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A list of the symbols used throughout this document and their definitions is provided below
for convenience.

Roman Symbols

. speed of sound
.. skin friction coefficient

. gas specific heat at constant pressure

.. gas specific heat at constant volume

total internal energy

. first grid index of numerical solution
. second grid index of numerical solution
. third grid index of numerical solution or thermal conductivity
. turbulent kinetic energy
. Van Driest damping function
. rotational speed (revolutions per second) or time step level
. pressure
. radius or radial coordinate
. time

. velocity in the Cartesian coordinate system x direction
. velocity in the Cartesian coordinate system y direction
. velocity in the Cartesian coordinate system z direction
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v, ... velocity in the cylindrical coordinate system radial direction

vg ... velocity in the cylindrical coordinate system circumferential direction
Wyl - . - relative velocity in the circumferential direction (= vy — rw)
x ... Cartesian coordinate system coordinate

y ... Cartesian coordinate system coordinate

= ... Cartesian coordinate system coordinate

AT ... turbulence model constant
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Re ... Reynolds Number

P ... turbulence kinetic energy production term

Pr...gas Prandtl Number

S ...surface area normal vector

SDBLIB ... Scientific DataBase Library (binary file I/O routines)
T ... Temperature

TRAF2D ... TRAF2D Navier-Stokes analysis code

TRAF3D ... TRAF3D Navier-Stokes analysis code

TOMC ... TRAF2D Airfoil Cascade C-Mesh Generation Program

U ... Freestream velocity (units of length/time)

V... volume

Greek Symbols

~ ... specific heat ratio
... calculation increment

)
A
¢ ... turbulence dissipation parameter
V ... gradient vector operator

w

... vorticity
... density

B

xiii




Jt ... coefficient of viscosity
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Chapter 1

SUMMARY

The overall objective of this study was to develop a 3-D numerical analysis for compres-
sor casing treatment flowfields, and to perform a series of detailed numerical predictions
to assess the effectiveness of various endwall treatments for enhancing the efficiency and
stall margin of modern high speed fan rotors. Particular attention was given to examining
the effectiveness of endwall treatments to counter the undesirable effects of inflow distor-
tion. The motivation behind this study was the relative lack of physical understanding of
the mechanics associated with the effects of endwall treatments and the availability of de-
tailed computational fluid dynamics (CFD) codes which might be utilized to gain a better
understanding of these flows.

Calculations were performed using a cylindrical coordinate system utilizing three differ-
ent gridding techniques based on the type of casing treatment being tested and the level
of complexity desired in the analysis. The interface between the casing treatment flow and
the primary rotor flowpath flow was addressed using either a direct coupled approach, a
time-averaged approach, or a time-accurate approach. In each case, the casing treatment
itself is modeled as a discrete object in the overall analysis, and the flow through the casing
treatment is determined as part of the solution.

A series of calculations was performed for both treated and untreated modern fan rotors
both with and without inflow distortion. The effectiveness of the various treatments were
quantified. and several physical mechanisms by which the effectiveness of endwall treatments
was achieved are discussed. This report represents the cumulative efforts of Tasks 6 and 7
under NASA Contract NAS3-25270.
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Chapter 2

INTRODUCTION

2.1 Description of Compressor Stability and Casing Treat-
ment

Compressor aerodynamic stability is a major concern for manufacturers of gas turbine air-
craft engines and industrial power plants. For a given shaft rotational speed. the compressor
mass flow rate versus the overall total pressure rise characteristic (often referred to as a
constant speed line) is commonly used as a measure for evaluating operating stability. An
illustration of a constant speed operating characteristic is given in Figure 2.1. Improving
the flow margin between the compressor operating point and the stall-limit point will, in
general, improve the useful operating range of the engine. Compressors are normally de-
signed with a significant excess flow margin to compensate for factors, which, over time, can
degrade compressor performance and ultimately limit the stable operational domain of the
compressor. Under many conditions, unstable flow conditions are initiated in the endwall
flow regions of a compressor. If aerodynamic stall in the endwall region can be delayed, the
weight flow range (and hence, stability) of the compressor may be increased.

Experimental data [1].[2]. indicate that compressor endwall treatments such as grooves,
slots (see Fig 2.2), and/or recessed vane sets (see Fig 2.3) can effectively delay stall and
increase the weight flow range of a compressor. Prince et. al. [3] and Fujita and Takata [4]
examined many types of grooves over a low speed rotor. Flow features in treatment grooves
and in the rotor relative flow field were presented by Smith and Cumpsty [6]. A similar
treatment (axially skewed grooves) was successfully applied under a stator vane row (Cheng
et al. [7]) and details of the vane passage flow field were illuminated by Johnson and Gre-
itzer [8]. With some features of the flow field known, mechanisms for the stall margin
improvement were postulated. Flow injection (Takata and Tsukuda [5]) from the grooves
and/or flow withdrawal into the grooves (Johnson [8]) have been suggested as potential
mechanisms by which blade row stall is delayed by endwall treatments. A well planned ex-
periment by Lee and Greitzer [9] showed both flow suction and injection from the treatment
region produced a stall margin improvement.

Another form of casing treatment employs a large cavity upstream and over part of the
rotor tips. The cavity often has vanes embedded in it and such a “recess vaned” casing
treatment is shown in Fig 2.3. This treatment [10] has been applied to ventilation fans and
significantly increases the stable flow range. Miyake et al. [11] and Azimian et al. [12] [13]
have evaluated various characteristics of this treatment and have shown the general flow
structure in the cavity and around the rotor.
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Figure 2.1: Sample compressor operating characteristic at constant speed.
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Figure 2.2: Groove/slot casing treatment geometric descriptions.
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Figure 2.3: Recessed vane casing treatment geometric description.
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Figure 2.4: Effect of inlet distortion on axial compressor performance and stability (nine
stage compressor).

The research to date has uncovered many flow features of casing treatment, but the
exact mechanism of the stall suppression and the relative effect on performance imposed
by endwall treatments are not fully understood. Compntational fluid analysis has been
a reasonable predictor of turbomachinery flow fields, and can be seen as a tool to aid in
understanding the complexities of casing treatment flow phenomena. Previous attempts to
compute compressor casing treatment flow fields are few in number, and have generally spec-
ified the resultant flow through the treatment region based on inference from experimental
data [14].

2.2 Description of Compressor Stability and Inlet Distor-
tion

It is well known that a compressor’s stable operating range is seriously degraded in the
presence of inlet flow non-uniformities (i.e. distortion). In an aircraft application, engine
stability problems can occur during rapid maneuvers or in strong cross-winds due to the total
pressure non-uniformities that are created at the compressor inlet. Figure 2.4 illustrates
the substantial decrease in compressor stall margin that was measured for a nine stage axial
compressor with a circumferential inlet distortion [15].

Inlet distortion patterns occurring in aircraft systems are generally non-uniform in both
the circumferential and radial directions. To simplify testing, data correlation, and ana-
Iytical study, these patterns are normally decomposed into 3 separate categories; steady
circumferential, steady radial and unsteady distortions [16]. Reasonable success has been
made in understanding the effects of inlet distortion by independently considering the steady
circumferential (which the rotor sees as an unsteady inlet flow) and radial types.

i
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Figure 2.5: Effect of varying distortion sector angle on compressor stall margin.

There are several interesting features of a compressor’s response to inlet distortion that
have been observed. Figure 2.5 [17] shows the effect of increasing the circumferential extent
of the distortion on the compressor exit pressure at surge (as a percent of uniform inlet
value). It can be seen that the deleterious effect of the distortion increases until a “critical”
angle of about 90 degrees is reached, beyond which no significant additional performance
degradation occurs. Figure 2.6 shows the effect of taking the 90 degree distortion and
subdividing it into smaller sections such that the sum remains constant. Even though
the overall extent is the same for these tests. the distortions with smaller individual sectors
show a reduced effect on compressor stability. In other words, distortions with low harmonic
content are more harmful than those with higher harmonics. Another important point to
understand is the strong interaction that occurs between the compressor and the distorted
flow field. As illustrated schematically in Figure 2.7 [17]. and discussed in Ref. [16], the
compressor plays an active role in determining the velocity distribution that will occur at the
compressor face, which is what the individual compressor airfoils respond to. These results
indicate the important role that unsteady fluid processes play in determining a compressor’s
response to a disorted inlet.

Over the years there has been much work towards the development of analytical tools
for the prediction of the effects of circumferential inlet distortion on compressor stability.
These methods range from correlations of experimental data [18] to simple analytical ap-
proaches. such as the well known compressor-in-parallel model [19]. These simple methods
are routinely used in practice due to their demonstrated ability to predict experimental
trends. A significant drawback is the costly amount of empirical data required as input.
There has been some work to develop tools that actually model the important unsteady
physical processes and thus reduce the amount of empirical input [20] [21]. These methods
are based on a hydrodynamic (linear) stability analysis of the assumed two-dimensional,

S
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Figure 2.6: Effect of dividing distortion sector angle on compressor stall margin.

incompressible distorted compressor flowfield. This approach has been shown to reproduce
known experimental trends, such as the decrease in compressor stability with increasing dis-
tortion amplitude and circumferential extent, as well as the prediction of a “critical” angle.
However, these models also rely on the input of the steady-state pressure rise versus flow
characteristic for the compressor and this is the reason these models have not been widely
adopted by industry. The greatest contribution of these methods has been the increased
understanding of physical mechanisms that they have provided.

The phenomenal computational speed that is now available using current computational
fluid dynamic codes on modern computer systems has opened the door for a new approach
to the distortion problem. It is now possible using state-of-the-art CFD codes to model
the unsteady, three-dimensional viscous compressor flowfield in the presence of a distorted
inlet. The basic idea is to use these computations to provide insight into the detailed
fluid mechanics of this phenomena. This approach is unique because it allows the detailed
three-dimensional flow features to be considered (e.g. tip clearance vortex), as well as the
interactions between blade passages without assumptions regarding the response of each
passage. The long term goal is to someday be able to predict the effect of a given inlet
distortion on a given compressor without the use of expensive rig testing.

2.3 Objectives of the Present Study

The overall objective of this study was to develop a 3-D numerical analysis for compressor
casing treatment flowfields, and to perform a series of detailed numerical predictions to
assess the effectiveness of various endwall treatments for enhancing the efficiency and stall
margin of modern high speed fan rotors. Particular attention was given to examining the
effectiveness of endwall treatments to counter the undesirable effects of inflow distortion.
The motivation behind this study was the relative lack of physical understanding of the
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mechanics associated with the effects of endwall treatments and the availability of detailed
computational fluid dynamics (CFD) codes which might be utilized to gain a better under-
standing of these flows. This study represents one of the first attempts to simultaneously
compute the coupled flow through the blade passage and the treatment region for various
compressor endwall treatment configurations. The computational tool used for this study
was the ADPACO7 code, a flexible viscous flow aerodynamic tool developed specifically
for turbomachinery geometries. The secondary objectives of this study were directed at
enhancing the capabilties of the ADPACO7 code by incorporating computational enhance-
ments such as code parallelization, an implicit time-marching algorithm, and an advanced
turbulence model. Each of these enhancements are described in detail in the sections which
outline the numerical algorithm.

11
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Chapter 3

ADPACO7 NAVIER-STOKES
NUMERICAL ALGORITHM

Predictions for the casing treatment and inlet distortion flows described in this study were
obtained using the ADPACO7 computer program. The ADPACO7 code is a general purpose
turbomachinery aerodynamic design analysis tool which has undergone extensive develop-
ment, testing, and verification [22], [23], [24], [30]. There is also extensive documentation
available for the ADPACO7 program [26], [27], [29], [28]. Briefly, the ADPACO7 analysis
utilizes a finite volume, multigrid-based Runge-Kutta time-marching solution algorithm to
solve a time-dependent form of the 3-D Reynolds-Averaged Navier-Stokes equations. A
relatively standard Baldwin-Lomax [34] turbulence model was incorporated to compute the
turbulent shear stresses. An advanced two-equation turbulence model was also developed
for enhanced turbulent flow predictions. The code employs a multiple-blocked mesh dis-
cretization which provides extreme flexibility for analyzing complex geometries. The block
gridding technique enables the coupling of complex, multiple-region domains with com-
mon grid interface boundaries through specialized boundary condition procedures. The
ADPACO7 analysis has been successfully utilized to predict both the steady state and
time-dependent aerodynamic interactions occurring in modern multistage compressors and
turbines.

In this chapter, the governing equations and computational model methodology for the
ADPACO7 code are described. In some cases, additional capabilities are available in the
ADPACO7 program, and these are described further in References [24]. [29]. The definitions
of the pertinent variables used in this chapter may be found in Nomenclature.

3.1 Nondimensionalization
To simplify the implementation of the numerical solution, all variables are nondimensional-

ized by reference values as follows (note that variables with the caret (e.g. ¢) are dimensional
variables and consequently variables without a caret (e.g. ¢) are nondimensional variables):

l/ 2 Vg Uy IA‘:
y= = = = 3 Vp = =—— Uy == Vy = =——
er—_f Ll‘rf ‘/r_[ ‘/'(f ‘7(]'
r r Vo Dp ug
L = —= = — . Vayr = o v, = = Vg = =
erf L'I'ff ‘I‘F._f "I‘Ef ref




Pi= = y M== s Cp = = sy Cy = % —, k=
Pref Href chf R,-Ef l\/rff
i : i R
T:‘,—_ p= A/) PN — s R:%— (3.1)
T.,v;f Pref |/ ref V r(;fLref

The reference quantities are defined as follows:
L,‘ff is a constant user-defined length scale
Pres is normally the inlet total pressure (user-defined)
pres is the freestream or inlet total density (pre; =pres / f?rc] / T,,ff )
f',.Ff is determined from the freestream total acoustic velocity as

~ [11’ ~ s
! ref = _\7TL = R‘!‘Ele'ff
fires 1s determined from the other factors as:
,[Irff = ﬁ‘l‘ff‘ VrffLr‘ef
kyes is the freestream thermal conductivity (extracted from user-defined param-
eters such as 7 and Prandtl number)

R,cs is the freestream gas constant (user-defined)

T:e; is normally the inlet total temperature (user-defined)

3.2 Governing Equations

The ADPACO7 numerical solution procedure is based on an integral representation of the
strong conservation law form of the 3-D Reynolds-averaged Navier-Stokes equations ex-
pressed in either a cylindrical or Cartesian coordinate syatem. User input determines which
solution scheme is selected, and can be varied on a block by block basis. The Euler equations
may be derived as a subset of the Navier-Stokes equations by neglecting viscous dissipation
and thermal conductivity terms (i.e. - g and k = 0).

The derivations of the various forms of the equations employved in the ADPACO7 code
are outlined below.

3.2.1 Vector Form of Navier-Stokes Equations

The Navier-Stokes equations may be efficiently described in a coordinate independent vector
form as follows (see e.g. [42])

Continuity
%+V-(/ﬂ7)=0 (3-2)
Momentum =
()((/)):") +T'p\“"—: :pf—%V-sz (3.3)
Energy
0(;,()+V_(,,()f'=%—?—v.(]+pf”.‘”'+v-(n,j-f') 24}

Here p is density, V is the fluid velocity vector, e is the fluid total internal energy, t is
time, V is the spatial gradient operator, I1;; is the fluid stress tensor, f is an external force
vector, () represents added heat, and ¢'is the fluid conduction heat flux vector.
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3.2.2 Reynolds-Averaged Form of Navier-Stokes Equations

Direct computation of turbulent flows using the Navier-Stokes equations in the form above
is simply not practical at this point, and instead, we assume that the turbulence is sta-
tionary (see e.g. Wilcox [63]), and can be effectively represented numerically as a time-
averaged effect. In this respect. it is useful to derive the Reynolds-averaged form of the
Navier-Stokes equations by introducing time averaging operators. Any instantaneous flow
variable f(x.t) can be decomposed into a time-averaged and a fluctuating component as

fla.t)= fla)+ f'(a.t) (3.5)
The time average f(z) is defined as

: L petd i
fla)= Th_m\f/f fla t)dt (3.6)

Similarly, for compressible flows. it is useful to define the density weighted time average as

J.t) = flx)+ f"(a.1) (3.7)
where now the density weighted time averaged variable is defined as
. of
f(-l')zg (3.8)
p

Application of the mass-weighted averaging procedure to the Navier-Stokes equations (see
e.g. [42]) vields the Reynolds-averaged Navier-Stokes equations expressed in vector form

as
Continuity
ap 7 :
EJFE;(M")_O (3.9)
Momentum
R R T e (3.10)
ER A AN e e e (i = 3.
(), p ()1/ p f ()-Tj (.)I] J. /) 11 (¢ j
Energy
a = 0 e = e aT ()1_) J = o
'(.)—[(/)Hiotul) + ?)Tj(pll'/lifot"[ - /)UA/‘HtOtH/ == L’d.—ll) = ()—f + (.);—r.j('lliTi_i + ll,i T,’_/‘) (311)
where
- ou, 9\ 2, Oy ou, 0\ 2. oul
. B gy - S N L L) gk 3.12
i =K [((’).r./ u 0.1';) 3¢ U.I'/\»:| s du; + az; 3 Y oz ( )

where ¢;; is the Kronecker delta function (6;; = 1if ¢ = j and é;; = 0if 7 # j) and u; repre-
sents the velocity vector components. The complication in this analysis is the presence of
terms of the form pu; “1 These terms are often referred to as Reynolds stresses, and the
specification of these terms is referred to as the turbulent closure problem. A large portion
of turbulence modeling research is dedicated to suitably closing the system of equations by
defining procedures to compute the Reynolds stress terms. In this study, turbulence closure
is performed by employing the Boussinesq approximation. Boussinesq [41] suggested that
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the apparent turbulent stresses might be related to the mean strain rate through an eddy
viscosity of the form

——  lBw Gn) 2. [ Gy - o
— pu; U./' = M (E: + _()TII) — ;(S,J <,111ka- ~+ P]\) (313)

where k is the kinetic energy of turbulence defined as k = 11;11;/2. The resulting simpli-
fication is that all Reynolds stress terms are eliminated in favor of a modified viscosity
Heffective = Mlaminar + Mturbulent WheTe flyyrpulent is the eddy viscosity described above. The
turbulent flow thermal conductivity term is also treated as the combination of a laminar
and turbulent quantity as

A'fjffrtiz'f = "'luminar 9F }"turbulf"nf (314)

For turbulent flows, the turbulent thermal conductivity Ay puien: is determined from a
turbulent Prandtl number Pry,puient such that

Cplturbulent
. _ Cpltur .
P’turbulfnt = (315)

I"t'urbulfnt
The turbulent Prandtl number is normally chosen to have a value of 0.9. The turbulence
models described later in this report define the means by which sy puient is prescribed.
Coordinate dependent forms of the Reynolds-averaged Navier-Stokes equations used in
the numerical solution procedures are given in the sections which follow.

3.2.3 Governing Equations for Cartesian Solution

In this section, the governing equations for a Cartesian coordinate system solution are
developed. In this discussion, since all solutions for turbulent flow employ the Boussinesq
approximation, the overscores denoting time averaged (e.g. p) and density weighted time
averaged (e.g. v, have been removed for simplicity.

The Reynolds-averaged Navier-Stokes equations for a Cartesian coordinate system may
be written as

()(2 OEnz- OGim' OHiWLl' aFuis 0(1’1"1'3 UHvis
= + =5+ o

: - , =5 3.16
ot ox dy 0z ox dy 0z ( )
For a Cartesian solution, the vector of dependent variables () is defined as

P
PV

Q= | pvy (3.17)
pU:
PEt

where the velocity components v, v,, and v. are the absolute velocity components in the z,

y. and =z coordinate directions, respectively (see e.g. - Fig. 3.1). The total internal energy
is defined as i
P D i 2 bl .
= —(vz + v ) 3.18
o= s+ 30k + o+ od) (3.18)

The individual flux functions are defined as
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Figure 3.1: ADPACO7 Cartesian coordinate system reference.
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The total enthalpy, Hioiq. is related to the total energy by
P
Htotal =€+ —
P

The viscous stress and heat flux terms may be expressed as

oT

G- = UpTyy + Uy Try + Tz + AW
0y Ty VT B

= UVaTyx Yy Ty VzTy= T
Gy «Ty VyTyy T VzTy By
T
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PV Hiotal
0
T2z
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T::
q:

(3.19)

(3.20)

(3.21)

(3.29)

(3.30)

where o is the first coefficient of viscosity, A, is the second coefficient of viscosity, and

~  Jv, Ov ov.
dx dy * 0z

The remaining viscous stress terms are defined through the identities

Tow = Taws
Toy = Ty:.
Tex = Tzzs

(3.31)

(3.32)
(3.33)
(3.34)




3.2.4 Governing Equations for Cylindrical Coordinate Solution

In this section, the governing equations for a rotating cylindrical coordinate system solution
are developed. The rotating coordinate system permits the solution of rotating geometries
such as turbomachinery blade rows. The rotation is always assumed to be about the 2 axis In
this discussion, since all solutions for turbulent flow employ the Boussinesq approximation,
the overscores denoting time averaged (e.g. p) and density weighted time averaged (e.g. v,
have been removed for simplicity.

The Reynolds-averaged Navier-Stokes equations for a rotating cylindrical coordinate
system may be written as

O_Q + aﬂvz,z' f)(»7"1'711' + iaHi'rxz' = I ol U[“m's + ()(—;'xvis iaHz'is

ot o or r o8 dx ar r 08
For solutions employing the cylindrical coordinate system, the vector form of the equa-
tions contains only minor deviations from the Cartesian form, but the components of the

solution and flux vectors must be redefined. For a cylindrical coordinate solution, the vector

(3.35)

of dependent variables @) is defined as

P
Pz
Q= | pur (3.36)
e
pet
where the velocity components v,., v, and vy are the absolute velocity components in the
axial, radial, and circumferential coordinate directions, respectively.
The flux vectors are expressed as

PUz pPUr | Pg
pl{;{ +p PUL Uy PUzVy
= PULVy s Gow=| pretp s Hiw= PV (3:37)
POz Wrel PV Wrel PUGWrel + P)
4 Vel iotal /)'I"I'Htofnl | /’“'/'letota,I
0 0 ] 0
Tza Tra Tox
B =N I G =1 (W o e H s = [T | (3:38)
T20 Tro e
4 qr | q0
and the cylindrical coordinate system source term becomes
0
= s (3.39)
){' v, 7"
gy g
0

The total enthalpy, H. is related to the total energy by

)
}]toiul =€+ ]; (3.40)
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The viscous stress and heat flux terms may be expressed as
Tl = 21 [(
= 2
H ( Jar
1 dv, =2 o

>+Av v, (3.41)

) (%)
)+ ()

) FAV-V (3.44)

1 ov — )y

Too = 24 (;%) + AV -V + 2;1% (3.46)
oT

G = UgpTes T ¥ TJ,+zme+l~()— (3.47)
Jik

qr = Uy T11+l T1/+197—/6+1‘C)_ (3-18)
dy
oT

q6 = VzTgr + VrTor + VoToe + AW (3.49)

where y is the first coefficient of viscosity, A, is the second coefficient of viscosity, and

~ Ovy Ov, 10vg v, .
VYVt tras T+ (2:50)

The remaining viscous stress terms are defined through the identities

Tre = Taor, (351)
T — T8 (3552
T = T30, (3-53)

3.3 Fluid Properties

The primary working fluid is assumed to be air acting as a perfect gas, thus the ideal
gas equation of state has been used. Fluid properties such as specific heats. specific heat
ratio. and Prandtl number are assumed to be constant. The fluid viscosity is temperature
dependent and is derived from the Sutherland (see e.g. [42]) formula:

W

()
T+

=0 (3.54)

Q

2
where for air the coefficients are specified as:

. Ib
Oy = DT B

ft — sec
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The so-called second coefficient of viscosity A, is fixed according to:

2 .
Ay = —— U (3.55)
3
The thermal conductivity is determined from the viscosity and the definition of the Prandtl

number as:

k= %gﬂ (3.56)
.

3.4 Numerical Formulation

The numerical formulation for the ADPACO7 code is provided in the subsections below.

3.4.1 Finite Volume Discretization

Integration of the three-dimensional differential form of the Navier-Stokes equations over a
finite control volume yields an equation of the form:

/// Q)dV + Lino(Q) = Luis(Q) + /// DdV (3.57)

where:

LGl / / mz([’ll == sz(l’&Z"'"Hlmd’l’}] (35R)

and:
Lvis(Q) = // [Fuisdﬁl] + Gm's([rlz -+ H,,I'S(]rl_g] (359)
dA

The Gauss divergence theorem has been employed to convert several volume integrals to
surface flux integrals, which simplifies the numerical evaluation of many terms (see e.g.
[42]). The inviscid (convective) and viscous (diffusive) flux contributions are expressed
separately by the operators L;,, and L, respectively. The vector of dependent variables
() and other terms are described separately for both a Cartesian and a cylindrical coordinate
system above.

The discrete numerical solution is developed from the integral governing equations de-
rived in the previous sections by employing a finite volume solution procedure. This pro-
cedure closely follows the basic scheme described by Jameson [31]. In order to appreciate
and utilize the features of the ADPAC07 solution system, the concept of a multiple block
grid system must be fully understood. It is expected that the reader possesses at least some
understanding of the concepts of computational fluid dynamics (CFD), so the use of a nu-
merical grid to discretize a flow domain should not be foreign. Many CFD analyses rely on
a single structured ordering of grid points upon which the numerical solution is performed
Multiple block grid systems are different only in that several structured grid systems are
used in harmony to generate the numerical solution. The domain of interest is subdivided
into one or more structured arrays of hexahedral cells. Each array of cells is referred to as a
“block”, and the overall scheme is referred to as a multiple blocked mesh solver as a result
of the ability to manage more than one block. This concept is illustrated graphically in two
dimensions for the flow through a nozzle in Figures 3.2-3.4.

The grid system in Figure 3.2 employs a single structured ordering, resulting in a single
computational space to contend with. The mesh system in Figure 3.3 is comprised of two,
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ADPAC 2-D Nozzle Single Block Mesh Structure Illustration

Physical Domain

Computational Domain

~.

Figure 3.2: ADPACO7 2-D single block mesh structure illustration.
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ADPAC 2-D Nozzle Two Block Mesh Structure Illustration

Physical Domain

-

Block #1

Block #2

Figure 3.3: ADPACO7 2-D two block mesh structure illustration.

Inter—block communication required
to couple computational domains
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ADPAC 2-D Nozzle Multiple Block Mesh Structure Illustration
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Figure 3.4: ADPACO7 2-D multiple block mesh structure illustration.

Inter—block communication required
to couple computational domains



separate structured grid blocks, and consequently, the numerical solution consists of two
unique computational domains. In theory, the nozzle flowpath could be subdivided into
any number of domains employing structured grid blocks resulting in an identical num-
ber of computational domains to contend with, as shown in the 20 block decomposition
illustrated in Figure 3.4. The complicating factor in this domain decomposition approach
is that the numerical solution must provide a means for the isolated computational do-
mains to communicate with each other in order to satisfy the conservation laws governing
the desired aerodynamic solution. Hence, as the number of subdomains used to complete
the aerodynamic solution grows larger, the number of inter-domain communication paths
increases in a corresponding manner. (It should be noted that this domain decomposi-
tion/communication overhead relationship is also a key concept in parallel processing for
large scale computations. The natural parallelization afforded by the multiple block mesh
domain decomposition is the fundamantal basis for the A DPACO7 code parallelization de-
scribed later in this report.) Clearly. it is often not possible to generate a single structured
grid to encompass the domain of interest without sacrificing grid quality, and therefore, a
multiple block grid system has significant advantages.

The ADPACO7 code was developed to utilize the multiple block grid concept to full
extent by permitting an arbitrary number of structured grid blocks with user specifiable
communication paths between blocks. The inter-block communication paths are imple-
mented as a series of boundary conditions on each block which, in some cases, communicate
flow information from one block to another. The advantages of the multiple block solution
concept are exploited in the calculations presented in later chapters as a means of treating
complicated geometries with multiple blade rows of varying blade number, and to exploit
computational enhancements such as multigrid.

The solution for each mesh block in a multiple block grid is computed identically, and
therefore the numerical approach is described for a single mesh block. In any given mesh
block, the numerical grid is used to define a set of hexahedral cells, the vertices of which are
defined by the eight surrounding mesh points. This construction is illustrated in Figure 3.5.

The cell face surface area normal vector components dA,, dA,, and dA. are calculated
using the cross product of the diagonals defined by the four vertices of the given face,
and the cell volume is determined by a procedure outlined by Hung and Kordulla [43] for
generalized nonorthogonal cells. The integral relations expressed by the governing equations
are determined for each cell by approximating the area-integrated convective and diffusive
fluxes with a representative value along each cell face, and by approximating the volume-
integrated terms with a representative cell volume weighted value. The discrete numerical
approximation to the governing equation then becomes

ok —gp. .
(e O O (3.60)
X, i+, — Fino(G)imL

+Ginu( Q)i jy1 k= Gino(@)yj_1 4

+H1'7'21'(Q)1'.J'.}\~+% - Hi'uv(Q),'n,‘.k_.;_
'I'Fuis(Q),'_F%“/'.k - Fz'is(Q)l’_l_ ik
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Figure 3.5: Three-dimensional finite volume cell.
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Following the algorithm defined by Jameson [31], it is convenient to store the flow
variables as a representative value for the interior of each cell, and thus the scheme is
referred to as cell-centered. Here, 7, j, k represents the local cell indices in the structured
cell-centered array, V is the local cell volume, At is the calculation time interval, and D, ;
is an artificial numerical dissipation function which is added to the governing equations to
aid numerical stability, and to eliminate spurious numerical oscillations in the vicinity of
flow discontinuities such as shock waves. Indicial expressions such as i + %_] k represents
data evaluated at the cell face, or interface between two adjacent volumes. The discrete
convective fluxes are constructed by using a representative value of the flow variables @
which is determined by an algebraic average of the values of () in the cells lying on either
side of the local cell face. A conceptual illustration of the finite-volume, cell centered data
approach, and the subsequent convective flux evaluation process for a cell face are given on
Figure 3.6. Viscous stress terms and thermal conduction terms are constructed by applying
a generalized coordinate transformation to the governing equations as follows:

E =5z m= T, Y, 2), C=C(z %) (3.61)

The chain rule may then be used to expand the various derivatives in the viscous stresses
as:

0 _ 060 om0 20

9z 0c 0t 9z dn " 9z OC (3.62)
N (3.63)
dy — Oy oE " dyom ' 9y dc 3.6:

=Rt e B (3.64)

9z Dz0t " 929y 9z0(
The transformed derivatives may now be easily calculated by differencing the variables in
computational space (2 corresponds to the £ direction, j corresponds to the 5 direction, and
k corresponds to the ( direction). and utilizing the appropriate identities for the metric
differences (see e.g. [42]). This process is illustrated schematically in Figure 3.7.

3.4.2 Runge-Kutta Time Integration

The time-stepping scheme used to advance the discrete numerical representation of the
governing equations is a multistage Runge-Kutta integration. An m stage Runge-Kutta
integration for the discretized equations is expressed as:

Q1= Q" — arl Af[L(Q") + D(Q™)],
Q2 = Q" — axA[L(Q1) + D(Q™)],

Q3 = Q" — azAt[L(Q2) + D(Q™)],
Q4= Q" — ayA{L(Q3) + D(Q™)],

Qm = Q” - QmA{[L(Q'm-—l) i D(Qn )]*
ortl =0, (3.65)
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ADPAC Cell Face Convective Flux Evaluation

Cell-Centered Data_- %
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ADPAC Cell Face Area Normal Vector Evaluation
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Figure 3.6: ADPACO7 finite volume cell centered data configuration and convective flux
evaluation process.
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Figure 3.7: ADPACO7 finite volume cell centered data configuration and diffusive flux

evaluation process.
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where:
L(Q) = Linv(Q) - Lvis(Q) (3()6)

For simplicity, viscous flux contributions to the discretized equations are only calculated
for the first stage, and the values are frozen for the remaining stages. This reduces the
overall computational effort and does not appear to significantly alter the solution. It is
also generally not necessary to recompute the added numerical dissipation terms during each
stage. Three different multistage Runge-Kutta schemes (2 four-stage schemes, and 1 five-
stage scheme) are available in the ADPACO7 code, but only the four-stage time-marching
scheme described below was utilized for the calcu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>