NASA Technical Memorandum 104630, Part II

Richard C. Tuey et al.

May 1996
NASA Technical Memorandum 104630, Part II

Richard C. Tuey et al.
National Aeronautics and Space Administration
Washington, D.C.
Executive Summary

Overview

Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations. The inclusion of NASA Headquarters as a node essentially completes a totally distributed set of report servers for formal and nonformal publications as identified by Figure 1. Currently, no standard software package (single) exists across all NASA centers for either word processing or graphics, and manually pasting figures into documents is still prevalent. In addition to differences in software utilization, no standard platform across all NASA centers exists for producing the documents. Common sense dictates that it is neither appropriate nor cost-effective to define a standard set of software and compel all NASA's engineers, researchers, and scientists to conform. Rather, a common output format, such as Adobe PostScript, will be sought from among the set of software; the electronic document distribution system would only need to handle the single common output format.

The report is presented by an introduction, seven chapters, and six appendices; the Introduction describes the purpose, conceptual framework, functional description, and technical report server (TRS) of the Scientific and Technical Information (STI) Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation, e.g., the electronic distribution of the source document to its printed output and the distributed on-line access to technical reports available at each NASA center. Metrics identifying the number of accesses on the NASA Technical Report Server (NTRS) and on the NASA Public Affairs Information Server (NPAIS) from the period July through December 1995 are displayed by Table 1 - 13 and Table 1 - 14, respectively. A number of abstracts, reports, and fact sheets are displayed by Table 1 - 15. A profile by subject division for abstracts available from the Center for AeroSpace Information Technical Report Server (CASITRS) are displayed by Table 1 - 16.

Although in a prototype stage, the actual demonstration of print on demand, which was achieved through the distributed production of the NASA Headquarters phone directory at each center, is documented. In the past, printing was accomplished by the NASA centers as shown by

1Decision to exclude Headquarters as a node was made in December 1995.
the top band of Figure 2. The lower band of Figure 2 shows a fully operational electronic publishing process. The middle band of Figure 2 describes the current process. A second application included a file server that was designated the Public Affairs Information Series Server for the storage and retrieval of Public Affairs fact sheets and information summaries. Finally, a third application was added to document the pre- and post-processing steps involved during the preparation of a technical report to be published by a typical NASA researcher or engineer at a center.

![NASA wide Electronic Publishing Project - Comparative Publication Processes](image)

Figure 2. Comparative printing processes.

Figure 3 displays a conceptual macro view of the publication process from its conception to its storage, printing and on-line retrieval. Details are covered by Chapters 2, 3, and 4. Chapter 2 documents each NASA center's post processing publication process. Chapter 3 documents each NASA center's STI hardware, software, and communication configurations. Chapter 4 documents each NASA center's network topology. Chapter 5 documents lessons learned. Chapter 6 documents the STI standards and guidelines, and Chapter 7 documents STI EDD policy, practices, and procedures.

The appendices contain supporting information. Appendix A documents the STI EDD Project Plan jointly agreed to by all the participating NASA centers (Project Plan reflects status as
of November 1994; deliverables are reflected in Appendix C). Appendix B lists all the team members for the STI EDD project. Appendix C displays the progress of the STI EDD project from its start to its completion with its final delivery identified as this joint technical memorandum. Appendix D documents how a user accesses the on-line reports. Appendix E describes the creation of an hypertext markup language (HTML) file for a typical NASA fact sheet.

Recommendations

Conceptually, the prototype STI EDD project has demonstrated its potential value for the dissemination of scientific and technical work accomplished by NASA's engineers, scientists, and researchers. The statistical profiles, Tables 1 - 13 through 1 - 16 show the World Wide Web activity for the period July through December 1995. As of December 31, 1995, the prototype STI EDD was not fully integrated as a NASA Technical Report Server or a NASA Public Affairs Information Server; however, the prototype system has achieved its goal of devising a concept that is sound and feasible for the provision of scientific and technical information to the Agency, as well as to the public. In achieving a fully operational STI EDD, it is recommended that:

1. Headquarters Scientific and Technical Information Office continue to support the STI EDD full implementation across the Agency through the use of an Executive Notice or Policy Directive.

2. The STI EDD Committee be formally established with members from each NASA center, including the Center for AeroSpace Information, to coordinate and resolve Agencywide STI policy issues and interoperability for the exchange of scientific and technical information within the Agency and between agencies, as well as with commercial organizations and foreign countries.

3. Langley Research Center, who has been designated as the operations manager of the Center for AeroSpace Information, also lead the implementation of the STI EDD project, taking into consideration the initial creation of the technical publication to its availability on each center's technical report server or the availability for printed copies on designated networked high-speed production duplicators.

4. Langley Research Center continue its role as the system administrator for the NASA Technical Report Server.

5. Dryden Flight Research Center continue its role as the system administrator for the NASA Public Affairs Information Server.

6. Each NASA center take on the role of continual maintenance of the center's technical report server and public affairs information server, as well as its integration to the Agency's networked high-speed production duplicators.

7. Each NASA center participate in the integration of electronic document availability authorization (DAA) and report documentation page (RDP) as part of the publishing processes, i.e., creation to its archival and dissemination.
Strategic Enabling Technology

The NASA-wide Electronic Publishing System consists of an enabling capability for each of the five Strategic Enterprises (Aeronautics, Mission to Planet Earth, Space Technology, Scientific Research, and Human Exploration/Development) to access, via the World Wide Web, its scientific and technical works and/or print-on-demand information (text, graphics, and images) within and across the five enterprises.

When fully implemented, this enabling capability will allow the NASA centers and Headquarters to perform wide-area, networked print-on-demand environments, as well as to provide a central source for retrieving NASA-wide STI on line at each user's workstation. The prototype STI EDD project has established technical report servers at each NASA center. Additionally, with the exception of Dryden Flight Research Center, each NASA center will have a networked print-on-demand, high-speed production duplicator capable of printing quality print products.
TABLE OF CONTENTS

Acronyms and Abbreviations ... xiii

Introduction—Prototype STI EDD Project ... 1-1
 Purpose .. 1-1
 Conceptual Framework/Functional Description 1-1
 Technical Report Server ... 1-4
 Public Affairs Information Server ... 1-6
 Page and Directory Structure ... 1-6
 Acknowledgements ... 1-9

Chapter 1—Demonstrate STI EDD ... 1-1
 Prototype STI EDD Demo ... 1-1
 Prototype STI EDD Progress .. 1-2
 Uniform Resource Locators (URL) .. 1-3
 Technical Report Servers (TRS) ... 1-3
 Public Affairs Information Servers (PAIS) 1-3
 Walk The Talk—Part 1, Application - Headquarters Phone Directory 1-4
 Walk The Talk—Part 1/2, Application - Public Affairs Fact Sheets 1-9
 Walk The Talk—Part 1/2, Application - Producing a Technical Report for TRS .. 1-12
 Metrics (Usage Statistics) ... 1-14
 Technical Report Server (NTRS) .. 1-15
 Metrics (Number of Abstracts/Reports) .. 1-16

Chapter 2—STI EDD Publishing Process ... 2-1
 Post Processing STI EDD Work Flows—GSFC 2-1
 Post Processing STI EDD Work Flows—LeRC 2-4
 Post Processing STI EDD Work Flows—ARC 2-5
 Post Processing STI EDD Work Flows—LaRC 2-7
 Post Processing STI EDD Work Flows—CASI 2-8
 Post Processing STI EDD Work Flows—JPL 2-10
 Post Processing STI EDD Work Flows—DFRC 2-11
 Post Processing STI EDD Work Flows—JSC 2-15
 Post Processing STI EDD Work Flows—MSFC 2-16
 Post Processing STI EDD Work Flows—KSC 2-20
 Post Processing STI EDD Work Flows—SSC 2-21
 Post Processing STI EDD Work Flows—HQTS 2-22
 Refer Tags for WAIS—TRS .. 2-22

Chapter 3—STI EDD Hardware, Software, and Communications 3-1
 STI EDD Project Configuration .. 3-1
 STI EDD Configuration—GSFC ... 3-3
 STI EDD Configuration—LeRC ... 3-4
 STI EDD Configuration—ARC ... 3-5
 STI EDD Configuration—LaRC ... 3-7
 STI EDD Configuration—CASI ... 3-7
<table>
<thead>
<tr>
<th>Chapter 4—STI EDD Network Topology</th>
<th>4 - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSFC Network Topology</td>
<td>4 - 1</td>
</tr>
<tr>
<td>LeRC Network Topology</td>
<td>4 - 2</td>
</tr>
<tr>
<td>LaRC Network Topology</td>
<td>4 - 4</td>
</tr>
<tr>
<td>CASI Network Topology</td>
<td>4 - 5</td>
</tr>
<tr>
<td>JPL Network Topology</td>
<td>4 - 6</td>
</tr>
<tr>
<td>JSC Network Topology</td>
<td>4 - 9</td>
</tr>
<tr>
<td>MSFC Network Topology</td>
<td>4 - 10</td>
</tr>
<tr>
<td>KSC Network Topology</td>
<td>4 - 11</td>
</tr>
<tr>
<td>SSC Network Topology</td>
<td>4 - 12</td>
</tr>
<tr>
<td>Headquarters Network Topology</td>
<td>4 - 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5—Lessons Learned</th>
<th>5 - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments From EDD Project Coordinator</td>
<td>5 - 1</td>
</tr>
<tr>
<td>GSFC Input</td>
<td>5 - 3</td>
</tr>
<tr>
<td>LeRC Input</td>
<td>5 - 4</td>
</tr>
<tr>
<td>CASI Input</td>
<td>5 - 4</td>
</tr>
<tr>
<td>LaRC Input</td>
<td>5 - 4</td>
</tr>
<tr>
<td>DFRC Input</td>
<td>5 - 5</td>
</tr>
<tr>
<td>ARC Input</td>
<td>5 - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6—STI EDD Standards and Guidelines</th>
<th>6 - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Exchange Standards</td>
<td>6 - 1</td>
</tr>
<tr>
<td>CALS Standards</td>
<td>6 - 1</td>
</tr>
<tr>
<td>Federal Information Processing Standards</td>
<td>6 - 1</td>
</tr>
<tr>
<td>International Standards</td>
<td>6 - 1</td>
</tr>
<tr>
<td>ANSI Standards</td>
<td>6 - 1</td>
</tr>
<tr>
<td>Internet Standards</td>
<td>6 - 2</td>
</tr>
<tr>
<td>Interoperability Requirements</td>
<td>6 - 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7—Recommendations - STI EDD Practices and Procedures</th>
<th>7 - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7 - 1</td>
</tr>
<tr>
<td>Copyright</td>
<td>7 - 1</td>
</tr>
<tr>
<td>Distribution</td>
<td>7 - 1</td>
</tr>
<tr>
<td>Electronic Document Storage</td>
<td>7 - 1</td>
</tr>
<tr>
<td>Preliminary Release of Formal Reports</td>
<td>7 - 1</td>
</tr>
<tr>
<td>Publication Specifications for Electronic Documents</td>
<td>7 - 2</td>
</tr>
<tr>
<td>Practices</td>
<td>7 - 2</td>
</tr>
<tr>
<td>Tags</td>
<td>7 - 2</td>
</tr>
<tr>
<td>Directory Structure (Layout)</td>
<td>7 - 3</td>
</tr>
</tbody>
</table>
Appendices—Contained in Part II of This Document

A—Team Members
B—Phasing Schedules
C—Accessing NASA Public Affairs Information Server (NPAIS)
D—Creating an HTML File and Setting up an xTRS
Acronyms and Abbreviations

APAIS ARC Public Affairs Information Server
ARC Ames Research Center
ATRS Ames Technical Report Server
BOC Base Operations Contractor
CAS Center for AeroSpace Information
CASITRS CASI Technical Report Server (RECON Select)
DFRC Dryden Flight Research Center
DPAIS DFRC Public Affairs Information Server
DTRS Dryden Technical Report Server
EDD electronic document distribution
EDMS electronic document management system
FTP file transfer protocol
GIF graphics interchange format
GPAIS GSFC Public Affairs Information Server
GSFC Goddard Space Flight Center
GTRS Goddard Technical Report Server
HQTS NASA Headquarters
HPAIS Headquarters Public Affairs Information Server
HTML hypertext markup language
HTTP hypertext transfer protocol
IEEE Institute of Electrical and Electronic Engineers
JPAIS JPL Public Affairs Information Server
JPEG Joint Photographic Experts Group (Standard for still image compression)
JPL Jet Propulsion Laboratory
JPLTRS JPL Technical Report Server
JPAIS JSC Public Affairs Information Server
JSC Johnson Space Center
JTRS Johnson Technical Report Server
KDN Kennedy Data Network
KMAN KSC Metropolitan Area Network
KPAIS KSC Public Affairs Information Server
KSC Kennedy Space Center
KWAN KSC Wide Area Network
KTRS Kennedy Technical Report Server
LAN local area network
LaRC Langley Research Center
LTRS Langley Technical Report Server
LePAIS LeRC Public Affairs Information Server
LeRC Lewis Research Center
LeTRS Lewis Technical Report Server
LPAIS LaRC Public Affairs Information Server
MPAIS MSFC Public Affairs Information Server
MSFC Marshall Space Flight Center
MTRS Marshall Technical Report Server
NPAIS NASA Public Affairs Information Server
NSI NASA Science Internet
NTRS NASA Technical Report Server
OLE object link entry
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAIS</td>
<td>Public Affairs Information Server</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Data File</td>
</tr>
<tr>
<td>PON</td>
<td>Payload Operations Network</td>
</tr>
<tr>
<td>PSCNI</td>
<td>Program Support Communications Network Interface</td>
</tr>
<tr>
<td>RECON</td>
<td>Research Connection</td>
</tr>
<tr>
<td>RDP</td>
<td>report document page</td>
</tr>
<tr>
<td>SCAN</td>
<td>selected current aerospace notices</td>
</tr>
<tr>
<td>SODN</td>
<td>Shuttle Operations Data Network</td>
</tr>
<tr>
<td>SPAIS</td>
<td>SSC Public Affairs Information Server</td>
</tr>
<tr>
<td>SPC</td>
<td>Shuttle Processing Contractor</td>
</tr>
<tr>
<td>SSC</td>
<td>Stennis Space Center</td>
</tr>
<tr>
<td>STRS</td>
<td>Stennis Technical Report Server</td>
</tr>
<tr>
<td>STI</td>
<td>Scientific and Technical Information</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>THB</td>
<td>thumbnail file</td>
</tr>
<tr>
<td>TIFF</td>
<td>tagged image file format</td>
</tr>
<tr>
<td>URL</td>
<td>universal resource locator</td>
</tr>
<tr>
<td>TRS</td>
<td>Technical Report Server</td>
</tr>
<tr>
<td>WAIS</td>
<td>Wide Area Information Server</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
<tr>
<td>XDOD</td>
<td>Xerox Document On Demand</td>
</tr>
</tbody>
</table>
Appendix A—Team Members (Prototype STI EDD, Stage 4)

Fred Moore fmoore@hqops.hq.nasa.gov 358-1389 358-3063
NASA Printing Management Officer, STI Office, Code JTT
Thomas Hanson thanson@sti.nasa.gov (301) 621-0262 621-0134
STI EDMS Project Manager, STI Office, Code JTT

Elsie Weigel eweigel@pao.hq.nasa.gov 358-2345 358-9345
Public Affairs Information, Public Inquiry Manager, Code P

Information Management Division - (Area Code - 202) Work FAX
Andrew Schain schain@goliath.hq.nasa.gov 358-0066
Ed Gallas egallas@hq.nasa.gov 651-8511 651-8510

Center for AeroSpace Information (Area Code - 301) Work FAX
Roy Stiltner rstiltner@sti.nasa.gov 621-0131 621-0134
Steve Mullen smullen@sti.nasa.gov 621-0320 621-0134
Patsy Baxter pbaxter@sti.nasa.gov 621-0126 621-0134

Lewis Research Center (Area Code - 216) Work FAX
Lynn Boukalik lboukalik@lerc.nasa.gov 433-9701 433-8000
Steven Eubanks S.Eubanks@lerc.nasa.gov 433-9479 433-8000
Nancy Amman mgamman@lerc.nasa.gov 433-5793 433-5783
Jennifer Sapienza sopienz@lerc.nasa.gov 433-8309 433-5783
Jaclyn Facinelli JRFACIN@lerc.nasa.gov 433-6685 433-8777
David Mazza MGDMAZA@lerc.nasa.gov 433-8605
Pam Caswell P.Caswell@lerc.nasa.gov 433-5795 433-5783
Dennis Dubyk mgdubyk@lerc.nasa.gov 433-5805 433-5783
Sue Butts sue.butts@lerc.nasa.gov 433-5790 433-5783

Goddard Space Flight Center (Area Code - 301) Work FAX
Mary Collins mary.collins@gscf.nasa.gov 286-6152 286-1705
Team Leader, Technical Information Services Branch, Code 253
Susan Hart sue.hart@gscf.nasa.gov 286-2800 286-1705
Publications, Technical Information Services Branch, Code 253
Michael Grabenstein Mike.Grabenstein@gscf.nasa.gov 286-2545 286-1755
Technical Support, Library Services Branch, Code 252
Robin M. Dixon Robin.M.Dixon@gscf.nasa.gov 286-9230 286-1755
Technical Support, Library Services Branch, Code 252
Bob Lane bob.lane@gscf.nasa.gov 286-5449 286-1705
Printing/Duplicating, Technical Information Services Branch, Code 253
Paul Baker paul.baker@gscf.nasa.gov 286-8485 286-0257
Technical Support, Library Services Branch, Code 252
Robyn Mabry Robyn.Mabry@gscf.nasa.gov 286-5816 286-1705
Technical Support, Technical Information Services Branch, Code 253

A - 1
In addition to the prototype team members, the inclusion of the following centers are being phased into the NASA-wide STI Electronic Document Distribution project without any major interruption to the current prototype implementation schedule. This decision was made in early February 1995.
Marshall Space Flight Center (Area Code - 205)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Work</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joyce Turner</td>
<td>Joyce.Turner@msfc.nasa.gov</td>
<td>544-4528</td>
<td>544-8610</td>
</tr>
<tr>
<td>Jeff Robinson</td>
<td>Jeff.Robinson@msfc.nasa.gov</td>
<td>544-4589</td>
<td>544-8610</td>
</tr>
<tr>
<td>Annette Tingle</td>
<td>Annette.Tingle@msfc.nasa.gov</td>
<td>544-4522</td>
<td>544-8610</td>
</tr>
<tr>
<td>Jackie Pates</td>
<td>Jackie.Pates@msfc.nasa.gov</td>
<td>544-4524</td>
<td>544-8610</td>
</tr>
<tr>
<td>Becky Caneer</td>
<td>Becky.Caneer@msfc.nasa.gov</td>
<td>544-4578</td>
<td>544-6010</td>
</tr>
<tr>
<td>Wendell Smith</td>
<td>Wendell-Smith@msfc.nasa.gov</td>
<td>544-4725</td>
<td>544-6919</td>
</tr>
<tr>
<td>Diane Stephanouk</td>
<td>Diane.Stephanouk@msfc.nasa.gov</td>
<td>544-4742</td>
<td>544-6919</td>
</tr>
<tr>
<td>Justin Jackson</td>
<td>Justin.Jackson@msfc.nasa.gov</td>
<td>544-8474</td>
<td></td>
</tr>
</tbody>
</table>

Johnson Space Center (Area Code - 713)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Work</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Larsen</td>
<td>William.a.larsen1@jsc.nasa.gov</td>
<td>483-4062</td>
<td>483-3012</td>
</tr>
<tr>
<td>Carol Homan</td>
<td>Carol.a.homan1@jsc.nasa.gov</td>
<td>483-0281</td>
<td></td>
</tr>
<tr>
<td>Lynn Buquo</td>
<td>Lbuquo@ja2.jsc.nasa.gov</td>
<td>483-4716</td>
<td></td>
</tr>
<tr>
<td>Henri Daumas</td>
<td>henri.daumas1@jsc2.nasa.gov</td>
<td>483-9649</td>
<td></td>
</tr>
<tr>
<td>Jennifer Lestourgeon</td>
<td>jiestour@ja2.jsc.nasa.gov</td>
<td>483-7262</td>
<td>483-5383</td>
</tr>
<tr>
<td>Duane Emmons</td>
<td>demmons@ja2.jsc.nasa.gov</td>
<td>483-6145</td>
<td></td>
</tr>
</tbody>
</table>

Kennedy Space Center (Area Code - 407)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Work</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walt Covington</td>
<td>walter.covington-1@kmail.ksc.nasa.gov</td>
<td>867-4256</td>
<td>867-1458</td>
</tr>
<tr>
<td>Bill Cooper</td>
<td>william.cooper-2@kmail.ksc.nasa.gov</td>
<td>867-3615</td>
<td>867-4534</td>
</tr>
<tr>
<td>Dave Severance</td>
<td>bocdcs@bocp2.ksc.nasa.gov</td>
<td>867-4635</td>
<td>867-2939</td>
</tr>
</tbody>
</table>

Stennis Space Center (Area Code - 601)

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Work</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Jeffries</td>
<td>bjeffries.wpogate.ssc.nasa.gov</td>
<td>688-1119</td>
<td>688-7469</td>
</tr>
<tr>
<td>Vince P. Andres</td>
<td>vandres@wpogate.ssc.nasa.gov</td>
<td>688-3931</td>
<td></td>
</tr>
<tr>
<td>Terry Jackson</td>
<td>terry.jackson.ssc.nasa.gov</td>
<td>688-1604</td>
<td></td>
</tr>
<tr>
<td>Heidi J. Barnes</td>
<td>hbarnes@wpogate.ssc.nasa.gov</td>
<td>688-1843</td>
<td>688-1925</td>
</tr>
</tbody>
</table>

FTP Sites:

- ARC 128.102.194.143
- LeRC 139.88.70.110
- LaRC tebtre.larc.nasa.gov
- DFRC ftp.dfrc.nasa.gov
- GSFC xdod.gsfc.nasa.gov 128.183.32.184
- JPL jpl-64-mosaic
- JSC 139.169.18.100
- MSFC eagle.msfc.nasa.gov
- KSC 128.217.62.1
- CASI casi1.casi.sti.nasa.gov
Appendix B—Phasing Schedules

Each center participating in the prototype STI EDD project has a specific set of schedules for its implementation of the technical report server. A composite schedule reflecting the integration of each center's tasks are displayed by Figure B - 1 with supporting schedules displayed by Figures B - 2 to B - 9.

Figure B - 1 Prototype STI EDD Composite
Figure B - 2 Goddard Space Flight Center
Figure B - 3 Lewis Research Center
Figure B - 4 Ames Research Center
Figure B - 5 Langley Research Center
Figure B - 6 Center for AeroSpace Information
Figure B - 7 Jet Propulsion Laboratory
Figure B - 8 Dryden Flight Research Center
Figure B - 9 JSC/MSFC/KSC/SSC Centers and Hqts

Significant events leading up to each of the major deliverables are highlighted below:

1. FAX to team, request for network topology at each participating center 12/16/94
2. Coordination with JPL regarding inclusion in NTRS as JPLTRS 1/5 - 6/95
3. Tech Focus Group VITS, presentation by Joint STI EDD Team - status 1/23/95
4. FAX to team, request for input to joint TM 1/30/95
 a. Draft 1 - Chapters 2, 3, and 4 2/28/95
 b. Draft 2 - Chapters 2, 3, 4, and 5 3/17/95
 c. Draft 3 - Chapters 2, 3, 4, 5, and 6 4/7/95
 d. Final Working Draft - Introduction plus all chapters 5/1/95
 e. Joint Working Session at LeRC plus use of VITS 5/15/95
5. Coordination with DFRC regarding inclusion in prototype STI EDD project 1/30/95
6. Coordination with JSC regarding inclusion in prototype STI EDD project 2/3/95
7. Coordination with KSC regarding inclusion in prototype STI EDD project 2/3/95
8. Coordination with MSFC regarding inclusion in prototype STI EDD project 2/6/95
9. Coordination with SSC regarding inclusion in prototype STI EDD project 2/6/95
10. Budget memo sent to Budget Office for Code M STI EDD participation 2/13/95
11. Initiate file transfer testing between STI EDD file server sites 2/8/95
12. Fax joint plan addendum to Code M centers for their review 2/14/95
13. Initiate EDD application - Headquarters Telephone Directory 2/28/95
14. Initiate EDD application - Public Affairs Fact Sheets 3/17/95
15. Coordinate Implementation Hqtr's Telephone Directory - Code JOB-1 & JT 5/9/95
16. Presentation to ITMSC Standards and Architecture Sub-Board 6/14/95
17. STI EDD VITS - Center status 6/19/95
18. Coordination with LeRC/MSFC/JSC - NPAIS 6/27-29/95
19. Presentation to Code U, Life & Microgravity Sciences & Applications 7/12/95
20. Coordination with Code JOB-1 & JT - GPO/Covers/Elec Interface Issues 8/21/95
21. STI EDD Workshop at LeRC 8/22-8/23/95
22. Headquarters to be included as a node in the STI EDD Project 9/28/95
23. Headquarters excluded as a node in the STI EDD Project 12/95
Headquarters was included as a node in the STI EDD project on September 28, 1995. Integration into the scheduling of input to the Joint TM is shown by Figure B - 9.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
GODDARD SPACE FLIGHT CENTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial MOU Signed By GSFC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition - Prototype STI EDD System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSFC Meetings/Major Deliverables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSSDC Mtg/Interim LaRC Tech Support/Interim Deliverables</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

△ Scheduled Start/End ▼ Scheduled Completion

Figure B - 2. Goddard Space Flight Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
LEWIS RESEARCH CENTER

Task Descriptions

Prototype STI EDD Proposal

Initial MOU Signed By LeRC

Joint STI EDD Project Plan

Acquisition - Prototype STI EDD System

LaRC Technology Transfer

Evaluation Cycle

STI Office Project Review Board Approval and EDD Project Briefings

LeRC Meetings/Major Events

Figure B - 3. Lewis Research Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
AMES RESEARCH CENTER

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1994</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial MOU Signed By ARC (Replaced by Joint Plan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition - Prototype STI EDD System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC Meetings/Major Milestones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ▼ Scheduled Start/End
- ▼ Scheduled Completion

Figure B - 4. Ames Research Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
LANGLEY RESEARCH CENTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle - Implementation NTRS (LaRC/ARC/GSFC/CASI/PL/DFRC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Meetings/Major Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 5. Langley Research Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
CENTER FOR AEROSPACE INFORMATION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASI Meetings/Major Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status Reviews (Bi-weekly Meetings)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 6. Center for AeroSpace Information.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
JET PROPULSION LABORATORY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statement of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and EDD Project Briefings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPL Meetings/Major Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 7. Jet Propulsion Laboratory.
Figure B - 8. Dryden Flight Research Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS

JSC/MSFC/KSC/SSC/HQTS

<table>
<thead>
<tr>
<th>Task Descriptions</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Coordination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JSC/MSFC/KSC/SSC</td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>Joint STI EDD Project Plan - Addendum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedy Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stennis Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Events/Milestones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters Inclusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 9. JSC/MSFC/KSC/SSC/HQTS.
Appendix C—Accessing NASA Public Affairs Information Server (NPAIS)

Using Netscape for Windows

Instructions for using Netscape for Windows are provided below. The same-step by-step instructions can be used for using Netscape for the Macintosh.

Step 1 Double click on the Netscape icon in Program Manager. If you have the Netscape Home Page as your default, double click on Net Directory; this will give you a Home Page listing for Step 2.

Step 2 Double click on Government; this will give you the next Home Page listing for Step 3.

Step 3 Double click on Agencies; this will give you the next Home Page listing for Step 4.
Step 4
Scroll down the Home Page and double click on Independent; this will give you the next Home Page listing for Step 5.

Step 5
Double click on NASA; this will give you the next Home Page listing for Step 6.

Step 6
Double click on Dryden Flight Research Center; this will give you the next Home Page for Step 7.
Step 7 To access the NPAIS Home Page, use the following URL: http://www.dfrc.nasa.gov/PAIS; this will give the next Home Page, go to Step 8.

Step 8 Scroll down the Home Page till you can access the Dryden Flight Research Center; go to Step 9.

Step 9 Double click on Dryden Flight Research Center to access Home Page for DPAIS On Line Fact Sheets; go to Step 10.
Step 10 Scroll down the Home Page listing until you reach **Dryden Fact Sheets**; go to Step 11.

Step 11 Double click on **Dryden Fact Sheets** and go to Step 12.

Step 12 Select the fact sheet you want by double clicking on **B-52 Launch Aircraft**; go to Step 13.
Step 13 Scroll down the Home Page until you see the specific key word you desire to do further research on; go to Step 14.

Step 14 Double click on the key word X-15 to enable the execution of keyword searching against the NASA Technical Report Server; go to Step 14.

Step 15 Scroll down the Home Page to view the specific title pages that the key word found. The NTRS will list all hits by xTRSs currently available; go to Step 16.
Step 16 To obtain the abstract of the list of titles available, double click on The X-15 Airplane - Lessons Learned; go to Step 17.

Step 17 At this step, you will have the abstract which you can now print out on your local printer by double clicking on the Netscape Print Button; go to Step 18.

Step 18 Double click ok to print the abstract on your local printer. Results of the printed abstract are shown by Step 19.
Step 19 Printed abstract from the
Dryden Technical Report Server
(DTRS).

At step 12, you have the functionality to print the Document Title as shown by Step 19, or to
print the file in PDF or PostScript, if you have available on your PC the necessary software. Note
that the size of the PDF and PostScript files are shown.
Appendix D—Creating an HTML File and Setting up an xTRS

Introduction

This appendix was created from excerpts taken from an instruction course on the "Authoring HTML Documents/Home Page," taught by Ms. Robin Dumas, Information Systems Services, Section 392, Jet Propulsion Laboratory. Requests for her instruction manual may be directed to her on e-mail at Robin.C.Dumas@jpl.nasa.gov. The following text will provide the process used in creating an html file using a Public Affairs Office Fact Sheet prepared by DFRC as an example. Before an html file can be created, it must first be converted from the word processing file format to a text file format and then html tagged. Graphics are converted to gif format. In the Public Affairs Office environment, the word processors used are Personal Computers and MacIntosh machines. Conversions are displayed by Table D - 1. Table D - 2 provides a list of HTML tags and their definition. Following Figure D - 4 are instructions on setting up an xTRS.

<table>
<thead>
<tr>
<th>Software</th>
<th>Personal Computer</th>
<th>MacIntosh</th>
</tr>
</thead>
<tbody>
<tr>
<td>PageMaker</td>
<td>Export text only, e.g., abc.txt</td>
<td></td>
</tr>
<tr>
<td>Microsoft Word</td>
<td>Save as text only, e.g., abc.txt</td>
<td></td>
</tr>
<tr>
<td>WordPerfect</td>
<td>Save as ASCI (DOS) text only, e.g., abc.txt</td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td>Save as abc.gif file</td>
<td>Save as abc.gif file</td>
</tr>
</tbody>
</table>

Table D - 2 HTML Tags

<table>
<thead>
<tr>
<th>HTML Tag</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td><html> & </html></td>
<td>Indicates that file is an html file, where / represents ending point</td>
</tr>
<tr>
<td><title> & </title></td>
<td>Indicates text that will be in browser window box</td>
</tr>
<tr>
<td><body> & </body></td>
<td>Indicates main body of file</td>
</tr>
<tr>
<td><h#> & </h#></td>
<td>Indicates level of heading where # represents levels 1, 2, 3, 4, 5, or 6</td>
</tr>
<tr>
<td><p></td>
<td>Indicates paragraph break</td>
</tr>
<tr>
<td>
</td>
<td>Indicates line break (no extra space)</td>
</tr>
<tr>
<td><hr></td>
<td>Indicates horizontal rule</td>
</tr>
<tr>
<td> & </td>
<td>Indicates bold text</td>
</tr>
<tr>
<td><i> & </i></td>
<td>Indicates italic text</td>
</tr>
<tr>
<td><tt> & </tt></td>
<td>Indicates fixed width text</td>
</tr>
<tr>
<td><pre> & </pre></td>
<td>Indicates fixed width text in which tabs and line breaks are displayed in the same locations as in the source html file</td>
</tr>
<tr>
<td><blockquote> & </blockquote></td>
<td>Indicates indented text separated from surrounding text</td>
</tr>
<tr>
<td><address> & </address></td>
<td>Indicates address text at end of file</td>
</tr>
</tbody>
</table>
The first couple of paragraphs of a Fact Sheet have been extracted and are displayed below: HTML tagging is shown by the next section.

F-8 Digital Fly-By-Wire Fact Sheet

The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls.

The first test of a DFBW system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.

Background

In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.
HTML Tagged Document and MOSAIC Display

Figures D - 1 to D - 3 displays a fully tagged html file which includes the hyperlink to a gif file.

Removal of all tags would represent the source document in ASCI format. The ASCI format is created by saving the source document as an ASCI file from whatever DeskTop word processing software was used to create the fact sheet. Explanation and use of the tags are contained in Table D - 2. Figure D - 4 displays the first page of the Fact Sheet by MOSAIC on a PC. By comparing the source document with Figure D - 1, the creation of Figure D - 4 can be accomplished. Specifically, the steps are as follows:

F-8 Digital Fly-By-Wire Fact Sheet gives:

```html
<HTML>
<HEAD>
<TITLE>F-8 Digital Fly-By-Wire</TITLE>
</HEAD>
<BODY>

Figure D - 1. HTML coded file.

Figure D - 2. HTML coded file.

the<br>the<br>the<br>
the<br>the<br>the<br>
the<br>the<br>the<br>

Figure D - 4 displays the first page of the Fact Sheet by MOSAIC on a PC. By comparing the source document with Figure D - 1, the creation of Figure D - 4 can be accomplished. Specifically, the steps are as follows:

F-8 Digital Fly-By-Wire Fact Sheet gives:

```html
<HTML>
<HEAD>
<TITLE>F-8 Digital Fly-By-Wire</TITLE>
</HEAD>
```
The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls.

The first test of a DFBW system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.

In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.

Fleet F-8s were the first carrier-based plane with speeds in excess of 1000 mph. LTV won the Collier Trophy for its design and development. Total production was 1,261.
The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls.

The first test of a DFBW system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.

Background
In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.

Figure D-4. MOSAIC display.

Notes:
1. You will need to install some version of WAIS on your machine. The best version of WAIS is freeWAIS-sf:
   <p>
   <ul>
   <li><a href="http://is6-www.informatik.uni-dortmund.de/freeWAIS-sf/">http://is6-www.informatik.uni-dortmund.de/freeWAIS-sf/</a>
   </li>
   <li>freeWAIS-sf has a very powerful and flexible indexing mechanism. Its use is covered in <a href="#appa">Appendix A</a>.</li>
   </ul>

2. Two Things are needed:
   <hr>
   <h2>Two Things are needed:</h2>
   <p>
   <b>
   <dd>1. a WAIS URL that points to your abstract database</dd>
   <dd>2. a URL that points to your xTRS home page</dd>
   </b>
   </p>
If you do not wish to install freeWAIS-sf, and already have another version of WAIS installed at your site, I can offer the following SunOS binaries: (the source has been lost ;-)

If you use this version of waisindex, use:

```bash
waisindex -pos -export -t html -d xtrs_index $YEARS/*.html
```

Put your "citations + abstracts" in `<b>refer</b>` format.

Refer format has been around for a while. On SunOS systems, you can `<tt>man addbib</tt>` for more information. An HTML version of the tag explanations is available at: `<a href="http://www.cs.indiana.edu/ucstri/bib/format">http://www.cs.indiana.edu/ucstri/bib/format</a>`

Sample refer citations can be viewed at: `<a href="http://techreports.larc.nasa.gov/trrs/examples.html">http://techreports.larc.nasa.gov/trrs/examples.html</a>`


There is nothing magic about refer; you can use some other format if you wish. You'll be on your own though for adapting / creating filters to process other formats.

There is a Perl program to process the refer citations. This program (and its library) have binary characters in them and they must saved to disk prior to viewing them. In other words, you must save the links without actually viewing them. A copy-n-paste will not work!!!
<li><tt>bib</tt> is very easy to use. Here are some sample invocations:

<ul>
    <li>To take many refer files, and convert them to many .refer.html files to be used for <tt>waisindex</tt>:
        <code>
            bib -ha -hk *.refer
        </code>
    </li>
    <li>To take many refer files and convert them to a single .html file with abstracts for browsing:
        <code>
            bib -ha *.refer >> all-years-abs.html
        </code>
    </li>
    <li>To take many refer files and convert them to a single .html file without abstracts (i.e. just citations) for browsing:
        <code>
            bib -h *.refer >> all-years-cit.html
        </code>
    </li>
</ul>

<p>The source code for NTRS is available at: <a href="http://www.larc.nasa.gov/ntrs/ntrs.pl">http://www.larc.nasa.gov/ntrs/ntrs.pl</a>. This is for your knowledge only; you do not have to install NTRS or use anything from this script to set up your technical report server.

A csh script that I used to maintain LTRS is in Appendix B. It should help you automate maintenance for your site.

Your technical report server should support, at a minimum, 2 functionalities:
<dl>
    <dt>1. Searching</dt>
    <dt>2. Browsing</dt>
</dl>
Searching is the trickiest to implement, but is the part used most significantly in NTRS.

- The following may be of use to your site as well:
  - user feedback form: [http://techreports.larc.nasa.gov/ntrs/feedback.pl](http://techreports.larc.nasa.gov/ntrs/feedback.pl)
  - abstract entry form: [http://techreports.larc.nasa.gov/ntrs/contrib.pl](http://techreports.larc.nasa.gov/ntrs/contrib.pl)
  - No promise is made about their quality, code aesthetics, or anything else. ;-)

- The e-mail list for NTRS feedback and notices is:
  - ntrs-admin@techreports.larc.nasa.gov
  - Please e-mail m.l.nelson@larc.nasa.gov if you want on or off this list.
  - The current members of the list are at: [http://techreports.larc.nasa.gov/ntrs/ntrs-admin.txt](http://techreports.larc.nasa.gov/ntrs/ntrs-admin.txt)

- The following services are being worked on:
  - Parallel searching in NTRS (Ming Maa, Michael Nelson)
  - Gateways with non-WAIS databases (Ming Maa, Michael Nelson, Jeff Robinson, Alberto Accomazzi)
  - Fielded searches (not too much interest in this of late)
  - NTRS acting as a proxy to resolve the long URL / firewall problem (Ming Maa, Michael Nelson)

freeWAIS-sf does not support the `waisindex ... -t html ...` construct. Instead, it has the concept of a "format" file, where the user builds the description of how the files should be indexed. It is useful for all types of files, not just HTML files. This format file is also how fielded searches would be added if you are ready to take that step.

For the example given below, it assumes that your HTML files are following the correct HTML 2.0 specifications and have the following tags (white space and case are not important):

```
<HTML>
<HEAD>
<TITLE>...
</TITLE>
</HEAD>
<BODY>
```

D - 8
stuff....

<writeln>

&lt;BODY&gt;
&lt;/BODY&gt;

&lt;pre&gt;
&lt;hr&gt;
&lt;p&gt;
&lt;tt&gt;waisindex&lt;/tt&gt; would then be invoked like:

&lt;p&gt;
&lt;img src="http://www.larc.nasa.gov/images/top_divider.xbm"&gt;&lt;p&gt;
&lt;code&gt;
waisindex -pos -export -T HTML -t fields -d xtrs_index $YEARS/*.html
&lt;/code&gt;
&lt;p&gt;
&lt;img src="http://www.larc.nasa.gov/images/bottom_divider.xbm"&gt;

This assumes the existence of a file &lt;tt&gt;xtrs_index.fmt&lt;/tt&gt;. This format file would look something like:

&lt;p&gt;
&lt;hr&gt;
&lt;p&gt;

You will need a separate format (.fmt) file for each database you index. This file tells &lt;tt&gt;waisindex&lt;/tt&gt; to use the string between the &lt;tt&gt;&lt;TITLE&gt;&lt;/TITLE&gt;&lt;/tt&gt; tags as the string for the headline. The headline is the list of "titles" that one sees immediately upon doing a WAIS search. The "80" in this line indicates to only use the first 80 characters. The format file also tells &lt;tt&gt;waisindex&lt;/tt&gt; to index everything between the &lt;tt&gt;&lt;HTML&gt;&lt;/HTML&gt;&lt;/tt&gt; tag and either one of the tags: &lt;tt&gt;&lt;BODY&gt;&lt;/BODY&gt;&lt;/tt&gt; or &lt;tt&gt;&lt;/BODY&gt;&lt;/tt&gt;.

&lt;p&gt;
&lt;hr&gt;
&lt;p&gt;

&lt;p&gt;
&lt;a name="appb"></a>
&lt;h2&gt;Appendix B: A Sample Script for xTRS Maintainence&lt;/h2&gt;

&lt;pre&gt;
#!/bin/csh -x
# Update abstract lists, WAIS indexes
#
usage: ltrs-update year [years...]

set REFER_ROOT=/ump/csb/home/mln/reports/refer
set WAIS_ROOT=/usr/local/wais/wais-sources
set WAIS_TMP=$WAIS_ROOT/wais_tmp
set LTRS_HTML_ROOT=/ump/csb/home/mln/http/ltrs

foreach year ($argv[*])
    cd $REFER_ROOT/$year
    bib -ha -hk *.refer
    cd $LTRS_HTML_ROOT
    bib -ha ~/reports/refer/$year/*.refer > new.19$year.html && mv new.19$year.html 19$year.html
    bib -h ~/reports/refer/$year/*.refer > new.19$year-cit.html && mv new.19$year-cit.html 19$year-cit.html
end

# update total lists

cd $LTRS_HTML_ROOT
bib -ha -/reports/refer/??/*.refer > new.abs.html && mv new.abs.html abs.html
bib -h ~/reports/refer/??/*.refer > new.cit.html && mv new.cit.html cit.html

# update WAIS indexes
# builds the indexes in a temporary directory, then copies them overtop of
# the existing indexes to minimize service interruption
# does not try to do incremental builds

cd $WAIS_TMP
/ump/csb/home/mln/ltrs/bin/waisindex -pos -export -t html -d ltrs_index ~/reports/refer/??/*.html
mv ltrs_index.* ..

# final updates
# (generates the waters tar file)

cd
(cd ~/reports/refer ; make-waters )
This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual framework, functional description, and technical report server of the STI Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center’s post processing publication processes. Chapter 3 documents each center’s STI software, hardware, and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices, which are contained in Part II of this document, consist of A) STI EDD Project Plan, B) Team members, C) Phasing Schedules, D) Accessing On-line Reports, and E) Creating an HTML File and Setting Up an xTRs. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center’s electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA’s engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.

Electronic publishing; Duplicating; Cost analysis; FTP; Network duplicating; Cost benefit analysis; Return on investment; Justification