NASA Technical Memorandum 104630, Part II

Richard C. Tuey et al.

May 1996
NASA Technical Memorandum 104630, Part II

Richard C. Tuey et al.
National Aeronautics and Space Administration
Washington, D.C.
Authors

Richard C. Tuey
Tom Hansen
NASA Headquarters
Washington, D.C. 20546-0001

Mary Collins
Susan Hart
Michael Grabenstein
Robin Dixon
Goddard Space Flight Center
Greenbelt, MD 20771-0001

Pamela Caswell
Steve Eubanks
Lewis Research Center
Cleveland, OH 44135-3191

Bill Cooper
Dave Severance
Kennedy Space Center
Kennedy Space Center, FL 32899-0001

Vince Andres
Heidi Barnes
Terry Jackson
Stennis Space Center
Stennis Space Center, MS 39529-6000

Roy Stiltner
Center for AeroSpace Information
Linthicum, MD 21090

Bob Haynes
Mary Walsh
Ames Research Center
Moffett Field, CA 94305-1000

Rob Binkley
Yvonne Kellogg
Dryden Flight Research Center
Edwards, CA 93523-0273

Michael L. Nelson
Donna Roper
Gretchen L. Gottlich
Langley Research Center
Hampton, VA 23681-0001

Jeanne Holm
Susan Pateracki
Jet Propulsion Laboratory
Pasadena, CA 91109-8099

Lynn Buquo
Henri Dumas
Johnson Space Center
Houston, TX 77058-3696

Annette Tingle
Joyce Turner
Jeff Robinson
Marshall Space Flight Center
Huntsville, AL 35812-0001

iii
Executive Summary

Overview

Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations. The inclusion of NASA Headquarters as a node essentially completes a totally distributed set of report servers for formal and nonformal publications as identified by Figure 1. Currently, no standard software package (single) exists across all NASA centers for either word processing or graphics, and manually pasting figures into documents is still prevalent. In addition to differences in software utilization, no standard platform across all NASA centers exists for producing the documents. Common sense dictates that it is neither appropriate nor cost-effective to define a standard set of software and compel all NASA's engineers, researchers, and scientists to conform. Rather, a common output format, such as Adobe PostScript, will be sought from among the set of software; the electronic document distribution system would only need to handle the single common output format.

The report is presented by an introduction, seven chapters, and six appendices; the Introduction describes the purpose, conceptual framework, functional description, and technical report server (TRS) of the Scientific and Technical Information (STI) Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation, e.g., the electronic distribution of the source document to its printed output and the distributed on-line access to technical reports available at each NASA center. Metrics identifying the number of accesses on the NASA Technical Report Server (NTRS) and on the NASA Public Affairs Information Server (NPAIS) from the period July through December 1995 are displayed by Table 1-13 and Table 1-14, respectively. A number of abstracts, reports, and fact sheets are displayed by Table 1-15. A profile by subject division for abstracts available from the Center for AeroSpace Information Technical Report Server (CASITRS) are displayed by Table 1-16.

Although in a prototype stage, the actual demonstration of print on demand, which was achieved through the distributed production of the NASA Headquarters phone directory at each center, is documented. In the past, printing was accomplished by the NASA centers as shown by

1Decision to exclude Headquarters as a node was made in December 1995.
the top band of Figure 2. The lower band of Figure 2 shows a fully operational electronic publishing process. The middle band of Figure 2 describes the current process. A second application included a file server that was designated the Public Affairs Information Series Server for the storage and retrieval of Public Affairs fact sheets and information summaries. Finally, a third application was added to document the pre- and post-processing steps involved during the preparation of a technical report to be published by a typical NASA researcher or engineer at a center.

Figure 2. Comparative printing processes.

Figure 3 displays a conceptual macro view of the publication process from its conception to its storage, printing and on-line retrieval. Details are covered by Chapters 2, 3, and 4. Chapter 2 documents each NASA center’s post processing publication process. Chapter 3 documents each NASA center’s STI hardware, software, and communication configurations. Chapter 4 documents each NASA center’s network topology. Chapter 5 documents lessons learned. Chapter 6 documents the STI standards and guidelines, and Chapter 7 documents STI EDD policy, practices, and procedures.

The appendices contain supporting information. Appendix A documents the STI EDD Project Plan jointly agreed to by all the participating NASA centers (Project Plan reflects status as
of November 1994; deliverables are reflected in Appendix C). Appendix B lists all the team members for the STI EDD project. Appendix C displays the progress of the STI EDD project from its start to its completion with its final delivery identified as this joint technical memorandum. Appendix D documents how a user accesses the on-line reports. Appendix E describes the creation of an hypertext markup language (HTML) file for a typical NASA fact sheet.

Recommendations

Conceptually, the prototype STI EDD project has demonstrated its potential value for the dissemination of scientific and technical work accomplished by NASA’s engineers, scientists, and researchers. The statistical profiles, Tables 1 - 13 through 1 - 16 show the World Wide Web activity for the period July through December 1995. As of December 31, 1995, the prototype STI EDD was not fully integrated as a NASA Technical Report Server or a NASA Public Affairs Information Server; however, the prototype system has achieved its goal of devising a concept that is sound and feasible for the provision of scientific and technical information to the Agency, as well as to the public. In achieving a fully operational STI EDD, it is recommended that:

1. Headquarters Scientific and Technical Information Office continue to support the STI EDD full implementation across the Agency through the use of an Executive Notice or Policy Directive.

2. The STI EDD Committee be formally established with members from each NASA center, including the Center for AeroSpace Information, to coordinate and resolve Agencywide STI policy issues and interoperability for the exchange of scientific and technical information within the Agency and between agencies, as well as with commercial organizations and foreign countries.

3. Langley Research Center, who has been designated as the operations manager of the Center for AeroSpace Information, also lead the implementation of the STI EDD project, taking into consideration the initial creation of the technical publication to its availability on each center’s technical report server or the availability for printed copies on designated networked high-speed production duplicators.

4. Langley Research Center continue its role as the system administrator for the NASA Technical Report Server.

5. Dryden Flight Research Center continue its role as the system administrator for the NASA Public Affairs Information Server.

6. Each NASA center take on the role of continual maintenance of the center’s technical report server and public affairs information server, as well as its integration to the Agency’s networked high-speed production duplicators.

7. Each NASA center participate in the integration of electronic document availability authorization (DAA) and report documentation page (RDP) as part of the publishing processes, i.e., creation to its archival and dissemination.
Strategic Enabling Technology

The NASAwide Electronic Publishing System consists of an enabling capability for each of the five Strategic Enterprises (Aeronautics, Mission to Planet Earth, Space Technology, Scientific Research, and Human Exploration/Development) to access, via the World Wide Web, its scientific and technical works and/or print-on-demand information (text, graphics, and images) within and across the five enterprises.

When fully implemented, this enabling capability will allow the NASA centers and Headquarters to perform wide-area, networked print-on-demand environments, as well as to provide a central source for retrieving NASAwide STI on line at each user's workstation. The prototype STI EDD project has established technical report servers at each NASA center. Additionally, with the exception of Dryden Flight Research Center, each NASA center will have a networked print-on-demand, high-speed production duplicator capable of printing quality print products.
TABLE OF CONTENTS

Acronyms and Abbreviations ... xiii

Introduction—Prototype STI EDD Project 1 - 1
 Purpose .. 1 - 1
 Conceptual Framework/Functional Description 1 - 1
 Technical Report Server ... 1 - 4
 Public Affairs Information Server ... 1 - 6
 Page and Directory Structure ... 1 - 6
 Acknowledgements ... 1 - 9

Chapter 1—Demonstrate STI EDD ... 1 - 1
 Prototype STI EDD Demo ... 1 - 1
 Prototype STI EDD Progress ... 1 - 2
 Uniform Resource Locators (URL) .. 1 - 3
 Technical Report Servers (TRS) ... 1 - 3
 Public Affairs Information Servers (PAIS) 1 - 3
 Walk The Talk—Part 1, Application - Headquarters Phone Directory . 1 - 4
 Walk The Talk—Part 1/2, Application - Public Affairs Fact Sheets 1 - 9
 Walk The Talk—Part 1/2, Application - Producing a Technical Report for TRS
 .. 1 - 12
 Metrics (Usage Statistics) ... 1 - 14
 Technical Report Server (NTRS) ... 1 - 15
 Metrics (Number of Abstracts/Reports) 1 - 16

Chapter 2—STI EDD Publishing Process 2 - 1
 Post Processing STI EDD Work Flows—GSFC 2 - 1
 Post Processing STI EDD Work Flows—LeRC 2 - 4
 Post Processing STI EDD Work Flows—ARC 2 - 5
 Post Processing STI EDD Work Flows—LaRC 2 - 7
 Post Processing STI EDD Work Flows—CASI 2 - 8
 Post Processing STI EDD Work Flows—JPL 2 - 10
 Post Processing STI EDD Work Flows—DFRC 2 - 11
 Post Processing STI EDD Work Flows—JSC 2 - 15
 Post Processing STI EDD Work Flows—MSFC 2 - 16
 Post Processing STI EDD Work Flows—KSC 2 - 20
 Post Processing STI EDD Work Flows—SSC 2 - 21
 Post Processing STI EDD Work Flows—HQTS 2 - 22
 Refer Tags for WAIS—TRS ... 2 - 22

Chapter 3—STI EDD Hardware, Software, and Communications 3 - 1
 STI EDD Project Configuration .. 3 - 1
 STI EDD Configuration—GSFC .. 3 - 3
 STI EDD Configuration—LeRC .. 3 - 4
 STI EDD Configuration—ARC .. 3 - 5
 STI EDD Configuration—LaRC .. 3 - 7
 STI EDD Configuration—CASI .. 3 - 7
Appendices—Contained in Part II of This Document

A—Team Members
B—Phasing Schedules
C—Accessing NASA Public Affairs Information Server (NPAIS)
D—Creating an HTML File and Setting up an xTRS
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAIS</td>
<td>ARC Public Affairs Information Server</td>
</tr>
<tr>
<td>ARC</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>ATRS</td>
<td>Ames Technical Report Server</td>
</tr>
<tr>
<td>BOC</td>
<td>Base Operations Contractor</td>
</tr>
<tr>
<td>CASI</td>
<td>Center for AeroSpace Information</td>
</tr>
<tr>
<td>CASITRS</td>
<td>CASI Technical Report Server (RECON Select)</td>
</tr>
<tr>
<td>DFRC</td>
<td>Dryden Flight Research Center</td>
</tr>
<tr>
<td>DPAIS</td>
<td>DFRC Public Affairs Information Server</td>
</tr>
<tr>
<td>DTRS</td>
<td>Dryden Technical Report Server</td>
</tr>
<tr>
<td>EDD</td>
<td>electronic document distribution</td>
</tr>
<tr>
<td>EDMS</td>
<td>electronic document management system</td>
</tr>
<tr>
<td>FTP</td>
<td>file transfer protocol</td>
</tr>
<tr>
<td>GIF</td>
<td>graphics interchange format</td>
</tr>
<tr>
<td>GPAIS</td>
<td>GSFC Public Affairs Information Server</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GTRS</td>
<td>Goddard Technical Report Server</td>
</tr>
<tr>
<td>HQTS</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>HPAIS</td>
<td>Headquarters Public Affairs Information Server</td>
</tr>
<tr>
<td>HTML</td>
<td>hypertext markup language</td>
</tr>
<tr>
<td>HTTP</td>
<td>hypertext transfer protocol</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>JPAIS</td>
<td>JPL Public Affairs Information Server</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group (Standard for still image compression)</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>JPLTRS</td>
<td>JPL Technical Report Server</td>
</tr>
<tr>
<td>JPAIS</td>
<td>JSC Public Affairs Information Server</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Space Center</td>
</tr>
<tr>
<td>JTRS</td>
<td>Johnson Technical Report Server</td>
</tr>
<tr>
<td>KDN</td>
<td>Kennedy Data Network</td>
</tr>
<tr>
<td>KMAN</td>
<td>KSC Metropolitan Area Network</td>
</tr>
<tr>
<td>KPAIS</td>
<td>KSC Public Affairs Information Server</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>KWAN</td>
<td>KSC Wide Area Network</td>
</tr>
<tr>
<td>KTRS</td>
<td>Kennedy Technical Report Server</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LaRC</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>LTRS</td>
<td>Langley Technical Report Server</td>
</tr>
<tr>
<td>LePAIS</td>
<td>LeRC Public Affairs Information Server</td>
</tr>
<tr>
<td>LeRC</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>LeTRS</td>
<td>Lewis Technical Report Server</td>
</tr>
<tr>
<td>LPAIS</td>
<td>LaRC Public Affairs Information Server</td>
</tr>
<tr>
<td>MPAIS</td>
<td>MSFC Public Affairs Information Server</td>
</tr>
<tr>
<td>MSFC</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>MTRS</td>
<td>Marshall Technical Report Server</td>
</tr>
<tr>
<td>NPAIS</td>
<td>NASA Public Affairs Information Server</td>
</tr>
<tr>
<td>NSI</td>
<td>NASA Science Internet</td>
</tr>
<tr>
<td>NTRS</td>
<td>NASA Technical Report Server</td>
</tr>
<tr>
<td>OLE</td>
<td>object link entry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>PAIS</td>
<td>Public Affairs Information Server</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Data File</td>
</tr>
<tr>
<td>PON</td>
<td>Payload Operations Network</td>
</tr>
<tr>
<td>PSCNI</td>
<td>Program Support Communications Network Interface</td>
</tr>
<tr>
<td>RECON</td>
<td>Research Connection</td>
</tr>
<tr>
<td>RDP</td>
<td>report document page</td>
</tr>
<tr>
<td>SCAN</td>
<td>selected current aerospace notices</td>
</tr>
<tr>
<td>SODN</td>
<td>Shuttle Operations Data Network</td>
</tr>
<tr>
<td>SPAIS</td>
<td>SSC Public Affairs Information Server</td>
</tr>
<tr>
<td>SPC</td>
<td>Shuttle Processing Contractor</td>
</tr>
<tr>
<td>SSC</td>
<td>Stennis Space Center</td>
</tr>
<tr>
<td>STRS</td>
<td>Stennis Technical Report Server</td>
</tr>
<tr>
<td>STI</td>
<td>Scientific and Technical Information</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>THB</td>
<td>thumbnail file</td>
</tr>
<tr>
<td>TIFF</td>
<td>tagged image file format</td>
</tr>
<tr>
<td>URL</td>
<td>universal resource locator</td>
</tr>
<tr>
<td>TRS</td>
<td>Technical Report Server</td>
</tr>
<tr>
<td>WAIS</td>
<td>Wide Area Information Server</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
<tr>
<td>XDOD</td>
<td>Xerox Document On Demand</td>
</tr>
</tbody>
</table>
Appendix A—Team Members (Prototype STI EDD, Stage 4)

Scientific and Technical Information Office (Area Code - 202)
Fred Moore fmoore@hqops.hq.nasa.gov 358-1389 358-3063
NASA Printing Management Officer, STI Office, Code JTT
Thomas Hanson thanson@sti.nasa.gov (301) 621-0262 621-0134
STI EDMS Project Manager, STI Office, Code JTT

Office of Public Affairs (Area Code - 202)
Elsie Weigel eweigel@pao.hq.nasa.gov 358-2345 358-9345
Public Affairs Information, Public Inquiry Manager, Code P

Information Management Division - (Area Code - 202)
Andrew Schain schain@goliath.hq.nasa.gov 358-0066
Ed Gallas egallas@hq.nasa.gov 651-8511 651-8510

Center for AeroSpace Information (Area Code - 301)
Roy Stiltner rstiltner@sti.nasa.gov 621-0131 621-0134
Steve Mullen smullen@sti.nasa.gov 621-0320 621-0134
Patsy Baxter pbaxter@sti.nasa.gov 621-0126 621-0134

Lewis Research Center (Area Code - 216)
Lynn Boukalik lboukalik@lerc.nasa.gov 433-9701 433-8000
Steven Eubanks Seubanks@lerc.nasa.gov 433-9479 433-8000
Nancy Amman mgamman@lerc.nasa.gov 433-5793 433-5783
Jennifer Sapienza jsapienza@lerc.nasa.gov 433-8309 433-5783
Jaclyn Facinelli JRFACIN@lerc.nasa.gov 433-6685 433-8777
David Mazza MGDMAZA@lerc.nasa.gov 433-8605
Pam Caswell PCaswell@lerc.nasa.gov 433-5795 433-5783
Dennis Dubyk mgdubyk@lerc.nasa.gov 433-5805 433-5783
Sue Butts sue.buttis@lerc.nasa.gov 433-5790 433-5783

Goddard Space Flight Center (Area Code - 301)
Mary Collins mary.collins@gscf.nasa.gov 286-6152 286-1705
Susan Hart susan.hart@gscf.nasa.gov 286-2800 286-1705
Michael Grabenstein Mike.Grabenstein@gscf.nasa.gov 286-2545 286-1755
Robin M. Dixon Robin.M.Dixon@gscf.nasa.gov 286-9230 286-1755
Bob Lane Bob.Lane@gscf.nasa.gov 286-5449 286-1705
Paul Baker paul.baker@gscf.nasa.gov 286-8485 286-0257
Robyn Mabry Robyn.Mabry@gscf.nasa.gov 286-5816 286-1705
In addition to the prototype team members, the inclusion of the following centers are being phased into the NASAwide STI Electronic Document Distribution project without any major interruption to the current prototype implementation schedule. This decision was made in early February 1995.

A - 2
Marshall Space Flight Center (Area Code - 205)
Joyce Turner Joyce.Turner@msfc.nasa.gov 544-4528 544-8610
Jeff Robinson Jeff.Robinson@msfc.nasa.gov 544-4589 544-8610
Annette Tingle Annette.Tingle@msfc.nasa.gov 544-4522 544-8610
Jackie Pates Jackie.Pates@msfc.nasa.gov 544-4524 544-8610
Becky Caneer Becky.Caneer@msfc.nasa.gov 544-4578 544-6010
Wendell Smith Wendell.Smith@msfc.nasa.gov 544-4725 544-6919
Diane Stephanouk Diane.Stephanouk@msfc.nasa.gov 544-4742 544-6919
Justin Jackson Justin.Jackson@msfc.nasa.gov 544-8474

Johnson Space Center (Area Code - 713)
Bill Larsen William.a.larsen1@jsc.nasa.gov 483-4062 483-3012
Carol Homan Carol.a.homan1@jsc.nasa.gov 483-0281
Lynn Buquo Lbuquo@ja2.jsc.nasa.gov 483-4716
Henri Daumas henri.daumas1@jsc2.nasa.gov 483-9649
Jennifer Lestourgeon jiestour@ja2.jsc.nasa.gov 483-7262 483-5383
Duane Emmons demmons@ja2.jsc.nasa.gov 483-6145

Kennedy Space Center (Area Code - 407)
Walt Covington walter.covington-1@kmail.ksc.nasa.gov 867-4256 867-1458
Bill Cooper william.cooper-2@kmail.ksc.nasa.gov 867-3615 867-4534
Dave Severance bocdcs@bocp2.ksc.nasa.gov 867-4635 867-2939

Stennis Space Center (Area Code - 601)
Bob Jeffries bjeffries.wpogate.ssc.nasa.gov 688-1119 688-7469
Vince P. Andres vandres@wpogate.ssc.nasa.gov 688-3931
Terry Jackson terry.jackson.ssc.nasa.gov 688-1604
Heidi J. Barnes hbarnes@wpogate.ssc.nasa.gov 688-1843 688-1925

FTP Sites:
ARC 128.102.194.143
LeRC 139.88.70.110
LaRC tebtre.larc.nasa.gov
DFRC ftp.dfrc.nasa.gov
GSFC xdod.gsfc.nasa.gov 128.183.32.184
JPL jpl-64-mosaic
JSC 139.165.18.100
MSFC eagle.msfc.nasa.gov
KSC 128.217.62.1
CASI casi1.casi.sti.nasa.gov
Appendix B—Phasing Schedules

Each center participating in the prototype STI EDD project has a specific set of schedules for its implementation of the technical report server. A composite schedule reflecting the integration of each center's tasks are displayed by Figure B - 1 with supporting schedules displayed by Figures B - 2 to B - 9.

Figure B - 1 Prototype STI EDD Composite
Figure B - 2 Goddard Space Flight Center
Figure B - 3 Lewis Research Center
Figure B - 4 Ames Research Center
Figure B - 5 Langley Research Center
Figure B - 6 Center for AeroSpace Information
Figure B - 7 Jet Propulsion Laboratory
Figure B - 8 Dryden Flight Research Center
Figure B - 9 JSC/MSFC/KSC/SSC Centers and Hqts

Significant events leading up to each of the major deliverables are highlighted below:

1. FAX to team, request for network topology at each participating center 12/16/94
2. Coordination with JPL regarding inclusion in NTRS as JPLTRS 1/5 - 6/95
3. Tech Focus Group VITS, presentation by Joint STI EDD Team - status 1/23/95
4. FAX to team, request for input to joint TM 1/30/95
 a. Draft 1 - Chapters 2, 3, and 4 2/28/95
 b. Draft 2 - Chapters 2, 3, 4, and 5 3/17/95
 c. Draft 3 - Chapters 2, 3, 4, 5, and 6 4/7/95
 d. Final Working Draft - Introduction plus all chapters 5/1/95
 e. Joint Working Session at LeRC plus use of VITS 5/15/95
5. Coordination with DFRC regarding inclusion in prototype STI EDD project 1/30/95
6. Coordination with JSC regarding inclusion in prototype STI EDD project 2/3/95
7. Coordination with KSC regarding inclusion in prototype STI EDD project 2/3/95
8. Coordination with MSFC regarding inclusion in prototype STI EDD project 2/6/95
9. Coordination with SSC regarding inclusion in prototype STI EDD project 2/6/95
10. Budget memo sent to Budget Office for Code M STI EDD participation 2/13/95
11. Initiate file transfer testing between STI EDD file server sites 2/8/95
12. Fax joint plan addendum to Code M centers for their review 2/14/95
13. Initiate EDD application - Headquarters Telephone Directory 2/28/95
14. Initiate EDD application - Public Affairs Fact Sheets 3/17/95
15. Coordinate Implementation Hqtr's Telephone Directory - Code JOB-1 & JT 5/9/95
16. Presentation to ITMSC Standards and Architecture Sub-Board 6/14/95
17. STI EDD VITS - Center status 6/19/95
18. Coordination with LeRC/MSFC/JSC - NPAIS 6/27-29/95
19. Presentation to Code U, Life & Microgravity Sciences & Applications 7/12/95
20. Coordination with Code JOB-1 & JT - GPO/Covers/Elec Interface Issues 8/21/95
21. STI EDD Workshop at LeRC 8/22-8/23/95
22. Headquarters to be included as a node in the STI EDD Project 9/28/95
23. Headquarters excluded as a node in the STI EDD Project 12/95

B - 1
Figure B - 1. Prototype STI EDD Composite.

Headquarters was included as a node in the STI EDD project on September 28, 1995. Integration into the scheduling of input to the Joint TM is shown by Figure B - 9.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
GODDARD SPACE FLIGHT CENTER

Task Descriptions

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1994</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Initial MOU Signed By GSFC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Acquisition - Prototype STI EDD System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- GSFC Meetings/Major Deliverables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- NSSDC Mtg/Interim LaRC Tech Support/Interim Deliverables</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 2. Goddard Space Flight Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
LEWIS RESEARCH CENTER

Task Descriptions

- Prototype STI EDD Proposal
- Initial MOU Signed By LeRC
- Joint STI EDD Project Plan
- Acquisition - Prototype STI EDD System
- LeRC Technology Transfer
- Evaluation Cycle
- STI Office Project Review Board Approval and EDD Project Briefings
- LeRC Meetings/Major Events

Figure B - 3. Lewis Research Center.
Ames Research Center Schedule

PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
AMES RESEARCH CENTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial MOU Signed By ARC (Replaced by Joint Plan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition - Prototype STI EDD System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC Meetings/Major Milestones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ▼ Scheduled Start/End
- ▼ Scheduled Completion

Figure B - 4. Ames Research Center.
Task Descriptions

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1994</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Technology Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle - Implementation NTRS (LaRC/ARC/GSFC/CASI/PL/DFRC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaRC Meetings/Major Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B-5. Langley Research Center.
Task Descriptions

Prototype STI EDD Proposal																																							
Joint STI EDD Project Plan																																							
LaRC Technology Transfer																																							
Evaluation Cycle																																							
STI Office Project Review Board Approval																																							
CASI Meetings/Major Events																																							
Preparation of Joint TM																																							
Status Reviews (Bi-weekly Meetings)																																							
Simulation Modeling																																							

- ▼ Scheduled Start/End
- ▼ Scheduled Completion
- ▿ Slippage To Later Milestone

Figure B - 6. Center for AeroSpace Information.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
JET PROPULSION LABORATORY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Statement of Work</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Setup Team</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>and EDD Project Briefings</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>JPL Meetings/Major Events</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

- ☑ Scheduled Start/End
- ▼ Scheduled Completion

Figure B - 7. Jet Propulsion Laboratory.
PROTOTYPE STI EDD PROJECT

EVALUATION AND IMPLEMENTATION TASKS

DRYDEN FLIGHT RESEARCH CENTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype STI EDD Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statement of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI Office Project Review Board Approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and EDD Project Briefings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Affairs Information Series Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRC Meetings/Major Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of Joint TM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ▼ Scheduled Start/End
- ▼ Scheduled Completion

Figure B - 8. Dryden Flight Research Center.
PROTOTYPE STI EDD PROJECT
EVALUATION AND IMPLEMENTATION TASKS
JSC/MSFC/KSC/SSC/HQTS

<table>
<thead>
<tr>
<th>Task Descriptions</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Coordination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JSC/MSFC/KSC/SSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint STI EDD Project Plan - Addendum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedy Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stennis Space Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Events/Milestones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters Inclusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B - 9. JSC/MSFC/KSC/SSC/HQTS.
Appendix C—Accessing NASA Public Affairs Information Server (NPAIS)

Using Netscape for Windows

Instructions for using Netscape for Windows are provided below. The same-step by-step instructions can be used for using Netscape for the Macintosh.

Step 1 Double click on the Netscape icon in Program Manager. If you have the Netscape Home Page as your default, double click on Net Directory; this will give you a Home Page listing for Step 2.

Step 2 Double click on Government; this will give you the next Home Page listing for Step 3.

Step 3 Double click on Agencies; this will give you the next Home Page listing for Step 4.
Step 4 Scroll down the Home Page and double click on Independent; this will give you the next Home Page listing for Step 5.

Step 5 Double click on NASA; this will give you the next Home Page listing for Step 6.

Step 6 Double click on Dryden Flight Research Center; this will give you the next Home Page for Step 7.
Step 7 To access the NPAIS Home Page, use the following URL: http://www.dfrc.nasa.gov/PAIS; this will give the next Home Page, go to Step 8.

Step 8 Scroll down the Home Page till you can access the Dryden Flight Research Center; go to Step 9.

Step 9 Double click on Dryden Flight Research Center to access Home Page for DPAIS On Line Fact Sheets; go to Step 10.
Step 10 Scroll down the Home Page listing until you reach **Dryden Fact Sheets**; go to Step 11.

Step 11 Double click on **Dryden Fact Sheets** and go to Step 12.

Step 12 Select the fact sheet you want by double clicking on **B-52 Launch Aircraft**; go to Step 13.
Step 13 Scroll down the Home Page until you see the specific key word you desire to do further research on; go to Step 14.

Step 14 Double click on the key word X-15 to enable the execution of keyword searching against the NASA Technical Report Server; go to Step 14.

Step 15 Scroll down the Home Page to view the specific title pages that the key word found. The NTRS will list all hits by xTRSs currently available; go to Step 16.
Step 16 To obtain the abstract of the list of titles available, double click on The X-15 Airplane - Lessons Learned; go to Step 17.

Step 17 At this step, you will have the abstract which you can now print out on your local printer by double clicking on the Netscape Print Button; go to Step 18.

Step 18 Double click ok to print the abstract on your local printer. Results of the printed abstract are shown by Step 19.
At step 12, you have the functionality to print the Document Title as shown by Step 19, or to print the file in PDF or PostScript, if you have available on your PC the necessary software. Note that the size of the PDF and PostScript files are shown.
Appendix D—Creating an HTML File and Setting up an xTRS

Introduction

This appendix was created from exerpts taken from an instruction course on the "Authoring HTML Documents/Home Page," taught by Ms. Robin Dumas, Information Systems Services, Section 392, Jet Propulsion Laboratory. Requests for her instruction manual may be directed to her on e-mail at Robin.C.Dumas@jpl.nasa.gov. The following text will provide the process used in creating an html file using a Public Affairs Office Fact Sheet prepared by DFRC as an example. Before an html file can be created, it must first be converted from the word processing file format to a text file format and then html tagged. Graphics are converted to gif format. In the Public Affairs Office environment, the word processors used are Personal Computers and MacIntosh machines. Conversions are displayed by Table D - 1. Table D - 2 provides a list of HTML tags and their definition. Following Figure D - 4 are instructions on setting up an xTRS.

Table D - 1. Conversion to Text

<table>
<thead>
<tr>
<th>Software</th>
<th>Personal Computer</th>
<th>MacIntosh</th>
</tr>
</thead>
<tbody>
<tr>
<td>PageMaker</td>
<td></td>
<td>Export text only, e.g., abc.txt</td>
</tr>
<tr>
<td>Microsoft Word</td>
<td></td>
<td>Save as text only, e.g., abc.txt</td>
</tr>
<tr>
<td>WordPerfect</td>
<td>Save as ASCI (DOS) text only, e.g., abc.txt</td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td>Save as abc.gif file</td>
<td>Save as abc.gif file</td>
</tr>
</tbody>
</table>

Table D - 2 HTML Tags

<table>
<thead>
<tr>
<th>HTML Tag</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td><html> & </html></td>
<td>Indicates that file is an html file, where / represents ending point</td>
</tr>
<tr>
<td><title> & </title></td>
<td>Indicates text that will be in browser window box</td>
</tr>
<tr>
<td><body> & </body></td>
<td>Indicates main body of file</td>
</tr>
<tr>
<td><h#> & </h#></td>
<td>Indicates level of heading where # represents levels 1, 2, 3, 4, 5, or 6</td>
</tr>
<tr>
<td><p></td>
<td>Indicates paragraph break</td>
</tr>
<tr>
<td>
</td>
<td>Indicates line break (no extra space)</td>
</tr>
<tr>
<td><hr></td>
<td>Indicates horizontal rule</td>
</tr>
<tr>
<td> & </td>
<td>Indicates bold text</td>
</tr>
<tr>
<td><i> & </i></td>
<td>Indicates italic text</td>
</tr>
<tr>
<td><tt> & </tt></td>
<td>Indicates fixed width text</td>
</tr>
<tr>
<td><pre> & </pre></td>
<td>Indicates fixed width text in which tabs and line breaks are displayed in the same locations as in the source html file</td>
</tr>
<tr>
<td><blockquote> & </blockquote></td>
<td>Indicates indented text separated from surrounding text</td>
</tr>
<tr>
<td><address> & </address></td>
<td>Indicates address text at end of file</td>
</tr>
</tbody>
</table>
HTML Tag

<table>
<thead>
<tr>
<th>HTML Tag</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td><code></code> & <code></code></td>
<td>Ordered (numbered) list</td>
</tr>
<tr>
<td><code></code> & <code></code></td>
<td>Unnumbered list</td>
</tr>
<tr>
<td><code></code></td>
<td>Indicates line item of list</td>
</tr>
<tr>
<td><code><dl></code> & <code></dl></code></td>
<td>Indicates definition list</td>
</tr>
<tr>
<td><code><dt></code></td>
<td>Indicates word being defined</td>
</tr>
<tr>
<td><code><dd></code></td>
<td>Indicates text of definition</td>
</tr>
<tr>
<td><code></code></td>
<td>Indicates in-line image file where filename is name of file</td>
</tr>
<tr>
<td></td>
<td>Must be a .gif or .xbm file format</td>
</tr>
<tr>
<td></td>
<td>Keep under 30Kb, since larger files take longer to display</td>
</tr>
<tr>
<td><code>link anchor</code></td>
<td>Indicates link to another file (.html, .tiff, .jpeg, .au, etc)</td>
</tr>
<tr>
<td></td>
<td>Where filename = name of file being linked, and</td>
</tr>
<tr>
<td></td>
<td>Link anchor = text indicating hypertext link</td>
</tr>
<tr>
<td></td>
<td>Filename must include pathname</td>
</tr>
<tr>
<td></td>
<td>Use for larger image files</td>
</tr>
<tr>
<td>Relative pathname</td>
<td>Used when linking related documents which will remain in one directory or on one file server, e.g., "contents.htm"</td>
</tr>
<tr>
<td>Absolute pathname</td>
<td>Used when linking unrelated files, or linking to another Home Page or server</td>
</tr>
<tr>
<td></td>
<td>Must include entire pathname</td>
</tr>
<tr>
<td></td>
<td>- scheme://host.domain/path/filename</td>
</tr>
<tr>
<td></td>
<td>where scheme = type of link, host = server, domain =</td>
</tr>
<tr>
<td></td>
<td>where the server is known, path = directories, and filename = name of file</td>
</tr>
<tr>
<td></td>
<td>e.g., "http://techinfo.jpl.nasa.gov/sec644/authoring_html/toc.html"</td>
</tr>
</tbody>
</table>

Source Document

The first couple of paragraphs of a Fact Sheet have been extracted and are displayed below: HTML tagging is shown by the next section.

F-8 Digital Fly-By-Wire Fact Sheet

The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls.

The first test of a DFBW system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.

Background

In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.
Figures D - 1 to D - 3 displays a fully tagged html file which includes the hyperlink to a gif file.

Removal of all tags would represent the source document in ASCI format. The ASCI format is created by saving the source document as an ASCI file from whatever DeskTop word processing software was used to create the fact sheet. Explanation and use of the tags are contained in Table D - 2. Figure D - 4 displays the first page of the Fact Sheet by MOSAIC on a PC. By comparing the source document with Figure D - 1, the creation of Figure D - 4 can be accomplished. Specifically, the steps are as follows:

F-8 Digital Fly-By-Wire Fact Sheet gives:

<HTML>
<HEAD>
<TITLE>F-8 Digital Fly-By-Wire</TITLE>
</HEAD>

<BODY>
Indicates start of html file
Indicates start point of header
Indicates title
Indicates end of header
Indicates start point of main body of file

D - 3
In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.

Fleet F-8s were the first carrier based plane with speeds in excess of 1000 mph. LTV won the Collier Trophy for its design and development. Total production was 1,261.

The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls.

The first test of a DFBW system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.
F-8 Digital Fly-By-Wire

The Digital Fly-By-Wire (DFBW) concept utilizes an electronic flight control system coupled with a digital computer to replace conventional mechanical flight controls. The first test of a DFWB system in an aircraft was in 1972 on a modified F-8 Crusader at the Dryden Flight Research Facility, Edwards, Calif. It was the forerunner of the fly-by-wire flight control systems now used on the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient.

Background

In the first few decades of flight, pilots controlled aircraft through direct force -- moving control sticks and rudder pedals linked to cables and pushrods that pivoted control surfaces on the wings and tails.

Figure D-4. MOSAIC display.

Notes:

- You will need to install some version of WAIS on your machine. The best version of WAIS is freeWAIS-sf:
- You can find more information at the following URL:
 - http://is6-www.informatik.uni-dortmund.de/freeWAIS-sf/

- freeWAIS-sf has a very powerful and flexible indexing mechanism. Its use is covered in Appendix A.
If you do not wish to install freeWAIS-sf, and already have another version of WAIS installed at your site, I can offer the following SunOS binaries: (the source has been lost ;-)

If you use this version of waisindex, use:

```
waisindex -pos -export -t html -d xtrs_index $YEARS/*.html
```

Put your "citations + abstracts" in refer format.

Refer format has been around for a while. On SunOS systems, you can <tt>man addbib</tt> for more information.

Sample refer citations can be viewed at: http://techreports.larc.nasa.gov/trrs/examples.html

A compressed tar file of all LTRS contents in refer format can be viewed at: ftp://techreports.larc.nasa.gov/waters/waters.tar.Z. This is provided for reference only -- you do not have to do anything with these contents.

There is nothing magic about refer; you can use some other format if you wish. You'll be on your own though for adapting / creating filters to process other formats.

There is a Perl program to process the refer citations. This program (and its library) have binary characters in them and they must saved to disk prior to viewing them. In other words, you must save the links without actually viewing them. A copy-n-paste will not work!!!
<p>bib is very easy to use. Here are some sample invocations:</p>

<p>To take many refer files, and convert them to many refer.html files to be used for waisindex<p>

<code>bib -ha -hk *.refer</code><p>

<p>To take many refer files and convert them to a single .html file with abstracts for browsing<p>

<code>bib -ha *.refer >> all-years-abs.html</code><p>

<p>To take many refer files and convert them to a single .html file without abstracts (i.e. just citations) for browsing<p>

<code>bib -h *.refer >> all-years-cit.html</code><p>

<p>The source code for NTRS is available at: http://www.larc.nasa.gov/ntrs/ntrs_p This is for your knowledge only; you do not have to install NTRS or use anything from this script to set up your technical report server.<p>

<p>A csh script that I used to maintain LTRS is in Appendix B. It should help you automate maintenance for your site.<p>

<p>Your technical report server should support, at a minimum, 2 functionalities:
 1. Searching
 2. Browsing<p>

D - 7
Searching is the trickiest to implement, but is the part used most significantly in NTRS.

- The following may be of use to your site as well:

 1. User feedback form: http://techreports.larc.nasa.gov/ntrs/feedback.pl
 3. No promise is made about their quality, code aesthetics, or anything else. ;-)

- The e-mail list for NTRS feedback and notices is: ntrs-admin@techreports.larc.nasa.gov. Please e-mail m.l.nelson@larc.nasa.gov if you want on or off this list. The current members of the list are at: http://techreports.larc.nasa.gov/ntrs/ntrs-admin.txt

- The following services are being worked on:

 1. Parallel searching in NTRS (Ming Maa, Michael Nelson)
 2. Gateways with non-WAIS databases (Ming Maa, Michael Nelson, Jeff Robinson, Alberto Accomazzi)
 3. Fielded searches (not too much interest in this of late)
 4. NTRS acting as a proxy to resolve the long URL / firewall problem (Ming Maa, Michael Nelson)

Appendix A: Using freeWAIS-sf

FreeWAIS-sf does not support the `waisindex -t html` construct. Instead, it has the concept of a "format" file, where the user builds the description of how the files should be indexed. It is useful for all types of files, not just HTML files. This format file is also how fielded searches would be added if you are ready to take that step.

For the example given below, it assumes that your HTML files are following the correct HTML 2.0 specifications and have the following tags (white space and case are not important):

```html
&ltHTML&gt
&ltHEAD&gt
&ltTITLE&gt...
&lt/HEAD&gt
&ltBODY&gt...
`
&lt;tt&gt;waisindex&lt;/tt&gt; would then be invoked like:

```plaintext
waisindex -pos -export -T HTML -f fields -d xtrs_index $YEARS/*.html
```

This assumes the existence of a file &lt;tt&gt;xtrs_index.fmt&lt;/tt&gt;. This format file would look something like:

```xml
<record-end>/</BODY>/</HTML>

<layout>
<headline><TITLE>/</TITLE> 80 /<TITLE>*/
</headline>

<field><HTML>
stemming TEXT GLOBAL
</field>/</BODY>
```

You will need a separate format (.fmt) file for each database you index. This file tells &lt;tt&gt;waisindex&lt;/tt&gt; to use the string between the &lt;TITLE&gt; tags as the string for the headline. The headline is the list of "titles" that one sees immediately upon doing a WAIS search. The "80" in this line indicates to only use the first 80 characters. The format file also tells &lt;tt&gt;waisindex&lt;/tt&gt; to index everything between the &lt;HTML&gt; tag and either one of the tags: &lt;/HTML&gt; or &lt;/BODY&gt;.

```
Update abstract lists, WAIS indexes
```

D - 9
usage: ltrs-update year [years...]

set REFER_ROOT=/ump/csb/home/mln/reports/refer
set WAIS_ROOT=/usr/local/wais/wais-sources
set WAIS_TMP=$WAIS_ROOT/wais_tmp
set LTRS_HTML_ROOT=/ump/csb/home/mln/http/ltrs

foreach year ($argv[*])
  cd $REFER_ROOT/$year
  bib -ha -hk *.refer
  cd $LTRS_HTML_ROOT
  bib -ha ~/reports/refer/$year/*.refer > new.19$year.html && mv new.19$year.html 19$year.html
  bib -h ~/reports/refer/$year/*.refer > new.19$year-cit.html && mv new.19$year-cit.html 19$year-cit.html
end

cd $LTRS_HTML_ROOT

bib -ha ~/reports/refer/??/*.refer > new.abs.html && mv new.abs.html abs.html
bib -h ~/reports/refer/??/*.refer > new.cit.html && mv new.cit.html cit.html

# update WAIS indexes
# builds the indexes in a temporary directory, then copies them overtop of
# the existing indexes to minimize service interruption
# does not try to do incremental builds

cd $WAIS_TMP
/ump/csb/home/mln/ltrs/bin/waisindex -pos -export -t html -d ltrs_index ~/reports/refer/??/*.html
mv ltrs_index.* ..

# final updates
# (generates the waters tar file)

cd
(cd ~/reports/refer ; make-waters )
**Title and Subtitle:**

**Authors:**
Richard C. Tuey et al.

**Performing Organization Name(S) and Address(S):**
National Aeronautics and Space Administration
Washington, DC 20546-0001

With Field Installations and Jet Propulsion Laboratory

**Sponsoring / Monitoring AGENCY NAME(S) and Address(S):**
National Aeronautics and Space Administration
Washington, DC 20546-0001

**Abstract:**
This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual framework, functional description, and technical report server of the STI Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware, and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices, which are contained in Part II of this document, consist of A) STI EDD Project Plan, B) Team members, C) Phasing Schedules, D) Accessing Online Reports, and E) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.