolation

In general, one can expect that exponential polynomial interpolation with

a polynomial of order n, p,_(x), will produce a differencing operator of order

also of order n which is the same result as for algebraic interpolation. As can

be seen from the above example, differentiation and evaluation at a point Xk

will produce a leading order term which is a product of n terms,

n--1

II (xk- (40)
i=O

and accuracy of order n is achieved.

11



Grid Alg Err Trig

Pts Err Ratio Err

16 7.72 * 10 -4 8.23 * l0 -4

32 4.06 • 10 -6 27.6 3.66 * 10 -6

64 8.02 * 10 -9 29.0 7.59 * 10 -9

128 9.54.10 -12 29.7 8.75.10 -12

256 9.80.10 -15 29.9 9.04.10 -is

512 9.70.10 -18 2 l°'° 8.95.10 -is

Err

Ratio

27.8

28.9

29.s

29.9

210.0

Exp
Err

4.10 • 10 -3

1.25 • 10 -5

1.95 • 10 -s

2.17 • 10 -11

2.20 • 10 -14

2.17 • 10 -17

Err

Ratio

28-4

29.3

29.8

29.9

210.o

Table l: A Comparison of Errors for Various Types of Differentiation Oper-
ators

2.4 A Numerical Check of Accuracy

This subsection will verify that the differentiation operators which are gener-

ated from algebraic, trigonometric, and exponential polynomials all exhibit

the same order property, which depends only on the order of the polynomial

interpolation. The difference operators will be tested on the function,

1

f(x) = 2 + cos(2x) (41)

defined on [0,_r]. f(x) is chosen because it is periodic but not exactly a

trigonometric or algebraic polynomial. Table (1) illustrates the order prop-

erty All of the errors are L2.

A general question arises, is there any advantage to using, say, a trigono-

metric polynomial for the generation of difference equations over, say, the

usual algebraic polynomial? From this study the answer appears to be no.

The essence depends on the ability of the interpolating polynomial to locally

approximate the function at hand. If the function at hand is not exactly a

trigonometric or algebraic polynomial, as is likely, then there is no advantage

for either approach. Such an issue is important when one is considering the

propagation of, say, a pulse in the application of aeroacoustics. A pulse will

locally be neither a algebraic or trigonometric polynomial. In short, a wave,

12



or pulse, cannot be propagatedaccurately if it cannot first be differentiated
accurately, and it can not be differentiated accurately if it can not first be
approximated accurately.

3 High Order Methods

Spectral collocation methods are often given the probable misnomer of "in-

finitely accurate". In a manner consistent with finite difference methods,

the accuracy of spectral collocation methods will be assigned the accuracy

of N - 1 when applied on a grid of N points.

This section will begin by connecting spectral collocation methods to fi-

nite difference methods. That is, spectral methods will be viewed from the

point of view of the maximum finite difference method on a given grid. Fol-

lowing the comments on this connection, a case will be made for applying very

high order algebraically generated finite difference operators on Cheybshev

grids or, equivalently, applying very high order cosine polynomial generated

finite difference operators on a uniform grid. This second process of using

cosine polynomials will require a mapping of the independent variable from,

say, x to cos(x), but is exactly equal to applying algebraic polynomials on

Chebyshev grids.

3.1 Spectral Collocation --- Maximum Order Finite

Difference

On a numerical grid of N points one can fit a polynomial with N degrees-of-

freedom through all of the data. If this polynomial is algebraic and if the grid

distribution is Chebyshev, xi = cos(-_), then one can build the Chebyshev

collocation differentiation matrix. On the other hand, if the polynomial is

trigonometric and if the grid is uniformly distributed then one can build

the Fourier spectral collocation differentiation matrix. One can, therefore,

define in the physical space a spectral method to be a method which uses the

maximum size polynomial for approximation and differentiation for a given

grid size.

Another way to see this is, suppose one has a numerical grid of 16 points

and a 4-th order difference operator on a 5 point stencil. Now reduce the

number of grid points to 8. The difference operator is still 4-th order. Now

13



Grid sin

Pts Freq

9 1.0

9 1.5

9 2.0

9 2.5

9 3.0

9 3.5

9 4.0

9 4.5

9 5.0

L2

Error

1.6710 -2s

8.7110 -a

5.6810 -29

1.60100

2.2410 -2s

2.7910 o

8.010 -28

2.9110 °

3.05100

Table 2: Fourier Spectral Collocation Applied to sin's

reduce the number of grid points to 5. The difference operator is still 4-

th order accurate. This is spectral accuracy. That is, spectral accuracy of

collocation methods on finite grids is N - 1 where N is the number of grid

points.

3.1.1 A Numerical Check

Let us consider the above statements numerically. A Fourier collocation spec-

tral method on a grid of 9 points is a differencing mechanism with exactly

9 degrees-of-freedom, and hence, is designed to differentiate exactly 9 func-

tions exactly: 1, cos(kx), and sin(kx), for k = 1,2,3,4. Table (2) is meant

to illustrate two points: i) the maximum frequency which is differentiated

exactly is 4.0, and ii) the poor performance on non-integer frequencies.

Likewise, a Chebyshev collocation spectral method on a grid of 9 points

is designed to differentiate 9 functions exactly: x k for k = 0, ..., 8. Table (3)

is designed to illustrate the same two points at Table (2). The table begins
with the function x 5.

Note that if the function being differentiated is not exactly an integer

frequency, e ik_ or x k, then, say for Chebyshev, differentiating x 5"s is no bet-

ter or worse than the result for differentiating sin(5.bx). The point that is

trying to be made is that the differentiation accuracy of spectral collocation
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Grid
Pts
9
9
9
9
9
9
9
9
9

Poly L2

Order Error

x 5 2.2910 -2s

x5-5 9.2610-4

x 6 6.4910 -25

x 6-5 2.7710 -3

x 7 2.3910 -24

x 75 1.7910 -2

x s 6.9610 -24

xs.5 4.2910 -1

x 9 2.83100

Table 3: Chebyshev Spectral Collocation Applied to Polynomials

methods on a finite grid of size N is accurate with the accuracy of N - 1,

and one can not expect that a wave-like pulse will be transmitted better

with a Fourier spectral method than with a Chebyshev spectral. The only

important issue is the dimension of the space and the boundary conditions:

use Chebyshev for non-periodic boundary conditions and Fourier for period

boundary conditions.

3.2 Very High Order Finite Differencing

Now suppose that build a series of algebraically generated finite difference

operators of increasing accuracy and test these difference operators on the

function sin(2x). The grid size will be fixed at 33 points. The first two lines of

Table (4) illustrate the effect of the Runge phenomenon, see [5]. The change

in the error from periodic boundary conditions on a uniform grid to non-

periodic boundary conditions on a uniform grid is from 10 -27 to 10 -21. In

addition, note that applying an algebraic polynomial with periodic bound-

ary conditions yields a result comparable to applying a trigonometric, i.e.

Fourier spectral collocation, polynomial with periodic boundary conditions.

Furthermore, one can observe the Runge phenomenon with trigonometric

polynomials just as one observes it with algebraic polynomials when the

boundary conditions are not periodic. Note that 128 bit arithmetic is being

15



Grid
Pts
33
33
33
33
33
33
33
33
33
33

Table 4: Finite

Order L2

of Acc Error

32 1.5210 -2r

32 5.0710 -21

18 7.4910 -it

20 1.1710 -18

22 1.7310 -20

24 2.4310 -22

26 3.4910 -24

28 5.7510 -26

30 1.3010 -2r

32 8.8910 -28

Error

Ratio

64.0

67.6

71.2

69.6

60.7

44.2

1.46

Periodic Grid even

BC's or Cheby

yes even

no even

no Cheby

no Cheby

no Cheby

no Cheby

no Cheby

no Cheby

no Cheby

no Cheby

Difference Accuracy Approaching Spectral Accuracy

used. LFrom line 3 to the bottom of the table the order of accuracy is in-

creased from 18 to the maximum, i.e., spectral, accuracy of 32 is obtained.

When one tests the accuracy of a finite difference operator one doubles the

grid and sees the error decrease as (½)_ where n is the accuracy of the scheme.

This comes from the truncation error which will produce a factor of the form

(Ax) n. In Table (4), it is the number n which is being increased while Ax
remains constant.

Compare Table (4) to Table (5) in which a Chebyshev collocation method

on an increasing grid size is tested on sin(2x). Note that in the following table

that both Ax is decreasing and n is increasing in the expression (Ax) _ as

one proceeds down the table. The final line of Table (5) is the Chebyshev

method on a grid of 33 points which produces a result comparable the result

in Table (4) on a grid of 33 points. The numbers are not exactly the same

because, first of all, all calculations are near machine accuracy, and, second,

the differencing coefficients are calculated in different ways.

16



Table 5:

Grid Alg Err
Pts Err Ratio
9 3.0010-3
11 8.6010-5 34.9
13 1.6510-8 52.1
15 2.2910-s 72.1
17 2.3810-1° 96.2
19 1.9410-12 122.7
21 1.2710-14 152.8
23 6.8510-17 185.4
25 3.0810-19 222.4
27 1.1710-21 263.2
29 3.8510-24 303.9
31 1.0910-28 353.2
33 2.5410-27 4.3

ChebyshevSpectral Collocation of Increasing Order

17



3.3 Chebyshev Spectral Methods and Cosine Polyno-
mials

This subsection will review Chebyshev spectral methods and the equivalency

with cosine polynomials. Chebyshev approximation can be seen as approxi-

mation by algebraic polynomials,

To(x) = 1,

T_(_)=.,
T=(x) = 2x = - 1,

Ta(X) ---- 4X 3 -- 3x,

or as approximation by a cosine series, see [7],

n

(42)

T,_(x) = cos(n arccos x) = cos(nO) = _ %(cosO) q = Z aq xq, (43)
q----O q----O

for someset {aq}and wherex = cos(e),u onenowchoosesa numericalgrid
defined as xj = cos(m), j = 0,...,N then one obtains T,_(x._)= cos(_-_-g_) and

the pseudospectral Chebyshev method, see [10], [21], and [2].

A Chebyshev spectral method involves approximating a function, f(x),

by interpolating an algebraic polynomial to point values f(xl) where the grid

points are given by the 'Chebyshev' grid points xi = cos(0i). An equivalent

process is to interpolate a cosine polynomial to the evenly-spaced point values

of the angle 8i and to consider f(x) to be evaluated on the uniform grid of

the angle variable 8i, f(x,) becomes f(O,). That is, see [10], if the Chebyshev

series for f(x) is
oo

Pf(x) = g(x) = _ akTk(x), (44)
k=O

then the expansion coefficients {ak} can be found in two equivalent ways,

'/2 '//ak - - f(x)Tk(z)(1 -- x2)-l/Zdx - f(cosO)coskOdO (45)
7rCk 1 TrEk

By this transformation of the independent variable one can perform Cheby-

shev spectral methods on a uniform grid or one can build arbitrarily high

difference operators on a uniform grid which have stability characteristics

equivalent to the usual Chebyshev spectral method.
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3.4 High-Order Differencing on Chebyshev Grids

Chebyshev spectral methods work very well for non-periodic problems pre-

cisely because the truncation error for a Chebyshev polynomial is equil-ripple.

As shown above, the truncation error for polynomial approximation,

p,_(x), of a function f(x) is

f(x) --pn(x) = (x --Xo)(X-- Xl)...(x -- Xn)fn+l(_),
(n + 1)!

(46)

where _ lies between the smallest and the largest xi. If one wants to minimize

the error due to the term

(x - x0)(_- _1)...(_- _n)

then the n+ 1 sample points should be chosen as the zeros of Chebyshev poly-

nomial T_+l(x), see [7]. This selection of grid points ensures that the error

has the equal-ripple property which is characteristic of Chebyshev polynomi-

als. A Chebyshev spectral method interpolates the highest order polynomial

possible onto the n + 1 degrees-of-freedom defined by the point values of a

function at the n + 1 zeros of T,_+l(x). The question to be addressed now

is what if the grid is defined as the zeros of T,_+l(x) but the polynomial is

of lower order. That is, n could be, say, 128 whereas the polynomial on

this grid could be of order 16. It is well-known that high order polynomial

interpolation on uniform grids is essentially an ill-posed problem.

4 Wavelet-based Grid and Order Selection

The previous section introduced the idea of building very high order algebraically-

generated difference operators on Chebyshev grids as a way of obtaining very

high accuracy which is almost spectral in nature. This section will explore

the idea of performing wavelet-based grid refinement on these Chebyshev

grids as a way to obtain the necessary Chebyshev grid distribution near a

boundary while having the ability to refine the grid away from the boundary

for proper physical-space function resolution.
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4.1 A Short Review of Wavelets

To define Daubechies-based wavelets, see [6] for the original work and see

[19] for an introduction to wavelet-based signal processing, consider the two

functions ¢(x), the scaling function, and ¢(x), the wavelet. The scaling

function is the solution of the dilation equation,

L-1

¢(x) = Y: h ¢(2x- k), (47)
k=O

where ¢(x) is normalized f__¢ ¢(x)dx = 1, and the wavelet ¢(x) is defined in

terms of the scaling function,

L-1

¢(x) -- V_ _ g,¢(2x -- k). (48)
k=O

One builds an orthonormal basis from ¢(x) and ¢(x) by dilating and

translating to get the following functions:

¢_(x) = 2-½¢(2-_x- k), (49)

and

¢_(x) = 2-½¢(2-Jx- k), (50)

where j, k E Z. j is the dilation parameter and k is the translation pa-
rameter. The coefficients H L-1 L-1= {hk}k=0 and G = {gk}k=0 are related by

gk = (--1)khL-k for k = 0,..., L - 1. All wavelet properties are specified

through the parameters H and G. If one's data is defined on a continuous

domain such as f(x) where x e R is a real number then one uses ¢{(x) and

¢_(x) to perform the wavelet analysis. If, on the other hand, one's data is

defined on a discrete domain such as f(i) where i E Z is an integer then the

data is analyzed, or filtered, with the coefficients H and G. In either case,

the scaling function ¢(x) and its defining coefficients H detect localized low

frequency information, i.e., they are low-pass filters (LPF), and the wavelet

¢(x) and its defining coefficients G detect localized high frequency informa-

tion, i.e., they are high-pass filters (HPF). Specifically, H and G are chosen

so that dilations and translations of the wavelet, ¢_(x), form an orthonormal

basis of L2(R) and so that ¢(x) has M vanishing moments which determines

the accuracy. In other words, ¢_(x) will satisfy

//= (51)
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where _kzis the Kroneckerdelta function, and the accuracyis specifiedby
requiring that ¢(x) = ¢°(x) satisfy

/_,o ¢(x) xmdx = O, (52)
OO

for m = 0, ..., M - 1. Under the conditions of the previous two equations, for

any function f(x) E L2(R) there exists a set {djk} such that

f(x) = _ _ djk¢_(x), (53)
jEZ kEZ

where

/?djk = f(x)¢_(x)dx. (54)
oo

The two sets of coefficients H and G are known as quadrature mirror

filters. For Daubechies wavelets the number of coefficients in H and G, or

the length of the filters H and G, denoted by L, is related to the number of

vanishing moments M by 2M = L. For example, the famous Haar wavelet

is found by defining H as h0 -- hi -- 1. For this filter, H, the solution to

the dilation equation (47), ¢(x), is the box function: ¢(x) = 1 for x E [0, 1]

and ¢(x) = 0 otherwise. The Haar function is very useful as a learning

tool, but because of its low order of approximation accuracy and lack of

differentiability it is of limited use as a basis set. The coefficients H needed

to define compactly supported wavelets with a higher degree of regularity

can be found in [6]. As is expected, the regularity increases with the support
of the wavelet. The usual notation to denote a Daubechies-based wavelet

defined by coefficients H of length L is DL.

It is usual to let the spaces spanned by ¢_(x) and ¢_(x) over the parameter

k, with j fixed, be denoted by Vj and Wj respectively,

Yj -'- kEZ
(55)

 Pan
Wj -- kEZ

The spaces V_ and Wj are related by,

... c V_ C Vo C V_l c ...,

(56)

(57)
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and

= G wj+l, (58)
where the notation V0 = V1 _ W1 indicates that the vectors in 1/1 are orthog-

onal to the vectors in W1 and the space Vo is simply decomposed into these

two component subspaces.

The previously stated condition that the wavelets form an orthonormal

basis of L2(R) can now be written as,

L2(R) = I_ Wj. (59)
jEz

Two final properties of the spaces Vj are that,

N = {0),

and

jEz

(60)

U Vj-- L2CR). (61)
jEZ

4.2 Grid Refinement on Uniform Grids

The idea of using wavelets to generate numerical grids began with the ob-

servation in [12] that the essence of an adaptive wavelet-Galerkin method

is nothing more than a finite difference method with grid refinement. So,

instead of letting the magnitude of wavelet coefficients choose which basis

functions to use in a Galerkin approach, let the same coefficients choose

which grid points to use and then think of the wavelet method in a colloca-
tion sense.

In other words, suppose a calculation begins with N evenly-spaced sam-

ples of a function f and that some quadrature method produces N scaling

function coefficients on the finest scale denoted by V0. If the spacing between

adjacent values in the vector j7 is Ax then this is also the physicM-space

resolution of any calculation done in V0. Now, decompose V0 once to get

V0 = V1 @ W1. Similarly speaking, the physical space resolution of 1/1 is

2Ax and the refinement from the 2Ax physical-space resolution to the Ax

physical-space resolution is dictated by the wavelet coefficients in W1. This

is the reasoning which led to WOFD and to the following subroutine which is

at the heart of WOFD. The remainder of the paper is concerned with giving

the reader an idea of how the WOFD grid refinement software works.
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4.3 Grid Refinement on Chebyshev Grids

Chebyshev grids are not evenly-spaced in physical space, but are evenly-

spaced in angle. That is, a Chebyshev grid comes from xj = cos(0/), j =

0, N, where the angle Oj - _ is evenly-spaced. The above described""' N

refinement mechanism can now be applied to the uniform angle grid point

values to define a new numerical grid. That is, all the above grid refinement

machinery can be applied to Chebyshev grids where each subspace Vj will

coincide with a uniform angle or usual Chebyshev grid and each refinement

subspace Wj will coincide with additional points being added to the usual

Chebyshev grid. It is well known that the Chebyshev grid is the best grid, in

terms of minimal error, for algebraic polynomial interpolation. A refinement,

Wa, on Chebyshev grid, V1, to get V0 = V1 G W1 is disigned to begin with

a grid which in one sense in perfect, the Chebyshev grid, and perturb from

this grid.

5 A New Numerical Method: WOFD2

In [15] a numerical method was defined which was called the Wavelet-Optimized
Finite Difference method or WOFD. WOFD used wavelets in their finite

difference form. In essence, this meant that wavelets were used to choose

a numerical grid and all computations were performed on this grid using

arbitrary-grid finite difference operators.
WOFD2 is an extension of this idea. WOFD2 uses wavelets to choose not

only a numerical grid but also the order of the difference operator used on this

grid. In addition, WOFD2 uses very high order finite difference operators

on the order of 8, 16 or maybe 32. Furthermore, the physical-space grids

are no longer evenly-spaced at every resolution but are Chebyshev. That is,

wavelet-based grid generation, see [16], requires that a grid be selected from

a uniform finest grid. But, high order polynomials can be highly-oscillatory

on uniform grids. Therefore, WOFD2 works with Chebyshev grids at each

resolution level. Recall, that Chebyshev grids xi = cos(0i) are not uniform

in the physical space variable xi but are uniform in the angle variable 0i. It

is in this uniform angle variable 0_ that grid refinement is performed.

Using the grid selection mechanism in [16] to select order is a minor exten-

sion of the idea that wavelets are very good at finding regions of the domain
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at which a large numerical error is likely to occur. Numerical error will deter-

mined by the truncation error of a polynomial which is locally interpolated

to the data. The truncation error will be the product of intervals and a con-

stant. Imagine the intervals are all a multiple of a smallest interval Ax then

the key component in the truncation error will be (Ax) n. This component

can be decreased by either decreasing the size of Ax or by increasing the

order of the scheme, i.e., increasing n. Or, one can decrease Ax and increase

n simultaneously.

5.1 Comparison with hp-Refinement

In the finite element literature, see [20], [1], [11], the idea of refining the grid
and increasing the polynomial order is known as hp-refinement. The theory

from hp-refinement can certainly be applied to the new method WOFD2,

even though WOFD2 works with polynomials only for generation of finite

difference operators to be applied in the physical space. One of the most

important results from hp-refmement theory from which WOFD2 can ben-

efit is that when the function being differentiated is smooth then the rate

of convergence is controlled by the polynomial degree. For the purpose of

pulse propagation in aeroacoustics it is apparent that a high order differen-

tiation, i.e., high order polynomial interpolation, will propagate the pulse

more faithfully than grid refinement on the same pulse, assuming the pulse
is smooth.

5.2 Numerical Experiments with WOFD2

This section will provide the results from numerous numerical experiments

performed with WOFD2. For all the numerical experiments in this section of

the paper a Gaussian pulse enters the domain from the right-hand side and

travels to the left. The governing equation is the 1 dimensional hyperbolic

wave equation,

= = (62)

for some constant c. See Figure 1 for a plot of this initial condition. Note that

the domain extends from 0 to 7r. The final time for all simulation is zr/2. The

simulation is stopped at this value because at r/2 the Chebyshev grid has a

maximum spacing between grid points and hence a minimum resolution.
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Grid
Pts
64
64
64
64

Order L2 Loo

of Acc Error Error

8 3.82.10 -3 1.78.10 -2

16 2.95.10 -4 1.30.10 -3

32 1.74 * 10 -5 7.10 * 10 .5

48 2.74 • 10 -s 1.28 • 10 -5

Final

Time

_/2
_/2
r/2
_/2

Table 6:WOFD2 of Accuracies 8, 16, 32, and 48

5.2.1 No Adaptation

First we consider the case of very high order finite differencing on a Cheby-

shev grid. The grid size is kept fixed at 64 points, and the order is increased

from 8 to 48. The errors decrease in a nice and uniform manner. No unusual

numerical oscillations occur.

5.2.2 Adapting Grid Only: Order 8 Spatial Differencing

In this subsection the order of the spatial differencing is kept fixed at order 8.

No results are found for threshold values of 10 -1 and 10 -2. This is because it

seems to be a characteristic of adaptive methods that a very rough threshold

value can degrade the performance of the method. It is better to start with

threshold values less than or equal to 10 -3. The first row of the table is the

worst possible performance where no refinement is done and grid is 64 points,

and the last row of the table is best possible performance where the grid is 128

points. Note that the software is constructed to work with both periodic and

non-periodic boundary conditions, so that when the boundary conditions are

non-periodic the possible number of points becomes 2N+ 1 which includes the

right-hand boundary point. For periodic boundary conditions the number of

grid points is 2N since the right-hand boundary point is equal to the first

point on the left-hand boundary.
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Grid
Pts

128/64
128/64
128/64
128/64
128/64

128

tf

Grid

65

77

79

82

84

129

Order

of Acc

8

L2

Error

3.82 * 10 -s

1.67 * 10 -3

1.63 * 10 -4

8.24 * 10 -s

8.07 * 10 -s

6.51 * 10 -s

LOO

Error

1.78 * 10-2

8.66 * 10-3

8.76 * 10 -4

3.24 • 10 -4

3.24 * 10 -4

3.24 * 10 -4

Thresh

100.0

10-3

10-4

10-s

i0-6

0.0

Final

Time

r/2
_/2
r/2
r/2
_/2
_/2

Table 7:WOFD2 Adaptive Grid, but Accuracy fixed at 8

5.2.3 Adapting Grid Only: Order 16 Spatial Differencing

Much of what was said for the 8th order table above can be said here. The

second row of the following table shows how the performance can be slightly

degraded for relatively large threshold values. In this case the degradation

occurs at the threshold value of 10 -3. This is a minor point. Generally

speaking, just start with a smaller threshold value.

5.2.4 Adapting the Grid and Order

This final table is the culmination of the paper and an example of WOFD2

with all options in use. The grid is adjusted between a maximum density of

128 and a minimum density of 64. The order of accuracy is adjusted between

a maximum order of 16 and a minimum order of 8. The error converge in a

nice manner toward the minimum error which occurs at the maximum grid

density of 128 and the maximum order of accuracy of 16.

The usual Chebyshev grid is evenly-spaced in angle 0_ = i_r/N for i =

0, ..., N. In the physical space the grid distribution is xi = cos(0_) which

is shaped like a semi-circle. When one applies the wavelet grid adaptation

to this evenly-spaced 0i then obtains in the physical space the distribution

xi = cos(0i) in the portion of the domain away from the pulse, and the twice-

as-dense grid distribution x_ = cos(i_r/(2N)) in the portion of the domain

near the pulse. Note that the grid is the usual Chebyshev grid near the

boundary. It is only safely away from the boundary that the grid density
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Grid tf
Pts Grid

128/64 65

128/64 81

128/64 87

128/64 89

128/64 87

128/64 91

128/64 93

128 129

Order L2 Loo Thresh

of Acc Error Error

16 2.95 • 10 -4 1.30,10 -3 100.0

16 1.57,10 -3 7.31 * 10 -3 10 -3

16 2.34 • 10 -4 8.16,10 -4 10 -4

16 2.43 * 10 -5 8.09 * 10 -5 lO-S
16 2.36,10 -6 9.20,10 -8 10 -6

16 3.18,10 -7 1.09,10 -6 10 -7

1.05 * 10 -7

4.26 * 10 -s

16 4.66 * 10 -7

2.24 * 10 -716

10-8

0.0

Final

Time

_/2
_/2
_/2
_/2
_/2
_/2
_/2
r/2

Table 8:WOFD2 Adaptive Grid, but Accuracy fixed at 16

Grid t!

Density Grid

64 65

128/64 81

128/64 80
128/64 82

128/64 84

128/64 86

128/64 87

128/64 90

128 129

Order L2 Loo Thresh

of Acc Error Error

8 3.82 • 10 -3 1.78,10 -2 100.0

16/8 1.61 • 10 -3 7.20,10 -3 10 -3

16/8 4.42 • 10 -5 2.68 • 10 -4 10 -4

16/8 6.28 • 10 -6 3.74 • 10 -5 10 -5

16/8 4.50 • 10 -7 2.64,10 -6 10 -6

1.23,10 -7 6.49,10 -716/8

16/8 5.52 * 10 -s 2.25 * 10 -7

10 -7

10-s

16/8 5.12 • 10 -s 2.24,10 -7 10 -9

16 4.26 • 10 -s 2.24 • 10 -7 0.0

Table 9:WOFD2 with Grid and Order Adaptation

Final

Time

_/2
_/2
r/2
r/2
_/2
_/2
_/2
_/2
_/2
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makesan abrupt changein density. SeeFigure 2 for an exampleof an initial
grid.

If the numerical schemeis workingproperly then the pulsewill propagate
to the middle of the domain and be similar in shapeto the initial condition.
The best measureof this similarity is the Loo error. At the final time the

pulse will appear as in Figure 3.

The Chebyshev grid is naturally more dense near the boundaries than in

the middle of the domain. With the wavelet adaptation of this Chebyshev

grid, the grid points can be kept dense while maintaining a the Chebyshev

distribution throughout most of the domain. Again, the most important

region of the domain for a Chebyshev distribution is near the boundary. See

Figure 4 for the grid distribution at the final time when the pulse has reached
the middle of the domain.

Without grid refinement or order refinement the peak numerical error at

the final time should be near the peak of the pulse, since it is this portion of

the function which is most difficult to represent by polynomial interpolation.

See Figure (5) for an example of such an error.

If the wavelet refinement threshold is not sufficiently low then one will

see the peak error appear near a region of the domain where there is a grid

or stencil discontinuity. A 'sufficiently low' refinement threshold will on the

order of the Loo error when no grid or order refinement is executed. In

Figure 6 noise is amplified at the interface where both the stencil and grid

are refined. If the wavelet refinement threshold is adjusted to a smaller value

then one can obtain an error profile similar to that in Figure (5).

When both the stencil and grid are changed throughout the calculation,

one finds a relatively wide stencil near the peak value of the pulse. For the

example of a 17 point stencil with accuracy of 16 at the pulse and a 9 point,

accuracy 8, stencil away from the pulse see Figure (7).

6 Conclusion

This paper has covered many topics related to the construction of a very

high order adaptive order and adaptive grid numerical method which has

been named the Wavelet-Optimized Difference Method 2, or WOFD2. First

it was necessary to explore the various ways in which difference operators can

be constructed. This included a comparison of difference operators generated
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from algebraic, trigonometric, exponential, and cosine polynomials. Next,

which type of polynomial would be best for the construction of very high

order numerical differencing. The conclusion, which is not a big surprise,

is that one should use algebraic polynomials on Chebyshev grids. The next

step was to apply wavelet grid and order adaptation in order to be able

to reduce errors throughout the domain by either increasing the order of

the numerical method or by increasing the grid density in the appropriate

region. The results of the numerical tests were very positive and it appears

that WOFD2 will applicable to a large range of numerical problems. The

version of WOFD2 which has been presented here has been 'tweaked' very

little. That is, it worked essentially for the first time it was tried. This is

encouraging because most high order numerical methods require some kind of

filtering or other refinement. Future plans for WOFD2 would be, perhaps, to

try to find a proof of stability and to apply the method in higher dimensions.
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Figure 1: Initial Condition of Pulse Entering Domain
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Figure 2: Initial Grid Density For Pulse Entering Domain
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Figure 3: Pulse at Final Time

34



0.07-

0.06-

0.05-

0.04-

0.03-

0.02-

o.01

o o

• • ooooo• •

Figure 4: Adaptive Chebyshev Grid at Final Time

35



0.0003"

0.00025'

0.0003.

0.00015.

0.0001.

0.00005-

o

::r=--r. _•-

0.5

• •

o

e•

°** °

• o

• • . o°e.o
i 115 _: "= .... = =2.5= = = = : = = : := _

Figure 5: Typical Error at Pulse Peak
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Figure 7: Width of Differencing Stencil at Final Time
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