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SUMMARY

Described are the theoretical development and computer implementation of reliable and efficient

methods for the analysis of coupled mechanical problems that involve the interaction of mechanical,

thermal, phase-change and electromagnetic subproblems. The focus application has been the

modeling of superconductivity and associated quantum-state phase-change phenomena. In support

of this objective the work has addressed the following issues: (1) development of variational

principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling

of thermal and mechanical effects, and (4) computer implementation and solution of the

superconductivity transition problem. The main accomplishments have been: (1) the development

of the theory ofparametrized and gauged variational principles, (2) the application of those principled

to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling

of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed

finite element simulations of bulk superconductors, in particular the Meissner effect and the nature

of the normal conducting boundary layer. The theoretical development is described in two volumes.

Volume I describes mostly formulations for specific problems. Volume 11 describes generalization

of those formulations.
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1. INTRODUCTION

Many engineering applications of interest to NASA require the solution of coupled mechanical prob-

lems. A coupled problem consists of two or more subproblems that can be separately characterized

by virtue of their physical nature. Simulation of coupled problems is complicated by the two-way

nature of the interaction between the subproblems. This interaction has to be considered when

seeking steady-state or transient solutions. The treatment of subproblems as a coupled problem,

as opposed to considering them as a single, indivisible problem, arises from the different physical

nature of each subproblem. Such differences encourages customized treatment, from modeling

through computer implementation. Examples of coupled problems in aerospace are: design of

propulsion systems (coupling structures, flow, thermomechanics and combustion), active vibration

control of space structures (coupling structures and control), prediction of flutter in turbomachinery

(coupling structures, combustion, and gasdynamics) and airplane wings (coupling structures and

aerodynamics).

The work reported here deals with coupled problems that contain an electromagnetic field as one of

their subproblems. The research has addressed both theoretical and application components. The

theoretical component deals generally with methods for finite element modeling of electromagnetic,

thermal, mechanical and phase-change effects individually and then considering their interaction

in coupled problems. Because the domain of applications that lead to such problems is extremely

wide and as yet remains largely unexplored, the application component of the research was focused

on the particular problem of superconductivity.

Superconductivity involves primarily the interaction of electromagnetic and thermal fields. It may

secondarily interact with mechanical effects such as motion or couling fluid flow. Transition from

normal to superconducting state is a phase change phenomenon that involves quantum-mechanics

effects. For conventional Type I and II bulk superconductors transition is largely controlled by

magnetic field intensity and temperature. Consequently the transition problem displays three of the

four effects addressed in the theoretical component of this work.

The following narrative outlines the main developments and accomplishment of this research project.

Details are provided in the attached publication material.

2. DEVELOPMENT OF THERMOMECHANICAL ELEMENTS

Initial effort over the period September 1988 through February 1989 was focused on the variational

basis for constructing high-performance mechanical and thermal elements. This primarily theo-

retical effort was carried out by one of the P.I.s (CAF) with the assistance of Carmelo Militello

(a doctoral graduate student mainly supported by a research fellowship). The point of departure

was previous research, funded by ONR and NRL, on the free-formulation variational principles

reported in References [ I-3].

A more general variational formulation for the mechanical elements, which includes the assumed

natural strain (ANS) formulation, was established and reported in References 1"5-7,9]. One key



byproductof this work wastheAssumedNaturalDeviatoricStrain(ANDES) formulation,which
is asa modificationof the ANS that satisfiesa priori the patch test. The ANDES formulation

was reported in References [5,10,18]. It became eventually a focus of Militello's thesis [15],

and the basis for constructing several high-performance mechanical plate and membrane elements

[14,20-221.

New representations of thermal fields were not addressed as standard formulations were considered

adequate for the coupled-field phases of this research. The framework of parametrized variational

principles was extended, however, to encompass incompressibility [16,17], micropolar elasticity

[23,24] and electromagnetodynamics [25].

3. DEVELOPMENT OF ELECTROMAGNETIC ELEMENTS

3.1 Theoretical Developments

Early in this research phase it was decided to base the development of electromagnetic (EM)

finite elements on variational principles that utilize electric and magnetic potentials as primary

fields rather than on the EM field intensity and/or fluxes (as done in most of the existing EM

finite element technology). It was felt that this choice provides for a generality of application that

encompasses both normal and superconducting materials as well as taking care automatically of

boundary and interior interfaces. These advantages more than compensate two difficulties: no

general variational formulation of this finite element class existed, and potential fields are less

physically meaningful than intensity and flux fields. The first obstacle was effectively removed

by the developments outlined below. The difficulty with physical meaning of potentials impacts

primarily a priori understanding on how to specify boundary conditions, and can be overcome by

solving a range of practical problems.

Early work on this subject, carried out by one of the P.I.s (CAF) from September 1988 through

August 1989, was exploratory in nature. The scalar potential formulation of acoustoelastic fluid

fields, which satisfy the same governing equations as the electric-potential field, was investigated

in collaboration with R. Ohayon of ONERA (France). This research, reported in References [4,8],

did clarify the way to obtain general potential-based variational principles than can be procedurally

translated to the far more complex EM case, which involves vector potentials.

3.2 Normal-Conducting One-Dimensional EM Elements

On January 1989 James J. Schuler, a first-year graduate student, started his Ph.D. research in

electromagnetic finite elements with full support from this grant. By late 1989 a new class of

electromagnetic finite elements based on a four-potential variational principle had been formulated

and tested. The development steps are summarized below, and described more fully in a journal

article [ I 1].

A variational statement for the electromagnetic equations (Maxwell equations) in an arbitrary ma-

terial was obtained. The primary variable of this principle is the four-potential, which integrates

the scalar electric potential with the vector magnetic potential. The principle derived here gener-

alizes those previously published in the literature, which are restricted to free space. Because of



its generality,it canserveasa basisto modelferromagnetic,semiconductorandsuperconducting
materials.The principlewasinitially constructedusingthecanonicaldecompositionmethodfor-
merly yalidated for the acoustoelastic-fluid potential by Felippa and Ohayon [4,8]. A simplified

formulation for non-polarizable materials was found later "working backwards" from the general

principle and is the one presented in Reference [11].

The variational principle is applicable for one, two and three space dimensions. It is applicable

to both static and dynamic analysis under harmonic or transient loading. To quickly validate

the application to finite elements, the principle was specialized to normal conductors with one-

dimensional axisymmetric geometry. A finite element model with linear variation of the radial

potential component in space was developed and implemented in straightforward fashion. The

development of the forcing function, however, was more involved. The resulting implementation

was tested on the static problem of the field associated with a cylindrical conductor and excellent

agreement with the analytical solution was obtained [11].

3.3 Normal-Conducting Two-Dimensional EM Elements

Extension of the methodology outlined in 3.2 to multiple space dimensions brought surprises. In two

and three dimensions it was found that the Lorentz gauge constraint was not automatically enforced

by the finite element shape functions. The constraint was added through a Lagrangian multiplier,

thus producing the so-called "gauged potential variational principle" presented by Schuler and

Felippa [13]. The modification delayed the development of multidimensional EM elements for

several months while several ways of discretizing the gauged potential were tried and evaluated.

Eventually it was decided to treat the multiplier as an element-level degree of freedom that enforces

gauge interaction in a mean sense over each element.

The multidimensional EM elements were incorporated into a program that can solve problems

with arbitrary axisymmetric geometry. The program is restricted to treat static (time-independent)

problems with a known current density distribution. Excellent results, reported in Reference [13],

were obtained for two problems of simple geometry.

3.4 Current Predicting EM Elements

For the envisioned extension to superconductivity it was realized that the problems described in

Sections 3.2 and 3.3 were overly restricted in that the distribution of the electric current is assumed

known a priori and is uniform throughout a conductor. In general, temperature gradients within

a conductor and a conductor's geometry cause the current distribution within a conductor to be

non-uniform and therefore unknown. To accurately capture the effects of thermal-electromagnetic

coupling it was therefore necessary to construct an electromagnetic finite element that could predict

electric current densities given the total electric current. This task was started on June 1991 by

Schuler and Felippa and required further modifications of the four-potential variational principle.

A one-dimensional time-independent axisymmetric geometry element was tested on a variable

current problem with known analytical solution. Values for the current density as computed by the

finite element method agreed well with analytical predictions. These developments are reported in

References [ 19,25,26].
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3.5 Superconducting EM Elements

This task also started in 1991. The generality of the previously outlined four-potential variational

formulation allowed for the straightforward extension of this method to Type I and II bulk super-

conductors treated by the Ginzburg-Landau model. Only the time-independent one:dimensional

case was explored because of the extremely nonlinear nature of the problem and the presence of

extremely high gradients that necessitates highly graded meshes to treat boundary layers. The

nonlinearities are in part due to the boundary type behavior of the current density stream that occurs

within a bulk superconductor.

Initial attempts using the potential based variational approach predicted desired EM quantities but

numerical problems surfaced that caused the investigators to suspect the validity of the numerical

solutions. These problems and the original formulation of the problem are described in a preliminary

report [18]. These numerical difficulties were eventually overcome through the use of a highly

_aded finite element mesh, a reformulation of the quantum mechanical wavefunction _p, and a

four-part scaling scheme. The resulting finite element was eventually thermally coupled through

temperature dependent material parameters as discussed in Section 4 below.

4. THE COUPLED PROBLEM

4.1 Thermomechanical Interaction

One of the P.I.s (KCP) contributed his expertise in partitioned analysis methods to the development

and testing of an unconditionally-stable, second-order accurate, staggered time integration proce-

dure for treating thermomechanical coupling. This research was led by Professor C. Farhat, who

was supported by other sources, and is reported in Reference [12]. The method described in this

article is the basis for ongoing work in thermomechanical coupling for supersonic atmospheric and

reentry vehicle structures.

4.2 Thermoelectromagnetic Interaction

On May 1992, work on a suitable finite element model for thermal conduction in a normal conductor

was started. A conventional heat conduction finite element was used and heat convection boundary

conditions were assumed. The main difference with respect to usual heat conduction analysis is

that material properties of the normal conducting finite element were allowed to be temperature

dependent, the temperature of the conductor, and that the internal heat source is coupled to the EM

current intensity via by Ohm's law. The conducting wire problem was used as test for the computer

implementation. Insertion of actual values for material properties gave a highly ill-conditioned

system of equations for the independent variables. The ill-conditioning was overcome by use of a

specialized finite element mesh and matrix scaling techniques. These techniques as well as results

for the thermal elements are discussed in Reference [25].
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4.3 Modeling of Quantum-State Phase Changes

After developing EM finite elements for the normal and superconducting phases of a conductor

and adding thermal effects to each element separately, they were used to form a comprehensive

program that could choose the correct quantum-state (QS). The correct state is determined by

checking whether the critical temperature of the conductor and the critical magnetic field have been

exceeded. If they axe, the program uses the current-predicting element discussed in Section 3.3,

coupled with the thermal element of Section 4.2. Otherwise the the program uses the Ginsburg-

Landau superconducting finite element discussed in Section 3.5. In the most general case these

conditions hold over different regions of a partly-superconducting system.

4.4 Analysis of Fully Coupled Problem

The coupled EM-thermal-QS finite element models were first tested on a one-dimensional time-

independent Type I superconductor cylindrical wire carrying a specified total current. Even for this

highly idealized situation there is no available analytical solution. The finite element performed

extremely well in that several important physical phenomena were predicted. First and foremost

was the identification of the Meissner effect, which is the almost total expulsion of the magnetic

field from the superconducting interior of the conductor. The phenomenon is caused by the current

density stream traveling in a thin (skin)boundary layer at the conductor's surface, an expected

physical behavior that was also clearly displayed by the finite element solution. The value of the

magnetic field at the conductor's surface can be determined by analytical means and the finite

element model correctly predicted that condition.

Finally, the finite element model of the foregoing problem was tested using a variety of temperature

and current loads. These tests also followed expected physical behavior - as either the current

load or the temperature of the system was increased, the depth of the boundary layer increased

to accommodate the increasing energy of the system. The complete program performed well and

determined the correct equilibrium state, as expected, for a varity of thermal and current loadings.

These results, as well as the tracing of the nonlinear equilibrium path using incremental-iterative

solution procedures with arclength control are are discussed in detail in Schuler's thesis [26].

The main shortcoming of the one-dimensional model is that it cannot determine the actual dis-

tribution of EM quantities at the transition point when the partly-superconducting wire suddenly

transitions to being a normal conductor. At such a branching point, the system effectively be-

comes two-dimensional thus transcending the modeling capabilities of the one-dimensional finite

elements. Time constraint on the reported research activity did not allow for the extension of the

one-dimensional elements to include this case. Such an extension is to proceed under separate

(NSF) funding as part of a Grand Challenge Applications project.
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5. CONCLUSIONS

Themain accomplishment of this research can be summarized as follows.

° A general variational framework to construct finite elements for a wide range of application

problems (mechanical, thermal, fluid and electromagnetic) was developed.

2. A comprehensive set of electromagnetic finite elements for normal and superconducting media

was developed and validated. This set includes thermal coupling and current-prediction effects.

o The first detailed simulation of partly superconducting bulk superconductors by finite element

methods. Key physical effects, notably the Meissner effect and the changes in the depth and

distribution of the normal-conducting boundary layer were clearly identified.

These accomplishments open the door to the application of the finite element method to more com-

plex coupled EM problems. In particular: more spatial dimensions, time dependency, frequency-

state-dependent material properties, high-temperature superconductivity, and EM interaction with

mechanical effects.
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:

I. MIXED FUNCTIONALS

SUMMARY

A one-parameterfamilyofmixed variationalprinciplesforlinearelasticityisconstructed. Thisfamilyincludes
the generalized Hellinger-Reissner and total potential energy principles as special cases. The presence of

the free parameter offers an opportunity for the systematic derivation of energy-balanced finite elements

that combine displacement and stress assumptions. It is shown that Fraeijs de Veubeke's stress-assumption

limitation principle takes a particularly elegant expression in terms of the parametrized discrete form. Other

possible parametrizatious are briefly discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading that occupies the volume V. The body is

bounded by the surface S, which is decomposed into S : Sd U St. Displacements are prescribed

on Sd while surface tractions are prescribed on St. The outward unit normal on S is denoted by

n -- n_. The presence of internal natural or artificial interfaces is not treated in this paper.

The three unknown volume fields are displacements u - us, infinitesimal strains • -------eU, and

stresses o" -- cri/. The problem data include: the body force field b --- b/ in V, prescribed

displacements a ----a_ on Sd, and prescribed surface tractions t -- _ on St."

The relations between the volume fields are the strain-displacement equations

• ffi½(vU+ vru)= Du

the constitutive equations

or eu ffi ½(us,j + uj,i) in V, (I)

cr = E e or o'ij = EUicteld in V, (2)

and the equilibrium (balance) equations

-die o" = D*o" = b or crij.j + bi = 0 in V, (3)

in which D* = -div denotes the adjoint operator of D = ½(V + VT).

The stress vector with respect to a direction defined by the unit vector v is denoted as 0% = o'.v, or

Gvi = _ij uj. On S the surface-traction stress vector is defined as

O'n -" o'.n, or O'ni "- Gijnj. (4)

7
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With this definition the traction boundary conditions may be stated as

o'. ----t or o'ijnj -- t/ on St,

and the displacement boundary conditions as

U--" a or

(5)

ui = di on Sd. (6)

NOTATION

Field Dependency. In variational methods of approximation we do not work of course with the

exact fields that satisfy the governing equations (1-3,5-6), but with independent (primary) fields,

which are subject to variations, and dependent (secondary, associated, derived) fields, which are

not. The approximation is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example ft. A dependent

field is identified by writing the independent field symbol as superscript. For example, if the

displacements are independently varied, the derived strain and stress fields are

e _ -- ½(V + vr)fi -- Dfi, _' -- Ee _ --- EDfi. C7)

Art advantage of this convention is that u, e and o- may be reserved for the exact fields.

Integral Abbreviations. Volume and surface integrals will be abbreviated by placing domain-

subscripted parentheses and square brackets, respectively, around the integrand. For example:

(f)v ffi fdV, [f]s aef--- f aS, [f]sd -'- f dS, [f]s, -_ f dS. (8)

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted

in the usual manner

Z Z Z(f, g)v --" f.gdV - .hgi de, (p, q)v _--- p.q dV -'- Pijqij dV,

and similarly for surface integrals, in which case square brackets are used.

Domain Assertions. Finally, the notation

(9)

(a = b)v, [a -- b]s, [a ffi b]s#, [a -- b]s,,

is used to assert that the relation a -- b is valid at each point of V, S, Sa and St, respectively.

(10)

8
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In addition, Oden and Reddy 3 list an "unnamed" functional whose t-generalized version is

I'l_(6,&,[)=(o _,eu)v " I - _ p,._(=,.e )v - (& e")v -

These three functionals are special cases of the following parametrized form

n_(a,_,b ½(i- ×)(o_,_")_- ½×(_,e_)_+ r(_,e)v- P',

(19)

(20)

where y is a scalar. If y = I, 0, - I we obtain the functionals rI_, rl_, and 1"I_, respectively. The
first variation of (20) is I

8ri_ -- y (e u - ea, 8&)v - (div o "r + b, 8fi)v

- t_- <, 8_1_,- t_-<. _>1_,- [u- a._]/.

in which err and o'n_ denote the y-weighted stresses

O"r def= y& + (1 - y)o _, _,_ '_d y_,. + (1- z)_.

(21)

(22)

[;

f.

If y # 0, the Euler equations and natural boundary conditions are

(e" = e¢)v, (aivcr' + b = 0)v, [or,y = i]s,, [o'_ = l]sd, [u = a]s_. (23)

The constitutive equations do not appear since they are enforced a priori in rI_,. If y = o, the first

Euler equation drops out.

ENERGY BALANCING

Distances. Let U(E) = ½0EE, ¢)v denote the strain energy associated with field E. We may rewrite

(20) as a potential-energy deviator

I
I

t
I'I v -- rI_, -- y U(e" -- e¢),

because

= (_, e c' - e") - (f - o", e")v =

(o "n - _', e" - e¢) v ---- (F_.,e"- Ee _ , e" - ec') v.

IfE is positive definite, U(e" - e") > 0 and consequently

(24) _i

(25)

' Irl r<rl_, if y>O. (26)

If fi is kinematically admissible, I'I_, exceeds the exact Potential energy as shown below. R follows

that to improve solutions in energy we expeet to take >, > 0. Thus principles associated with y < 0

have limited practical interest.

I
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F Let FI (u) denote the exact potential energy

ri(u) = ½(#, e) v - (b, u)v - [i, u]s, (27)

where or and e denotes the exact stress and strain field, respectively. If fi is kinematically admissible

and thus satisfies [fi = d]s,, then the energy distance from H_, (fi) to the exact functional (27) is

(see e.g. §34 of Gurtin 4)

!

E:

l'It - l'I = ½(_' - =, e"- e)v = U(e" - e) (28)

Optimal Approximation. To derive an "energy balanced" approximation we impose the condition

H[' = FI, which yields

U(e u - e) (o" - o', e" - e)

Fop, = UCe" - e¢) = (o _ - 8", eu - ea)" (29)

For example, if we assume that the exact stresses and strains lie halfway between the approximate

fields,
1 o

o" = ½(o -u + &), e = iCe + eU), (30)

then Yop, = ¼.

THREE-FIELD DISCRETIZATION

i To construct a 3-field finite element approximation based on H[', globally assume*

(fi = Nq)v, (8" = ka)v, [i = Ss]s ,

I
(31)

Here matrices N, A and S collect generalized displacement shape functions, internal stress modes

and boundary traction modes, respectively, whereas column vectors q, a and s collect generalized

displacementst, stress mode amplitudes, and surface traction amplitudes, respectively. The derived
fields are

I

I

i"

(e" = DNq = Bq)v, (o _ = EBq)v, (e ¢ = E -l& = E-IAa)v. (32)

Inserting these expressions into l'I[, we obtain the algebraic form

rl_(a, q, s) = ½(1 - F)qrK,,q - ½FarCa + yqrQa-qrf d - srRq- srf,. (33)

The matrices K_, C, Q and R that appear in (31) are called displacement-stiffness, compliance,

leverage and boundary-dislocation maa'ices, respectively, and are given by

K, - (BrEB)v. C = (ArE-IA)v. Q = (BrA)v. R = [SrN]s_ (34)

* Following usual practice in finite element work, the components of o"and e will be arranged as column

vectors whereas the modufi in E will be arranged as a square symmetric matrix.

1" Ifq are nodal displacements, N contains conventional shape functions. But for the present study we need
not specialize to that level.

10
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Both K,, and C are symmetric. The forcing vectors are _

fq = (Nrb)v + [Nrt]s,, fs = -[sra]s, (35)

Vector fq contains generalized forces (conjugate to q) whereas fs contains generalized displace- t.

ments. Making (33) stationary yields the linear system

-yC
YQ

0
ol{a}{°/(1-y)Ku -R r q = fq (36)

-R 0 s f_
I

The first matrix equation is the discrete analog of (e" = e*') v in (23) and expresses internal compat-

ibility. The second one is the discrete analog of the next three relations, and expresses equilibrium.

The last relation is the discrete analog of [u = fi]s_ and enforces boundary compatibility.

Since there is no force term on the first matrix equation, the stress amplitude vector a can be readily

condensed out if C is nonsingular, and we get

K = (1 - y)K_ + yQC-lQ r = (1 - _,)Ku + yl_ (38)
where

is the effective stiffness matr/x. This is a ),-weighted combination of the displacement-assumed

stiffness matrix Ku and the stress-assumed stiffness matrix K,r = QC-IQ r. If the assumed

displacements satisfy [fi = dis,, the contribution from [i, fi - a]s, drops out and we are left with

the conventional stiffness equations

Kq = f,r (39)

12Vln'ATION PRINCIPLE

The famous limitation principle of Fracijs de Veubeke 5 takes on a particularly striking algebraic

representation in terms of the parametrized matrix system (36). This principle applies when the

derived stress field o _' is contained in the assumed stress field &:

& _ o _ - ED_ (40)

This inclusion can be expressed in matrix form as

&=Aa=EBaq+Axax=[EB Ax]{'}az (41)

Here a e contains the same number of entries as q whereas Ax contains "excess" stress modes.

Inserting (41) into (36) and calling Q._ = (BrAx)v and Cxx = (ArE-1Ax)v we get

-yK. -v(h yK_

-yQx r -yCxx yQr

0 0 -R

11
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I

I .ii

I

}{°/ ,o ax 0 (42)
-R r q -" fq

0 s fs

?
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F
the extra stress modes reduces (42) to

Fgu (1 - Ku -R r q -- fq

0 - 0 s f,

I

E

i

I

[i,

The first two matrix equations give aq = q and ax -- 0. Dropping the equations associated with

(43)

which obviously condenses to (37) with K = K,, for any F. The solution (q, a, s) becomes

independent of y. In other words, it is useless to inject additional degrees of freedom in the stresses

beyond o" if the three-field.variational principle is used. Furthermore, if o" ---"& there is no point

in using anything else than the potential energy principle y = 0.

In fact the limitation principle expresses nothing more than the algebraic identity, valid for any y,

-yX -yY
_yyr -FZ

yX FY
,xT{ / {0/yyr 0 -" 0

(1 -),)x.] x Xx
(44)

where X is symmetric and Y, Z arbitrary.

Constant Stress Assumption. If the derived field o 'a varies over V, assuming a constant stress field

& for & is a safe way to get around the limitation principle. In this case it is convenient to take

a --- & and A = I (the identity matrix) in (31) so that (6" -- &)v. Then the stress-assumed stiffness

matrix is

= t,grgg (45)

where v denotes the total volume u ---- (1)v, and B and E are the over-the-volume averages

ffiO_)v/u, E-' = (E-l)v/u (46)

The effective stiffness matrix (38) is a weighted average of K, and g_,. Since g_, is typically rank

deficient, F -- 1 is excluded.

TWO-FIEIX) DISCRETIZATION

I..

I

!

I/

If the relation [t = o',,]s is imposed a priori as an essential boundary condition, t is no longer

an independently varied field, and rI_, becomes a two-field functional. The last finite element

assumption of (31) is replaced by

[P' = o'n = Ana]sd, (47)

where A,, denotes the normal projection of A on Sa, and the finite element equations become

--),C y(Q+p)r
(48)

with

P-'- [NTA,,]s, fa = [Nra]s_ . (49)
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A range analysis such as performed in the previous subsection reveals that the Limitation principle

does not generally apply if [u _ a]s_. The effect of the additional stress modes is to improve the

satisfaction of boundary compatibility. But if the assumed displacements satisfy [u = a]s,, P and

fa drop out and the limitation principle again holds.

RELATED FI2qlTE ELEMENT MODELS

The parametrized functional rI_, may be used to construct finite element models by treating each

element as a body of volume V and the element boundary as S. These elements differ from

conventional ones in the appearance of the parameter y. The element type will depend on the

number of independent fields and the interelement continuity imposed on them. The most useful

combinations axe listed in Table 1.

Table 1 Some Finite Element Models Derivable From H_,

i
I

I

F.
No of lnterelement Connected Condensed Resulting Limitation

independent continuity on* freedon_s freedoms FE principle
fields fi _ [ model, applies?

2 e d x q a "stress relaxed"

displacement yes

2 d c 1 s q continuous-stress

traction-connected hybrid no

3 d d e s q, a discontinuous-stress

traction-connectod hybrid yes

* c=continuous, d--discontinuous, x--not needed, l--linked to _ via (47)

i

I

NUMERICAL EXAMPLE

The application of the preceding .theory to finite element development is illustrated with a simple 2D

element that belongs to the first class listed in Table 1. Consider a rectangular 4-node plane-stress

element referred to the x ----xl and y _----x2 axes located along the rectangle sides. The element

has constant thickness h, x-dimension L, y-dimension H = pL, and is made of isotropie elastic

material with elastic modulus E and Poisson's ratio v. The internal displacement field (u -----u t,

v - u2) is constructed by the usual bilinear assumption, which satisfies interelement continuity.

The internal stress field (trxx m trli, tryy -- cry,, r.Ty -- trt2, others zero) is constant. An independent

surface traction field is not needed. The question investigated here is the value of y that optimizes

the behavior of the element in pure in-plane bending along the x axis.

The element freedom arrangement is

qr=(ul u2 us u4 vt v2 03 v4}, ar=(trxx t% r_y}. (50)
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F The exactly-integrated conventional displacement stiffness is given by

I

.Ku -"

kl k2k3k4
kl k4 k3

k_ k2

kl

symm

ks g_ kv
ka k7 k_
k7 ks ks
k_ ks k_

kto kn

k9 kl2

k9

k$

kl2 '

kll

klo

(51)

F

F

E

where

Eh
kt = -_(1 - v + 2p2),

Eh
k4 = -_-7(1 - v - p2),

k7 -- --_(1 + 17),

klo= -_(1 - (I- v)p2),

[!i
1 [" -1 1

L 0 0

I B-'2-L -11p -lip

Eh 4p2),k2-- l_(1-v-

k_= --_(1 + 17),

k8=--_¢1 + 317),
gh

kil = -- 1-i_(2 + (1 -- 17)pZ),

The stress-assumed stiffness Ke is given by (45), in which

-- E r|1 v

I ERE(-- 17 1L1 -v 2 0 0

1 -1

0 0

1/p 1/p

o]0 ,

[.

E

[i.i
:'::?

I

!

[!:

Eh
k3 "" - l-_(1 -- 174- 2p2),

ks= --_(t - 30,
Eh

k9 -" --_-(2 4- (I - 17)p2),

-- E--_-h¢'2 -- (1 -- 17)02).k12 -" 120 _"
(52)

o o 1--liP -lip 1/p
-1 1 1

v = hilL = phL 2.

(53)

K is the weighted combination (38). The test displacement field is that of pure bending about x:

u = -,cxy , o = ½xx2 (54)

where r is the deformed beam curvature under the displacement field. Calculation of the energy

ratio (29) over the element through MACSYMA yields

1--17

}'opt = 1 -- 174" 2p 2" (55)

For a square element, p = 1 and 7'or, varies from 1/3 to 2/10 as v changes from 0 to 1/2. This result

was checked by solving the classical 4:1 cantilever beam problem (see Re(. 6, p. 49) for v = 0

with meshes of square elements. The values listed in Table 2 pertain to the two load cases of pure

bending moment and parabo]ically-varying end shear, and are reported as the ratio of the computed

to the exact tip displacement.

It is seen that this "stress relaxed" displacement model verifies (55) in that 7' = 1/3 yields signifi-

candy better accuracy. However, the fact that the optimal 7' depends strongly on the element aspect

14



Table2 Computed/ExactTip-DisplacementRatiosfor Cantilever Problem (v = 0)

Mesh ), Constant moment End shear

1 x 4 0.0 0.6666 0.6631

1/3 1.0000 0.9794

2/3 2.0000 1.9291

1.0 oo* oo*

2x8 0.0 0.8889 0.8841

1/3 1.0000 0.9911

213 1.1142 1.1280

1.0 1.3333 1.31 !8

* Rank deficient

ratio makes this "weighted stiffness" approach of dubious practical value for elements of arbitrary

shape. The formulation discussed in Part II z attacks the optimal-element problem in a more general

way through field decomposition and energy orthogonality arguments.

OTHER PAR.AblETRITdkTIONS

A one-parameter family of strain-displacement mixed variational principles derived from the Hu-

Washizu functional (11) by eliminating the stress field can be represented as

n_Ca,_,i)= ½(_- #)(ca,e")- ½#(ca,_)v+ #(ca,e=)v- e', (56)

where 3 is a scalar. For,8 = 0 we recover again FI_, whereas if fl = 1 we obtain the Reissner-type

strain-displacement principle listed in Oden and Reddy 3 generalized with an independent t:

l'l_(fi, _, _) = -½(ca, _)v + (ca, e")v - P'. (57)

Continuing along this path, a two-parameter, fo.ur-field family that embed#, both FI_, and FI_ is easily
constructed as

rI_r (fi, _, &, t) = ½(1-/5 - y)Cca, e")v + (1 - fl)yTC&,e")v - ½(&,ea)v}

+ (1 - y)#{Cca, e')v - }(ca, _)v} - t".
(58)

This functional yields stress-displacement principles for/_ = 0 and strain-displacement principles

for y -- 0. Finally, the Hu-Washizu principle itself may be embedded in a three-parameter form

(59)

which obviously reduces to I'I_ for o_ = 1 and to l'l_r for _ = 0.

The superiority of one parametrized form variational principle over another as regards the construc-

tion of energy-balanced finite elements is not clear at this time.
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CONCLUDING REMARKS

The parametrization (20) of the stress-displacement variational principles provide a unifying frame-

work for the development of finite elements. This framework embodies the potential energy

and HcUinger-R¢issncr principles, and encompasses displacement-assumed elements, conventional

mixed elements and traction-connected hybrid elements. But it does not cover developments such

as displacement-connected hybrid finite elements, incompatible elements and the free formulation. _

To accomplish that one has to continue the process by introducing a d-generalized version of (20),

internal boundaries, internal-field energy-orthogonal splitting, and selective kinematic constraints.

These extensions are covered in a sequel paper. 2
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:

II. HYBRID FUNCTIONALS AND THE FREE FORMULATION

SUMMARY

A one-parameter family of d-generalized hybrid/mixed variational principles for linearelasticity isconstructed
following a domain subdivision. The family includes the d-generalized Hellinger-Reissner and potential energy

as special cases. The parametrized principle is discretized by independently varied internal displacements,

stresses, and boundary displacements. The resulting finite element equations are studied following a physically
motivated decomposition of the stress and internal displacement fields. The free formulation of Bergan and

Nyg/h'd is shown to be a special case of this element type, and is obtained by assuming a constant internal

stress field. The parameter appears as a scale factor of the higher order stiffness.

INTRODUCYION

This paper continues a study, initiated in Part I l, of parametrized stress-displacement variational

principles in linear elastostatics. The boundary value problem is as follows. We consider an elastic

body of volume V and surface S : S, U Sa. Surface tractions t are prescribed on S, whereas

displacements d are prescribed on Sa. The internal (volume) fields are displacements u, stresses or,

strains e and given body forces b. The internal field equations are e = Du, o" = Ee and D*o" = b

in V, where D = ½(V + vT), D* = -div, and E is the elastic modulus operator. The boundary

conditions are u = d on Sa and o'. = { on S,.

The reader is referred to Part I t for additional notational conventions. Therein the following

parametrized functional was introduced:

1 --

I'Ix(u, 6", i) = 1(1 - F)(cr a, eU)v - IF(&, eCr)v 4" 7(6", eU)v -- pt, (i)

where y is a scalar, and P' is the forcing potential

P'(a, i) = (b, a)v + a - a]s, + [{, a]s,. (2)

In this functional the volume fields u, e, o', and the surface field t are subject to independent

variations.

This functional "interpolates" the t-generalized Hellinger-Reissner and total potential energy func-

tionals FI_ and 1-I_,, which are obtained for y = 1 and y = 0, respectively. The qualifier "t-

generalized" means that the surface traction field/, is varied independently whereas in the conven-

tional form of those principles, the constraint [t = cr.]s is enforced apriori.

17



u&

Figure 1. Internalinterface example.

INTERNAL INTERFACES

In the following subsection an alternative version of (I) is constructed, in which boundary displace-

ments d can be varied independently rather than boundary tractions t. These displacement play the

role of Lagrange multipliers that relax internal displacement continuity. Variational principles of
this form will be called d-gene.ralized.

The choice of d as independent field is not variationally admissible on Sd or S,. We must therefore

extend the definition of boundary to include internal interfaces collectively designated as $i. Thus

s: S_u S.u s_ O)

On Si neither displacements nor tractions are prescribed. A simple case is illustrated in Figure 1,
in which the interface Si divides V into two subvolumes: V + and V-.

An interface such as Si on Figure 1 has two "sides" called S:" and S,.", which identify' Si viewed as

boundary of V + and V-, respectively. At smooth points of Si the unit normals n + and n- point in
opposite directions.

The integral abbreviations of Part I generalize as follows, using Figure I for definiteness. A volume

integral is the sum of integrals over the subvolumes:

(f)v de=fly+ fdV+fv_ fdV. (4)

An integral over Si includes two contributions:

[g]_ d_ff_z+dS+fg'dS, (5)

where g+ and g- denotes the value of the integrand g on S+ and S,.", respectively. These two values

may be different if g is discontinuous or involves a projection on the normals.

18



PARAMETRIZED d-GENERALIZED MIXED PR/NCIPLE

Variational Principle. The d-generalized counterpart of FI_, is

1
Flay(ii,&, d) = :(I - y)(c¢, eU)v - ½y(&, e*')v+ y(&, e")v - pa.

This agrees with (I) except for the forcing potential, which is

pa(fi, &, d) = (b, fi)v + [&,,, fi - als, + it, ills, + [fi-,, fi - a]s,.

Defining the y-weighted stresses

°"× defy&+(l_y)o.,, inV,

the first variation can be written

Y

(6)

(7)

o'.v _°=fear. + (1 - y)o-_ on S. (8)

(9)

Since d is unique on Si whereas 6 and & are generally discontinuous on it, the interface integrals

in (9) split as follows:

[fin " ×-#., 8,a],,=[_2 - a,'+.,8a+],:+[e_;- o-.-,-,8,a-I:

,a],,= ,a],:+[o:,,a]: = ,a],,

(1o)

Setting the first variation to zero and taking (10) into account, the Euler equations and natural

boundary conditions for y _ 0 are found to be

(e" = e")v, (divo "× +b = 0)v, [o'./ =i]s,, [tr,, = o'_]s_, [u= a]s_,

+ [crV.- + = = dis,, [¢r+ + _r;- = 0Is,.[u_r++ o',, = O]s,, cr-d= O]s,,[u+ u-

Ify = 0 thefirstequation,(e" = e")v, drops out.

Modified Forcing Potential.Substitutingd inlieuof u inthepotential(7)

(II)

Pa(a, e,, a) = (b, a)v + [_., a - a]s, + [i, a]s, + [_., a - a]s,. (12)

is not variationally admissible because incorrect Euler equations result. This form has appeared,

however, in publications dealing with mixed-hybrid methods. A correct potential that resembles
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(12) can be obtained in two stages. First, surface terms [&,., fi - a]s, and [6"n, fi - d]sd are added

and subtracted to produce

t,d(fi, e,. a) = (b. fi)v + [e,., a - dls_+ IOn- i. a]s, + [i. als, + ion. a - a]s. (13)

Second, t is assumed to be in the range of &,, and the condition [&,, = t]s, satisfied a priori, reducing

(13) to

Pa(fl, &, a) = (b, fi)v + IOn, a - d]& + [i, d]s, + [On, fi - d]s. (14)

This expression differs from (12) in that the all-important surface dislocation integral is taken over

S rather than Si. Further simplification results if the displacement boundary conditions [d --- d]&

are exactly satisfied:

Pal(a,_, a) = (b, a)v + [_,a]s, + [e,., a - a]s. (15)

This expression of pd is used in the sequel, as modifications required to account for the case

[d _ d]sd are of minor importance.

FINITE ELEMENT APPROXIMATIONS

In this section the finite element discretization of Flav is studied. Assume formally

(fi=Nq)v, (&=Aa) v, [d=Vv]s. (16)

Here matrices N, A and V collect generalized-displacement shape functions, internal stress modes

and interface displacement modes, respectively, whereas column vectors q, a and v collect gen-

eralized internal displacements, stress mode amplitudes, and generalized interface displacements,

respectively. The assumed volume fields need not be continuous across S. The derived fields are

(e"=DNq=Bq)v, (o a'=EBq)v, (e¢=E -l&=E-IAa)v. (17)

Inserting these expressions into rid with the forcing potential (15), we obtain the algebraic form

Flay(a, q, s) = ½(1-y)qrKuq-½YarCa+ yqrQa-qrpa+vrLa-qrfq-vrfv. (18)

where

K,, = (BrEB)v = Kur, C = (ArE-tA)v = C r,

L = [VrAn]s, P = [NrAn]s, fq = (Nrb)v,

Q = (BrA)v,

f_ = [Nrils,.
(19)

The matrices K,,, C, Q, L and P are called internal-displacement-stiffness, compliance, leverage,

force-lumping, and boundary dislocation matrices, respectively. Making (18) stationary yields the

linear system

),Q - P (1 - y)K,, 0 q = fq (20)

L 0 0 v fu
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The first matrix equationis thediscreteanalogof thefirst, fifth andeight relationsin (11), and
expressesinternaland boundary compatibility. The third equation is the discrete analog of the

last relation, and expresses equilibrium across Si. The second one is the discrete analog of the

remaining relations, and expresses internal and boundary equilibrium.

Stress Condensation. If C is nonsin_malar, the stress amplitude vector a can be statically Condensed

from (20), giving

fq } (21)y-lK_ v

in which

Kq = (I - y)K,, + yQC-tQ r - (pC-IQ r + QC-IP r) + y-Xpc-Ipr,

Kqv = LC -1 (QT _ y-tpr), Kv = LC-IL r. (22)

The coefficient submatrices will be identified as follows: Kq is the internal stiffness matrix, Kv

is the boundary stiffness matrix, and Kqo is a internal-to-boundary coupling stiffness. The in-

ternal stiffness is similar but not identical to the effective stiffness matrix of t-generalized mixed

principles 1. We now proceed to reinterpret these results in terms of hybrid elements.

HYBRID ELEMENTS

Approach. The preceding treatment is relevant to the construction of displacement-connected hybrid

elements. Hybrid elements based on more restricted assumptions were originally constructed by

Pian and coworkers 2-4. The principal features of the hybrid approach are:

(I) The domain is subdivided into elements before the variational principle is established.

([I) Continuity requirements across element boundaries are relaxed by introducing boundary trac-

tions or boundary displacements as Lagrange multiplier fields.

(m) All stress and internal-displacement degrees of freedom are eliminated (by either static con-

densation or kinematic constraints) at the element level.

Feature (I) says that hybrid functionals are effectively mesh-dependent, since the domain subdivision

process introduces element boundaries which must be treated as internal interfaces, and therefore

become part of the boundary portion Si. Previous developments remain valid if we reinterpret

"body" as "individual element, .... volume" as "element volume," and "surface" as "interelement

boundary."

Continuity and Connectors. The internal fields & and fi may be discontinuous across elements.

The boundary displacement field d, however, must be continuous on Si, i.e. it must have the same

value on adjacent elements. This conditions may be satisfied if a on an interface separating two

elements is uniquely interpolated by nodal values on that interface. It is natural to take such nodal

values as entries of v, which automatically becomes the vector of connected node displacements or

connectors.

FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element unless otherwise noted. The

element volume is V and the element surface is S : Sa t3 St U Si. The v subvector contains the
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element-connectorde_eesof freedom,whereasq andacontaininternalfreedoms.Togainfurther
insightinto thestructureof theelementequationsandto link upeventuallywith thefreeformulation,
weproceedto decomposebothinternalelementfieldsasfollows.

Stress Decomposition. The assumed stress field, &, is decomposed into a mean value, &, and a

deviator:

& = 6" + a'h = 6" + Ahah, (23)

in which

6" -" (6")V/U, (Ah)v = 0, (24)

where v = (1) v denotes the element volume. The second relation in (24) is obtained by integrating

(23) over V and noting that ah is arbitrary.

Internal Displacement Decomposition. Next, the fi assumption is decomposed into rigid body,

constant strain, and higher order displacements:

fi = Nrq, + Nc% + Nhqh. (25)

Applying the strain operator D = ½(V + V r) to fi we get the associated strain field:

e" = DNrq, + DNcqc + DNhqh = Brq,. + Bcqc + Bhqh. (26)

But Br "- DNr vanishes because Nr contains only rigid-body modes. We are also free to select

Bc = DNc to be the identity matrix I if the generalized coordinates qc are identified with the mean

(volume-averaged) strain values _". Then (26) simplifies to

e" =_"+e_=_"+Bhqh, (27)

in which

q,:= _" = (e")v /v, (Bh)v = O. (28)

Equation Partitioning.

degree of freedom partition

Assume that all elastic moduli in E are constant over the element. The

q .._a_

ah

induces the following partition of the element equations

qr

qh

--T --T --T "_T" -_,vE -l 0 -P, yvI - Pc --Ph

0 -yCh _pr _p_ vQ_ -- pThh Lrh

-P_ Ph_ 0 0 0 0

yvI - Pc Phc 0 (I - v)vE 0 0

-Ph YQh - Phh 0 0 (1 - y)Kqh 0

- -L --Lh 0 0 0 0

22

(29)

O"

ah

qr =

qh

V

0

0

fqr

f_

(30)



where

Ch = (ATE-lAb)v, Qh -" (BTAh)v, Kqh - (BTEBh)v,

- N r ]Px "" [ xn]s, x = r,c,h, Phx --[Nx/'Ahn s' x --r,c,h

E = [vT]s, Lh = IV rAhn]s, fqx = (NTb)v, x = r, c, h

(31)

Integral transformations. Application of the divergence theorem to the work of the mean stress on

eu yields

(&, e")v = (&, _u + Bhqh)V v3.1"e u + 3.r(Bh)vqh = v3.re u

"- [3.n, U]S "- [3.n, Nrqr q- Nc _u + Nhqh]s "- 3.r(Prqr + Pc _u + Phqh)"

(32)

I'-Iefice,

Pr = 0, Pc = vl, Ph = 0. (33)

A similar analysis of the stress-deviator work (o'h, e")v does not yield simple forms for the Phx

matrices unless o'h is divergence-free, in which case

Phr = O, Phc = 0, Phh = Qh" (34)

Assuming (34) to hold, the element equations (30) simplify to

-yvE -I 0 0 -(l-y)vl

0 -vCh 0 0

0 0 0 0

-(1-_')vI 0 0 (1 - y)vE

0 --(1 -- Y)Qh 0 0

-L -Lh 0 0

o
q_ fqr

0 0 6u -- fqc (35)

(l -- _')Kqh 0 qh fqh

0 0 v fv

The stress freedoms 3. and ah may be eliminated by static condensation as before. To eliminate

q,, a kinematic transformation that uniquely determines the rigid body motion from the element

interface motion is constructed:

qr = Hrv (36)

where H_ is a rectangular matrix derived in Appendix 1. Elimination of 3", ah and q_ gives

where

I 0(1 -- y)Kqh + yKoh Korh

L-i_LE Kq_h y-IK_

U

V

_c

_h

, fv"_Hrfqr

Koh = QhChtQh r, Kqvh = LhC_IQh r, Kv = Kv + Koh,

K_ = v-lEE/r, Kwh -" LhChlL "T

(37)

(38)
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Mean Strain Elimination. Subvector _" may be eliminated in two ways. Static condensation gives

Kq_,h Ku + y-tK,,h v fu '-'1"H r fqr + lJ--1Efq¢

(39)

On the other hand, if_" is eliminated through the kinematic constraint _" = Hcv derived in Appendix
1,

, = r r (40)
Kqvh K v + y-IKvh v fu + Hr fqr + Hc fqc

where

(41)

The two methods furnish identical results if

Hc = v-lL r (42)

As discussed in Appendix 1, this relation may be obtained from the first matrix equation in (35)

if either ?' = 0, or eu = _ = E-I&. The last condition is obtained in the limit of a converged

solution as the patch test analysis of Appendix 2 shows. In practice any difference between (39)

and (40) for × # 0 is not significant, and (39) is preferable on grounds of simplicity.

First, assume that the internal stress field is constant, so there are no ah parameters.
reduces to

THE FREE FORMULATION

The free formulation of Bergan and Nyg_rd 5 was originally constructed as an incompatible dis-

placement model that passes a cancelling-tractions version of the patch test which Bergan and

Hanssen called the individual patch test 6. Here the formulation is reinterpreted in the context of a

displacement-connected hybrid variational principle.

Then (39)

fqh
(1 0 v (43)

The equations for qh uncouple. Consequently static condensation ofqh will not change the solution.

We have run into a displacement limitation principle. This leads to the second assumption: the

higher order internal displacement modes are eliminated by kinematic constraints that link qh tO

the boundary displacements:

Matrix Hh is derived in Appendix 1.

stiffness equations

where
m

Kb = Kv,

qh = Hhv (44)

Application of this constraint to (43) furnishes the final

Kv = [Kb + (1 -- y)Kh] v = f (45)

7" v-lLfqc Hhfqh. (46)Kh = HTI_hHh, "f= fu 4-H rfq,4" -4-
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In the free formulation, Kb and Kh receive the name basic and higher order stiffness matrices,

t scaling of Kh derived from energy-balancing studies was recommended byrespectively. A

Bergan and Felippa 7 for a plane stress element. This corresponds to taking _, = 3"

CONCLUDING REMARKS

It has been known 7 that the basic-stiffness part of the free formulation can be interpreted as a

constant-stress hybrid element. But the interpretation of the higher order stiffness within a varia-

tional framework has been difficult. A key result of this paper is that this can be accomplished by a

parametrized mixed-hybrid variational principle. Note that the free formulation cannot be obtained

within the conventional Hellinger-Reissner principle (?' = 1), since then the higher-order stiffness

vanishes and K = Ko is generally rank-deficient. And choosing y = 0 does not account for the

fact that the higher order stiffness can be scaled by a nonzero coefficient.

The variational framework is important because it allows consistent extensions of the free for-

mulation that are not obvious from a physical standpoint. For example: allowing more internal

displacement de_ees of freedom than boundary freedoms, i.e. m = dim(q) - dim(v) > 0. A

glance at (39) shows that m additional higher-order divergence-free stress fields have to be retained

so that the coupling stiffness Kqvh does not vanish. The reduction of qh can be then performed by

a combination of static condensation and kinematic constraints.
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APPENDIX 1: KINEMATIC CONSTR_M3qTS

One of the principal assumptions invoked in the free formulation is that the dimension of q is the same as that

of v and that the latter are physical node displacements. If so, evaluation of the expansion fi = Nq on the

element boundary S establishes the transformation

v = Gq (47)

where matrix G is square. Furthermore, suppose that G is nonsingular and can be inverted:

q = G-Iv = Hv, (48)

or, in partitioned form

["r1q = qc = Hc v.

qh Hh

(49)

The first matrix equation (the discrete compatibility equation) in (20) can be presented as

y(e" - e", A)v = Lrv - Qrq = (Lr _ QrH) v = (LrG _ Qr)q. (50)

Setting _, = 0 forces the constraint

L r = QrH or LrG = Qr (51)

to be satisfied. The same constraint emerges if 3/ # 0 and the finite element solution has converged in the

sense that e" = e" is constant over the element. Now carrying out the freedom partition (29) and assuming

divergence-free higher order stresses so that (34) holds, the constraint (51) partitions as

LO ["rlE rl-r0 0
0 Qr] Hc or Lr [Gr Gc Gh]=[_ OI Qr]-

l:lh

(52)

from which follow the relations

LrG, = 0, ErGo = vl, _r = rite, ErGh = 0,

L r G, = 0, Lr Gc = 0, L r = uHh, L r Gh = I.
(53)

The first four were obtained through other means by Bergan s and Berg'an and Nyg_d 5, who called them

the force orthogonality conditions on account of the physical interpretation of L as a "boundary nodal force

lumping" matrix.

APPENDIX 2: THE CANCELLING-TRACTIONS PATCH TEST

It is not apparent whether this element class passes the patch test for an arbitrary 7. To investigate this question

we use the sketch of Figure 1 and view the subvolumes V+ and V- as two elements connected along Si with
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an external traction boundary St. Both elements are in a state of constant stress _o. The prescribed surface

tractions are [t = _0,]s, and the body forces h vanish. We take (35) to be the governing equations for the

two-element assembly. The only nonzero forces are f_ = [Vrt]s,. The key observation is that

-- [vr]s - [V_]_, (54)

because the integral over S/vanishes because V is identical for both elements on account of interface com-

patibility conditions, and n+ = -n-. Similarly for Lb. One may verify that for any 3/the solution of (35)
is

b = #o = 6_, ah = O, _" = v-_Lrv, o_ = 0. (55)

The connector node displacement vector v satisfies

vEEErv = f, (56)

and consistency with the third of (55) is easily verified from (54). If the rigid body modes are eliminated,

v = Gc_". Since the constant stress solution is recovered, the patch test is passed for any value of y.

The physical meaning of this form of the patch test is that the interface virtual work is zero when the element

patch is in a constant stressstate9.
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THE EXTENDED FREE FORMULATION OF

FINITE ELEMENTS IN LINEAR ELASTICITY

SUMMARY

The free formulation of Bergan and NygL,'d (1984) has been successfully used in the construction of

high-performance finite elements for linear and nonlinear structural analysis. In its original form the

formulation combines nonconforming internal displacement assumptions with a specialized version

of the patch test. The original formulation is limited, however, by strict invertibility conditions
linking the assumed displacement field to the nodal displacements. The present paper lifts those

restrictions by recasting the free formulation within the framework of a mixed-hybrid functional that

allows internal stresses, internal displacements and boundary displacements to vary independently.

This functional contains a free parameter and includes the potential energy and the Hellinger-

Reissner principles as special cases. The parameter appears in the higher order stiffness of the free

formulation element equations.
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1 Introduction

Bergan and Nyg_rd (1984)have developed theso-calledfreeformulation(FF) forthe construction

of displacement-based,incompatiblefinimelements.This work consolidateda decade of research

of Bergan and cowork_rs atTrondheim, milestonesofwhich may be found inBergan and Hanssen

(1976),Hansscn et.a/.0979) and Bergan (1980). The products of thisresearchhave been finite

elements of high performance,especiallyforplatesand shells.Linearapplicationsam repormd in

theaforcrnentionedpapersas well as inBergan and Wang (1984),Bergan and Felippa 0985) and

F.elippaand Bergan (1957);whereas nonlinearapplicationsam presentedin Bergan and Nyg_u'd

(1985)and Nyglh'd(1986).By "highperformance" itismeant thatsolutionofengineeringaccuracy

can beobtainedwithcoarsemeshes ofsimpleelements,and thatthoseelementsexhibitlow distortion

sensitivity.

The originalFF was based on nonconforming displacerncntassumptions,theprincipleofvirtual

work and aspecializedform ofIrons'patchfastthatBergan and Hans.sen(I976) calledtheindividual

element test.A key ingredientof the FF istheseparationof the element stiffnessmatrixintothe

sum oftwo parts,calledbasicand higherordbr stiffness,respectively.The basicpartisconstructed

forconvergence and the higherorderpartfornumericalstabilityand (inrecentwork) accuracy.

An intriguingquestionhas been: does the FF fitina variationalframework? This was partly

answer_l by Bergan and Fclippa(I985),who showed thatthe basicst/fines:partwas equivalent

to a constant-stresshybrid element. But persistenteffortsby the presentauthortoencompass the

higherorderstiffnesswithinahybridvariationalprinciplewere unsuccessfuluntilthedevelopment

of pammel=iz_ mixed-hybrid functionalsinFelippa(1989a,1989b). With the help of these morn

generalfunctionalsitispossibletoshow thattheFF isa very specialtypeof mix_-hybdd element

which does not fitwithintheclassicalHeIlinger-Reissnerprinciple.Inretrospectthe classification

ofFF elements ashybridsisnot surprising.Under mild conditionsstudiedintheAppendix, hybrid

elementssatisfyIrons'patchtestapriori,and theFF development has been founded on thatpremise.

To encompass theFF withinthehybridframework, the followingassumptionsmust bc invoked.

(I) A specifichybrid functional,identifiedas I'I_inthe sequel,isconstructed.This functional

depends linearlyon a parametery.

(_) Three fieldsarc assumed over each element:

(a) a constantstressfield,

(b) an internaldisplacement fieldu definedby nq generalizedcoordinatescollectedin

vectorq, and

(c) a boundary displacementfieldd definedby n_ nodal displacementscollectedinvector

Y.

Both d and u must mpre_nt _d body motions and constantstrainstatesexactly,

(lid The number of generalized coordinates, nq, equals the number of nodal displacements, n,,
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and the square transformation matrix G relating v = Gq is nonsingular.

In Felippa (1989b) it is shown that substituting the finite element expansions into IId, rendering the

functional stationary with respect to the degrees of freedom, and eliminating both internal fields by

a combination of static condensation and kinematic constraints, leads to the FF stiffness equations

in terms of the nodal displacements v. The parameter y appears as a coefficient of the higher order

stiffness. These stiffness equations can be readily implemented into any displacement-based finite

element code.

This variational pathway to FF is of interest for two reasons. First, it explains.the behavior of FF

elements as regards convergence, stability and accuracy. Second, it opens up the door to extensions

that are not obvious from a physical standpoint. Two such extensions involve: retaining higher

order stress fields, and allowing more internal displacement modes that nodal displacements, that

is, n,) > nv. The main purpose of this paper is to study these two extensions, which are shown to

be closely related. The resulting framework for deriving finite elements in elasticity is called the

extended free formulation (EFF).

2 Governing Equations

Consider a linearly elastic body under static loading that occupies the volume V. The body is

bounded by the surface S, which is decomposed into S : S_ U St. Displacements are prescribed

on Sa whereas surface tractions are prescribed on St. The outward unit normal on S is denoted by

n_ni.

The three unknown volume fields are displacements u -- ui, infinitesimal strains e --- e;/,

and stresses o" == o'i/. The problem data include: the body force field b --- bi in V, prescribed

displacements d on Sa, and prescribed surface tractions t -- _ on St.

The relations between the volume fields are the swain-displacement equations

e -- ½(vu + vTu) = Du

the constitutive equations

or • U = ½(ui.j + u/.i) in V, (1)

o" -- E e or _i/= Eijklee in V, (2)

and the equilibrium (balance) equations

-divcr = D*o" = b or o'0. i + bi --- 0 in V, (3)

in which D* = -div denotes the adjoint operator ofD = ½(V + vT).

The stress vector with respect to a direction defined by the unit vector v is denoted as o'), = o'.v,

or o'ui = o"U vj. On S the surface-trac_n stress vector is defined as

o-n = o'.n, or Gni _ Gun/.

With this definition the traction boundary conditions may be stated as

(4)

o',,= i or a,inj = _ on S,, .(5)
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and the displacement boundary conditions as

u'-d or ui = eli on Sa. (6)

3 Notation

Field Dependency. in variational methods of approximation we do not work of course with the

exact fields that satisfy the governing equations (1-3,5-6), but with independent (primary) fields,

which are subject to variations, and dependent (secondary, associated, derived) fields, which are

not. The approximation is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example ft. A

dependent field is identified by writing the independent field symbol as superscript. For example,

if the displacements are independently varied, the derived strain and stress fields are

e" = ½(V + Vr)fi = Dfi, o" = Ee" = EDfi. (7)

An advantage of this convention is that u, e and tr may be reserved for the exact fields.

Integral Abbreviations. Volume and surface integrals will be abbreviated by placing domain-

subscripted parentheses and square brackets, respectively, around the integrand. For example:

(f)v dd fvfdV, [f]s dej fsfdS, [f]se def fsfdS ' [f]s, de__.ffsfdS" (8)

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted

in the usual manner

 "fv  "fv fv(f, g)v = f.gdV = figi dV, (P, q)v = p.qdV = Pijqi) dV, (9)

and similarly for surface integrals, in which case square brackets are used.

Domain Assertions. The notation

(a = b)v, [a = b]s, [a = b]s_, [a = b]s,, (10)

is used to assert that the relation a = b is valid at each point of V, S, Sa and St, respectively.

Internal Interfaces. In the following subsections a variational principle is constructed, in which

boundary displacements d can be varied independently from the internal displacements u. These

displacement play the role of Lagrange multipliers that relax internal displacement continuity.

Variational principles of this form will be called displacement-generalized, or d-generalized for

short.

The choice of d as independent field is not variationally admissible on Sa or St. We must

therefore extend the definition of boundary to include internal interfaces collectively designated as

Si. Thus

S : Se U S, U S_. (11)
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Figure I. Internal interfaceexample.

On Si neither displacements nor tractions are prescribed. A simplecase is illustrated in Figure 1,

in which the interface Si divides V into two subvolumes: V + and V-.

An interface such as Si on Figure 1 has two "sides" called S + and Si", which identify Si viewed as

boundary of V + and V-, respectively. At smooth points of Si the unit normals n + and n- point in

opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 1 for definiteness. A

volume integral is the sum of integrals over the subvolumes:

(Y)v = f dV + f av. (12)
4-

An integral over Si includes two contributions:

[g]s, dc=.ffs÷ g+ dS + fsi. g-dS, (13)

where g+ and g- denotes the value of the integrand g on S + and S/-, respectively. These two values

may be different if g is discontinuous or involves a projection on the normals.

4 The Hu-Washizu Principle

There are several essentially equivalent statements of the Hu-Washizu functional of linear elasticity.

The starting form used here is the four-field functional

(tr , _) v + (&, - e) v - pa, (14)
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wherepa is the "forcing" potential

pa(fi, a, d) = (b, fi)v + [a,, fi - a]s_ + [i, fi]s, + [_n, fi - a]s,. (15)

The functional I'law is called d-generalized in the sense that the volume fields fi, e, o" and the surface

displacement field a are subject to independent variations, whereas in the conventional form of the

principle the relation [d = fi]SdUS, is enforced a priori. The superscript d is used to distinguish it

from the t-generalized variant

t - 1 e urlw(u, _, &, i) = _(o*, _)v + (&, - _)v - P', (16)

in which the surface tractions t are varied independently from the internal stress field &. This is

the starting form in the classical textbook of Washizu (1968). Parametrized versions of (16) are

studied in further detail in Felippa (1989a).

Functionals that are not d- or t-generalized will be called conventional. The three versions

differ only in the forcing potential term.

5 Parametrization

Constraining the Hu-Washizu functional (14) by selectively enforcing field equations and boundary

conditions apriori yields six functionals listed (in their conventional form) in Ch. 4 of the monograph

of Oden and Reddy (1983). Of particular interest for the present study are the d-generalized

Hellinger-Reissner functional

l-l_(fi, &, d) =-½(&, ea)v + (f, e")v - pa, (17)

as well as the d-generalized potential energy functional

a) = e")v - (18)

These two functionals are special cases of the following parametrized form

d -
l-iv(u, &, a) = ½(1 - y)(a u, e=)v - ½y(&, e_)v + y(&, eU)v - pd, (19)

where y is a scalar. If y = 1 and 0 we obtain the functionals liar and Fiae, respectively. Parametrized

forms, such as (19), of the elasticity variational principles were studied by Chien (1983).

de__fY&n + (1 - y)o'u, on S (20)

First Variation. Defining the y-weighted stresses

°" v def yf+(l_y)o "u inV, a_r

the first variation of (19) can be written

a _ 8&)v _ (div a._" _8FIe -- y (e" e", 4- b, Sfi)v - [i o'S,sills '

(21)
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Sinced is uniqueon Si whereas fi and & are generally discontinuous on it, the interface integrals

in (22) split as follows:

(22)

Setting the first variation to zero and taking (22) into account, the Euler equations and natural

boundary conditions for >, ¢ 0 are found to be

(e" = e _r)v, (div o "× + b = 0)v,

[or.y+ + crn÷ = 0]s,, [a._- + cry-= 0]s,,

[_r._= ils,, [cr_= _r.qs,, [u = a]s,,

[u+ = u- = d]s,, [_,+.+ c,-; = O]s,.
(23)

The constitutive equations do not appear since they are enforced a priori in li d. If y = 0 the first

equation, (e" = e_)v, drops out.

Modified Forcing Potential. Substituting d in lieu of u in the forcing potential (15)

Pa(Fa, &, d) = (b, U)v + [&n, a - als, + [i, d]s,+ [&n, u - a]s, (24).

is not variationally admissible because incorrect Euler equations result. This form has appeared,

however, in publications dealing with mixed-hybrid methods. A correct potential that resembles

(24) can be obtained in two stages. First, surface terms [&,,, R - dis, and [&_,/i - a]s_ are added

and subtracted to produce

Pa(a, &, d) = (b, u)v + [&,, a - a]s,, - [&, - i, u]s, + [i, d]s, + [&,, a - d]s. (25)

Second, t is assumed to be in the range of &,, and the condition [&n = t]s, satisfied apriori, reducing

(25) to

pa (fa, &, d) = (b, fi)v + [&,,, a - a]s, + [i, d]s, + [&,,, fi - d]s. (26)

This expression differs from (24) in that the all-important surface dislocation integral is taken over

S rather than Si. Further simplification results if the displacement .boundary conditions [d = a]s_

are exactly satisfied:

Pa(fa, &, d) = (b, U)v + [L d]s, + [&n, u - d]s. (27)

This expression of pa is used in the sequel, as modifications required to account for the case

[d _= {]]sd are of minor importance.
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6 Energy Balancing

Distances. Let U(_) = t(EE, e)v denote the strain energy associated with field E. We may

rewrite (19) as a potential-energy deviator

= n$ - ×v(e" - e'), (28)

because

y/2 = (&' e'_ - e")v - (fi" - tr", e")v -" (29)

(o "_ - _', e" - e'_)v = (Ee" - Ee a, e" - e=)v.

IfE is positive definite, U(e u - e") > 0 and consequently

FIr_a<lid if y >0. (30)

If fi is kinematically admissible, II d exceeds the exact potential energy as shown below. It follows

that to improve solutions in energy we expect to take y > 0. Thus principles associated with y < 0

have limited practical interest.

Let li (u) denote the exact potential energy

li(u) = ½(a, e)v - (b, u)v - [L u]s,, (31)

where tr and e denotes the exact stress and strain field, respectively. If fi is kinematically admissible

and thus satisfies [fi = a]s_, then the energy distance from l'I_,(fi) to the exact functional (31) is

[see e.g. §34 of Gurtin (1972)]

lid -- l'I = ½(_u _ or, e" -- e)v = U(e u - e). (32)

Adjusting y.

which yields

To derive an "energy balanced" approximation we impose the condition li d = li,

U(e" - e) (_ - o-, e" - e)
= (33)

yb - U(e" - e_) (_ - &, e" - e°)"

For example, if we assume that the exact stresses and strains lie halfway between the approximate

fields,

tr = ½(tr u + &), e = ½(e _ + e"), (34)

1 But as the exact stresses and strains for the elasticity problem are not generally knownthen Yt, = _-

in advance, the practical determination of Yt, has been based on application of (33) to element

"patches" under simple load systems, as discussed in Bergan and Felippa (1985) and Felippa and

Bergan (1987).
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Error Estimates. The straindifferencee" - e" may be used as a pointwise measure of solu-

tion accuracy, and the associated "dislocation work" U(e" - e") as an ener_ error measure for

applications such as adaptive mesh refinement.

7 Finite Element Discretization

In this section the finite element discretization of l'I_ is studied. Following usual practice in

finite element work, the components of stresses and strains are arranged as one-dimensional arrays

whereas the elastic moduli in E are arranged as a square symmetric matrix. The FE assumption is

globally written

(fi = Nq) v, (& = Aa)v, [d = YV]s. (35)

Here matrices N, A and V collect generalized-displacement shape functions, internal stress modes

and interface displacement modes, respectively, whereas column vectors q, a and v collect gen-

eralized internal displacements, stress mode amplitudes, and generalized interface displacements,

respectively. The assumed volume fields & and fi need not be continuous across Si. The derived

fields are

(e" = DNq = Bq)v, (o "_' = EBq)v, (ea = E -l& = E-IAa)v. (36)

Inserting these expressions into II d with the forcing potential (27), we obtain the algebraic form

rid(a, q,s) = ½(1- y)qrK.q - ½yarCa + yqrQa- qrpa + vrLa- qrfq - vrfv (37)

K,, = (BrEB)v = K r, C = (ArE-IA)v = C r, Q = (BrA)v,

where

L = [VrAn]s, P = [NrA,,]s, fq = (Nrb)v, fv = [Nri]s,.
(38)

The matrices K., C, Q, L and P are called internal-displacement stiffness, compliance, leverage,

nodal-force lumping, and boundary dislocation matrices, respectively. Making (37) stationary

yields the linear system

I -FC yQr _ pr
yQ-P (1-y)K,

L 0
L l/a} /o}0 q = fq

0 v fv

(39)

The first matrix equation is the discrete analog of the first, fifth and eighth relations in (24), and

expresses internal and boundary compatibility. The third matrix equation is the discrete analog of

the last relation, and expresses equilibrium across Si. The second matrix equation is the discrete

analog of the remaining relations, and expresses internal and boundary equilibrium.

It is shown later (in Section 9) that if the assumed stress modes in A are divergence free (self-

equilibrating), then P -- Q, and (39) simplifies to

-(1 - y)Q (1 - v)K. q -- fq . (40)

L 0 v fv

These results are now re-interpreted in terms of hybrid elements.
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8 Hybrid Elements

Approach. The preceding treatment is relevant to the construction of displacement-connected

hybrid elements. Hybrid elements based on more restricted assumptions were originally constructed

by Pian and coworkers; see Pian (1964), Pian and Tong (1969) and Pian (1973). From a modern

perspective, the principal features of the hybrid formulation are:

(A) The domain is subdivided into elements before the variational principle is established.

(B) Continuity requirements across element boundaries are relaxed by introducing boundary trac-

tions or boundary displacements as Lagrange multiplier fields.

(C) All stress and internal-displacement degrees of freedom are eliminated (by either static con-

densation or kinematic constraints) at the element level.

(A) says that hybrid functionals are effectively mesh-dependent, because the domain subdivision

process introduces element boundaries which must be treated as internal interfaces, and therefore

become part of Si. Previous developments remain valid if one re-interprets "body" as "individual

element," "volume" as "element volume," and "surface" as "interelement boundary."

Continuity and Connectors. The internal fields & and fi may be discontinuous across elements.

The boundary displacement field d, however, must be continuous on Si, i.e. it must have the same

value on adjacent elements. This conditions may be satisfied if a on an interface separating two

elements is uniquely interpolated by nodal values on that interface. It is natural to take such nodal

values as entries of v, which automatically becomes the vector of connected node displacements or

connectors.

9 Kinematic Relations

In this and subsequent sections we work with an individual element unless otherwise noted. The

element volume is V and the element surface is S : Sa U St 12 Si. The v subvector contains

no element-connector degrees of freedom, whereas q and a contain nq and na internal freedoms,

respectively. We shall assume that nq > no.

The first matrix equation (the discrete compatibility equation) in (39) can be interpreted as the

dislocation-energ3, balance statement

½y(&, e" - e_)v - ar(prq - Lrv)v = 0. (41)

Setting y -- 0 and observing that a is arbitrary, (41) forces the kinematic constraint

prq = Lrv (42)

to be satisfied.

obey

The same relation emerges if y ¢ 0 but the element displacements are forced to

(&, eu - ea)v = 0 (43)
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as an optimality condition which says that the work of the strain error over the assumed stress

field vanishes for arbitrary element motions. The constraint (42) plays a key role in subsequent

derivations. An immediate consequence is that the first matrix equation in (39) reduces to the

equivalent of (43), namely yar(-Ca + Qrq) = 0, thus, if 3/_: 0,

a = C-IQrq, or a = C-ILrv if P--= Q. (44)

Next, suppose that q and v are connected by the linear algebraic relations

v = Gq, (45)

q - Hv, (46)

where G is anv x nq transformation matrix and H is a nq × nv transformation matrix. The

determination of these matrices and their connecting relationships is discussed later. Using (45-46)

the constraint (42) may be stated in two ways:

pr = LrG, prH = L r. (47)

Elimination of a and q in (39) through (44)-(46), with account taken of the second of (47), yields

Kv = f, (48)

the external stiffness equations

in which

= _, [LC-tQrH + HrQC-tL r - LC-_L r] + (1 -K y)HrK,.H,

If P -- Q, system (40) reduces to (48) but with

K = yLC-IL r + (1 - y)HTK.H.

f = f_, + Hrfq. (49)

(50)

10 Internal Field Decomposition

To gain further insight into the structure of the element stiffness equations (48) and eventually link

up with the free formulation, we proceed to decompose both internal element fields as follows.

The assumed stress field, 6-, is decomposed into a mean value, &, and aStress Decomposition.

deviator:

in which

&=&+&h = &+ Ahah, (51)

& = (&)v/V, (Ah)v = 0, (52)

where v = (1)v denotes the element volume measure. The second relation in (52) is obtained by

integrating (5I) over V and noting that ah is arbitrary.
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Internal Displacement Decomposition. Next, the fi assumption is decomposed into rigid body,

constant strain, and higher order displacements:

fl -" Nrqr + Ncqc + Nhqh- (53)

Applying the strain operator D = ½(V + V r) to fi we get the associated strain field:

e" = DNrqr + DNcqc + DNhqh -- Brqr "at- Bcq_ + Bhqh. (54)

But Br = DNr vanishes because Nr contains only rigid-body modes. We are also free to select

Bc = DNc to be the identity matrix I if the generalized coordinates qc are identified with the mean

(volume-averaged) strain values _u. Consequently (54) simplifies to

e" = _" + e_ = _" + Bhqh, (55)

in which

qc = _" = (eU)v/V, (Bh)v = 0. (56)

Equation Partitioning. Assume that all elastic moduli in E are constant over the element. The

degree of freedom partition

a= , q= _" , (57)

ah qh

induces the following partition of the general element equations (39)

--T --T --T
-yvE -I 0 -Pr yvI - Pc -Ph

0 --yCh --PhTr -Pro gQhr - Prh

-Pr Phr 0 0 0

yvI - Pc Phc 0 (1 - y)vE 0

--Ph YQh -- Phh 0 0 (1 -- y)Kqh

Lh 0 0 0

_T_

0

0

0

0

&

ah

qr

_,,

qh

V

0

0

(58)

where

Ch = (AhrE-IAh)v, Qh -- (BhrAh)v , Kqh = (BhrEBh)v,

[ ] [ r ] ' x=r'c'h'Px-- Nxrn s' x-r,c,h, Phx= NxAhn s

E = [vTn]s, Lh = [VTAhn]S, fqx = (N_rb)v, x = r, c, h.

(59)
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Integral Transformations. Application of the divergence theorem to the work of the mean stress

on eu yields

(&, e")v = (&, _" + Bhqh)v = v&Te u + &r(Bh)vqh = v&re "

= [&n, fi]S "- [&n, Nrqr + Nee u + Nhqh]S = &r (erqr "_ Pc _u -[" Phqh).

(60)

Hence,

Pr =0, Pc = vI, Ph =0. (61)

A similar analysis of the stress-deviator work (&h, eU)v does not yield simple forms for the Phx

matrices unless &h is divergence-free, in which case

Phr -" O, Phc = O, ehh = Qh" .(62)

Hence P -- Q as claimed in Section 7.

(40):

Inserting (61-62) into (58) yields the partitioned form of

-yvE -I 0 0 -(1 - y)vI 0 _r &

0 --yCh 0 0 -(1- F)Qhr Lhr ah

0 0 0 0 0 0 qr

-(1 - y)vI 0 0 (1 - y)vE 0 0 _"

0 --(1 -- Y)Qh 0 0 (1 -- y)Kqh 0 qh

Lh 0 0 0 0 • v

0

0

(63)

Orthogonality Conditions. If the higher order stresses are divergence-free so that P - Q, the

relations (47) partition as

0 0

[: 0 I QTI "--[LL_] [Gr Gc Gh ]' [0 0 I
.:I = .r , (64)

whence the relations

LrG, = 0, LrGc = vl, LrGh = 0, E r = vHc,

L Gr = 0, L G, = 0, = =
(65)

The first four were obtained through other means by Bergan (1980) and Bergan and Nyg_rd (1984),

who called them the force orthogonality conditions on account of the physical interpretation of L

as a "boundary nodal force lumping" matrix in the free formulation studied below.

If the higher order stresses are not divergence free, the last four of (65) are replaced by

L_Gr = pT, L_Gc = PL, L_ Gh = PL,

LT = pTHr + PLHc + PLHh-
(66)
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11 The Free Formulation

The free formulation of Bergan and Nyg_d (1984) was originally conceived as an incompatible

finite-element displacement model that passes a cancelling-tractions version of the patch test which

Bergen and Hanssen (1975) called the individual patch test. Here the formulation is re-interpreted

in the context of the hybrid principle (19). The assumptions that lead to the FF are listed in the

Introduction and studied in further detail below.

Constant Internal Stress. The internal stress field is constant. Consequently there are no ah

parameters, reducing (58) or (63) to

- -yoE -1 0 -(1-y)vl

0 0 0

-(1-y)oI 0 " (l-y)vE

0 0 0

_ L 0 0

o Iolo o _ f_,
0 0 . _u = f¢¢

(1 - y)Kqh 0 qh fvh

0 0 v f,

(67)

Invertible G. Matrix G in (45) is constructed by nodal collocation, that is, by evaluating the

expansion fi = Nq at the element boundary nodes. This establishes the transformation

v=Gq=tG, Gc Gh] _[. (68)

!

According to the assumptions listed in the Introduction, matrix G is square and nonsingular so

inverting (68) we get

/'1 r"lqfG -l=Hv or q= _" = v= v-tL r v. (69)

L_ L u_

The FF Stiffness Equations. Eliminating 6" and q from (67) yields the FF stiffness equations

Kv = [Kb + (1 - y)Kh] v --- f, (70)

where

Kb = v-ILE-'L r, K, -- HrKv,H,, f-- f,, + Hrrfvr + v-'Lf w + H, fv,. (71)

In the free formulation. Kb and Kh receive the name basic and higher order stiffness matrices,

respectively. A ½ scaling of Kh derived from energy-balancing studies was recommended by

Bergen and Felippa (1985) for a plane stress element. This corresponds to taking y = ½. But in

general the value of y can be expected to be dependent on the type and geometry of the element.

As Kb is rank-deficient (except for the simplex elements) choosing F = 1, which corresponds

to the d-generalized Hellinger-Reissner functional (17), is not admissible.
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12 The Extended Free Formulation

In the extended free formulation (EFF) the number of internal displacement freedoms, nq -- dim(q),

is allowed to exceed the number of nodal displacement connectors n, --" dim(v). We can establish

the relation (68) as before, but matrix G will now be rectangular and cannot be directly inverted.

One way of circumventing this difficulty is to retain nq - nv = dim(as) higher order stress modes;

an alternative procedure is discussed in Section 13. The stress modes are assumed to be divergence

free so (62) holds. The available relations are

v = Gq, Chah -- L_v = Q_cb,, (72)

which can be combined to form the matrix system

oc0 C_'IQ_ ]

q,.
F"

qh

(73)

The matrix on the tight side is square, and invertible if G, Ch and Qh have full rank. Solving for q

and eliminating ah one obtains

I q = % = ah = v =Jh H_ + JhC;'Q[ L H,

(74)

where H_ and Jh result from the inversion process. Since H_Gh + JhC_-lQ r = I, we can express

H as

Hh =H_+I- 'HiG h . (75)

Having H available, replacing into (48-50) we obtain the EEF stiffness equations

Kv = [Kb + Kbh + (1 -- 7)Kh] v -- f, (76)

where I_, Kh and fare the same as in (71), and

l

l

Kbh = LhC['Lh. (77)

Is ),-- 1 now admissible? If Kb + Kbh has correct rank, yesl Curiously enough, if the body force

field b vanishes and _, ---- 1, (76) are precisely the stiffness equations for the original equilibrium-

stress-assumed hybrid elements of Plan (1964), which can of course be constructed without any

internal displacement assumptions. -
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13 Hierarchical Connector Augmentation

An alternativeapproachtobuildinganinvertibletransformationsuchas(73) consists of augmenting

v with nq - nv connector degrees of freedom collected in subvector vx. These must be selected to

give a square transformation of the form

Gc Gh _.
0 Gx

qh

(78)

If this approach is followed, it is important to choose vx in hierarchical fashion so that the expanded

G has the structure shown above. In other words, vx must not be "excited" by rigid body or constant

strain motions. Otherwise the interelement compatibility of boundary displacements is generally

violated for such motions, and the patch test discussed in the Appendix fails.

Inversion of (78) provides the H matrix. The FF stiffness equations (70) can be constructed

with the strain-energy contribution from vx flowing to the higher order stiffness Kh. Finally, the vx

freedoms can be statically condensed.

Which EFF approach is better? The decision seems to be element-dependent. The choice

primarily hinges on whether it is easier to choose divergence-free stress modes than hierarchical

connectors while preserving element invariance. If both approaches appear equally feasible, there

is not presently enough experience to decide which one is preferable.

14 Concluding Remarks

The qualifier free in "free formulation" was meant to emphasize "freedom from conformity require-

ments" that are a pervasive pan of the conventional displacement formulation, and the possibility

of constructing the basic and higher order stiffness contributions through largely independent as-

sumptions. But when the FF is studied from a variational standpoint, several constraints become

immediately apparent. The extended FF releases the most troublesome one at the cost of buying

more complicated stress assumptions, or additional hierarchical connectors. So it is fair to state

that the admirable goal of absolute freedom has not yet been attained.

The development of the EFF as reported here was motivated by difficulties encountered in the

construction of the following elements:

3-Node Plane Stress Triangle with Nodal Rotations. Similar to the element constructed by Bergan

and Felippa (1985), but with a fully quadratic internal displacement field. Thus n_, --- 9, nq = 12

and three additional self-equilibrating stress fields are needed.

4-Node Tetrahedron with Nodal Rotations. The extension of the previous element to 3D has nv "- 12,

nq -- 18 and six additional stress fields are needed.

Assuming fully quadratic internal displacement fields eliminates the higher-order mode selection

difficulties discussed by Bergan and Felippa (1985). Progress in the derivation of these elements

will be reported in subsequent papers.
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Appendix A. The Cancelling-Traction Patch Test

It is instructive to study whether this element class passes the patch test for an arbitrary 3/. To investigate this

question we use the sketch of Figure 1 and view the subvolumes V + and V- as two elements connected along

Si with an external traction boundary S_. Both elements are in a state of constant stress oo. The prescribed

surface tractions are [t = co.]s, and the body forces b vanish.

• First take (63) to be the governing discrete equations for the two-element assembly. The only nonzero

forces are f, = [VT_]&. The key observation is that

E = [V ls = [V ls,, (79)

because the integral over & vanishes as (V+ = V-)s_ on account of the interface compatibility conditions
stated in Section 8, and n÷ = - n-. Now for any y it can be verified that the solution of (63) is that demanded

by the patch test, namely

_'=¢o=5 j', ah =O, q, =arbitrary, _"--E-l&0, _=0, vfLr60+G,q,. (80)

In checking this assertion one finds that the following relations, listed in (65), must be satisfied:

LrGr--0, LrGcfvI, LrGc=0, LhG,=0. (81)

If instead we take the more general equations (59), verification of the solution (81) demands that

P,=0, Pc =el, Ph=0, Par,=L_G,. Pr cfL rGc, prfL rGh. (82)

The first three follow from the divergence theorem as shown in (60). But the last three, listed in (66), are a

consequence of the kinematic constraint (43), which is thus directly correlated to satisfaction of the patch test.

As noted by Fraeijs de Veubeke (1973), the physical meaning of this form of the patch test is that the

interface virtual work is zero when the element patch is in a constant stress state.
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DEVELOPMENTS IN VARIATIONAL METHODS FOR

HIGH PERFORMANCE PLATE AND SHELL ELEMENTS

ABSTRACT

High performance elements are simple finite elements constructed to deliver engineering

accuracy with coarse arbitrary grids. This paper is part of a series on the variational foundations

of high-performance elements, with emphasis on plate and shell elements constructed with the free

formulation (FF) and assumed natural strain (ANS) methods. In this paper, we study parametrized

variational principles that provide a common foundation for the FF and ANS methods, as well as

a combination of both. From this unified formulation a variant of the ANS formulation called the

"assumed natural deviatoric strain" (,"aN'DES) formulation, emerges as an important case. The first

ANDES element, a high-performance 9-dof triangular Kirchhoff plate bending element, is briefly

described to illustrate the use of the new formulation.

1. INTRODUCTION

For 25 years researchers have tried to construct "best" finite element models for problems in

structural mechanics. The quest appeared to be nearly over in the late 1960s when high order dis-

placement elements dominated the headlines. But these elements did not dominate the marketplace.

The overwhelming preference of finite element code users has been for simple elements that deliver

engineering accuracy with coarse meshes. These will be collectively called high performance

elements, or HP elements.

1.1 Attributes of HP Elements

Approaching that general goal gives rise to a myriad of more concrete requirements which

are supposed to be addressed in some degree during element development. Such requirements are
listed in Table 1.

Some of these requirements are obvious. For example, low distortion sensitivity is a conse-

quence of trying to achieve satisfactory accuracy with arbitrary meshes. But other items listed in

Table I call for some explanation.
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Table l - Target Requirements for High-Performance Elements

• Simple: few freedoms, all physical, preferably at comers only

o Convergent

• Frame invariant

• No locking

• Rank sufficient: no spurious modes

• Balanced stiffness: not too rigid, not too flexible

• Stresses as accurate as displacements

• Low distortion sensitivity

• Mixable with other elements

• Economical to form

• Easily extendible to nonlinear and dynamic analyses

• Effective local error estimator for mesh adaptation

The first and foremost requirement is that the element be as simple as possible. This is in

sharp contrast to the "baroque FIE period" of 1965-1975 that lauded luxuriantly ornate elements and

culminated with the development of very complex models, including elements with nonphysical

degrees of freedom. One source of this retrenchment has been feedback from users of general

purpose, finite element programs. As use of these programs expanded to more engineers without

deep knowledge of "what's itiside the black box" the trend in finite element model construction

veered toward the "simplest elements that will do the job" Further impetus is provided b2¢the gradual

realization that high accuracy of complex elements in linear elastostatics does not necessarily carry

over to dynamic and nonlinear analyses.

The balanced stiffness requirement also deserves comment. It follows from the goal of

attaining reasonable accuracy with coarse meshes. This is illustrated in Fig. 1, which shows a

convergence study of a classical model problem: the bending of a simply supported square plate

under a concentrated central load. The mesh contains 2 x N × N trian_es over a plate quadrant.

A target "accuracy band" of 4-1% is taken, somewhat arbitrarily, as representative of engineering

accuracy for this rather simple problem. The convergence characteristics of several triangular

elements are taken from the extensive study reported in Ref. 2. Although most elements converge,

some are too stiff, while others are too flexible, and generally do not enter the accuracy band until

48



2O

15

10

DKT(AI

DKT(B)

BCIZ

HCT

BC_Z2

J

t 2 3 4 6 8

Number of elements along quadrant side

Fig. 1. Conve_ence study of several plate bending triangular elements

as reported in Ref. 2. The FF results are from Ref. 8.

the mesh is fairly refined (N _> 8). On the other hand, the results labeled 'FF', obtained with a

plate element based on the free formulation (FF) discussed later, lie within the band for all meshes.

The balanced stiffness requirement should not be confused with fast asymptotic convergence

forfine meshes. Simple elements cannot effectively compete with higher order elements in this

regard, and are not effective in applications demanding very high accuracy. What is important is

how good are the results for coarse meshes.

1.2 Constructing liP Elements

The search for HP elements began seriously in the mid- 1970s and now represents an important

area of finite element research in solid and structural mechanics. Many ingenious schemes have

been tried: reduced and selective integration, incompatible modes, mixed and hybrid formulations,

stress and strain projections, the (FF) formulation, and the (ANS) formulation. Many researchers

are developing such elements. The common theme of the investigations is:
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Abandon the conventional displacement formulation

Several techniques researchers use in their quest to build better elements are itemized in Table

2. Many of these were introduced over 20 years ago, but only recently a concerted effort has been

made to combine several tools to produce HP elements. For example, the present work draws on

items 1, 2, 3, 8, 10, 11, and 12 of Table 2.

Table 2 - Tools of the Trade

Technique Year Introduced

1. Incompatible shape functions early 1960s

2. Patch test 1965

3. Mixed and hybrid variational principles 1965

4. Projectors 1967

5. Selective reduced integation 1969

6. Uniform reduced intevation 1970

7. Assumed strains 1970

8. Energy balancing 1974

9. Directional integration 1978

10. Limit differential equations 1982

11. Free formulation 1984

12. Assumed natural strains 1984

1.3 Objective of Present Work

This paper is part of a series (Refs. 9-12, 15-16) describing how several HP element con-

struction methods can be embedded within an extended variational framework using parametrized

hybrid functionals. Particular attention is focused on merging the last two items in Table 2.

The general plan of attack for this unification is flowcharted in Fig. 2. Box connections

indicated with dashed lines are not dealt with in this paper. The variational extensions, shown on

the left of Fig. 2, involve parametrization of the conventional elasticity functionals and treatment

of element interfaces through generalizations of the hybrid approach of Refs. 20-23.
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Fig. 2. Program of attack on the variational formulation of Ht ) elements

The effective construction of HP elements relies on devices, sometimes derisively called

"tricks" or "variational crimes," that do not fit a priori in the classical variational framework.

The range of tricks spans innocuous collocation and finite difference constraints to more drastic

remedies such as selective integration. Despite their unconventional nature, tricks are an essential

part of the construction of high-performance elements. Collectively, they represent a fun-and-games

ingredient that keeps the derivation of HP finite elements a surprisingly enjoyable task.

The present treatment "decriminalizes" kinematic constraint tricks by adjoining Lagrange

multipliers, hence setting out the ensemble on proper variational foundations. Placing formulations

within a variational framework has the great advantage Of supplying the general structure of the

stiffness matrices and forcing vectors of high performance elements, and providing theoretical

coherence for the systematic derivation of element classes by a combination of techniques.
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2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The body

is bounded by the surface S, which is decomposed into S : Sa U St. Displacements are prescribed

on Sd, whereas surface tractions are prescribed on St. The outward unit normal on S is denoted by

n --_ ni.

The three unknown volume fields are displacements u -----u;, infinitesimal strains e - eij,

and stresses cr ------crij. The problem data include: the body force field b -- bi in V, prescribed

displacements a ------di on Sa, and prescribed surface tractions { --= _/on St.

The relations between the volume fields are the strain-displacement equations:

e = _'_tVu + Vru) = Du

the constitutive equations:

o'= Ee or

or eij = ½(uij + u/.i) in V, (1)

O'ij = Eijt_ekt in V, (2)

which will be assumed to be invertible, and the equilibrium (balance) equations:

-div o- = D*o" = b or _rij.j + bi = 0 in V, (3)

in which D* =-div denotes the adjoint operator of D = ½(_7 + vr).

The stress vector with respect to a direction defined by the unit vector v is denoted as o'v = or.v,

or cTvi --" o'ij uj. On S the surface-traction stress vector is defined as

O'n "- o'.n, or Crni -" crijn j.

With this definition the traction boundary conditions may be stated as:

o',, = { or aijnj = t, on S,,

and the displacement boundary conditions as

(4)

(5)

u = a or ui = :li on Sd. (6)

3. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not, of course, work with the exact fields that

satisfy the governing Eqs. 1-3 and 5-6, but with independent (primary) fields, which are subject to

variations, and dependent (secondary, associated, derived) fields, which are not. The approximation

is de[ermined by taking variations with respect to the independent fields.

Following the notation introduced in Refs. 9 and 10, an independently varied field will be

identified by a superposed tilde, for example ft. A dependent field is identified by writing the

independent field symbol as superscript. For example, if the displacements are independently

varied, the derived strain and stress fields are:

eu = ½(V + vr)fi = Dfi, o _ = Ee" = EDfi. (7)

An advantage of this convention is that u, e and cr may be reserved for the exact fields.
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t uSd

Fig. 3. Internal interface example.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses

and square brackets, respectively, around the integrand. For example:

def fv .fs def ,fS,_ def fS
(f)v = f dV, [f]s def= f dS, [f]s_ -- f dS, If]s, = f dS. (8)

l

If f and g are vector functions, and p and q are tensor functions, their inner product over V is

denoted in the usual manner:

(f,g)e = f.gdV= f,.gidV, (P,q)v = p.qdV= PijqijdV,

and similarly for surface integrals, in which case square brackets are used.

3.3 Domain Assertions

The notation:

(9)

(a = b)v, [a = b]s, [a = b]sa, [a = b]s,, (10)

is used to assert that the relation a = b is valid at each point of V, S, Sd and St, respectively.

3.4 Internal Interfaces

In sections 4-5 we construct hybrid variational principles in which boundary displacements d

can be varied independently from the internal displacements u. These displacements play the role of

Lagrange multipliers that relax internal displacement continuity. Variational principles containing"

d will be called displacement-generalized, or "d-generalized" for short.

The choice of d as independent field is not variationally admissible on Sd or St. We must,

therefore, extend the definition of boundary to include internal interfaces collectively designated as

Si. Thus:

S : Sct U S, U S_. (11)
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On S; neither displacements nor tractions are prescribed. A simple case is illustrated in Fig. 3,

in which the interface Si divides V into two subvolumes: V + and V-. An interface such as Si on

Fig. 3 has two "sides" called S + and S_, which identify Si viewed as boundary of V + and V-,

respectively. At smooth points of Si the unit normals n + and n- point in opposite directions.

The integral abbreviations of Eqs. 8-9 generalize as follows, using Fig. 3 for definiteness. A

volume integral is the sum of integrals over the subvolumes:

(f)v de=ffv+f dV + fv_f dV.

An integral over Si includes two contributions:

(12)

[g]si de=ffs..g+ dS + fssg-dS, (13)

where g+ and g- denote the value of the integrand g on S + and S/", respectively. These two values

may be different if g is discontinuous or involves a projection on the normals.

The appearance of Si is a consequence of allowing elements with discontinuous displacements.

Following a finite element discretization, the union of interelement boundaries becomes Si. This

boundary is generally nonphysical because it depends on the discretization. _

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form:

H=u- P, (14)

where U characterizes the internal energy stored in the body volume and P includes other contri-

butions such as the work of applied loads and energy stored on internal interfaces. We shall call U

the generalized strain energy and P the forcing potential.

The functionals in this section include independently varied displacements. The class of

"equilibrium" functionals without independent displacements, such as the complementary energy,

are briefly covered in section 5.5 for completeness, but are not required in the finite element

developments of sections 6-11.

4.1 Generalized Strain Energy

The generalized strain energy has the following structure:

-+-_J33(o" ,e")v (15)"-- +_J22(O" , _)V +j23(O "e, e")v t • ,,U ½jll(&,eC')v+jt2( &,e)v+jt3(&,e')v 1 • •

where jl t through j33 are numerical coefficients. For example, the Hu-Washizu principle is obtained

by setting jt2 = -1, J13 -- 1, j22 = 1, all others being zero. The matrix representation of the

general functional Eq. 15 and the relations that must exist between the coefficients are studied in

section 5.1.

t If there are physical internal interfaces -- for example, a sudden thickness or material change -- it is

common practice to select the mesh so that these natural interfaces are also interelement boundaries."
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4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume integral

of Eq. 15 with the forcing potential P. Two forms of the forcing potential, called pd and pt in

the sequel, are of interest in the hybrid treatment of interface discontinuities. The d-generalized

forcing potential introduces, as described in section 3.4, an independent boundary displacement
field tt over Si:

ca(a, _, a) = (b, a)v + [_n, _ - a]s, + [i, _]s, + [an, _ - a]s,. (16)

The t-generalized (traction generalized) forcing potential introduces an independently varied

traction displacement field { over Si:

Pt(fi, &, i) = (b, fi)v + It, fi - a]s,t + [i, fi]s, + [[, fi]s,. (17)

The conventional form pc of the forcing potential is obtained if the interface integral vanishes

and one sets [t = o'n]s. If so pt and pa coalesce into pc, which retains only two independent

fields:

PC(a, _) = (b, fi)v + [bn, fi - a]s, + [L fi]s,. (18)

4.3 Modified Forcing Potentials

Through various manipulations and assumptions detailed in Ref. I0 the forcing potential pd

may be transformed to

pd (a, _, a) = (b, a)v + [Lals, + [_n, fi - als. (19)

where the all important surface dislocation integral is taken over S rather than Si. One of the

assumptions is that displacement boundary conditions, Eq. 6, are exactly satisfied on Sd. This

expression of pe is used in the sequel. A similar technique can be used to adjust pt, but that

modified formula will not be required in what follows.

4.4 Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy with

one of the forcing potentials. For example, the d and t generalized versions of the Hu-Washizu

functional are:

(20)

where Uw is obtained by setting j22 = j13 _ 1, j12 "" -1, others zero, in Eq. 15.
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5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy of Eq. 15 can be presented in the matrix form:

U = I ( & o z o') j22 j23 _ d V.

L symm j33 e"

(21)

The symmetric matrix 2

jll jr2 j131
J= j12 j22 j23 (22)

j13 j23 j33

characterizes the volume portion of the variational principle. Using the relations o-" = Ee, o" =

EDfi, ea = E-to ", and e" = Dfi, the above integral may be rewritten in terms of the independent

fields as: jl2l

U = ½ f (& e fi) jt2I jx2E j23ED | e dV. (23)
dv

L J 13DT j23DTE j33DTEDJ fi

5.1 First Variation of Generalized Strain Energy

The first variation of Eq. 15 may be presented as:

8U = (Ae, 8&)v + (Ao', 8_)v -- (die o", 8fi)v + [o",,, 8fi]s, (24)

where
Ae = jtte Cr+ jl2e + J13eu,

Ao" = jl2& + j22o'* + j23a a , (25)

o" = jl3& + j23 at + j33 °'u.

The last two terms combine with contributions from the forcing potential variation. For

example, if P -- pc, the complete variation of FIc = U - pc is:

81-Ic = (&e, 3&)v + (Ao-, 8_)v -- (die o" + b, 8fi)v + [o",, - t, _Sfi]s, - [fi - d, 8&,,]s,. (26)

Using pa or pt does not change the volume terms. The first variations of FIa and FI t are

studied in Refs. 9-11 for a more restrictive class of functionals, namely FIr. The Euler equations

associated with the volume terms

&e=O, &o-=O, divo-'+b=O, (27)

are independent of the forcing potential. A "weighted residual" interpretation of Eqs. 27 in terms

of the field equations is given in section 5.4. For consistency of the Euler equations with the field

I ° O"

2 To justify the symmetry of J note, for example, that j13(O', e")v = ½Jl3(&, e")v + _jt3(e , o'U)v, and

SO Oil.
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equations of section 2 we must have Ae = 0, Act = 0 and o" = cr if the assumed stress and strain

fields reduce to the exact ones. Consequently,

jil + j12 + j13 = O,

j12 + j22 + j23 = O,

j13 + J23 + j33 = 1.

(28)

Because of these constraints, the maximum number of independent parameters defining the

entries of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity are

tabulated below. The subscript of J is used to identify the functionals, which are listed roughly in

order of ascending complexity. The fields in parentheses after the functional name are those subject

to independent variations in V.

Potential energy (fi):

[°°ilJe- 0 0 .

0 0

Stress-displacement Reissner, also called Hellinger-Reissner, (&, fi):

(29)

-1 0 1 1
JR= 0 0 0 .

1 0 0

(30)

Unnamed stress-displacement functional listed on p. 116 of Ref. 18 (_', fi):

Ju _--
I 1 0 -1 1

0 0 0 .

-1 0 2

(31)

Strain-displacement Reissner-type as listed on p. 116 of Ref. 18 (_, fi):

oJs = -I 1 .

1 0

(32)

Hu-Washizu 3 (&, _, fi):

I 0 -1 1 1
Jw= -1 1 0 . (33)

1 0 0

3 There are several functionals that carry this name, transformable from one to another through integration

by parts. That corresponding to Jw is the third form listed in section 2.3 of Ref. 24.
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P

1 Hu-Washizu

_a Potential Energy

_ Stress-Displacement

ement 1 -"',,_ Reissner
Y

Fig. 4. Graphical representation of the Jaov functionals

One-parameter stress-displacement family (&, fi) that includes Ue, UR and Uu as special

cases (Refs. 8-10)

Jy = 0 0 . (34)

y 0 1-y

One-parameter strain-displacement family (_, fi) that includes Up and Us as special cases

(Ref. 9):

Ii° °1Jr3-" - 15 .

t_ 1-3

Two-parameter family (&, _, fi) that includes Ua and U r as special cases (Ref. 9):

(35)

Jt_× = (1 - fl)J× + (1 - y)Jp - (1 -/5 - Y)JP

I-y(1 - 3) 0 ),(1 - 3) -1 (36)= o -_(1 - r) 8(1 - r) J •y(1 - 3) 3(1 - y) 1 - 3 - Y + 23y

Three-parameter (t_, 3, Y) family (&, _, fi) that includes Uw and U3y as special cases (Ref. 9):

J_t_r = o_Jw + (1 - a)J_y

F -y(1-3)(1-_) -a a+y(l-fl)(1-_) ] (37)
= - oe - 3(1 - y)(1 - oe) /3(1 - y)(1 - a) .

k_ + r(1 -/_)(1 -u) /3(1 -×)(1 -_) (1 - _- × +2_,)0 -a)

The last form, which contains three independent parameters, supplies all matrices J that

satisfy the constraints of Eq. 28. It yields stress-displacement functionals for t_ = 13 = 0, strain-

displacement functionals for tz = y = 0, and three-field (stress-strain-displacement) functionals

otherwise. A graphic representation of this functional in (t_, 3, Y) space is given in Fig. 4.
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The specialization y = 1,/_ -- 0 of J,_r is of particular interest:

[ J_-- 1 -ct 1

J,_ = -or _ 0 (38)

1 0 0

The associated functional 1-I,_might be called the generalized Hu-Washizu functional because

it reduces to Jw for a = 1. But because of its special relation with the ANDES formulation covered

in section 8-11, l"I_,will be herein referred to as the ANDES functional.

5.3 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization

of finite element performance in the balanced stiffness sense of Table 1. The determination of

"best" parameters for specific elements relies on the concept of energy balance. Let U(E) =

t(E_, E)v denote the strain energy associated with the strain field E. If E is positive definite, L/(E)

is nonnegative. We may decompose the generalized strain energy into the following sum of strain

energies:

U = H(e") + wt/2(e '_ - _) + w2L4(_ - e u) + w3U(e u -- C), (39)

where Up (e") = Up is the usual strain energy, and 4

1 1
Wl = lCJll+j_--j33+l), w2= _(--jll+j_+J33--1), w3= _(jll--j22+j33--1). (40)

Eq. 39 is equivalent to decomposing J into the sum of four rank-one matrices:

Ei°°1 E,xil [i°il Ii°11J= 0 0 +tot -1 1 +w2 1 - +w3 0 0 . (41)

0 1 0 0 -1 - 0 1

Decompositions of this nature can be used to derive energy-balanced finite elements by con-

sidering element "patches" under simple load systems. This technique is discussed for the one-

parameter functionals generated by Jv in Refs. 6 and 8-11. It is important to note that the j

coefficients may vary from element to element.

5.4 Interpretation of Euler Equations

Eqs. 27 gain physical meaning if they are rewritten as

Ae = wt (e" -- _) + w3(e" -- e_) = 0,

Ao- = tot (& -- o") + w2(o "e -- o") = 0,

div o" = div [o u + w2(cr" - o _) + w3(o "u - &)] = -b,

(42)

As shown in section 5.4, these coefficients may be interpreted as field equation residual weights, hence

the notation. It is conjectured that for stability the j coefficients should be confined so that wi > 0, but

this remains to be proven.
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where the wi are given by Eqs. 40. But ev - _ = E-If" - _ = 0 as well as & - tr t = 5" - E_ = 0

are representations of the constitutive equations, Eqs. 2. Likewise, o"t - o_ = E(_ - Dfi) = 0 is

a representation of the strain-displacement equations, Eqs. 1. Finally, e" - e_ = Dfi - E -l& = 0,

as well as tr" - & = 0, are combinations of Eqs. 1-2. Thus, we conclude that the Euler equations

Ae = 0 and Ao" = 0 are weighted forms of the kinematic and constitutive field equations. On the

other hand, div tr' + b = 0 is a weighted combination of the equilibrium equations, Eqs. 3, and the

other two.

If the j coefficients are such that a weight vanishes (see also Footnote 4), that particular field

equation drops out from the Euler equations and must be viewed as being satisfied a priori. For

example, {n the potential energy functional, Wl = w2 = w3 = 0, and only the equilibrium condition

in terms of o "_ remains in the Euler equations. This interpretation points the way for constructing

U of Eq. 15 by the method of weighted residuals.

5.5 Functionals without Independent Displacements

The foregoing theory applies to functionals where the displacements u are independently

varied. Although this case includes the more practically important functionals for our purposes, for

completeness we present the general parametrization of stress-strain functionals. Decompose U of

Eq. 15 as Uc + U,,, where U, contains the strain energy due to displacement-derived strains:

t • ,, ,, (div o", u) v - [tr'n, u]s. (43)Uu = (jr3& 4- jz3tr" 4- _J33tr , e )v =

If we now assume that the equilibrium equations div tr 4- b = 0 and traction boundary condi-

tions trn = t hold a priori, U,, may be dropped and we are left with the generalized complementary

energy functional

1 • e
U _ Uc = ½Jlt(&, e_)v + ji2(&, e)v 4- [J22(0" , e)v. (44)

Taking account of the a priori conditions, the first variation becomes:

8Uc = (jlte C' + jl:e + eU, 8&)v 4- (j12o" 4- j_o "e, 8_)v,

and for consistency we must have jlt + jr2 = -I, j12 + j22 = 0.

(45)

It follows that Uc may be

represented as in the matrix form of Eq. 21 with a J that depends on a single parameter:

JP = 0 p 0

(46)

Here p = 0 gives the classical principle of total complementary energy whereas p = 1 gives

the functional N(&, _) listed on p. 117 of Ref. 18.

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional II d for

arbitrary J are stated. Following usual practice in finite element work, the components of stresses

and strains are arranged as one-dimensional arrays while the elastic moduli in E are arranged as

a square symmetric matrix. In the sequel, and unless otherwise noted, we consider an individual

element of volume V and surface S : St tA Sa U Si, where Si is the portion of the boundary in

common with other elements.
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6.1 Boundary Displacement Assumption

The boundary displacement assumption is:

[d = Nd V]s. (47)

Here matrix Nd collects boundary shape functions for the boundary displacements d while

vector v collects the "visible" degrees of freedom of the element, also called the connectors. These

displacements must be unique on common element boundaries. This continuity condition is met

if the displacement of a common boundary portion is uniquely specified by degrees of freedom

located on that boundary. There are no derived fields associated with d.

6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

(fi = N,q) v, (48)

where matrix N_ collects the internal displacement shape functions and vector q collects gener-

alized coordinates for the internal displacements. The assumed fi need not be continuous across

interelement boundaries. The displacement derived fields are

(e" = DNq = Bq)v, (o "_ = EBq)v. (49)

To link up with the FF and ANS formulations, we break up the internal displacement field

as follows. The assumed fi is decomposed into rigid body, constant strain, and higher order

displacements:

fi = Nrqr + Ncqc + Nhqh. (50)

1(V + V r) to fi we get the associated strain field:Applying the strain operator D =

e_ = DN, q_ + DNcqc + DNhqh = Brqr + Bcqc + Bhqh. (51)

But B_ -- DN_ vanishes because Nr contains only rigid body modes. We are also free to

select Bc = DNc to be the identity matrix I if the generalized coordinates qc are identified with the

mean (volume-averaged) strain values _. Consequently Eq. 51 simplifies to

e_ = _' + e_, -- _" + Bhqh, (52)

in which

qc -- _' = (eU)v/v, (Bh)v = 0, (53)

where v = (1)v is the element volume measure. The second relation is obtained by integrating

both sides of Eq. 52 over V and noting that qh is arbitrary. It says that the mean value of the higher

order displacement-derived strains (also called the deviatoric displacement-derived strains) is zero

over the element.
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6.3 Stress Assumption

The stress field will be assumed to be constant over the element:

(f = _ v. (54)

This assumption is sufficient to construct high performance elements based on the free for-

mulation developed in Refs. 4-8. As discussed in Ref. 11, the inclusion of higher order stress

modes (deviatoric stresses) in Eq. 56 is computationally effective if these modes are divergence

free, but such a requirement makes extension to geometrically nonlinear problems difficult. The

only derived field is
(C = _ = E-l_---')v. (55)

6.4 Strain Assumptions

The assumed strain field _ is split into a mean constant strain _ and a higher order variation

(the deviatoric strains):

(_ = _ + ed = _ + Aaa)v, (56)

where _ =

element:

(Ad)v = 0,

and a collects the corresponding strain mode amplitudes. The only derived field is:

(_)v/U, matrix Ad collects deviatoric strain modes with mean zero value over the

(57)

(ore = E_ = E_ + EAda)v. (58)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

We shall assume that all elastic moduti in E are constant over the element. Inserting the above

assumptions into IId with the modified forcing potential of Eq. 19, we obtain a quadratic algebraic

form which is block-sparse because of the conditions stated in Eqs. 53 and 57. Rendering this form

stationary yields the finite element equations.

j, tvE-' jt2vI 0 _pT j,3vI-- Pur --Phr L r

jt2vl j22vE 0 0 j23vI 0 0

0 0 j22Kad 0 0 j23R r 0

-Pr 0 0 0 0 0 0

jl3vI -- P_ j23vI 0 0 j33vE 0 0

--Ph 0 jl3R 0 0 j33Kqh 0

L 0 0 0 0 0 0

where:

m .

o"

e

a

qr

ch

v

0

0

i fq"

= = = Kad, RKqh (BTEBh)v KqTh, Karl = (ATEAd)v T = (BTEAd)v,
T T

L [Nrn]s, Pr [Nrn]S, Pc [Nhr_]s,= "- = [Ncn]S, Ph =

L = (N,rb)v, fq -- (Nqrb)v, f,_ = (Nhrb)v, fo = [Nrils,,

, (59)

(60)
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in whichNandenotestheprojectionof shapefunctionsNaon theexteriornormaln, andsimilarly
for Nr, Nc andNh. Those coefficient matrix entries that do not depend on the j coefficients come

from the last boundary term in Eq. 19.

7. I The P Matrices

Application of the divergence theorem to the work of the mean stress on e" yields:

('if, eU)v = ('if, t ° + Bhqh)v "- U -_T'_u ÷-t_T (Bh)Vqh = 1)_TeU
(61)

-" ['_n, fl]S -" [_n, Srqr ÷ Nc _u ÷ Nhqh]s = _r (Prqr ÷ Pce"+ Phqh).

Hence Pr = O, Pc = vI, Ph = O, and the element equations simplify to:

jllvE -I j12vI 0 0 (jr3 -- l)vI 0 L r

jl2vI j22vE 0 0 j23vl 0 0

0 0 j22I_a 0 0 j23R r 0 a

0 0 0 0 0 0 0 ' qr

(j13 -- 1)vI j23vI 0 0 j33L'E 0 0 E a

0 0 j23R 0 0 j33Kqh 0 qh

L 0 0 0 0 0 0 v

,

0

0

= fqr

fqu

fqh

(62)

The simplicity of the P matrices is essentially due to the mean-plus-deviator splitting of Eq. 52

for e u. If this decomposition is not enforced, Pr = 0 but Pc = (Bc)v = vBc and Ph = (Bh)v.

8. KINEMATIC CONSTRAINTS

The "tricks" we shall consider here are kinematic constraints that play a key role in the

development of high-performance FF and ANS elements. These are matrix relations between

kinematic quantities that are established independently of the variational equations. Two types of

relations will be considered.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q of Eq. 48 and the connectors v were introduced

by Bergan and coworkers in conjunction with the free formulation (FF) of finite elements (Ref. 5).

For simplicity, we shall assume that the number of freedoms in v and q is the same; removal of

this restriction is studied in Ref. 11. By collocation of u at the element node points one easily

establishes the relation:

V = Grqr + Gcqc + Ghqh = Gq, (63)

where G is a square transformation matrix that will be assumed to be nonsingular. On inverting

this relation we obtain

/at/I rlq=G -I=Hv, or q= _" = Hc v. (64)

qh Hh
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The following relations between L (defined in Eq. 60) and the above submatrices hold as a

consequence of the individual element test described in section 9.3:

LrGr = 0, LrGc = vI, uric = L r. (65)

If the splitting of Eq. 52 is not enforced, however, the last two become:

LrG_ = vBc, PcHc + P_Hh = L r or Pc = LTGc. (66)

Since Pc = vBc, these relations coalesce (see Ref. 5).

8.2 Constraints Between Assumed Deviatoric Strains and Boundary Displacements

Constraints linking _ to v are fundamentally important in the ANS formulation. The effect of

these constraints in a variational framework is analyzed in Refs. 15 and 16. In the present study we

depart from previous work in that only the deviatoric strains, ed, are assumed linked to v, whereas

the mean strains _ are obtained variationaIly. Consequently, we shall postulate the following

relation between assumed deviatoric strain amplitudes and nodal displacement connectors:

a = Qv, (67)

where Q is generally a rectangular matrix determined by collocation, least squares or other fitting

methods. An example of the construction of Q is given in section 11.4. The individual element test

described in section 9.3 requires that Q be orthogonal to G, and Go:

QGr = 0, QGc = 0. (68)

8.3 Limitation Principles

Strain assumptions made concurrently with displacement assumptions are confined by limita-

tion principles similar to those stated by Fraeijs de Veubeke for stress-displacement mixed elements

(Ref. 13). This issue was discussed in Ref. 15 for a more restricted strain displacement hybrid for-

mulation. Limitation principles for the general formulation presented here remain to be studied.

9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv, qr = Hrv, qc = Hey = v-lLrv, and qh = Hhv,

through Lagrange multiplier vectors ,ka, ,_r, ,kc, and )_h, respectively, we get the augmented finite

element equations

jtlvE -t j12vl 0 0 (jl3 - 1)vI 0 0 0 0 0 L r

jlevI j22vE 0 0 j_uI 0 0 0 0 0 0
0 0 j22K,d 0 0 j23R r -I 0 0 0 0
0 0 0 0 0 0 0 -I 0 0 0

(j13 -- 1)vl j23uI 0 0 J33oE 0 0 0 -I 0 0

0 0 j23R 0 0 J33Kqh 0 0 0 --I 0

0 0 -I 0 0 0 0 0 0 0 Q

0 0 0 -I 0 0 0 0 0 0 H_
0 0 0 0 -I 0 0 0 0 0 v-tL r

0 0 0 0 0 -I 0 0 0 0 Hh

L 0 0 0 0 0 Qr Hr v-lL H r 0

qh
,ko

Ar

)-h
• V

(7

e

a

q,

O •

0

0

0

0

0

0

(69)
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Condensationof all degrees of freedom except v yields the visible s element stiffness equations:

Kv = (Kb + Kh)v -'-- f, (70)

where

Kb = v-ILEL r,

Kh = j33HTh KqhHh at- jz3(HrRQ + QrRrHh) + j22QrKadQ,

r Hhrfqh.f = Iv+ H, fqr + u-lLrfqc +

(71)

(72)

(73)

Following the nomenclature of the free formulation, we shall call Kt, the basicstiffaess matrix

and Kh the higher order stiffness matrix.

9.1 Relation to Previous HP Element Formulations

If J = Jr, of Eq. 33, j33 = I - y, J_2 = j23 -" 0, and we recover the scaled free formulation

stiffness equations considered in Refs. 6, 8 and 10:

Kh = (I -- y) HhrKqhHh, 1 - y > 0. (74)

On the other hand, if we take J = J,_ as given in Eq; 38, j_ = o_, j33 = jz3 = 0 and we

obtain:

Kh = _QrK_aQ, ot > 0, (75)

which is similar to the stiffness produced by the ANS hybri d variational formulation studied in

Refs. 15-16, in which the forcing potential pt was used instead of pa. The variant of ANS

considered herein will be called the assumed natural deviatoric strain (ANDES) formulation in

the sequel. The name is apt in the sense that what is being assumed are deviatoric rather than total

strains, and that this assumption only affects the higher order stiffness.

But the term with coefficient jz3 in Eq. 72 is new. It may be viewed as coupling the FF and

ANDES formulations. It is not known whether Eqs. 70-73 represent the most general structure of

the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do fqr, fqc and fqh because of Eqs. 60.

If v is known following a finite element solution of the assembled system, solving Eqs. 69 for the

internal degrees of freedom yields:

= v-tLrv, _= E-_,

_a = (j22KodQ + j33RTHh)v,

a = Qv, qr -" Hrv, _u = [, qh -- HhV,
(76)

,Xr = 0, ,Xc = 0, ,Xh = (j23RQ + j33KqhI-Ih)v.

5 The qualifier "visible" emphasizes that these are the stiffness equations other elements "see", and,

consequently, are the only ones that matter insofar as computer implementation on a displacement-

based finite element program.
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Eq. 76 showthat themean strains _, _' and _ = E-l_ coincide, and, of course, so do the

mean stresses. But if the body forces do not vanish, the mean stresses and mean strains recovered

from different fields will not generally agree.

We also note that a nonzero Lagrange multiplier vector flags a deviation of the associated fields

from the variationaUy consistent fields that would result when using the unconstrained Eqs. 62

without "tricks".

9.3 The Individual Element Test

To conclude the general formulation, we investigate the conditions under which HP elements

based on the foregoing setting pass the individual element test of Bergan and Hanssen described in

Refs. 3-6. To carry out the test, assume that the "free floating" element 6 under zero body forces is

in a constant stress state o'0, which, of course, is also the mean stress. Insert the following data in

the left-hand side vector of Eq. 69:

= o'0 = _', _ = E-Io'0,

,ha=0, _r=0, _c=0,

ah = O, qr = arbitrary, eL' = _' = E-l_0, qh = 0,

Ah = 0,. v = Grqr + Gc_" = Grqr + GcE-lo'0.

(77)

Premultiply by the coefficient matrix and demand that all terms on the right-hand side vanish

except for fv = Lo'0. Then the orthogonality conditions in Eqs. 65 and 68 emerge. This form of the

patch test is very strong, and it may well be that relaxing circumstances can be found for specific

problems such as shells.

10. DISCUSSION

At this point it is useful to recapitulate key points and connect this material with some of

the techniques of Table 2. The chief property of HP elements constructed with present methods is

the decomposition of the element stiffness equations displayed in Eq. 70; a property that of course

subsists at the assembly level.

The basic stiffness matrix has a universal character: as no j coefficients appear in Eq. 71,

clearly Kb is independent of specific variational principles. Given the constant stress state intro-

duced in Eq. 54, Kt, depends only on the assumed boundary motions. It can be constructed (and

programmed) once and for all for each element type. As emphasized in Ref. 5, the main function

of Kt, is to provide convergence.

The higher order stiffness in Eq. 72 serves two other functions: stability and accuracy. The

basic stiffness is generally rank-deficient 7 because its rank cannot exceed that of E; thus a key

function of Kh is to stabilize K by raising its rank to the correct one. The second function, which

has gained importance in recent work, is to increase solution accuracy for coarse grids. Here is

where the j coefficients play the important role noted in section 5.3. These coefficients may vary

from element to element, despite the fact that this variation implies that the variational principle

changes from one element to another. Thus, the "element mixability" requirement of Table 1 is

fulfilled without tears.

6 Mathematically, the entire element boundary is traction-specified, i.e., S =--St.

7 Except in simplex elements, for which K = Ir_,.
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10.1 The Free Formulation

The present methodology was initially pursued to justify variationally the original FF (y = 0)

of Ref. 5, as well as the scaled FF (y # 0) of Refs. 6-8. Thus, it is not surprising that those element

construction techniques fit naturally in the present variational framework by simply taking J = Jr.

The extended FF described in Ref. 11 aims to remove the restriction that the dimension of vectors q

and v be the same. One of the techniques advocated to allow dim(q) > dim(v) involves extending

Eq. 54 with deviatoric stress assumptions, and thus requires a generalization of Eqs. 59 and 62.

Whether such a generalization is practically worthwhile is unclear.

10.2 The ANS Formulation

The conventional ANS formulation as presented in Refs. 1 and 19 constructs total strain fields

(not necessarily integrable into displacements u e) gaged through generalized strain coordinates

a as e = Aa. These coordinates are eventually linked to the connectors v via matrix expressions

of the form a = Qv, leading to an element stiffness of the form K = QrK_Q, where K_ is the

generalized stiffness in terms of a. The restriction to deviatoric strains in section 6.4 is motivated

by two interrelated factors: (a) the strain assumed stiffness "flows" to the higher order stiffness,

where it can be naturally scaled by using J = J,_, and even intermixed with FF contributions as

Eq. 72 shows; and (b) the basic stiffness of the element, derived separately, can be used to insure

convergence.

10.3 Projectors and S/R Integration

The so-called "B-bar" approach is based on expressing the element strains ass

e = Bv (78)

where B, which cuts off the "harmful" portion of B u, is constructed by various ad-hoc devices such

as strain projection, selective, and/or uniform reduced inte_ation. These time-honored schemes are

well covered in Ref. 14. They are easily included in the present setting ifB admits the decomposition

B = B + AaQ, (79)

where Q is not position dependent and _ = By provides the mean strains, which are discarded in

favor of Eq. 76. This decomposition can be usually carried out in several ways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kirchhoff plate-

bending flat triangle with the usual nine degrees of freedom. The derivation is briefly covered to

illustrate the essential steps in forming the higher order stiffness of such elements. These steps

are outlined in "recipe" form in Table 3, which restates the arguments of section 6.4 in a more

physically oriented sense closely aligned with the terminology of Ref. 19.

s This is a slight variation from the usual notation, necessitated by the use of the single overbar to denote

average or mean values.
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Table3 - Constructionof Kh by the ANDES Formulation

Step 1. Select reference lines (in 2D elements) or reference planes (in 3D elements)

where "'natural stram=,a=,e locations are to be chosen. By appropriate interpolation

express the element natural strains _" in terms of the "straingage readings" g at those

locations:

= A, g, (80)

where _ is a strain field in natural coordinates that must include all constant strain states.

(For bending elements the term "strains" is to be interpreted in a generalized sense, viz,

curvatures.)

Step 2. Relate the Cartesian strains _ to the natural strains:

= T_ = TA_ g = Ag (81)

at each point in the element. (If e -= E, or if it is possible to work throughout in natural

coordinates, this step is skipped.)

Step 3. Split the Cartesian strain field into mean (volume-averaged) and deviatoric

strains:

-- e -t- ed--- (A -}-Ad)g, (82)

where A = (TA_)v/V, and ed = Aag has mean zero value over V. (This step may also

be carried out on the natural strains if T is constant, as is the case for the element derived

here.)

Step 4. Relate the natural straingage readings g to the visible degrees of freedom

g = Qv (83)

where Q is a straingage-to-node displacement transformation matrix. Techniques by

which this is accomplished vary from element to element and it is difficult to state rules

that apply to every situation. In the element derived here Q is constructed by direct

interpolation over the reference lines. (In general there is no internal displacement field

u* such that _ = Du*, so this step cannot be done by simply integrating the field ofEq. 81

over the element and collocating u* at the nodes.)

Step 5. The higher-order stiffness matrix is given by

Kh _- aQrKadQ, where Kaa = fv A_'EAd dV, (84)

where ot > 0 is the scaling coefficient supplied by the functional of Eq. 38.
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11.1 Geometric Relations

The triangle has straight sides. Its geometry is completely defined by the location of its three

corners, which are labeled 1,2,3, moving counterclockwise. The triangle is referred to a local

Cartesian system (x, y) which is taken with origin at the centroid 0, whence the corner coordinates

xi, Yi satisfy the relations xt + x2 + x3 = 0 and Yl + Y2 + Y3 = 0. Coordinate differences are

abbreviated by writing xiy = xi - xj, etc. The signed triangle area A is given by the formulas:

2A = x21Y31 -- x31Y21 _- x32Y12 -- x12Y32 -" xI3Y23 -- x23Y13, (85)

and we require that A > 0. We shall also make use of dimensionless triangular coordinates _'t, (2,

(3 linked by the constraint (l + (2 + (3 = 1. The following well known relation between the area

and centroid-originated Cartesian coordinates of a straight-sided triangle is noted:

1

(i -- "_"_(XiYk -- xkyj + xyjk + yXkj), (86)

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, j = 3,

k = 1. Therefore 3(i/ax = yjk/2A and a(i/ay -- xkj/2A. Other intrinsic dimensions and ratios

used below are

eij = _/x_. + y_, aij = 2A/eij, bij = (xijxik + yiyyik)/eij, bji = £ij - bij, (87)

Xij = bij/eij = (xijxi_ + yjiyki)/(x_ + Y_), kji = bji/eiy -" 1 - )_ij,

where £ij denote the triangle side lengths, aij are triangle heights, bij and bji are projections of sides

ik and jk onto side ij, respectively, and the ks are ratios of these projections to the side lengths.

11.2 Displacements, Rotations, Side Coordinates

Because we are dealing with a Kirchhoff element, its displacement field is completely defined

by the transverse displacement w(x, y) _ w(_l, (2, (3), positive upwards. The midplane rotations

about x and y are Ox = aw/ay and Oy = -Ow/ax. The visible degrees of freedom of the element

collected in v are:

vT =[Wl Oxl Oyl 11)2 Ox2 Oy2 1103 Ox3 Oy3]. (88)

Over the three sides 1-2, 2-3 and 3-1, traversed counterclockwise, we define the dimensionless

side coordinates _zl2, Sz23 and/z3t as follows: over side 1-2, _,t2 varies from lZl2 = 0 at corner 1 to

# 12 = I at corner 2. Thus,/z 12 = (2 when (3 = 0. Relations for the other sides follow from cyclic

permutation of subscripts. Then:

Ox Ox Ox
X21, _ -- X32, _ --- XI3,

0_12 0/,/,23 O/-tSl

Oy Oy Oy

0/.Z12 -- Y21, 0/2,23 --" Y32, 0/.t,31 Y13.

(89)
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11.3 Natural Curvatures

The second derivatives of w with respect to the dimensionless side directions will be called

the natural curvatures and denoted by Xij = a2w/alz2j • Note that they have dimensions of dis-

placement. The natural curvatures can be related to the Cartesian plate curvatures _cxx = a2w/Ox 2,

try = 02w/Oy 2 and Kxy = 2a2w/OxOy, by chain-rule application of Eqs. 89:

Xl2 }
X = X23 =

X31

a2to

a2w

a2w

F x21 y21 x21y2_ 1= [x22 y22 x32y32

Lxt 3 y123xI3Y13

a2w

-gT:
02w

2 a2w

= T- l e_. (90)

The inverse of this relation is:

a203

-ffTrx
a203

0203

1 r Y23YI3 Y31Y21 YI2Y32

= _ L x23x13 x31x21 ' x12x32
Y23x31 + x32Yt3 Y31xI2 nt- x13Y21 yI2x23 + x21Y32

a2w

a2 w

0203

, (91)

or, in matrix form

= TX. (92)

1 1.4 Curvature Sampling

The reference lines referred to in Table 3 are the three triangle sides. The natural curvatures

are assumed to vary linearly over each reference line, an assumption which is obviously consistent

with cubic beam-like variations of w over the sides. A linear variation on each side is determined

by two straingage sample points, which we chose to be at the comers.

On each triangle side chose the isoparametric coordinates _ij that vary from - 1 at comer i

to + 1 at comer j. These are related to the lzij coordinates as _ij = 21a,ij - 1. Then the natural

curvature over side ij is given by the beam formula

{w,}a203 [_ 3_ij 1 _ 3_ij+l] Oni
Xij - O].t'--_ij --_'ij L _,'ij -- £ij Wj '

onj

(93)

where 0,, denotes the rotation about the external normal direction n on side ij. Evaluating these

relations at the nodes by setting _'ij = q- 1 and converting normal rotations to x-y rotations, we
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build thetransformation

X1211

X1212

X2312

X2313

X3113

X311i

--6

6

0

0

6

-6
m

--4y21 4x21 6 --2y21 2x21 0 0 0 7

2y21 --2x21 --6 4y21 --4x21 0 0 0

J

0 0 --6 --4y32 4X32 6 --2y32 2X32

0 0 6 2y32 --2x32 --6 4y32 --4x32

--2y13 2x13 0 0 0 --6 --4y13 4x13

4yt3 --4x13 0 0 0 6 2y13 --2X13

1/31

0_t

Oyt

1122

o:
W3

¢3

Oy3,

(94)

The left hand side is the natural strain-gage reading vector called g in Table 3 and so we can

express this as the matrix relation

g=Qv. (95)

1 1.5 Curvature Interpolation

The six gage readings collected in g provide curvatures along the three triangle side directions

at two comers. But nine values are needed to recover the complete curvature field over the element.

The three additional values are the natural curvatures at the missing comer. We obtain these values

by adopting the following rule: Cylindrical bending with linearly varying curvature along a side

direction is to be exactly represented. Another way of stating this is: the side curvature Xij is to be

constant along lines normal to side ij. This makes the element insensitive to bad aspect ratios on

"strip bending" if each element has a side oriented in the direction of the strip.

To apply this rule consider side 1-2. The natural curvature X_2 = a2w/a#2: along this side

is defined at nodes 1 and 2 by the first two rows of Eq. 94. For node 3 take

 2w["-" _'21 Xl2ll "+"_-12 Xt212, (96)
X12]3- 0/2,22 3

where _-t2 and _-21 are defined in Eq. 87. As we now know the values of XI2 "- _2W/0]'1"212 at the

three comers, we can use the standard linear interpolation over the entire triangle:

X12 = X12]I_I+XI212¢2+X1213¢3"- Xl2ll (_'1 +X21_'3) + XI212 (_'2"q-X12_'3) • (97)

Proceeding analogously for the other two sides, we construct the matrix relation:

or

XI2 / F_'! "_" _'21_'3 _2 dr- _'12_'3 0 0 0

X23 l/, -- L 0 0 _2 q- _.32_1 _3 -Jr-_.23_1 0
X31 I 0 0 0 0 ¢3 q'- _.13_'2

X = Axg, _ = TAxg.

0 g,

(98)

(99)
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BecauseT is constant we can do Step 3 of Table 3 directly on the natural curvatures. Now

Ax ((I, (2, (3) is a linear function of the triangular coordinates. Consequently, the mean natural

curvatures can be simply obtained by evaluating A x at the centroid (i = (2 = _'3 = 1/3. Let the

corresponding matrix be A x . Then _ = A x g, and the natural deviatoric curvatures are given by:

Xd = (Ax - Ax) g, (100)

which transformed to deviatoric Cartesian curvatures _;a = _; - _ gives finally:

_;d = T(Ax - Ax)g = Ad g. (101)

11.6 The Element Stiffness Matrix

The basic stiffness matrix Kb is the same derived in Ref. 8 using the conventional FF and

need not be rederived here. The higher order stiffness matrix is given by Eqs. 84, which for a plate

bending element specializes to

(102)

where D is the Cartesian moment-curvature constitutive matrix resulting from the integration of E

through the plate thickness:

max

myy

mxy
I DII DI2 DI3] {Kxx

= D_2 D22 D23 gyy

DI3 D23 D33 tcxy

= D_. (103)

Because Ad varies linearly, if D is constant we could numerically integrate Kaa in Eq. 102

exactly with a three point Gauss rule, for example the three midpoint formula. The formation of

the element stiffness is dominated by these calculations and it is of interest to derive I_a in closed

form. Such a derivation is found in Ref. 17.

11.7 Preliminary Evaluation

As of this writing, only a sketchy evaluation of the first ANDES element is available. We

have found that for triangles with good aspect ratio their behavior is similar to that of the scaled FF

element of Ref. 8, which is known to be an excellent performer. But the ANDES element shows

less distortion sensitivity for high aspect ratio elements, as can be expected from its construction.

Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone compo-

nents (FF and ANDES) of Kh. Thus, it is plausible that a weighted mix of these formulations as

per Eq. 72 can be used to squeeze the ultimate in performance for this very simple element.
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12. CONCLUSIONS

The results presented in this paper may be summarized as follows:

1. The classical variational principles of linear elasticity may be embedded in a parametrized
matrix form.

2. The elasticity principles with independently varied displacements are members of a three-

parameter family. Those principles without independent displacements are members of a

one-parameter family.

3. Finite. element assumptions for constructing high performance elements may be conveniently

investigated in this family using hybrid forcing potentials.

4. Kinematic constraints established outside the realm of the variational principle may be incor-

porated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing HP finite elements may be presented Within this

augmented variational setting. A variant of ANS, called ANDES, fits naturally in the decom-

position of the stiffness equations into basic and higher order parts. In addition, combined

b'F/ANDES forms emerge from the general parametrized principle.

6. The satisfaction of the individual element test yields various orthogonality conditions that the

kinematic constraints should satisfy a priori.

7. The first ANDES element based on this formulation displays an encouraging stand-alone

performance regarding distortion sensitivity. The weighted combination of this element with

its FF counterpart remains a topic for further investigation.
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A VARIATIONAL JUSTIFICATION OF THE ASSUMED

NATURAL STRAIN FORMULATION OF FINITE ELEMENTS.

I. VARIATIONAL PRINCIPLES

SUMMARY

The assumed natural strain (ANS) formulation of finite elements has undergone rapid development

over the past five years. The key formulation step is the replacement, in the potential energy

principle, of selected displacement-related strains by independently assumed strain fields in element

natural coordinates. These strains are not generally derivable from displacements. This procedure

was conceived as one of several competing methods to solve the element locking problem. Its

most noteworthy feature is that, unlike many forms of reduced integration, it produces no rank

deficiency; furthermore, it is easily extendible to geometrically nonlinear problems. Many original

formulations were not based on a variational principle. The objective of Part I is to study the

ANS formulation from a variational standpoint. This study is based on two hybrid extensions

of the Reissner-type functional that uses strains and displacements as independent fields. One of

the forms is a genuine variational principle that contains an independent boundary traction field,

whereas the other one represents a restricted variational principle. Two procedures for element-level

elimination of the strain field are discussed, and one of them shown to be equivalent to the inclusion

of incompatible displacement modes. In Part II, the 4-node C O plate bending quadrilateral element

is used to illustrate applications of this theory.
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I. INTRODUCTION

The assumed natural strain (ANS) formulation of finite elements is a relatively new development.

A restricted form of the method was introduced iri 1969 by Willam [1], who constructed a 4-node

plane-stress element by assuming a constant shear strain independently of the direct strains and

using a strain-displacement mixed variational principle. A different approach advocated by Ashwell

[2] and coworkers regarded "strain elements" as a way to obtain appropriate displacement fields by

integration of assumed compatible strain fields. These and other forms of assumed-strain techniques

were overshadowed in the 1970s by developments in reduced and selective integration methods, but

have recently begun to attract attention [3-7]. The primary motivation behind recent work has been

the construction of simple and efficient finite elements for plates and shells that are locking-free,

rank sufficient and distortion insensitive, yield accurate answers for coarse meshes, fit naturally

into displacement-based programs, and can be easily extended to nonlinear and dynamic problems.

Elements that attain these attribute, s are collectively known as high performance elements.

Over the past 20 years investigators have resorted to many ingenious devices to construct high-

performance elements. Among the most successful ones we can mention patch-test-verified in-

compatible displacement models, reduced and selective integration, mixed and hybrid formulations,

stress projectors, the free formulation, and assumed natural strains. The underlying theme is that

although the final product may look like a standard displacement model so as to fit naturally into

existing finite element programs, the conventional displacement formulation is abandoned. (By

"conventional" we mean the use of conforming displacement assumptions into the total potential

energy principle.)

Another common historic trend is that certain deviations from the conventional formulation were

initially made without variational justification and in fact labelled as "variational crimes" by applied

mathematicians. In some eases such as reduced numerical integration, reconciliation was achieved

later after surprisingly good results prompted explanation. In other cases, notably non-conforming

elements and the patch test, a comprehensive mathematical theory is still in the making.

The present paper seeks to interpret the assumed natural strain (ANS) formulation from a variational

standpoint. The justification is based on hybrid extensions of the Reissner-type functio_ml that uses

the strains and 6ispiacements as independent fields. We restrict our considerations to linear elasticity

although the straightforward extension to geometric nonlinearities is one of the strengths of the ANS

formulation. In Part II, the 4-node C o plate-bending quadrilateral is used as a specific example to

illustrate the application of the present variational interpretation.
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2. PROBLEM DESCRIPTION

2.1 Governing Equations

Consider a linearly elastic body under static loading that occupies the volume V. The body is

bounded by the surface S, which is decomposed into S : S, U St. Displacements are prescribed

on S, whereas surface tractions are prescribed on St. The outward unit normal on S is denoted by

n=ni .

The three unknown volume fields are displacements u -- ui, infinitesimal strains E --= Elj, and

stresses tr -- crij. The problem data include: the body force field f -- f,. in V, prescribed displace-

ments fi = ui on S,, and prescribed surface tractions t - _/on St.

The relations between the volume fields are the strain-displacement equations

= !
= l(_Tn q-- _Tu) --- Du or 6ij _(1,li, j -_- uj.i) in V, (1)

(where superscript T denotes transposition), the constitutive equations

o- = E _ or aij -" Eiikt_kt in V, (2)

and the equilibrium (balance) equations

in which D* = -div

½(v+ vr).
On S the surface stress vector is defined as

-div o" = D'o" = f or or,'H + j5 = 0 in V, (3)

(divergence) denotes the adjoint operator of the symmetric gradient D =

crn = or.n, or tTni --" tTijn j .

With this definition the traction boundary conditions may be stated as

(4)

aunj = ?i on St, (5)O"n : t or

and the displacement boundary conditions as

u=6 or ui = ui on S,. (6)

2.2 Notational Conventions

An independently varied field will be identified by a letter without superscript, for example u, ¢, o'.

A dependent field is identified by writing the independent field symbol as superscript. For example,

if the displacements are independently varied, the derived strain and stress fields are denoted by

_" = ½(V + Vr)u = Du, or" = EE" = EDu. (7)

Given a finite element subdivision of V, quantities pertaining to the e th element will be identified

by superscript (e), for example u (e), wherever appropriate. At an interface between two elements e

and f, superscripts (e f) and (fe) will identify interface quantities considered as part of e and f,

respectively.
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3. THE HU-WASHIZU AND REISSNER FUNCTIONALS

In the conventional Hu-Washizu functional the displacements u, stresses o" and strains e are inde-

pendently varied. Arranging the strain and stress components as vectors, and the elastic moduli in

E as a matrix, the functional may be expressed ast

From L one obtains the conventional stress-displacement Hellinger-Reissner functional by elim-

inating e through the inverse of (2), namely E = C' = E -t o'. Another Reissner-type, strain-

displacement functional is obtained by eliminating o" through the constitutive relation (2), namely

o" = o "_ = E_, which yields

u I

Setting _ ----e" reduces R to the potential energy functional

P(u)-f[½(,")'Ee-f'u]dV-Ss (<)'(,,-<,><,s-f i'<,<,s, (,o>
,, J Sr

generalized with a S, term over its usual expression.

4. HYBRID FUNCTIONALS

4.1 Independent Boundary Tractions

If the functional (9) is used to construct finite elements, the displacement field u should be continuous

in V because of the presence of C, whereas the assumed strain field may be discontinuous. To

account rigorously for displacement discontinuities it is necessary to add the interelement surface

tractions t as new independent field which plays the role of Lagrange multiplier. Let Si denote the

union of interelement boundaries traversed twice (one for each adjacent element); on Si neither

displacements nor tractions are prescribed. Then R expands to the hybrid functional

H(u, e, t) = R(u, e) - Li trudS" (11)

For later reference we note the specialization e = C of (11) to the generalized potential energy

functional of Jones [9]

P(u, t) = P(u) - ] tr_dS, (12)
Js,

1" There are several equivalent statements of this functional, differing from one another in transformations

based on the divergence theorem. For example in Gurtin [8, p. 122] the stress divergence appears. Some
authors attribute this specific functional to B, Fraeijs de Veubeke, who indeed published a version of it

in 1951, four years before Hu and Washizu.
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i',_J stus_

-:L
Figure 1. Sample finite element mesh to illustrate

computation of inte_m'alsin H

where P (u) is given by (10).

The meaning of the integrals in H may be illustrated on the two-dimensional mesh of Figure 1:

f_-_f,,.,-f,,,+f,,:,+L,
fs--_f_,.,-f_,,÷L+fs,,,
fs-_fs_.,-fs_,÷fs_,,+fs,,,

f_-_L.,,-fs,:,÷fs_,+fs,_,+&

(13)

where element identification conventions stated in Section 2.2 have been followed. It is seen that in

the integrals over V, S, and St each element appears once, whereas in Si adjacent elements appear

twice.

4.2 First Variation

The first variation of H:

8H = 8.H + 8_H + StH, (14)

yields the Euler equations and interelement linking conditions, which are underlined in the expres-

sions below. The three components of _ H are

a,,H= fv(v#,_f)r auaV + fs (,,,-_)r (15)
f

1"

8u dS + Js_ (o'_ - t) r 8u dS,

(u - fl)TS(EE), dS,
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8tH = / u____r_tdS. (17)
.IS i

Note that there are two contributions to the element interface integrals, one from 5,,H and another

from _t H. Putting the parts together and decomposing into element-pair contributions we get

fs [(o'En - t)T Su + uT St] dS = ¢_f fs¢,_ [CY_n(e)T _u(e) -- O'En(f)r SU (f)

--t(ef)T _u(e) -- t(fe)Tt_u(f) q- U(e)Tst(ef) + U(f)T _t(fe)] dS.

(18)

In the absence of applied internal tractions, interelement equilibrium requires t<ef) = -t (fe), which

substituted into (16) reduces the right-hand side to

e_.f fsc_./_ ICr_(_)_ Su(_) - Cr_n(f)_ 8u(f) - t(ef)_ 8(u(e) - u(f)) q- (u(e) - uCf))_ _t(ef)] dS.

If we assume a compatible displacement field, u ce) = u (f), the above equation reduces to

(19)

,_f fs,,.f_ (_r_(e) _ o._(f))rsuCe) dS, (20)

which means that the interelement equilibrium condition appears as the Euler equation correspond-

ing to the variation of the interface displacements.

4.3 A Restricted Variational Principle

If the displacement field is incompatible we should in principle retain t as an independent boundary-

traction field satisfying t <`f) = -t ofe) over interelement boundaries. One way to achieve this is to

assume a continuous stress field o'* over element boundaries, so that

t(tf) = o-*.n <e) = o-: (`), t(f `) __ o.*.n(f) -- o-*.(_n(e)) = -o-: _`) (21)

The presence of an independent boundary traction field is computationally disadvantageous because

additional degrees of freedom must be retained on elements sides. This contradicts one of the tenets

of high-performance element construction noted in the Introduction. It would be more convenient if

o'* could be identified with the strain-derived stress field, that is, o'* = o "_ = EE on Si, because we

would have only two independent fields, u and _, as in (9). The strain freedoms can be eliminated at

the element level as explained in Section 6, and we are left with standard displacement connectors.

The corresponding functional is

H(u, E) = R - Js_ (°'_)ruds" (22)

But in general 0"3 is not continuous between elements. One can argue, however, that continuity

is achieved in the limit of a converged solution. A variational statement such as aH= 0 is
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called a restricted variational principle [10, Ch. I 1] because the governing field equations of §2.1

are satisfied only at the exact solution. Away from it, M-_ = 0 generally violates interelement-

equilibrium field equations although it may provide satisfactory numerical approximations.

Stress-displacement (rather than strain-displacement) functionals of this form have been used by

Pian and Chen [ 11,12], who transform the interface integral into an element volume inte_al and in

doing so introduce a stress divergence term.

4.4 Finite Element Classification

Finite element models derivable from R, H and H may be classified into several types according

to the number of independent fields and the continuity conditions on those fields. Following are

some general comments on the most interesting combinations, which are summarized in Table 1.

1. Continuous displacements. The independent boundary field t is not needed, and we can work

with the mixed functional R. If the strain field is discontinuous, strain freedoms may be

eliminated at the element level as explained in Section 6. Continuous strains are in principle

possible but impractical in general structural applications where material interfaces, plasticity,

and sudden thickness or area changes may occur.

2. Discontinuous displacements. The displacement field contains conforming and non-

conforming portions. Assumed strains are discontinuous and may be eliminated at the element

level. Displacement degrees of freedom associated with non-conforming modes may be also

eliminated if separable. The governing functionals are H or H. With the latter an indepen-

dent traction field t is required; degrees of freedom associated with t must be retained at the

assembly level.

In practice elements are often constructed as a combination of these types with conventional dis-

placement models. Thus part of the strain field may be considered as completely derivable from

displacements and part as independently assumed, as discussed in Section 8. This was in fact the

scheme originally used by Willam [1]. The CO plate bending quadrilaterals studied in Part 1-Iprovide

another important example.
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Table 1. Assumed-Strain Finite Element Models Derivable From R, H and H

Element Governing Independent Interelement Element Element

Type fimctional fields continuity on" connected condensable
u _ t fields fields

(I) R u, E c d u

(II) R u, ¢ c c u, •

(ffl) H u, e d d u t

(IV) H u, _, t d d c u'l',t •

• c=continuous, d--discontinuous, t conforming part only if separable as per (33)

5. DISCRETIZATION

5.1 Assumptions

In this section the finite element discretization of the hybrid functionals H and H is studied. That

is, we focus attention on element types labelled (III) and (1V) in Table 1. In the sequel it will

be assumed that the displacement boundary conditions are identically satisfied by u, whence the

strain-displacement hybrid functionals reduce to

H(u' e' t) = fv [erE(e" - ½e) - fru] dV - fs trUdS- fs trUdS',
(23)

fv - IE) fru] dV fs, irudS- f (tr'_)ruds" (24)-
J Si

The framework used here accomodates both continuous and discontinuous displacements. The FE

assumption may be written

u=Nv inV, E=Aa inV, t=Ts onSi. (25)

Here matrices N, A and T collect displacement shape functions, assumed natural strain functions

and interface traction functions, respectively, whereas column vectors v, a and s collect nodal

displacements, strain amplitudes, and interface tractions amplitudes, respectively. The derived

fields in V are

e"=DNv=Bv, tr"=EBv, tr _=Ee=EAa. (26)
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5.2 Discrete Equations

On inserting the assumptions (23-24) into (21-22) we obtain the bilinear algebraic forms

where

H(v, a, s) = -tarCa + arpv - vrLs - vrp, (27)

/-_(v, a) = -½arCa + ar(p - R)v - vrp = -½arCa + arPv - vrp. (28)

(29)

R=fs(EA):NdS,; P=P-R, p= fvNrfdV+ fs, NridS.

Observe that (28) results on substituting Ls by Rra in (27). Making these forms stationary yields

the linear systems

pr 0 v = , (30)

0 -L r s

[¢ (31)

for (27) and (28), respectively. In both cases the first matrix equation is the discrete analog of (16),

and expresses internal compatibility. The second matrix equation is the analog of (15) and expresses

internal and boundary equilibrium, and, in the case of (31), approximate boundary compatibility.

The third matrix equation in (30) is the analog of (17) and expresses boundary compatibility.

5.3 Displacement Field Decomposition

With view to further developments the assumed displacement field is decomposed as

u = uc + Ud. (32)

where uc is continuous (compatible, conforming) in V and ud discontinuous (incompatible, non-

conforming) on Si. It will be further assumed that this decomposition can be effected in terms of

the shape functions, i.e.,

u = Ncv¢ + Nard, (33)

where the va freedoms are defined element-by-element and may in principle be condensed out.

This assumption holds for elements in which non-conforming shape functions are "injected" over

a compatible set. For the H functional, as shown in Section 4.2 the Si integral exactly vanishes for

the conforming displacements:

trU¢ = 0. (34)
i
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On the otherhand,for H the corresponding Si integral also vanishes at the converged solution.

Taking this into account, equations (30-31) expand to

[cPcP01/jl0pr 0 0 0 vc = Pc

pr 0 0 -La Va Pa

0 0 --Ld r 0 s 0

(35)

P_ 0 0

o o

a

v¢ "--

Vd

0

Pc

Pa

(36)

in which Pd = Pd -- Rd, and where c- and d-subscripted matrices and vectors are given by integrals

similar to (29) in which N is replaced by Nc and Na, respectively.

6. STRAIN ELIMINATION

The strain degrees of freedom may be eliminated at the element level by static condensation or by

enforcing kinematic constraints. These two techniques are studied below.

6.1 Static Condensation

This is a well known variationally consistent procedure which will be illustrated for the system

(30). From the first matrix equation get a at the element level:

a = C-1Pv = Qsv. (37)

Substitution into the second equation gives

K -L v

where K = prc-tP = PrQ s = QsrCQs is a stiffness matrix. Similarly, (31) condenses to

K,v = p, (39)

where K PrC-IP -r -= = Qs CQs and O-s = c-tp. The separable non-conforming degrees of

freedom va, if present, may be condensed out following a similar procedure.

6.2 Kinematic Constraints

A second elimination procedure has been used recently in the construction ofANS C Oplate and shell

elements. It will be described by considering the system (35) that displays separable conforming
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and non-conformingdisplacementshapefunctions. A kinematicconstraintthat links strain to
displacementdegreesof freedomis established:

a = Qcvc + QdVd. (40)

This relation may be constructed by collocation, least-square fitting or some other means. Often

Qd = 0. For example, in the Bathe-Dvorkin element [2] studied in Part II collocation of natural

shear strains is done at the quadrilateral midpoints.

If the following conditions hold:

(a) the dimension of va and a are the same so that Pa is square;

(b) matrix Pd -- CQ.a is nonsingular;

then the relation (40) may be interpreted as a variationalIy-consistent constraint on non-conforming

displacements. In effect, the first equation of (35) becomes

(Pc - CQc) vc + (Pd -- CQd)Vd = O, (41)

whence

va = -(Pa - CQd) -1 (Pc - CQ_)vc = Wvc,

a = (Qc + QaW)vc = Qvc.
(42)

If (as often happens) Qd = 0, Q - Qc. Replacing the constraints (42) into the discrete form

H(a, vc, vd, t) and setting its first variation to zero yieidst

where

K* = QrCQ, L* = WrLd, P* = Pc + WrPa -

Similarly, for (34) we get the stiffness equations

(44)

K,*vc = _*, (45)

where K,* = _r CQ, in which Qa results on replacing Pd by P,_ in (41-.42).

Note that condition (a) above may be relaxed if the dimension of va exceeds that of a by selecting

a subset of va that satisfies (b), and statically condensing out the remainder.

t One obtains K* = Qr (2Pc + 2PdW -- CQ) which simplifies to (44) because PaW = CQ - Pc.
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6.3 Relation to the Strain Projection Approach

If the dimension of a exceeds that of vd (in particular, if the assumed displacement field is conform-

ing) the constraint (40) is in general inconsistent with a strain-displacement variational principle. In

such a case a connection with other techniques for improving element performance can sometimes

be established. For example, suppose that the assumed strains e are constant and equal to _ over

each element, and that the displacements are continuous. We can choose a -- _, and A -- I so that

(40) may be written
-- Bv. (46)

This is the strain-projection approach, also called averaged-B or the B approach. If B is determined

by collocation at the element center, (46) is equivalent to one-point reduced/selective integration

on the potential energy functional, see e.g. Hughes's textbook [13, Ch. 4].

7. LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke [14] was originally stated for stress-

displacement mixed finite elements, but holds for many strain-displacement elements as well. The

principle is applicable when the displacement-derived strain field ¢" is contained in the assumed

strain field ¢:

¢ _ Eu = Du = Bv. (47)

This inclusion can be expressed in matrix form as

av } (48)E=Aa=Bav+Axax=[B Ax] ax "

Here a_ contains the same number of entries as v whereas Ax, which may be empty, contains

"excess" strain modes. Consider elements of type (117) based on the functional H. Inserting (48)

into (30) we get

-Cor_-Cxx r ax = 0 (49)

0 -L r 0 s

where

Cvv=fvBrEBdV ' Cvx=fvBrEAxdV ' Cxx=fvArxEAdV. (50)

The first two matrix equations give av = v and ax = 0. Hence the system is equivalent to (38)

in which K = Cvv is simply the potential energy stiffness matrix. Consequently the stiffness

equations may be directly constructed from the generalized potential energy functional (12) and

the independent strain assumption has no effect. Of course the conclusion only applies if the strain

degrees of freedom are solved for in a manner consistent with the variational equations (49); for

example by static condensation. If the derived field eu varies over V, assuming a constant strain

field _ for E is a safe way to guard against the limitation principle.
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A similar analysisof type(IV) elementson theH-derived system (31) shows that the limitation

principle does not generally hold unless Rv = 0. For arbitrary v this implies that the interface

integral vanishes, in which case H reduces to the mixed functional R.

8. PARTIAL STRAIN ASSUMPTIONS

It is common practice to assume only part of the strains as independent fields. For example, in

the C o plate bending element studied in Part II independent assumptions are only made for the

transverse shear strains whereas the bending strains are entirely derived from displacements. The

partial strain assumption may be expressed as

/,o}= , (51)
_b

where independent strain assumptions are made only for e,, = Aa. For eb one has eb = e_,. The R

and H functionals require obvious modification in the volume term; for example,

f_[_ ,c>: oo_o,l{'z-_'o/, - fru] dV+surfaceterms (52)R(u, ¢,,) = ( Ca L Eba Ebb _ eb l

while for H an additional adjustment in the Si integral is required. The resulting principles take a

particularly simple form if the constitutive coupling term Eab and Eba vanish, in which case

R = Ra(u, _-a) + Pt,(u) (53)

where Ra is a mixed strain-displacement principle involving E,,, and Pb is a potential-energy prin-

ciple involving the E_, strain energy.

The

1.

.

.

9. CONCLUSIONS

key results of the present study may be summarized as follows.

The mixed strain-dis_acement functional of Reissner type, R, can be expanded to two hybrid

functionals, H and H, to account for incompatible displacements. Whereas _R = 0 and

H = 0 are genuine variational principles, 8H = 0 represents a restricted variational principle.

Several types of assumed-strain finite elements may be constructed using R, H or H. The

most practical elements for inclusion into existing displacement codes are those in which (1)

strain and non-conforming-displacement degrees of freedom can be eliminated at the element

level and (2) avoid surface traction connectors.

Strain degrees of freedom may be eliminated by static condensation or through kinematic

constraints. The latter technique can be presented in a variationally consistent form if the

conditions stated in Section 6.2 hold, in which case it can be interpreted as a constraint on

non-conforming displacements. Special versions of this technique are closely related to the

strain-projection approach.
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4. DeVeubeke's limitation principle applies to finite element models derivable from functionals

R and H if the strain elimination procedure is variationally consistent.

5. The present variational formulations may be readily modified to account for partial assumptions

on the strain field.
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Appendix A. THE PATCH TEST

In this Section the conditions for this element to pass the constant-traction patch test are investigated. As

discussed by Taylor et aL this is the most stringent form. The test is applied analytically to a single element

in the form of the individual element test of Bergan and Hanssen closely following the procedures used in the

standard and extended free formulation. No numerical studies are required.

Before undertaking the actual test some mathematical preliminaries are worked out below. Throughout the

following derivations we work with an individual element; consequently V denotes the element volume, S its

boundary, and so on.

A.1 Strain Decomposition

The assumed element strain field, E, is decomposed into a constant value, _, and a deviator:

=_+¢h =_+Ahah, (54)

in which

- e dV, Ah d V = 0, (55)
u

where v = fv d V measures the element volume. The second relation in (55) is obtained by integrating (54)
over V and noting that ah is arbitrary.

A.2 Internal Displacement Decomposition

Borrowing from the standard techniques of the free formulation the element displacement field decomposition

(33) is continued as follows

U = Uc q- Ud = Ur "t" Uu "t- Uh + Ud = Nqrqr Jr Nquq. + Nqhqh + Nqdqd, (56)

where ur, u, and uh denote the decomposition ofuc into rigid-body, uniform-strain and higher-order-compatible

displacements, respectively. Corresponding displacement modes are collected in arrays Nqr, Nq., and Nqh, and

their amplitudes (generalized coordinates) are q_, q, and qh. (Implicit in this decomposition is the assumption

that the rigid-body and uniform state states are part of the compatible field.) As for ua, Nqh collects non-

conforming modes and qa the corresponding generalized coordinates. If the separation (31) holds, we may

obviously select N.a = Nqa and va - oz.

To illustrate the structure of (56), consider a 4-node plane stress rectangular element with 2 incompatible

pure-bending modes, referred to a cartesian system x, y with orion at the rectangle center and parallel to the
sides. Let the x, y displacement components be us and u r. Then an admissible expansion is

yl{q'}qIX:x° ll}I{}{u,} =[10 0 --y ] x O + q7 + --XY!x2 ½y21 q9Uy 1 x q2 + 0 y q8 - --xy j qlo
q3 q6

rigid-body uniform strain higher order nonconforming (5.7)
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Applying the strain operator D = ½(V + V r) to u and noting that B, = DNr vanishes because Nr contains
only rigid-body modes we express the displacement derived strains as

eu = DNq,q, + DNquq,, + DNqhqh + DNqdq_t -" B_q. + Bhqh + Be%, (58)

where matrix B. is constant over the element.

The generalized coordinates q and displacement degrees of freedom v are linked by collocation of (56):

v = G_ + G.q_ + Ghqh + Gdo_ = Gq (59)

where matrix G is square and assumed nonsingular. The construction of G is illustrated for the sample

expansion (57):

V---

Ux I '

Uyl

Ux2

Uy2

Ux3

Uy3

Ux4

Uy4

u,t_

l)d2 .

-1

0

1
0

I

0

1

0

0

-0

12
0 --Yl xl 0 Yl xtyt 0 --xlyt _Yl

12
1 xt 0 Yt xl 0 xtyt _x I --xtyl

12
0 --Y2 x2 0 Y2 x2Y2 0 --xtyl [yj

1 x2 0 Y2 x2 0 x2y2 ix 2 --xzy2
I 2 q20 --Y3 x3 0 Y3 x3Y3 0 --xtYl _Yl

12 • ,
1 x3 0 Y3 x3 0 x3Y3 _x 3 --x3Y3

12

0 --Y4 xa 0 Ya x4y4 0 --xtyl _Yt qt0
12

1 x4 0 _ x4 0 x4ya ix 4 --x4y4
0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 I

(60)

in which we have chosen va_ = q9

q __

Inversion of (59) gives

and vd2 = qt0, as are are nodeless variables.

q" G-iv Hv= H,,"" "- V'.

qh
(61)

A.3 Equation Partitioning

Consider an element of type (]II) with variational equations (30). For simplicity we assume that the elastic

moduli in E are constant over the element and that there are no body forces. The element boundary is

S:S,u§_

where Si is the interface with other elements, and on St the traction t is prescribed. The degree of freedom

/"/a-- , q= ,
ah qh

q,t

partition

(62)

90



in conjunction with (61) induces the following partition of the

--vw o o g,
0 --Chh 0 Ph,. Phh Pha

0 0 0 0 0 0
_T

pr 0 0 0 0P,,
--T

Prh 0 0 0 0Ph
--T

Pr d 0 0 0 0Pe

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

0 0 0 0 0 0

0 0 -L r-L r-L r -Lar

0 0 0

0 0 0

I 0 0

0 I 0

0 0 I

0 0 0 I

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

-H$
0 0 0 0

element equations

0 0 0

0 0 0

0 0 -L,

0 0 -L_

0 0 -Lh

0 -Le

-H_ 0

-H. 0

-Hh 0

-He 0

0 0

0 0

ah

q,

q,,

qh

qd

A,

Ah

Aa

Y

$

0

0

Pqr

Pqu

Pqh

Pqd

0

0

0

0

0

0

(63)

where A..... _,e are Lagrange multipliers that enforce the constraints (61), and

/.

Chh = ],. ArEAh dV,

Ph_ = f. ArEBh dV,

= = N,, T dS,

p, = N idS p. = N IdS.

Note that

P. = vEBu, Fh = fv EBb d V

Phh=fvArEBhdV, Pha=fvArEBddV,

Lh = £ NrTdS,

Ph = f, NridS,

AhEB aV=(fAhaV)EB,=O,

on account of the second of (55), and

P,t= fEBbdV
rV

Le= [ NrTdS,
si

Pa= fs NraidS,

(64)

(65)

pr+L,V= fsNrrtdS=O
(66)

on account of the theorem of work expended on rigid motions.

A.4 Integral Transformations

Suppose that the element is in a state of constant stress & = EL Application of the divergence theorem to the

work of & on the displacement-derived strains ¢_, where x = r, u, h, d, yields

fvbrE_dV+f(div_r)ru_dV=fv(¢:)r&dV=fsUr&_ dS.
(67)

Using (56) and (58):

fqr BrEdV _ = qr N_a_dS, f ]s'-or BrEdV _ = N_r. dV. (68)
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Comparing with (64) and noting that _rn = [.on Sr and Jr -- t = Ts on Si:

Px _ + Nr_'n dS = P_i - Lxs - Px (69)

A.5 The Rigid Body Motions Test

The first part of the individual element test requires that no forces be produced in a rigid body motion. On the

left-hand side vector of (63) prescribe cL. = any, vr = Grq, others zero. The only nonzero force on the right
is

t"

pq, =/Nr_tdS = 0 (70)
.Is

because of (66).

A.6 The Uniform Stress Test

The second part of the test requires that node forces among adjacent element pairs vanish when both elements

are in a state of constant stress &. On the left-hand side vector of (63) prescribe the solution _ = _, v = G_ _,

s = c,,. others zero. By virtue of (69) all forces on the right vanishes except for the Si terms. These cancel

identically with the forces of neighboring element. Hence the individual patch test is passed.

Elements of type (IV) also pass the constant stress patch test, as the interface integrals become identical to

those for type (I]I). The patch test is trivial for types (I) and (1I).

A.7 Effect of Strain Elimination

If the strain freedoms are not eliminated in a variational consistent manner the patch test is not generally

passed. This happens if the constraint (40) is not verified by the constant stress state condition.
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A VARIATIONAL JUSTIFICATION OF THE ASSUMED

NATURAL STRAIN FORMULATION OF FINITE ELEMENTS.

II. THE Co FOUR NODE PLATE ELEMENT

SUMM,M_Y

In Part H we use the four:node Co plate bending element to explore some of the possibilities

opened by the theory presented in Part I. This element is chosen because the version presented by

Bathe and Dvorkin [ 1], M1TC4, can be considered the simplest assumed natural strain element that

allows several possibilities to be studied in a straightforward manner. We focus our attention on

the governing funetionals R and H presented in Part I, assuming independent strain fields only for

the transverse shear strains. Besides M1TC4 we consider three formulations (two mixed and one

hybrid) that collectively represent a variational justification for the assumed strain technique. In

addition, we examine reduced and selective-integration elements to compare their behavior with

that of the present strain-assumed elements.
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1. INTRODUCTION

1.1 4-Node C OBending Plate Element Formulation

We start with the formulation of the four-node Reissner-Mindlin plate element whose degrees of

freedom (d.o.f) are the transverse displacement w and the two rotations 0x and 07 about the x and

y axes, respectively, as shown in Figure 1. We expand the displacement field in the usual way:

w = Ni (r,s) wi

Ox= Ni(r, s)O,_

G = _i(r,s)Oyi

(1)

where

Ni(r, s) -" 1(1 + rir)(1 + sis), i = 1,2,3,4 (2)

are bilinear shape functions. The strain field derived from the displacement field is

//

_xx = Z Oy.x

u -_- "Z Ox.ye_yy

y;, = w., - o_
G=w.,+o,

(3)

We take advantage of the decoupling between bending and shear energies by using different as-

sumptions for each one. We assume that the bending strains coincide with the bending strains

computed from the displacement field:

8xx --" £u

U

eyy "" _.yy

_xy "-- _'xUy

(4)

The shear strains components in the Cartesian basis x, y, z derived from the displacement field are
o.

(5)

After some manipulations we can obtain the covariant components of the shear strains in terms of

the natural coordinates r and s as

),,_= w., + #, (6)

×_ = w., + #, (7)
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Figure 1. Element coordinate system and notational conventions

where

8,. = -Ox Y.r + Oy X.r

fls = --Ox Y.s + Or X,s

(8)

(9)

1.2 The Assumed Covariant Shear Strain

We consider two different assumptions for the covariant shear strains,

and

(1 -s) (l+s)
yrz=al_+a2 (10)

2 2

(l-r) (l+r)
Ysz =a3_+a4_ (11)

2 2

yrz=at (12)

ysz=a2 (13)

The bilinear assumption (10)-(11) is of the same form as that proposed in [1]. The constant

strain assumption (12)-(13) is studied to see whether there are connections to the selective reduced

integration (SR1) technique discussed by Hughes [2].
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2. MIXED ELEMENT BASED ON THE FUNCTIONAL R(u, E)

Up to now we are working with a compatible displacement field and a discontinuous strain field.

Hence we use the functional R(u, E) presented in §3 of Part I. No boundary field is necessary and

the constants ai can be obtained at the element level.

The element displacement field is

which can be expressed as

{w/U = Ox ,

8y

(14)

U = Ncvc (15)

where

Nt 0 0 ... N4 0 0 "]
Nc = 0 Nt 0 ... 0 N4 0 J0 0 N1 ... 0 0 N4

T Ox I Oy I . 1134 Ox4 Oy4 ).V c _ ( 1,01 ..

(16)

(17)

The strain fields derived from the displacements are

a) bending strains:

{6 ,x }
" = vc,EUb -" E yy

(18)

b) shear strains:

The independently varied strains are:

a) bending strains: the same as obtained from the displacement field, i.e., (18).

b) shear strains:

,.,/.-. ---
Y_z

(19)

(2O)

Replacing (18), (19) and (20) into the functional R and carrying out the integrations at the element

level we obtain

R(vc, a) = 1 _ T.o.cc. 1 ^Tr, aa^ . Tvca_ T c_vc_bv c-_a _. a+Vcl_ a-vcp , (21)

where

K_'C= :v, (B_')rEbB_'dV, (22)

caa -- fv a r a
(Bs) E,B s dV, (23)
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Fi.gure 2. Bending test

/,

Lca= [ c r a(Bs) EsB s dV,
Jv

¢= f •N:faV + fs N: aS

Here vector f collects applied distributed forces conjugate to w, Ox and _y.

variations we obtain the matrix equation

KCbC Lca pC

From the second equation we obtain the shear strain coefficients

a = (caa)-l(Lca)rvc = Qcvc

which replaced into (26) gives the statically condensed system

(K_ c 4- QcrCaaQc)vc = pC

(24)

(25)

On performing the

(26)

(27)

(28)

Here K_,c is the bending stiffness matrix, which is also obtainable from the potential energy principle,

and Qr C""Q c stands for the new shear stiffness matrix; of. §8 of Part I.

Equation (27) can also be obtained by minimizing the following shear energy error norm:

I-1, = ½fv (7 - _)rE,(_f- _) dV

where vector "7 collects the independent shear strains (10)-(11) or (12)-(13), and _ collects the

shear strains evaluated from the displacement field, equation (19). The minimization of this norm

using an independent stress field instead of a strain field was proposed by Barlow [4] as a way of

deriving stress-assumed hybrid elements.
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Figure 3. Shear test

We have implemented two elements based in the form (21) and the assumptions (10)-(11) and

(12)-(13), which will be identified as P4 and P1, respectively, in the sequel. The results obtained

for the simple shear and bending tests illustrated in Figures 2 and 3 are summarized in Tables 1 and

2. We have compared these results to those obtained using SR/and MITC4 elements. The results

indicate that P1 and P4 behave poorly when elements are distorted and that P1 is not equivalent to

SR/.

An interesting result is that if we use one point reduced integration to compute L ca, both elements

P1 and P4 yield the same results obtained using SR1.

We can obtain another expression for Qc, called Qc in the sequel, from the field proposed by Bathe

and Dvorkin [1] for the covariant shear strains. This expression relates four strain coefficients a

to the nodal degrees of freedom vc. The elements of Q_ are given in Appendix A. It is important

to realize that Qc obtained for element P4 matches the matrix Qc only for rectangular shapes.

Consequently, the variational principle based on the functional R justifies the assumed natural

strain technique for rectangular shapes. However, what can we say about distorted shapes? We

need Qc = Qc for all possible configurations to generalize that justification.

3. INCOMPATIBLE DISPLACEMENTS. THE FUNCTIONAL H(u, e, t)

Following the general procedure outlined in §6.2 of Part I, we add to the transverse displacement

w the four midside incompatible shape functions of an eight node element. In this way the bend-

ing behavior is unchanged. We denote by va the nodal values associated with these "injected"

incompatible shape functions. The new displacement field can be written as

vc } (29)u=[Nc Ne] ve
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Table 1. Bending Test (FEM/Theory-Figure 2)

a Node MITC4 SRI P1 P4

w Or w O: w Oy w Oy

O. 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. 5 1.00 1.00 0.90 1.00 0.88 1.00 0.44 0.44

6 1.00 1.00 1.10 1.00 1.07 1.00 0.47 0.47

2. 5 1.00 1.00 0.80 1.00 0.74 1.00 0.23 0.23

6 1.00 1.00 1.20 1.00 1.06 1.00 0.28 0.29

Table 2. Shear Test (FEM/Theory-Figure 3)

a Node M1TC4 SRI P1 P4

14t W W W

O. 5 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00

1. 5 1.00 1.00 1.40 1.00

6 1.00 1.00 0.85 1.00

2. 5 1.00 1.00 3.06 1.00

6 1.00 1.00 0.99 1.00

where

I1 l(l+s)(1-r 2) l(1-s)(1-r 2)]

(l+r)(1-s 2) ½(1-r)(1-s 2)

Na = 0 0 0 0 ] . (30)0 0 0 0

The bending strains do not change, and for the displacement derived shear strains we have

y_ =B svc+B sva.
(31)

If we introduce the new strains into the variational principle, we must use the functional H (u, ¢, t)

because the displacement field will be discontinuous. Then, we have to introduce a traction field t

over the boundary. This traction field is a (line) shear resultant, and for simplicity we shall assume

that it is constant on each element side. On performing the variations, the following expression at
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the element level is obtained:

where

i Kcc 0 pca Let 1

"_ 0 pca La,

(p,o)r (pao)r _C_ 0
L (La) r (Ldt) r 0 0

vc}Vd

a

t
pc}pa

0

0

(32)

pca _. fv c T a
(Bs) EsB s dV (33)

t,

= (Bsd)rEsB a dV (34)

LC'= fs,_NcrdS (35)

L_' = fs,, Nr dS (36)

pd= fs N_idS + fv N_faS (37)

Now imposing the relation

a = Q_vc (38)

we obtain

Vd -- (pda)-T (CaaQ_ -- (pca)T)Vc -" WcYc .
(39)

Replacing both relations in the variational principle and taking variations with respect to vc and t,

the following expression at the element level is obtained:

Khc+ Q_.Tc,,,Q_. LCt+ cL a' vc pC + Wcrpa
+ WcLat) r t = 0

(40)

The stiffness matrix proposed in [ 1] for the plate element, namely, K_,c + Q_T Ca,,Q_, can be clearly

identified in the preceding expression. It is not necessary to compute the contribution Lct because

it comes from the compatible displacement and will cancel with the contribution of the neighboring

element. On the other hand, the contribution L dt from the incompatible mode does not vanish. If

t vanishes the stiffness matrix reduces to that of [2] but the nodal force vector will generally be

different. Thus it is worth emphasizing that the variational principle gives a consistent treatment

for the distributed loads.

The matrix paa is singular for rectangular elements, but we know that in this case Qc is equal to Q_

and there is no need to introduce the incompatible displacement field.
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Figure 4. Cantilever beam discretization

Table 3. Normalized displacements (FEM/Theory) for bending, t = 1.E - 12

Node MITC4 ANSH

w Oy w Oy

5 1.000 1.000 1.000 1.000

6 1.000 1.000 1.000 1.000

Table 4. Normalized displacements (FEM/Theory) for shear, t = -2.227

Node MITC4 ANSH

w Oy w Oy

5 0.930 1.077 0.892 1.003

6 0.912 0.920 0.891 1.002

4. NUMERICAL EXAMPLE

To check the behavior of the functional H (u, e, t) we analyze a cantilever beam with two distorted

elements, as depicted in Figure 4. The assumed independent shear strain corresponds to equations

(10) and (1 1). We are interested in two load cases: a uniform bending moment at the tip (Figure

2); and a uniform transverse load at the tip (Figure 3). In both cases Poisson's ratio is set to zero to

compare the results to those obtained through the Euler-Bernoulli beam theory.

Uniform Bending Moment. The theoretical solution for this problem requires a linear variation for
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Oy and a quadratic variation for the transverse displacement w. The results obtained with M1TC4

coincide with the theoretical results. So do those obtained with the present formulation labeled

ANSH (for Assumed Natural Shear Hybrid).

The value obtained for t is of roundoff error order (1.10-z2). Then, in this case, both formulations

are equivalent and the work of the incompatibility can be disregarded.

The external load vector is the same for both formulations because the external bending moment

does not interact with the transverse displacement.

Uniform Transverse Load. The theoretical solution requires a quadratic variation in Oy and a cubic

one in w. In this case we must expect the computed solution to be approximate. The results obtained

are shown in Table 4. Clearly the ANSH formulation is less sensitive to element distortion. The

lack of symmetry can be observed at the third decimal position. The convergence and symmetry

for the rotation is excellent. The value obtained for t is not negligible. Note that in this case the

external load vector is not the same for the M1TC4 and ANSH formulations.

5. CONCLUSIONS

We have illustrated the theory presented in Part I [3] through the study of several 4-node CO plate

elements with independently assumed shear strains. The following conclusions emerge from this

study.

1. Elements P1 and P4 based on the mixed functional R(u, e) are variationally impeccable.

P1 behaves well in the bending test and P4 passes the shear patch test. Their performance

deteriorates markedly, however, if the element geometry departs from the rectangular one.

2. The MITC4 element imposes a shear strain- displacement relation (38) obtained by midpoint

strain collocation. This kinematic relation is not a priori derivable from a mixed variational

principle such as 8 R = 0.

3. A variationally consistent modification of MITC4, named ANSH, is obtained by introducing

incompatible displacement modes and an independent surface traction t (in this case a shear

line force), and using the hybrid functional H (u, e, t) for the shear energy portion. The results

are similar to those of MITC4. Although this element is more expensive to form, it does

provide a consistent treatment of applied distributed loads.

4. The MITC4 element stiffness matrix is recovered by setting the boundary traction field t of

ANSH to zero. However, the nodal load vector for distributed applied forces will generally be

different.

The techniques illustrated here are obviously applicable to the construction of other types of strain-

assumed elements based on the various functionals presented in Part I [3]. In particular, the use of

the restricted hybrid principle H, in which the boundary tractions are not retained as independent

degrees of freedom, remain unexplored.

A key result of this investigation is that any change in the strain-displacement interpolation from the

variationally consistent interpolation must be associated in some way to the addition of incompatible
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displacement modes. This property is closely linked to the limitation principle stated in §7 of Part

I.
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Appendix A

Bathe and Dvorkin [1] proposed the same kind of shear strain interpolation we have used in equations (10)--(11).
To determine the coefficients ai they imposed the following midpoint-collocation relations:

r_"+ r:3 r_'+ ×:_
at = 2 ' a2 = 2 '

r:'_+ r:? r_'+ ×:'_"
a3 = 2 ' a4 -- 2 '

where superscripts 1, 2, 3, 4 indicate the node where expressions (6) and (7) must be evaluated; see Figure 1.

Through the application of the relations of Section I and after some algebra we obtain

a=Q_vc

where
ar = (ai a2 a3 a4)

r (w 0xl 0yt Oy4)V¢ _ ...

4

0

Q_= y,-y,

L7 40

-0.5 y2-yt
4 4

0 0 0

0 0
4
o 0.5 4

xt-x_ 0 0 0 0 0 0 "l
4

Jo -05y3-r, 0.54 4

0 0 0 0 -0.5 y4-yt4 4

x,_--x3 -0.5 >'3-y2 x_-x_ 0 0 0
4 4 4
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MIXED VARIATIONAL FORMULATION OF FINITE ELEMENT ANALYSIS

OF ACOUSTOELASTIC/SLOSH FLUID-STRUCTURE INTERACTION

ABSTRACT

A generalthree-fieldvariationalprincipleisobtainedforthe motion of an acousticfluidenclosed

in a rigidor flexiblecontainerby the method ofcanonicaldecomposition appliedtoa modified form

of the wave equation in the displacement potential.The generalprincipleisspecializedto a mixed

two-fieldprinciplethatcontainsthe fluiddisplacementpotentialand pressureas independent fields.

This principlecontainsa freeparameter a. Semidiscretefinite.clementequationsof motion based on

thisprincipleam displayedand appliedto the transientresponse and free-vibrationsof the coupled

fluid-structureproblem. Itisshown thata particularsettingof a yieldsa richset of formulations

thatcan be customized tofitphysicaland computationalrequirements.The variationalprincipleis

then extended to handle slosh motions in a uniform gravityfield,and used to derivedscmidiscretc

equationsof motion thataccountfor such effects.
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1. INTRODUCTION

An elastic container (the structure) is totally or partly filled with a compressible liquid or gas (the

fluid). The fluid structure system is initially in static equilibrium in a steady body force field such as

gravity or centrifugal forces. We consider small departures from equilibrium that result in forced or

free vibratory motions. To analyze these motions the fluid is treated as a linear acoustic fluid, i.e.,

compressible but irrotational and inviseid. The purpose of the present work is

1. To derive variational equations of motion based on a mixed variational principle for the fluid

subsystem.

2. To obtain semidiscrete equations of motion following spatialdiscretization of the coupled problem

by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of canonical

equations advocated by Oden and Reddy [13] for mechanical applications. The most general dy-

namical principle derived in this paper contains three primary variables: pressure-momentum vector,

dilatation-velocity vector, and displacement potential.

The general principle is specialized to a two-field functional of Reissner type that has pressure

and displacement potential as primary variables, as well as a free coefficient o_ that parametrizes

the application of the divergence theorem. The coupled variational equations are then discretized

by the finite element method, and semidiserete equations for a rigid container established. Linkage

with the structure is then made to establish coupled semidiserete equations of motion for a flexible

container. By appropriate selection of the coefficient a a continuum of finite element formulations

results. One particular setting yields a rich set of symmetric and unsymmetric formulations for the

transient and free-vibrations elastoaeoustic problems. From this set selections can be made to satisfy

various physical and computational criteria. The implications of these selections as regards efficiency

and numerical stability are discussed.

The variational formulation is then extented to cover slosh motions in a uniform gravity field. It

is shown that the surface slosh equations may be incorporated as Galerkin terms in several forms, and

that one of these forms merges naturally with the mixed variational principle to form an augmented

functional. Semidiscretization of this functional produces finite element equations of motions that

may be used for _. ri2_id or flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denotedby V. This volume is assumed

to be simply connected. The fluid boundary S consists generally of two portions

s : sausp. (1)

Sa is the interface with the container at which the normal displacement dn is prescribed (or found as

part of the coupled fluid-structure problem) whereas Sp is the "free surface" at which the pressure
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Table 1 Notation for Fluid States

Quantities Domain Original Reference Current Transient

do d = d t - do

d ° d=at_d 0

,¢ =<
¢o = 7," - .¢o
pO p ._ p t _ pO

b=V/3

Displacements V 0 d t

Velocities V 0 d t

Boundary displacements* S 0 d t

Displacement potential V 0 _t

Pressures (+ if compressive) V 0 p t

Body forces V 0 b = V/_

Density V p p p

* Positive along outward normal

p is prescribed (or found as part of the "fluid slosh" problem). If the fluid is fully enclosed by the

container, as is necessarily the case for a gas, then S t, is missing and S = Sa. The domain is referred

to a Cartesian coordinate system (xi, x2, x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a time independent

potential/3 (x), i.e. b = V/_. All displacements are taken to be infinitesimal and thus the fluid density

p may be taken as invariant.

We consider three states or configurations: original, from which displacements, pressures and

forces are measured, current, where the fluid is in dynamic equilibrium at time t, and reference, which

is obtained in the static equilibrium limit of slow motions. Transient motions are the difference between

current and reference states. It should be noted that in many situations the original configuration is

not physically attainable. Table 1 summarizes the notation used in relation to these states.

2.1 FIELD EQUATIONS

The governing equations of the acoustic fluid are the momentum, state and continuity equations. They

are stated below for the current configuration, and specialized to the reference configuration later. The

momentum (balance) equation expresses Newton's second law for a fluid particle:

pa t = --Vp t + b = -Vp t + V_. (2)

The continuity equation may be combined with the linearized equation of state to produce the consti-

tutive equation that expresses the small compressibility of a liquid:

pt _. _KVd t = _pc2Vd t, (3)

where K is the bulk modulus and c = _ the fluid sound speed. If the fluid is incompressible,

K, c --_ oo. This relation is also applicable to nonlinear elastic fluids such as gases undergoing
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small excursions from the reference state,

K -- ,oo(dp/dp)o.

The boundary conditions are

if the constitutive equation is linearized there so that

d_ =a_ on Sa, p t=/5' on Sp, (4)

where d t is either prescribed or comes from the solution of an auxiliary problem as in fluid-structure

interaction, and/3 may be either prescribed or a function of d, and b, as in the surface-wave ("slosh")

problem.

2.2 INTEGRAL ABBREVIATIONS

In the sequel the following abbreviations for the volume and surface integrals are used:

(f)v = f dV, [g]s aef= gdS, [g]s_ = gdS, etc. (5)

That is, domain-subscripted parentheses (square brackets) are used to abbreviate volume (surface)

integrals. Abbreviations for function innerproducts are illustrated by

do,(f,g)v = fgdV, (f,g)vxt def f ttfv-- f g dV dt, [f , g]s,×, dcff" fs fgdSdt '
etc.

(6)

3. THE DISPLACEMENT POTENTIAL

3.1 THE REFERENCE STATE

Taking the curl of both sides of (2) yields

curl d t = 0. (7)

The general integral of this equation for a simply connected domain is

d t -- Vap t + a+bt, (8)

where ap t = apt(x, t) is the displacement potential, a = a(x) and b = b(x) are time-independent

vector functions, and t denotes the time. If accelerationless motions (for example, rigid body motions)

are precluded by the boundary conditions, a and b vanish. Replacing a t = V_ t into the momentum

equation (2) we get

Vp'=-pV_' + Vfl, (9)

which spatially integrated gives

pt = _p_, + _ + C(t), (10)
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where the scalar C(t) is not spatially dependent. Next integrate the constitutive equation (3) over V

and apply the divergence theorem to Vd:

(pt)v q- (pc2Vdt)v -- (pt)v -b [pc2dl]s = O. (11)

Inserting pt from (10) into the above equation furnishes a condition on C(t), which gives

C(t) pc2[dtnls + P (_t)v l (fl)v = pc2 dt ---= ...... [ .]s+pff' (]2)
U l,,' U 12

where v = (1) v is the fluid volume and f = (f)v/v denotes the volume average of a function f

defined over V. Substituting C(t) into (10) we get

•"'77"" m

pt _ _p(_t _ d/t)q_ (fl_ t) _ pc2[dtn]s. (13)
12

In the static limit of very slow motions, the inertia terms may be neglected and we recover the reference

solution

pO = (fl _ -_) _ PCZ [dnO]s" (14)
12

For an incompressible fluid [d,]s = 0 but c --. _; thus it would be incorrect to conclude that

p0 =/_ _ _. A counterexample to this effect is provided in [14].

3.2 TRANSIENT MOTIONS

Subtracting the constitutive relations at the current and reference states we get

p = -pc2V21p = pc2s, (15)

where s = -V;Ct is called, following Lamb [10], the condensation. Subtracting (14) from (13) yields

PC_ dP =-P(_-_)---[ .]S-
1J

(16)

On equating (15) and (16) we get modified forms of the wave equation that account for mean boundary

surface motions:

s = v:V = 0)-c2 + l[d"]s'u or c2(V2@ - V2_) = _- - _. (17)

The second form follows from -12_ = [d,]s, which is a consequence of the divergence theorem. For

an incompressible fluid, c ---> c_ and [d,]s = 0, and from the first of (17) we recover the Laplace

equation V2_p = 0.
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3.3 ADJUSTING THE DISPLACEMENT POTENTIAL

If the transient displacement potential is modified by a function of time:

= + p(t), (18)

where _/is the potential of (8)-(17), we may chose P(t) so that c2_ ' = V2ap = -_" for any t. Then

we obtain the classical wave equation

C2V21]¢ --" I_') or _ -- C2V 2 1// -- 0.
(19)

In the sequel it is assumed that this adjustment has been made. If so, C(t) vanishes and (16) reduces

to

p = -p_. (20)

4. MIXED VARIATIONAL PRINCIPLES

4.1 CANONICAL DECOMPOSITION

In this section we derive multifield variational principles for the fluid domain following the canonical

decomposition method advocated by Oden and Reddy [ 13]. This method is applicable to self-adjoint

boundary value problems (BVP) of the form

Au = f in D (21)

where u is the unknown function, f the data, A a symmetric linear operator, and D the domain of

existence of the solution. For time-dependent problems D is the tensor product of the time domain

(typically 0 to t) and the volume V. To apply this method, the operator A is factored as

Au = W*EWu = f, (22)

where W and E are linear operators in V and W* is the adjoint of W. This is called a canonical

decomposition. This decomposition may be represented as the operator composition sequence

Wu = e, Ee = tr, W*tr = f, (23)

where e and or..denote intermediate field variables in D. The three equations (23) are called the

kinematic, constitutive and balance equations, respectively, in mechanical applications. The canonical

representation of boundary conditions on the surface S = S,, t3 S,, is

BsU S = g on S,, B_cr S = h on S_r. (24)

where Bs and B_ are surface operators, g and h denote boundary data, and us = }'su and as = Fsa

are extensions of u and cr to the boundary S. The extension operators Ys and _s often involve normal

derivatives.
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4.2 THE WAVE EQUATION

The classical wave equation (19) is not a good basis for the canonical decomposition (22). Its principal

drawback is that the pressure field does not appear naturally as an intermediate variable in (23). A

better form for our purposes is obtained by taking the Laplacian of both sides of (19), and multiplying

through by the density p:

pV2(l_ -- C2V2_) "- O,
whence A --- ,oV 2 _t 2 - c2V2 , f = 0.

(25)

A suitable canonical decomposition is A = W'EW, where

W = , E =/9 0 6.2 ' W* = [--iV ] = -W r, (26)

in which i = .,,/-ST. Boldface symbols are used for W and E because these are 4 x 1 and 4 x 4

matrices, respectively. The operator product sequence (23) becomes

[ iV_r l [is] [ ipV{z ] [ip]e = W_ -- _V2_ J = , tr = Ee = _pc2V21/,t ---- , W_o • = pV2_-pc2V4_ = 0.

(27)

The intermediate fields e and o" are 4 x 1 column vectors. These vectors are partitioned into their

temporal and spatial derivative subvectors for convenience in subsequent manipulations. Note that

the transient pressure p appears naturally as the spatial component of tr. The temporal components

of e and cr are the complex velocity iv and complex specific momentum im, respectively.

The boundary portions S, and So of (24) are relabeled Sd and Sp, respectively, to match the

notation (1). Boundary and initial conditions may be stated as

Bap(x, t) = g(x, t) on Sd, B*tr(x, t) = h(x, t) on St,,
(28)

d(x, to) = d0(x) or re(x, to) = m0(x), d(x, tl) = dl(x) or re(x, tl) = ml(x).

Here B and B* are time-independent 4 x I and 1 x 4 vectors, respectively, related to the canonical

Bs and B} operators of (24) by B = BsYs and B* = B}l's, where Ys (a scalar) and l_s (a 4 x 4

matrix) are boundary extension operators for ap and tr, respectively. Comparison with (4) and the use

of Green's function reveals that

0

B_'=-B_=[0 0 0 1], gr=[0 0 0 an], r,s=_--_n, rs=I, h=-/3. (29)
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4.3 THREE FIELD PRINCIPLE

The most general variational principle for the canonical decomposition (26) allows the three fields:

_, e, and or, to be varied independently. The principle may be stated as _L(@, e, or) -- 0, where the

functional L is [13]

L(u, e, tr) = Lv+Ls = ½(Ee, e)vxt+(o', W_p-v)v×,-(f, #)v×,+(trs, B_-g)sd×t-(h, #s)sp×t,
(30)

where L v and Ls collect volume and surface terms, respectively. On inserting (27-29) into (30) we

get

f"fLv = ½(Ee, e)v×,+(_r, Wqz-e)vx,= [tp(--vrv+c2s2)--rnr(V(P--v)--P(V2ap +s)] dVdt'

- ]Ls = (os, Bd/ - g)s_x, - (h, ¢s)spx, = P('_n P'_n dS dt.

(31)

The term (f, _)Vxt vanishes and does not contribute to Lv.

4.4 TWO FIELD PRINCIPLES

A two field principle of Reissner type can be derived from the functional L by enforcing the inverse

constitutive equations e = E- i¢r a priori. The resulting principle, which allows _ and o" to be varied

simultaneously, is 8R0#, 09 = 0, where

R(@, a) = Rv+Rs = -½(E-lo', o')v×,+( o', W_)vxt-(f, _)v×,+(crs, B_-g)sa×t-(h, grs)s,×,.
(32)

where R s = L s and

f_" fv _ p2 mrV_-PV2gr) dVdt"t(E-to., o')v×t+(o',W_,)v×, = ( mrm 2pc2Rv(%, _) = -_
(33)

The specific momentum disappears as an independent field if we enforce m = pV_ a priori,

whereupon the functional R becomes a function of _p and p only and the volume term contracts to

,R_(_, p) = - ½p(vff)rv¢' : pc2 pV2gr) dV dt. (34)
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To check R = Rv (_, p) + Rs we form its first variation*

Op

(35)

Setting 8 R = 0 provides the field equations, boundary and initial conditions.

4.5 PARAMETRJZATION

A one parameter family of variational principles can be obtained by transforming all or part of the last

term in (34), viz. pV2_ r, by the divergence theorem (Green's first formula for the Laplace operator)

pVZ_ dV + (v_k)rVp dV = P-_n dS = P-_n dS + P-_n dS. (36)

Let 0 _< c_ _< 1 be the portion of that term to be transformed. Insert pV2_ - o_pV2_ + (1 -ff)pV2_

in (35) and apply (36) to t_pXTE_t to get

(37)

Finally, replace the Laplacian V2_ left over in (37) by c-2#) to arrive at the parametrized two-field

functional?

Ro( ,p)= + R,= (- ½p(v ) v6

(38)

* The variation of the kinetic energy integral term may be expressed in two different ways,

, vx, Vx,- Lp-_£ v ,o

depending on whether integration by parts is performed first in time or space, respectively. The first form,

which provides physically significant initial conditions, is used in constructing (35).

_" If or # 1, 8Ra = 0 is a restricted variational principle because the substitution V2_ = c-2_) holds only at

the exact solution.
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The highest spatial derivative index for both primary variables ap and p is 1, except if c_ = 0, in which

case it is only 0 for p. The two interesting limit cases are of course oe = 0 and a = 1, for which

_a¢ dS]2 pc 2 c 2

(39)

1fs, 0_" d_'
2 pC 2 d

(40)

5. FINITE ELEMENT DISCRETIZATION

5.1 DISCRETIZATION OF Ra

In the following we derive semidiscrete finite-element equations of motion based on the R,_ functional

(38). The volume V is subdivided into fluid finite elements. Over each fluid element the state is

represented by the primary variables _ and p, which are defined as functions of position in the usual

shape-function interpolation procedure. The finite element interpolation in V may be expressed as

_(x, t) --- N_,(x) _(t), p(x, t) = Nt,(x ) p(t), (41)

where if' and p are computational column vectors that contain npsi and np nodal values of _ and p,

respectively, and NO, and Np are corresponding row-vector arrays of dimensionless shape functions.

The specified displacement over Sd is interpolated by

dn(x, t) = nrd(x, t) = nrNa(x)d, = Nr.(x)a, (42)

where n is the external-normal unit vector on Sa, Nd contains the displacement shape functions of

the enclosing container, Na, are these shape functions projected on the outward normal n on Sa, and

c] contains nodal displacement values. For now the container displacements will be assumed to be

prescribed, hence the superposed tilde.

In the following three Sections (5-8) we shall assume that the prescribed-pressure boundary

p-- fionSp. If so theSpconditions are exactly satisfied by the finite element interpolation, i.e.

integral of R_, simplifies to

( 1 -°t)P_ndS,
(43)

which vanishes for _ = I. Inserting (41)-(42) into the functional (38) with the simplified S t, integral

(43) yields the semidiscrete quadratic form

R_(ff_, p) = -½P*rHfft-+prGp+._I, rFp+(1-a)[_rVp-@rDp+_rf_]-prTra, (44)
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where

-- = = -- c NpNpdV =VN_ VN_ d V , F G r,

o /sc N_,NpdV, V (VnN_.)rNpdS ' _r= = Np Nan dS, fv, = /5 V,N_, dS.
P

(45)

The integration with respect to time is dropped as it has no effect on the variation process described

below.

5.2 CONTINUITY REQUIREMENTS

The interelement continuity requirements of the shape functions of _ and p depend on the index of

the highest spatial derivatives that appears in R,_. If c_ :_ 0, this index is 1 for both _ and p and

consequently C O continuity is required. It is then natural to take the same shape functions for both

variables:

N¢_ --= Np (46)

with both vectors ff_ and p of equal dimension and evaluated at the same nodes. Then some of the

matrices in (45) coalesce as

H = F, G = D = D r . (47)

The case a = 0 is exceptional in that no spatial derivatives of p appear. One can then chose C -1

(discontinuous) pressure shape functions; for example, constant over each fluid element. If this is

done, obviously

NO, # Np (48)

because 7I must be C O continuous. Furthermore the dimensions of p and _' will not be generally the

same.

5.3 SINGULARITY OF H

For later use, we note that matrix H (as well as F if different from H) before the application of any

essential boundary conditions at fluid nodes, is singular because

He = 0 (49)

where e denotes the vector of all ones. This follows from (45) and expresses the fact that a constant

potential generates no pressures or displacements.
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6. TRANSIENT RESPONSE EQUATIONS

6.1 THE RIGID-CONTAINER EQUATIONS OF MOTION

Since R_, contains time derivatives of of order up to 2 in _, the appropriate Euler-Lagrange variational

equation is

(OR_ a aR_ + a 2 aR_)8 _ +-:--aR_'8 R,, k0"_ at a_ 0t 2 0_ op _p
O, (50)

which applied to (44) yields

[pH_' + o_Fp - (1 - c0Dii + (1 - a)Vp + (1 - _)f,] 8@ = 0,
1 .I (51)

[- p- Gp + (1- - = 0.

These equations can be presented in partitioned matrix form as

.oH -(1 -_)D } = { -(1 - cz)f_. / (52)
p Trd j'

where J = (1 - ot)V + aF.

6.2 THE FLEXIBLE-CONTAINER EQUATIONS OF MOTION

If the fluid is enclosed in a flexible container, the boundary displacements a are no longer prescribed

on Sd but must be incorporated in the problem by including them on the left hand side of the equations

of motion. In the sequel, vector d collects all structural node displacements, of which a is a subset

on Sd. Matrix T, suitably expanded with zeros to make it conform to d, becomes T. We shall only

consider here the case in which the container is modelled as a linear undamped structure for which

the standard mass/stiffness semidiscrete equation of motion is

Mti + Kd = fd + Tp, (53)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, Tp is the pressure

force on the structure, and fa is the externally applied force on the structure. Note that K in general

must account for container prestress effects through the geometric stiffness. Combining (52) and (53)

we get the coupled system

pH -(1 - u)D '_'

-(1 - o0D r 0 Ii

If_ = O,

0 pH _, + 0
0 D r ii -T r

+ [_ir !7 _p--JGl {d}=p {

fd

--(l--a)f,
O

(54)

o:if.}if,}0 ,I, = -f, •
V r -p-lG p 0

(55)
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There is little than can be done beyond this point, as the shape functions for p and ¢ will be generally

different. Although the pressure may be constant over each element, no condensation of p is possible

in the dynamic case.

I.f_ = 1,

Eo°pH

0 i]o K
+ 0

_T r o ]{d/0 _ = 0 •

F r -p-lG p 0

Note that all these systems, (54) through (56), are symmetric.

(56)

6.3 IDENTICAL SHAPE FUNCTIONS

Further progress in the case _ = 1 can be made if we assume, as discussed in §5.2, that the shape

functions for p and _ coincide. Taking then (47) into account, (54) simplifies to

pH

0
!]• [K0-T]{d}+ 0 0 H _P

-T r H -p-iG p

fd
= 0

0

(57)

The second matrix equation gives phi' + Hp = 0. Since H is nonnegative definite we must have

p = -p_,. (58)

This is the discrete analog of the continuous relation (20) for the dynamic overpressure. For future

use let us note that if the container is rigid, (57) reduces to

-p-_Gp +H_ = G_ + H_ = Trd. (59)

6.4 UNSYMMETRIC ELIMINATION

If (58) is used to eliminate the pressure vector from (57) we obtain

M pT0 o]{o}+[__T r

0 d_]{o/-{_}o• _o,
Conversely, eliminating the displacement potential vector gives

A o]{0}+[K0 p 0
(61)

Unlike previous systems, both (60) and (61) are unsymmetric. Thus the straightforward elimination

of a field variable, be it p or _, causes symmetry to be lost. These forms will be called unsymmetric

two-field forms, or U2 for short. System (60) reduces to (59) if the container is rigid.
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7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7.1 $3 FORMS

Starting from (57) and (58) it is possible to derive three more symmetric forms that are formally

equivalent. One is obtained by differentiating the last matrix equation twice in time, transforming the

first equation via (57), and finally including (57) premultiplied by p-l G as third matrix equation:

EM 01/ pT r -pHG (_

0 G 0

+ 0 0

0 p-IG

d

=

P

0

0

(62)

Another one is obtained by integrating the first matrix equation of (57) twice in time, using (58) to

eliminate the pressure, and including Kd - Kd = 0 as trivial equation:

G 0
0 K d E-M -pT

+ -pT r pH

-K 0

d
*S

f_}0

0

(63)

where superposed stars denote integration with respect to t. Finally, differentiating the first matrix

equation of (63) twice in time, moving pTrd to the left, and including Md - Md --- 0 as trivial

equation, we get

[O o= °d+ oil/i/{o/, o(64)

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric threefield forms, or $3

forms for short. It should be noted that there is no symmetric $3 form with a state vector consisting
s_

of d, p and d.

7.2 $2 FORMS

Each of the $3 forms has a statically condensable matrix equation that allows one field to be eliminated.

For example, the last matrix equation of (57) is -Trd + Hff' - p-lGp = 0 which can be solved

for the pressure vector p if G is nonsingular. Assuming that all matrix inverses indicated below exist

(more will be said about this later), the condensation process yields four two-field symmetric forms:

M 0 a pTG-IH] d

(66)

[PG0 K0]{_'}d +[ pH+p2TTM-'TpKM-'T pTTM-'K]{*_}KM-IKJ =--[PTT] M-_K ' , (67)
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Table 2 Limit Conditions

Limit condition Matrix Recommended

expression form(s)

Incompressible fluid (c _ c_)

Cavitating fluid (c --+ 0)

Stiff container

Hyperlight container

G _ 0 (60), (61), (62), (66)

G _ oo (57), (65)

K --+ _ (64), (68)

M --, 0 (64), (68)

MK-IM pMK-IT d 0 do 1
.] K-lfd . (68)

These will be called symmetric two-field forms, or $2 forms for brevity. The condensation process

reduces the number of degrees of freedom but is detrimental to matrix sparsity. The last property may

be recovered to some extent by taking advantage of factored forms of the matrices affected by the

inverses; for example

K + pTG-IT rpriG-iT r _[I°pHG-_H 0 ojEiolpG -_ T r H " (69)

Expressions for the matrices in (66)-(68) are given in [3].

7.3 ADVANTAGES AND RESTRICTIONS

The eight symmetric forms ($3 and $2), plus the two unsymmetric forms (U2), represent ten for-

mulations of the Rl-based fluid-structure interaction problem for the identical-shape-function case.

Although formally equivalent, they may have different behavior in terms of numerical stability and

computational efficiency. The following items may affect the choice among the various forms.

Matrix sparseness retention. Matrices G and M are often diagonal. The $2 forms that involve G-I

and K "l , whether in direct or factored form, are (other things being equal) preferable to the others.

Existence of inverses. If the fluid does not have a free surface, H is singular on account of (49), and

consequently (65) does not exist. If the container has some unsuppressed rigid body modes, K is

singular and consequently (68) does not exist.

Applied force processing. Forms (63) and (67) require that the applied structural forces, i'd, be

integrated twice in time before being used. Both $2 forms (67) and (68) require additional matrix-

vector operations on the force vectors. These disadvantages, however, disappear in the free-vibrations

case discussed in §8.

Explicit versus implicit time integration. If M and G are diagonal, both unsymmetric forms (60) and

(61) are attractive for explicit time integration because the leftmost coefficient matrices are upper and

lower triangular, respectively. Therefore equations may be solved directly in a forward or backward

direction without prior factorization. No symmetric form exhibits a similar property.
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Physical limit conditions. Those collected in Table 2 are of interest in the applications. Recommended

forms, if applicable (restrictions are analyzed in §7.3), are preferable because of numerical stability

or suitability for perturbation analysis. Of all conditions listed in Table 2 the incompressible fluid

case is of central importance. There must be a free surface Sp else the contained fluid would behave

as a rigid body. Consequently H is nonsingular. Setting G = 0 in (66) we obtain the so-called added

mass equations

Magi + Kd = fd, (70)

where Ma is the added mass of the coupled system:

Ma = M + pTH-tT r. (71)

Preservation of structural rigid body motions. This is discussed in more detail in §8.5 in conjunction

with the free-vibration eigenproblem. Suffices to say that forms (63)-(64) and (67)-(68) do not

generally preserve such motions and are inappropiate for treating unsupported structures (for example,

liquid tanks in orbit).

Presence of constant potential mode (CPM). This is covered in detail in §8.6. If the fluid is totally

enclosed by the container so that there is no free surface, forms (57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard substitutions

d = ue j''t, fly = qe j°_t, P = re jQ't, i'd = 0, (72)

where j = _ and w is the circular frequency, into the transient response equations. Thus we

obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric, which are displayed

below. General properties of these eigensystems are summarized in the Appendix. In the following

eigenproblem statements, subscript m is a mode index. The following eigenvector relations should

be noted:

rm "" -Pw_qm, _m= Wm2Um (o)m _ 0). (73)

For the unsymmetric forms given in §8.3 one must distinguish between left and right eigenvectors.

Supercript L is applied to left eigenvectors wherever necessary; otherwise fight eigenvectors are

assumed.

8.1 $3 FORMS

wm pH qm

0 rm

E JM pT 0
2

w,n pT T -pH G

0 G 0

I K 0 -T 1
= 0 0 H

-T r H -p-lG

Um IK 0
qm = 0 0

rm 0 0

0

p-l G

am

qm

rm

am

qm

rm

(74)

(75)
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0 0 0

2 0 G 0
0.)m

0 0 K

am [-M -pT

-pT T pH

-K 0

Um

(76)

(77)

8.2 $2 FORMS

o }[ P HG-ITr P HG-IH qm '

1{o }io °l{ m}_o_ GH_IT r p-tGH-XG r_ = p-IG rm '
(79)

0 + p2TTM-1T° pTrM-IK l{q:} (80)

w_ LPTrK__M pG + p2TTK-IT qm = pH qm "
(81)

8.3 U2 FORMS

o }Tam .]{U.am (82)

pT r rm rm "
(83)

8.4 COMPUTATIONAL CONSIDERATIONS

The considerations of §7.3 apply for the most part to these ten eigensystems. However, matrix

symmetry is more important in free vibrations than in the transient response problem. This is because

eigensolution extraction methods that take advantage of sparsity are more highly developed for the

symmetric eigenproblem than for its unsymmetric counterpart. For an up-to-date exposition of those

methods see Parlett [17].

The presence of zero eigenfrequencies (w,, = 0 roots) may cause serious numerical difficulties

in some eigensystem formulations. Two sources of such roots may be distinguished: rigid body

structural modes, and the constant-potential mode.
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8.5 RIGID-BODY STRUCTURAL MODES

If the container is not fully supported, Kur = 0 for structural rigid body eigenmodes u r. If H

is nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well as the two U2

eigensystems, preserve such modes. To verify this assertion, substitute

u,, =ur, q,, =-H-ITrur, r,, = 0, (84)

into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If H is singular, form (79), which

contains H -1, does not exist, whereas (74) preserves the modes if there exist qr modes such that

H_ + Tu, = 0. Eigensystems (76)-(77) and (80) do not generally preserve rigid-body modes,

whereas (81), which contains K -1, does not exist.

8.6 CONSTANT POTENTIAL MODE AND SPECTRUM CONTAMINATION

Suppose the container is supported so K is nonsingular but the enclosed fluid has no pressure-specified

surface Sp. If so H is singular because of (49). Both U2 eigensystems then possess an _ = 0 root

which conventionally will be assigned modal index 0. This root is associated with the following

left/right eigenvectors

Eigensystem (82): u0 = 0, q0 = e, u_ = K-ITe, q_ = e, (85)

Eigensystem (83): Uo = K-ITe, r0 = e, u0L = 0, _ = e, (86)

This statement is readily verified by taking the Rayleigh quotients (A. 12). The eigenpairs (85-86) are

collectively called constant potential mode or CPM. The existence and computational implications

of this mode have been discussed by Geradin et. al. [7]. The mathematical interpretation of (85)

is "dual" to that of a structural rigid-body mode. Under a rigid-body motion the displacements are

nonzero but the strains vanish. Under the CPM the potential is nonzero but all fluid displacements

and dynamic pressures vanish. But unlike rigid-body modes, the CPM has no physical significance:

it is spurious.

According to the eigenfunction theory summarized in the Appendix, all non-CPM modes (u,,,, qm,

rm) of (82) and (83) for m :_ 0, _om :_ 0 satisfy the bi-orthogonality conditions

(0 e r ) pT r G r,,

(erTrK-t er)[ M0 pTr]{u"}=er(TrK-IMu'+pTrK-ITq'+Gq_)=0"Gqm (88)

As regards the symmetric forms, eigensystems (74) and (78) are adversely affected by the singtilarity

of H and should not be used. This is because substituting the CPM left eigenvector (85) into either

one, with r,,, = 0 for (74), produces a Rayleigh quotient for _ of the form 0/0. This means that

both coefficient matrices have a common null space (the CPM) and every co is an eigenvalue. Such

an eigenproblem is called defective (see Appendix). If one attempts to numerically solve "untreated"

defective eigenproblems, nonsensical results can be expected because the whole spectrum is likely to

be contaminated.
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9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may exhibit

surface waves, informally called "slosh" motions. From an applications standpoint the most important

acceleration fields are gravity and rotational motion, the latter being of interest in rotating tanks. In

this section we shall be content with formulating slosh effects in a uniform gravity field. More general

fields, including time-dependent body forces, may be variationally treated by the method of canonical

decomposition of the non-homogeneous wave equation, but that general method will not be followed

here as it is not necessary for the gravity case.

The fluid volume V is in equilibrium in the reference state discussed in §3.1 under the time-

invariant body force per unit of volume b = V/_, where fl is a potential field. As noted above we

restrict developments here to a gravity field of strength g uniform in space and time. The boundary

Sp is then the equilibrium free surface normal to the gravity field. The axes (xt, x2, x3) are selected

so that g acts along the -x3 -= -z axis. Hence 15 = -pgz + B, where B is an arbitrary constant. If

we chose B so that/5 vanishes at the free surface z = z0, then

= -pg(z - zo). (89)

In the so-called hydrostatic approximation for small-amplitude gravity waves [9] sloshing is considered

equivalent to a free surface pressure

af-
p=_+pgd,=_+pgrl, where r/=d,= 0---_ on Sp. (90)

Here/3 as before denotes the prescribed part of the pressure (for example, atmospheric pressure) and

r/is called the elevation of the liquid with respect to the equilibrium free surface. This approximation

assumes that the displacements are infinitesimal and that the z-acceleration of the slosh motion is

negligible.

9.1 VARIATIONAL PRINCIPLE

For the variational derivation of "slosh equations" it is advantageous to chose the elevation r/as an

independently varied field. This choice simplifies the reduction to surface unknowns as well as the

treatment of more complex interface conditions such as capillary effects.

To incorporate slosh effects into the mixed variational principles based on the functionals studied in

§4, it is convenient to follow a Galerkin technique by adding weighted forms of (88) to their first

variation. The following combinations may be considered:

a_

- ±±(p '

a_- ov,, .(P- - PvT '7)s.± ( - '7' o,, ,

(91)

123



Of these the first expression, with signs - and +, offers two advantages: (1) it is derivable from

a functional, and (2) it combines naturally with the St, integral in the first variation (35). Of the

"base" parametrized functional R,, the most computationally advantageous choice is again a -- 1.

The expanded functional (40), denoted as Rno in the sequel, is

(92)

where RLV is the volume integral of (40). Note that setting 77= 0 restores RL.

9.2 FINITE ELEMENT DISCRETIZATION

In addition to the assumptions (41), (42) and (46) we interpolate 77as

r/= N,r/ on St,, (93)

where column vector r/contains n,_ fluid elevations at nodes on Sp, and row vector N, 7 contains the

corresponding elevation shape functions. The semidiscrete quadratic form for (92), again excluding

the time integral, is

r/) = -½p_rH_- 9--_prGp+pr (H-Qp+)_-prT r a+pgr/r (Q_+ _- ½St/)- _rf_,RI. (_I t , p,

(94)

where

S- N  .aS=S t,--
p P

(95)

The + subscripts in Qo+ and Qp+ convey that the nonzero, "surface" portion of these matrices is

augmented with zeros to conform to vectors '_ and p. To display this structure, '_, p and related

matrices are partitioned as

= _v ' P= Pv ' 0 ' [Hss Hvv '
(96)

where _s contains potentials at n,_, nodes of elements connected to St, and Ps contains n, 7 pressures

on Sp. The dimensions of Q, and Qt, are n, × nn,/,. In general n, 7 < nn_ (in fact, about one half).

Also typically n,_ < < n_ = nt, as the latter pertain to a volume mesh. If r/is interpolated by the same

surface functions as p, i.e. N_ - Np on St,, then

0 =0 =0 01 (97,
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9.3 THE RIGID CONTAINER

The following equations of motion for the rigid but mobile container are obtained on rendering (94)

stationary:

E }I :l//1°+oo _ o .__ , _
0 _ + H- Qp+ -p p = ,._:r_

0 0 pg¢! Q_+ -S pgr/ 0

(98)

Assuming G and S to be nonsing'ular and identical p and 17shape functions so that (97) hols, the nodal

pressures and elevations may be statically condensed from (98) thus producing the single matrix

equation

;H_ + (P + R+)_, = f, + p(H - Q.+)G-"_Ta, (99)

where

R+=o .s-iE oI o] T pT."_,1+ Q_+ = 0 = 0 = R+, P = p(H-Q_+)G-I(H-Qp+) =

(100)

The rank of R+ and R is the same as that of S, that is, n_. For most real liquids, acoustic and slosh

motions take place in very different time scales. This is the basis for the common assumption in slosh

analysis that the fluid is incompressible, i.e. c --+ oo, G _ 0 and R --4 oo. If G _ 0 the response

of the above system tends is forced to occur in the displacement-potential subspace defined by the

second matrix equation of (98):

(H - Qp+)_I, = Td. (I01)

For simplicityletus assume thatthe containerisnot only rigidbut motionless,thatis,a - 0. The

incompressible-fluidequationsbecome

H. Hsv _s

subject to the constraint (H - Qp+),LI, = O. Subvector _ may be statically condensed from these

two relations, which may be combined as the system

where A,u are Lagrangian multipliers (in fact, the pressures at nodes of fiG), and

= - H,_H_v H_,, Qs = • (104)

If a _ 0 the force term in (103) must be appropriately modified.
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9.4 THE FLEXIBLE CONTAINER

For a flexible container the equations of motion accounting for fluid compressibility are

EMoo01/ } 0o, T oo_ _ o_ o .-Q;,Qo,, ,,:"oIIo ,, + , _,o,OOsj = o.0 0 0 0 pg_ -_ Q_+ pgrl 0
(1o5)

Eliminatingr/and p by staticcondensationyields

M a -Y d fd }, (106)0
where

Ka = K + pTG-IT r, Y = pTG -l (H - Qp+). (107)

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a subspace reduction

procedure similar to that used in §9.3 can be invoked.

9.5 SLOSH VIBRATIONS

Algebraic eigenproblems to investigate slosh vibrations may be constructed following essentially

the same techniques as in §8, and reduced to Sp node elevations and pressures. We illustrate the

reduction technique for the incompressible fluid held in a motionless rigid container. The eigenproblem

associated with (103), suppressing the modal index m for simplicity, may be written as

c°2IpH"0 00]{qs}=Ire HR-Q Hs-Qrl{qs}0 r, (108)

where (Is and r_. are the modal amplitudes of _'s and A_., respectively. The last matrix equation in (98)

provides Qff's = St/, or Qqs = Sz, where z is the vector of modal amplitudes of *7, i.e. rl = ze jo't.

Using these relations we can transform the eigenproblem (108) to

z C Qr-C] z}w2IpgSO0 0]{rs =} EQ-C 0 {r, (109)

in which

C = QHTIQ r (1 lO)

and rs are Lagrange-multiplier modal amplitudes at nodes of *7. This generalized symmetric eigen-

system of order 2no provides n_ solutions to the slosh eigenproblem. A similar technique may be

followed for the flexible container case. This finite element reduction-to-surface technique provides

an alternative to boundary integral methods [1,8].
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10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in fluid-structure transient-response and

vibration analysis as they provide the basis for effective numerical computations. For some recent

applications see [2,6,7,9,12,14] and references therein. The preceding treatment unifies a number of

previous continuum-based and algebraic statements [3,4,5,9,11,12,14-16] of the coupled problem. It

may be further extended in the following directions:

(1) The inhomogeneous wave equation c2V2_ - ff = f, f :/: 0, when the body force field b(x, t)

is time-dependent and V2b :_ 0. Additional forcing terms appear in the equations of motion.

These are of interest for slosh of fluids in rotating containers.

(2) Retaining the specific momentum m as independent field in functional (33).

(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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Appendix A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM

Some facts about the algebraic eigenproblem are collected here for convenient reference. These facts are relevant

to the study of the free vibrations of the coupled fluid-structure system.

A. 1 THE STANDARD UNSYMMETRIC EIGENPROBLEM

The standard eigenproblem for a real unsymmetric square matrix A may be stated as

AXi = _.iXi) (A.1)

where Ai the eigenvalues (which may be complex), and xi the corresponding right eigenvectors normalized to

unit length. The eigenproblem for the transposed matrix is

ATYi = _iYi. (A.2)

This problem has the same eigenvalues but in general the eigenvectors y_ will be different. The Yi are called left

eigenvectors of A because they satisfy the problem yrA = _-iYi; this in turn explains the qualifier 'fight' applied

to xi. The system of left and right eigenvectors of A satisfies bi-orthogonality relations:

[0 if/_ j, (A.3)yrxj
[ /z_ if i = j.

This/zi is called the condition number of _.i with respect to the eigenproblem (A.1); it is always less or equal

than 1 in absolute value, and may be zero in pathological cases. (The closer to 1, the better conditioned £i is.)

Premultiplying (A.1) by Yi and assuming that/zi _ 0 yields

_.i = yrAxi/Izi = x/rAryi/lzi, (A.4)

which is the Rayleigh quotient for unsymmetric matrices. If/_i = 0 and yrAxi = 0, (A.5) takes the undetermined

form 0/0 so every _.i is an eigenvalue. In such a case the eigenproblem (A.I) is said to be defective.
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A.2 THE STANDARD SYMMETRIC PROBLEM

If A is symmetric then xi = Yi, tzi = 1 and (A.3) reduce to the usual orthogonality conditions

xrxj=[0 if/_j,1 ifi = j.

whereas (A.4) becomes the usual Raylei_ quotient for a unit length vector:.

_.i = xrAxi.

A.3 THE GENERALIZED UNSYMMEFRIC EIGENPROBLEM

The generalized unsymmetric eigenproblem is

where A and B ate unsymmetric real matrices.

standard problem

(A.5)

(A.6)

Axi = _.iBxi, (A.7)

Assuming that B -! exists, this problem can be reduced to the

Cxi -_ XiXi, (A.8)

in which C = B-tA. The transposed problem is

crz/ : ArB"rzl = _.izi.

Defining Bryi = zi, (A.9) can be transformed to

Aryl = _.iBryi.

The bi-orthogonality conditions (A.3) become

The Rayleigh quotient (A.4) generalizes to

y[Ax, yTAx,

(A.9)

(A.10)

ifi _ j, (A.ll)
if/=j.

(A.12)

As in §A. 1, if (A. 12) takes on the form 0/0 for some i, every Ai is an eigenvalue and the eigenproblem (A.7) is said

to be defective; mathematically, A and B share a common null space. A defective eigenproblem cannot be solved

numerically by conventional root-extraction methods because the 0/0 roots contaminate the entire spectrum.

A.4 THE GENERAIJZ_D SYMMETRIC EIGENPROBLEM

If both A and B are symmetric,

x/= Yl, z/: B-tyl.

and we recover the usual orthonormality conditions

xrBx j = [ 0 if i _. j,/_i ifi -- j.

(A. 13)

(A.14)

In mechanical vibration problems for which B is the mass matrix,/z_ is called the generalized mass. Finally,

(A.12) reduces to the usual Rayleigh quotient

x[Ax_ (A.15)
_'_ = x_Bxi"
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VARIATIONAL FORMULATION OF HIGH PERFORMANCE.FINITE

ELEMENTS: PARAMETRIZED VARIATIONAL PRINCIPLES

S_Y

High performance elements are simple finite elements constructedto deliver engineering accuracy with coarse

arbitrary grids. This paper is pan of a series on the variational basis of high-performanc_ elements, with

emp/mis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods.

The present paper studies pammetrized variational principles that provide a foundation for the FF and ANS

methods, as well as for a combination of both,

1. INTRODUCTION

For 25 years researchers have tried to construct "best" finite element models for problems in
structural mechanics. The quest appeared to be nearly over in the late 1960s when higl_r order dis-

placement elements dominated the headlines. But these elements did not dominate the marketplace.

The overwhelming preference of finite element code users has been for simple elements that deliver

engineering accuracy with coarse meshes. The search for these "high-performance" (HP) elements

began in the early 1970s and by now it representsan importantarea of finite element research in
solid and structural mechanics. Many ingenious schemes have been tried: reduced and selective

integration, incompatible modes, mixed and hybrid formulations, stress and strain projections, tim

free formulation (FF), and the assumed naturalstrain (AN$) method.

The present paper is part of a series [8-12] that studies how several high performance ele-

ment construction methods can be embedded within an extended variational framework: that uses

parametrized hybrid functionals. The general plan of attack is sketched in Figure 1. Heavy
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line boxes are those emphasized in the present paper. The extensions, shown on the/oft, in-

volvoparametdzationoftheconventionalelasticityfunctionalsandtreatmentof elementin,traces

throughgeneralizationsof thehybridapproachofPlan[14-I6].

The effectiveconstruction0fliPelementsrelieson devices,sometimesderisivelycalIed"tricks"

or"variationalcrimes"thatdo notfita pr/or/intheclassicalvariationalframework.The rangeof

tricksrangefrominnocuouscollocationand finitedifferenceconstraintstomore drasticremedies

suchasselectiveintegration.Despitetheirunconventionalnature,tricksarean essentialpartofthe

constructionofhigh-performanceelements.They collectivelyrepresentafun-and-gamesingredient

that keeps the derivation of HP finite elements as a surprisingly enjoyable task.

The present treatment "decriminalizes" kinematic constraint tricks by adjoining Lagrange mul-

tipliers, hence placing the ensemble in a proper variational setting. Placing formulations within a
variational framework has the great advantage of supplying the generalstructure of the matzices and

forcing vectors of high performance elements, and of allowing a systematic derivation of classes

of elements by an array of powerful techniques.

Note the reliance of the program of Figure I on hybrid functionals. The original 1964 vision of

Pian [14] is thus seen to acquire a momentous significance, It is perhaps appropriate to quote her=
the prediction of another great contributor to finite elements:

3". H. H. Pian responded to the problem of plate bending by inventing'the

"hybrid forrnulatlon", which avoids the problem of slope contJnuity. He

assumed that the element responds not according to shape functions but

according to element stress fields. These communicate with the outslde

world via the boundaries .... Hybrid elements can be the most coml3etJtlve

and we believe that the future lie in that direc_on. However, the formula-

tion is more complicated. Therefore we advocate that researchers should

try to cajole their formulation into shape function form, so that users do

not have to struggle. In the form, hybrid elements are no more difficult

to use than the iso-P elements ... Unfortunately at the tJme of wrlting we

have no uniform technique to achieve this.

B. Irons and S. Ahrnad, Techniques of" Flnite Elements (Z980), p. Z59

Fulfillmentoftheprophecyappearsto be near.

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The body is
bounded by the surface S, which is decomposed into S : Sd U St. Displacements arc prescribed

on Sd whereas surface tractions arc prescribed on S,. The outward unit normal on S is denoted by
n=ni.

The three unknown volume fields arc displacements u = .i, infinitesimal strains e = eu.
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Figure I. Program of attack on the variational formulation of lIP elements

and stresses o- =---GU.

displacements ¢] on S_, and prescribed surface tractions _ _ _ on St.

The relations between the volume fields are the strain-displacement equations

• = ½(Vu + Vru) = Du

the constitutive equations

O' = E e Or O"U = Eijklekl in V,

and the equilibrium (balance) equations

-div _ = D*G = b or Gij,j + bi = 0 in V,

in which D* = -div denotes the adjoint operator of D -- ½(V + VT).

The problem data include: the body force field b -- bi in V, prescribed

Or eij --" l (ui,j -Jr uj.i) ill ii (I)

(2)

(3)

132



The stress vector with respect to a direction defined by the unit vector v is denoted as try = or.v,

or avi -- (7ij 1)1. Oil S the surface-traction stress vector is defined as

O'n = o'.n, or tTni "- tTijnj.

With .this definition the traction boundary conditions may be stated as

o'n = t or tTijnj -- _i on St,

and the displacement boundary conditions as

II_d or

(4)

(5)

ui = de on"s_. (6)

3. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not work of course with the exact fields that satisfy

the governing equations (1-3,5-6), but with independent (primary) fields, which are subject to

variations,and dependent (secondary, associated, derived) fields, which are not. The approximation

is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example ft. A

dependent field is identified by writing the independent field symbol as superscript. For example,

if the displacements are independently varied, the derived strain and stress fields are

e_ = ½(v + Vr)fi = Dfi, o_ = Ee_ = EI_. (7)

An advantage of this convention is that u, e and tr may be reserved for the exact fields.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses and

square brackets, respectively, around the integrand. For example:

-f/, /,:(f)v -" f dV, [f]s def= dS, [fls_ -- f dS, da fs '[fls, ---- f dS. (8)

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted

in the usual manner

deffv fv "-fv fv
(f,g)v -- f.gdV = figidV, (P,q)v def p.qdV -- PijqijdV, (9)

and similarly for surface integrals, in which case square brackets are used.
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Figure 2. Internal interface example.

3.3 Domain Assertions

The notation

(a = b)v, [a = b]s, [a = b]s,, [a = b]s,,

is used to assert that the relation a = b is valid at each point of V, S, Sd and St, respectively.

(lO)

3.4 Internal Interfaces

In the following subsections we construct hybrid variationalprinciples in which boundary displace-

ments d can be varied independently from the internal displacements u. These displacements play

the role of Lagrange multipliers that relax internal displacement continuity. Variational principles

containing pd will be called displacement-generalized, or d-generalized for short.

The choice of d as independent field is not variationally admissible on Sd or St. We must

therefore extend the definition of boundary to include internal interfaces collectively designated as

St. Thus
S :SdUS, U&. 0])

On & neither displacements nor tractions are prescribed. A simple case is illustrated in Figure 2,

in which the interface Si divides V into two subvolurnes: V + and V-. An interface such as Si on

Figure 2 has two "sides" called S + and ST, which identify Si viewed as boundary of V + and V-,

respectively. At smooth points of Si the unit normals n+ and n- point in opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 2 for definiteness. A

volume integral is the sum of integrals over the subvolumes:

f,(f)v = f dV + f dV.
÷

(12)

An integral over Si includes two contributions:

[g]s_ _=f f g+ dS + f g- dS,
(13)
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where g+ and g- denotes the value of the integrand g on S + and S_, respectively. These two values

may be different if g is discontinuous or involves a projection on the normals.

Following a finite element discretization, the union of interelement boundaries becomes Si.

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form

H = U - P, (14)

where U characterizes the internal energy stored in the body volume and P includes other contri-

butions such as work of applied loads and energy stored on internal interfaces. We shall call U the

generalized strain energy and P the forcing potential.

It must be pointed out that all functionals considered here include independently varied dis-

placements. Thus, the class of dual functionals such as the complementary energy are not included

in the following study.

4.1 Volume Integrals

The generalized strain energy has the following structure:

U -- Ijtl(o',e¢)v+j12(_',_.)vq-j13(_',eu)v.4-1j22.(o.e, _)v+j23(o'e, eU)vq-lj33(o.u ,eU)v (15)

where Jt I through j33 are numerical coefficients. For example, the Hu-Washizu pdnciple is obtained

by setting j12 -- -1, jl3 -'- 1, j22 = 1, all others being zero. The matrix representation of the

general functional (15) and the relations that must exist between the coefficients axe studied in §5.1.

4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume integral (15)

with the forcing potential P. Two forms of the forcing potential, called pd and pt in the sequel, are

of interest in the hybrid treatment of interface discontinuities. The d-generalized (displacement-

generalized) forcing potential introduces an independent boundary displacement field a over Si:

pa(e, _, a) = (b, a)v + (8., _ - a]s, + [_,e]s, + [_'., i - a]s,. (16)

The t-generalized (traction generalized) forcing potential introduces an independently varied trac-

tion displacement field i over S/:

_"(_, _,, i) = Cb,a)v + [i, a- a]s, + [i, a]s, + [i, a]s,. (17)

The "conventional" form pc of the forcing potential is obtained if the interface integral vanishes

and one sets [t = ern]s. If so P' and pd coalesce into pc, which retains only two independent

fields:

pc(_, _.) = (b, a)v + [_., _ - a]s, + [_,_]s,. 08)
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4.3 Modified Forcing Potentials

I
F

Through various manipulations and assumptions detailed in [10] the forcing potential p# may be

transformed to

Pd(a, 6r,d) = (b,_)v + It,d]s,+ [&,,fi- dis. (19)

where the all-important surface dislocation integral is taken over S rather than Si. One of the

assumptions is that displacement boundary conditions (6) are exactly satisfied. This expression of

pd is used in the sequel. A similar technique can be used to modify p,, but that expression will

not be required in what follows.

4.4 Complete Functionals

E

Complete elasticity functionals ate obtained by combining the generalized strain energy with one of

the forcing potentials. For example, the d and t generalized versions of the Hu-Washizu functional

al_

rld = Uw - pd rPw --uw - P'. (20)

where Uw is obtained by setting j22 = j13 = 1, A2 = - 1, others zero, in (15).

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

I The generalized strain energy (15) can be presented in matrix form as*

u=½/v(_ o_ o_) j= j_ _ dv.

i::.;:i'::'_ L symm j33 e"

The symmetric matrix

LA_ A2 J,3]
[i! J-- j22 j23

[i symm j33J

(21)

(22)

characterizes the volume portion of the variational principle. Using the relations o "e = Ee, o J =

:ii! fields as

[" j,,E-' j,2I j,3D "]{&}I U=½/v (_ e u) l .]12Ir jzzE jz3ED I _ dV.LJt3D j23DrE j33DrEDJ 6

!

EDfi, e' = E-le, and eu = DQ, the above integral may be rewritten in terms of the independent

(23)

. Tojustif3, the symmetry ofj note, for example, thatA3(b,e,)v I. - . ,.-- [J13(o', e )v + [Jt3(e , o_)v, and so

Off.I!i̧_I¸

i ....
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5.1 First Variation of Generalized Strain Energy

The first variation of the volume term (15) may be presented as

8U = (ae, 8_,)v + (Ao', 8_)v - (div o-', 8fi)v + [o-'., 8fi]s. (24)

where

Ae = jlle c' + jl2e + j13e',

A_, = jnb + jr, o_ + Y_o_, (25)

o" = jr3& + jz3o "t+ j33o "u.

The last two terms combine with contributions from the variation of P. For example, if P = pc

the complete variation of 1"Ic = U - pc is

8I'I c = (Ae, 8b)v + (Ao', 8_)v - (divo" + b, 8fi)v + [o". - [, 8ii]s, + -[fi - d, 8b.]s_. (26)

Using pa or P: does not change the volume terms. The Euler equations corresponding to pa and

pt are studied in [ 10,11] for a more restrictive form of functionals U.

Since the Euler equations associated with the first two terms are Ao" = 0 and Ae = 0, these

quantities may be regarded as deviations from stress-balance and strain-compatibility, respectively.

For consistency of the Euler equations with the field equations of §2 we must have Ae = 0, Ao" = 0

and o" = o" if the assumed stress and strain fields reduce to the exact ones. Consequently

ill _ j12 + j13 - O,

jt2 + j22 "+"j23 --0,

jlz + j23 -4- j33 "- 1.

(27)

Because of these constraints, the maximum number of independent parameters that define the entries

of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity are tabulated

below. The subscript of J is used the identify the functionals, which are listed rough/y in order

of ascending complexity. The fields included in parentheses after the functional name are those

subject to independent variations.

Potential energy (fi):

Je = 0 .
0

Stress-displacement Reissner, also called Hellinger-Reissner, (&, fi):

(28)

E-,°ilJr= 0 0 •

1 0

(29)
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I

Unnamed stress--displacement functional listed in Oden and Reddy [13] (5", fi):

f 0 -1 1
Je = 0 0 0 .

-1 0 2

Strain-displacement Reissner-type [13] (E, fi):

(30)

I
F

[i•

Hu-Washizu (&, _, fi):

Js = -1 .

1

(31)

I 0 -1 I 1
Jw= -1 1 0 .

1 0 0

(32)

One-parameter stress-displacement family (5", fi) that includes U_,, UR and Uv as special cases

[9,10,11]:

['-y 0 )' "l

E J_' = | 0 0 0 /. (33)
L× o 1-×j

I One-parameter strain-displacement family (_, fi) that includes Up and Us as special cases [9]:

ro o ol
| j,_L o _, l__/3j (34)

E

I
I
ii.

Two-parameter strain-displacement family (&, _, fi) that includes Up and U r as special cases [9]:

Jay= (I-/3)J v+ (1 - y)J#- (1 - fJ - Y)Je

V-y(_-,) o . yO-,) " 1= -_(1 - y) _(1 - y) .
L r(_ - t3) _(1 - y,) 1 - fl - ), + 2fly

(35)

Three-parameter (c_,_, y) family(&,_,fi)thatincludesUw and Uar asspecialcases[9]:

-y(1 -- f_)(l - _) -u a + y(1 - _)(1 - aO 2 (36)

= -_ a -/3(1 - ),)(l - _) /_(I - _')0 - _) J •L- + r(t - _)(1 - a) /_(_ - y)(l - a) (1 - _ - y + 2#r)(l - _t)

The last form, which contains throe independent parameters, supplies all matrices J that satisfy

the constraints (21). It yields stm_-displacement funcfionals for tx = fl = O, strain displacement

functionals for u = y = 0, and 3-field functionals otherwise. A graphic representation of Jaay in

(tx, fl, y) space is given in Figure 3.
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l q Hu-Washizu

1_ Potential Energy

Stress-Displacement

_," Strain-Displacement I -",,,_, Reissner

"" Reissner T

Figure 3. Graphical representation of the J=_, funcdonals

5.3 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization of finite

element performance. The determination of "best" parameters for specific elements relies on the

concept of energy balance. Let U(E) = ½(F__, e)v denote the strain energy associated with the

strain field E. If E is positive definite, U(E) is nonnegative. We may decompose the generalized

strain energy into the following sum of strain energies:

U = j33/.,/(e =) -t- cl/.2(e _' - _) + c2U(_ - e") + c3U(e u - ea'), (37)

where Llp(e") = Ue is the usualstrain energy, ct -- ½(jtt + jz2 - J33 -1- 1), c2 = ½(--jll -I- j22 -I-

J33 - 1), and c3 -" ½(jll -- j= + j33 - I). Equation (37) is equivalent to decomposing J into the

sum of four rank-one matrices:

iio0]E1l!l I!°°l [!Ol]J-'j33 O 0 +cl -1 1 +c2 1 -1 +c3 0 O . (38)

O 1 0 0 -1 1 - O 1

Decompositions of this nature can be used to derive energy balanced finite elements by considering

element "patches" under simple load systems. This technique is discussed for the one-parameter

functionals generated by (34) in 1"5,7,8].

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element diseretization of the functional II d for

arbitrary J are stated. Following usual practice in finite element work, the components of stresses

and strains are arranged as one-dimensional arrays whereas the elastic moduli in E are arranged as

a square symmetric matrix. In the sequel we shall consider an individual element of volume V and

surface S : St USa U Si, where Si is the portion of the boundary in common with other elements.
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6.1 Boundary Displacement Assumption

The boundary displacement assumption is

[a=Nav]s. (39)

Hem matrix Na collects the boundary shape functions for the boundary displacement d whereas

vector v collects the degrees of freedom of the element, also called the connectors. These boundary

displacements must be unique on common element boundaries. This condition is verified if the

displacement of the common boundary portion is uniquely specified by degrees of freedom located

on that boundarY. There are no derived fields associated with d.

6.2 Internal Displacement Assumption

The displacement assumption in the interior of theelement is

(fi = N.q) v, (40)

where matrix Nu collects the internal displacement shape functions and vector q collects gener-

alized coordinates for the internal displacements. The assumed fi need not be continuous across

interelement boundaries.

The displacement derived fields are

(e" = DNq = Bq) v, (a" = EBq) v. (41)

To link up with the FF and ANS formulations, we procead to break up the internal displaceraent

field as follows. The assumed fi is decomposed into rigid body, constant strain, and higher order

displacemcnts:

fi -- Nrqr + Ncqc -t- Nhqh. (42)

Applying the strain operator D --- ½(V + V r) to fi we get the associated strain field:

e" = DN, q, + DNcq,: + DNhqh -- B, qr "/"Bc_ + Bhqh. (43)

But B, -- DNr vanishes because N, contains only rigid-body modes. We arc also free to select

Bc = DNc to be the identity matrix I if the generalized coordinates % are identified with the mean

(volume-averaged) strain values _,. Consequently (44) simplifies to

e" = F + e_ = _" + Bhqh, (44)

in which

- = (e")v/u,  h)v = 0. (45)

where v = (1)v is the element volume measure. The second relation is obtained by integrating (44)

over V and noting that q_ is arbitrary. It says that the mean value of the higher-order displacement-

derived strains is zero over the element.
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6.3 Stress Assumption

The stress field will be assumed to be constant over the element:

(6"= 6")v. (46)

This assumption is sufficient to construct high-performance elements based on the free formulation

[ 1-10]. Higher order stress variations are computationally effective if they are divergence free [ 10]

but such a requirement makes extension to geometrically nonlinear problems difficult. The only

derived field is

(_,7 = E-t 6") v (47)

6.4 Strain Assumptions

The assumed strain field _ is decomposed into a mean constant strain _ and a higher order variation:

(_ = _ + Aa)v. (48)

where _ = (_)v/v, A collects higher order strain modes with mean zero value over the element:

(A)v = 0, (49)

and a collects the corresponding strain parameters. The only derived field is

(o _ = E_ = E_ + EAa)v. (50)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

For simplicity we shall assume that all elastic moduli in E are constant over the element. Inserting

the above assumptions into I'1a with the forcing potential (19), we obtain a quadratic algebraic

form, which is fairly sparse on account of the conditions (45) and (49). Making this form stationary

yields the finite element equations

jurE-' jl2vI 0 _pr jt3vI- pr _psr L r-

jl2ul j22vE 0 0 j23ul 0 0

0 0 j22Ch 0 0 j23R r 0

-P, 0 0 0 0 0 0

jl3 vl - P_ 0 0 0 jn uE 0 0

-Ph 0 Jl3 R 0 0 j33Kqh 0

L 0 0 0 0 0 O_

O"

e

a

q,

qh
¥

.

0

0

' _ _r

f_h

. (51)

where

Kqh = (BhrEBh)v -- K_r, Ch = (ArEA)v = C r,

L [N_,]s, P, r r= = [N..ls, Pc = t_c.ls,

fr "- (Nrrb)v, fq = (NIb)v, f, -- (Nhrb)v,

R = (BhrEA)v,

Ph = [Nhrn]S,

f_ = [Ndq]s,.

(52)

in which Ndn denotes the projection of shape functions Nd on the exterior normal n, and similarly

for Nr, Nc and Nh. Coefficient matrix entries that do not depend on the j's come from the last

boundary term in (19).
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7.1 The P matrices

..

I

Application of the divergence theorem to the work of the mean stress on eu yields

(&, eU)v = (&, F + BhqQv = u&r_" + 6r(Bh)v_ = u&rF

-----[&_, fi]s = [&n, Nr_ + Nc_" + Nh_ ]s = &r (Prq_ + Pc_u 4. P'qh).

Hence Pr -- O, Pc = vI, Ph = O, and the element equations simplify to

- jttvE -1 jnvI 0 0 (Jr3 - l)ul 0 Lr'l &

jI2vI j_uE 0 0 j_vI 0 0 [

0 0 j22C_ 0 0 jz3R r 0 a

0 0 0 0 0 0 0 _ q,
(jr3- l)vl j_vI 0 0 j33vE 0 0 _

0 0 jz3R 0 0 j33I_s 0 qh
_ L 0 0 0 0 0 0 v

,

0

0

b _--- fqp

f,h
f,

(53)

. (54)

The simplicity of the P matrices comes from the mean-plus-deviator expression (44) for e=. If this

decomposition is riot enforced, P, -- 0 but Pc = (Bc)v and Ph = (Bh)v.

8. KINEMATIC CONSTRAINTS

The "tricks" we shall consider here are kinematic constraints that play a key role in the development

of high-performance FF and ANS elements. These are matrix relations between kinematic quantities

that are established independently of the variational equations. Two types of relations will be studied.

8.1 Constraints Between Internal and Boundary Displacements

I Relations linking the generalized coordinates q and the nodal connectors v were introduced by

Bergan and coworkers in conjunction with the free formulation _ of finite elements [2-3]. For

i_!i!_! simplicity we shall assume that the number of freedoms in v and q is the same; removal of this

restriction is discussed in [ I0]. By collocation of u at the element node points one easily establishes

the relation

_i V = Grqr + Gcqc + Ghqh = Gq, (55)

where G is .a square transformation matrix that will be assumed to be nonsingular. On inverting

I_ this relation we obtain

:,-. _ [" FI,'?

Ii ii [q=G -l=Hv, or q= _" = _, ,v. (56)

I The following relations between L and the above submatrices hold as a consequence of the individual
element test performed in §9.3:

l LrG, 0, LTGc = el, oH: L r. (57)

If the decomposition (44) is not enforced, the last two should read LrGc -- vBo a relation first

[i:il statedin [3], and PcHc + PhHh--L r.
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8.2 Constraints Between Assumed Higher Order Strains and Boundary Displacements

Constraints linking eh to v are of fundamental importance in the assumed natural strain (ANS)

formulation. The effect of these constraints in a variational framework is analyzed in some detail

in [11-12]. Here we shall simply postulate the following relation between higher order strains and

nodal displacements:

a = Qv. (58)

where Q is generally a rectangular matrix determined by collocation and/or interpolation. The

individual element test in §9.3 requires that Q be orthogonal to Gr and Go:

QGr = 0, QG¢ = 0. (59)

The constraint (58) still leaves the independently varied mean strain _ to be determined variationally.

9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a = Qv, qr = H,v, qc = H,:v = v-lLrv, ¢h = HhV, through Lagrange

multiplier vectors _'a, _,, _c, and _,h, respectively, we get the augmented finite element equations

jItuE -t jt2vl 0 0

jl2vI j22vE 0 0

0 0 j22CI, 0
0 0 0 0

(J13 - 1)vl j23vI 0 0
o 0 j_R 0

• 0 0 -I

0 0 0

0 0 0

0 0 0
L 0 0

(./13- 1)vl 0 0 0 0 0 Lr

_vl 0 0 .0 0 0 0

0 j2_R r -I 0 0 0 0
0 0 0 -I 0 0 0

j33vE 0 0 0 -I 0 0

0 J33Kq_ 0 0 0 -I 0

0 0 0 0 0 0 0 Q

-I 0 0 0 0 0 0 H,
0 -I 0 0 0 0 0 v-tL r

0 0 -I 0 0 0 0 Hh

0 0 0 Qr art v-lL H[ 0

a

q,

V

0

0

0

0

0

0

0

.f,

(60)

Condensation of all degrees of freedom except v yields the visible * element stiffness equations

Kv = (Kb+ Kh)v = f (61)

where

Kb "- v-tLEL r,

Kh = j33HrI_hHh + j23 (HrRQ + QrRrHh) + j22QrChQ,

f-" fv + H_fqr 4- v-lLrfqc + H_fq,.

(62)

(63)

(64)

Adopting the nomenclature of the free formulation [3], we shall call Kb the basic stiffness matrix

and K_ the higher order stiffness matrix.

* The qualifier visible emphasizes that these are the stiffness equations other elements "see", and conse-

quendy are the only ones that matter insofar as computer implementation on a displacement-based finite

element program.
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I

9.1 Relation to Previous HP Element Formulations

I
r

F

If J = Jr of (33), J33 = 1 - F, j22 = j23 = 0, and we recover the scaled free formulation stiffness

equations studied in [5,7,9,10]:

Kh = (1 - y) HhrKoHh.

If we take J = Jw of (32), j22 - 1, j33 --- j23 - 0 and we obtain

Kh = QrChQ.

(65)

(66)

This is similar to the stiffness produced by the ANS hybrid variational formulation studied in

[11-12], in which the potential pt was used instead of pal.

But the term with coefficient j23 in (63) is new. It may be viewed as coupling the FF and ANS

formulations. It is not known at this time whether (61-64) represents the most general structure of

the visible stiffness equations of HI' elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do fqr, fqc and fqh. If v is knOWn following

a finite element solution of the assembled system, solving the equations (60) for the internal degrees

of freedom yields

= v-tL rv, 6- = Et, a = Qv, q, = Hrv, e" -- e, qh = HhV,

I )% = (j22ChQ + j33RrHh)v, A, = 0, _¢ = 0, At, = (j23RQ + j3:;KqhH,_)v.

I

[

[

[i

I

l

(67)

It is seen that the mean strains _, 6" and 6¢ = E-18 agree, and so would the mean stresses. This

is not the case, however, if the body forces are not zero. It is also worthwhile to mention that a

nonzero Lagrange multiplier vector flags a deviation of the associated fields from the variationally

consistent fields that would result on using the unconstrained FE equations (54) without "tricks".

9.3 The Individual Element Test

To conclude the paper, we investigate the conditions under which HI' elements based on the fore-

going general formulation pass the individual element test of Bergan and Hanssen [1-3]. To carry

out the test, assume that the "free floating" element* under zero body forces is in a constant stress

state ¢ro, which of course is also the mean stress. Insert the following data in the left-hand side

vector of (60):

6-=er o=6.u, 6=E-lo'0, at,=0, q, = arbitrary, e"=F=E-t6.0, qh=0,

Aa=0, A,=0, At=0, Ah=0, v=G,q,.+GcF=G, qL.+GeE'to'0.

(68)
Premultiply by the coefficient matrix, and demand that all terms on the fight-hand side vanish but

for fv = Lo'0. Then the orthogonality conditions in (57) and (59) emerge. This form of the patch

test is very strong, and it may well be that relaxing circumstances can be found for specific problems
such as shells.

* Mathematically, the entire element boundary is traction-specified, Le., S =- St.
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10. CONCLUSIONS

The

1.

results of the present paper may be summarized as follows.

The classical variational principles of linear elasticity may be embedded in a parametrized

matrix form.

2. The elasticity principles with assumed displacements are members of a three-parameter family.

3. Finite element assumptions for constructing high-performance elements may be conveniently

investigated on this family.

4. Kinematic constraints established outside the realm of the variational principle may be incor-

porated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing HP finite elements may be presented within this vari-

ational setting. In addition, combined forms emerge naturally from the general parametrized

principle.

6. The satisfaction of the individual element test yields various orthogonality conditions that the

kinematic constraints should satisfy a priori.

The construction of high performance elements based on a weighted mix of FF and ANS "ingre-

dients" will be examined in sequel papers, and specific examples given to convey the power and

fle_bility of the present methods..
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THE ANDES FORMULATION OF FINITE ELEMENTS

SUMMARY. - ANDES is an acronym for Assumed Natural DEviatoric Strains. This is a brand new variant of the Assumed

Natural Strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing
high-performance plate and shell elements for linear and nonlinear analysis. The ANDES formulafon is based on an extended

parame_zed variational principle developed in recent publications. The key concept is that only the deviatoric part of the

strains is assumed over the element whereas the mean swain part is discarded in favor of a constant stress assumption. Unlike
conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori

while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this new formulation

has been the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom.

Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously
derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements..

INTRODUCTION

Despite almost three decades of work, plates and shells re-
main a important area of research in finite element methods.

Challenging topics include:

1. The construction of high performance elements.

2. The modeling of composite and stiffened wall construe-
dons.

3. The treatment of prestress, imperfections, nonlinear, dis-
sipative and dynamic effects.

4. The development of practical error estimators and adap-
tive discretizat/on methods.

5. The interaction with nonstrucmral components, for ex-
ample external and internal fluids.

This paper reports progress in the first challenge, although it

must be recognized that advances in this direction are shaped
to a large extent by thinking of the others.

The main motivation behind our recent finite element work has

been the construction of simple and efficient finite elements for

plates and shells that are lock-free, rank sufficient and distor-

tion insensitive, yield accurate answers for coarse meshes, fit

naturally into displacement-based programs, and can be easily
extended to nonlinear and dynamic problems. Elements that

possess these attributes to some noticeable degree are collec-

tively known as high performance or HI:'elements.

Over the past three decades investigators have resorted to many

ingenious devices.to construct HP elements. The most impor-

tant ones are listed in Table 1. The underlying theme is that

although the final product may look like a standard displace-
ment model so as to fit naturally into existing finite element

programs, the conventional displacement formulation is aban.

cloned. (By "conventional" we mean the use of conforming

displacement assumptions into the total potential energy prin-
ciple.)

Table 1. Tools for Constructing HP Elements

Technique Year

introduced

I. Incompatible shape functions 1961

2. Patchtest 1965

3. Mixed and hybridprinciples 1965

4. Projectors 1967

5. Selective reduced integration 1969

6. Uniform reduced integration 1970

7. Partial strain assumptions 1970

8. Energy balancing 1974

9. Directional integration 1978

10. Limit differential equations 1982

1I. Free formulation 1984

12. Assumed natural strains 1984
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Box I Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of freedom in common

with other elements, also called the connectors) and fthe corresponding element node forces. Then the element stiffness

equations decompose as
Kv-- (Kb + K_)v-- f. (1)

K, and Kh are called the basic and higher order stiffness matrices, respectively. The basic stiffness matrix, which is

usually rank deficient, is constructed for convergence. The higher order stiffness matrix is constructed for stability

and (in more recent work) accuracy. A decomposition of this nature, which also holds at the assembly level, was first

obtained by Bergan and Nyg_l (1984) in the derivation of the free formulation.

In the unified formulation presented by Felippa and Mifitello (1989, 1990a, 1990b) the follo_ng key properties of the

decomposition (1) are derived.

1. K# is forraulation independent and is defined entirely by an assumed constant str_s state working on element

boundary displacements. No knowledge of the interior displacements is necessary (Box 2). The extension of this

statement to C Oplate and shell elements is not straightforward, however, and special considerations are necessary
in order to obtain Kb for those elements.

2. Ka has the general form

Ka = j33Kh33 + j22Kh22 + j_I_23. (2)

The three parameters j22, j23 and j33 characterize the source variational principle in the following sense:

(a) The FF is recovered if ]22 = j23 -- 0 and j33 - l - y, where y is a Ks scaling coefficient studied in Bergan

and Felippa (1985) and Felippa and Bergan (1987). The original FF of Bergan and Nyg_rd (I984) is obtained

if y - 0. The source variational principle is a one-parameter form that includes the potential energy and

strew-displacement Reissner functionais as special cases; see Felippa (1989a, 1989b, 1989¢).

(b) The ANDES variant of ANS is recovered if j22 = j23 = 0 whereas j22 ----¢ is a scaling parameter. The source
• variational principle is a one-parameter form that includes Reissner's stress-displacement and Hu-Washizu's

functionals as special cases; see Felippa and Militello (1989, 1990a, 1990b).

(c) I.f j23 is nonzero, the last term in (2) may be viewed as being produced by a FF/ANDES combination. Such
a combination remains unexplored.

A Unified Variational Framework

Table ! conveys the feeling of a bewildering array of tools. The

question arises as to whether some of them are just facets of

the same thing. Limited progress has been made in this regard.
One notable advance in the 1970s has been the equivalence of

reduced/selective integration and mixed methods achieved by

Malkus and Hughes (1978).

The present work has benefited from the unplanned conflu-
ence of two unification efforts. An initial attempt to place

the free formulation developed in Bergan and Hanssen (1976),

Bergan (1980), Began and Nyg_d (1984), within the frame-

work of parametrized hybrid variational principles was suc-

cessful, as reported in Felippa (1989a, 1989b, 1989c). The free
formulation in turn "dragged" incompatible shape functions,

the patch test, and energy balancing into the scene. Concur-
rently a separate effort was carried out to set out the assumed

natural strain (ANS) (as well as related techniques such as pro-

jection methods) in a mixed/hybrid variational framework as

described in Militello and Felippa (1990a, 1990b). Compari-

son of the results led to the rather unexpected conclusion that

a parametrized variational framework was able to encompass
ANS and the free formulation as well as some hitherto untried

methods: see Felippa and Militello (1989, 1990a, 1990b).

The common theme emerging from this unification is that a

wide class of liP elements can be constructed using two ingre-
dients:

(1) A parametrized functional that contains all variational

principles of elasticity as special cases.

(2) Additional assumptions (which are sometimes called

"variational crimes" or "tricks'*) that can be placed on

a variational setting through Lagrange multipliers.

As of this writing it is not known whether the "wide class"

referred to above encompasses all HP elements or at least the

most interesting ones. Some surprising coalescences, such as
DKT and ANS bending elements, however, have emerged from

this study.
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Box 2 Construction of the Basic Stiffness Matrix Kb

Step B. 1. Assume a constant stress field, _, inside the element. (This should be the element stress field that holds
in the convergence limit; for structural elements the assumption would be on independent stress resultants. ) The

associated boundary tractions are _, = -f.n, where n denotes the unit external normal on the element boundary S.

Step B.2. Assume boundary displacements, d, over S. This field is described in terms of the visible element node

displacements v (also called the connectors) as
d = Nd v, (3)

where Nd is an array of boundary shape functions. The boundary motions (3) must satisfy interelement continuity

(or at least, zero mean discontinuity so that no energy is lost at interfaces) and contain rigid-body and constant-strain

motions exactly.

Step B.3. Construct the "lumping matrix" L that consistently "lumps" the boundary tractions _, into element node
forces, f, conjugate to v in the virtual work sense. That is,

= fs Na.-f_ dS = L'ft.
(4)

In the above, Na, are boundary-system projections of Nd conjugate to the surface tractions -f,.

Step B.4. The basic stiffness matrix for a 3D element is

Kt, = v -x LEL r, (5)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant over the element,

and v = fv d V is the element volume measure.

For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending moments, curvatures
and moment-curvature moduli, respectively, and the integration is performed over the element area A:

Kb = A-l LDL r, (6)

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in the 'Stiffness Matrix

Computation' section.

The Assumed Natural Strain Formulation

The assumed natural strain (ANS) formulation of finite el-

ements is a relatively new development. A restricted form

of the assumed strain method (not involving natural strains)

was introduced by Willam (1969), who constructed a 4-node

plane-stress element by assuming a constant shear strain inde-

pendently of the direct strains and using a strain-displacement

mixed variational principle. (The resulting element is iden-
tical to that derivable by selective one-point integration.) A

different approach advocated by Ashwell (1974) and cowork-

ers viewed "strain elements" as a convenient way to generate

'good' displacement fields by integration of appropriately as-

sumed compatible strain fields. [ In fact, this was the tech-

nique originally used by Turner et al. (1956) for deriving the
constant-strain membrane triangle in their celebrated paper. ]

These and other forms of assumed-strain techniques were over-
shadowed in the 1970s by developments in reduced and se-

lective integration methods. The assumed strain approach in
natural coordinates, however, has recently attracted substantial

attention; particularly in view of its effectiveness in geomet-

rically nonlinear analysis. Important contributions have been

made by Bathe and Dvorkin (1985), Huang and Hinton (1986),

Jang and Pinsky (1986), MacNeal (1978), Park (1986), Park
and Stanley (1986), and Simo and Hughes (1986).

As noted above, the unification achieved by Felippa and

Militello (1989, 1990a, 1990b) merges two PIP element con-

struction schemes: the free formulation (FF) of Bergan and

Nyg_'d (1984), and a variant of ANS called ANDES (acronym
for Assumed Natural Deviatoric Strains) described in further

detail below. The stiffness equations produced by the uni-

fied formulation enjoy the fundamental decomposition prop-

erty summarized in Box 1.

In the ANDES variant of ANS, assumptions are made only on

the deviatoric portion of the element strains, namely that por-

tion that integrates to zero over each element. This assumption

produces the higher order stiffness labeled Kh22 in Box 1. The
mean strains are left to be determined variationally and have

no effect on the stiffness equations.
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Box 3 Construction of K, by the ANDES Formulation

Step H.I. Select reference lines (in 2D elements) or reference planes (in 3D elements) where "natural straingage"
locations are to be chosen. By appropriate interpolation express the element natural strains _ in terms of the "straingage

readings" g at those locations:
= A_ g, (7)

where e is a strain field in natural coordinates that must include all constant strain states. (For structural elements the

term "strain" is to be interpreted in a generalized sense.)

Step H.2. Relate the Cartesian strains • to the natural strains:

• = Te = TAng = Ag (8) "

at each point in the element. (If e ----_, or if it is possible to work throughout in natural coordinates, this step is skipped.)

Step H.3. Relate the natural strainga.ge readings g to the visible degrees of freedom

g = Qv, (9)

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary from element to
element and it is difficult to state rules that apply to every situation. In the elements derived here Q is constructed

by direct interpolation over the reference lines. (In general there is no unique internal displacement field u whose

symmetric gradient is e or _, so this step cannot be done by simply integrating the strain field over the element and

collocating u at the nodes.)

Step H.4. Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:

e =-eq- ed = (A+ Ad) g, (10)

where -A = fv TA_ dV/v, and ed m Ad g has mean zero value over V. This step may also be carried out on the natural
strains if T is constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by

Kh = uQrI_Q, with Kd - fv A_EAd dV, (11)

where ,-, = j22 > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q into a single strain-displacement matrix called (as usual) B,

which splits into B and Bd:
e = AQv = (A + Ad)Qv = (B + Bd)v = B v, (12)

in which case

Kh = fv BrEBddV" (13)

The notation B_ = A_Q is also used in the sequel.
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Steps S.1 to S.3.
omitted.

Box 4 Construction of K by the Conventional ANS Formulation

Identical to the first three steps H.1 through H.3, in Box 3. The fourth step: strain splitting, is

Step S.4. The element stiffness matrix is given by

K = QrK,,Q, with I_ = fv ArEAdV" (14)

or, if B = AQ is readily available

K = Jv BrEBdV (15)

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen (1976), which is a
strong form of the patch test that demands pairwise cancellation of node forces between adjacent elements subjected
to constant stress states. For this to happen, K must admit the decomposition

K = Kb + Kh = v-lLEL r + Kh, (16)

where L is a force-lumping matrix derivable as per Box 2 and K^ is orthogonal to the rigid body and constant strain test
motions. In other words, the ANS element must coalesce with the ANDES formulation with _ = I. The equivalence

may be checked by requiring that
B = AQ = v -I L r, (17)

where A is the mean part of A (see Box 3). At the present there are no known general techniques for explicitly
constructing strain fields that satisfy these conditions a priori.

If the patch test is not satisfied, one should switch to the ANDES formulation by replacing the basic Stiffness constructed

from constant strain, namely vBrEB, with one constructed from constant stress as in Box 2.

The basic steps in the construction of Ke and Kh for a general
three-dimensional element are summarized in Boxes 2 and 3,

respectively. For justification of these "recipes" the reader is

referred to Felippa and Militelio (1989, 1990a, 1990b).

The derivation of the element stiffness matrix for conventional

ANS elements is summarized in Box 4. In this case there is no

splitting into basic and higher order parts.

This paper reports briefly (because of space constraints) on the

construction and testing of the first ANDES elements. These

are Kirchhoff plate-bending triangular elements with the stan-

dard 9 degrees of freedom (one displacement and two rotations
at each comer)..This choice is made because of the following

reasons:

. High-performance three-node triangular plate bending el-
ements, whether based on Kirchhoff or Reissner-Mindlin

mathematical models, have not been previously obtained

through the ANS formulation. [ Although the DKT ele-

ment presented by Batoz, Bathe and Ho (1980) and Ba-

toz (1982) qualifies as high-performance and is in fact
an ANS element as shown later, it has not been derived

as such. ] The situation is in sharp contrast to four-node

quadrilateral bending elements, for which HP elements

have been constructed through a greater variety of tools;

.

see e.g. Bathe and Dvorkin (1985), Crisfield (1983),

Hughes and Tezduyar (1981), Kang (1986), MacNeal

(1978) and Park and Stanley (1986).

High performance elements of this type have been ob-

tained through the FF and ancestors of the FF as described
in Bergan and Hanssen (1976), Bergan (1980), Bergan

and Nyg/h'd (1984) and Felippa and Bergan (1987). These

elements are considered among the best performers avail-

able. It is therefore intriguing whether elements based on

the ANDES variant can m_itch or exceed this performance.

THE TRIANGULAR PLATE ELEMENT

Geometric Relations

We consider here an individual triangle with straight sides.

Its geometry is completely defined by the location of its three
corners, which are labeled 1,2,3, traversed counterclockwise.

The element is referred to a local Cartesian system (x, y) which

is usually taken with origin at the centroid 0, whence the comer

coordinates xi, yi satisfy the relations

Xl -.I.- X2 -Jr-X3 = 0, yt+y2+y3=O. (18)
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Coordinate differences are abbreviated by writing xij = xi-xj,
and Yij = Yi - Yj. The signed triangle area A is given by

2A = 111 Ixl x2 x3 = x21Y31 --xaly21

Yl Y2 Y3

= x32Y12 -- x12Y32 = x13Y23 -- x_Yl3,

(19)

and we require that A > 0. We shall make use of dimensionless

triangular coordinates (l, (2 and (3, linked by (l + (2 + (3 = I.
The following well known relations between the triangular and

Cartesian coordinates of a straight-sided triangle are noted for
further use:

x =xtfl +x2(2+x3(3, Y =Y_ft +Y2(2+Y3(3, (20)

(i=_A[xiy,-x,y,+(X-xo)y,t+(y-yo)x,,], (21)

in which i, j and k denote positive cyclic permutations of 1, 2

and 3; for example, i = 2, j = 3, k = I. (If the origin is taken

at the centroid, xo = Y0 = 0.) It follows that

2A 8(t 2A 0(2 A 0(3
--Y23, _=Y31, 2 _=yt2,

(22)at, 2A 0(2 = 2A a__3
2A_y = xn, _ xl3, 0y = x21.

Other intrinsic dimensions and ratios of use in future deriva-

tions are

e_j = ej_ = _ + y_, c;# = xMe; i, s;j = yMeo,

at = 2A/_ij, b U = (aijXik "4- YjiYki)/gij = _ij -- bji,

x# = bo/e_ j = (xqx_k + yjm_)/(x 2 + y2),

X_ = I - X_j = bjdeq.
(23)

Here tq = ej_ is the length of side i-j and c_j and s_j the cosine

and sine, respectively, of angle (i --* j,x). Furthermore bij

and bji are the projections of sides i--k and k-j, respectively,

onto i-j; kij and Xji being the corresponding projection ratios.

On each side i-j, define the dimensionless natural coordinates

tz 0 as varying from 0 at i to 1 at j. The coordinate ttij of a

point not on the side is that of its projection on i-j. Obviously

0x Oy
= Xji, _ = Yji. (24)

Ol,£ij O_£ij

Displacements, Rotations, Curvatures

As we are dealing with a Kirchhoff element, its displace-

ment field is completely defined by the transverse displacement

w(x, y) -- w((|, (2, (3), positive upwards. In the present sec-

tion we assume that w is unique and known inside the element;

this assumption is relaxed later. The midplane (covariant) ro-

tations about x and y are 0x = Ow/ay and 0y = -Ow/Ox,
respectively. Along side i-j with tangential direction t and

external-normal n the tangential and normal rotations are de-
fined as

8w

O. = 0"-7= O_s_j- O:c_:,
aw (25)

o, = - O-'n= O:# + Oys_j.

The visible degrees of freedom of the element collected in v
(see Boxes 2-3) are

vr = [wt Oxl Oyt w20x20y2 w30x30y3], (26)

The Cartesiansecond derivatives are givenby

02w O2w at, a(j

Ox"--T = O(iO(j Ox Ox + _

02W 02111 O(i 0(]

OxOy 0(;3(jOx Oy

02w O:w Ofi Of/

OW _2(i I 82w
= yjtYki,

O_i Ox 2 4A 2 O(iO(j

Ow 02(i 1 02w

O(i OxOy = 4A 2 O(ia(j YikX;k,

Ow 02(; 1 O2w
Xkj Xik,

0(i 0y 2 4A 2 8_iO(j

(27)

since 02(:/0x 2 , 02(:'/OxOy and 02(:/0y 2 vanish on a straight-

sided triangle, cf. Eq. (21).

Natural Curvatures

The second derivatives of w with respect to the dimension-
less side directions defined above will be calledthe natu-

ral curvatures and denoted by Xij = O2w/Slz2ij. Note that
these curvatures have dimensions of displacement. The natu-

ral curvatures can be related to the Cartesian plate curvatures

_ = 02w/Ox 2, xyy = 02w/Oy2 and rxy = 2_2w/OxOy, by

chain-rule application of Eqs. (24):

2w ]

XI2 02t0 = / x22 y322 x32Y32
X23 =

X31 02W Lx123 y23 x13y13

or X = T"t_;. The inverse of this relation is

02w

.
,n 02t0

(28)

_2tO

02W

,_ a2w
  Z'o7

1 r Y23Y_3

-- _ / X23XI3
/ Y23X31q- x32YI3

YI2Y32 3

x12x32 t

Y12X23 + x21Y32 J

Y3t Y2t

x3lg21

Y3lXl2 "4- x13Y21

a2W

02w

_2w

(29)
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or, in compact matrix notation

= TX. (30)

At this point we relax the requirement that the curvatures be
derivable from a displacement field w; consequently the par-

tial derivative notation will be discontinued. However, the

foregoing transformations will be assumed to hold even if the

curvature fields ,¢ and X are not derivable from w.

DIRECT CURVATURE I/qTERPOLATION

The Straingage Readings

ANS and ANDES plate bending elements are based on direct

interpolation of natural curvatures. All elements discussed

here adopt the three triangle sides as the reference lines defined

in Box 3. The natural curvatures are assumed to vary linearly

over each reference line, an assumption which is obviously
consistent with cubic beam-like variations of w over the sides.

A linear variation on each side is determined by two straingage

sample points, which we chose to be at the corners.

Over each triangle side chose the isoparametric coordinates

_ij that vary from - 1 at corner i to + I at corner j. These are

related to the natural/.zij coordinates by _q = 2;zij - 1. The

Hermite interpolation of w over i-j is

w = ¼[(I-¢0)2(2+_u) 'eq(1 -_ij)2(l 4-_q)

(1 + _ij)2(2 - _ij) '-ieq(l + _q)2(l- ¢,D]vo
(31)

where vq = { wi 0,,, wj O,v }r and0, denotes the rotation

about the external normal n on side ij. The natural curvature

over side ij is given by

02W

Xij = OIz--'_....= [ 6_ij 3eij(_ij -- 1) --6t;d 3eij(_ij 4- 1)] vii,
u

(32)

Evaluating these relations at the nodes by setting _q = +1 and
converting normal rotations to x-y rotations through (25), we
build the transformation

XI2[I

X1212

Xz_ I2

X_I3

X3113

X3111

-6

6

0

0

6

--6 •

--4y21 4x21 6 --2y21

2y21 --2x21 --6 4):21

0 0 --6 --4) 32

0 0 6 2y32

--2y13 2xl3 0 0

4yl3 --4Xl3 0 0

o-4x21 0 0

4x32 6 -2y32 2x32

-2x32 -6 4y32 -4x32/

0 -6 --4y13 4x13 /
0 6 2y13 --2x13 J

"Wl

Oyl

tO2

0,2 :.

0Y2 I

Z l
, Oy3 _33)

The left hand side is the natural straingage reading vector called
g in Box 3 and thus we can express (33) as

g ----Qv. (34)

This relation holds for all elements discussed here.

The six gage readings collected in g provide curvatures along

the three triangle side directions at two corners. Butnine values

are needed to recover the complete curvature field over the
element. The three additional values are the natural curvatures

X23, X31 and X12 at corners 1, 2 and 3, respectively. Three

possibilities for the missing values are discussed below.

The Average-Curvature Rule

To each corner k assign the average natural curvature Xii of

the opposite side. This average is given by (34) evaluated at

_ij = 0. For example

Xt213 --- ½( X121x -4- X1212) = Y2t (Ox2 - Oxt) 4- xt2(O>.2 - 0y,).
(35)

The natural curvature now can be interpolated linearly over the

triangle:

X12 = XI211 (1 4- Xl212(2 4- X1213(3
1

= XI21, ((I 4- _(3) 4- xnl2 ((2 4- ½(3)-

(36)

It is readily verified that under this rule the natural curvature

X12 is constant over lines parallel to the triangle median that

passes through node 3. Formulas for the other curvatures fol-

low by cyclic permutation, from which we construct the matrix
relation

{}EXl2 _'1 4- _(3 (2 4- ½(3 0

X23 = 0 0 (2 + }(t
X31 0 0 0

0 0 0 -]

(3 + ½(1 0 0 J g0 (3 + ½(2 (, + ½(2

['6(21 (3¢21- I)y21 (3(12 4- 1)x21

= [ O O O
L6(3t (3_',3 + 1)yl3 (3(31 - 1)y13

6(12 (3(21 4- 1)y21 (3(12-- I)y21

6(32 (3(32 - l)yn (3(23 4- 1)x32
0 0 0

0 0 0 "]

J6(_ (3(32 4- 1)Y32 (3(23 -- 1)Y32

6(13 (3(13-- 1)Y13 (3(31 4- 1)Xl3

in which (t2 = (1 -- _'2, etc.

(37)

V,
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In the nomuon of Box 3,

X = Axog = AxaQv = Bxav" (38)

where subscript a identifies the "averaging" rule (35). Since

the natural curvatures vary linearly over the triangle, their mean

values are obtained by evaluating (37) at the centroid ¢1 = ¢2 =

¢3 = 1/3:

-_" _'23 = 0 0 0 --Y32 X32

_'31 Y13 --Xt3 0 0" 0

0 0 0 "] _

0 Y32 --X32 _ V = Bxav.0 --Y13 XI3

(39)

Finally,theCartesiancurvaturesaregivenby

,¢ = TBxov = Bay, (40)

An explicit expression of these relations is easily obtained,

but not required in what follows; however, that of the mean

Cartesian curvatures _ = TBxav = B-'_v (a relation valid

because T is constant over the triangle) is enlightening:

{ /C'xz } I I 0 0 Y32 0 0 YI3_= r. =_--_- 0 xn 0 0 xt3 0
2_xy 0 Y23 X23 0 Y31 X3|

o o _0 x21 v---- Bay.

0 YI2 Xl2.J

(41)

The Projection Rule

To each comer k assign the natural curvature Xij of its projec-

tion onto the opposite side. This results in Xij being constant
along lines normal to side ij. For equilateral triangles this

a_ees with the averaging rule, but not otherwise. The un-

derlying motivation is to make the element insensitive to bad

aspect ratios in cylindrical bending along side directions.

To illustrate the application of this rule consider side 1-2. For
node 3 take

XI213 ---- a/,t,22 3 = _.12 xt2ll + _.2t XI212, (42)

where _.12 and _-21 are defined in Eqs. (23). Proceeding in the

same manner along the other sides we construct the matrix
relation

X|2 } I(| + _-t2_'3
X23 --- 0

X3t 0

¢2 + _.21¢3 0

0 ¢2 + _-23¢t
0 0

o o o 1¢3 q" _-32¢1 0 g.

0 _3 "q" _31 _'2 2_1 "}- '_'13¢2

' (43)

or

X = Axe g, _ = TAxp g, (44)

where subscript p identifies the "projection" rule. As in the

preceding rule, since T is constant we can do the strain-splitting

step of Box 3 directly on the natural curvatures by evaluating
at the centroid:

_ I}O +x,2) }(1 + x2z)Axp = (Axt, + Axd p) .-_ 0 0
0 0

0 o 0 1](1 q" _'23) /(1 -Jr" _32) 0

o o }(I+ x31) + z 3)

¢zo + _,12¢3o _'2o+ _.2z_'3o 0
= 0 0 ¢2o + X23C_o

0 0 0

0 0 0 "I

_'30 q" _'32_"10 0 0 J .0 ¢30 + X3t(2o eto + X|3¢2o
(45)

in which ezo = ¢i - }- Then

Bp = TAxpQ ----T(A'xt, + Adp)Q ----"Bt, "1-Bat,- (46)

The explicit expression of these matrices is not revealing. For
the construction of the stiffness matrix it is better to leave (46)

in product form and to carry out the operations with a symbolic
algebra package such as MACSYMA. The explicit expression

of K_ t, obtained in this manner is presented in Appendix B
of Militello and Felippa (1989). Observe that if all _. coef-

ficients are ½, which happens for the equilateral triangle, the
expressions reduce to those of the averaging rule.

The 'Sliding Beam' Rule

This is a refinement of the average-curvature rule. Consider a

fictitious beam parallel to side i - j sliding towards corner k.

The end displacements and rotation of this beam are obtained
by interpolating w cubically, 0_ quadratically, and 0t linearly,

along sides i-k and j-k. Compute the mean natural curvature

of this beam and assign to node k the limit as the beam reaches
that corner.

The calculations can be simplified if we observe that the mean

curvature of the sliding beam varies linearly as it moves from

i-j, where it coincides with (35), to comer k. At 1/3 of the way
this mean is the natural centroidal curvature, which can then

be readily extrapolated to k. These centroidal curvatures are

given by _ = Bxsv, where subscript s identifies the 'sliding'

rule. A symbolic calculation yields the explicit form

2X13 --2(k21 + k31) 2k12

a2Cl3 a3c21 + a2cl3 a3c21

a25,3 a3521 + a25i3 a3521

2Xz_ 2X21 --2(Xt2 -I- X32)

at C32 _3C21 al C32 + a3¢21

a1532 a3521 ai$32 q- a3521

--2(Xt3 + k23) 2X31 2X32

a2cl3 + alc32 a2cl3 alc32

a2$t3 + als32 a2s13 ats32
(47)
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where ai, cij and s,./are defined in Eqs. (23).

Extrapolating this equation to the opposite comers and linearly

interpolating over the triangle we construct the relation X =
Bxsv, with

Bxr =

6(-(t + _'2+ X_3_'3)
2y21(1 -- 3(a) + 3a2c13(3

2x21(3_'1 -- I) + 3a2st3(3

6(_q - (2 "J" _'_(3)

2y21(3_'2 - 1) + 3alc32(3

2x21 (1 - 3_'2) + 3als32(3

-6(k_ + _.13)_'3

(3a2c13 + 3alc32)(3

(3a2st3 + 3als32)(3

--6(_-21 + _-31)_"1

(3a3c21 + 3a2cl3)(t

(3a3s21 -.I.- 3a2s13)_'l

6(--¢2 + (3 -I- _-21_'1)

2y32(1 -- 3(2) + 3a3c21(t

2x32(3_'2 -- 1) + 3a3s2! (!

6(_'2 - (3 + x31 (1)

2y32(3(3 -- 1) + 3a2cl3(i

2x32(1 -- 3(3) + 3a2s13(I

6(_3 - (1 + x12_'2)

2y13(3/j'! -- 1) + 3a3c21_'2

2.x13(1 -- 3(1) + 3a3s21(2

-6(k12 + k32)_'2

(3al cn + 3a3c21)(2

(3als32 + 3a3s21)(2

6(--_3 + _'1+ _.32(2)

2y13(1 -- 3(3) + 3alc32(2

2X13(3(3 -- 1) + 3als32(2

(48)

It should be noted that AX and Q are inextricably enmeshed in

the above formula and cannot be easily separated. Premultipli-

cation by T yields _ = Bsv. Evaluation of Bs at the centroid

yields B-s = Lqr/A, where Lq7" = ATBzs is the force lumping
matrix given in Eq. (54).

A variation on the sliding-beam theme would consist of in-

terpolating the normal rotation 0,, along i-k and j-k linearly
rather than quadratically. This scheme turns out to be identi-

cal, however, to the average curvature rule and thus it provides

nothing new.

The ANS Elements

Three ANS elements based on the preceding interpolation rules

may be constructed by following the prescription of Box 4.

Their stiffnesses are identified as Ka, Kp, and Ks, for averag-
ing, projection, and sliding-beam, respectively. The following

properties hold for these elements.

Patch Test. Assuming that the element has constant thickness

and material properties, Ka and Ks pass the individual element

test, but K v does not. This claim can be analytically confirmed

by applying the criterion of Eqs. (16)-(17), and noting that

B--_= L[ / A and Bs = L r / A, where Lt and Lq are the force
lumping matrices (51) and (54).

Equivalence with DKT. Ks turns out to be identical to the stiff-

ness matrix of the Discrete Kirchhoff Triangle (DKT) element,

which was originally constructed in a completely different way
that involves assumed rotation fields; see Batoz, Bathe and Ho

(1980). Thus DKT is an ANS element, and also (because of

the equivalence noted below) an ANDES element. This equiv-
alence provides the first variational justification of DKT, as

well as the proof that DKT passes the patch test without any
numerical verification.

ANS/ANDES Equivalence: If the basic stiffness matrices l_t

and K_ derived in the next section are used in conjunction

with the averaging and sliding-beam rules, and _ = I, the
ANDES formulation yields the same results as ANS if the

element has constant thickness and material properties. (If the

element has variable thickness, or the material properties vary,
the equivalence does not hold.) The ANDES formulation used

with the projection rule yields two elements, called ALR and

AQR in the sequel, which differ in their basic stiffnesses. Both

of these elements pass the patch test and are not equivalent to

the ANS formulation.

STIFFNESS MATRIX COMPUTATION

The Basic Stiffness

As explained on Box 2, the basic stiffness is obtained by con-

strutting the lumping matrix L. In our case this is a 9 x 3 matrix

that "lumps" an internal constant bending-moment field ('_x._,

myy, mxy) to node forces f conjugate to v.

On each element side, the constant moment field produces

boundary moments _,,, and _,,t referred to a local edge coor-
dinate system n, t are

[ rant tSijCij --SiyCi/ S_ -- C2i/a [ mxy
] myy (49)

The boundary motions d conjugate to mnn and mnt are

OwlOn = -0, and Ow/Ot = 0_. Given the degree of free-

dom configuration (26), the normal slope Ow/On = -01 along

side i-j can at most vary linearly (it could be also taken as

constant and equal to 1(Oti "_-Otj) but the results are the same
as for a linear variation).

For the tangential slope (the rotation about the normal)

Ow/Ot = 0, there are three options: constant, linear and

quadratic variation. But a constant 0_ = (w/ - wl)/eij turns
out to be equivalent to the quadratic variation and a constant

0_ = ½(0_i + 0_/) equivalent to the linear variation. Conse-

quently only the linear and quadratic cases need to be exam-
ined.

Linear Normal Rotation. The variation of 01 and 0,, along each
side is linear:

/} t ° ° ]0, =½ 0 0 1-_ 0 0 1+_
On ij

where _ -- _i./.
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Under this assumption Felippa and Bergan (19875 obtained the

lumping matrix

Ei° y''°° y''°°Lr=½ x32 0 0 x,3 0 0 x_,l ,
y23 x_ 0 Y33 x3, 0 Y,2 x,2.J

(51)

where superscript g stands for 'linear 0,.' The corresponding
basic stiffness is

I_t = A -t LeDL[, (52)

where D is the Cartesian moment-curvature constitutive matrix

resulting from the inte_ation of E through the plate thickness.

This matrix been used as component of the free formulation

(FF) element presented in that reference.

Quadratic Normal Rotation. A quadratic vadadon of 0, can
be accommodated in conjunction with the cubic variation of w

along the side:

{} [o ,_0 0o, = ½ 3(_ 2 1)/e 0 _(31 + t)(¢ - t)
On ij -- .

Wi

e,i

0 1 +_ 0 ] 0_

3(¢ 2 - 1)/e 0 ½(3_ - l)(_ + 1) J to: '

O0

0"J(53)

where _ -- _ij and e -= eij. Then the resulting lumping matrix
can be presented as

Lq =

-c,2312 ...[- c31531

, 2
--_(sl2Y21 4" s21y13)

-c2:23 + cz2sz2

t 2 + s223x23)_(st2xt2

--C31531 + C23$23

, 2
_($_X,2 + $_lX31)

I 2
--_(s23Y32 + $21YL3)

--C31331 + C12512

I 2 "_
g(c:.x,2 + c_ix31)

, `9 ._
--_(c_2Y21 + c_,yz3)

--C123,2 + C23323

' 2
_(Ct2Xl2 + ¢_3X23)

1
-_(ci'2Y21 + c2y2a)

--C23$23 + C31$3t

(c,.3x2a + cglx31)

"9
c22y21+ c_yl3

- -
+ c2y_2c?2Yn

--S22X,2 - s_xz3

c_y32 + c_Yl3

(54)

The corresponding basic stiffness matrix is denoted by

I_ = a-tLqOLq r. (55)

The Higher Order Stiffness

The higher order stiffness for the ANDES elements described

previously is

l_x -- r, QrKaxQ

=otQr IL ArzDAa_dA ] Q =et L BrxDBa_dA,

(56)

where x = a,p,s fortheaverage,projectionand sliding-beam

rules, respectively (The last expression is appropriate when
Bex is not easily factored into Ae_Q, as _n the sliding-beam

rule.) Since Aa, varies linearly, if D is constant we could

numerically integrate Kax in (565 exactly with a three point
Gauss rule; for example the three-midpoint formula. But as

the element stiffness formation time is dominated by these

calculations it is of interest to derive K_ in closed form. This

is done in Appendix B of Militello and Felippa (1989) for

K_v, which from the numerical experiments discussed below

appears to be the best performer.

NUMERICAL EXPERIMENTS

An extensive set of numerical experiments has been run to
assess the performance of the new ANDES elements based on

the projection rule (ALR and AQR) and to compare them with

other existing high-performance elements. These experiments

are reported in Militello and Felippa (1989). Four elements

were considered in this study:

ALR Stiffness defined as K = Ir_,t + 1.5K,_. This combines
the linear-rotation basic stiffness (52) with the higher

order stiffness given by theprojection rule. The value
t_ = 1.5 was established through simple energy balance

techniques similar to those discussed in Felippa and

Bergan (1987) for the free formulation elements.

AQR Stiffness defined as K = I_ +Kne. This combines the
quadratic-rotation basic stiffness (55) with the higher

order stiffness given by the projection rule. The coef-

ficient ,, is unity.

DKT Stiffness defined as K = I_ + K_. As previously
noted, this combination is identical to the well known

Discrete Kirchhoff Triangle (DKT) element.

FF The free formulation triangle described in Felippa and

Bergan (1987), with multiparameter scaling of the

higher order sdffness matrix. The basic stiffness matrix
is I_.

All of them qualify as high performance elements in the stan-

dard plate bending "obstacle" problems.
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Traditionally tests for new finite elements are reported in the

following sequence:

(I) Patch tests, usually carried out numerically on arbitrar-

ily chosen mesh configurations.

(II) Regular-mesh tests such as circular, square, skew and

cantilever plates under concentrated and distributed
loads.

(III) High-aspect ratio and geometric distortion tests.

For the" present investigation (I) was unnecessary because all

elements pass the patch test (in fact, a strong form of it) apriori

by construction.

As for (I_-(1TI), the traditional order was reversed. First all

four elements were subject to highly demanding distortion

tests. This decision was taken to "weed" consistently weak

performers and thus reduce the number of test runs on batch

(II). The approach paid off in that AQR and DKT (the two

elements that use the quadratic-rotation basic stiffness) con-

sistently outperformed ALR and FF on distorted meshes, with

AQR exhibiting an edge in extreme distortion cases.

Then a "run off" contest between AQR and DICI" was carried

out on the regular-mesh tests (II). On these the performance
was similar with an advantage to AQR in problems involv-

ing concentrated loads. These results are reported in detail in

Militello and Felippa (1989).

CONCLUSIONS

The main conclusions of the present study can be summarized
as follows.

1. The ANDES formulation represents a variant of the ANS
formulation that merits serious study. The key advantages

of ANDES over ANS are:

(a) a priori satisfaction of the patch test. Although this
advantage is less clear for elements where ANS and
ANDES coalesce for constant thickness and material

properties, it reappears for more general cases.

(b) The separation of the higher order stiffness allows

the application of a scaling parameter. Further-

more it opens the possibility for the energy-balanced

combination with other formulations as per Eq. (2),

although this possibility presently remains unex-

plored.

2. The study of plate bending elements shows that the widely
used DKT element is both an ANS and ANDES element.

This discovery provides a variational foundation hereto

lacking and analytically proves (because of the ANDES
connection) that DKT passes the patch test.

3. The numerical results clearly demonstrate that the choice

of basic stiffness is of paramount importance in the behav-
ior of elements based on the ANDES formulation. Of the

two elements sharing the quadratic-rotation basic stiff-

ness, namely AQR and DKT, the former has excelled in

geometric distortion tests and in convergence studies that
involve concentrated forces. For other cases the perfor-

mance of AQR and DICI" is similar, and superior to those
elements that use the linear-rotation basic stiffness.

The numerical experiments have not addressed questions of

material sensitivity such as element performance for highly

anisotropic and composite plates. This behavior, as well as the

possibility of applying this technology to C Obending elements,

is currently under investigation.
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ELECTROMAGNETIC FINITE ELEMENTS BASED ON

A FOUR-POTENTIAL VARIATIONAL. PRINCIPLE

SUMMARY

We derive electromagnetic finite elements based on a variational principle that uses the electromagnetic four-

potential as primary variable. This choice is used to construct elements suitable for downstream coupling

with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that

involve superconductors. The key advantages of the four-potential are: the number of degrees of freedom per

node remain modest as the problem dimensionality increases, jump discontinuities on interfaces are naturally

accomodated, and static as well as dynamics are included without any a priori approximations. The new

elements are tested on an axisymmetric problem under steady-state forcing conditions. The results are in

excellent agreement with analytical solutions.
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1. INTRODUCTION

The present work is part of a research program for the numerical simulation of electromag-

netic/mechanical systems that involve superconductors. The simulation involves the interaction

of the following four components:

(1) Mechanical Fields: displacem,.nts, stresses, strains and mechanical forces.

(2) Thermal Fields: temperature and heat fluxes.

(3) Electromagnetic (EM) Fields: electric and magnetic field stren_hs and. fluxes, currents and

charges.

(4) Coupling Fields: the foundamental coupling effect is the constitutive behavior of the materials

involved. Particularly important are the metallur_cal phase change phenomena triggered by

thermal, mechanical and EM fields.

1.1 Finite Element Treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite element

method. This treatment produces the spatial discretization of the continuum into mechanical,

thermal and electromagnetic meshes of finite number of degrees of freedom. The finite element

discretization may be developed in two ways:

(1) Simultaneous Treatment. The whole problem is treated as an indivisible whole. The three

meshes noted above become tightly coupled, with common nodes and elements.

(2) Staged Treatment. The mechanical, thermal and electromagnetic components of the problem

are treated separately. Finite element meshes for these components may be developed sepa-

rately. Coupling effects are viewed as information that has to be transferred between these

three meshes.

The present research follows the staged treatment. More specifically, we develop finite element

models for the fields in isolation, and then treat coupling effects as interaction forces between these

models. This "divide and conquer" strategy is ingrained in the partitioned treatment of coupled

problems [4,I6], which offers significant advantages in terms of computational efficiency and

software modularity. Another advantage relates to the way research into complex problems can be

made more productive. It centers on the observation that some aspects of the problem are either

better understood or less physically relevant than others. These aspects may be then temporarily

left alone while efforts are concentrated on the less developed and/or more physically important

aspects. The staged treatment is better suited to this approach.

1.2 Mechanical Elements

Mechanical elements for this research have been derived using general variational principles that

decouple the element boundary from the interior thus providing efficient ways to work out coupling
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with non-mechanical fields. The point of departure was previous research into the free-formulation

variational principles reported in Ref. [5]. A more general formulation for the mechanical ele-

ments, which includes the assumed natural strain formulation, was established and reported in

Refs. [5,6,14,15]. New representations of thermal fields have not been addressed as standard

formulations are considered adequate for the coupled-field phases of this research.

2. ELECTROMAGNETIC ELEMENTS

The development of electromagnetic 0EM) finite elements has not received to date the same degree

of attention given to mechanical and thermal elements. Part of the reason is the widespread use

of analytical and semianalytical methods in electrical engineering. These methods have been

highly refined for specialized but important problems such as circuits and waveguides. Thus

the advantages of finite elements in terms of generality have not been enough to counterweight

established techniques. Much of the EM finite element work to date has been done in England

and is well described in the surveys by Davies [1] and Trowbridge [21]. The general impression

conveyed by these surveys is one of an unsettled subject, reminiscent of the early period (1960-

1970) of finite elements in structural mechanics. A great number of formulations that combine flux,

intensity, and scalar potentials are described with the recommended choice varying according to

the application, medium involved (polarizable, dielectric, semiconductors, etc.) number of space

dimensions, time-dependent characteristics (static, quasi-static, harmonic or transient) as well as

other factors of lesser importance. The possibility of a general variational formulation has not

apparently been recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a variational

formulation that uses the four-potential as primary variable. The electric field is represented by a

scalar potential and the magnetic field by a vector potential. The formulation of these variational

principle proceeds along lines previously developed for the acoustic fluid problem [7,8].

The main advantages of using potentials as primary variables as opposed to the more conventional

EM finite elements based on intensity and/or flux fields are, in order or importance:

1. Interface discontinuities are automatically taken care of without any special intervention.

2. No approximations are invoked a priori since the general Maxwell equations are used.

3. The number of degrees of freedom per finite element node is kept modest as the problem

dimensionality increases.

4. Coupling with the mechanical and thermal fields, which involves derived fields, can be naturally

evaluated at the Gauss points at which derivatives of the potentials are evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated. The

discretization of these principle into finite element equations produces semidiscrete dynamical

equations, which are specialized to the axisymmetric case. These equations are validated in a

simulation of a cylindrical conductor wire.
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Table I Electric and Magnetic Quantities

Quantities Symbol MKS-Weber Units

Electric charge density

Electric field intensity

Electric flux density
Electric resistance

Electric conductivity

Displacement current density

Susceptibility"
Current

Magnetic field intensity

Magnetic flux density

Magnetic permeabilityt

p coulomb/m 2
E newton/coulomb
D coulomb/m 2

R ohm

g. mho
D coulomb/(sec.m 2)

coulomb/Goule.m)

j coulomb/see

H newton/weber or amperes/m
B weber/m 2

/z weber/(joule.m) or henry/m

* Also called capacitivity and permittivity

t Also called inductivity

3. ELECTROMAGNETIC FIELD EQUATIONS

3.1 The Maxwell Equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors E and H

represents the electric and magnetic field strengths (also called intensities), respectively, whereas D

and B represent the electric and magnetic flux densities, respectively. All of these are three-vector

quantities, that is, vector fields in three-dimensional space (xl --- x, x2 -= y, x3 -= z):

/ /°I} /E = E2 , D = D2 , E = E2 , H = /-/2

E3 D3 E3 /-/3

(1)

Other quantities are the electric current 3-vector j and the electric charge density p (a scalar). Units

for these and other quantities of interest in this work are summarized in Tables 1-2.

With this notation, and using superposed dots to denote differentiation with respect to time t, we

can state Maxwell equations as*

B+VxE=0,

V.D=p,

V xH-[)=j,

V.B=0.
(2)

The first and second equation are also known as Faraday's and Aml_re-Maxwell laws, respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are independent

of the properties of the underlying medium.

Some authors, for example Eyges [2], include 4z" factors and the speed of light c in the Maxwell equation.

Other textbooks [ 19,20], follow Heaviside's advice in using technical units that eliminate such confusing
factors.
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Table 2 Equivalences Between Various MKS-Giorgi Units

1 newton --=1 kg.m/sec 2

1 joule - 1 newton.m

1 watt --- I joule/sec

I coulomb-- 1 ampere.sec

1 ohm---- 1 volt/ampere
1 farad -- 1 coulomb/volt

1 henry -= 1 (volt.sec)/ampere
1 weber = 1 volt.sec

1 mho-= 1 ohm -t

3.2 Constitutive Equations

The field intensities E and H and the corresponding flux densities D and B are not independent but

are connected by the EM constitutive equations. For an electromagnetically isotropic, non-polarized

material the equations are

[B =/zH, D=,E,] (3)

where/z and E are the permeability and susceptibility, respectively, of the material% These coef-

ficients are functions of position but (for static or harmonic fields) do not depend on time. In the

general case of a non-isotropic material both # and E become tensors. Even in isotropic media/z

in general is a complicated function of H; in ferromagnetic materials it depends on the previous

history (hysteresis effect).

In free space/x =/z0 and e = e0, which are connected by

1
Co2 = -- (4)

/Zo_o

where co is the speed of light in a free vacuum. In MKS-A units, co = 3.109 m/sec and

/x0 = 4:r x 10 -7 henry/m, E0 =/XolCo 2 = (36zr) -1 x 10 -11 sec2/(henry.m) (5)

The condition/x _/x0 holds well for most practical purposes in such media as air and copper; in

fact _air -- 1.00000041Zo and _l.copper _- .99999/z0.

The electrical field strength E is further related to the current density j by Ohm's law:

j = gE (6)

where g is the conductivity of the material. Again for an non-isotropic material g is generally a

tensor which may also contain real and imaginary components; in which case the above relation

becomes the generalized Ohm's law. For good conductors g >> E; for bad conductors g << E.

In free space, g = 0.

I" Other names are often used, see Table 1.
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3.3 Maxwell Equations in Terms of E and B

To pass to the four-potential considered in Section 4 it is convenient to express Maxwell's equations

in terms of the electrical field strength E and the magnetic flux B. In fact this is the pair most

frequently used in electromagnetic work that involve arbitrary media. On eliminating D and H

through the constitutive equations (3) we obtain

B+VxE=0,

V. E = p/E,

V x B -/.zEE =/_j,

V.B=O.
(7)

The second equation assumes that E is independent of time; otherwise EI_ = _ dE/dt should be

replaced by d (EE)/dt. In charge-free vacuum the equations reduce to

B+VxE=0, VXB-co 2 =0, (8)

V.E=O, V.B=O.

3.4 The Electromagnetic Potentials

The electric scalar potential ¢ and the magnetic vector potential A are introduced by the definitions

IE = -V¢, - A,, B=V xA. I (9)

This definition satisfies the two homogeneous Maxwell equations in (7). The definition of A leaves

its divergence V • A arbitrary. We shall use the Lorentz gauge

V. A + p.E_,= O. (I0)

With thischoice the two non-homogeneous Maxwell equationsin terms of • and A separateinto

the wave equations

V2@ --/_E_) -- --p/E, V2A -/zaA = -_j. (1 I)

4. THE ELECTROMAGNETIC FOUR-POTENTIAL

Maxwell's equations can be presented in a compact manner* in the four-dimensional spacetime

defined by the coordinates

X1 _ X, X2 _ y, X3 -- Z, X4 = ict (12)

where xl, x2, x3 are spatial Cartesian coordinates, i 2 ---- --1 is the imaginary unit, and c = 1/_'-_"

is the speed of EM waves in the medium under consideration. In the sequel Roman subscripts will

consistently go from 1 to 4 and the summation convention over repeated indices will be used unless

otherwise stated.

* A form compatible with special relativity.
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4.1 The Field Strength Tensor

The unification can be expressed most conveniently in terms of thefield-strength tensor F, which is

a four-dimensional antisymmetric tensor constructed from the components of E and B as follows:

(o (oc,3c, i )F = -Fl2 0 F23 F24 def -cB3 0 cB1 -iE2
-FI3 -F23 0 F34 = /_ cB2 -cBt 0 -iE3 " (13)

-Fl4 -F23 -F34 0 iE1 iE2 iE3 0

Here fl is an adjustment factor to be determined later. Similarly, introduce the four-current vector

Jas

1,111c J111  l!j = J2 dee cub = t_c lzj2
J3 = _ clzj3 lzJ 3

•14 ip/E iw/"_p

(14)

Then, for arbitrary/_, the non-homogeneous Maxwell equations, namely V x B -/.zrl_ = _zj and

V • E = ply, may be presented in the compact "continuity" formt

OFik
= Ji. (15)

Oxk

The other two Maxwell equations, V • B = 0 and V x E + B = 0, can be presented as

OFik OFmi OFkm = 0, (16)ax---f+ + ax---?
where the index triplet (i, j, k) takes on the values (1,2,3), (4,2,3), (4,3,1) and (4,1,2).

4.2 The Four-Potential

The EM "four-potential" q_ is a four-vector whose components are constructed with the electric and

magnetic potential components of A and _:

4'1

4'4
cA1}def cA2

cA3 "

idp

It may then be verified that F can be expressed as the four-curl of q_, that is

a4_k a4'i
Fik =

Oxi Oxk '

or in more detail and using commas to abbreviate partial derivatives:

0 Oh.l- 4'L2 4'3.!- 4'L3 4'4.!- 4'L4\
F = 4'L2 -- 4'2. l 0 4'3,2 -- 4'2,3 4'4,2 -- (/>2,4 )4'1.3 -- 4'3. l 4'2,3 -- 4'3.2 0 4'4.3 -- (/)3,4 "

4'1,4 -- 4'4.1 (/)2,4 -- t_4.2 _3,4 -- 4'4,3 0

(17)

(18)

(19)

I" The covariant form of these two equations.
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4.3 The Lagrangian

With these definitions, the basic Lagrangian of electromagnetism can be stated as+

L=I t 2(aq_k 0¢i) 2"-- -- Ji_i
"_FikFik- JidPi 3/3 \ Oxi xk

_2
_ ½_2(c_B__ e2) _ --(jxA1 + j_a2 + j3A3- p*),

(20)

in which

B2= B rB = B_ + B22 + B_, E 2 = ErE = E 2 + E22 + E_. (21)

Comparing the first term with the magnetic and electric energy densities [2,19,20]

Um= ½BTH = _2_1B2 '
2#

ue = 1DrE = 7EEt 2, (22)

we must have fl2C2 -- fl2/(].ZE) = 1/#, from which

_=4'_. (23)

Consequently the required Lagrangian is

] L = 2_B2- ½_E2-(jlAt + j2A2 + jaA3 - P_). [
(24)

The associated variational form is

f,0"R = L dVdt (25)

where V is the integration volume considered in the analysis. In theory V extends over the whole

space, but in the numerical simulation the integration is truncated at a distant boundary or special

devices are used to treat the decay behavior at infinity.

4.4 The Four-Field Equations

On setting the variation of the functional (24) to zero we recover the field equations (15-16).

Taking the divergence of both sides of (15) and observing that F is an antisymmetric tensor so that

its divergence vanishes we get
aJi
-- = c/x(V, j + ,6) = 0, (26)
Oxi

$ Lanczos [12] presents this Lagrangian for free space, but the expression (24) for an arbitrary material

was found in none of the textbooks on electromagnetism listed in the References.

166



I

I'

I

F

f
I
I

"I...

If,

I

!

f

The vanishing term in parenthesis is the equation of continuity, which expresses the law of con-

servation of charge. The Lorentz gauge condition (10) may be stated as V • _b = 0. Finally, the

potential wave equations (11) may be expressed in compact form as

D¢i =-li (27)

where 17] denotes the "four-wave-operator", also called the D'Alembertian:

[] _ O2 02 02 02 02
= axkax - + + axe c at2. (28)

Hence each component of the four-potential qb satisfies an inhomogeneous wave equation. In free

space, & = 0 and each component satisfies the homogeneous wave equation.

5. THE AXISYMMETRIC TEST EXAMPLE

The simplest example for testing the finite element formulation based on the four-potential vari-

ational principle is provided by the axisymmetric magnetic field generated by a uniform, steady

current flowing through a straight, infinitely long conducting wire of circular cross section. In the

present Section we derive expressions for the magnetostatic fields outside and within the conductor.

These analytical solutions will be later compared with the finite element numerical solutions.

5.1 The Free-Space Magnetic Field

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system with

the wire eenterline as the longitudinal z-axis. The vector components in the cylindrical coordinate

directions r, O and z are denoted by

At, BI, E! in the r direction

A2, B2, E2 in the 0 direction

A3, B3, E3 in the z direction

The electromagnetic fields will then vary in the radial direction (r) but not in the angular (0) and axial

(z) directions. Similarly, the current density that flows in the wire has only one nonzero component

acting in the positive or negative z direction; conventionally we select the positive direction.

In Cartesian coordinates the radial component of the electrostatic potential in free space can be

calculated from the expression (see, e.g., [2,10,18,19,20])

'A z --A 3 -- IZ-'-_'O dV,
4x

(29)

where Irl is the distance between the elemental charge J3 dV and the point in space at which we wish

to find the field potential. The integral extends over the volume containing charges. This expression

serves equally well in cylindrical coordinates. In fact, the transformation of z components will be

one to one if the center of the systems coincide.
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As noted above the only non-vanishing component of the current vector is j3 dS where dS is the

elemental cross sectional area of the conductor and j3 is the current density in the z direction. If

d£ represents the differential length of the wire, then fs J3 dV = fs J3 dS d_ = I d£ = I dz and

Irl = _ + z 2. Substitution into Eq. (29) yields

lzolf_ dzA3(_)= _ _. (30)

This integral diverges, but this difficulty can be overcome by taking the wire to have a finite length

2L symmetric with respect to the field point, that is large with respect to its diameter. Integrating

between -L and +L we get

P,ol f_ _ dz I_OI (z +a3(r)-'- _ t. _ -- _ In ,/r 2 +Z2)[_+_.
(31)

Expanding this equation in powers of r/L and retaining only first-order terms gives

A3---(-_-)lnr+C. (32)

where C is an arbitrary constant. For subsequent developments it is convenient to select C "-"

(Izol/2nr) lnRr, where Rr is the "truncation radius" of the finite element mesh in the radial direction.

Then

A,-
With this normalization A3 -- 0 at r --- Rr. Taking the curl of A gives the B field in cylindrical
coordinates:

I OA 0A

B=V×A= B_ = 8o = L_L L_ = -
07. -- or

B3 8z 18(rA,) I SA, 0
F "''''_"_Sr

It is seen that the only non-vanishing component of the magnetic flux density is

(34)

o_A3 /zol
BO _ 82 "-//,oH2 ---- --_ = _. (35)

Or 2_rr

This expression is called the law of Biot-Savart in the EM literature.

5.2 Magnetic Field Within the Conductor

Again restricting our consideration to the static case, we have from Maxwell's equations in their

integral flux form

/c H'ds= fclz-'B'ds= fsJ'dS' (36)
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where C is a contour around the field point traversed counterclockwise with an oriented differential

arclength ds and dS is the oriented surface element inside the contour. The term for the electric

field disappears in this analysis because 1_ = 0. From before we know that the right hand side

of Eq. (35) is equal to the normal component of the current that flows through the cross sectional

area evaluated by the integral. In the free space case, this is the total current that flows through

the conductor. But in the conductor the amount of current is a function of the distance r from the

center. Again using/to represent the total current carded by the conductor, and R the radius of

the conductor, and assuming an uniform current density J3 = I/(_rR2), the right hand side of (35)

become..A

Zj . dS : j3 dS = _ dS = (37)

Evaluating the left hand side of the integral and solving for B2 gives:

r 2 /,tl r

2.wr/z-lB2 = I-R- i, B2 = 2ztR------3. (38)

Comparing with (34) we see that if/z =/z0 then B2 is continuous at the wire surface r = R and

has tile value I.toI/(2.TrR). But if/z =/=/.to there is a jump (/z - go)l/(2_rR) in/_.

The magnetic potential A3 within the conductor is easily computed by integrating - B2 with respect

tor:
/.tl r 2

A+ = 4rrR z +C. (39)

The value of C is determined by matching (33) at r = R, since the potential must be continuous.

The result can be written

A3- _ /z 1--_ -/zoln . (40)

The preceding expressions (33)-(40) for A3 could also be derived in a somewhat more direct fashion

by integrating the ordinary differential equation V2P;3 = r -1 (O(rOA3/Or)Or) =/zj3 to which the

second of (11) reduces.

6. FINITE ELEMENT DISCRETIZATION

6.1 The Lagrangian in Cylindrical Coordinates

To construct finite element approximations we need to express the Lagrangian (24)

i L --- _-_B 2- ½EE2 -- (jrA - p_), (41)

in terms of the potentials written in cylindrical coordinates. For B 2 we can use the expression of

!

,r

i

the curl (33)

_'z ) + az 0r) + r 0r r 00 ' (42)
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For E 2 we need the cylindrical-coordinate _adient formulas

so that

...

E1

E2 =

E3

Er

Eo =-

Ez

ac
T-+A,
1 ac
_-_ +A2

ac
--,_-- + A3

-_r + at j + \ 7-_ + at ] + -_z + -_T ] "

(43)

(44)

In the axisymmetric case, A l = A2 -- 0; furthermore At = A3 is only a function of the radial

distance from the wire. Therefore @A3/B8 = aA3/az = 0. From symmetry considerations we also

know that the electric field cannot vary in the e and z directions, which gives ac/az = @c/ae = o.

Finally, the only nonvanishing current density component is j3. Consequently the Lagrangian (4 I)

simplifies to

j -" L\ j +k at ] j-
(]3A3.- pC). (45)

6.2 Constructing EM Finite Elements

To deal wiih this particular axisy .mmetric problem a two-node "line" finite element extending in

the radial r direction is sufficient. In the following we deal with an individual element identified

by superscript e. The two element end nodes are denoted by i and j. The electric potential C and

the magnetic potential A3 - Az are interpolated over each element as

NAA3, (46)

Here row vectors N_, and N_ contain the finite element shape functions for C e and A_, respectively,

which are only functions of the radial coordinate r:

N_ = (N_i(r) N$i(r) ), N_ = (NXi(r) N_i(r )), (47)

and column vectors,I_eand A_ containthenodal valuesof C and A3, respectively,which are only

functions of time t:

{ Ci(t)} {A3i(t)} (48)_e_ Ci(t) ' A_-" A31(t) •

Substitution of these finite element assumptions into the Lagrangian (45) and then into F.a:1. (25)

yields the variational integral as sum of element contributions R = 5"].e Re, where

I aNnA e 2 F(SN_' ,el 2 {" aN_ A,V1
(49)
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where V e denotes the volume of the element. Taking the variation with respect to the element node

values gives

/,"s,(,A,: '• \ _r ,/ "_"r A3-F'(N_)rN_'_3-
8Re=

(50)

On applying fixed=end initial conditions at t -- to and t -- tt and the lemma of the calculus

of variations, we proceed to equate each of the expressions in brackets to zero. From the first

bracket we obtain for each element the following second=order dynamic equations for the magnetic

potential at the nodes, which are purposedly written in a notation resembling the mass-stiffness-force

equations of mechanics:

M_t,_ 3 + K_A_ --f,_, (51)

where

1 ( aN_ '_r _)N_

f_t -- fv, j3N_ r dV'.

dV e, (52)

(53)

From the second bracketwe obtain for the electricpotentiala simpler relationwhich does not

involve time derivatives,i.e,isstaticinnature:

t

"

K_O* =fL (54)

where

f,. f,Ke, = _ ==_-r dV', f_- • p(N_)) r dW. (55)

Assembling these equations in the usual way we obtain the semidiscrete master finite element

equations:

M/tA,3 4- K/tA3 -- f/t, (56)

K®@ = f,.

!

!

t'
1"

6.3 The Static Case

In time-independent (static, steady state) problems, the term -A3 disappears and the master finite

element equations of electromagnetostatics become

K/tA3 -'- f/t, K,@ = f®. (57)

If the current density and charge distributions are known a priori then these two equations may

be solved separately. If only the charge distribution is known then the second equation should

be solved first to obtain the electric field E as gradient of the computed electric potential; then
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the current density j obtained from Ohm's law (6) and used to computed the force vector of the

first equation. Conversely if only the current density distribution is known a priori the process is
reversed.

In the present study the current distribution is assumed to be known and we will be content with

solving the first equation for the magnetic flux.

6.4 An Alternative Semidiscretization

If upon setting the brackets of the variation (50) to zero we multiply them through by/z and 1/_,

respectively, the expressions for the mass, stiffness and force matrices become

= . aV', = . k 0; / a,.

Kg= • _, Or / "_"r dV' f$= ,-_p(N_,) r aV.

(58)

The matrices M and K above are quite similar to the capacitance and reactance matrices, respectively,

obtained in the potential analysis of acoustic fluids [7,8]. Another attractive feature of (58) is that

KA = _ if the shape functions of both potentials coalesce, as is natural to assume. These

advantages are, however, more than counterbalanced by the fact that "jump forces" contributions

to fA and f¢, arise on material interfaces where/z and _ change abruptly, and the proper handling of

such forces substantially complicates the programming logic. Note that this issue does not arise in

the treatment of homogeneous acoustic fluids.

6.5 Applying Boundary Conditions

The finite element mesh is necessarily terminated at a finite size, which for the test problem is

defined as the truncation radius RT alluded to in Section 5.1. In static calculations the material

outside the FE mesh may be viewed as having zero permeability #, or, equivalently, infinite stiffness

or zero potential. It follows that the potential value at the node located on the truncation radius may

be prescribed to be zero. This is the only essential boundary condition necessary for this particular

problem.

7. NUMERICAL VALIDATION

7.1 Finite Element Model

The test problem consists of a wire conductor of radius R transporting a unit current density. For

this problem the finite element mesh is completely defined if we specify the radial node coordinates

r[ = re, and r_ = r_,+l for each element e. If the mesh contains N,c elements inside the conductor,

those elements are numbered e = 1,2 .... Nec and nodes n -- 1, 2 .... Nec + 1 starting from

the conductor center outwards. The first node (n --- 1) is at the conductor center r -- 0 and node

n = Nec + 1 is placed at the conductor boundary r -- R. The mesh is then continued with Nef
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elements into free space, with a double node at the counductor boundary. The last node is placed

at r = RT at which point the free space mesh is truncated; usually RT = 4R to 5R. Although the

mesh appears to be one-dimensional, a typical element actually forms a"tube" of longitudinal axis

z, internal radius r_ and external radius r], extending a unit distance along z.

For the present study the magnetic potential was linearly interpolated in r, using the linear shape

functions

N_= (½CI-_) ½Cl+ _)), (59)

where _ isthedimensionlessisoparametriccoordinatethatvariesfrom -I atnode ito+I atnode

j. This interpolationprovidesfor Co continuityof the potentialinsidethe conductor and in free

space.

For the calculationoftheelement stiffnessesand forcevectors,itwas assumed thatthepermeability

and the currentdensityj3were uniform over the element. Then analyticalintegrationover the

element geometry gives

.-IK_= -7- -1 l ' f_ = :: -_(r_+ 2,-;) ' (6o)

1 •
where r,n = _ (r i +r]) is the mean radius and e = r_-r_ the radial length. For the test problem, ]1.is

constant inside the conductor whereas outside it/_ = tZo was assumed to be unity. The longitudinal

current density is j3 = I/(rrR 2) inside the conductor whereas outside it J3 vanishes.

The master stiffness matrix and force vector were assembled following standard finite element

techniques. The only essential boundary condition was the setting of the nodal potential on the

truncation boundary to zero, as explained in Section 6.5. The modified master equations were

processed by a conventional symmetric skyline solver, which provided the value of the m%maetic

potential at the mesh nodes. The magnetic flux density B2, which is constant over each element,

was recovered in element by element fashion through the simple finite difference scheme

This value is assigned to the center of element e.

7.2 Numerical Results

The numerical results shown in Figures 1 through 6 pertain to a unit radius conductor (R = 1),

with the external (fre.e space) mesh truncated at Rr -- 5. The element radial lengths r: - r: were

kept constant and equal to 0.25, which corresponds to 4 internal and 16 external elements.

The computed values of the potential A3 are compared with the analytical solution given by Eqs. (33)

and (40). As can be seen the agreement is excellent. The comparison between computed and

analytical values of the magnetic flux density B2 shows excellent agreement except for the last

element near the wire center, at which point the difference scheme (6I) loses accuracy. The

permeability of free space is conventionally selected to be unity. Figures 1, 3, and 5 illustrate

the case where the wire permeability/zwi,, is set to 10.0, whereas Figures 2, 4, and 6 are for the
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case.in which lZwire is 1.0, that is, same as in free space. CI'he value of the susceptibility t does

not appear in these magnetostatic computations.) Figures 1 and 2 show computed and analytical

magnetic potentials. The slope discontinuity at r = 1 in Figure 1 is a consequence of the change

in permeability/.t from the wire material to free space. Figures 3 and 4 show the computed and

analytical magnetic flux densities. As discussed in Section 5.2, the jump at r -- 1 in Figure 3 is due

to the change in permeability _ from the material to free space. Figures 5 and 6 show the computed

and analytical magnetic flux densities in free space with more detail. Note that Figures 5 and 6

for r > 1 are identical; this is the expected result because, as shown in Section 5.1, the free-space

magnetic flux field depends only upon the current enclosed by a surface integral around the wire

and not on the details of the interior field distribution.

In summary, the finite element model performed very accurately in the test problem and converged,

as expected, to the analytical solution as the size of the elements decreased.

8. CONCLUSIONS

The results obtained in the one-dimensional steady-state case are encouraging, and appear to be

extcnsible to two- and three-dimensiona[ problems Without major difficulties. The electric field

remains effectively de,coupled from the magnetic field except through Ohm's law. Care must be

taken, however, in modeling the forcing function terms so as to avoid the appearance of discontinuity-

induced forces at physical interfaces.

The next step in achieving the goal of a finite element model for a superconductor field is to study

the time-dependent case, starting with harmonic currents and proceeding eventually to general

.transients. The code for this is currently written, but a suitable analytical solution for comparison

with computed responses is still being developed.

If encouraging results are obtained in the dynamic case, thermocoupling effects will be added to

the code. References [3,17,22] discuss several different approaches applicable to various contexts

(e.g. eddy currents) and these will have to be investigated for suitability for capturing the couplings

effects that are relevant to the superconducting problem.

After modeling the coupling effects, the next step will be to model the superconducting fields. The

feasibility of using the current model for superconductor applications is great, as the current density

of a superconductor can be approximated by the standard current density multiplied by a constant

squared. This constant is called the London penetration depth. Other analytical models that possess

similar characteristics have been developed and arc presented in Ref. [I I].
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AN UNCONDITIONALLY STABLE STAGGERED ALGORITHM

FOR TRANSIENT FINITE ELEMENT ANALYSIS

OF COUPLED THERMOELASTIC PROBLEMS

Abstract m An unconditionally stable second order accurate implicit-implicit staggered procedure

for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The

procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis

reveals the superiority of the proposed computational strategy to other conventional staggered

procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems

demonstrate the accuracy of the proposed numerical solution algorithm.

I. INTRODUCTION

Transient response prediction of thermally loaded structures is of considerable importance in many

aerospace en_neering problems, and it has been the subject of intense research. Finite element

formulations of the classical heat conduction problem without mechanical coupling have been pre-

sented by Wilson and Nickell [ 1]. Ritz type methods for the solution of linear dynamic problems in

coupled thermoelasticity were given by Nickell and Sackman 1"2]. Oden [3] has formulated finite

element models for the analysis of a class of nonlinear problems in dynamic coupled thermoelas-

ticity,, and Oden and Armstrong [4] have developed explicit quadratic numerical schemes for the

integration of nonlinear unpartitioned systems of difference equations arising from the analysis

of dynamic coupled thermoviscoelastic problems. Recently, "ling and Chert [5] have introduced

a unified numerical approach for the analysis of thermal stress waves. They have derived their

algorithm from the concept of heat displacement and a variational formulation in Lagrangian form.

They have proposed to integrate the resulting semi-discrete equations with conditionally stable
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explicit schemes. Liu and Zhang [6] have described an implicit-explicit procedure for the predic-

tion of thermal stress waves in coupled thermoelasticity problems. They have adopted the explicit

rational Runge-Kutta method [7, 8] for approximately solving the heat conduction equation and

have claimed that their solution procedure is unconditionally stable. However, their computational

strategy requires the manipulation of a full matrix. In a sequel note, Liu and Chang [9] have slightly

modified the original procedure of Liu and Zhang to involve a banded rather than full matrix, and

have numerically verified the unconditional stability on one dimensional problems.

However, several practical issues must be resolved before unconditionally stable explicit ratio-

nal Runge-Kutta schemes can become suitable for the analysis of real thermomechanical coupled

problems. First, when unconditional stability is achieved for explicit time integration algorithms,

typically consistency becomes conditional (see for example Hughes and Belytschko [ 10]). Second,

most rational Runge-Kutta algorithms involve some divide operations by the difference between in-

termediate solution quantities, which can significantly damage accuracy. Finally, these algorithms

do not appear to accomodate staggered solution procedures for thermal/structure interaction prob-

lems, as they are not implemented in many existing production-level thermal computer programs.

The semi-discrete equations governing soil-pore fluid interaction dynamic problems and those

resulting from a mixed pressure-velocity formulation for fluid/structure problems are similar to

those governing thermoelastic coupled transient problems. In this sense, the work of Liu and

Chang [11] and the very recent work of Zienkiewiez, Paul and Chart [12] could be extended to the

response analysis of thermally loaded structures.

In the present work, we present an unconditionally stable and robust implicit-implicit parti-

tioned procedure for the solution of transient thermoelastic coupled problems. In Section II, we

briefly review the basic equations for the linearized coupled thermoelasticity theory. A conventional

implicit-implicit staggered solution procedure is summarized in Section KI. The thermal coupling

term in the structural dynamics equation is treated as an applied force. However, while being very

simple to implement, the resulting time integration algorithm suffers from conditional stability. In

Section IV, we introduce an augmented implicit-implicit staggered solution procedure for the parti-

tioned problem. We establish the unconditional stability and second order accuracy of the resulting

numerical algorithm in Section V. In Section VI, we discuss the computer implementation aspects of

the proposed computational strategy; we conduct a comparative cost analysis which _monstrates

the superiority c,f _.i_eproposed solution procedure to other conventional staggered schemes. Finally

in Section VII, we apply our partitioned algorithm to the solution of the one-dimensional Second

Danilovskaya [13] and two-dimensional Youngdahl-Sternberg [14] problems. For both problems,

the results generated by the proposed stabilized procedure are shown to be in excellent agreement

with the analytical "exact" solutions.
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II. FINITE ELEMENT FORMULATION

Let B denote the body of the structure to be analyzed, and a B = a Bu U a Bs u a Bo u a Bq the surface

enclosing it. The basic equations for the linearized isotropic coupled thermoelasticity theory are:

pii = dive,+ b in B

cO = -div(-kVO) - a(3). + 2#)Ootr(_) + r

o" = 2txe + 3.(tre)I - _(31 + 2/,)(0 - 00)I

1

= _(Vu+Vu r)

in B

and (1)

u = fi on OB.

o'n = ._ onOBs

0 = g onOBo

-kVO = _ onaBq

where u, e, or, 0, 0o, b, and r are the displacement, strain, stress, temperature, reference temperature

chosen such that (0 - 00)/00 < < 1, body force, and heat supply fields, respectively, while/x, _., c,

et, p, k and n are the Lame' moduli, the shear modulus, the specific heat, the coefficient of thermal

expansion, the mass per unit volume, the thermal diffusivity, and the normal to the surface at a given

point, respectively. I is the identity tensor. The dot and T superscripts denote a time derivative and

a transpose operation, and tr denotes the trace of a given tensor.

If now we express the dependent variables u and 0 by suitable shape functions as:
A --

u = N6 and 0 = NO

then a standard Galerkin procedure transforms (1) in the following algebraic coupled system of

differential equations:

Mii+Dti+Ku-CO = f

QO + HO + OoCrLi = r
(2)

where M, D and K are the usual mass, damping and stiffness matrices, f is the prescribed structural

loading vector, and Q, H, and r are respectively the capacity and conductivity matrices and the

nodal source vector. If L denotes the differential operator corresponding to strain, the coupling

matrix is expressed as C = fs(LN)r[1, 1, 1, O, O, OINdB.
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III. CONVENTIONAL IMPLICIT-IMPLICIT PROCEDURE

In many applications, the coupling term Crti that appears in the heat equation and which is induced

by the effect of the strain rate is negligible. Therefore, one expects the second of equations

(2) to remain parabolic and the temperature response to remain close to the uncoupled solution.

Consequently, the dependent variable 0 is easier to predict than the displacement u, so that the most

natural way of solving (2) would be:

Mii "+1 + Du _+t + Ku "+1

Q0 + H0"+l
(3)

where 0 "+t _' is the predicted temperature. Unfortunately, the above numerical procedure is only

conditionally stable, even when each field is integrated with an unconditionally stable algorithm.

Proofs of this result are given by Dubois-Pelei'in [15] for various consistent predictors. Next, we

introduce an aug'mentation technique that stabilizes the staggered solution of (2).

IV. AN AUGMENTED IMPLICIT-IMPLICIT PARTITIONED PROCEDURE

Park, Felippa and DeRuntz [ 16] have introduced a differential augmentation concept that was suc-

cessfully used in the stabilization of staggered solution procedures for fluid-structure interaction

problems. Basically, one of the coupled equations is injected into the other in order to "soften"

the system, either by reducing the large eigenvalues of the uncoupled stiff equation, or by intro-

ducing some damping into it. Here, we adopt a different strategy. We perform a semi-algebraic

augmentation-- that is, we augment one of the two coupled equations while integrating both fields.

First, the structural equation is integrated with the trapezoidal rule:

At (iin+l
tP +1 = ti" + -_-- + 6")

= d" + -_-[uAt--n + M-t(ff+l _ Dd.+l _ Ku,,+I + C0_+1)]

At (lin+t
u +t = u" + -T + li")

At 2 ..,, Dti,,+l Ku,+t
= u n + Atfl '_ + --_-[u + M-l(ff +t - -- + C0_+I)]

(4)

and the velocity vector is extracted as:

At .., M_l(g,+ l Kun+ t(I + M-ID)u "+l = ti" + --_--[u + - + C0_+t)]

Next, the heat equation is also integrated with the trapezoidal rule:

(5)
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0n+l At .0n+ 1
= o_ +-TC +o n)

= On + --_--[0At-n + Q_l(rn+l _ H0,,+I _ 0oCriy+l)]

Finally, the system is augmented by recasting (5) in (6) to obtain:

At .n Q_l [rn+l H0n+ t At 1 l
0 "+l = On + -_"{0 + - - 0oCr(I + "_--M- D)-

At ..n M-t (f,,+l Ku,,+l t
0i" + -T(u + - + c0 _+ )))]}

Substituting (5) into the second of equations (4) and re-arranging (7) leads to:

At2 I At2
(I + --_-B(At)M- K) u n+l - _B(At)M-1C 0 n÷l = F n+l4

At2 .._ At2(---_-0oAK) u "+l + (I + Q-1H + "-_-0oAC) 0 "+1 = R "+x

where
A _.

B(At) =

Fn+I __

Rn+! __

Q-ICrM-1

At -t -_
(I + -_--M D)

At At2 n
u" + -_-- (I + B(At))ti n + --_--(B(At)ii + M-IB(At)f "+l)

At Q_l(rn+l
On + -_-[0_ + - 0oCrB(At)ff')]

At 2

- _[OoQ-ICr(B(At)ii n + B(At)M-lff+t)]
4

Now, a displacement predicted staggered procedure for the solution of (8) is:

1. Predict the displacement field:

un+l P _ U n

(6)

(7)

(8)

(9)

(10)

2. Solve for the temperature field:

At l At2 At2
(I + -_--Q- H + --_---0oAC)/7 '+l = R "+l + ---_0oAK un+zP (11)
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.

.

Correct the displacement field:

t2 A't2 1

(I + -_--B(At)M-tK) u n+t = F "+t + --_-B(At)M- C 8 n+l

Compute velocity, acceleration and flux fields:

At M_l(f,,+ l Ku,,+1 + C0_+1)]}
ti"+l = B(At){_t _ + _---[ii" +

tin +1 = M-l(f "+l + C0 "+l _ Du _+t _ KU n+i)

0 "+i = Q-i (rn+l -- OoCT_ln+l _ H_+l)

Remarks:

1.

.

(12)

(13)

The predictor u "+t p is simply the previous step solution. It has been found (see, for example,

[17]) that this is the most stable predictor when used in conjunction with the trapezoidal rule,

while still maintaining a second-order accuracy.

The injection of (5) into (6) is not arbitrary. It will be shown in Section VI that this is more

economical than injecting (6) into (5).

3. Equations (13) define the computational path of the staggered procedure.

V. STABILITY AND ACCURACY ANALYSES

In this section, we establish that equations (10)-(13) result in a unconditionally stable second order

accurate transient algorithm for the time integration of the coupled system (2). To avoid lengthy

expressions, we consider the undamped (D = 0) and unforced (f = r = 0) case. Note however that

even when D = 0, the quantity CO still transmits a rate dependent damping effect to the structural

equation.

Stability. The stability of the proposed staggered procedure can be examined by seeking a nontrivial

solution in the form:

in1] [an]li "+l Li"
ii.+ l = 1 + Z iin

O.+t 1 - z 0"

0"+t 0"

(14)

and determining under what condition the real part of z is positive. Substitution of (10) into (11)

and (14) into (11)-(13) yields, after some algebraic manipulations:

[ Z2I + _T...MZX.,2 -IK "_-"_'2M-IC 1 [ un ] [00]&t 2 n t, tr &t --1 At 2 --"
-(1 - z2)-T-_,o_x,, z2I + zTQ H+ -a-0oACJ 0"

(15)
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Therefore, the characteristic equation associated with (15) is:

At z

-_ VK At3tCrM-lK) z + I = 0 (16)[ Mz3 + VM Atz22 + (K + 0oCQ=IC r + --_-OoCQ- 8

where

V = CUC r, U = Q-IH(CrC)-I

and I I denotes the matrix determinant. If the matrices M, K, Q and H are positive definite, and the

coupling matrix C has full column rank, then U, V and each matrix coefficient of the determinant

expression (16) is positive definite. If C is column rank deficient, U and V are positive semi-

definite. In any case, all coefficients of the stability polynomial are non-negative. Consequently,

the first part of the Routh-Hurwitz criterion [18] for unconditional stability is satisfied. In order to

check the second component of this criterion, we consider a 2-d.o.f. model problem for (2). The

corresponding scalar form of (16) is:

a3z3+a2z2+alz+ao = 0 (17)

where

Ath At2 2 0°c2 (1 At2 2
a3 = 1, a2 = 2---q" al = ---_-[w + qm +---_-w )], a0 =

At3h
o92

8q

Since At, h, q, w 2, 0o, c 2, and m > 0, then all the coefficients of the polynomial (17) in z are

positive. Morevoer, the quantity

ala2 -- a0a3-- O°hc2At3 (1 + At2 1/) 2

8mq 2 _ )

is also positive, which demonstrates that the staggered solution procedure is unconditionally stable

for the 2-d.o.f. model problem.

For the general multi-dimensional case, it turns out that the limiting case K = 0 which states

that the structural system will grow quadratically in time, provides a sufficient test. For this case,

(16) reduces to:

[ MZ 2 "q'-T z + 00CQ-tC r I = 0

Since M is positive definite and VM and CQ-l C r are at least positive semi-definite, the procedure is

unconditionally stable for the limiting case K = 0, as discussed in Bellman [19]. This argument has

been extensively utilized in [17] during the analysis of several partitioned procedures. Therefore,

we conclude that the procedure given by (10)-(13) is unconditionally stable.
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Remarks:

1. The characteristic equation (16) reveals that the proposed procedure ( 10)-(13) is algorithmicalty

identical to the one obtained by first differentiating the second of equations (2):

Q0 + H0 + 0oCrii = /"

then substituting ii from the first of equations (2) into the above equation:

Q0 + H0 + 0oCrM-tC0 = = i"- 0oCrM-l(f- Ku)

However, differentiating the nodal source vector may be not practical, for example, if r is a

discontinuous function of time. In our present derivation (11)-(13) we avoid this problem.

2. The first-order thermal equation is algorithmically modified to behave as a damped second-

order system. It should be emphasized that the described stabilization technique has not

introduced any artificial damping. The only augmentation that is used is part of the governing

equation of motion itself.

Accuracy. After differentiation, the third of equations (13) in the unforced case reads:

_n+l = _00Q_lCrii,+l _ Q_IHS,+I (18)

Expanding the various terms in (8) around the time nat and injecting (13) and (18) when needed

leads to:

Mii n+Ku n = C0"+O(At 2)

Q_' + H0 _ = -00crti n + O(At 2)
(19)

Comparing (2) and (19) demonstrates that the staggered procedure is second order accurate. The

same result can be proved for the damped (D :/: 0) and forced (f .7/:0, r _ 0) case.

VI. COMPUTATIONAL ASPECTS

In the remainder of this paper, we consider the case where the structure is undamped (D = 0)

and the mass and capacity matrices are lumped (M, Q are diagonal). The unconditionally stable

staggered procedure (10)-(13) can be implemented as:

1. Form:

At "n __R"+l* = Atrn+12 + Q[0n + _ (0 - 00Crfi")] - 00Cr [/in + M_ 1(F+t _ Ku,+ 1t')] (20)
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2. Solve:

At H -_00CrM-I C)0"+1(Q+ 2 + = R "+1. (21)

3. Form:

, At , At 2 1_+1
F "+l = M[u" + At0i" + --_--ii )] + --_---( + C0 "+1) (22)

4. Solve:

At2 n+l
(M + ---_---K)u = F n+l* (23)

5. Update:

ii n+l -- M-I(I m+l "1- CO n+l - Ku "+l)

At ..,, ii,,+l )
/_,+t = ti" + -_- (u +

0 "+l = Q-l(rn+l _ 00crli .+l _ H0,,+ l)

(24)

Equations (20) to (24) involve algebraic computations that are common to most implicit algorithms,

when applied to the uncoupled problem. Only the quantity CrM-1C deserves special attention. In

particular, it is important to note that:

• CrM - 1C is not a full matrix. It is a symmetric banded operator. Let ns, nh, bs and bh denote

the sizes and the semi-bandwidths of the structural and heat matrices, respectively. Typically,

ns and bs are two to six times larger than nh and bh. The matrix product CrM-IC is nh by

n h and has a semi-bandwidth close to 2bh. Therefore, equation (21) entails the solution of

an rth by nh symmetric banded system. On the other hand, if equation (6) had been injected

into equation (5) -- that is, if the temperature field had been eliminated from the structural

equation -- the resulting augmentation term would have been CQ -t C r which is ns by ns and

has a semi-bandwidth close to 2bs. The latter would have entailed the solution of a symmetric

system that is several times larger and denser than (21). For a rectilinear mesh composed of

two-dimensional truss elements, the patterns of matrices C, C r, CrM-tC and CQ-IC r are

depicted in Figure 1.

• the additional cost incurred by the augmentation term is restricted to the factorization and

subsequent solutions of equation (21). The precise value of this additional cost (with respect

to the conventional procedure (3)) depends on the cleverness of the implementation.

At this point we also note that the quantity CrM-IC is common to several coupled field

problems. Its pattern, storage and computational properties have also been recognized and analyzed

by previous investigators in different areas (see for example Liu and Chang [12]).
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i_i_!_i_¸

SYMMETRIC

C

CrM-IC --_

Figure 1. Patterns of the coupling matrices for a
recti/inear mesh wi_h 2D truss elements

In order to illustrate the computational costs of the proposed numerical procedure, we consider

the problem of a clamped square plate where the edges are exposed to a sudden heating. The finite

element mesh is composed of N by N 4-node regular elements. The stiffness and conductivity

matrices K and Q are assumed to be stored in banded form so that operation counting is facilitated.

In practice, these matrices are compacted in skyline data structures. We denote by d and p,

respectively the number of structural degrees of freedom per node (d < 6) and the number of

integration steps.

The assumption of an N by N regular mesh with a number of fixed degrees of freedom at each

node is unlikely in practice. However, it is the worst case as far as the computational effort required

for the evaluation of the product CrM -_ C.

For the above problem, the formation and factorization of equations (21) and (23) require

respectively (2 + d) N 4 and d 3 N 4/2 multiplications. The resolution of equations (20)-(24) requires

(7d 2 + 6d + 3)N 3 multiplications for each time step. Therefore, the total computational effort

needed for the transient coupled solution using the proposed stabilized procedure is:

d 3

E s "-. (-_ + d + 2)N 4 q- pS(7d2 + 6d + 3)N 3 (25)
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For the same problem, the computational cost associated with a conventional second-order

accurate conditionally stable procedure (3) is:

d 3 + 1 N4
E c -.. (----_) + pC(7d 2 + 6d + 3)N 3 (26)

Clearly, unconditional stability is obtained at the cost of (d + 3/2)N 4 additional floating point

operations. For linear problems, this computational effort is needed once. In the following, we

show that this overhead is compensated by a much larger time step.

The natural frequencies of the clamped square plate are given by:

/ El 3
(.Ore n -- 7r2/.

V 12(1 - v2)p

m 2 + n 2

( a2 ) (27)

where E, v, l, and a are respectively Young modulus, Poisson's coefficient, the plate thickness and

its edge size [20]. Therefore, the lowest frequency is:

2zr2 / El3

o_,,,i. = a2 W12( 1 _ v2)p
(28)

and a good approximation of the highest element frequency is:

wCe) 2_r2 N 2 / El3

max = "7 V,12(1 _'1)2) p
(29)

An adequate time step for the stabilized procedure is given by OJminAt s -- rr/10. For the con-

ventional conditionally stable staggered procedure where both u and 0 are integrated with the

trapezoidal rule, the stable time step is expressed as a multiple of the time step based on the Courant

condition associated with the hyperbolic structural equation. Hence, At c = m x 91,,, (e) where-- #wmaX,

m > 1. Using (28) and (29) we have:

a2 ; 12(1-v2)p At c ma2 /12(1__[; 2)p (30)AtS -- 20rr El 3 ' -- _--ff"N2

so that
2zr N 2

ps = 40, pC _ (31)
m

are the number of steps which would cover twice the largest period of the problem. The computa-

tional costs for both procedures become:

d 3

E s -.. (-_ + d + 2)N 4, EC "" 2rr(7d2m + 6d + 3)N 5 (32)

189



which demonstrates the superiority of the proposed stabilized staggered procedure for N sufficiently

large (N > m/14).

VII. NUMERICAL EXAMPLES

First, we consider the Second Danilovskaya problem [13]. An elastic half-space (x > 0) with the

surface plane x = 0 assumed free of tractions for all time is exposed to a sudden high ambient

temperature 8oo. The continuum is assumed to be mechanically constrained and thermally insulated

so that the displacement and temperature fields are given by:

ux -" ux(x, t), uy- O, Uz- O, 8 = 8(x, t)

The boundary and initial conditions for this problem are:

crxx(0, t) = 0, k_---_0(0, t) =
OX

h(8(O, t) - 8_)

(33)

and (34)

ux(x, O) = O, _(x, O) = O, O(x, O) = 80

where h is the boundary-layer conductance. The following dimensionless variables are introduced:

ax a2t axx 8 - 80 a(_. + 2la)Ux
= --, ? = --, 5= -- g= _, _= (35)

K K #80' 00 K/380

where

k a2 k + 2/.t a:x = --, = _, /3 = (36)
pc p 3_. + 2tz

The thermomechanical coupling parameter is defined by:

/3280 /3200
8 = = (37)

pc(_. + 2/z) p2a2c

The exact solution for this problem can be obtained using the Laplace transform (see Nickell and

Sackrnan [21]). The finite element solution is carried out using 2-node linear elements. The ratio

xh/ak is fixed to 0.5 and the thermomechanical coupling parameter 8 is set to I. We report on

the generated results for two time integration steps, At (t) = _/5O)mi n and At C2) = At(_)/2 =

;,r/10co,,,i,,. These correspond to sampling the largest period of the mechanical problem into 10 and

20 steps, respectively. Figure 2 depicts the dimensionless temperature 0 at ._ --- 1.0 as a function of
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SECOND DANILOVSKAYA PROBLEM
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Figure 2. Dimensionless temperature at ./= 1.0
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the dimensionless time ?, for At = At (1). Figure 3 reports the dimensionless displacement fi(?) at

= 1.0, for At = At (2). As expected, the results for At = At (2) are more accurate than those for

At = At (1). However in both cases, the generated solutions are in good agreement with the exact

ones.

_r

Figure 4. Problem geometry and finite element discretization

Next, we consider the case of an infinitely long elastic circular shaft of radius R, where the surface

temperature undergoes a sudden uniform change over a finite band of length Z, and is steadily

maintained thereafter (Fig. 4). Youngdahl and Sternberg have presented in [ 14] an exact solution

for the transient temperature and thermal stresses distributions in the shaft, when thermomechanical

coupling is neglected, in the form of definite integrals and infinite series. In cylindrical co-ordinates

(r, _, z), the axisymmetric torsionless displacement and temperature fields are given as:

Ur "- Ur(r,z,t), u¢_ = O, u z = Uz(r,z,t), 0 = O(r,z,t) (38)

The boundary and initial conditions for this problem are:

O'rr(R, Z, t) = 0, Crrz(R, Z, t) = 0,

Crrr -_ 0 as Izl -_ c_, a_¢ _ 0 as Izl _ o¢,

Z

O(R, z, t) = 0oo Izl < 7' o(g, z, t) = 0

azz _ 0 as Izl--> oo,

Z
Izl > -

2

crrz _ 0 as Izl _ o_,

and

Ur(r, Z, O) = O, u z (r, Z, O) = O, U r (r, Z, O) "- O, fiz (r, z, O) = O, 0(r, z, 0) = 0

(39)
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YOUNGDAHL-STERNBERG PROBLEM
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The following new dimensionless variables (there should be no confusion over the present definition

of these variables and their earlier use) are introduced:

r 2z g = 0 .[ kt
P = = T' R2 (4o)

For all computations, we set L -- 2R and v = 1/4. The finite element solution is carried out using

4-node axisymmetric linear elements, and a time step At = 7r/lOwrni,. Figure 5 compares the

predicted temperatures at the center of the shaft (p = 0) with the exact ones for 8 = 0, and reports

on the effect of thermocoupling (8 = 0.5) on temperature distribution. Clearly, the stabilized

procedure provides accurate solutions. The variations of the radial stress at _ = 0.1 for 8 = 0 and

= 0.5 are depicted in Figure 6. All numerical results arereported at ?"= 0.2. It is interesting to

note that when the therrnocoupling effect is neglected the temperature fieid is overestimated, but

the radial stress distribution is underestimated.

VIII. CONCLUSION

An implicit-implicit staggered procedure for the solution of thermoelastic problems is presented.

It is stabilized with a cost-effective semi-algebraic augmentation scheme. The resulting transient

algorithm is unconditionally stable and second-order accurate.
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ELECTROMAGNETIC AXISYMMETRIC FINITE ELEMENTS

BASED ON A GAUGED

FOUR-POTENTIAL VARIATIONAL PRINCIPLE

ABST]_CT

We derive electromagnetic finite elements based on a variational principle that uses the electro-

magnetic four-potential as primary variable. The Lorentz gauge normalization is incorporated as a

constraint condition through a Lagrange multiplier field A. This "gauged principle" is used to con-

struct elements suitable for downstream coupling with mechanical and thermal finite elements for

the analysis of high-temperature superconductor devices of potential use in aerospace applications.

The main advantages of the four-potential formulation are: jump discontinuities on interfaces are

naturally handled, no a F/or/approximations are invoked, and the number of degrees of freedom

per node remain modest as the problem dimensionafity increases. The new elements are tested on

two magnetostatic axisymmetric problems. The results are in excellent agreement with analytical

solutions and previous "ungauged" finite element solutions for the one-dimensional problem of a

conducting infinite wire, in which case the multiplier field has no effect. For the two-dimensional

problem of a hollow cylinder connected to an infinite cylindrical feed wire, the results make physical

sense although there is no known analytical solution. In this case, the multiplier field ,_ couples the

potentials in the radial and axial directions. The effect of full and selective integration on A, as well

as that of leaving A out of the problem, am assessed. For materials of widely different permeability,

jump conditions are found to be naturally accommodated by the present formulation.
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NOMENCLATURE

Symbol Meaning

A

B

C

¢

co
D

E

e

F

f

GA, Gs, GA

9
H

I

i

J

J
K

L

Lg
M

N

R

r

u

t

Xl, X2, _3, Z4

Z

Uu,Us

6

Magnetic potential vector, also computational vector

of finite element node values of mag, netic potentials
Magnetic flux density vector

Damping matrix of finite element discretization

Speed of light in arbitrary material

Speed of light in vacuum
Electric flux density vector

Displacement current density vector

Electric field intensity vector

Element identifier (as superscript)
Field strength tensor

Force vector of finite element discretization

Matrices relating element magnetic, electric and

multiplier fields, respectively, to node values

Electric conductivity

Magnetic field intensity
Total current intensity carried by a conductor

When not used as suscript, imaginary unit
Four-current vector

Current density vector
Stiffness matrix of finite element discretization

Lagrangian

Gauged La_-angian
Mass matrix of finite element discretization

Finite element shape function vector

Governing functional

Radial coordinate in cylindrical coordinate system --

Finite element node value computational vector containing
magnetic potentials, electric potential and A
Time

Four-space coordinates

Longitudinal coordinate in cylindrical coordinate system
Magnetic and electric energy density, respectively

Normalization factor in Lagrangian
Variation symbol

I

[-

t

i

I

f

[

I

I

[

[_i

I
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NOMENCLATURE (Cont'd)

Symbol Meaning

E

eo
0

A

A

#

/zo

P

8

¢I,

V

ft.

Vx

[]

=,<T

Susceptibility (also called capacitivity and permittivity)

Susceptibility of vacuum

Circumferential (longitude) coordinate in cylindrical

coordinate system

Lagrangian multiplier field for Lorentz gauge constraint

Finite element vector of Lagrange multipliers

Magnetic permeability (also called inductivity)

Magnetic permeability of vacuum

Electric charge density

Electric potential

Finite element node value vector of electric potentials

Four-potential vector

Gradient operator

Divergence operator

Curl operator

D'Alambertian (four-wave) operator

Abbreviation for temporal derivative

Matrix transposition

1. MOTIVATION AND APPROACH

The present work is part of a research program for the numerical simulation of electromag-

netic/mechanical systems thatinvolvehigh-temperaturesuperconductors(HTS). These are com-

positematerials whose structural and environmental properties are presently the subject of intensive

experimental research. Devices fabricated with these materials are expected to have major impact

in space propulsion, power, digital computing and communication systems in the next century.

Some potential applications _ of this rapidly evolving technology to aerospace systems are listed in

Table 1.

The computer simulation of I-ITS devices involves the interaction of the following four com-

ponents:

(1) Mechanical Fields: displacements, stresses, strains and mechanical forces.

(2) Thermal Fields: temperature and heat fluxes.
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Table I Potential Aerospace Applications of FITS Devices I

Magnetic Thrusters

Microwave Power Transmission

Superconducting Magnetic Energy Storage

Electromagnetic Launch and Braking

Aircraft Power Systems

(3) Electromagnetic (EM) Fields: electric and magnetic field strengths and fluxes, currents and

charges.

(4) Coupling Fields: the fundamental coupling effect is the constitutive behavior of the materials

involved. Particularly important are the metallurgical and superconducting phase change

phenomena triggered by thermal, mechanical and EM fields.

1.1 Finite Element Treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite element

method. This treatment produces the spatial discretization of the continuum into mechanical,

thermal and electromagnetic meshes of a finite number of degrees of freedom. The finite element

discretization may be developed in two ways:

C1)

(2)

Simultaneous Treatment. The whole problem is treated as an indivisible whole. The three

meshes noted above become tightly coupled, with common nodes and elements.

Staged Treatment. The mechanical, thermal and electromagnetic components of the problem

are treated separately. Finite element meshes for these components may be developed sepa-

rately. Coupling effects are viewed as information that has to be transferred between these

three meshes.

The present resea_h follows the staged treatment. More specifically, we develop finite element

models for the fields in isolation, and then treat coupling effects as.interaction forces between these

models. This "divide and conquer" strategy is ingrained in the partitioned treatment of coupled

problems 2,3, which offers significant advantages in terms of computational efficiency and software

modularity. Another advantage relates to the way research into complex problems can be made

more productive. It centers on the observation that some aspects of the problem are either better

understood or less physically relevant than others: These aspeets may be then temporarily left alone

while efforts are concentrated on the less developed and/or more physically important aspects. The

staged treatment is better suited to this approach.
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1.2 Mechanical Elements

I

Mechanical elements for this research have been derived using general variational princi-

ples that decouple the element boundary from the interior thus providing efficient ways to work

out coupling with non-mechanical fields. The point of departure was previous research into the

free-formulation variational principles presented in Felippa 4. A more general formulation for

the mechanical elements, which includes the assumed natural strain formulation, was established

and presented by Felippa and Militello s-s. New representations of thermal fields have not been

addressed as standard formulations are considered adequate for the coupled-field phases of this re-

search. However, research in thermomechanical interaction supported by this program has resulted

in the construction of robust and efficient staggered solution procedures 9.

1.3 Electromagnetic Elements

The development of electromagnetic (EM) finite elements has not received to date the same

degree of attention given to mechanical and thermal elements. Part of the reason is the widespread

use of analytical and semianalytical methods in electrical engineering. These methods have been

highly refined for specialized but important problems such as circuits and waveguides. Thus

the advantages of finite elements in terms of generality have not been enough to counterweight

established techniques. Much of the F_aMfinite element work to date has been done in England and

is well described in the surveys by Davies t° and Tr0wbridge It. The general impression conveyed

by these surveys is one of an unsettled subject, reminiscent of the early period (1960-1970) of finite

elements in structural mechanics. A great number of formulations that combine flux, intensity, and

scalar potentials are described with the recommended choice varying according to the application,

medium involved (polarizable, dielectric, semiconductors, etc.) number of space dimensions, time-

dependent characteristics (static, quasi-static; harmonic or transient) as well as other factors of

lesser importance. The possibility of a general variational formulation has not apparently been

recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a variational

formulation that uses the four-potential as primary variable. The electric field is represented by a

scalar potential and the magnetic field by a vector potential. The formulation of this variational

principle proceeds along lines previously developed for the acoustic fluid problem t2,13. The Lorentz

gauge normalization is incorporated in the variational (weak) form through the adjunction of a

Lagrange multiplier field.

The main advantages of using potenti_s as primary variables in contrast to existing EM finite

elements based on intensity and/or flux fields are, in order of importance:

1. Interface discontinuities are automatically taken care of without any special intervention.

2. No approximations are invoked a priori since the general Maxwell equations are used.

3. The number of degrees of freedom per finite element node is kept modest as the problem

dimensionality increases.
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4. Coupling with the mechanical and thermal fields, which involves derived fields, can be naturally

evaluated at the Gauss points where derivatives of the potentials are evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated and

specialized to an axisymmetric geometry. The discretization of this principle into finite element

equations produces semidiscrete dynamical equations, which reduce to the electromagnetostatic

equations in the time-independent case. These equations are tested in the simulation of a cylindrical

conductor wire and of a hollow conducting "can" connected to an infinite feed wire.

2. ELECTROMAGNETIC FIELD EQUATIONS

2.1 The Maxwell Equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors

E and H represents the electric and magnetic field strengths (also called intensities), respectively,

whereas D and B represent the electric and magnetic flux densities, respectively. All of these are

three-vector quantities, that is, vector fields in three-dimensional space (zl -- z, x2 --= _/, x3 -- z):

/°,}B27 B2 , DD D2 , ET? , ttZ_ //2 . _,1,_

B3 D3 H3

Other quantities are the electric current three-vector j and the electric charge density p (a scalar).

Using superposed dots to denote differentiation with respect to time t, we can state Maxwell

equations ast

_CV×ED0, V xH-_Dj, t>2,_

V.D_p, V-BDO.

The first and second equation are also known as Faraday's and Aml_re-Maxwell laws, respectively.

The system (2) supplies a total of. eight partial differential equations, which as stated are

independent of the properties of the underlying medium.

2.2 Constitutive Equations

The field intensities E and H and the corresponding flux densities D and B are not indepen-

dent but are connected by the. electromagnetic constitutive equations. For an electromagnetically

isotropic, non-polarized material the equations are

"1"Some authors, for example Eygest'*, include 4w factors and the speed of light c in the Maxwell equations.

Other textbooks, e.g. Rojanski t5 and Shadowitz _, foUow Heaviside's advice in using technical units

that eliminate such confusing factors.
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where # and E are the permeability and susceptibility, respectively, of the material (other names are

often used, cf. Nomenclature Section). These coefficients are functions of position but (for static or

harmonic fields) do not depend on time. In the general case of a non-isotropic material both p and "

become tensors. Even in isotropic media 1_may be a complicated function of H; in ferromagnetic

materials exhibiting hysteretie effects # depends on the previous history.

In free space/_ 29 _ and e _ e0, which are connected by

I

/._oeo

where co is the speed of light in free-space vacuum.

The electrical field strength E is further related to the current density j by Ohm's law:

j :D gE, c,5,_

where g is the conductivity of the material. Again for a non-isotropic material g is generally a

tensor which may also contain real and imaginary components; in which case the above relation

becomes the generalized Ohm's law. For good conductors g > > e; foi" bad conductors g < < e. In

free space, g D 0.

2.3 Maxwell Equations in Terms of E and B

To pass to the four-potential formulation it is convenient to express Maxwell's equations in

terms of the electrical field strength E and the magnetic flux B. In fact this is the pair most frequently

used in electromagnetic work that involve arbitrary media. On eliminating D and H through the

constitutive equations (3) we obtain

V-B:DO.

The second equation assumes that e is independent of time; otherwise d_ _D e dE�dr should be

replaced by d)eE,_/dt. In charge-free vacuum the equations (6) reduce to

V × B- _2)0,

V-B'D0.

_7_

2.4 Tile Electromagnetic Potentials

The electric scalar potential 8 and the magnetic vector potential A are introduced by the

definitions

[ ED-V8-_, B'DV xA. ! _8,_
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This definition satisfies the two homogeneous Maxwell equations in (7). The definition of A leaves

its divergence V. A arbitrary. We shall use the Lorentz gauge 17

V. A C #e_' 79 0. I 1>9<1

With this choice the two non-homogeneous Maxwell equations written in terms of 8 and A separate
into the wave equations

v28 - _e_z_ -p/e, V2A - _ 79-_j, t>10<

which are only coupled on the right-hand side through Ohm's law (5).

3. THE ELECTROMAGNETIC FOUR.POTENTIAL

MaxwelI's equations can be presented in a compact manner (a form coi'npatible with special

relativity) in the four-dimensional spacetime defined by the coordinates

xl-----x, x2=y, x3--'z, x479ict 1>11<1

where z l, x2, x3 are spatial Cartesian coordinates, i 2 7) -1 is the imaginary unit, and c 2) l/v/" _

is the speed of EM waves in the medium under consideration. In the sequel Roman subscripts will

consistently go from I to 4 and the summation convention over repeated indices will be used unless
otherwise stated..

3.1 The Field Strength Tensor

The unification can be expressed most conveniently in terms of the fieM-strength tensor F,

which is a four-dimensional antisymmetric tensor constructed from the components of E and B as
follows14,16

-cB3 0 cBt -lEa
-Ft2 0 F_a F24 | _ _ cB2 -cBl 0 -iF___ 1>12<1

FD-F,3 -Fz3 0 F_, /
-F,4 -F_ -F_ iEl iF-a iF4 0

Here/3 is an adjustment factor to be determined later. Similarly, introduce the four-current vector
Jas

J_ ,/3
J4

/c l}{ }c.j3 ;_J3 "
ip/, iv/ p

1>13<1

Then, for arbitrary/3, the non-homogeneous Maxwell equations, namely _7 × B - #e_ 79/zj and

_7. E 79 p/e, may be presented in the compact "continuity" form (the covariant form of these two

equations):

i:gFi......._k"19Ji. r, 14,_
cgxk
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The other two Maxwell equations, V. B/9 0 and V x E C _ l) 0, can be presented as

OF_k C OF,_ OFk,_ 19 O,
o=--=_c o=---i-

where the index triplet (i, k, m) takes on the values (1,2,3), (4,2,3), (4,3,1) and (4,1,2).

_,15,_

3.2 The Four-Potential

The electromagnetic four-potential dp is a four-vector whose components are constructed with

the electric and magnetic potential components of A and _:

4_9 Z
cA3 "

¢4 i8

It may then be verified that F can be expressed as the four-cud of _b, that is

or in more detail and using commas to abbreviate partial derivatives:

0 4n,l - ¢1,2 ¢3,1 - ¢t,3- 4n, l 0 ¢_,2 - ¢_,3

i \ ¢,,4 - ¢4,1 _,4 - ¢4,2 ¢_,4 - _,4,3

_b4,1 -- qbt,¢

¢4,3 _,4 "
0

3.3 The Ungauged Lagrangian

With these definitions, the basic Lagrangian of electromagnetism'l" can be stated asl9

t>16,_

t_17,_

_18_

[

[,
E.

I

!

__/32½_(c__- s_) 7,>_,A,C_A_C._A_- _<_,

_19_

in which

Comparing the first term with the magnetic and electric energy densities t4'ls'[6

t>20_

I 2

uMv ½B_Hv _, L/E :D IDTE _D lee _, t_21_

t L is an extension of the free-space Lagrangian given by LanczostS to a material obeying the more general

constitutive equations (3).
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we must have 1_2C2 _) ]_2/D_<] _) l/_, from which

/_ D x/_. _,22,_

Consequently the required Lagrangian is

I "°
The associated variational form is

R29_tfvLdVdt t>244

where V is the integration volume considered in the analysis. In theory V" extends over the whole

space, but in the numerical simulation the integration is truncated at a distant boundary or special

devices are used to treat the decay behavior at infinity.

3.4 The Gauged Lagrangian

If the fields A and 8 to be inserted into L do not satisfy the Lorentz gauge relation (9) apriori,

this condition has to be imposed as a constraint using a Lagrange multiplier field )_>xi_, leading to

the modified or "gauged" Lagrangian:

I LgDLCA>V.ACpe_.
t>25<_

3.5 The Four-Field Equations

On setting the variation of the functional (25) to zero we recover the field equations (14-15)

as well as the gauge constraint (9) as Euler-Lagrange equations. Taking the divergenci_ of both

sides of (14) and observing that F is an antisymmetric tensor so that its divergence vanishes we get

Ox"'_i29 c/_V. j C _ 29 0, t>26,_

The vanishing term in parenthesis is the equation of continuity, which expresses the law of con-

servation of charge. The Lorentz gauge condition (9) may be stated as V • _b 29 0. Finally, the

potential wave equations (10) may be expressed in compact form as

[] ¢i 29 - J_ t>27,_

where [] denotes the "four-wave-operator", also called the D'Alembertian:

02 02 02 02
_e 02 9 C C c,28,_

Hence each component of the four-potential _ satisfies an inhomogeneous wave equation. In free

space, J 29 0 and each component satisfies the homogeneous wave equation.
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4. FINITE ELEMENT DISCRETIZATION

In a previous paper m the ungauged Lagrangian (23) was used to construct one-dimensional

axisymmetric finite elements. These elements were successfully tested on a magnetostatic problem.

In the present investigation we extend the technique to two-dimensional axisymmetric problems.

In doing so we find that the finite element discretization does not necessarily satisfies the gauge

condition (9) a priori and consequently the gauged Lagrangian (25) must be used.

4.1 The Lagrangian in Cylindrical Coordinates

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system

with the rotational axis as z-axis. The vector components in the cylindrical coordinate directions

r, 0 and z are denoted by

At, Bt, El -= At, Br, E,.

A2, 132, _ '= As, B0, Eo

A3, B3, E3 -- Az, Bz, Ez

in the r (radial) direction,

in the 0 (circumferential) direction,

in the z (longitudinal) direction.

The electromagnetic fields will then vary in the radial (r) and axial (z) directions but not in the

circumferential (0) direction..

To construct finite element approximations we need to express the gauged Lagrangian

Lg 29 1 B2 _ __eE 2 _ u,jTA _/98<I C At>_7•A C/_e_,
e,29,_

in terms of the potentials written in cylindrical coordinates. For B 2 we use the expression of the

curl (see e.g., p. 54 of Shadowitz 16)

OA3) 20rc ( ! O_>rA2<lO,rr oolaAt ) 2 >30_

For E 2 we use the cylindrical-coordinate gradient formulas

ET_ E2 _ Eo _ -C_2 ,

m, O8c _ 3

so that

For the Lorentz gauge we use the gradient formula again to get

_31_

2

. _32,a

V.AC/z_D 1 _>rAl,_ OA3; o,. c-_..= c _. _33_
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In the axisymrnetric case the partials of any potential with respect to 8 should vanish. Consequently

the gauged Lagrangian (30) simplifies to

1

L9 :D 2-_

-½,

CA
I O_rAl,_ OA3 _ "

r Or C -_z C #co) (jiAt C j2A2 C j3A3 - p8).

F

[

i
t,34,_

I

Note that this Lagrangian involves all components of the four-potential although the independence

from 0 has introduced some simplifications with respect to the full three-dimensional case.

4.2 Constructing EM Finite Elements

For the finite element discretization of the two-dimensional case we have constructed quadri-

lateral and triangular axisymmetric elements defined by their geometry on the r-z plane. We have

used isoparametrie elements with comer node points only. Additional construction details are

provided in Section 5.

In the following we consider an individual element identified by superscript e. The element

nodes are locally numbered i :D 1,... n, where n is the number of comer nodes (n :D 3 for triangles

and n "D 4 for quadrilaterals). The electric potential 8 and the magnetic potential components,

Al _ At, A2 -_ Aa, and A3 = Az, are interpolated over each element as

8 e :D N_ e, A_ :D NA, Ai, t,35,_

Here row vectors N_'and N_t , contain the (isopararnetric) finite element shape functions for 8 e and

_.e, respectively, which are only functions of the radial and longitudinal coordinates r and z:

N_Z)[N_,J>r,z< ... N_c_r,z,:], N_t,:D[N_t,t:cr, z,_ ... N_,,t_r,z,_], t_36_

and column vectors _e and A e contain the nodal values of 8 and Ai, respectively, which are only

functions of time t:

v ...

Ae:P(Allc, t,_ ... Alnc, t,_ A21c, t,_ ... A2n_,t,_ A3tc, t,_ ... A3,_,t,_) r.
¢,37,_

The Lagrangian multiplier field ,_t,r, z,_ will be assumed to be constant over each element since

the variational principle associated with (34) allows interelement discontinuities in this field. This

value, denoted by h e, may therefore be associated with an internal node.
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To facilitate a more compact formulation, we introduce the following matrix and vector

notations:

1

l

I

1

I

I

I

I

I

[

[

I

I

1 •

Z. 0

agvvT{

__ o
o --_

_c N:,, o

N_t t 0 0 ]
0 0 N_3

0 , je_ ]_ . _,39,a

Substitution of the finite element assumptions and our new notation into (35) and (25) yields the

variational integral as a sum of element contributions R :D _e *Re, where

in which

R_ _D I _eT r_¢T _e Ae dV •, _'-ffi _'A "JA" dr,

1_ Z_f_, fv, ½{ (_eTG_Tc _eTN'AT) (G_eC N_4_)} dVe dr,
>41,a

N _ f_' IV* (AeTN_Tj'--P¢_eTN_T) dYe d'_,

where V" denotes the volume of the element. On taking the variation with respect to the element

node values we get 6R e :D 6R_ - _/_ - 6/_ C 6R_ _ 0, with

6A G A GAA dV e dt,

6P4 Z_fS' Iv.{6¢_eTG_T (G_I," C l_a_ ) --_TN_4T (G_" C N_t_e)} dV e dt

'N _ _|/V ® ("_keTrR'_ATJ e- D'(]D'TNf) _e d_:,

t,424
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On applying fixed-end initial conditions at t 29 to and t 29 tl and the lemma of the calculus of

variations, we proceed to equate each of the volume integrals to zero. We thus obtain for each

element the following second-order dynamic equations for the ma_maetie and electric potentials at

the nodes, which are purposedly written in a notation resembling the mass-damping-stiffness-force

equations of mechanics:

M_ C Ceil " C Keu e 2) fe; t>43,_

where

. MeTl_e 0 i]

_A A_A

0 0

0 0

d] re I>44<1
|

o N_TG_fv eTxrs 0C s 2) Gs o,A" mN_

GgTGgK'2)fv" L o,_ T 0

sT-s

fe 29 f -PN_ T dV s,
dV " 0

o]/._eN_ T dV s,

0

t:,45<

I>46,_

Considering (43) as a set of three matrix differential equations, we observe that the first, two are the

discrete analog of the wave equations (10). These equations are coupled, however, in the damping

and stiffness terms as a consequence of the discretization of the gauge condition (9). We can find

an expression for _ in terms of A, but the reverse is not generally possible.

I

F

i

I

F

E

{"} Ius2) _,s . t:,47,_

As

!

4.3 The Static Case

For the numerical experiments reported here, we are primarily concerned with static solutions

for the magnetic fields. If the time dependence disappears, the magnetic and electric fields uncouple

and the element equations reduce to

K_us2)eu, K_u_2)e_, e,484

where

V sT eK_: 2) . [G8 G8 ] dV s,

N_Tj"

&2)fv.{ O Icy',

2) ./V[* --pN_T dV"f}

u_ 2){
A s

_49<
As .,

u_29{_s}. _5o_
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Assembling these element equations in the usual manner we obtain the discrete finite element

equations of electromagnetostatics:

KMUM _ fM, KEUE _ rE. t_5I,_

If both the current density and charge distribution are known a priori then these two equations

may be solved separately. If only the charge distribution p is known then the electrostatic equation

should be solved first to obtain the electric field E as _'adient of the computed electric potential

8; then the current density j can be obtained from Ohm's law (5) and used to computed the force

vector fM of the magnetic equation, which is then solved for the magnetic potential. Conversely, if

only the current density distribution is known a priori the preceding steps are reversed.

For the two test problems presented here the current density distribution is assumed to be

known, and we shall be content with solving the equations for the ma_etic flux.

5. NUMERICAL EXPERIMENTS

5.1 The Finite Element Model

The finite element formulation described in the previous Section has bean applied to the solu-

tion of two test problems described below. Both problems are treated with quadrilateral elements.

Each quadrilateral element has four comer points and one interior node. These nodes are defined

by their radial and axial positions r_ and z_. At each comer j we have four degrees of freedom,

namely Atj, Azj, A3j and 8j. From these values the potential components are interpolated with

the standard bilinear shape functions, which provide the C ° continuity required by the variational

formulation. The centroidal node carries no physical significance and is solely used to provide the

extra degree of freedom assigned to the Lagrangian multiplier A*. Thus each quadrilateral element

has 4 x 4 C 1 29 17 degrees of freedom.

For the calculation of the element stiffnesses and force vectors, it is assumed that the perme-

ability/_ and the current densities are uniform over the element. The desired stiffness matrix and

force vector are calculated by numerical quadrature using Gauss formulas. The portion associated

with potentials is always evaluated with 2 x 2 rule. Three different schemes, on the other hand,

were tried on the entries associated with A:

Full Integration. The same 2 x 2 rule as for the potentials is used.

Selective Integration. A one-point rule is used for G,_.

Zero Integration. The effect of A is ignored by omitting the integration of the associated terms and

placing ones on the diagonal. This numerical d-vice effectively forces Ae 29 0, and thus "releases"

the gauge constraint.

5.2 Applying Boundary Conditions

The finite element mesh is necessarily terminated at a finite size. For the two test problems,

the outer radial end of the mesh is defined as the truncation radius r 29 RT'. In static calculations the
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material outside the FE mesh may be viewed as having zero permeability #, or, equivalently, infinite

stiffness or zero potential. It follows that the z component of the potential at the nodes located on

the truncation radius may be prescribed to be zero. We do this because, no matter what the shape

of an axisymmetric conductor, it will appear to be straight to the far field potential. Because of

the coupling provided by the Lorentz gauge, the gradient of the r component of the potential must

be a constant in the axial direction. For this reason, we constrain A,. at the top and the bottom of

the mesh. Ar must also be constrained to zero on the axis if the field is to decay to zero since the

gradient of Az in the radial direction should also be zero.

5.3 Assembly, Solution and Field Recovery

The master stiffness matrix and force vector are assembled following standard finite element

techniques. The boundary conditions are set as explained previously. The modified master equations

modified for B.C. are processed by a standard symmetric skyline solver, which provides the value

of the potentials at the mesh nodes.

The physical quantities of interest are not the potentials but the magnetic flux and electric

strength densities Bi and Ei, and most especially the circumferential magnetic flux density B2 -

This is calculated by discretizing the curl of A as follows. Since _ _D0, the magnetic fieldsB0.

become after discretization:

F

i

I
fi

fi

[

i.:t
Br 2

{B°} 79 0r%'A",--W TM " t,52, 
B, 1 0t>rN_t_'_A,

or , I
The nodal values for B are obtained by evaluation at the Gauss point followed by extrapolation

to node locations. The average of these quantities is also reported as the centroidal value. As

discussed below this value was found to be more accurate than interelement-averaged node values. ::Iii_i

Consequently the centroidal value was used to report results.

For both test problems, the magnetic permeability # 79//,w,re is constant inside the conductor [

whereas outside it the free-space permeability/_.f,.e, 79 _ was assumed to be unity. The current

densities are assumed to be uniformly distributed and consequently are calculated by dividing
p.._.

the assumed total current flowing through the conductor by the total cross-sectional areas of the |
conductors. t_.

5.4 Problem 1: A Conducting Infinite Wire

The first test problem is identical to that reported in Schuler and Felippa 19 with a one-

dimensional axisymmetric discretization. As shown in Figure 1, it consists of a wire conductor

of radius a transporting a total current I 79 1 in the z direction. This current is assumed to be

uniformly distributed over the wire cross section. For this problem one layer of quadrilateral ele-

ments in the z direction, extending from z 79 0 through z 79 d, is sufficient; here the distance d is

chosen arbitrarily. The radial direction is discretized with N_i,-, elements inside the wire and N fre,
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radius a

'zoI

Hg. 1. Diagram of the first test problem: infinite cylindrical wire conducting
total current I, assumed to be uniformly distributed over the cross section.

elements outside the wire in free space. The mesh is terminated at a "truncation radius" rT > > a
where the potential component A3 - Az is arbitrarily set to zero. Other boundary conditions are
,42 -- Ar D 0on the nodes at z 2) 0 and z 2) d,

The results obtained with rT 2) 5a, Nwire 2) 4 and Nf,-ee 2) 10 for the potentials were

identical to those reported previously _9 thus providing a check on the element calculations. The

same results were obtained with the three integration schemes noted above for the A term, which

verifies that the Lorentz gauge constraint (9) is automatically satisfied by the finite element shape

function for one-dimensional magnetostatic fields.

The computed magnetic flux density/_ at node points was not as accurate as it could be

expected, especially at r D 0. The centroidal values, on the other hand, were considerably more

accurate as regards matching analytical results. Thus for the second problem we decided to report
field values at the element centroids.

5.5 Problem 2: A Conducting Hollow Can

The secondtestproblem,shown inFigure2,bringstwo-dimensionalfeatures.Itisa hollow

conductingcylindrical"can"withinfinitefeedwiresconnectedtothecenterofitstopand bottom

faces.These wirescarrya totalcurrentI D I goingintheCa direction;thiscurrentisassumedto

be uniformlydistributedoverthevaryingcrosssectionsittraverses.The wireradiusa and thecan
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z,I

radius a

thickness a

thickness a

Fig.2. Diagram of second test problem: a cylindrical "can" connected to an infinite feed wire
conducting total current 1, which is assumed to be uniformly distributed over the varying
cross sections. The feed wire radius and can wall thicknesses ate identical.

wall thicknesses are assumed to be identical.

Because of the symmetry of the problem it is sufficient to model only the upper half z > 0.

The results presented here were obtained using a 25 × 25 element mesh of square elements. Within

this mesh the wire as well as the can walls are modeled with only one element across the radius or

thickness, respectively.

The uniform mesh indeed represents an "overkill" for the free space while it is insufficiendy

refined to capture field distribution details inside and near the conducting material. It was actually

chosen to expedite the preparation of inputs to three-dimensional plotting software given the limited

time available for obtaining displays.

The problem was run using full, selective and zero integration schemes for the A freedoms.

The magnetic permeability _/,-e- _D/zo in the free space outside the conducting material is chosen as
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F = 0.3 0 .1

Ii

V Fig.3.
Magnetic field B2 m Be vs. radial and axial coordinates
r and z for/_w_r. = 1. Full integration scheme for
_.. Intersections of mesh represent element centroids.

i
I

_ 0_/o._ '

I
!

Fig. 4. Magnedc field B2 ee Bo vs. radial and axial coordinates r and z for
P.wire = 1. Zero integration scheme for 7. (ffi--gauge constraint not enforced).
Intersections of mesh represent element centmids.
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Fig. 6.

I

t
10 3.5 2'0

Rg. 5. Contour plot of magnetic field 82 =- 8o,/_wire = 1.0. Full integration scheme
for _.. Numbers on axes represent the number of element centroids traversed
from the center of the "can". Each element is .02 x .02 square. All contours are
equally spaced and range from minimum to maximum values of the field.

i

I

.

i
I

I

15

I
i

I

I
I

2'0

J

Contour plot of magnetic field 82 --- Be, P.uire = 1.0, Zero integration scheme for _. (_- gauge
constraint not enforced). Numbers on axes repw.scnt the number of element centroids traversed
from the center of the *'can". Each element is .02 x .02 square. All contours are
equally spaced and range from minimum to maximum values of the field.
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Fig. 7. Magnetic field B2 =' Bo vs. ratfial and axial coorr_tates • and z for
/zwirt = I0. Full integration scheme for _.. Intersections of mesh represent
element centroids. Note sharp field jump on conductor surfaces

I

I

[ii _:0

z 0._ 0"2 "

I
I Fig. 8. The same case as Figure 7 shown from a different viewing point

to emphasize how magnetic field in feed wire fails to go to zero as
• approaches zero because of the coarseconductordiscrefization.
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unity. For the conducting material two different values for the permeability/2 2)/_ire were tried:

1.0 and 10.0; the latter to check whether flux jump conditions are automatically accommodated by

the potential formulation.

Selective results are reported graphically in Figures 3 through 8. Figures 3 and 4 show the

magnitude of B2 - B0 for/._.i,.e :2:)#/,-ee 2) #o 2) 1 obtained for the full and zero order integration

schemes, respectively. Figures 5 and 6 show these results in contour plot form. Figures 7 and 8

correspond to/2_i,-e 2) 10 and show the magnitude of B0 from different viewing points. A general

discussion of the results follow.

The full integration scheme for A performed well outside the conductor. Results were com-

pared with those of the analytical solution for the infinite straight wire (the first test problem) to

determine whether they were physically reasonable. As r becomes large compared to the can cross

dimension (towards the outer radial edge of the mesh), the answers agreed. This is the expected

behavior, because as r -, oo the general axisymmetdc problem should appear as an infinite straight

conductor. As one moves towards the top of the mesh, the solution again approaches that for an

infinite wire as can be observed in Figures 3 through 8. This behavior was expected because as we

move parallel to the wire in the z direction, the effects of the current in the can ends should tend

to zero and the only far-field effects should be from the total current. The results for the magnetic

field within the feed wire are not accurate as it did not vanish for r 2:) 0; this behavior is due to the

use of only one element across the radius and the fact that we report only centroidal values as noted

above.

The selective integration scheme gave answers of the same general shape as the full integration

scheme, but they only agreed to one or two significant digits; these results are not shown here as

they are hard to distinguish in plots. The zero integration scheme (which in fact releases the

Lorentz gauge coupling), gave solutions for the field that were larger than expected at the conductor

boundary and a physically unrealizable field inside of the "can". This field grows sharply as the

can axis is approached, as shown in Figures 4 and 6.

The finite element model also provided results for the electric potential 8 and associated

electric field strength E, but such results have not been analyzed as of the time of this writing.

6. CONCLUSIONS AND FUTURE WORK

The results obtained from our two dimensional axisymmetric model for magnetostatic fields

are particularly encouraging. They show that our variational approach can provide good models

of electromagnetic fields outside of the conductor and appear to be extensible to three-dimensional

static problems without major difficulties.

The results obtained for fields inside of the conductor in the second test problem can be

improved by using a finer (graded) mesh, higher order finite elements, or elements based on a

Hellinger-Reissner principle in which both potentials and fields are primary variables. In our

experiments with one-dimensional elements, the finer mesh gave excellent results, and it is expected

that the two-dimensional element being based upon the same variational principle will converge

upon the exact solution in the same manner.
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One unsettled aspect of our results is the damping type matrix C that appears in the dynamic

equations (43) for the multidimensional case. It appears than in time-dependent problems we will

either be forced to work with a set of equations that are coupled on the left-hand side or find a gauge

transformation that will provide for the desired uncoupling. The treatment of time-dependent

effects, however, represents an important step in the construction of a finite element model for

superconductors. We plan to concentrate on harmonic currents rather than general transients as the

former are more important in envisioned applications such as communication systems.

If encouraging results are obtained in the dynamic case, thermocoupling effects will be added

to the code. Recent textbooks and surveys 2°,21,_" discuss several different approaches applicable

to various contexts (e,g. eddy currents) and these will have to be investigated for suitability for

capturing the couplings effects that arc relevant to the superconducting problem. Fano, Chu and

Adler 2° present an interesting discussion on the coupling of electric and magnetic forces to me=

chanical effects through the Lorentz force and it is expected that this will be the next addition to
our code.

After accounting for coupling effects, the following step will be to model the superconducting

fields. The feasibility of using the current model for superconductor applications is high, as the

current density of a superconductor can be approximated by the standard current density multiplied

by a constant squared. This constant is called the London penetration depth. Other analytical

models that possess similar characteristics have been developed and are described, for example, in

the books of K.ittel 2a and Tinkham 24.
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THE FIRST ANDES ELEMENTS:

9-DOF PLATE BENDING TRIANGLES

SLrMMARY

New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is

a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted

attention as an effective method for constructing hi_-performance elements for linear and nonlinear analysis. The

ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The

key concept is that only the deviatoric part of the strains is assumed over the element whereas the mcaa strain part is

discarded in favor of a constant stress assumption. Unlike conventional AN$ elements, ANDES elements satisfy the

individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity

properties of ANS elements. The firstapplication of this new formulation is the development of several Kirchhoff plate

bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along

the threesidesvath the comersas"gage reading"points.Thesesamplevaluesare interpolatedover the triangleusing

threeschemes.Two schemesmerge backtoconventionalANS elements,onebeing identicalto theDiscreteKh'chhoff

Triangle (DICY), whereasthe third one producestwo new ANDES elements. Numerical experiments indicate that

one of the ANDES elementis relatively insensitivem distortioncomparedto previously derivedhigh-performance

plate-bendingelements,while retaining accuracyfor nondistorted elements.
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1. INTRODUCTION

Despite almost three decades of work, plates and shells remain a important area of research in finite element methods.

Challenging topics include:

• I. The construction of high performance elements.

2. The modeling of composite and stiffened wall constructions.

3. The treatment ofprestreas, imperfections, nonlinear, dissipative and dynamic effects.

4. The development of practical error estimators and adaptive discrefization methods.

5. The interaction with nonstrucmral components, for example external and internal fluids.

This paper addresses primarily the first challenge, although it must be recognized that progress in this direction is shaped

to some extent by thinking of the others. The main motivation here is the construction of simple and efficient finite

elements for plates and shells that are lock-free, rank sufficient and distortion insensitive, yield accurate answers for

coarse meshes, fit into displacement-based programs, and can be easily extended to nonlinear and dynamic problems.

Elements that possess these attributes to some noticeable degree are collectively known as high performance or HP
elements.

Over the past three decades investigators have resorted to many ingenious devices to construct HP elements. The most

important ones are listed in Table 1. The underlying theme is that although the final product may look like a standard

displacement model so as to fit easily into existing finite element programs, the com,endonal displacementformukm'on

ls abandoned. (By "conventional" we mean the use of conforming displacemen t assumptions into the total potential

energy principle.)

1.1 A Unified Variational Framework

Table 1 conveys the feeling of a bewildering array of tools. The question arises as to whether some of them are just

facets of the same thing. Limited progress has been made in this regard. One notable advance in the 1970s has been

the unification of redaced/selective integration and mixed methods achieved by Malkus and Hughes [l].

The present work has benefited from the unplanned confluence of two unification efforts. An initial attempt to place the

free formulation [2-5] within the framework of paramelrized hybrid variational principles was successful [6-8]. The

free formulation in turn "dragged" incompatible shape functions, the patch test, and energy balancing into the scene.

Concurrently a separate effort was carried out to set out the assumed natural strain (ANS) and projection methods in

a rrdxed/hybrid variational framework [9,10]. Comparison of the results led to the rather unexpected conclusion that

a parametriz'ed variational framework was able to encompass ANS and the free formulation as well as some hitherto

untried methods l11.12].

The common theme emerging from this unification is that a wide class of H1> elements can be constructed using two

in_edients:

• (l) A parametrized functional that contains all variational principles of elasticity as special cases.

(2) Additional assumptions (sometimes called "variational crimes" or "tricks") that can be placed on a variational

setting through Lagrange multipliers.

As of this writing it is not known whether the '*wide class" referred to above encompasses all HP elements or at least

the most interesting ones. Some surprising coalescences, such as DKT and ANS bending elements, however, have

emerged from this study.
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Table 1. Tools for Constructing HP Elements

Technique Fear introduced

I. Incompatible shape functions early 1960s

2. Patch test 1965

3. Mixed and hybrid variational principles 1965

4. Projectors 1967

5. Selective reduced integration 1969

6. Uniform reduced integration 1970

7. Partial strain assumptions 1970

8. Energy balancing 1974

9. Directional integration 1978

10. Limit differential equations 1982

11. Free formulation 1984

12. Assumed natural strains 1984

1.2 The Assumed Natural Strain Formulation

The assumed natural strain (ANS) formulation of finite elements is a relatively new development. A restricted form of

the assumed strain method (not involving natural strains) was introduced in 1969 by Willam [13], who constructed a

4-node plane-stress element by assuming a constant shear strain independently of the direct strains and using a strain-

displacement mixed variational principle. (The resulting element is identical to that derivable by selective one-point

integration.) A different approach advocated by Ashwell [ 14] and coworkers viewed "strain elements" as a convenient

way to generate appropriate displacement fields by integration of appropriately assumed compatible strain fields. (In

fact, this was the technique originally used by Turner et al. [ 15] for deriving the constant-strain membrane triangle in

their celebrated 1956 paper.)

These and other forms of assumed-strain techniques were overshadowed in the 1970s by developments in reduced and

selective integration methods. The assumed strain approach in natural coordinates, however, has recently attracted

substantial attention [16,17,18,19,20,21,22,23]; particularly in view of its effectiveness in geometrically nonlinear

analysis. One of the key ingredients in this approach is the concept of natural coordinates developed by Ar_ris and

coworkers in the early 1960s [24-27]. Another important ingredient is the idea of reference lines introduced by Park

and Stanley [21].

As noted above, the unification presented in [ 11,12] merges two HP element construction schemes: the free formulation

(FF) of Bergan and Nygh'd [4] and a variant of ANS called ANDES (acronym for Assumed Natural Deviatoric Strains)

described in further detail below. The stiffness equations produced by the unified formulation enjoy the fundamental

decomposition property summarized in Box 1.

In the ANDES variant of ANS, assumptions are made only on the deviatoric portion of the element strains, namely that

portion that integrates to zero over each element. This assumption produces the higher order stiffness labeled Kh2 2 in

Box 1. The mean portion of the strains is left to be determined variationally from assumptions on the limit stress field,

and has no effect on the stiffness equations.
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This paper describes the construction of the first ANDES elements. These arc K.irchhoff plate-bending triangular
elements with the standard 9 degrees of freedom (one displacement and two rotations at each corner). This choice is

made because of the following reasons:

High-performance three-node triangular plate bending elements, whether based on Kirchhoff or Reissner-Mindlin

mathematical models, have not been previously obtained through the ANS formulation. (Although the DICr

element [28,29] qualifies as high-performance and is in fact an ANS element as shown later, it has not been

derived as such.) The situation is in sharp contrast to four-node quadrilateral bending elements, for which HP

elements have been constructed through a greater variety of tools; see e.g. [17,30,31,20,21].

. High performance elements of this type have been obtained through the FF and ancestors of the FF [2,3,4,36], and

they are considered among the best performers available. It is therefore intriguing whether elements based on the

ANDES variant can match or exceed this performance.

The basic steps in the construction of Kb and Kh for a general three-dimensional element are summarized in Boxes 2

and 3, respectively. For justification of these "recipees" the reader is referred to [ 11,12]. The derivation of conventional
ANS elements is summarized in Box 4.

224



Box 1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of

freedom in common with other elements, also called the connectors) and f the corresponding element

node forces. Then the element stiffness equations decompose as

Kv = (Kb 4- K,_) v = f. (1)

Kb and Kh are called the basic and higher order stiffness matrices, respectively. The basic stiffness

matrix, which is usually rank deficient, is constructed for convergence. The higher order stiffness

matrix is constructed for stability and (in more recent work) accuracy. A decomposition of this nature,

which also holds at the assembly level, was first obtained by Bergan and Nyghrd in the derivation of

the free formulation [4].

In the unified formulation presented in [1 1,12] the following key properties of the decomposition (1)
are derived.

I. Kb isformulation independent and is defined entirely by an assumed constant stress state working

on element boundary displacements. No knowledge of the interior displacements is necessary

(Box 2). The extension of this statement to C Oplate and shell elements is not straightforward,

however, and special considerations are necessary in order to obtain Kb for those elements.

. Kh has the general form

Kh = j33Kh33 + j22Kh22 + j23Kh23. (2)

The three parameters j22, j23 and J33 characterize the source variational principle in the following
sense:

(a) The FF is recovered if J22 = j23 ---- 0 and J33 = I -- y, where y is a Kh scaling coefficient

studied in [5,32,33]. The original FF of [4] is obtained if y = 0. The source variational

principle is a one-parameter form that includes the potential energy and stress-displacement

Reissner functionals as special cases [6--8].

(b) The ANDES variant of ANS is recovered if j22 = j23 = 0 whereas j22 = _ is a scaling

parameter. The source variational principle is a one-parameter form that includes Reissner's

stress-displacement and Hu-Washizu's functionals as special cases [12].

If j23 is nonzero, the last term in (2) may be viewed as being produced by a FF/ANDES

combination. Such a combination remains unexplored.

• (c)
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Box 2 Construction of the Basic Stiffness Matrix Kb

Step B.1. Assume a constant stress field, _, inside the element. (This should be the element

stress field that holds in the convergence limit; for structural elements the assumption would be on

independent stress resultants. ) The associated boundary tractions are _a ----_.n, where n denotes

the unit external normal on the element boundary S.

Step B.2. Assume boundary displacements, d, over S. This field is described in terms of the visible

element node displacements v (also called the connectors) as

d -- Nd v, (3)

where Nd is an array of boundary shape functions. The boundary motions (3) must satisfy interelement

continuity (or at least, zero mean discontinuity so that no energy is lost at interfaces) and contain

rigid-body and constant-strain motions exactly.

Step B.3. Construct the "lumping matrix" L that consistently "lumps" the boundary tractions _

into element node forces, f, conjugate to v in the virtual work sense. That is,

t"

= Js Nd,_ dS = L_.

In the above, Nd, are boundary-system projections of Nd conjugate to the surface tractions _.

(4)

Step B.4. The basic stiffness matrix for a 3D element is

Kb = v -l LEL r, (5)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant

over the element, and v = fv dV is the element volume measure.

For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending

moments, curvatures and moment-curvature moduli, respectively, and the integration is performed
over the element area A:

I_ - A -t LDL r, (6)

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in Section
4.
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Box3 Construction of Kh by the ANDES Formulation

Step H.1. Select reference lines (in 2D elements) or reference planes (in 3D elements) where

"natural straingage" locations are to be chosen. By appropriate interpolation express the element
natural strains e in terms of the "straingage readings" g at those locations:

¢ = A_ g, (7)

where ¢ is a strain field in natural coordinates that must include all constant strain states. (For structural

elements the term "strain" is to be interpreted in a generalized sense.)

Step H.2. Relate the Cartesian strains e to the natural strains:

e = T¢ = TAeg = Ag (8)

at each point in the element. (If e -- E, or if it is possible to work throughout in natural coordinates,

this step is skipped.)

Step H.3. Relate the natural straingage readings g to the visible degrees of freedom

g = Qv, (9)

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary

from element to element and it is difficult to state rules that apply to every situation. In the elements

derived here Q is constructed by direct interpolation over the reference lines. (In general there is no

unique internal displacement field u whose symmetric gradient is e or e, so this step cannot be done

by simply integrating the strain field over the element and collocating u at the nodes.)

Step H.4. Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:

m

e =_+ed = (A + Ad)g, (lO)

where A = fv TA_ dV/v, and ea = Ad g has mean zero value over V. This step may also be carried
out on the natural strains if T is constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by

Kh = ceQrKdQ, with Kd = fv AdrEAd dV, (11)

where _ = jz2 > 0 is a scaling coefficient (see Box 1).

It is often convenient to com.bine the product of A and Q into a single strain-displacement matrix

called (as usual) B, which splits into B and Ba:

e = AQv = (A + Ad)QV = (B -F-Bd)V -- B v, (12)

in which case

Ks = fv BarEB'_dV" (13)

The notation Be = A_Q is also used in the sequel.
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Box4 Construction of K by the Conventional ANS Formulation

Steps S. 1 to 5.3. Identical to the first three steps H. I through H.3, in Box 3. The fourth step: strain

splitting, is omitted.

Step S.4. The element softness matrix is given by

K = QrKaQ, with Ka = fv ArEAdV" (14)

or, if B = AQ is readily available

K --- fv BrEBdV" (15)

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen [2,3]

(a strong form of the patch test that demands pairwise cancellation of node forces between adjacent
elements in constant stress states). For this to happen, K must admit the decomposition

K = I_ + Kh = v- lLEL r + K_, (16)

where L is a force-lumping matrix derivable as per Box 2 and Kh is orthogonal to the rigid body
and constant strain test motions. In other words, the ANS element must coalesce with the ANDES

formulation with ,', = 1. The equivalence may be checked by requiring that

B---- AQ-- v -I L r, (17)

where A is the mean part of A (cf. Box 3). As of this writing, no general techniques for explicit

construction of strain fields that satisfy these conditions a priori are known.

If the patch test is not satisfied, one should switch to the ANDES formulation by replacing the basic

stiffness constructed from constant strain, namely vBr EB, with one constructed from constant stress

as in Box 2. Additional details axe provided in Appendix A.

2. THE TRIANGULAR ELEMENT

2.1 Geometric Relations

The geometry of an individual triangle is illustrated in Figure 1. The triangle has straight sides. Its geometry is

completely defined by the location of its three comers, which are labelled 1,2,3, traversed counterclockwise. The

element is referred t6 a local Cartesian system (x, y) which is usually taken with origin at the centroid 0, whence the

comer coordinates xi, Yi satisfy the relations

xl+x2+x3 =0, Y1+Y2+yJ =0. (18)

Coordinate differences are abbreviated by writing xi/= xi - xj, and Yi/ = yi -- Yj. The signed triangle area A is given

by

2A = xl x2 x3 ----x2tY31 - x31Y21 --- x32Y12 - x12Y32 = x13Y23 - x23Y13, (19)

Yl Y2 Y3
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Figure 1. The triangularelement.

and we require that A > 0.

We shall make use of dimensionless triangular coordinates (i, (2 and (3, linked by (t + _'2+ (3 = 1. The following

well known relations between the triangular and Cartesian coordinates of a straight-sided triangle are noted for further
use:

X =Xl( 1 -t-" X2(2 -t- X3_3, Y =Yl(t + Y2_2 + Y3(3, (20)

_i = xjyt - xkyj + (x - xo)yjk + (y - yo)xkj , (21)

in which i, j and k denote positive cyclic permutations of l, 2 and 3; for example, i = 2, j = 3, k = 1. (If the origin

is taken at the centroid as in Figure I, xo = Yo = 0.) It follows that

A 0(t 2A 0_'2 2A_(3
2 _ =Y23, _=Y31, ax =YI2'

2A 8(t A 8(2 A a(3-fly=x,2, 2 2
(22)

Other intrinsic dimensions and ratios of use in future derivations are (see Figure 2)

eij = eji = _ij + Y_, cij = xji/gij, si] = Yji/e O,

a_ = 2A/eiy, bij = (xijxik + YiiYki)/eij = £ij -- bji. (23)

x,j = b_:leij = (xqx,, + yjiy,i)/(x2ij + y2ij), _..ii = 1 - _'0 = bji/eij.

Here eij = £ji is the length of side i-j and cij and so the cosine and sine, respectively, of angle (i --* j,x). Furthermore

bij and bji are the projections of sides i-k and k-j, respectively, onto i-j; )_0 and _.ji being the corresponding projection
ratios.

On each side i-j, define the dimensionless natural coordinates/zij as varying from 0 at i to I at j. The coordinate lzij

of a point not on the side is that of its projection on i-j. Obviously

0x 0y
= xji, _ = yji. (24)

O lJ.i j O JJ,i j
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Figure :2. Intrinsic dimensionsof triangle.

2.2 Displacements, Rotations, Curvatures

As we are dealing with a Kirchhoff element, its displacement field is completely defined by the transverse displacement

W(X, y) _ W(_'I, _'2, _3), positive upwards. In the present section we assume that w is unique and known inside the

element; this assumption is relaxed later. The midplane (covariant) rotations about x and y are 0x = aw/Sy and

0), = -Ow/Ox, respectively. Along side i-j with tangential direction t and external-normal n (see Figure 3) the
tangential and normal rotations are defined as

ato

O, = 07 = Oxsu - °Ycu'

8w

Ot = - a-"n = O_cij + Oysq.

(25)

The visible de_ees of freedom of the element collected in v (see Boxes 2-3) are

vT'=[I,OI 0xl 0yl 1/32 0x2 0y2 W3 0x3 0y3]. (26)

The first and second derivatives of the displacement w with respect to the Cartesian and triangular coordinates are

linked by the relations (summation convention used)

aw aw ig_'i 1 8w

"ff'xx= O(i 8x = -_'_7i yJ*' (27)
aw Ow a(i 1 aw

a'_" = a-_i a'-y-= --2AE x,i.

8211./ 021/) a(i 8 0 8w a2gi 1 82w

ax = a¢,aej ax ax + = 4A 2 8¢,a¢jyj yk '

a2w a2w a(i a(j + aw a2_'i t 82w
axa"--}= 8,;-+a<+8x ay aC, 8xay = _-_yjkx,, (2S)

a2w a2w 8_i 8_j 8w a2(i 1 82w

= a_-'_-¢j _y _y + _i _y2 = 4-Az ¢9t;i8---'-(i xkjxit

since a2(_/ax 2, 82(_/axay and a2¢]/ay 2 vanish on a straight-sided triangle, cf. Eq. (22). We can represent the second
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Figure 3. Local coordinate systems over a element side.

derivative relations in matrix form as

02W

2a_y

Yfl x_3

2y23Y3t 2x32x13

2y3! Yt2 2X13X21

2yI2Y23 2x21x32

2.x32Y23 r

2xt3y3_

2x2_Yt2

x32Y31 + xi3Y23

xI3YI2 + x2Iy31

X21Y23 --I-x32Y12

oq2W

O2w

O2w

O2w

a2to

O2w

(29)

or

_; = Ww¢_. (30)

The inverse relation does not exist.

2.3 Natural Curvatures

The second derivatives of w with respect to the dimensionless side directions defined in Section 2.1 will be called
2 2

the natural curvatures and denoted by X0 = O W/OlX O. Note that these curvatures have dimensions of displacement.

The natural curvatures can be related to the Cartesian plate curvatures Kx._ = O2w/Ox 2, Kyy = O2w/Oy 2 and rxy =

2a2w/OxOy, by chain-rule application of (22):

/a2w]/'/XI2 8211: y2 x32Y32 / _2t°x= x=_ = _ = IX_ _
X31 a2w lx_3 y23 x13YI3 -I 2 02w

= T-I_. (31)
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The inverse of this relation is

a2w

IT y.y,,

0210 l I X23Xi3,_ 02 w L. y23131 -t- .l_32Yt 3

or,incompact matrixnotation

Y31Y21 Y12Y32

x31x2! x12x32

y31x12 4- xl3Y2I Yl2X2j -t- x2! Y32

a21D

02 w

O2w
."2"'3--
a_t

(32)

,_ -- TX. (33)

A comparison of (29) with (3 I)-(32) displays the advantages of natural curvatures over triangle-coordinate curvatures

when the curvature field is to be constructed directly. On the other hand, (29) is useful when the transverse displacement

w over the element is built as a function of the triangular coordinates.

At this point we relax the requirement that the curvatures be derivable from a displacement field w; consequently the

partial derivative notation will be discontinued. However, the foregoing transformations will be assumed to hold even

if the curvature fields _¢and X are not derivable from w.

3. DIRECT CURVATURE INTERPOLATION

3.1 The Straingage Readings

ANS andANDES plate bending elements are based on direct interpolation of natural curvatures. All elements discussed

here adopt the three triangle sides as the reference lines defined in Box 3. The natural curvatures are assumed to vary

linearly over each reference line, an assumption which is obviously consistent with cubic beam-like variations of w

over the sides. A linear variation on each side is determined by two straingage sample points, which we chose to be at
the corners.

Over each triangle side chose the isoparametric coordinates _0 that vary from -1 at corner i to +1 at corner j. These

are related to the g;j coordinates introduced in Section 2.1 by _0 = 2_.i - 1. The Hermite interpolation of w over i-j
is

wi

0hi

w---- ¼[(1--_ij)2(2+_iJ) ½eq(1--_iJ)2(|-l-_iJ) (l+_LJ)2(2-_i]) -½eij(l +_iJ)2(l-_i/)] Wj

o,q

where O_ denotes the rotation about the external normal n on side ij. The natural curvature over side ij is given by

1oi
02w

Xo = v--5-- = [6_i1 _ij(3_]- I) -6_,.j e_j(3_j + 1)] O_i , (34)
o_rj w]

o.j

Evaluating these relations at the nodes by setting _ij --- 4-I and converting normal rotations to x-y rotations through
(25), we build the transformaiion

' XI2II

Xt212

X2312X2313

! X3113

I, X3tll

-6

6

0

0

6

-6

-4y2t 4x21 6 -2y21 21:21 0 0 O"

2y21 -2x21 -6 4y21 -4x21 0 0 0

0 0 -6 -4y32 4x32 6 -2y32 2x32

0 0 6 2y32 -2x32 -6 4y32 -4x32

-2y!3 2xl3 0 0 0 -6 -4yt3 4xl3

4yij -4x_3 0 0 0 6 2yl3 -2xl3

117I

o.l

_2

Oy2

lo 3

0,,3
o.

(35)
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The left hand side is the natural straingage reading vector called g in Box 3 and thus we can express (35) as

g = Qv. (36)

This relation holds for all elements discussed here.

The six gage readings collected in g provide curvatures along the three triangle side directions at two comers. But nine

values are needed to recover the complete curvature field over the element. The three additional values are the natural

curvatures X_, X3_ and )02 at comers 1, 2 and 3, respectively. Three possibilities for the missing values are discussed
below.

3.2 The Average-Curvature Rule

To each comer k assign the average natural curvature Xij of the opposite side. This average is given by (34) evaluated

at _ij = 0. For example

1

XI213 = _(Xl21t -I- X1212) = Y21 (Ox2 -- Oxl) q- x12(0y2 -- 0).1). (37)

The natural curvature now can be interpolated linearly over the triangle:

X12 = xl2ll ¢1 -4- X1212 ¢2 + X1213 ¢3 --" XI2ll ((I + /¢3) + Xl212 (¢2 "1- 1¢3)- (38)

It is readily verified that under this rule the natural curvature X12 is constant over lines parallel to the triangle median

that passes through node 3. Formulas for the other curvatures follow by cyclic permutation, from which we construct
the matrix relation

:I
= 0

1_6¢31 (3¢13 + l)Yt3

0 0

6¢23 (3¢32 + 1)Y32

6¢13 (3¢13 -- 1)yl3

0 0
1 I

0 0

(3¢12 + 1)x21 6¢12

0 6¢32

(3¢31 - 1)y13 0

° l(3¢23- 1)y32 v,

(3¢31 + l)xt3

0o g
¢3+ ½¢2 ¢, + ½¢2

(3_'21 + l)Y21 (3¢i2 -- 1)y21

(3¢32 -- I)Y32 (3_'23 -1" 1)x32

0 0
(39)

in which _12 ---_ _1 -- ¢2, etc. In the notation of Box 3,

X = Axag = AxaQv = Bxo v. (40)

where subscript a identifies the "avera_ng" rule (37). Since the natural curvatures vary linearly over the triangle, their

mean values are obtained by evaluating (39) at the centroid ¢1 = ¢2 = ¢3 = 1/3:

[i 2 oy lx oo o1"_ = 'X'23 = 0 0 0 --Y32 X32 0 Y32 --X32 V = Bxa v.

_31 YI3 --x13 0 0 0 0 --Y13 x13

Finally, the Cartesian curvatures are given by

(41)

= TBx,,v =Bav, (42)

An explicit expression of these relations is easily obtained, but not required in what follows; however, that of the mean

Cartesian curvatures _ = TBx_v = Bay (a relation valid because T is constant over the triangle) is enlightening:

-- = = 0 0 0 0 v =Bav. (43)
t¢_ K yy -_ X32 X13 X21

2_'xy Yz3 x23 0 Y3t x31 0 Y12 x12 -I
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3.3 The Projection Rule

To each comer k assign the natural curvature Xij of its projection onto the opposite side. This results in XO being

constant along lines normal to side ij. For equilateral triangles this agrees with the averaging rule, but not otherwise.

The underlying motivation is to make the element insensitive to bad aspect ratios in cylindrical bending along side
directions.

To illustrate the application of this rule consider side 1-2. For node 3 take

xv'13 = 8_2t,:,3 - _-u Za21_+ _-zt X121'_,
(44)

where Xt2 and X21 are defined in (23). Proceeding similarly along the other sides we construct the matrix relation

{.:) 0 0 0 olX23 ---- 0 (2 + X23¢) ¢..3+ X32¢1 0 0 g,

XHt 0 0 0 0 ¢..3+ _-3_¢2 ¢,,1+ ,_-t3¢2

(45)

or

X = Axp g, _; = TAxp g. (46)

where subscript p identifies the "projection" rule. As in the preceding rule, since T is constant we can do the strain-

splitting step of Box 3 directly on .the natural curvatures by evaluating at the centroid:

m

Axp = (Axe + Axa:,)

0 + xiz) ](t + xzl) o o o o ]= o o ½(1+ _._) ½(1+ _.32) o o Jo o o o ½(1+ x3,) ½(I + x,3)

I ¢Io + ,ki_¢3o _'20+ _-2t (3o 0 0 0 0
+ 0 0 ¢.,0+ ._-_¢10 ¢30+ _,.r:,¢_o 0 0

0 0 0 0 (30 + _-3zCzo ¢_0+ ,kuCzo
I t

(47)

in which _'io = ¢i - ½. Then

Bp = TAxp Q = T(Ax. + Adp)Q = Be + Bdp. (48)

The explicit expression of these matrices is not revealing and for the construction of the stiffness matrix given in

Appendix B it is better to leave (48) in product form. If all _. coefficients are ½, which happens for the equilateral
triangle, the expressions reduce to those of the averaging rule.

3.4 The 'Sliding Beam' Rule

This is a refinement of the average-curvature rule. Consider a fictitious beam parallel to side i - j sliding towards

comer k. The end displacements and rotation of this beam are obtained by interpolating w cubically, 0, quadratically,

and 0t linearly, along sides i--k and j-k. Compute the mean natural curvature of this beam and assign to node k the
limit as the beam reaches that comer.

The required calculations can be simplified if we observe that the mean curvature of the sliding beam varies linearly as

it moves from i-j, where it coincides with (41), to comer k. At one third of the way this mean is the natural centroidal

curvature, which can then be readily extrapolated to k. These eentroidal curvatures are given by _ = Bxsv, where

subscript s identifies the 'sliding' rule. A symbolic calculation yields the explicit form
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 rs=

a2cl3 a3c21 + a2ct3 a3c2t

a2st3 a3s2_ + a2st3 a3s2_

al c32 a 3 c21 al c32 -4- a3c21

a1532 a3s2t als32 -I'- a3s21

--2(_-13 + _-.23) 2_-31 2_.32

a2cl3 + alc32 a2ct3 alc32

a2sl3 + als32 a2st3 ats32

(49)

where ai, cij and Sij are defined in Eqs. (23). Extrapolating to the opposite corners and interpolating over the triangle

we get X = Bxsv, with

Brs =

6(-(1 + (2 + _.13(3)

2y21 (1 - 3(1) + 3a2cl3_'3

2x21(3(i -- 1) + 3a2s13(3

6(_1 - _2 + _-23(3)

2Y2t (3_'2 - I) + 3alc32_'3

2x21(1 - 3_'2) + 3als32_'3

-6(kz3 + _-t3)¢3

(3a2c13 + 3alc32)¢3

(3a2s13 + 3als32)¢_

--6(X21 + _'31)(1

(3a3c21 + 3a2c13)(1

(3a3s21 + 3a2s13)¢l

2y32(1 -- 3_'2) + 3a3c21 (1

2X32(3_" 2 -- 1) + 3a3s2m_'l

6(_'2 -- _'3+ X31_'1)

2y32(3_'3 -- l) + 3a2cl3_'1

2X32(1 -- 3_3) + 3a2s13_'|

6(¢'3 - _'1 + _.12_2)

2yt3(3_h - 1) + 3a3c21¢2

2Xl3(I - 3_t) + 3a3s21_'2

-6(kt2 + k32)_'2

(3al c32 + 3a3c21 )¢2

(3ats32 + 3a3s21)¢2

6(--_3 + (I + _'32_'2)

2yl3(1 - 3_3) + 3alc32_'2

2xl3(3_'3 - 1) + 3ais32_'2.

(50)

It should be noted that AX and Q are inextricably enmeshed in the above formula and cannot be easily separated.

r ATBxs isPremultiplication by T yields t¢ = Bsv. Evaluation of Bs at the centroid yields Bs = Lr/A, where Lq =

the force lumping matrix given in Eq. (56).

A variation on the sliding-beam theme would consist of interpolating the normal rotation 0_ along i-k and j-k linearly

rather than quadratically. This scheme turns out to be identical, however, to the average curvature rule and thus it

provides nothing new.

3.5 The Six Beam Lattice Rule

In addition to the sides, consider three fictitious beams along the triangle medians. Determine the displacements and

rotations at the triangle midpoints by the same interpolation procedure as in the sliding beam rule. The linear curvatures

along the medians are thus readily computed. At each triangle corner we now know the curvatures in three directions:

the two sides and the median. We can therefore transform to x - y curvatures using Eq. (32), and interpolate these

linearly over the element. This apparently new model gives, however, identical results to the projection rule, a result

that can be a posteriorijustified by geometric reasoning. Consequently this scheme will not be pursued further.

3.6 The ANS Elements

Three ANS elements based on the previous interpolation rules may be constructed by following the prescription of Box

4. Their stiffness matrices are identified as I_, K v, and Ks, for averaging, projection, and sliding-beam, respectively.

The following properties hold for these elements.

Patch Test. Assuming that the element has constant thickness and material properties, Ka and Ks pass the individual

element test, but Kp does not. This claim can be analytically confirmed by applying the criterion of Eqs. (16)-(17), and

noting that Ba = Lr/A and Bs = Lr/A, where Lt and Lq are the force lumping matrices derived in Section 4.

Equivalence with DKT. Ks turns out to be identical to the sdffness matrix of the Discrete Kirchhoff Triangle (DKT)

element, which was originally constructed in a completely different way [28,29] that involves assumed rotation fields.

Thus DKT is an ANS element, and also (because of the equivalence noted below) an ANDES element. This equivalence

provides the first variational justification of DKT, as well as the proof that DKT passes the patch test without any
numerical verification.
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ANS/ANDES Equivalence. If the basic stiffness matrices Kbt and K_ derived in Section 4.1 are used in conjunction

with the averaging and sliding-beam rules, and ce = 1, the ANDES formulation yields the same results as ANS if the

element has constant thickness and material properties. (If the element has variable thickness, or the material properties

vary, the equivalence does not hold.) The ANDES formulation used with the projection rule yields two elements, called

ALR and AQR in the sequel, which differ in their basic stiffnesses. Both of these elements pass the patch test and are

not equivalent to the ANS formulation.

4. STIFFNESS MATRIX COMPUTATION

4.1 The Basic Stiffness

As explained on Box 2, the basic stiffness is obtained by constructing the lumping matrix L. In our case this is a 9 x 3

matrix that ';lumps" an internal constant bending-moment field (_'xx, _'.vy, _'xy) to node forces f conjugate to v.

On each element side, the constant moment field produces boundary moments _,, and _',,t referred to a local edge

coordinate system n, t (see Figure 3):

{m"I=r,i L",jc,J -s,jc,j - |
L mxY

(51)

The boundarymotions d conjugate to m,,,, and mm are _w/an = -Or and _w/at = o_ (see Figure 3). Given the degree

of freedom configuration (25), the normal slope aw/an = -or along side i-j can at most vary linearly (it could be

also taken as constant and equal to ½(0, + 0ri) but the results are the same as for a linear variation).

For the tangential slope (the rotation about the normal) aw/at = o_ there are three options: constant, linear and

quadratic variation. But a constant 04 = (w/ - wi)/eij turns out to be equivalent to the quadratic variation and a

constant O_ = ½(Oni + O_j) equivalent to the linear variation. Consequently only the linear and quadratic cases need to
be examined.

Linear Normal Rotation. The variation of 0t and 0,, along each side is linear:

° o o,+00]0,, _i 0 1-_ 0 0 1+_

I11i

Oti

Oni ,
wj
Otj

o.i

(52)

where _ --- _0- Under this assumption one obtains [33]

[i 0 Y32 0 0 Yl3 0 0 Y{_I]
L/r= ½ x32 0 0 xt3 0 0 x2t ,

y23 x23 0 Y31 x3] 0 Yl2 x12J

(53)

where superscript I stands for "linear 0_" The corresponding basic stiffness is

Kbt : A-1L/DL/T, (54)

where D is the Cartesian moment-curvature constitutive matrix resulting from the integration of E through the plate

thickness. This matrix been used as component of the free formulation (FF) element presented in Ref. [33].
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Quadratic Normal Rotation. A quadratic variation of 0, can be accomodated in conjunction with the cubic variation

of w along the side:

{} [0 l_0 0 0e, = ½ 3(_ 2 1)/e 0 ½(3_ + 1)(¢ - 1) 3(_ 2 - l)/e 0e, ,.j

where _ = _ij and £ - eij. Then the resulting lumping matrix can be presented as

Lq =

--C12512 + C31531

1 2 2
_($12X12 + $31X31)

I '_ "_
--g(Si'2Y21 + s$1yl3)

-c,.3s23 + cl2sl2
I 2 2
_(snxt2 + s23x_2)

I "_
-- 5(£hY21 + s2 y32)

--C31S31 + C23S23

t 2(s,_3x23+ s2t x3t)
1 2 "_

--'_ ($23Y32 + s_IYI3)

--C31531 -.1- C12512

I 2 "_
_(CL2XI2 + C_lX31)

I 2 c321Yt3)--_(ct2Y2n +

--Cl2Sn2 + C23S23
I 2 "_
_(CI2XL2 + C_X23)

--C23S23 + C31531

I 2 zg(cz3x23 + cglx31)

n ", c32tyt3)--i (_.2y32 +

/
0,i

0 ] O,i½(3_ - l)(¢ + 1) I wj
Otj

t O.j

(55)

(4, -4,)- (4: -
9

C_12Y21+ cglYl3

4,x n
- - - 43)

9 9.

ci2y2_ + c_3Y32

_$_2XL2 -- S_.3X23

c2Y32 + c21Yu3

_$2X23 "_-- $._1X3I

(56)

The corresponding basic stiffness matrix is denoted by

(57)

4.2 The Higher Order Stiffness

The higher order stiffness for the ANDES elements described in Section 3 is

Khx=otQrK_xQ=otQr[LArxDAdxdA]Q=otLBraxDBaxdA,
(58)

where x = a, p, s for the average, projection and sliding-beam rules, respectively. (The last expression is appropriate

when Bax is not easily factored into AdxQ, as in the sliding-beam rule.) Since Adx varies linearly, ifD is constant we

could numerically integrate Ka_ in (58) exactly with a three point Gauss rule; for example the three-midpoint formula.

But as the element stiffness formation time is dominated by these calculations it is of interest to derive Kh in closed

form. This is done in Appendix B for Khp, which from the numerical experiments appears to be the best performer.

5. NUMERICAL EXPERIMENTS: GENERAL DESCRIPTION

An extensive set of numerical experiments has been run to assess the performance of the new ANDES elements based

on the projection rule (ALR and AQR) and to compare them with other existing high-performance elements. Table

2 lists the tests, material properties and some relevant geometrical properties, whereas Table 3 lists elements, loading
and mesh identifiers.

An inspection of the element identifiers in Table 3 displays two important points: the difference in the results obtained

with AQR and ALR can be attributed to their basic stiffness, whereas differences between AQR and DKT can be

attributed to their higher order stiffness. With these facts in mind, we conducted first a set of distortion tests so that the

less distortion sensitive combinations can be identified. Then, the best performers are submitted to a set of representative

thin-plate bending problems in linear elasticity.
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The scaling r, = 1.5 for ALR and _ -- 1.0 for AQR have been chosen to obtain energy balance in some simple

cylindrical bending tests. No further adjustment of these parameters was made. In the distortion tests we included the

results obtained with the flee formulation (FF) element presented in [33], since that reference did not report such tests.

Whenever the simply supported condition appears it implies that only the transverse displacement w is restrained. It is

equivalent to the SS1 condition described in Hughes' textbook [34].

For tests involving an uniform distributed load q, two node-force computation schemes are usually reported:

1. Triangular lumping (TL), in which one third of the load q A is assigned to each triangle corners, and nodal moments

are set tO zero.

fr=q-_A[] 0 0 1 0 0 1 0 0]. (59)
.5

2. Consistent lumping (CL), in which the element node force vector is

This lumping was obtained using the transverse displacement w of the FF element in [33]. It is used for the ANS

and ANDES elements as a matter of expediency, since for such elements a unique internal transverse displacement

does not exist.

Inasmuch as the present elements pass the linear patch test by virtue of their construction, no validation experiments

along these lines are necessary once the elements are correctly programmed.

6. DISTORTION TESTS

6.1 Simply Supported Square Plate under Central Load

This distortion test was proposed by Kang [31]. The use of a coarse mesh exacerbates the distortion effect when

far from of the converged solution. (In a fine mesh the distortion effect would be diluted.) The mesh and distortion

parameter are shown in Figure 4. When the distortion parameter a approaches 2.5 the mesh converges to a four element

cross-diagonal mesh. Results are reported as a percentage of the deterioration with respect to the undistorted mesh.

The results given in Table 4 show that AQR is superior in this test. FF and ALR are the worst for a > 2. DKT and

AQR display low deterioration rate from a = 2 up to a = 2.49, but DKT behaves poorly for a < 2.

6.2 Cantilever Beam

A cantilever beam with a transverse load at the tip was selected for this test. Two meshes shown in Figure 5, A and B,

are used to observe the effect of the element orientation under a linear bending state. The results are reported in Table

5. Also shown in this table is the ratio of the computed tip deflection to the exact value wex for zero distortion.

For mesh A, AQR is the best performer closely followed by DKT. FF and ALR behave poorly.

For mesh B FF is the best performer in terms of deterioration, followed by AQR, DKT and ALR. However it must be

noted that FF and ALR recover only 77% of the exact solution. This is a serious drawback in elements supposedly

capable of providing an appropriate response for linear bending. This shortcoming can be attributed to the basic

stiffness l_t which is the same for both elements. AQR and DKT recover almost 99% of the response for both meshes.

6.3 Twisted Ribbon

This test has been selected to assess the distortion effect under a field which combines bending and twisting. The test

uses mesh B of Figure 5. The results shown in Table 6 indicate that AQR and DKT are the least distortion sensitive

elements for this problem.
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Table2. KeytoMaterialandGeometricalData

Test Description

Square plate

Cantilever beam

Twisted ribbon

Rhombic cantilever

Rhombic plate

Isotropic material v = 0, E = 1; thickness t = 1, plate span a = 10;

load scaled so that center deflection wc = 100

Isotropic material v = 0, E = 1; thickness t = I; load scaled so that

center deflection wc = 100

Isotropic material v = 0.25, E = 107; thickness t = 0.05; transverse

load at tip so that P8 = -PA = 1

Isotropic material v = 0.3, E -- 10.5 106; thickness t = 0.125; uniform

transverse load q = 0.26066

Isotropic material v = 0.3, E = I; thickness t = 1, plate side a = 100,

uniform transverse load q scaled so that wc = 100

Table 3. Key to Element, Loading and Mesh Identifiers

Key Explanation

ALR

AQR

FF

DKT

ANDES element K#t + 1.5Khp

ANDES element K@ + Khp

FF element of [33] with 3-parameter scaling of Kh

ANS/ANDES element l(q,q + Khs: identical to DKT

CL

TL

Consistent lumping (59) of uniform load q

Triangular lumping (60) of uniform load q

SDC

LDC

In rhombic meshes, triangles obtained by splitting quadrilateral mesh

units with short diagonal cuts

In rhombic meshes, triangles obtained by splitting quadrilateral mesh

units with long diagonal cuts
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Figure 4. Squareplate:mesh fordistortionanalysis.

Table 4. Distortion Analysis of Centrally Loaded SS Square Plate: Percent

Error of Center Deflection with Respect to Undistorted Mesh

Element Distortion parameter

type 0.50 1.00 1.50 2.00 2.49

ALR 0.83 2.65 5.05 7.88 10.38

AQR 0.17 -0.14 - 1.59 -3.29 -4.40
DKT -0.95 -3.46 -6.29 -8.06 -8.42

FF 0.81 2.27 3.69 4.85 -13.50

7. CONVERGENCE STUDIES

From the distortion test results, it can be concluded that elements whose basic stiffness is K& are less distortion

sensitive. Consequently only results for the AQR and DKT elements are presented in the following studies.

7.1 Square Plate

In this analysis a square plate with either simply-supported or clamped edges is considered. Due to symmetry only

one quarter of the plate is modeled. The two different mesh orientations, A and B, used in the analysis are illustrated

in Figure 6. The number of elements used is 2N 2, where N is the number of side subdivisions.

For the cases involving a concentrated load, Figures 7 and 8 show that for both meshes AQR converges faster and is
less sensitive to mesh orientation than DKT.

In the case of uniform loading with triangular lumping, Figures 9 and 10, the convergence is uniform for all the meshes

and elements. For the simply-supported condition all answers are within the 5% error limit for N = 4. Clearly DKT

converges faster in this case. For the clamped condition and N = 4, DKT(A) is outside the 5% error limit.

For consistent force lumping, the results shown in Table 7 indicate a dramatic improvement of AQR. DKT also improves
in the sense that becomes less mesh sensitive and that all the results are within 5% error for N = 4.
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Mesh A
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Mesh B

Figure 5. Distorted meshes for cantilever beam and twisted ribbon.

Table 5. Distortion Analysis of Cantilever Beam: Percent

Error at Node C with Respect to Undistorted Mesh

Mesh Element Distortion parameter wc/wccx

type 1.00 3.00 4.90 (no distortion)

A ALR - 10.70 - 19.80 8.40 1.031

A AQR 0.15 0.10 -2.05 0.995

A DKT 0.20 -0.59 3.41 0.982

A FF -7.75 -17.30 --18.35 0.974

B ALR 0.20 3.00 45.90 0.764

B AQR -0.10 0.40 -2.85 0.995
B DKT -0.13 - 1.09 -3.49 0.979

B FF -0.05 -0.15 2.20 0.769
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Table 6. Distortion Analysis of Twisted Ribbon:

Loss of Symmetry under Distortion (Mesh B)

Element Node Distortion parameter

type 1.00 3.00 4.90

ALR A 1.016 1.122 1.363

B 1.013 1.098 1.076

AQR A 0.989 0.966 0.945
B 1.010 1.029 0.995

DKT A 0.993 0.978 0.940

B 1.006 1.015 1.018

FF A 0.983 0.933 0.789

B 0.994 0.877 0.877

//
//

Mesh A Mesh B

Figure 6. Meshes for squareplateconvergencestudies.
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Figure 7. Central deflection of centrally loaded SS square plate.
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Figure 8. Central deflection of centrally loaded clamped square plate.
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Figure 10. Central deflecaon of uniformly loaded clamped square plate
with TL force lumping.
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Table 7. Uniformly Loaded Square Plate with CL Force Lumping:
Percent Error of Central Deflection

Support Element Mesh Mesh over quarter plate

type type l x 1 2×2 4×4 8×8

SS DKT A 31.73 4.49 1.01 0.24

B 4.55 5.37 1.56 0.41

AQR A 16.28 2.20 0.47 0.11
B - 1.55 2.30 0.74 0.20

Clamped DKT A 46.35 14.90 4.10 1.03

B -21.60 2.08 1.30 0.36

AQR A 26.65 8.26 1.87 0.44
B -41.20 -3.22 -0.28 -0.05

• 12 _'l

Figure I 1. Rhombiccantilever:meshesfor convergencestudies
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Table 8. Rhombic Cantilever: Percent Difference

of Tip-A Deflection with Respect to Experimental Value Reported in [28]

Mesh Element Subdivision of whole plate

type type 4 x 4 8 x 8 16 x 16

LDC DKT 2.3 -3.7 -4.0

AQR -17.8 -10.4 -6.0

SDC DKT -6.7 -5.0 -4.0

AQR -6.3 -5.0 -4.0

7.2 Rhombic Cantilever

The test involves a rhombic cantilevered plate subjected to uniform load. This problem was used in [28] to test the DKT

element with reference given to an experimental deflection result; however, no convergence analysis was performed.

This has been done here taking into account the two possible mesh subdivision patterns, SDC and LDC, depicted in

Figure I 1. Triangular force lumping has been used.

The results are shown in Table 8. For the LDC mesh DKT converges from above to an answer 4% below the

experimental value quoted in [28]. On the other hand, AQR converges from below. For the SDC mesh both elements

behave identically and converge to a value 4% under the experimental one.

It is clear from these results that the experimental tip deflection given in [28] is in error by about +4% with respect to

the analytical value for the material properties quoted. The apparently small error for the 2 x 2 DKT/LDC mesh is
thus fortuitous.

Table 9. Uniformly Loaded SS Rhombic Plate with TL Force

Lumping: Percent Error in Center Deflection

Mesh

type

Element Subdivision of whole plate

type 4x4 8x8 16x 16

SDC DKT 11.05 4.07 2.86

AQR 13.86 4.56 2.89

LDC DKT 80.97 22.64 7.51

AQR 6.85 -0.36 -2.91

246



7.3 Simply Supported Rhombie Plate

This problem poses severe difficulties for ordinary finite element methods because of the presence of a singularity in

the bending moments at the obtuse corner. A detailed description of this problem may be seen for example in [33].

The acute angle ot = 30 ° was selected for the test. Again both SDC and LDC meshes were tried.

The results are shown in Table 9. For the SDC meshes AQR and DKT show slight difference and almost the same rate

of convergence. For the LDC meshes DKT is too flexible whereas AQR converges faster.

8. CONCLUSIONS

The main conclusions of the present study can be summarized as follows.

I. The ANDES formulation represents a variant of the ANS formulation that merits serious study. The key advantages
of ANDES over ANS are:

(a) a priori satisfaction of the patch test. Although this advantage is less clear for elements where ANS and

ANDES coalesce for constant thickness and material properties, it reappears for more general cases.

(b) The separation of the higher order stiffness allows the application of a scaling parameter. Furthermore it

opens the possibility for an energy-balanced combination with other formulations as per Eq. (2), although

this possibility presently remains unexplored.

. The study of plate bending elements shows that the widely used DKT element is both an ANS and ANDES

element. This discovery provides a variational foundation hereto lacking and analytically proves (because of the

ANDES connection) that DICr passes the patch test.

. The numerical results clearly demonstrate that the choice of basic stiffness is of paramount importance in the

behavior of elements based on the ANDES formulation. Of the two elements sharing the quadratic-rotation basic

stiffness, namely AQR and DKT, the former has excelled in geometric distortion tests and in convergence studies

that involve concentrated forces. For other cases the performance of AQR and DKT is similar, and generally

superior to those elements that use the linear-rotation basic stiffness.

The numerical experiments have not addressed questions ofmaterialsensitivity such as element performance for highly

anisotropic and composite plates. This behavior, as well as the possibility of applying this technology to C O bending

elements, is currently under investigation.
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Appendix A. SANITIZING INCOMPATIBLE ELEMENTS

The stiffness-splitting technique summarized in Box I provides a systematic way for "sanitizing" existing nonconform-

ing bending elements that do not pass the patch test. The technique amounts to the replacement of the basic stiffness.

The main steps will be briefly outlined for the simplest such element: the BCIZ triangle proposed in 1965 by Bazeley

et a! [35]. The assumed transverse displacement is given explicitly in [36] as

W --

¢2(3 - 2¢0 + 2¢, ¢2¢_
¢?(y12¢2 - y31_3) 4-y'! ¢1_2¢3

¢?(X21¢2-- X13_'3)"{"X"l¢1¢2¢3
¢2(3 -- 2¢2) + 2¢'t¢2¢3

_'22(Y23_'3-- Y12¢I) + 72¢i _'2¢3
_'22(X32¢3-- X21¢1) + X'2¢l¢2_3

_'2(3 -- 2_'3)"1-2¢1¢2_3
¢32(Y31_'I-- Y23_'2)J¢"Y'3_'1_'2_'3

¢](xt_¢i- x32¢2)+ 73_ ¢2¢3

v (61)

where Y'l = Yl2 - Y31, Y'2 = Y_ - Y12, Y'3 --- Y3t - y23, ._'1 -_- x21 - Xl3, _'2 = x32 - x21, x"3 = xt3 - x32. The su'ain-

displacement matrix B is obtained by double differentiation with respect to the triangular coordinates and application
of (30):

t¢ = Kry -- WRy = By = (Bo + B1_'1 + B2¢2 + B3¢3)v, (62)

2_xy

inwhich W isgivenby (29),and

R r ----2

3(1 - Ca) 0 0 ¢3 ¢1 ¢2

Y12_2- Y31¢3 0 0 Y'2_I "l'= 17'¢3 17'¢I --Y3I_" Jr- I_'I¢2

0 3(1 -- _'2) 0 ¢3 _'1 ¢2

0 X32_'3 -- X2! ¢1 0 --X21 ¢2 Jr" _'2¢3 X32¢2 J¢" _"_'2¢! _X'2¢2

0 0 3(1 - ¢3) ¢3 ¢1 ¢2

0 0 .Y31_"! -- Y23¢2 I_3_'3 --.Y23_"3 "F I_3_'2 Y31¢3 "4" 173¢I

0 0 XI3¢1 -- X32_'2 r_X'3_'3 --X32¢3 "1- I_.,_'3¢2 X]3¢3 "t" "r_,3_l

Split the strain-displacement equations as .

63)

= g + _ -- Ol + Bd)v, (64)

where B = B0 + _(Bl + B2 + B3), Be = B - B. Then the "sanitized" stiffness matrix is

K = Kt, + c_ L B_Dt, Ba dA, (65)

where Kt, is one of the basic stiffness matrices derived in Section 4.1. The free formulation leads to the same result but

in a less direct manner, because u; would have to be decomposed into rigid body, constant curvature and higher order

states. Although the corrected element passes the patch test it is unlikely to be competitive with ANDES elements in

distortion insensitivity as this property appears to depend on relaxing curvature compatibility conditions.
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Appendix B. EXPLICIT REPRESENTATION OF HIGHER ORDER STIFFNESS

To obtain an explicit representation of Khp, begin by defining

C,, c,a Cl3"]C = TrDT = C_, C_ |, (66)

k symm C23 J

which can be interpreted as a constitutive matrix that relates the natural moments Trm to the natural curvatures X.
Then

rll --rll rl 2 --r12 rl3 --r13 1

rll --r12 r12 --/13 r13 /

I_p_. fAA_CAddAf A r22 -r22 r23 Ir22 --r7.3 r23 (67)

r33 --r33

symm r33 j

whererij "-_ijCij fori = 1,2,3. j = 1,2, 3, and

Ell = 2(_-22 -- k12 + l), _ = 2(X_Z3 -- _-7.3 + I), _3 = 2(k21 -- k31 + 1),
(68)

_12 -- (2 -- _.i2)_23 -- _'12 -- 1, _ = (2 -- _.23)_.31 -- _.23 -- 1, _13 = (2 -- _31)_.12 -- _.31 -- ].

Carrying out the congruendal transformation Khp = QrI_FQ with MACSYMA yields

/(11 = 4(r33 -- r13 -- r13 + rll), f12 = 2((rtl - rl3)Y2l + (r13 - r33)Y13)

El3 = 2((rl3 -- rll)x21 + (r33 -- r13)x13), f14 = 4(--r23 + rl3 + r12 - rll)

/(IS = 2((r12 -- r23)Y32 + (rll -- r13).Y21), f16 = 2((r23 - rl2)/32 + (r13 - rll)X21)

KiT = 4(-r33 + r23 + r13 - r12), KIS = 2((rl2 -- r23)Y32 + (r13 -- r33)Y13)

Kt9 = 2((r23 --r12)x32 + (r33 -r13)x13), K7.2 = rlly21 + 2r13Y13Y2! + r33y23

/(23 = (-rll/21 - r13x13)Y21 + (-r13x21 - r33x13)Y13, K24 = 2((r12 - rll).Y21 + (r23 - r13)Y13)

K25 -- (r12Y21 + r23Y13)Y32 + rlly21 + r13Y13Y21, K26 = (-r12x32 - rllx2l)Y21 + (--r23x32 -- rt3x21)Y13

/(1'7 = 2((rl3 -- r12)Y21 + (r33 -- r23)Y13), K28 = (r12Y21 + r23Y13)Y32 + rl3yl3Y21 + r33y23

K29 -- (-r12x32 - r13x13)Y21 + (-r23/32 - r33x13)Y13, K33 = rttx21 + 2rt3x13x21 + r33x23

/(34 = 2((rlt - r12)x21 + (r13 - r23)x13), K'35 = (--r12x21 -- r7.3xi3)Y32 + (--rllx21 -- ri3xl3)Y2!

K36 = (r12x21 + r23x13)x32 + rllx21 + rl3xl3x21, K37 = 2((rl2 -r13)x21 + (r23 --r33)x13)

/(38 = (--r12x21 -- r23x13)Y32 + (--r13x21 -- r33x13)Y13, K39 ---- (r12x21 + r23x13)x32 + r13x13x21 + r33x123

K_ = 4(r22 -- r12 -- r12 + rll), K45 = 2((r22 -- r12)Y32 + (r12 -- rll)Y21)

/(46 = 2((r12 -- r22)x32 + (rl! -- r12)x21), K47 = 4(r23 -- r22 - r13 + r12)

/t'tS = 2((r22 -- r12)Y32 + (r23 -- r13)Y13), K49 = 2((rl2 -- r22)x32 + (r13 - r23)x13)

1(Ss = r22Y32 -t- 2/'12Y21Y324" rlly21 , K56 = (-r22x32 - r12/21)Y32 + (-r12x32 - rllX21)Y21

Kf7 = 2((r23 -- r22)Y324- (rl 3 - r12).Y21), _58 = r22y22 + (r12Y21 -,I- r23Y13)Y32 -4- rl3YDY21

/(39 = (--r22x32 -- r23x13)Y32 + (--r12x32 -- r13/13)Y21, K66 = r22x22 + 2r12/21x32 + rllx_l

/(67 = 2((r22 - r23)x32 + (ri2 - r13)x21), K68 = (-r22x32 - r12x21)Y32 + (-r23x32 - r13/21)Y13

/(69 = r22x22 -I- (r12x21 + r23xi3)x32 -[- r13xi3x21, f'r7 = 4(r33 - r23 - r23 + r22)

/(78 = 2((r23 -- r22)Y32 + (r33 -- r23)Y13), K79 = 2((r22 - r23)x32 + (rD -- r33)xt3)

K88 = r22y232 + 2r23Y13Y32 + r33y23, K89 = (-r22x32 - r23xt3)Y32 + (-r23x32 - r33x13)Yt3

/(99 = r22x232 + 2rT.3xt3x32 + r33x23 •

I
The same stiffness expression applies for Kha, if one sets _.12 -----_-23 = _-31 = _-
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PARAMETRIZED VARIATIONAL PRINCIPLES ENCOMPASSING

COMPRESSIBLE AND INCOMPRESSIBLE ELASTICITY

SUMMARY

Abstract-- A parametrized five-field variational principle that can accomodate both compressible and incompressible
hype_asdcity is preseated.The primary variablesare meananddeviatodcstresses,meananddeviatodcstrains,and
displacements. Through appropdate selection of patan_ters the functiomd of this general principle specialize, to those

previously presented by Aduri-Reissner, Herrmann,and Franca.

1. GOVERNING EQUATIONS

Consider a linearly hypere[u,_ic body under static loading that occupies the volume V. The body is bounded

by the surface 5, which is decomposed into $ : 54 U 5_. Displacements are prescribed on 5d while surface

tractions are prescribed on 3,. The outward unit normal on 5 is denoted by n E ni.

The three unknown volume fields are displacements u -- ui, infinitesimal strains e -ffieij, and stresses

ce m o U. The problem data include: the body force field b m bl in V, prescribed displacements ,_ -di on

Sd, and prescribed suff'ac¢ tractions t s _ on St.

The relations between the volume fields are the strain-displacement equations

• : ½(Vu + vru) : Du or el/: ½(ul.j + uj_) in V. (I)

the constitutive equations
o'=Ee or (2)

and the equilibrium (balance) equations

oi.i = Eutlete. in V,

- div o"= D*o" = b or o'Uj + bi ffi 0 in V, (3)

in which D" = - div denotes the adjoint operator of the symmetric gradient D = ½(V + vr).

The stress vector with respect to a direction defined by the unit vector v is denoted as o', - o,.v, or

o',_r= oily�. On S the surface-tmctien stress vector is defined as o-,, = o.n oru,_ = oun/. Vftth this notation

the traction and displacement boundary conditions may be stated as

o',=t, or oijnj--_ onS,, and u--d or ui---'J_ onSd. (4)

252

..



2. NOTATION

FieldDependency

In the following investigation of variational methods, the notational conventions used in References [I--5] are

followed. An independently varied field will be identified by a superposed tilde, for example ft. A dependent

field is identified by writing the independent field symbol as superscript. For example, if the displacements

are independently varied, tic derived strain and stress fields are

e"= ½(v÷ vr)#= D_ o-"= Ee"ffiEVa. C5)

Using this convention, fildeless symbols such as u, • and o"are reserved for the exact or for generic fields.

Integral Abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted parentheses and square

brackets, _tively, around the integrand. For example:

(/)_ _= Idv, [/]s _= /as, [1]_ _= /as, [/]_ _= /as. (6)
Js¢

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted in the

usual manner

(f.g)v *' f_ _g,d_,. (p.q)v_ r= = JV eUqijdV' (7)

and similarly for surface integrals, in which ca_ square brackets are used.

Stress and Swain Vectors

To facilitate the construction of variational matrix expressions, stresses and strains will be arranged as

6-component column vectors constructed from the tensors _q and e/j following the usual conventions of

O22

_3
0"_--" , e--'_

ol2

cr23

o'31 ,

structural mechanics:
ell

¢22

2el2

2e:o

2e3_

($)

Then (o', e)v = (O'ijeij)V _--"(o're)v, and so on. Similarly, fourth order constitutive tensors such as Eijtt are

arranged as symmetric 6 x 6 matrices (resulting from their restriction to the space of symmetric stress-strain

tensors) in the usual manner.

3. STRESS-STRAIN SPLITTIHGS

For incompressible materials, in which die u = tr Vu = uLi = 0, the stress-strain relation (2) only holds in

the space of traceless strain tensors, and its inverse does not exist. With a view to including both compressible

and incompressible elasticity in the variational principles, some general splittings of the strain and stress
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fields are studied below. Define (actual) pressure p and total strain condensation (negative of the volumetric

strain)0 as

p = -½ tr o- = --_ (ul, + 0"22+ 0"33) (9)
0 - -tre--- --(ell + e22 + e33) -- -- dlvu.

Throughout this paper it shall be assumed that the material is volumetrically isotropic in the sense

p = ko, (lO)

where k > 0 is the modulus of compression (one third of the bulk modulus K). In the incompressible limit,
k -.->.oo.

Parametrized Splitting

A family of stress-strain splittings considered here is

0.0 --'-$(_)0 - _PSij, eo = g(_)O - _08:j, (11)

where _ij is the K_ronecker delta, and _ and 17are scalars in the range [0, 1] that determine the splitting. If

= O, s(O)i/-- _ij, whereas if _ -- 1, s(1) 0 reduce to the usual deviatodc stresses s0 and the argument

will be omitted. If 17-- O,g(O)i/-- eO, whereas if 17- 1, g(1)ij reduce to the usual deviatoric strains gi/and

the argument 17will be omitted.

Using the matrix notation (8) for strains and stresses (11) is represented as

o"-- s(_) - _ph, • = g(_) - r/0h, (12)

where h is the 6-component column vector

h-{1 1 l 0 0 0} r. (13)

Note that hrh -- 3, hr_ = tro" -- -3p, hre tre = -0, hrs(_) = trs(_) = -3(1 - _)p, hrg(_/) -----

tr g(r/) ffi -(1 - r/)0, and hrs -- hrg -- 0.

Constraints on _ and

Parameters _ and 11are not independent but chosen so that s(_) and g(_) arc connected by an invertible

"deviatoric" constitutive equation

s(_) = CgCr/), or s(_) O ffi Gjtt gCr/)tt, (14)

where matrix C is finite and nonsingular. This condition is assumed to hold if _ = _ = I for any material.

For other values of _ and _ the choice is possible if the material is fully isotropic because if so (2) may be

written (see e.g. Section 22 of Gurtin [6])

aij : 21_elj + _.etk, or o"= 2/_e - _. 0h, (15)

where/z and _. are the Lam_ coefficients (/z is the same as the shear modulus G), so that C -- 2/_I.

Furthermore,/z, _. and k are related to the elastic modulus E and Poisson's ratio v through

2,(1 -- 2v) 3( k _ _.) Ek = _.(1 + !,) E = _(3_.+ 2_), _ = = = --. (16)
3v = 3(1 - 2v) 2v 2(1 + v)
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Substituting these relations into (15) and (14) one obtains the condition

(1 + v)_ - (1 - 2v)7/= 3v. (17)

The pair _ = 17= 1 satisfies this constraint for any v. If v # 0.5, specifying 0 _< _ < 1 or 17determines the

other, for example if _7= 0, _ = 3v/(1 + v). If the material is incompressible, i.e. v = 0.5, _ = 1 regardless
of the value of 17.

Deviatoric Split

The usual deviatodc stress-strain splitting is obtained by taking _ = 17= 1:

o- =s- ph, e=g- _0h.

As noted above, this choice satisfies the condition (14) for isotropic or anisotropic materials.

(18)

Lam_ Split

The Larn6 splitting forisotropic materials-- so called because of its intimate relationship with the constitutive

form (15) that displays the two Lam_ coefficients q is obtained if 17= 0 so that g = e. Then _ is chosen so
that I" = s(_) = 2tze:

3v

cr = Ce - _ph -- 2/.re - 1---_v ph = -r- qh. (19)

In the literature q = _p is called the pseudo pressure whereas 1- = s(_) = 2/_e = Ce is called the extra stress,

although a better name would be pseudo deviatodc stress. In the incompressible limit, pseudo pressure q

and extra stress -r reduce to ordinary pressure p and deviatoric stress s, respectively.

Although the Lain6 split may in principle be extended to anisotropic materials, parameter _ then becomes

a matrix: I- (3k)- iC, which complicates derivations substantially. The same is tree of(12) unless _ = 17= 1.

It follows that splittings other than (18) are of limited value for non-isotropic behavior.

4.THE GENERALIZED STRAIN ENERGY

The variationalprinciplesoflinearelasticitystudiedherehavethegeneralform

n=V- e. (20)

Here U is the generalized strain energy, which characterizes the stored energy of deformation, and P is the

forcingpotential, which characterizesallother contributions. The conventional form of P is

pc = (b, u)v ÷ [u_ a,Crn]s,.}.[_,u]s. (21)

Other two forms of P, which are of interest in hybdd finite element formulations, called P'_ and P' for

displacement-generalized and traction-generalized, respectively, are studied in other papers [I-5]. As this
term is not affected by material behavior attention will be focused on U.

For a compressible material, the generalized strain energy introdu_d in References [4,5] has the following

parametfized structure:

I : /O.eU = ½jit(&, e_')v + j12(o-, _)v + j,3(&,eU)v -[- [J22[ "e')V "1"J2a(°'e,e')v -i- ½j33(o:',eU)v, (22)
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where j[ _ through j33 are numerical coefficients. The three independent fields are stresses &, strains _ and

displacements ft. Following the notational conventions stated in Section 2, the derived fields that appear in

(22) are
o_=E_, o"_=EDfi, e¢=E-I&, e'=Dfi. (23)

As an example, the U of Hu-Washizu's functional is obtained by setting jr2 = -1, jl3 = 1, j=,2 = 1, all

others being zero:

u.(6.,_,_)=½C_.,_)v+ ½(6.,,._ _)v+½Co-__.,e)v= ½(_,_)v+ (6.,e- _)v. (24)

Equation (22) can be rewritten in matrix form as

6- }r I jllI
o_ Lsymm

,,21,,3i ij22x j_Xl _ de.
j33IJ eu

(25)

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix (to justify the

symmetry note, for example, that jr3 (6., e")v = ½J[3 (&, e')v + ½Jl3 (e¢ , o_) v, and so on)

I"j'' J'_ J'_'l
J3- /j12 J'22 ]23 / (26)

LJ_3 J= j33J

is seen to fully characterize (22) hence, once the forcing potential P is selected, the functional (20). (The

subscript of J identifies the number of independent parameters, as shown below.)

On replacing (23) into (22), U may be expressed in terms of the independent fields as

which verifies the symmetry of J3. Using (27) the first variation of U may be presented as

8U = (Ae, 86.)v + (Ao', _)V -- ( divo", 8fi)v + [O"n,_fi]S,

where

j,2, /l Uffi½/v _ I jl,l j_.v. jz3ED I _. dV,
fi • r j33DrEDJLJt3D jz3DrE fi

I

I

{ii::

(27)

(28)

Ae = jlle. + jx2$ + ji3 eu, Ao. = j126. + j220z + j230 _, o.' = j13& + j230_ + j330 Jr. (29)

The last two terms in (28) combine with contributions from the forcing potential variation. For example, if

P is the conventional forcing potential (21), the complete variation of IIe = U - pc is

,_lac= (Ae, 86.)v + (Ao-, a_)v _ (div o' + b, afi)v + [o-' -- i, 8_]s -- [_ -- a, a6.,,]._. (30)

Using pd or P' does not change the volume terms. Consequently the Euler equations associated with the
volume terms of the first variation

Ae=0, Ao- = 0,
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are independent of the forcing potential.

For consistency of the Euler equations with the field equations (1-3) one must have Ae -- 0, 40" = O
and ov -- o- if the assumed stress and strain fields reduce to the exact ones. Therefore

jll "4=jl2 4- jl3 = 0,

ji2 4- j_ 4- jZ3 -- 0,

jr3 + jZ3 4- j33 = 1.

(32)

Because of these constraints, the maximum number of independent parameters that define the entries of J3 is

three as claimed. The specialization of these functionals to conventional and parametrized forms is discussed

in References [4,5].

5. SPLIT FORM OF GENERALIZED S'I'RA.IN ENERGY

The expression (22) for U is not suitable for incompressible materials. To construct a parametrized form

that encompasses incompressibility the generalized strain energy is augmented with additional independent

fields, one of which must be the pressure. There are several ways of accomplishing this objective. In this

Section the starting point is the conventional deviatoric splitting (18); the Lain6 splitting (19) is considered
in Section 7.

An augmented generalized strain energy U_, (subscripts stand for "deviatoric split") is constructed in

terms of the five independent fields _, _, Q, ,8 and 0. Using (25) as a"template" the following quadratic form

is postulated:

= ' T
$

Sg

s"

P
pe

.0u '

" jlll jill jr31 jl4h jlsh jl6h-

j21I j_l jnI j2& j_h j_h

j3_I j321 j33I j_h j3sh j_h

j,uh r j4_'hr j43hr j_ j4s j_

jslh r js_h r jyah r j.s4 jss j_

j6th r j62h r j63h r j_ j_ je_

$ '

g

g,
0P

0

0 u

dV, (33)

in which the derived fields are

gU-'(D-lhdiv)fi=D&i_, gS=C-I_, OP-'k-i_, O'----divfi,

s s-C_, su-'Cg'=cD&fi, pS=k0, p"=k0 u--kdivfL
(34)

The kernel matrix of the quadratic form (33) is now 21 × 21 and is characterized by the thirty-six j coefficients.

Unlike the treatment in Section 4, coefficient symmetry conditions are not set ab initio. Substituting (34)
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into (33), Uds may be expressed in terms of the five independent fields as the quadratic form

i

fi

p

- jtlC -I jt2I

j21I j22C

• 1" • r h rJ31D& + j6tk grad h1.C -t 132D&C + j62k grad

j41 hrC -I j42 hi.

jslkh1.C -t j52kh1"

jl3D& + j!6 h div

j23CD_ + j26Ch div

D[C(j33Ds "t"j36 h div)

+k grad (j63 hrDs -t- j66 div )

ja3 hrDs + j46 div

j53khrDs + j56k div

in which grad _= div r -- {a/axi

jl4k-I h

h4k- l Ch

j_k-'v r ch + j. grad

a/ax2

(35)
jr5 h _ •

j_Ch i

j35D[Ch -!- j65k grad fi dV.

j44k -t j45

j54 j55k 0 '

a/ax3}1.whenappUedto ascalarfunction.Thekernel, matrix

in (35) must be symmetric, a condition that provides the following symmetry relations:

jm----jm, m=1,2,3 n=1,2,3 jmn--jm, m-4,5,6 n--4,5,6

j_nl-jmk-lC, m--4,5,6 n-"1,2,3.

If these conditions are imposed on (33) that kernel matrix becomes

jt6h"

juh
juh
j,_ '
J_
J_

r" jttI j12I jl3I jl4h jlsh

I jt2I j221 j23I j24h j25h

! jt3I jnl j331 j_h j35h

[ jl4k -lch1. j24k -IChT j34k-lCh r j_ j45

Jtsk -tCh1. j2.sk-lCh 1. j35k-tCh r j45 j55
jt6k-iCh r jzsk-iCh r j3_k-tCh r j46 j56

This is fully characterized by the 6 x 6 functional-generating symmetric matrix

j13 jl,t jt5 j16
jz_ j24 jz_ h_
j33 j_ j35 j_

j35 j45 j55 j_
j_ j,_ j._ j_

"j|! j12
j12 j_

j12= j13 j2a
j14 j24
J'_ J=
j16 j26

(the J subscript denotes the number of free
becomes

(36)

(37)

(38)

parameters, as explained below). The kernel matrix of (35)

jl2I

j22c

ji3D& - jt6h div

j23 CD& - j26Ch div

J33D[CD& + j_kgrad div)

-ja_(D[Chdiv + grad h1.CD s)

j_k-_h jl_h

j24k-tCh jz_Ch

j_k-lD[Ch j3_D[Ch

-j46 grad -j_6k grad

j44k -_ j4_

jssk

(39)
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The first variation of (35) is

t_Uds -- (Ag, &_)v + (As, _)v --(divtr', _fi)v + (Ae, 8_) v + (Ap, 80)v + [tr'n, 8ills ,

where

Ag = jltg s + j12i4- Jt3gu 4- h(jl40 p 4- JlsO 4" jltg=), .

AS -- jl2.s 4- j22_ 4- j_s u 4- Ch(h40 p 4- j_O 4- j260=),

tr' = jl3s + j_s s + j33su 4- B(./340 p + j350 + j_O")

+ hhr (jtt._ +hts s + j_ss') - h(j46p + jsep ° + j66p _)

= j13i + jz_ss + h3¢' + B(j_O p + j350 + j_sO") - h(j_p + jssp ° + jssf),

A0 = hrk-l(jl4[ + h4s s 4- j34s =) 4- j440 p 4- hsO 4- j460= = j440 t' 4- hsO 4- j_sO%

Ap = hrUm5_+ j_s s + j35g') + j45_ + j55p ° + jssf = hsP + J55p° + jssp=.

(40)

(41)

where B = (I -- _hhr)Ch, and the simplifications in o _, A0 and Ap result from hTs -- hTs & -- hrs a -- 0

since the deviatoric stress tensor is traceless. Applying again the consistency argument and noting that mean

and deviatoric parts may vary independently one obtains the constraint conditions

jH 4- jl2 4- jr3 - 0,

h4 + jz5 + he = o,

j46 4- j_ 4- j_s --1,

j14 4- j15 4- jl6 "-- 0,

j13 + j23 + j33 = I,

j. + hs -I" j_ ----0,

j12 4- j22 4- j23 =0,

j34 4- j35 4- j_s -- O,

j4_ + j55 + jss - O.

(42)

Because of these nine constraintsthe maximum number of independent parameters that define the coefficients
of matrix (38) is 21 - 9 = 12 as claimed.

6. SIMPLIFICATIONS

Having a oo _2 family of functionals for constructing numerical approximation methods such as finite elements

leaves the selection wide open. In the absence of other information it appears prudent to reduce the number

of free parameters by setting to zero all coefficients that couple mean and deviatoric quantifies:

J6 --"

"jll jr2 jr3 0 0 0"

j_2 jn jz_ o 0 0
jr3 j32 j33 0 0 0

o o o j_ h5 j_s
o o o h5 J55 jss
0 0 0 j_ j_s jes

(43)

subject to the constraints that the row (implying column) sums be O, O, 1, O, 0 and 1, respectively. This

simplified form exhibits six independent parameters.

The next question is how to include exact incompressibility, for which k -, oo. A study of the matrix

(39) reveals that the only coefficients affecting terms multiplied by k are j_s and j_. One solution would be

to take Js_ = J_5/k, and j_ = j_/k with the primed coefficients as source data. A more expedient solution
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is to set those coefficients to zero, which reduces (43) to

J4 --

• j,I j12 j'3 0 0 0

jl2 j_. j_ 0 0 0

jl3 j32 j33 0 0 0
0 0 0 21.o-1 -o_ 1-_

0 0 0 -_o 0 o_

0 0 0 I-_o a_ 0

(44)

where o_ is a free parameter that determines the lower 3 × 3 principal minor. The total number of parameters

is reduced to four, just one more than in compressible elasticity. Thus the following practical rule emerges:

any compressible-elasticity, principle characterized by the coefficients (26) can be extended to embody

incompressibility by modifying U as follows:

(I) Replace o"and e by s and g, respectively. (In fact, only the first modification is actually needed, since

srg = sre, etc.)

0I) Add the pressure and volumetric strain terms characterized by the lower 3 x 3 principal minor in (44).

If w is zero the volumetric strain drops out as independent field and the additional terms reduce to

+ 0% (- + (45)

Furthermore, in exact incompressibility only the term-/3 div u survives.

7.LAME SPLIT

Consideration of the Larnd split (19) is of interest because ofhistodcai reasons, since the first mixed variational

principle encompassing compressible and incompressible isotropic elasticity constructed by Herrmann [7]

was based on it. Again one can start by postulating a quadratic form for the generalized strain energy U_

(where subscripts stand for "Lain6 split"):

- , T
T

v*

qO

qU.

_ltI lnl li31 _t,th etsh _t6h

_211 _221 _231 _24h lzsh e26h

t3tl g32I _33I 13,th _35h t36h

_41hT _42h T _43hr _44 _45 e46

_slh r _52h T _53hr _54 _55 156

_61h r _62h T _63h r _64 _6s _66

• I
e

e"

0q

0

0"

dr, (46)

in which the Fs coefficients take the place of the j's, and where the new terms are

_"= cr-- qh, : = C_, "@= CDu, • _ = c"t_ ",

= 3v/(1 + v), # =/i/3, qO = _kO, q" = -_. dlv fi, 0 q -- ql_..
(47)

Going through the same mechanics one obtains relations similar to (35) through (40) with s, g, p, k and D&

replaced by T, e, q, _. and D, respectively. But now hrTis not necessarily zero and so the counterpart of (41)
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retains more terms:

Ae m glle r -I- el2e-I- _13eu _ h(_140 q -I-e150 -{- et60u),

A'if= _12_"q- _22Yrc -_-_23Tu -4-Ch(£240 q _ _2.50 -_-£260u),

o' = £13_+ £23_ + g33"_ -F Ch(£340 # 4- £350 + e360u)"

-I- hhT(_16_'-+ - g26"/"e-']-£36q'u) - h(£46p + essp s -I- £sspU),

A0 -- hT_.-I (£14_'.-_ £24T¢ + g34"/"u).4- £440q + £450 "[-£460u,

Aq -- hr(£t5_-+ £25_ -I- g35"_) q- £454 4- £ssq ° -k ls6q u.

Consistency provides the twelve constraints

£14 + £t5 + £16 ----0,

£13 + £23 + _23 -- 1,

£46 -I-£56 + £ss -- 1,

£ Is 4- _25 + _3s -- 0,

£1t +£t2+£13 =0,

£24 + e25 + £26 -- 0,

£t6 +£26 + _36 = 0,

g44 + £45 + £46 = 0,

£12 + £22 + £23 -- 0,

134 + £3s + £36 = 0,

14+ £24 + e34 -- 0,

e45 q- £ss + £s6 = 0.

(48)

(49)

This leaves 21 - 12 = 9 independent parameters in the

L9

functional-generating symmetric matrix

"_ll £t2 £13 ll4 £1s £16"

£12 _22 £23 £24 _7.5 £26

£13 £23 £33 £34 £35 £36

£14 £24 £34 £44 £45 £46

£t5 _ £35 £45 _55 £56

£16 £26 £36 £46 £56 _66

(50)

If the off-diagonal blocks of this matrix are set to zero as in (43), I_ becomes L6 and the conditions on the

remaining nonzero coefficients are identical to those of J6.

Treatment of the more general splitting (12) with _1 _ 0 does not cause any particular difficulties.

However, as splittings other than (18) do not accomodate anisotropic materials naturally, they will not be

investigated further.

8.SPECIALIZATIONS

The simplest principle (in the sense of having the sparsest J matrix) that accomodates both compressible and

incompressible elasticity is obtained by specializing (44) to

0 0 0 O"

0 0 0 0

1 0 0 0

0 -1 0 1

0 0 0 0

0 I 0 0

"0 0

0 0
0 0

Jt'= 0 0

0 0

0 0

This choice leaves only displacements and pressures as independent field variables and yields

(s , e') v +/3 divUp(fi,_) ----½(s',gU)v -- _, _ + divfi = -- ,
V V

(51)

(52)
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which may be viewed as an modification of the minimum potential energy functional. For practical use it

is important to note that g_ may be replaced by e" in the first integral because tensor s_ is traceless. In the

incompressible limit Up collapses to ½(g', e")v - (/_, die fi)v.

JAR _

The specialization
"0 -1 1 0 0 O"

-1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 -1 1

0 0 0 -1 I 0

0 0 0 1 0 0

(53)

reduces U,ts - P to the five-field functional presented by Atluri and Reissner [8] (in that paper p and 0 are

defined as the negatives of the quantifies used here). Notice that since both 3 x 3 principal minors of J,_,_

display the numedcal structure of the Hu-Washizu principle of compressible elasticity, use of (24) yields

UAR = U.(_, _,fi)+ Un(/_h,0h, 0uh)- ½(ss,])v+ (_,g"-g')v + ½(P¢'O)v + P(O"-§)v' (54)

in which again g_ and _ may be replaced by eu and _, respectively. As jss _ 0, this functional does not

accomodate exact incompressibility. This drawback can be easily corrected, however, through the techniques
discussed in Section 6.

F'mally, specialization of (50) to

"0 0

0 0

0 0
Lx= 0 0

0 0

0 0

0 0 0 O"

0 0 0 0

1 0 0 0

0 -1 0 1

0 0 0 0

0 I 0 0

Lp --

" 0 -1 1 0 0

-I I 0 0 0

1 0 0 0 0

0 0 0 -1 0

0 0 0 0 0

0 0 0 1 0

.

0

0

1 '

0

0

(55)

reduces the functional Ut_ - P to those presented by Herrmann [7] and Franca [9], respectively; which are

identified as UH - P and UF - P in the sequel.

Herrmann's functional, which as noted above has historical importance, contains two independent fields:

displacements u and pseudo pressure q. Its U functional is

V

The upper and lower 3 x 3 principal minors of Ln display the numerical structure of the minimum potential

energy and stress-displacement Reissner compressible-elasticity functionals, respectively.

France's functional contains four independent fields: extra stress -r, total strains e, displacements u and

pseudo pressure q. Its U functional is

uF(÷,a,O = ½(:, + e"- - di.Uv" (S7)

The upperand lower3 × 3 principalminorsofLF displaythenumericalstructureoftheHu-Washizu and

stress-displacementReissnerfunctionalsofcompressibleelasticity,respectively.
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9. CONCLUSIONS

The parametrized formulations presented here extend the pammetrized functionals of References [4,5] to

accommodate incompressibility. In doing so a wider and perhaps bewildering range of possibilities is

encountered, which raises some questions as regards the usefulness of parametrization techniques.

The formulation of parametrized variational principles offers conceptual and practical advantages. From

a conceptual standpoint the technique is inteUectually satisfying in that all possible variational forms are

obtained once and for all. This should be contrasted to the conventional case-by-case derivation, which

can only take "potshots" at the infinite domain of possible functionals. The key practical advantage is that

generating matrix coefficients may be left free in finite element applications down to the element level and

use to enhance the quality of the numerical approximations as discussed in References [1-5].

But coming face to face with twelve free parameters as in Section 5 may be confusing and negate

the claimed benefits of generality. The simplifications of Section 6 appear reasonable from an applications

standpoint because (1) they cut the number of independent parameters while retaining flexibility in the

weighting of the participating fields, and (2) all important specific funcdonals proposed to date are stir
covered.

Finally, the simplicity and generality of the functionals based on the deviatoric splitting (18) should

be kept in mind. It is difficult to understand why the finite element literature is still preoccupied with the

Lam_ sprit and associated functionals. Not only is this split unnatural for arLisotropic materials but note that

associated.functionals such as (56) and (57) degenerate for _. --- 0, which happens if v = 0. At this value,

= 0, q vanishes identically, and 0/0 terms requiring special treatment appear in U. As a zero Poisson's

ratio is physically realizable the claim to generality of application, even with restrictibn to isotropic behavior,

is seriously weakened.
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THE INDIVIDUAL ELEMENT TEST REVISITED

SUMMARY

The subject of the patch test for finite elements retains several unsettled aspects. In particular,

the issue of one-element versus multielement tests needs clarification. Following a brief historical

review, we present the individual element test (IET) of Began and Hanssen in an expanded context

that encompasses several important classes of new elements. The relationship of the IET to the

multielement forms A, B and C of the patch test and to the single element test are clarified.

1. BACKGROUND

The patch test for convergence is a fascinating area in the development of nonconforming finite

element methods. It grew up of the brilliant intuition of Brace Irons. Initially developed in the

mid- 1960s at Rolls Royce and then at the Swansea _oup headed by Olek Zienkiewicz, by the early

1970s the test had became a powerful and practical tool for evaluating and checking nonconforming

elements. And yet today it remains a controversial issue: accepted by most finite element developers

while ignored by others, welcomed by element programmers, distrusted by mathematicians. For

• tracing down the origins of the test there is no better source than a 1973 survey article by Irons

and Razzaque [12]. Added remarks to the quoted material are inserted in footnotes, and reference

numbers have been altered to match those of the present paper.

OriginsofthePatchTest ..

In 1965 even engineeringintuitiondarednotpredictthebehaviorofcertainfiniteelements.Experience
forcethoseengineerswho doubtedittoadmitthatinterelementcontinuitywas important:theseniorauthorl

believedthatitwas necessaryforconvergence,Itisnotknown which ideasinspireda numericalexperimentby

Tocherand Kapur [25],whichdemonstratedconvergencewithin0.3% ina biharmonicproblemofplatebending,

usingequalrectangularelementswithl,x,y,x2.xy, y2 y2 x3;x2y,xy2,y3 and x3y and xy_,asfunctional
basis.The nodalvariableofthisAriAdinirectangle[I]arew,8wlSx and 8w/Sy atthefourcorners,and this

elementguaranteesonlyCo conformity.

Some months later,researchatRolls-Royceon theZienkiewicznonconformingtriangle[2],-- a similar

plate-bendingelement2- clarifiedthesituation.ThreeelementswithC tcontinuitywere simultaneouslyavail-

able,and,becausetheshapefunctionsubroutineused fornumericalintegrationhad been exhaustivelytested,

t Bruce Irons

2 This element is that identified by 'BCIZ' in the present paper
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the results were trustworthy. It was observed: (a) that every problem giving constant curvature over the whole
domain was accurately solved by the conforming elements whatever the mesh pattern, as was expected, and (b)
that the nonconforming element was also successful, but only for one particular mesh pattern. 3

Thus the patch test was born. For if the external nodes of any sub-assembly of a successful assembly of
elements are given prescribed values corresponding to an arbitrary state of constant curvature, then the internal
nodes must obediently take their correct values. (An internal node is defined as one completely surrounded by
elements.) Conversely, if two overlapping patches can reproduce any given state of constant curvature, they
should combine into a larger successful patch, provided that every external node lost is internal to one of the

original patches. For such nodes are in equilibrium at their correct values, and should behave correctly as internal
nodes of the extended patch. In an unsuccessful patch test, the internal nodes take unsuitable values, which
introduce interelement discontinuities. The errors in deflection may be slight, but the errors in curvature may be

:_:20%. We must recognize two distinct types of errors:

(i) The finite element equations would not be exactly satisfied by the correct values at the internal nodes
in structural terms, we have disequilibrium;

(ii) The answers are nonunique because the matrix of coefficients K is semidefinite.

Role of the Patch Test

Clearly the patch test provides a necessary condition for convergence with fine mesh. We are less confident
that it provides a su0k:ient condition. The argument is that if the mesh is fine, the patches are also small. Over
any patch the correct solution gives almost uniform conditions to which the patch is known to respond correctly
-- provided that the small perturbations from uniform conditions do not cause a disproportionate response in the
patch: we hope to prevent this by insisting that K is positive definite.

The patch test is invaluable to the research worker. Already, it has made respectable

0) Elements that do not conform,

(ii) Elements that contain singularities,

(iii) Elements that are approximately integrated,

(iv) Elements that have no clear physical basis.

In short, the patch test will help a research worker to exploit and justify his wildest ideas. It largely restores
the freedom enjoyed by the early unsophisticated experimenters.

The late 1960s and early 1970s were a period of unquestionable success for the test. That optimism

is evident in the article quoted above, and prompted Gilbert Strang to develop a mathematical

version popularized in the Strang-Fi× textbook [21].

Confidence was shaken in the late 1970s by several developments. Numerical experiments, for

example, those of Sander and Beckers [20] suggested that the test is not necessary for convergence,

thus disproving Irons' belief stated above. Then a countere×ample by Stummel [22] purported to

show that the test is not even sufficient. 4 This motivated defensive responses by Irons [13] shortly

before his untimely death, and by Taylor, Simo, ZienLiewicz and Chan [24]. These papers tried to

set out the engineering version of the test on a more precise basis.

Despite these ruminations many questions persist, as noted in the lucid review article by

Griffiths and Mitchell [11]. Some of them are listed below.

The bending element test referred to in this sentence appears in the Addendum to [2]. This Addendum was not part
of the original paper presented at the First Wright-Patterson Conference held in September 1965; it was added to
the Proceedings that appeared in 1966. The name "patch test" will not be found there; see the Appendix of [21] for
further historical details.

Stummel has constructed [23] ageneralized patch test that is mathematically impeccable in that it provides necessary
and sufficient conditions for convergence. Unfortunately such test lacks important side benefits of Irons' patch test,
such as element checkout by computer, because it is administered as a mathematically limiting lxoeess in function

spaces. Furthermore, it does not apply to a mixture of different element types, or to situations such as a side shared
by more than two elements.
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Q1, What is a patch? Is it the ensemble of all possible meshes? Are some meshes excluded?

Can these meshes contain different types of elements?

Q2. The test was originally developed for harmonic and biharmonic compressible elasticity

problems, for which the concept of "constant strains" or "constant curvatures" is unambigu-

ous. But what is the equivalent concept for shells? Even Reissner-Mindlin plates (which

lead to the so-called C O elements) pose difficulties.

Q3. What are the modifications required for incompressible media? Is the test applicable to

dynamic or nonlinear problems?

Q4. Are single-element versions of the test equivalent to the conventional, multielement ver-

sions?

Q5. Is the test restricted to nonconforming assumed-displacement elements? Can it be extended

to encompass assumed-stress or assumed-strain mixed and hybrid elements? (For initial

attempts in this direction, see [10])

The following treatment is aimed primarily at answering the last two questions. No position

as to the mathematical relevance of the test is taken.

2. THE INDIVIDUAL ELEMENT TEST

Because of practical difficulties incurred in testing all possible patches there have been efforts

directed toward translating the original test into statements involving a single element. These will

be collectively called one-element tests.

The first step along this path was taken by Strang [21], who using integration by parts recast

the original test in terms of "jump" contour integrals over element interfaces. An updated account

is given by Griffiths and Mitchell [11 ], who remark that Strang's test can be passed in three different

ways:

JCS: Jump integrals cancel over common sides of adjacent elements (e.g. DeVeubeke's 3-

midside-node triangle, Morley's plate elements).

JOS: Jump integrals cancel over opposite element sides (e.g. Wilson's incompatible plane rect-

angle [26]).

JEC: Jump integrals cancel over the element contour (see examples in [11]).

Another important development, not so well publicized as Strang's, was undertaken by Bergan

and coworkers at Trondheim over the period 1975-1984. The so called individual element test, or

IET, was proposed by Bergan and Hanssen [4] in 1975. The underlying goal was to establish a

test that could be directly carried out on the stiffness equations of a single element m an obvious

improvement over the multielement form. In addition the test was to be constructive, i.e., used as

an a priori guide during element formulation, rather than as a post-facto check.

The IET has a simple physical motivation: to demand pairwise cancellation of tractions among

adjacent elements that are subjected to a common uniform stress state. This is precisely the 'JCS'

case of the Strang test noted above. Because of this inclusion, the IET is said to be a strong version
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of the patch test in the following sense: any element passing the IET also verifies the conventional

multielement form of the patch test, but the converse is not necessarily true.

The IET has formed the basis of the free formulation (FF) later developed by Bergan and

Nyg_d [6]. It has also played an important part in the development of high performance finite

elements undertaken by the authors [7-9,15-18].

In an important paper written in response to Stummel's counterexample, Taylor, Simo,

Zienkiewicz and Chan [24] defined multielement patch tests in more precise terms, introducing

the so-called A, B and C versions. They also discussed a one-element test called the "single ele-

ment test," herein abbreviated to SET. They used the BCIZ plate bending element [2] to show that

an element may pass the SET but fail multielement versions, and consequently that tests involving

single elements are to be viewed with caution. In what follow we try to clarify this apparent contra-

diction and to establish precisely what the individual element test entails. In particular it is shown

that the IET contains a crucial condition that the SET lacks, and that the two tests are not therefore

equivalent.

Furthermore, we extend the IET to conditions beyond those considered by Bergan and Nyg_d

by including elements with unknown internal displacement fields. The most important sources of

such elements are: stress-assumed hybrids, and elements constructed through the assumed natural

strain (ANS) and assumed natural deviatoric strain (ANDES) formulations.

3. ASSUMPTIONS FOR ELEMENT CONSTRUCTION

Suppose that we want to test an individual element of volume V and boundary S with exterior

normal n. The element satisfies the following assumptions.

A1. The element shares displacement degrees of freedom collected in v (the so called visible

degrees of freedom) with adjacent elements. The boundary displacement field d is uniquely

determined by v as

d = Nay, (1)

where Na are boundary shape functions.

A2.

The term "boundary displacement field" is meant to include normal derivatives (side rotations or slopes) in bending

problems. More generally, in a problem governed by a variational principle of index m > 1, d includes normal
derivatives up to the (m - 1)th order.

This assumption says nothing about the internal displacement field u. In free-formulation elements u is known
and agrees with d only at the nodes. In the ANS [3,14,19,] and ANDES [8,9,17,18] formulations, u is unknown
because the deviatoric strain field eh introduced in A2 below is not generally integrable.

The strain field e within the element is expressible as

e = By, (2)

which admits the following decomposition into mean and deviatoric parts:

= _ + Eh = Bv + Bhv = (B + Bh)v, (3)

268



where

= _ edV, eh=¢-_. (4)

We note that

BhdV = O, fv ABhdV = 0. (5)

in which A is an arbitrary matrix constant over the element.

A3.

A4.

Subscript h stands for "high order." The strain field _h is not generally integrable, that is, associable with an

internal displacement field u such that _h = Du, where D = ½(V + V r) is the symmetric vector _m-adient operator.
On the other hand, the mean strain field _, being constant, is integable, as discussed under assumptio n A4.

Suppose the element is under a constant stress state O'o. Then a nodal force system P0

conjugate to v in the sense of virtual work develops. These forces are connected to v

through the relation

Lo'0, L = 1_ Na,, dS, (6)P0

where L is called the force lumping matrix and Na,, denotes the projection of the shape

functions Nd over the normal to the element side.

Matrix L was introduced by Bergan and coworkers in their studies leading to the free formulation [5,6],and plays
a crucial role in the individual element test.

The constant stress field o'0 is associated with a given displacement field called Urc, such

that the associated strain and stress fields are

_=D(u_c), _°=E_, (7)

where E is the symmetric matrix of elastic moduli, assumed constant over the element. This

constitutive assumption excludes incompressibility, which must receive special treatment.

Field urc cannot be immediately linked to v because it spans a subspace of the possible

boundary motions. We must start by expressing urc in the modal or generalized-coordinate

form
q

Urc = Nrcq,c, (8)

where Nqc are modal functions and qrc their amplitudes. The projection v_c of u_c over the

space of boundary motions spanned by v can be most easily obtained by collocation, that

is, evaluating u_c at the nodal points. This process yields

v,.c = Grcqrc,

in which Grc will generally be a rectangular matrix with more rows than columns.

(9)

Subscripts r and c mean that urc is supposed to include rigid-body and constant-strain modes. In mathematical
terms, Urc is a polynomial of degree m - 1 when the variational index is m.
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4. THE STIFFNESS MATRIX

Under the previous assumptions, the stiffness matrix is given by

K = fv BrEB dV.

Using the strain decomposition (3), K splits as follows:

K=Kb + Kh = fvBrEBdV + fvBrEBhdV = VBrEB+ fvBrEBhdV

because of the energy orthogonality condition

BrEBh dV = O,

(10)

(11)

(12)

which results on taking A = BrE on the second of (5). Matrices K_, and Kh receive the name of

basic, stiffness and higher order stiffness, respectively.

5. FIRST CONDITION: CONSTANT STRAIN STATES

Bergan and Nyg_rd [6] state two constraints for FF elements, which taken together represent

the satisfaction of the IET. The first one is

Kv, c =Ltro, (13)

which is essentially an equilibrium statement at the element level. Premultiplying (13) by vyc we

r vrcLo-0, which on introducing (9) and (11) becomesget VrcKVr c --

T T -T _ T T T T
qrcGrcB EBGrcq_cV + q_cG_cKhG_cqrc = qrcGrcLo'o. (14)

If we request that Kh cannot contribute to the internal energy under a constant strain state we must
have rGrcKhGr c - 0, or, since Kh = fv BhEBh dV,

BhGrc = O, (15)

This may be called the higher order strain cancellation condition. Taking into account that tr0 =

EBqcq_c, where Bq c = D(Nqc), the above equation becomes BrEBGr_ = V-1 LEBqc. This can be

split into _r = V_ 1 L and BG_c = Bq_. Replacing the former in the latter we obtain

V- 1 L r G_ = Brqc. (16)

These conditions were introduced by Bergan and Nyg_d [6] in the context of be free formulation.

They state that equation (16) should be used to check that the matrix L is correct. Then (16) is

the first consistency constraint on L. Equations (15) and (16) are necessary in order that a single
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Figure 1. A common side i - j shared by two elements.

element, which is in equilibrium, be capable of copying a constant strain state. To prove that they

are also sufficient conditions is straightforward.

An important consequence of (16) can be investigated as follows. Rewrite it as V- 1L r Grc qr¢ =

Durc. Multiplying both sides by o "r and integrating over the element volume we obtain

cr_LrGrcqrc = fv o'_DurcdV. (17)

Integration by parts of the right hand side yields

o-rLrGrc q_c =O-o r fsN,ndSq,c, (18)

where N,,, are the the projections of the modal functions over the normal to the element side. From

the definition of L in (6) we conclude that

fs Nrn dS Grcqrc = fs Nun dS q_c. (19)

This result may be stated as follows: the force lumping produced by the boundary displacement field

should be energy consistent (in the sense of virtual work) with that produced by the displacement

field Urc over the element side. Although Brqc is unique for a given problem, since G_c is generally

a rectangular matrix, equation (16) clearly shows that L is not necessarily unique. Examples that

illustrate this property may be found in [17]. L is unique for simplex elements where we have the

same number of nodal connectors v and rc-modal amplitudes qrc, because in this case G_c is square

and non-singular. For these elements the total and basic stiffness matrices coalesce. An obvious

example is provided by the constant strain triangle (CST).

6. SECOND CONDITION: PAIRWISE FORCE CANCELLATION

Quoting from [4]: "The basis for the individual element test is that the element, when interact-

ing with its neighbors, should be capable of identically reproducing an arbitrary rigid-body/constant
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strain field... The interelement forces transferred at nodes should cancel out in a pairwise manner

for adjacent elements during such state." This establishes a second key constraint on L.

Suppose we have a side i - j joining elements k and k + 1, as illustrated in Figure 1. The

second condition requires that

f f'J Nka,_dS = ,_lk+l,dndS. (20)

The easiest way of enforcing this condition is by choosing a boundary displacement d that is

uniquely defined over i - j by degrees of freedom on that interface.

This rule can be extended to cases in which more than two elements share a side, as is the case in many practical structures.
Note that (20) does not involve the internal displacement field in any way. Consequently it establishes the mixability of
elements of different types (for example, FF with ANDES elements). The SET discussed in [24] omits this important
condition.

7. MULTIELEMENT PATCH TESTS AND THE IET

Bergan and coworkers called conditions (1'3) and (20) the IET. We now prove that if the element

under consideration satisfies these conditions, it will also pass the so-called forms A and B of the

multielement patch test [24]. Furthermore, if the element is rank sufficient it will also pass form C.

2

1

3

4

n

o*Q

Figure 2. An assemblage of elements

Let us consider the assemblage of elements shown in Figure 2 as a patch. The global displace-

ment field consistent with a constant strain field is _c -- Ggrcqrc The stiffness matrix of the k th

element satisfies equation (13), or its equivalent global form

(pk)rKkpkvrgc = (pk)rLktr0, (21)
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where pk are Boolean localization matrices. Upon assembly we obtain

KgVrgc = LSo'0 = p, (22)

but because of the satisfaction of equation (20) the force vector p has only components in nodes

j .... j + n. Then, for the i th internal degree of freedom we have

K_v,% = Pi -- 0, (23)

which is the statement of the form A of the patch test. If an element satisfies A, form B is also

satisfied because from (22) we can obtain the displacement of the internal node i as:

v,ci "- (K_)-t(Pi - Kijv_c_), j _ i. (24)

Because the element satisfies (13), v,c can be obtained if upon removing the rigid body motions

K k is nonsingular and can be inverted. Consequently K k should be rank sufficient in order to satisfy

form C.

8. CONCLUSIONS

It has been shown that the lET constraints plus rank sufficiency provide sufficient conditions

to pass any form of the multielement patch test. The main practical advantages of the IET are:

1. By applying rules (13) and (20) elements can be constructed that will pass any multielement

patch test a priori, provided that they are rank sufficient, while being capable of copying

constant strain states. No such possibility exists in the conventional patch test, which must be

necessarily applied a posteriori.

2. Element mixability is immediately established.

3. A "surgical operation" can be established to "sanitize" elements that fail the IET, as discussed

in the Appendix of [17]. The operation essentially amounts to the replacement of the basic

stiffness.

The price paid for these advantages is that the test is occasionally stronger than strictly neces-

sary. For example, the BCIZ nonconforming triangle [2] fails the IET but passes the multielement

test for certain mesh configurations.

A potential difficulty in the application of the IET to existing elements is the need for extracting

the force-lumping matrix L. This matrix may not be readily available and, as mentioned in Section

5, is not necessarily unique.

Finally, as remarked in several places, the present statement of the IET is not restricted to the free

formulation, and has actually been used in this expanded form for constructing high-performance

elements based on the ANDES formulation [8, 9,17,18].
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MEMBRANE TRIANGLES WITH CORNER

DRILLING FREEDOMS: I, THE EFF ELEMENT

SUMMARY

This paper is the first of a three-Part series that studies the formulation.of 3-node, 9-dof membrane elements

wi_ normal-to-element-plane rotations (the so-called drilling freedoms) within the context of parameu-ized

variational principles. These principles supply a unified basis for several advanced element-construction

techniques; in particular:, the free formulation (FF), the extended free formulation (EYF) and the assumed

natural deviamdc strain (ANDES) formulation. In PartI we construct an element of this type using the EFF.

This derivation illustra_ the basic s_ps in the application of that formulation to the construction of high-

l_fformance, nmk-su._cient, nonconforming elements with "comer rotations. The element is initially given

the 12 degrees of freedom of the linear strain triangle (/.,ST), which allows the displacement expansion to be a

compiete quadratic in each component. The expansion basis contains the 6 linear basic functions and 6 energy-

orthogonal quadratic higher order functions. Three degrees-of freedom, defined as the midpoint deviations

from linearity along the triangle-median directions, are eliminated by kinematic constraints. The remaining

hierarchical midpoint freedoms are transformed to corner rotations. The performance of the resulting element

is evaluated in Part ]'IT.
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1. hNTRODUCTION

!

I-"

The idea of including normal-rotation degrees of freedom at comer points of plane-stress finite

elements-- the so-called drilling freedoms _ is an old one. The main motivations behind this idea

are:

lo To improve the element performance while avoiding the use of midpoint degrees of freedom.

Midpoint nodes have lower valency than comer nodes, demand extra effort in mesh definition

and generation, and can cause modeling difficulties in nonlinear analysis and dynamics.

2_ To solve the"normal rotation problem" of smooth shells analyzed with finite elements programs

that carry six degrees of freedom per node.

3. To simplify the modeling of connections between plates, shells and beams, as well as the

treatment of junctures between shells and/or plates.

Many efforts to develop membrane elements with drilling freedoms were made during the period

1964-1975 with inconclusive results. A summary of this early work is _ven in the Introduction

of an article by Began and Felippa [1], where it is remarked that Irons and Abroad in their 1980

book [2] had dismissed the task as hopeless. In fact, the subject laid largely dormant during the late

1970s, but it has been revived in recent publications [3,1,4-8] that present several solutions to this

challenge. EspeciallY noteworthy is the study by Hughes and Brezzi [9] of variational principles that

include independent displacement and rotation fields. A membrane element with drilling freedoms

based on these principles has recently been constructed by Ibrahimbegovic [10].

The first successful triangles with drilling freedoms were presented by Allman in 1984 [3]

and Bergan and Felippa in 1985 [1]. Both elements are nonconforming and pass displaeernent-

specified patch tests. In addition the Bergan-Felippa triangle, being rank sufficient, passes traction-

specified patch tests. The original Allman element, based on the concept of vertex rotations, had

remaining problems such as rank deficiency, which were corrected in an improved version published

in 1988 [7]. The two approaches share procedural similarities, such as the use of incompatible

displacement functions. But the element construction methods are entirely" different: Allman

used the conventional potential energy formulation whereas Bergan and Felippa u_d the free

formulation (Fq':'_,._fBergan and Nyg/lrd [11]. Furthermore Bergan and Felippa, following mid-

1960s work at Berkeley and Trondheim [12-15] exploited the concept of continuum-mechanics

rotations, sometimes referred to as true rotations. A discussion of the relative performance of these

elements is given in Part IT[ of this series [16].

Both approaches can be extended to qLw.drilateral elements with drilling freedoms for plane

stress and shell analysis. Extensive experience with Allman-type quadrilateral shell elements is

reported by Frey and coworkers; see the excellent survey aiticle [17] and references therein. A

FF-based quadrilateral called FFQ was constructed by Nyg/lrd in his thesis [18] using quadratic and

cubic higher order functions; this is presenly a workhorse shell element in the nonlinear program

FENRIS [19].
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At the time the Bergan-Felippa element was constructed (summer 1984) the free formulation

lacked a variational basis. This deficiency was remedied five years later by the introduction of

parametrized variational principles in a series of recent publications [20-23]. Therein it is shown

that the ener_-orthogonal FF with scaled higher order stiffness can be accommodated in the

framework of a one-parameter d-generalized hybrid variational principle that reduces to hybrid

versions of the potential energy and Hellinger-Reissner's principle as special cases. This rigorous

justification of the FF opened the door to a variant called the extended free formulation or EFF [24],

which circumvents a major kinematic restriction of the FF.

The present work may be viewed as a continuation of two mid-80 papers [ 1,6] but now on firmer

theoretical grounds. Our main objective is to illustrate the application of the EFF to the construction

of a triangular membrane element with drilling freedoms that initially has complete quadratic

polynomial expansions in each displacement component. The use of complete quadratic expansions

as departure point requires a total of 12 degrees of freedom. Nine freedoms are defined at the comer

nodes in the usual fashion, i.e., six translations and three drilling rotations. Three additional degrees

of freedoms, to be subsequently eliminated, are needed. In the EFF such additional freedoms can

be eliminated in three ways: duality pairing with divergence-free stresses, static condensation of

augmenting degrees of freedom, or a posteriori application of kinematic constraints. The present

derivation uses the last technique.

Four choices of"eliminable midpoint freedoms" intrinsically related to the triangle geometry

were considered: side directions, normal-to-sides, median directions and normal-to-medians. It

was found that only the third choice provides for stable elimination. Once this key discovery was

made, the remaining element derivation steps, though laborious, could be followed in a systematic

way.
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2. THE STIFFNESS EQUATIONS I'

The stiffness equations derived from the parametrized variational principles referenced in the In- [

troduction enjoy the fundamental decomposition property summarized in Box 1. The element 1.

stiffness matrix can be additively decomposed into K = Kb + Kh where Kb is the basic stiffness

matrix, which is constructed for convergence, and Kh is the higher order stiffness matrix, which is ,_

constructed for stability and accuracy. As discussed in Box 1, for free-formulated elements Kh can " I%

be sealed by (1 - y), where y is a scaling coefficient < 1 that may be used to increase the element
1

performance for coarse meshes. This value may vary from element to element without affecting 1

convergence. This scaling is justified variationally in [20,21]. Multiparameter scaling is discussed

in [25] to improve the performance of a specific plate bending element. _ii:

The basic stiffness part of the present element (as well as that of the element derived in Part

II [26]) is identical to that presented in Bergan and Felippa [1,6]. The higher order stiffness is

initially based on a modification of the twelve shape functions of the linear strain triangle (I, ST). _:_

The modification makes the higher order (quadratic) shape functions eneG_y orthogonal to the lower

order (linear) ones. The coefficients of these quadratic shape functions are generalized coordinates

in terms of which a generalized higher order stiffness mat_fix is readily constructed in closed form. L

A chain of transformations follows in which these generalized coordinates are first transformed to

- f;!_fiidpoint degrees of freedom of the hierarchical LST, and then to three drilling freedoms at comers .

and three median hierarchical displacements at the midpoints. Finally the latter are eliminated by

invoking a parametrized boundary constraint. I

ilThe main advantages sought fo r this element over the FF element of [1,6] are:

1. The higher order stiffness matrix is obtained in explicit form without need of numerical inver- g

sion. Explicitness is expected to facilitate the direct derivation of energy-balancing formulas

to attain high performance under in-plane bending. This is especially true for orthotropic or

anisotropic material behavior. ;_

2. Shorter formation time for Kh, which dominates the computation of K. ,_

3. The coarse-mesh performance should be comparable to that of the linear strain triangle 0,S'I')

without the encumbrance of midpoint nodes. {-_

LExperience with the EFF element, as reported in Part rrl [16], indicates that the first two advantages

were realized, but the last one was not. Its performance turned out to be similar to that of the

original FF element, except for some regular-mesh problems where explicit energy balancing was i
able to make a difference. The performance is, however, substantially better than all other elements

tested for large element aspect ratios.

Aside from its intrinsic value as illustration of a powerful new technique for constructing i

high-performance elements, the present derivation serves as prelude to a far more challenging task:
elm

the construction of a rank-sufficient element in three dimensions (a 24-dof, rank-18 tetrahedron

with 12 corner rotations).

l:i
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3. THE FREE FORMULATION

The original free formulation (FF) was developed by Bergan and Nyg_rd [ I l ] for the construction of

displacement-based, incompatible finite elements. This work consolidated a decade of research of

Bergan and coworkers at Trondheim, milestones of which may be found in [27,28,19]. The products

of this research have been finite elements of high performance, especially for linear and nonlinear

analysis of plate and shell structures. As noted in the Introduction, a theoretical justification based

on parametrized hybrid variational principles is provided in references [20-23].

The original FF was based on nonconforming displacement assumptions, the principle of

virtual work and a specialized form of Irons' patch test that Bcrgan and Hanssen [27] called the

individual element test. The basic and higher order stiffness are constructed in largely independent

fashion by following the procedures outlined in Boxes 2 to 4.

Box 2 lists the main steps for constructing the basic stiffness matrix; for justification the reader

is referred to the previously cited references. The key steps in constructing the higher order stiffness

matrix using the standard free formulation (FF) are listed in Box 3.

The extended free formulation (EFF) presented in [24] removes the restriction n_, -- nq of

Step H. I (b) in Box 3 by three methods: (I) injection of higher order divergence-free stress fields,

(2) freedom augmentation with elimination by static condensation or (3) freedom augmentation

with elimination by kinematic constraints. The last method, which is' the one used for the present

element, is outlined in Box 4.
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Box 1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those

degrees of freedom in common with other elements, also called the connectors) and p

the corresponding element node forces. Then the element stiffness equations decompose

as

Kv = (Kb + K_) v = p. (1)

I_ and Kh are called the basic and higher order stiffness matrices, respectively. The

basic stiffness matrix, which is usually rank deficient, is constructed for convergence.

The higher order stiffness matrix is constructed for stability and (in more recent work)

accuracy. A decomposition of this nature, which also holds at the assembly level, was

first obtained by Bergan and Nyg_d in the derivation Of the free formulation [11].

In the unified formulation presented in [22, 23] the following key properties of the

•decomposition (1) are derived.

1. Kb is formulation independent and is defined entirely by an assumed constant stress

state working on element boundary displacements. As detailed in Box 2, no knowl-

edge of the interior displacements is necessary for this stiffness component. The

extension of this statement to C O plate and shell elements is not straightforward,

however, and special considerations are necessary in order to obtain I_ for those

elements.

2. Kh has the general form

Kh "- j33Kh33 q- j22Kji22 + j23K_t23. (2)

The three parameters j=, jz3 and J33 characterize the source variational principle in

the following sense:

(a) The FF is recovered if ]22 = ja3 = 0 and j33 = 1 - y, where y is a Kh

scaling coefficient studied in [1,6,25]. The original FF of [11] is obtained if

_, = 0. The source variational principle is a one-parameter form that includes

the potential energy and stress-displacement Reissner functionals as special

cases.

(b) The ANDES variant of ANS is recovered if j_ = j33 -- 0 whereas j_ is a

"scaling parameter. The source variational principle is a one-parameter form

that includes Reissner's stress-displacement and Hu-Washizu's functionals as

special cases.

(c) If jz3 is nonzero, the last term in (2) may be viewed as being produced by a

FF/ANDES combination. Such a combination remains unexplored.
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Box 2 Construction of the Basic Stiffness Kb

Step B.]. Assume a constant stress field, if, inside the element. The associated

boundary tractions are _a = _.n, where n denotes the unit external normal on the

boundary S.

Step B.2. Assume boundary displacements, d, over S. This field is described in terms

of the visible element node displacements v (also called the connectors) as

d = Nd v, (3)

where Nd is an array of boundary shape functions. The boundary motions (2) must satisfy

interelement continuity and contain rigid-body and constant-strain motions exactly.

Construct the "force lumping matrix"

L -- fs Ndn dS, (4)

Step B.3.

that consistently maps the boundary tractions _n = _.n into element node forces, if,

conjugate to v in the virtual work sense. That is,

-- fs Nna., dS = I.H.
(5)

In the above, Nd,, = Nd.n are boundary-system projections of Nd that work on the surface

tractions _,.

Step B.4. The basic stiffness matrix for a three-dimensional element is

Kb _-- -1LELr, (6)
1}

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed

to be constant over the element, and v -- fv dV is the element volume measure. For

two-dimensional or one-dimensional elements, v is replaced by the element area A or

length e, respectively, if the remaining dimensions are incorporated in the constitutive

matrix E.
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Step H. 1.

Box 3 Construction of Kh by FF

Assume an internal displacement field over the element volume V:

u = N,, q = Nrq_ + Ncqc + Nhqh
(7)

rigid body constant-strain higher order

where array N, collects shape functions and q collects generalized coordinates. This

assumption must satisfy the following conditions:

(a) linear independence with respect to v;

(b) the dimensions nq and nv of vectors q and v, respectively, are the same;

(c) the rigid motions and constant-strain fields are complete;

(d) the higher order displacements are energy orthogonal with respect to the constant-

strain displacements. (Although this requirement was not mandatory in the orig-

inal FF, it is an essential part of the variationally formulated FF.)

Often (7) is written so that the rind body and constant strain shape functions are combined:

u = N,-cq,.c + Nnqh. (8)

Step H.2. The internal strain field derived from u is eu = Du, where D is the strain-

displacement operator. Decompose this field as

U

eu = DN,,q = e¢ + e_ = Bcqc + Bhqh, (9)

since the strains associated with rigid body motions, B,oa., must vanish.

Step H.3. By collocation at the node points assemble the square nonsingular transfor-
marion

v = Gq = G,_ + Gcqc + Gh_, (10)

which inverted gives

Step H.4.

q,: =Hv=

q, kHh

The higher order stiffness matrix is given by

v. (11)

/*

Kh -- (1 - y)H_KqhHtt, where Kqh --/v BrEBh dV" (12)

Kqh is the generalized stiffness in terms of the qh coordinates, and (1 - y) is a scaling

parameter (see Box 1).
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Box 4 Construction of I_ by EFF with Freedom Augmentation

Step E.1. The internal displacement expansion is written as in (7) or (8) but now

nq > nv is allowed. The general prescription is to augment vector v with nq - nv

degrees of freedom collected in subvector vx. These additional degrees of freedom must

be chosen so as to pi'oduce an invertible square transformation matrix with the following

hierarchical structure:

Step E.2.

Step E.3.

Then

/'/IG0rocohl{ }vx = 0 Gx q,: = Gq. (13)

Solving (13) for q one obtains an inverse relation of the form

[q} °]/!q= qc -- 0 v .

Eliminate vx through a kinematic constraint, say

Vz -- TV

(14)

(15)

IS] 1= IL v = v. (16)
q H i + HxT I_Ha

Having Ha available, proceed as in step H.4 of Box 3.

Many variations and shortcuts are possible. For example, often Ha can be expressed as

the product of k transformation matrices:

Ha "- HatHa2 ... Hat. (17)

some of which can be directly constructed whereas others result from solving simpler

inverse problems. If all matrices in (17) can be determined in closed form the numerical

inversion of G is avoided. This is the approach followed in the element constructed here.
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4. ELEMENT GEOMETRY
.,..

The geometry of an individual triangle is illustrated in Figures I and 2. The triangle has straight

sides. Its geometry is completely defined by the location of its three comers, which are labeled 1,2,3,

traversed counterclockwise. The element is referred to a local Cartesian system (x, y). The Cartesian

distances from the nodes to the triangle centroid x0 = (xl + x2 + x3)/3, Y0 -- (Yl "4"Y2 q- y3)/3 are

denoted by xio = xi - xo and Yio = Yi -- Y0- It follows that"

XlO+X20+x30-'O, Yl0 -'F Y20 "l" Y30 --" 0. (18)

Node coordinate differences are abbreviated by writing xij = xi - xj, etc. The signed triangle area

A is given by the formulas

2A = x21Y31 -- x31Y21 "- x32YI2 -- xI2Y32 -" xI3Y23 -- x23Y13, (19)

and we require that A > 0. We shall also make use of dimensionless triangular area coordinates

_'t, _'2, _'3 linked by the constraint

_'1 q- _'2 "[" _'3 -" 1. (20)

The following well known relation between the area and Cartesian coordinates of a straight-sided

triangle is noted for further use:

_i = _ iYt -- xtyj + (x - xo)yjt + (Y -- yo)xkj , (21)

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i -- 2, j -- 3,

k = 1. (If the origin is taken at the centroid, x0 = Y0 = 0.) It follows that

Other intrinsic dimensions

A _¢1 _'2 A _¢3
2 _ -- Y23, 2A"_- x = Y3t, 2 _ Y12,

A 8_'t 8_'2 2A _3

2 -_-y -- x32, 2A_y = xt3, a-_ = x21.

of use in subsequent derivations are

(22)

!

I

I

3 2

$1 --. _ - _ (_23 _ (_ 13

in which j and k denote the positive cyclic permutations of i; for example i = 2, j = 3, k -- 1.

The aij are the lengths of the triangle medians (see Figure 2).

In addition to the comer nodes 1, 2 and 3 we shall also use the element midpoints 4, 5 and

6 for intermediate derivations although these nodes will not appear in the final equations. These

are located opposite comers 3, 1 and 2, respectively. As shown in Figures 1 and 2, two intrinsic

coordinate systems are used on each side:

n21,S_l, n32, s32, n13, s13, (24)
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ms = m3z

a

_X _2

Figure I. Triangle geometry, showing Cartesian and
normal/tangential coordinate systems.

Y

=sn

ms = m_

_X _2

Figure 2. Intrinsic triangle dimensions and median/normal-to-median
coordinate, systems.
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m21, f2z, m32, f32, m13, h3. (25)

Here n and sareorientedalongtheexternalnormal-to-sideand sidedirections,respectively,whereas

m and tareorientedalong thetrianglemedian and normal-to-median directions,respectively.Note

thatthe two coordinatesets(24)-(25)coincideonly forequilateraltriangles.The originof these

systems isleft"floating"and may be adjustedasappropriate.Iftheoriginisplacedatthemidpoints,

subscripts4, 5 and 6 may be used insteadof 21, 32 and 13,respectively,as illustratedinFigure2.

The visibledegreesof freedom of theelement collectedin vectorv are

vT = [Oxl Vyl 01 Ox2 17),2' 02 lJz3 1)y3 03]. (26)

Here vxi and vyi denote the nodal values of the translational displacements ux and uy along x and

y, respectively, and O are the "drilling rotations" about z defined by

O = Oz = ½ ax Oy ] " (27)

5. THE BASIC STIFFNESS

The assumed constant stress field of Step B. 1 of Box 2 is

u_,_,= o'_x, uyy = o-_y, rxy = r_:,. (28)

For Step B.2, the boundary displacements (d,,, ds) along side j-k opposite corner i in the nor-

real/tangential side coordinate system (nit, sjD may be expressed in terms of the visible node

displacements as

_[?oo,,,,,.,o ,., oo,,,,]0,,, 0
1/nk

vst

ok

with the shape functions

_n,/"- ¼(1 --/])2(2 +/]),

_.k -- ¼(1 + _)2(2 -- _')

,/,,j= ½(_- _),

,/,e,= _eC1- _)20+ _),
¢o,= -{eCl + _)2(l- _),

¢'a = _(1 + f).

(30)

Here _ is the isoparametric side coordinate _ = (2s/e) - 1, which varies from - 1 at node j (s = 0)

to +1 at node k (s = e); s being the side distance from node j and e = .ejk the triangle side

lenuh. A scaling factor at, has been introduced on the shape functions that relate boundary normal
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displacements to the comer rotations. The significance of this factor is discussed by Bergan and

Felippa [ I]. (In that work this parameter is called c_. The subscript b is used here to distinguish this

parameter from a similar one that appears in the derivation of the higher order stiffness.)

The surface tractions along a side of the element are

_ Ecos o(7 n --- _ --
Cr,u - sin ca cos ca {}sin 2 ca 2 sin cacos ca I _xx

sincacosca cos2ca-sin2ca.i _'YY ' (31)
Oxy

in which ca -- _jk is the angle of the external normal with x. In [I] it is shown that on carrying out

the boundary integrals of Eq. (4) one obtains the force lumping matrix

Y23 0 x32

0 x32 t Y23

Y3t Xt3

L -- ½ 0 xt3 i Y31

YI2 .0 x21

0 " x21 Yt2

(32)

If cz# = 0 the force lumping matrix of the constant strain triangle (CST) results, in which case

all nodal forces are associated with translations only. Once L is available, it is a simple matter to

form the basic stiffness Kb according to the prescription (6), which for a two-dimensional element

becomes

1--L (hE) L r (33)I_= A

where h is the mean thickness of the element and E the plane stress constitutive matrix arranged as

a symmetric 3 x 3 matrixinthe usualmanner:

I EII E12 El31
E = E21 E22 E23

Et3 E23 E33

Often the thickness-integrated constitutive matrix Dm = hE is specified instead of E.

particularly useful for nonhomogeneous plates where E varies through the thickness.

(34)

This is
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6. THE HIGHER ORDER STIFFNESS

6.1 The Internal DisplacementField

The construction of the EFT higher order stiffness requires a considerable amount of analytical

derivations, the details of which axe _ven in the Appendix. In the present Section only the key

results are reported. One starts by expressing the internal displacement field u of Boxes 3--4 as

_u:__.rq:, ,,:: qx3 qx4 q=5 qx, 1 qh (35)
I /-us L qyl qy2 qy3 qy4 qy5 qy6.] q_4

• q_6

where the q's are generalized coordinates, and

¢1 = _'l, _ = _'2,

_4 = (_'_- ¢2)2 = _'22, _5 = (_2- _'3)2 = _.2,23

This expansion befits the form (7), with

q_¢=[q_t q_2 q_3 qyt qy2

qhr = [q_4 q_5 q_6 qy4 qy5

_b6 = (_'3 -- _'1)2 --" _'21"

(36)

qy3 ] (37)

qy6 ] (38)

Note that rigid body and constant strain terms coalesce into one set of linear shape functions. It

is shown in Section A.2 of the Appendix that the six basis functions (36) enjoy the following

properties:

1. They span a complete quadratic basis.

2. The higher order base functions ¢4, _5 and _6 are energy orthogonal to the basic functions _l,

_h and ¢_.

6.2 Gradients and Strains

The displacement gradients are obtained by differentiating (35) with respect to x and y:

8u

qxl qx2 qx3 0 0 0 qz4 q:5 q_ 0 0 0

1 0 0 0 qxl qz2 qx3 0 0 0 qz4 qx5 q_6J='_ qyt qy2 qy3 0 0 0 q._ qy5 q_ 0 0 0

0 0 0 qyi qy2 qy3 0 0 0 qr4 qy5 qy6

Y_

Y31

Y12

X32

XI3

X21

6_'2tY3o

6_32Y!0

6{'i3Y'zo

6_2:x_o

6_'32x,o

6_'i3xz0 ,

(39)
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where use of (18) has been made in the derivation of the last six entries in the rig.htmost vector. The

displacement-derived element strains may be conveniently split as in (9):

eu -- fyy "- _Uy/ay -" ec"+ eh" = Brcqrc + Bhqh (40)

y_y _ux/_y + _Uy/_X

where e_ and e_, are associated with constant strain and higher order terms, respectively, as discussed

in Box 3. The strain-displacement matrices are

and

where

1 IYO7"3 Y31 YI2 0 0 0 10 0 x32 xt3 x21

Brc=2"A'Lx32 xl3 x21 Y23 Y3t Yla.J

_t3 I_21Y3° _32Yt° _13Y2° 0 0 (3 1
Bh=7 0 0 0 _'t2x30 _23x10 _'3tx20

_'t2x30 _'23x10 _31x20. _'21Y30 _'32Y10 _'13Y20..I

(41)

= BhZ, (42)

,  F ,o oooI li 3oo -- 0 -x+o -xlo -x2o Z= 0 ¢x3 0 0
' 0 0 ezt 0 . (43)

Bh A" l.-X+o -xlo -x2o Y,.o Yto Y_ 0 0 0

6.3 The Generalized Higher Order Stiffness Matrix

The higher order stiffness matrix in terms of qh is given by the second of (12), which for a plate of

thickness h becomes

Kqh -- fA Br (hE) Bh dA.

For constant hE we can express (44) in closed form as

Kqh--A_r hEBh * J,
6x6 6x6 3x3 3x6 6x6

where the asterisk denotes entry-by-entry matrix product, and J is a purely numeric matrix:

(44)

(45)

I

! [°/++If ¢t3 [_'21 Cn ¢,3 ¢2t _'nJ= A" ¢2t

¢32

¢t3

¢13]d/,=

290

ii_l_12_l il-- --1 2 --1 --1

--1 --1 2 -1

2 --1 --1 2
--1 2 -1 -1

(46)



The explicit expression for the upper triangle entries of Kqh. is as follows:

Kqh[1,1] =

Kqh[1,2] =

K_n[1, 3] =

Kqh[1,4] =

K_,[1, 5] =

Kq,[:, 6] =

I_h [2, 2] =

Kqh[2, 31 =

Kqh[2, 4] --

K#h[2, 5] =

Kqh[2, 6] =

Kqh[3, 3] =

Kq,[3, 4] =

Kq,[3, 5] =

Kq, [3, 6] =

K_h[4, 4] =

Kqh[4, 5] =

Kqh [4, 6] ""

Kq,[5, 5] =

Kq, [5, 6] =

Kqh[6, 6] =

2k(Elly2o

k((Et3xlo

k((Et3x2o

2k(E_3Y32o

k((Ei2xlo

k( ( Ei2x2o

2k(Elly2o

k((Et3xto

k((E33xto

2k(E13y2o

k((E33xlo

2k(EtlY2o

k( ( E33x20

- 2E13x3oY3o + E33x_0)

- EIIYlO)Y3o q" (EI3Yl0 -- E33xlO)X30)

- Elly20)Y30 + (Et3Y20 - E33x20)x30)

-- (E33 + EI2)x30Y30 + E23x20)

-- EI3YlO)Y30 "t" (E33YI0 - E23Xlo)x30)

-- Ei3Y20)Y30 q" (E33Y20 - E23x20)x30)

- 2El3xlOYlO + E33x20)

- EIlYlO)Y20 + (Et3Yto - E33xto)X20)

- EI3YlO)Y30 + (EI2Yto - E23xto)X30)

-- (E33 q" EI2)xIoYlO d- E23x20 )

-- EI3Y.I0)Y20 + (EI2Yto - E23XlO)X20)

-- 2EI3X20Y20 "1-E33x220)

- EI3Y20)Y30 + (EI2Y20 - E23x20)x30)

k((Et2xlo - EI3YlO)Y20 "4" (E33YlO - E23Xlo)x20)

2k(Et3y20 - (E33 -I- EI2)x20Y20 q" E23x220)

2k(E33y20 - 2E23x30Y30 q- E22x32)

k((E23xlo - E33YlO)Y30 q- (E23Yio - E22xIO)X30)

k((E23x20 -- E33Y20)Y30 "4" (E23Y20 - E22x20)x30)

2k(E33y20 - 2E23XlOYlO + E22x20)

k( ( E23xto - E33Ylo)Y20 + (E23Ylo - E22XlO)X20)

2k(E33y20 - 2E23x20Y20 + E22x20)

where k = 3/(2A2). Having formed K_h, the first of (12) says that the higher order stiffness is

K_ = (1 - F)HrI_hHh. Thus the 6 x 9 matrix l:I_, which relates _ = Hhv, remains to be

determined.

6.4 Building Hh

We will build Hh as the product of five transformation matrices:

Hh = Hqm H,., H_,. H,o Ha,,. (47)
6x9 6×6 6×6 6×66x3 3×9

These five matrices link the following vectors:

o_=Hqmm, m=Hmss, s=Hmsr,

N

r = H,.o0, 0 = Ho,,V. (48)
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_ . Vectors qh and v are given by (38) and (24), respectively. The others are

Ux4

Ux5

m --- _x6

u,4
I Uy 5

, Uy6

f

, S--

_4

Ut5

ut6

Urn4

u.,
O2

O3

(49)

Here m, s and r collects x- y and m - t midpoint degrees of freedom, respectively, of the hierarchical

LST element discussed in Sections A. l-A.2 of the Appendix (recall that m and t denote median

and normal-to-median directions). Vector 0 collects the hierarchical comer rotations 0i defined in

Section A.3. We list below the expression of the matrices in (47), referring all derivations to the

Appendix.

_i_il" [" -I0 2 2 0 0 O"(

I

2 -I0 2 0 0 0

2 2 -I0 0 0 0

I o 0 o -lo 2 2
ul 0 0 0 2 -10 2

I 0 0 0 2 2 -I0

(50)

"x3o/a12 0 0 -y3o/al2 0 0 "]

0 xlo/az3 0 0 -Yto/aTa 0

]

0 0 x_/a31 0 0 -y20/a31

Y30/a12 0 0 x3o/a12 0 0 '

0 Ylo/az3 0 0 xlola_ 0

0 0 Y20/a31 0 0 x20/a3!

(51)

I 0 0 0 0 0

0 I 0 0 0 0

I 0 0 0 0 0

Hsr--- _ "_ -ala3' tat2 tal2-½a12

I -a_a,2 _ _--½a_ ½az3 ta23

[:;i.: -_ -_-_ _ ½a3t -½a3t ½a31

292'
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Hro --

Aoth Aoth

- a_o_2 _ o
ACth Aoth

-_--_

I Aoth 0 Acth

I! °°o,o
(53)

Here the a's and s's are defined in (23), and uh is a scalar parameter introduced in Section A.6 of

the Appendix. Finally,

.

1 r x32 Y32 4A x13 Y13 0 x21 Y21 0 1

I_,=_1x32 Y32 0 XI3 YI3 4A x21 Y21 0 J •
L. x32 Y32 0 x13 Y13 0 x21 Y21 4A

(54)

6.5 Closed Form Evaluation

Multiplying symbolically the middle three matrices in (47) a surprisingly simple closed-form ex-

pression emerges for H,,m = HmsHsrHr0. If we choose c_h = 5/4, which as shown in Part 1Tr is

optimal for pure bending, then

3 2
" (-$3 "1- ]at2)Y_ q- Ax30

2 2
]at2

YlO

3 2
($2 -F ia3t)Y2o -- Ax2o

(S3_3 2]alz)x30 4" Ay30
2 2
_a12

--Xl0

(_$2 3 2_a3t )xzo - A y2o
2 2
_a31

3 2
($3 q- _al2)Y30 -- Ax3o

2 2
_a12

(-SI W _a_3)Ylo q" Axto

Ylo

(-s_- ]_)_ + Ay_o
2 2
ian

(s_- _)_o + Ay,o

--X20

Y30

(St+ ]a_)yto- Axlo
2 2
_a_

(&_3 2_a31)ym - Ax2o

--X30

(-s, - _3)x_o - Ay,o

(s_- }4_)_o+ A_o
2 2
]a31

(55)

Vdith Hmo directly computable, the fastest evaluation of I_ is obtained as follows. First form

Hqe = Hq,,,Hm0, which can be done quickly because (50) is a block-diagonal numeric matrix.

Next, obtain the higher order stiffness in terms of hierarchical rotations:

K0h = Hqrs Kqh Hqo-
3x3 3x6 6x6 6x3

(56)
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Finally, Ka is obtained from

Kh = (1 - v)Hsrv I_h Hey. (57)
9x9 9x3 3x3 3×9

The congmential transformation (57) can be speeded up because of the special nature of H0v, of.

(54), and the bulk of the numerical work is actually spent in (56).

6.6 Generic Stiffness Template and the IET

The expression (57) has significance that transcends this particular element. It is an generic ex-

pression for the higher-order stiffness of any satisfactory membrane triangle with this freedom

configuration. The transformation matrix H0v is always given by (54). Only the generalized stiff-

hess K0"h, which is a higher order stiffness in terms of the hierarchical comer rotations Oi, changes

from element to element. Since this is a 3 x 3 symmetric matrix, it follows that the higher order

stiffness of all elements of this type form a six parameter family.

Using (33) for Kb, it follows that the generic template for the total stiffness is

o
K = Kt, + I_ = L(o_t,) (hE) L(Otb)r + (1 -- y)H_vK0hHov. (58)

with each component contributing 3 to the rank of K, and where the dependence of the force-

lumping matrix L on at, has been emphasized. It is easy to show that any element that befits

this template passes the individual element test ('lET) of Bergan and Nyg/u'd, and consequently no

numerical verification to that effect is necessary. In this regard it is interesting that the 1988 AUman

triangle befits (58), and consequently must pass the lET; further details are given in Section A.9 of

the Appendix.

7. CONCLUDING REMARKS

We have presented the derivation of a plane stress triangle with drilling freedoms using the extended

free formulation (EFF). The main advantage over the FF triangle derived in [1] is that an explicit

form is obtained for the higher order stiffness. This simplifies the symbolic determination of

optimal parameters by energy balance, as investigated in Section 2 of Part HI. In addition the

explicit derivation reveals an generic template form that all elements of this type must fit. Other

element implementation details, such as consistent node force calculations, as well as performance

of the EFF element with respect to other 9-dof triangles, are discussed in Part HI.
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Appendix A. AUXILIARY DERIVATIONS

A.1 The LST Interpolation

Let w = W(_'I, _2) _3) denote any quantity being quadratically interpolated over the six-node linear strain

triangle (I.,,5"I"),for example the displacement components, The node values of w are toi, i = 1.... 6. The

hierarchical LST interpolation is [29]

{l}/lh

w=[w_ w2 w3 w-, w_ w:] _3 =w r _3

fP5 I 4_2_3

¢P6 ' I. 4_3_'t

where the hierarchical nodal values 74, 75 and w6 are defined as the midpoint deviations from linearity

w, = ½(w,+ w2)+ _,, ,05= ½(_ + w3)+ _s, we = ½Cw3+ w0 + w%. (6o)

If one sets w'4 -- w"s = w"6-- 0, (60) collapses to the linear interpolation of the three-node constant strain

triangle (CST), a property characteristic of hierarchical elements.

Two types of shape functions appear in (60). Following the free-formulation (FF) terminology, the three

linear shape functions associated with the corner nodes, namely ¢Pl = _l, _ = _2, and _3 "" _'3, are called basic

shape functions, became they provide the rigid-body and constant strain motions when w is identified with the

displacement components u, and uy. The three quadratic shape functions associated with the midpoint nodes,

namely _o4= 4¢1¢2, _s = 4_2_3 and _06= 4¢3_'t, are called higher order shape functions. The higher order

functions are not energy otthogonal to the lower order ones according to the definitions given below. As we

shall see, (60) is noi suitable as a departure point for the internal displacement expansion of an EFF element,

but it is useful as an intermediate step.

A.2 Generalized Interpolation

A generalization of the quadratic interpolation (60) is

w'-EqiO_(_i,_2,_3)-'[qt q2 q3 q4 qs q_l _4 ' (61)
i=[

in which the coefficients q_ are not necessarily node values but may be interpreted as generalized coordinates.

The associated functions _i are called generalized s_pefunctio_. These functions no longer enjoy the nodal

interpolation properties of the ordinary shape functions _o_.

To construct EFF elements we shall keep the same three basic s_pe functions in (62):

_t = _t = _t, _h -- _ = Ca, _ - _ = _3, (62)

As for the higher order shape functions, the most general choice may be written

¢4 -"/J,t (_ 2 -q-_2) 4. ]22¢324-/23_1 _2 4-/24(¢2¢3 q- ¢3_1)

_bS--"/_1(¢2 -I- ¢2) _1_//,2_.2q./,t3_2_3 dr _4(¢3¢1 dr _t¢2) (63)

#_ = _,(_2 + ¢2)+/_2_ + _3_, + m(_t¢2+ _'2_3)

= wry. (5g) i
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where/J.1,/z2,/z3 and _4 are numerical coefficients, at least one of which must be nonzero. Because the

functions may.be scaled by an arbitrary nonzero common factor, only three coefficients are in fact independent.

The grouping of the terms in (64) is dictated by triangular symmetries. In subsequent developments we shall

restrict the choice to energy orthogonalfunctions defined below. The general case is briefly commented upon
in subsection A.8.

A.3 Energy Orthogonal Shape Funetiom

A higher order shape function ¢)j (j = 4, 5, 6) is said to be energy orthogono./with respect to the basic shape
functions ¢)_ (i = l, 2, 3) if the area integral of any product of thdr triangle-coordinate derivatives is zero.

[This definition applies strictly to the case in which the thickness and material properties a/e constant over the
element. But these conditions hold in the limit of infinitesimally small elements, which is the same limit of

interest for the patch test.] This condition can be expressed as

adPia4_]dA=O, i,m,a = 1,2,3,a¢. a¢,

But since all derivatives of _+ are constant, (65) is equivalent to

j -- 4, 5, 6. (64)

fA a_ a/t = 0, f65)

which expresses the fact that the element mean value of the first derivatives of an energy orthogonal shape

function must vanish.

Applying this condition to (64) we find that the higher order shape functions are energy orthogonal if

2//,I 4-//,3 4-/Z4 = 0, /Z2 4-/_4 = 0. (66)

Given/_t and/z2, which may not be simultaneously zero, these relations determine/z3 and/z,. Because (as

noted above) only three coefficients in (64) are actually independent, it follows that the energy orthogonal

subclass forms a one-parameter family. Note that (60), in which ;z3 - 4, others zero, violates (6/).

Two physically transparent sets of shape functions supplied by these relations are

4_ = (h-_3) 2 , (67)

1++1_5 = (_.__)2 =_ (-_2-_3+2_) 2 . (68)

_b6 (_2 -- 1 )2 (--_3 -- _1 4- 2¢2) 2

which correspond to taking _tl --- I,/z2 ----0, and tzl -----2/9, ;z2 = 8/9, respectively. The first set vanishes

on the triangle medians, whereas the second set vanishes on lines parallel to sides passing through the oentroid.

Any linear combination of these functions, such as

_+ = ci(¢3 - t)2 + c2(¢t - _'2)2 (69)

is also energy orthogonal. Moreover, the sets (68) and (69) are not independent because they can be linked

through the linear transformations

[++,.}[+-+2/ [++./=,o.[++,.}
(_3 +)2 (_3 _t) 2 (_3 _1) 2 (_3 1)2

(70)
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where

E12 ]Q= _ 2 -l (71)
2 2 --1

is an orthogonal matrix. Thus we confirm that all energy orthogonai sets can be related by a linear transfor-

marion, and all of them would produce the same higher order stiffness. Consequently the choice of basis for

the higher order functions is merely a matter of convenience. For the element derived here we select (68) as

this choice leads to a fairly simple generalized higher order stiffness matrix I_h, derived in Section 4. Thus

the generalized interpolation formula (62) becomes

to =[ql q2 q3 q4 q5

(2
_3

q_] (_--¢2)2

(_2- _3)2
(¢3- (L)2

= qr O. (72)

A.4 Freedom Tramfomatiom

We need to establish the transformations q = Tq_,w, w = "l_'q_q that connect nodal values to generalized
coordinates. Formulas (73) and (60) are related by equating their left hand sides because they both correspond

to complete quadratic expansions referred to linearly independent bases:

T T
w = wrqo = qr0 = w TqwO. (73)

7" Evaluating this relation at the six nodes yieldsThus qo= TqwO.

Solvingwe get

-lOO½O½
0 1 0 t t 0

oo,o½½
0 0 0 1 0 0 =Tq_,

0 0 0 0 1 0

0 0 0 0 0 1

8
"I 0 0

0 1 0 _s
9

00 1 __4
9

Tqw= 0 0 0 __o 2_
9 9

0 0 0 2 !o9 9

0 0 0 2 2
9 9

Setting w to ux and uy in turn we can write

_4 _s-
9 9

! 4

! 8_
9 9

2
9

2-
9

tO
9

! ! O"1 0 0 _

OlOO½½
oo1½o½
ilOO  

I
0 1 1 _ 0 1

I 0 1 ! I_ O.

-1 0

0 1

0 0

0 0

0 0

0 0

0 1

0 1

1 0

0 -1

0 _l
4
I

0 4

{q_ } = ITS. T0qw]{mx }.
qy my

From this12 x 12transformationwe extractthe6 x 6 matrixHqm givenin(50).

0 1-

1 0

1 1

1 !
4 #,

-1 -¼

I --1
4
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A.$ Hierarchical Drilling Freedoms

We now study the "migration" of freedoms of the hierarchical I.,ST into drilling and eliminable freedoms. The

continuum-mechanics rotation about the z axis, positive counterclockwise, is defined by formula (27). For the

hierarchical LST element we set w to us and uy in turn and evaluate 0 making use of (39) to get

1

O=_-_[u,l ,_,. u,3 u,t u,2 u,3 _',, _'s5

X23

X31

XI2

Y3t

"' YI2

use _'., _',s _',,] 4(_'tx3,+_'2x23)

4(_'2X,2 + _'3x31)

4(_'3x23 + _',Xl2)

4(_'1Y31 + _'2Y7.3)

4(_'2Y12 + _'3Y31)

4(f3Y23 + _'IY,2)

(77)

Note that 0 varies linearly over the element. It follows that only three independent drilling freedoms may

be definexi, and the obvious locations are the comer points. Any additional drilling freedom (chosen, for

example, at the eentroid) would not be linearly independent. The three comer drilling rotations 81, 02 and 03

at the comers are related to the other freedoms by replacing the comer triangular coordinates in (78):

03 "_'_ Lz23 x31 x12 _ Y3, YI2 4Xl3 4x12 0 4y_ 4y12 0 [XD X31 xi2 .Y_ Y3, )',2 0 4X3! 4x23 0 4y3t 4y_/

/.Is!

gx2

Ux3

/4yl

/,/y2

Uy3

Ux4

_'s6

uys
• uy6

Subsequent manipulations are facilitated by defining the hierarchical rotations 0i = 0i - 00, i = 1,2,
00 is the CST rotation, that is, the mean rotation obtained if one sets u"_4= u'_5 ... '_ -- 0:

(78)

3, where

1

Then (79) simplifies to a matrix relation that involves only the hierarchical midpoint displacements:

l[x3,
°

0 xt2 _, 0 Yn"]
Xt2 0 Y23 Y12 0 ]
X31 X23 0 Y31 Y23

_s6
u.v,t

Uy6

•-- l_m nrL

(79)

(80)
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For reasons explained in subsection A.6, we shall link O to vector s of (49) as O --- l_,.H,_s. Matrix H,_,

which is given in (51), can be constructed by inspection of Figure 2. Carrying out this multiplication and using

the definitions in (23) we obtain

$3On r o

L /_/12 Aa7.3
St- 2

F

.. ),,o a_' a_' o u,, (Sl) i

_ta31 a_ ut6 I

A.6 Choosing Eliminable Freedoms

The 12 - 9 = 3 eliminable freedoms must be displacements because no more linearly independent drilling _'

freedom choices remain. From symmetry and invariance considerations four possible choices emerge:

(1) The hierarchical midpoint freedoms directed along the side directions: u,4, u,5, u,6.

The hierarchical midpoint freedoms directed along the normal directions: Un4, UnS,Un6. _-...l;_'
(2)

(3) The hierarchical midpoint freedoms directed along the median directions: u=4, u=5, u,,6.

(4) The hierarchical midpoint freedoms directed along the normal-to-the-median directions: ut4, u,5, u,6. _r

Choices (1) and (4) lead to transformation matrices that are singular for any triangle. Choice (2) leads to a ..-:

transformation matrix that is singular for right-angled triangles. That leaves choice (3), which as shown below

has a well conditioned inverse. The necessary relation relating "e to s is available in (82). This is rendered ._',i,!.,

square by augmenting it with the trivial relations _',a = _',,a, i = 4, 5, 6: G

1 o o o o o '_"- I
_" o 1 o o o o s
u.5 0 2 0 s_L_, 0 0 0

" _ _ U_n6 I

o o
2 -- Aal2 /_a23 ttt5

or r --- I_ss in the notation of (46). The determinant of It,., is ana_a3t/2A 3. Thus H,, is nonsingular for any

nondegenerate triangle. Symbolic inversion of this transformation provides matrix H_, given in (52).

A.7 Elimination of Hierarchical Median Displacements by Collocation

We now proceed to eliminate u"m4,_'.t5 and _'.6 through kinematic constraints. To fix the ideas consider _'_.

From the boundary expansion (29) on side 1-2 we can obtain the normal displacement d. in terms of the
freedoms on that side. The hierarchical value at 4 is

Zn4 --" dn4 !-_(d_,+ d_)

(83)

Here parameter ab of (29) has been renamed an to emphasize the fact that we can vary both independendy for

the basic and higher order stiffness. Assuming the collocation

_'._ = u'_ cos(nt2,,n t2) = a.4(t,tde,_), (84)
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I
r where the bzj are defined in (23), we find

, = - (85)

Repeating this procedure for the other two sides and collecting into one matrix equation we get

I

t

I
!

Augmenting this with the trivial equations 0i = 0i (i = 1, 2, 3) as last three rows and replacing b 0 = 2A/a U

yields the transformation matrix H_ listed in (53). An energy balance analysis presented in Section 2 of Part

III shows that the best value for oth is

_h = 5/4, (87)

a value that has been hardwired into (55).

A.8 What Happens for Non Energy-Orthogonal Functions?

The original FF does not depend on the energy orthogonality concept although the variational justification
of Refs. [21-24] does. To assess the effect of that condition on this element, symbolic experiments (with

Macsyma) were conducted with elements derived with the general assumption (62) for the higher order shape

functions. The o_d_ogonality condition (67) was replaced by

2/_t + #3 +/_4 = St, /_2 +/_4 = _, (88)

where 8, and _ may be regarded as deviations from energy orthogonality.

The EFF higher order stiffness depends on two parameters: y and ah, where y defines the scaling of

Kh as per Eel. (12). These parameters are selected to match pure-bending energies on regular mesh units, as

described in Part lII [16]. When the energy orthogonal sets are selected, the matching can be made so that a

set (7, _k) works for all aspect ratios. With (89) it was found that such matching was possible only if

= (89)

One choice that verifies this condition is

{°}{, +,,°,}_5 = (¢2-¢3) 2+_8 ,
_ (_'3- _'z)z + _ _s

(90)

in which 0s = _'1_'2+ _2_'3 + ¢3¢1. This is not energy orthogonal if &z _ 0. Closer examination, however,
showed that the same higher order stiffness matrix Kh was produced for any value of _; thus adding ¢'s has
no effect.

Any deviation from the condition (90) made matching impossible: only specific element aspect ratios

could be energy balanced. Thus it appears that the main effect of departure from energy orthogonality is a

degradation in element accuracy. Consequently the general assumption (62)-(64) was not pursued further.
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8.1 Allman Triangles Fit the Generic Template

The rank-sufficient Allman triangle [7] was constructed with incompatible cubic shape functions. Numerically

integrated versions of this element have been symbolically analyzed as prelude to the evaluation presented in

Part m. Four triangle integxation rules, labeled as follows, were considered:

lc The 1-point eentroidal integration rule.

3m The 3-midpoint rule of quadratic accuracy.

3i The 3-interior point rule, also of quadratic accuracy, with points at _'i = 2/3, _'j = _'t = 1/6.

7i The 7-interior point rule of cubic accuracy.

The resultant (total) stiffness matrices will be denoted by K Aic, KA3,, KA3/and K AT,respectively. All of them

were found to fit the generic template (58) in the sense that

K AIc -- Kt,(4/3)

K/'3"t Kb(1) + K3'' Kb(1) r 3,"- -- -t- I_vKqh I-_,

I-I T 1£ 3i 171.K 't3i = Kt,(1) + K_i = Kb(1) + "_o"qh'_,*

171[T It rTi 121".K ATi= Ir_(l) + K7i -- K/,(I) q- ,_,ov_,,.qh_.ee

(91)

where the argument of Kb is the value of¢b obtained by setting constant stress states. The eentroid-integrated
stiffness K 'uc is of course rank deficient by 3. The 3-point-integrated Allman elements are effectively linear-

strain, quadratic displacement triangles because such sampling "filters out" quadratic strain variations. The

higher order stiffness of these 3-point integrated elements does not fit into the present EFF family except for

specific geometries. For example, for the equilateral triangle, K_ coincides with EFF's Ks if 1 - y = 1/4

and _h = (32 4- .¢/_)/24, whereas K 3i is obtained if 1 - y = 1/36 with the Same ¢h = (32 4- _/_)/24.

To achieve equivalence for more general geometries, however, it becomes necessary to generalize the present
EFF formulation by allowing three cth coefficients, one per side, with ¢hi depending on the magnitude of the

opposite angle.

The main practical value of the decomposition (92) is that it shows that the numerically integrated Allman

elements pass the patch test without any numerical experiments. The equivalent EFF elements, however, have

parameter values that do not agree with the optimal ones determined in Part rr/. As a consequence, the

performance of all Allman triangles deteriorates for high aspect ratios.
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MEMBRANE TRIANGLES WITH CORNER

DRILLING FREEDOMS: II. THE ANDES ELEMENT

SUMMARY

This is the second article in a three-Pan series on the consa'uctionof 3-node, 9-dof membrane

elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using

parametrized variational principles. In this Part, one such element is derived within the con-

text of the Assumed Natural Deviatodc Strain (ANDES) formulation. The higher order strains

are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains

are obtained at the comer points and interpolated over the elcmonL To attain rank sufficiency,

an additional higher order "torsional" mode, corresponding to equal hierarchical rotations at each

comer with all other motions precluded, is incorporated. The resulting formulation has five free

parameters. When these parameters are optimized against pure bending by energy balance meth-

ods, the resulting element is found to coalesce with the optimal EFF element derived in Part I.

Numerical integration as a strain filtering device is found to play a key role in this achievement.
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1. INTRODUCTION

In the first Part of this article series [1], a 9-dof triangular membrane element with three corner

drilling freedoms was constructed within the framework of the extended free formulation (EFF). In

the present work, we undertake the derivation of an element with the same freedom configuration,

using the Assumed Natural Deviatoric Strain (ANDES) formulation.

ANDES represents a recent variant of the Assumed Natural Strain (ANS) formulation. The

latter is in turn a relatively new development. A restricted form of the assumed strain method, not

involving natural strains, was introduced in 1969 by Willam [2]. He constructed a 4-node plane

stress element by assuming a constant shear strain independent of the direct strains, and using a

strain-displacement mixed variational principle; the resulting element is identical to that derivable

by selective one-point integration. A different approach advocated b.y Ashwell and coworkers

[3] viewed "strain elements" as a way to obtain appropriate displacement fields by integration of

assumed compatible strain fields. (In fact, this was the same technique used by Turner et. al. [4]

for deriving the constant strain membrane triangle in their celebrated 1956 paper.)

These and other forms of assumed strain techniques were overshadowed in the 1970s by

developments in reduced and selective integration methods for displacement models. The assumed

strain approach in natural coordinates, inaugurated in a pioneer paper by MacNeal [5], has attracted

increased attention since 1980. Among the main contributors we may cite Bathe and Dvorkin [6],

Park and Stanley [8,9], Crisfield [7], Simo and Hughes [10], Huang and Hinton [11 ], and Jang and

Pinsky [12]. The name "assumed natural strain" and the acronym ANS are due to Park and Stanley

[9].

ANS applications have been focused on plates and shell elements because of the effectiveness of

this formulation in producing elements with low distortion sensitivity, balanced stress/displacement

accuracy, and which are easily extendible to geometrically nonlinear analysis. These advantages are

somewhat counterbalanced by the fact that a priori satisfaction of the patch test is not guaranteed,

even for fiat elements, and a posteriori verifications to that effect are required.

The basic steps of the ANS formulation are summarized in Box 1. The narrative assumes

that the element to be constructed has nodal displacement degrees of freedom collected in vector

v (these are those nodal variables common with other elements, also called the visible degrees of

freedom, or connectors), elastic modulus matrix E, and volume V. A generally incompatible strain

field (that is, one not necessarily derivable from displacements), is built in natural coordinates,

transformed into Cartesian coordinates where it is expressed as e = By, and used to compute

the stiffness matrix K by the standard formula .iv BrEB dV. From the standpoint of connected

elements, an ANS element looks exactly like a displacement model and can be easily implemented

into a standard finite element code. Extensions to geometrically and materially nonlinear analysis

are equally straightforward.
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ANDES is a variant of ANS that exploits the fundamental decomposition of the stiffness

equations described in Box 1 of Part I [I]:

Kv = (Kb + aKh)v = p, (1)

where a > 0 is a scaling coefficient. Assumptions are made only on the "deviatoric" portion

ed of the element strains, namely the portion that integrates to zero over the element volume:

Thus instead of e = Bv we eventually get, by the procedure outlined in Box 2,fveddV = O.

ed = Be V, arid

Kh = ct fv BdrEBd dV. (2)

The basic stiffness matrix Kb is constructed by the same procedure described in Box 2 of Part I.

The mean portion of the strains, namely _, is left to be determined variationally from the constant

stress assumptions used to develop Kb, and has no effect on the stiffness equations.

The main advantage of ANDES over ANS is that elements constructed with the former tech-

nique are guaranteed to pass the individual element test of Bergan and Hanssen [ 13] (a strong form

of the patch test that demands pairwise cancellation of surface tractions among adjacent elements

in a constant stress state). There are cases when an ANS element and the corresponding ANDES

element with a = 1 coalesce. The ANDES formulation retains an edge, however, in that the scaling

coefficient remains available to improve the element performance. Furthermore, the availability of

Kh helps in the construction of element level error estimators [14] for r and h mesh adaptation.

The variational justification of the ANDES formulation was developed by Felippa and Militello

[ 15,16], to which the reader is referred for details. This justification built on previous work [ 17,18]

on the variational foundations of the ANS formulation. The first ANDES elements constructed

using this theory were 9-dof Kirchoff plate bending triangles presented in [ 19]. The technique has

also been used to formulate C O plate bending elements [14].

The present paper describes the first application of ANDES to membrane elements with drilling

degrees of freedom. The main objective is to illustrate another application of this relatively new

technique and assess its advantages and shortcomings when compared to FF and EFF.

2. THE TRIANGULAR ELEMENT

The geometry and degree-of-freedom configuration of triangular element is identical to that devel-

oped in Part I, to which the reader is referred for notation, geometric and behavioral relationships.

2.1 Extracting the Higher Order Behavior

From the EFF development in the Appendix of Part I we learned that the most effective way to

exhibit the higher order element behavior is to extract the hierarchical comer rotations 0i from the

total comer rotations Oi:

Oii= Oi -0o, " (16)
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•Box 1 Construction of K by the ANS Formulation

Step S.1. Select locations in the element where "natural straingage" locations are

to be chosen. For many ANS elements these gages are placed on reference lines (in

2D elements) or reference planes (in 3D elements), but this is not a general rule. By

appropriate interpolation express the element natural strains e in terms of the "straingage

readings" g at those locations:

e = A_ g, (3)

where e is a strain field in natural coordinates that must include all constant strain states.

(For structural elements the term "strain" is to be interpreted in a generalized sense.)

Step S.2. Relate the Cartesian strains e to the natural strains:

e = T¢ = TAng = Ag (4)

at each point in the element. (If e -- e, or if it is possible to work throughout in natural

coordinates, this step is skipped.) The resulting Cartesian strain interpolation is

e = TAng = Ag. (5)

If T is constant over the element, as in the case of the triangle studied here, the step

during which interpolation is effected is irrelevant.

Step S.3. Relate the natural straingage readings g to the visible de_ees of freedom

g = Qv, (6)

where Q is a straingage-to-node displacement transformation matrix. Techniques for

doing this vary from element to element and it is difficult to state rules that apply to every

situation. Often the problem is amenable to breakdown into subproblems; for example

g = Qtvt + Q2v2 +... (7)

where vl, v2 .... are conveniently selected subsets of v. Some of these components may

be derivable from displacements while others are not.
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Step S.4.

the element stiffness matrix is given by

Box 1 Construction of K by the ANS Formulation (Continued)

For a three-dimensional element of volume V and elastic modulus matrix E,

K = QrKaQ, with K_ = fv ArEA dV. (8)

Should B = AQ be readily available one may use the standard formula

P

K = Jv BrEBdV" (9)

general this stiffness matrix does not necessarily pass the individual element testIn

of Bergan and Hanssen [13] (a strong form of the patch test that demands pairwise

cancellation of node forces between adjacent elements in constant stress states). For this

to happen, K must admit the decomposition

K = Kb + Kh -" u-ILEL r + Kh, (10)

where u = fv d V is the element volume measure, L is a force-lumping matrix derivable

as discussed in Box 1 of Part I and Kh is orthogonal to the rigid body and constant

strain test motions. In other words, the ANS element must coalesce with the ANDES

formulation with ot = 1. The equivalence may be checked by requiring that

= AQ = u-l L r, (11)

D

where A denotes the mean part ofA (cf. Box 2). As of this writing, no general techniques

for explicit construction of ANS fields that satisfy these conditions a priori are known.

If the patch test is not satisfied, one should switch to the ANDES formulation by

replacing the basic stiffness constructed from constant strain, namely uBTEB, with one

constructed from constant stress assumptions.
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Box 2 Construction of Kh by the ANDES Formulation

Steps H. I to H.3.

Step H.4.

strains:

Identical to the first three steps S. 1 through S.3 in Box 1.

Split the Cartesian strain field into mean (volume-averaged) and deviatoric

e = _ + ed = (A + Ad) g, (12)

where A = v-i fv TA_ d V, and ed = Aa g has mean zero value over V. For elements

of simple geometry this decomposition can often be done in advance, and ea constructed

directly. Furthermore, this step may also be carried out on the natural strains if T is

constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by

Kh = o_QrKdQ, with Kd = fv ATEAd dV, (13)

where a = j22 > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q into a single strain-displacement

matrix called (as usual) B, which splits into B and Ba:

e = AQv = (A q- Ad)QV = (B q- Bd)v = B v, (14)

in which case

Kh = fV BdTEBd dV.
(15)
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where i =

1

00 = _-_ (x23vxt + x31ox_ + xt2Ox3 + y23Oy, + y31 oy2 + yl2oy3) .

From (16) and (17) we readily perceive the fundamental transformation

or

1, 2, 3 is the comer index and 0o is the rotation of the Constant Strain Triangle (CST):

(17)

{0_1}02 = 1 [ xn y32 4A0 xl3 yl3 0x214A Y21 0]0_'3 _ X32 Y32 Xl3 YI3 X21 Y21x32 Y32 0 xl3 Y13 0 x21 Y21 4A

1)x 1

1/yl

01

l/x2

l)y2

02

vx3

1)y3

O3

_ ["I0 v V.

, (18)

(19)

The unscaled higher order stiffness of this element fits the generic template introduced in Section

6.6 of Part I:

Kh -- HTvKOhl'Iov. (20)

The main objective of all formulations investigated here, as well as those in Part I, is to construct the

3 x 3 matrix K0h, which represents the higher order stiffness in terms of the hierarchical rotations

Guided by these considerations, we begin by decomposing the visible degree of freedom vector

into basic (CST) and higher order, as follows:

v=vb+vh=vb+P0, (21)

where
1)xl

Vy2

oo

Vx2

Yb _ Vy2

Oo
Vx3

11y3

oo

, Yh

0

0

g,
0

0

g=
0

0

0 0 0-

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

g
(22)

To simplify the problem of building higher order strain

rotations into mean and deviatoric:

fields, we further split the hierarchical

(23)
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where 0 1 _ t t ,'= :(Or + 02 + 0"3) and O: = _ - O. Consequently 01 + 0 2 + 0 3 = O. In matrix form

= 0 + 0', (24)

which in terms of the nodal displacement vector becomes

v = vb + P(0 + 0'), (25)

where P is the 9 x 3 matrix shown above. The deviatoric corner rotations define the linear deviatoric-

rotation field:

0' 0_:_+ 0_:_ '= -'1- 03(3, (26)

which integrates to zero over the element. For future use we note the matrix relation

{'/E2' , -1 2-1 02 = 0 1 0 1 1 02
02 = : -1 -1 2 O3 0t 0 1 - : 1 0"3
03 : : i ooo

(27)

or

{/ -O' = (J'- J)O. (28)

The hierarchical rotation decomposition is associated with a similar decomposition of the higher

order strains:

ea = eb + et, (29)

where subscripts b and t identify "pure bending" and "torsional" strain fields, respectively. The

former is generated by the deviatoric rotations O' whereas the latter is generated by the mean

hierarchical rotation 0. We now proceed to examine these two components in turn.

2.2 The Pure-Bending Field

This field is produced by pure inplane-bending modes associated with the deviatoric corner rotations

0_, i -- 1, 2, 3. One way to visualize the nature of these modes is to think ofatiny triangle superposed

on a thin plane beam bent to constant curvature in its plane. Place the triangle centroid at neutral

axis height. Then rotate the triangle So that its 3 sides align in turn with the bending direction.

From this visualization it follows that the reference lines mentioned in Box 1 are the triangle

sides. The straingage locations are chosen at the triangle corners. The natural strains are the three

direct strains parallel to the triangle sides, traversed in the counterclockwise sense. These strains

are collected in the vector

_b= {_b2_ _b32 Eb13}r- (30)

The natural strain Ejk at corner i will be written 6jkli, the bar being used for reading convenience.

Vector eb at corner i is denoted by et, i. Our objective is to construct the 3 x 3 matrices Qbi that

relate natural straingage readings to the deviatoric rotations:

Et,t = Qt, lO', _t,2 = Qb2 0', Eb3 = Qb30', (3l)
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Once these are known the natural .bending strains can be easily obtained by linear interpolation over

the triangle: eb = (Qbl(1 + Qb2(2 q- Qb3(3)0' = Qb 0'.

Consider the natural strain Eb21(P) at an arbitrary point P of the triangle. Denote by d2ue the

signed distance from the centroid to P measured along the internal normal to side 21. In particular,

for the corners we have

4A d2111 = d2t12 l 2A--, = -_d2u3 = ---. (32)
d2113 = 3£21 3£12

We shall assume that 6b21lP depends only on d2ll? divided by the side length £21, which introduces

a distance scaling. These dimensionless ratios will be called X211? = dEllP/£21, which specialized

to the comers become
4A 2A

(33)
.

X2113- 3£21 X2111 X2112 3£21

Formulas for corners 2 and 3 are obtained by cyclic permutation. According to the assumption just

stated, the natural straingage readings Eb2_ti at comer i depend only on X2_li, multiplied by as yet

unknown weighting factors. This can be written in matrix form as follows:

_bl _ 663211 -" P5 X3211

6b1311 --DIXI311

662112 } F P2X2112
eb2 --" Eb3212 "- [ P4X3212

/

6b1312 L -P3XI312

_b3 -" 6b3213 -" P4X3213

Eb1313 --P2X1313

-P2X2111

,03 3(321 l

P4Xl311

--Pl X2112

P 1X3212

PsX1312

-P3X2113

P2X3213

P4XI313

P4X2111 I O_
--P3X3211 0_ -- QblO/,

p2xl31_ 0_

P4X2112 0_

--,O2 X3212 0_ Qb20' ,

P3XI312 0_

PsX2113 0'1

--Pl X3213 O_ Qb3 0',

PlXI313 O_

(34)

where Pl through P5 are dimensionless weight factors to be determined on the basis of energy

balancing for rectangular mesh units, as discussed in Section 3. The distribution and sign of these

factors is made on the basis of triangular symmetries.

The strain field is energy orthogonal if

Pl + P2 = 2p3, P4 + Ps = 0, (35)

but these conditions will not be assumed a priori. The optimal element described in Section 3.2

will be found, however, to satisfy (35).

The natural strains can be related to Cartesian strains by the transformation

,= =/c 2
E3, Lc 3

s lc211{exx}s_2 snc32 / en' = T-le"

$23 S13C13 ..I 2exy

(36)
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where c2t = x21/e21, $21 -- y2l/g21, c32 = x32/e32, $32 = Y32/e32, ct3 -" x13/e13 ands13 = Y13/e13.

The inverse of this relation is

{exx} 1 [ Y23YI3£221 Y31Y21_22 Y12Y32_23eyy = _ x23x13e21 x31x21e22 x12x32e_3

2ex_, (Y23X31 + x32Y13)g21 (Y3lXl2 + x13y21)e_2 (Y12X23 + x21Y32)ez13
El2 }
E23

_¢31

(37)

or, in compact matrix notation, e --- Te. Note that T is constant over the triangle. Combining with

(30) we get the Cartesian comer strains as ebi = Bbi O' = TQbi0', i = 1, 2, 3. The Cartesian strains

are obtained by linearly interpolating over the element:

eb = (Bbt_'l + Bbzff2 + Bb3_'3) 0/= Bb 0_. (38)

2.3 The Torsional Field

The higher order stiffness produced by the pure bending fields alone is rank deficient (2 instead of

3) because of the deviatoric constraint _ 0: = 0. To complete the construction of a rank-sufficient

higher order stiffness we need to build a strain field associated with the de_ee of freedom setting

0i "-- 0, others zero. This may be viewed as forcing each comer of the triangle to rotate by the

same amount while the comer displacements are precluded. A displacement-based solution to this

problem is provided by the cubic field of the QST triangle constructed by Felippa [21 ] and developed

by Carr [22] as membrane component for refined analysis of thin shells. The QST expansion is

U X

1)xl

l)x,xl 1

13x, yl 1

Ox2

1)x,xl2

1)x,yl2

1)x3

l)x,xl3

l)x,yl3

1)xO

". T

_?(3 - 2_L) + 2_t _'3

_'2(Y12_'2 -- Y3t_'3) -t- (Xt3 --x21)_1_2_3

_'2(X21_'2 -- x13_'3) + (Y3t Y12)_'1_'2_'3

f_(3 - 2_2) + 2f_f2_3
_zZ(y_f3 -Yl2_l) + (x21 --x32)f_2f3

[ _2(X32_3 -- X21_I) + (YI2 -- Y23)_1 _2_3

_'_(3 - 2_'3) + 2_'1_'2_'3

_'2(Y31_'1 -- Y2.3_'2) q- (x32 -- x13)_l_'Z_'3

_'2(x13_'1 -- X32_'2) q- (Y23 -- Y31)_'1_'2_'3

27¢1_2_'3

(39)

where vx.._li and Vx.yli denote bUx/aX and aux/by, respectively, evaluated at comer i. A similar

interpolation holds for the y displacement component uy. The torsional mode with unit rotations

Oi = 0 = 1 is imposed by setting the QST nodal displacements to

v_i = v_,z = V_.xlj = vy.yl./ = O, vx.ylj = -O, vy.xl/ = O, i=0,1,2,3, j= 1,2,3.
(4O)

Differentiating (39) with respect to x and y and setting the freedoms to (40), we obtain the torsional
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strain field

1 r ]

--_[(IY23(Y31(3 -- Y,2(2) + (2Y3, (Yl2(l -- Y2a(3) + (3YI2(Y23(2 -- Y31(t)JO,etxx

1 r 3

etyy

1 r

2etxy --_- L(IX32(Y31(3 - Y12(2) - (lY23(x21(2 - x13(3)

q- (2x13(Y12(| - Y23(3) - (2Y31(x32(3 - x21(l)

4- (3x21 (Y23(2 - Y31(i) - (3Yt2(xt3(i -x32(2)]0,
d

(41)

where A is the triangle area. In matrix form

etxx
et = etyy = Bt 0. (42)

2etxy

This strain field is compatible, varies quadratically, and vanishes at the comers and centroid. Inte-

grating over the triangle and using the fact that xl2 + x23 + x3t = 0 and Y12 4- Y23 4- Y31 -" 0 it may

be verified that all strain components are energy orthogonal.

The field (41) appears unduly complicated. Conversion to natural strains through the transfor-

mation (36) reveals, however, its intrinsic simplicity:

rx2e,= E,32 =T-let=3[X3212(32(l 0,
6t13 L X13t3 (13(2

(43)

where (21 = (2 - (1, (32 = (3 -- (2 and _'t3 = (t -- (3. For future use, it is of interest to consider

a midpoint-filtered version of (43), obtained by evaluating it at the three triangle midpoints 4, 5, 6

and then interpolating linearly over the triangle:

ix211 21115t = 6_32 = 3 X3212 (32 0- (44)

xl3t3 (13

To facilitate combination with the bending field, it is convenient to define the "spread" matrix form

of (44) in which each column receives one third of the strain:

[' /rx2 21x2 2x211 211/ /Et= 6_32 = /X3212(32 X3212(32 X3212(32 0 =Q_ O

e,_3 L X1313(t3 X1313(13 X1313(13 0

(45)
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3. THE STIFFNESS MATRIX

Having constructed the higher order strain fields, the computation of the higher-order stiffness can

proceed according to the general rules laid out in Box 2. The bending and torsional strain fields are

combined as

ea = BoO' + Big = (BbJ' - Btj) 0 = BaO, (46)

where J' and J are the numerical matrices in (28). We shall evaluate the higher order stiffness in

terms of O, namely

Koh = JA Bar(hE)Be dA (47)

where h is the plate thickness, by numerical quadrature. The 9 x 9 higher order stiffness Kh

then follows from the congruential transformation (19). At this point, however, we still have the

undetermined Pi coefficients present in Ba.

3.1 The Optimal Element

For reasons that will be immediately apparent, we are particularly interested in three point quadra-

ture rules defined parametrically by

fAF((t,(2,(3)dA._A[F(_,_7,0)+F(_7,_,fl)+F(o,_,_)] (48)

where 0 < _ < 1 and rl = ½(1 - _e). In practice the two most interesting rules of this type

are _ = 2/3 (the interior-three-point rule) and _ = 0 (the midpoint rule), both of which exhibit

quadratic accuracy. But in the present context it is instructive to leave _ free, excluding only the

cases _ = 1 (comers) and _ = 1/3 (centroid). A symbolic analysis with Macsyma, described fully

in Section 2 of Part rrt [20], shows that the choice

Pt =0, p2 = 1--_, p3=½(1--_), P4=P5 =0, (49)

has the following properties:

1. It achieves pure-bending energy balance for rectangular mesh units of arbitrary aspect ratio,

a test discussed in detail in Section 2 of Part IZI.

2. Let Koh(_) be the stiffness obtained with the integration rule (48) and the choice (49) for the

p coefficients. Then the scaled stiffness

2
Koh

8(_ -- 1)2(_ -- ½) 2K0h(_)'

(50)

is independent of _, and coincides with that of the optimal EFF element derived in Part I [ 1].

For practical calculations, it is convenient to use the midpoint rule _ = 0 in which case

Koh = 9K0h (0) for Pz = 1, P3 = ½, others zero. If these are replaced in (34), the matrices Qbi

reduce to the simple form
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O -X2_I_ 0 1
t

Ql,_ = 0 ½Xs21t --_X3211 ,
0 0 X13tt

X2t12 0 0 1
Qb2 = 0 0 -X3212 ,

I
--_X1312 0 ½XI312 J

Ix2113 I ]

_ -T_ X2tl30
Qb3 = 0 X32]3 0 .

--XI313 0 0

(51)

The seven-interior-point quadrature rule was also tried, but then it was found impossible to

construct an energy-balanced element. Because this rule accounts for quadratic strain variations in

the torsional mode, the foregoing negative result suggests that linear strain variations are required

to attain an optimal element.

3.2 The Combined Natural Strain Field

Having chosen the optimal p coefficients and the midpoint integration rule, it is possible to obtain

the complete higher-order natural strain field. This is done by combining the bending matrices (51)

with the filtered torsional strain expression (45):

_ mjEd = (QbJ' Qt ) 0 - Qd 0 --" (Qal_'l + Qd2(2 q- Qd3(3)0, (52)

where

I -X02111 -2X2111
Qdl 1-- _ X3211

X1311 XI311

I IX2113 1

-- _ X2113

Qd3 -- X3213 2X3213

--2X1313 -X1313

x21112x 1' x21'2ox221 -- _ X3211 , k_d2 = --X3212 --)(3212 --,_X3212 ,
I 1

2X 1311 -- _ X1312 _ X 1312

°1X3213 •

--X1313

(53)

Evaluation at the midpoints gives

-_X2114 0 -- 115

Qa4 - | X3214 2X3214 X3214 , Qd5 --

L-2XI314 --X1314 --X1314.J L X1315

I 2X2116 X2116 X2116 1
Qa6 = --X3216 --X3216 --2X3216

10 1
-_X1316 _X1316

-2X2115 -X2115t 1
1 X3215 - _ X3215 ,

X1315 2X1315

(54)

1
where Xjil,* = i(Xjill + Xjil2), etc. Note that the structure of Qd4, Qas, Qd6 mimics that of Qd3,

Qal, and Qa2, respectively, the only change being the evaluation point.

3.3 Fast Computation of Kh

With the explicit strain expressions of Section 3.2 we are now in a position to try for the fastest

computation of Kh. For this we proceed as follows. First evaluate

E,, = TrET, (55)
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which may be interpreted as a stress-strain matrix in natural coordinates. Then apply the midpoint

rule, which for uniform thickness h yields

9 Ah (Qar4E, Qa4 + Q_-sEnQ,/5 + Qar6E,,Qa6 )
K°h-4 3

(56)

Finally, transform to physical coordinates via (20), in which advantage should be taken of the special

form (18) of H0_. These are essentially the same computational steps described in Appendix 2 of

[19] for the 'AQR' ANDES plate bending triangle.

4. CONCLUDING REMARKS

We have presented the derivation of a plane stress triangle with drilling freedoms using the assumed

natural deviatoric strain (ANDES) formulation. It is somewhat surprising that the optimal choice

in the energy-balance sense described in Section 2 of Part III [20] coalesces with the optimal EFF

element. This result suggest that this may in fact be the best available triangular element with the

present freedom configuration.

Numerical integration is seen to play a crucial role in achieving an optimal element. The key

effect is the function of the 3-point rule as a strain filtering device for the torsional mode. Note

that strain filtering was not needed for the EFF derivation in Part I, which dealt throughout with

quadratic displacements and linear strains.

Despite the coalescence, the ANDES derivation displays a different flavor than EFF. The

formulation offers greater flexibility in that one is not restricted to compatible strain fields, allowing

element developers to bypass detailed kinematic analysis. By way of contrast, the present element

was formulated in two months whereas the derivation of the final EFF form took over one year.

The difference may become more appreciable as one proceeds to shells and solid elements.
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On the other hand, FF and EFF do provide explicitly the internal displacement field. This

knowledge is useful in the calculation of consistent node force vectors -- a topic further treated in

Sections 3-4 of Part III--consistent mass matrices, and geometric stiffness matrices. In cases where

the same element is available from both assumed-strain and assumed-displacement formulations

(the present element as well as DKT being examples), one would prefer the latter for tasks that

demand knowledge of internal displacements.
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MEMBRANE TRIANGLES WITH CORNER

DRILLING FREEDOMS: III. IMPLEMENTATION

AND PERFORMANCE EVALUATION

SUMMARY

This paper completes a three-Part sedes on the formulation of 3-node, 9-dof membrane triangles

with comer drilling freedoms based on parametrized variational principles. The first four sections

cover element implementation details including determination of optimal parameters and treatment

of distributed loads. Then three elements of this type, labeled ALL, FF and EFF-ANDES, are tested

on standard plane stress problems. ALL represents numerically integrated versions of Alhnan's

1988 triangle; FF is based on the free formulation triangle presented by Bergan and Felippa in 1985;

and EFF-ANDES represent two different formulations of the optimal triangle derived in Parts I and

II. The numerical studies indicate that the ALL, FF and EFF-ANDES elements are comparable in

accuracy for elem_ents of unitary aspect ratios. The ALL elements are found to stiffen rapidly in

inplane bending for high aspect ratios, whereas the FF and EFF elements maintain accuracy. The

EFT:and ANDES implementations have an edge in formation speed over the IF.
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1. INTRODUCTION

This paper is the last in an article series [1,2] that deals with the formulation and evaluation of

high-performance triangular membrane elements with comer drilling freedoms. Those elements

were derived using two recently developed techniques: the Extended Free Formulation or EFF [3]

and the Assumed Natural Deviatoric Strain or ANDES [4, 5].

Part III has two main objectives:

. To complete the theoretical derivations of Parts I and 11 with formulation and implementation

details. These include the determination of optimal parameters by energy-balance methods,

and the conversion of distributed applied loads to node forces. A third topic: accurate recovery

of strains and stresses, is deferred because the study of superconvergent stress points (Barlow

points) is still in progress.

. To carry out a comparative evaluation of triangular elements of this type derived with three

different construction methods: Allman's, FF and EFF-ANDES. The comparison involve

accuracy for known test problems, accuracy degradation for high element aspect ratios, and

computer formation times.

Table 1 summarizes notational conventions for the elements considered in following sections.

2. PARAlVIETER DETERMINATION

The EFF and ANDES triangles derived in Parts I and 1I, respectively, initially carry along a set of

numerical parameters, most of which affect the higher order stiffness:

K _'r = Kt, (o%)

K ANDEs = Kb(ab) +

(1)

(2)

where K_, is the unscaled higher order stiffness. Parameter at, must be the same for all elements in

an assembly, for otherwise the patch test would be violated. All other parameters may, in principle,

vary from element to element without affecting convergence.

Equations (1)-(2) display a total of 3 and 7 parameters for the EFF and ANDES elements,

respectively. The presence of these parameters is both a nuisance and an opportunity. In production-

level programs one should never leave such parameters to be defined by users, as that would demand

specialized knowledge. On the other hand, they provide the opportunity to improve the element

performance in some respects, a process that may define "optimal values" for at least some of them.

Such values may then be either hardwired in the element subroutine, or in the element-calling

programs.

In the most favorable case the best value of a parameter is element independent; if so it can

be set once and for all. Example are the "magic values" ab = 3/2, ah = 5/4 for (1). Next best is

dependence on material properties but not on geometry; such parameters may be left as subroutine
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Table I Element Notational Conventions

Identifier Description

ALL-3i

ALL-3m

ALL-7i

CST

EFF(ab,o_h,/3)

EFF

FF(:)

FF

AND(ab, a, Pl .... ps)-7i

AND(ab, a,Pl .... Ps)-3_

AND

EFFAND
i

1988 Allman triangle [6] numerically integrated by the 3-interior-

point rule with sample points at (3'-6' g)' (t, 3, g), (g' g, 3)"

Ibid., numerically integrated by the 3-midpoint rule.

Ibid., numerically integrated by the 7-internal-point rule.

Constant Strain Triangle; same as EFF(0,0,0).

EFF triangle constructed in Part I, with free parameters.

EFF triangle with optimal parameters (6), except that/3 =

max(½(l -4v2), 0.01) to maintain rank.

FF element constructed in [7] with at, = 23-but with/5 = 1 - y as

free parameter.

FF element with/5 = !
2"

ANDES triangle constructed in Part II, with free parameters, nu-

merically integrated by the 7-interior-point rule.

As above but numerically integrated by the parametrized 3-point

rule with sample points at (_, ½(1 -_), ½(1- _)),

(½(I-_),_, ½(I-_)), (½(I-_), ½(I-_),_)forO _< _ < I,

butexcluding_ -- _.

As above,upon substitutionoftheoptimalparameters(7).Coa-

lesceswithEFF.

Designatesindistinctlythe optimalEFF orANDES triangles.

arguments to be set by calling routines that may examine constitutive properties. A typical example

is the higher order stiffness scaling factors/5 = 1 - y for EFF and a for ANDES. Least favorable

is when the best value depends on element geometry; if so some compromises may be called for.

2.1 The Bending Test

For the present elements, parameters will be determined by an energy balance method on rectangular

mesh units under simple but nonuniform motions. (This method resembles a linear patch test whose

satisfaction is sought on an energy sense.) A modification of the test described by Bergan and Felippa

[7] for the FF element is used. More specifically, we require exact energy response to pure bending

in the configuration shown in Figure 1. The material is isotropic with elastic modulus E, Poisson's
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Figure I. Mesh unit used for optimal parameter determination.

ratio v, and uniform thickness h. Each mesh unit is assembled with two triangles; because of the

symmetry the results would be identical if four half-thickness overlaid triangles (with no internal

nodes) were used.

The 0 < X < L, 0 < y < H mesh unit is subjected to the pure-bending displacement field

1 (X 2 + vy2), 0 ¢x, (3)ux = -Kxy, Uy = IK =

where r = M/(EI), with I = _hH 3, is the bending curvature. This produces an equilibrium

plane stress state crxx = EKy, others zero. The exact strain energy stored in the elastic body that

occupies the mesh unit domain is

Ucx = 1Ehr2LH3 = 1EhK2L2r3, (4)
3 3

where r = H/L or r -I = L/H are used as aspect ratio measures in the sequel.

Let v be the nodal displacement vector obtained by evaluating (3) at the nodes. The strain

energy taken up by the finite element assembly is

1 T
UFe = _v Kv, (5)

where K is the total stiffness of the assembly. If the triangle stiffnesses contain parameters, these

are taken to be the same for both. The strain energy ratio r_ = UFe/U,x obtained through Macsyma

is listed in Table 2 for several elements. The identification conventions of Table 1 are followed.

All data pertain to isotropic elements; for the ANDES element of Part II only the case v = 0 is

shown to prevent the equations from overflowing the page. Table 3 complements Table 2 by giving

numeric values for specific values of parameters, Poisson's ratio u and aspect ratio r.

It should be noted that if v = 0, the test of Figure 1 could be further simplified by moving the

(x, y) axes to the center of the rectangle. Because of symmetry only one triangle would then need
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to be considered. But this simplified test, which was in fact the one used in [7], does not properly

account for the y-contraction effect if v _ 0 because the displacement field (3) applied to the nodes

would not be distinguishable from a y rigid-body motion.

2.2 Nice Solutions for EFF and ANDES

The energy-balancing condition 77= 1 leads to algebraic Riccati equations in the free parameters.

The resulting system is linear in/3 and a, quadratic in parameters such as ab, ah and the Pi, and

quartic or higher in the aspect ratio r. A solution of these equations is called "nice" if it yields real

values for the parameters that are independent of r. Being aspect-ratio independent, these solutions

are of significant practical value. They are sought by equating coefficients of powers of r to 0 or 1.

The parametrized EFF element has the surprisingly simple nice solution

ab = _, ah = _, /3 = 1-- y -- ½(1- 4v2), (6)

The values for ab and ah emerge as double roots of quadratic equations while/3 is the root of a

linear equation; thus (6) is the only such solution.

For the ANDES element the situation is more complicated. All nice solutions of the Riccati

equations of the 7-point integrated element are imaginary. For the 3-point-integrated element with

_-parametrized sample points (cf. Table 1), the value at, = 3/2 is exceptional in the sense that the

nice solution

2

ab= , P =P4=Ps=O, (7)

is unique (it appears as a double root of a quadratic). This can be generalized to arbitrary v by

multiplying a by (1-4v2). If at, < 3/2, many other solution families exist that satisfy ,04 = P5 = 0,

P l = ,o2_ 1+ _; for example, if v = _ = 0, at, = 0, P3 = ½P2 = (5 4-,¢'_)/4, a = 9 / (- 16 :F _q'5).

But since all these solutions lead to the same K, nothing new emerges. On setting the values (7),

the resulting element coalesces with the optimal EFF.

2.3 The FF Triangle

For the FF element of [7] an "almost nice" solution is possible. If at, = _, the condition rl = 1

yields the "balancing/3" as

3 (1 -- 4v2)(r s +6r 6 + llr 4 +6r 2 + 1)

/3= l-y= 8r s+3r 6+8r 4+5r 2+l+v(3r 6+3r 4+r2)" (8)

This expression differs somewhat from the numerical results presented in [7] because the energy

balance test done in that paper was on a different mesh unit that did not account for lateral contraction.

Equation (8) has the disadvantage of depending on the aspect ratio r; thus securing the correct

energy balance for bending along x does not imply such balance for bending about y unless r = 1

(square mesh unit). Nonetheless for a given v the dependence is mild; for example if v = 0,/3
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Table 2. Energy Ratios for Mesh Unit of Figure 1

under Pure Bending -- Isotropic Material

Element Energy ratio 17= U_E/Uex Nice solutions

oft/= 1

ALL-3m [72 - 48v 2 + (5 - 9v)r -2 + 2r_]/[64(1 - v2)] None

ALL-3i [1880 - 1296v 2 + (79 - 91v)r -2 + 6r'-4]/[1728(1 - v2)] None

ALL-7i [264 - 180v 2 + (15 - 19v)r -2 + 2r_]/[240(1 - v2)] None

CST [6(2 - v2) + 3(1 - v)r-2]/[8(1 - v2)] None

EFF

[(16_ 2 -- 52ofh "F 43)/5 + 2o_ - 12ofb÷ 36 - 1By2

+ ((of_(16v + 32) - ofh(80 + 64v) + 50 + 55v)fl

+ (1 - v)(4_.- 12_b -- 9))r -2

+ (48of_ - 1200th + 75)flr"4]/[24(1 - v2)]

5
ofb -- 3, ofh -- _,

/_= 1--y = ½(1--4v 2)

FF(/3)

[(45 - 36v 2 + 8/_)r 8 + (270 - 216v 2 + (24v + 24)/_)r 6

+ (495 - 396v z + (24v + 64)/_)r 4

+ (270 - 216v 2 + (By + 40)/_)r 2 + 45 - 36v z + 8/5]

/[48(1 - v:)(r s + 6r 6 + l lr'* + 6r 2 + 1)]

None (but see Section

2.3)

AND(Ofb, of,

Pl • .. Ps) -7i

(v = 0)

[(((60p5-60p4 +48093- 120p'z- 120pt)p,

•q- (45p4 -- 24093 -t- 180/>z -4-180pt)pa

+ (96093 -- 480_ - 480pt)93 + (195p.z + 330p_ + 12)p2

+ 195p_ -- 12pt + 4)of + 360_ -- 2160_b + 3240)

+ (((30093 -- 240p4- 72093 + 480p-z + 600pt- 48)93

+ (210p4 + 108093 - 480p'z -- 420pt - 24)p4

+ (144093 -- 1320pz - 1080p_ - 48)93

+ 330p_ + 600plpz + 390Pt2 - 24pl "4- 8)a

+ 720c_,_-- 2160_t, + 1620) r -2

+ ((540ps 2 -- 540paps + 405/942+ 15p_

--30p,_- 12,o2 + l'pl 2 + '2pl + 4)of) r"]/1080

None
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Table 2. Energy Ratios (Continued)

Element Energy ratio rt = UFE/U_ Nice solutions

oft/= I

AND(t_b, _,

Pt ... Ps) -3_

(v = O)

{[(9_ 4 - (18/92 - 18pl -t-24)_ 3 + (12,o 2

+ _(96p5 + 48p4) + pt(24ps + 1.2p4 + 96_ + 6,02

- 30) + _(24p5 + 12p4 + 96_ + 30) + 12p4p5

+ 3p_ + 192p_ + 21p_ + 21p_ + 22)¢ 2

+ (pt(-16p5 - 8,04 - 64p3 - 4,o2 + 14)

+ P2(-16p5 - 8p4 - 64p3 - 14) + m(-64a5 - 32m)

- 8p 2 - 8p4p5 - 2p_- 128p3z - 14p22

- lgp_ - 8)_ + 4p 2 + p3(aEp5 - 16p4)

- 4p4p5 + pt (-8p5 + 12p4 - 32p3 + 22p2 - 2)

+ p2(-8p5 + 12p4 - 32p3 + 2) + 3p 2 + 64p 2

+ 13p22+ 13p_ + l)t_ + 24¢ 2 - 144¢b + 216]

+ [(18_ 4 + (72ps + 36m + 72_ + 36pt - 48)_ 3

+ (72p 2 + p3(144ps + 72p4 - 120) + pt(7205

+ 36p,, + 120_ - 24p2 - 60) + p4(7205 - 60)

- 120p5 + 18p 2 + 96p 2 - 24_,o3 + 6p g

-t- 42p_ + 44)_ 2 + (56p5 -- 48p_ -I- Pl (--48p5

-- 24p4 -- 80p3 + 16p2 + 28) + ,o4(28 -- 48p5)

+ P3(--96ps -- 48/94 + 56) -- 12,o42-- 64p_

+ 16p2p3 -4P 2 - 28p_ - 16)_ + 20p_

+ p_ (40p5 - 28p4 - 72p3 + 40,o-z-- 4) + P2(32p5

- 32p4 - 88p3) - 8P5 + p4(-16p5 -- 4)

+ p3(--48p5 + 720,, - 8) + 14p] + 96p 2 + 22p 2

+ 26p,+ + - + i08]r-'

+ [9_ 4 + (lSm - lSp, - 24)_ 3 + (108p 2

+ 108raps + 27p 2 + 9p 2 - 30_

+ p_(30 -- 18m) + 9p 2 + 22)_ 2 + (14m

- 72p 2 - 72p4p5- 18p 2 -6p_ + pl(12p2 - 14)

- 6p 2 - 8)_ + 36p 2 - 36p4p5 + 27p 2

+ p22- 2_ + pt(2 - 2p2) + p_ + 1)a] r-'4}/72

_ 3
Olb -- -2'

Pl = P4 = P5 = O,

_ = 2p3 -- I-F,
2

8(_ - 1)2(_ - })2
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Table 3 Energy Ratio 17for Specific Elements, v and r

v l/r ALL-3m ALL-3i ALL-7i CST EFFAND FF

0 I/4 1.130 1.091 1.104 1.523 1.000 1.009

1/2 1.146 1.100 1.116 1.594 1.000 0.997

1 1.234 1.137 1.171 1.875 1.000 0.998
2 1.938 1.326 i .483 3.000 1.000 1.009

4 10.375 2.708 4.233 7.500 1.000 1.016

8 134.125 18.236 39.233 25.500 1.000 1.020

16 2069.125 240.347 563.233 97.500 1.000 1.021

1/4

1/2

1/4 1.153 1.113 1.126 1.569 1.000 1.030

1/2 1.164 1.119 1.135 1.625 1.000 1.020

1 1.229 1.149 1.178 1.850 1.000 1.020

2 1.867 1.309 1.448 2.750 1.000 1.029

4 10.417 2.614 4.128 6.350 1.000 1.035

8 140.617 18.503 40.448 20.750 1.000 1.038

16 2197.417 252.725 595.328 78.350 1.000 1.039

1/4 1.251 1.202 1.219 1.766 1.000 1.103

1/2 1.255 1.207 1.225 1.812 1.000 1.095

1 1.302 1.231 1.258 2.000 1.000 1.096
2 1.958 1.378 1.517 2.750 1.000 1.103

4 12.083 2.799 4.550 5.750 1.000 1.108

8 172.583 21.818 48.683 17.750 1.000 1.110

16 2734.583 311.225 737.217 65.750 1.000 1.111

varies from 0.375 to 0.547 and so the "compromise" value of 1/2 was recommended in [7] for

general use. This is confirmed by Table 3, in which one can see that the deviation of r/(v, r) from

1 for FF(½) never exceeds 12%.

2.40rthotropic Material

All previous results can be extended to an orthotropic material characterized by the strain-stress

relation

Eyy _ _22 CYyy ,

Yxy 0 axy

implying that the principal orthotropy axes are directed along the bending directions. The displace-

ment equilibrium solution (5) has to be suitable modified. All previous nice solutions were found to

apply if v2 is replaced by vt2v2t. The case of general anisotropic material has not been investigated,

as for such materials the construction of a pure-bending equilibrium solution is difficult.

3. BODY LOAD LUMPING
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The conversion of distributed loads to node forces (a process herein called load lumping) in high-

performance elements displays several points of interest. Discrepancies arise with respect to the

well ordered world of conforming elements. These can only be explained satisfactorily through the

underlying variational principles. To focus subsequent discussions it is convenient to distinguish

between interior or body loads, and boundary loads.

If body loads b r = {bx by} per unit volume are given within a two-dimensional FF or EFT

element, the variational formulation says that the consistent node force vector p is given by the

usual formula

= ] N rhbda, (9)

_t

P
dA

where h is the element thickness and N,, is a 2 x 9 matrix of shape functions that gives the internal

displacements u in terms of the visible devees of freedom:

u = = N,,v. (10)
Uy

In the FF and EFF, the shape functions Nu are not usually known directly but result from trans-

formations on modal functions initially constructed in terms of generalized coordinates (cf. Part

r).

But if the element is of ANS or ANDES type the internal displacements u are not necessarily

known, because the assumed strains may not be integrable. A heuristic solution is to use the p

vector of an FF, EFF, or conforming element with the same v. This expedient device has been used

sotto voce in stress-assumed hybrid elements for over two decades.

Although the subject is not treated here, it should be noted that a similar obstacle arises when

computing the consistent mass matrix and geometric stiffness matrices of assumed strain elements.

These two calculations require knowledge of the internal displacements and their _adients, respec-

tively.

4. BOUNDARY LOAD LUlVIPING

Suppose boundary loads t ("surface tractions" in continuum mechanics terminology) are specified

per unit length and thickness on the boundary S of a two-dimensional FF, EFT, or ANDES element.

The variational formulation presented in [8] asserts that, under certain assumptions examined further

in Section 4.3,
/t

Js Nr htdS. (ll)p=

where Nd are the shape functions for the boundary displacement field. In general u and d do not

match on S, so (11) is not necessarily the same as fs Nr ht dS. The following difficulties may arise.

1. Nd may depend on free parameters, for example the rotational factor a in equation (29) of

Part I. The optimal value of these parameters may be different for the basic and higher order
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Figure 2. Triangle side subjected to normal linearly-varying load f

parts; for example in the optimal EFF element, ab = 3/2 but c_h = 5/4. Which value should

be used for p?

2. The assumptions that lead to (11) may not be applicable, and if so the internal displacement

u evaluated on the boundary, rather than d, appears for portions of t.

These difficulties are best assessed through a detailed example relevant to the present appli-

cation. A side of len_h L of a tight-angled EFF triangle of constant thickness h is subjected to a

normal distributed load f (per unit of length and h) that varies linearly from fi at node i to 3') at

node j. The x and y angles are placed as shown in Figure 2. We shall see that nodes forces Px,

Pr and Po at nodes i and j depend on f/and ._ through formulas that can be placed in the genetic

form

p_,= _(ap,A + (1- ap,)fj)hL
p,j = ½((1- ap,)f,.+ ap,fj)hZ.

Pyi -- O,

pyj =0,

Poi --" _03(aprJ_ "q- (1- apr) fj)hL 2,

pe;= -_,((1 - ¢'r)f, + ap,f_)hZ_.
(12)

Here apt, apt and co are numerical coefficients (subscripts t and r stand for translation and rotation,

respectively.) A simple calculation shows that translational equilibrium is always satisfied by (12),

but that rotational equilibrium for fi _ fj requires 12apt - 6oJapr = 8 - 3w. Table 4 collects results

from several methods outlined below.

4.1 Boundary Shape Functions
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Table 4 Load Lumping Formulas for Case of Figure 2

Identifier

label

HCI(uf)

LI

Method Coefficients of (I 2) Rotational

description _t _, co equilibrium?

Eq. (I I) with Hermite cubic

interpolation shape functions

Eq. (I I) with linear interpolation

shape functions

37 17 1 YesEBZ Energy balance, v = 0 4"_ 24

t s 5 I YesEBH Energy balance, v = _ 6 6

EBQ v = _l interpolating EBZ and EBH _77 _37 1 Yes

7 3 2
] 5o_f Only ifcx/ = 1

unless fi = ._

2_ any 0 Yes3

The simplest load lumping technique consists of using (1 1) with Nd from the boundary interpolation

for the basic stiffness. This is exact if the boundary loads are uniform, and in any case reasonable

from the standpoint of convergence.

Using the cubic Hermite interpolation-- equation (1 9) of Part I-- with rotation shape functions

multiplied by a! yields the coefficients listed under label 'HCI(a/)' in Table 4. A similar calculation

using linear interpolation yields the coefficients listed under label 'LI'. This is effectively the CST

load lumping, for which the fixed-end nodal moments Po vanish.

4.2 Energy Balance

A different procedure uses energy balance (EB) concepts similar to those exploited in Section 2.

Embed the triangle into the four-triangle rectangular mesh unit illustrated in Figure 2(b). A stress

field that equilibrates the boundary loads is

tr:_x = (1- ()j_ + _" j_, cryy = Crxy = 0, (13)

where _"= ½+x/L is a side isoparametric coordinate. The associated strain field is easily integrable

if h is constant and the material is isotropic. Taking symmetric boundary conditions about the mesh

unit midcenter one gets the displacement field

ux = crux - CbXy, uy = --C,nVy q- ½(X2 q- vy2), 0 -- CbX, (14)

1
in which cm = _(j_ + f,.)/E and cb = (fj - fi)/(EL). Evaluate this at the nodes of the mesh

assembly to form the 12 x 1 displacement vector v. Evaluate the 12 x 12 EFF stiffness K of the

assembly using the optimal parameters (6). From the energy condition ½vrKv - vrp = min the

force vector is taken to be p = Kv from which the forces on nodes i and j can be extracted. For

Poisson's ratios v = 0 and v = ½ this method gives a formula that befits (12), with the coefficients

listed under labels 'EBZ' and 'EBH', respectively, in Table 4.
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4.3 Locality Lost

What happens if v :_ 0 and v _ ½? Then the expressions given by the EB method bring in the

triangledimension normal tosidei-j, and forcesappearson the thirdcorner!This iscontraryto

intuition,but the variationalprinciplein [8]explainsthismystery. The originalboundary traction

energy term isfs htu dS ratherthan f htd dS. The key assumption in the reductionto the latter

isthattbe inthe range of o_n= nr(EDu), namely thenormal projectionof the internalstresses

generated by the internaldisplacement fieldu.

Now theinternaldisplacementfield(14)isintherangeof_e appliedloadf, butisnotexactly

representableby EFF elements ifv :_ 0. Thus o_,can match any constantf exactlythrough the

basicmodes, butalinearlyvaryingf onlyapproximatelythroughthehigherordermodes. (The case

v = ½ isa flukeinthatthehigherorderstiffnessvanisheson settingtheoptimal_ = ½(1- 4v 2) = 0

and only thebasicstiffnesssurvives.)As a resulttheboundary term fs htudS emerges on partof

the linearvariationoff. Thisdestroyslocalitybecause u alongan clement sidedoes notnecessarily

depend only on freedoms locatedon thatside.

For thenumericalexperimentsinSection6 thecasev = ¼,labeled'EBQ' inTable4,ishandled

by linearinterpolationofthecoefficientsforEBZ and EBH, a devicethatmaintainslocalitydespite

being variationallyinconsistent.

4.4 Rotational Disequilibrium

A comparative analysisof HCf, EBZ and EBH leadsto the followingconflict.For un/form load

"(_ = ._ = f) the threeexpressionscoincideifa/= _ for HCL giving

Pxi = Pxj = t fL (as expected), Poi -- -Poj = _fL 2. (15)

By running uniform stretch problems, reported in Section 6, it is readily verified that these "fixed-

end moments" are the correct ones. But for a varying force (A :_ f_) HCI violates rotational

equilibrium unless ¢xf = 1. This violation does not affect ultimate convergence as the mesh size is

refined, but may worsen coarse-mesh results.

Thus both techniques for computing node forces are found to have limitations. Use of (11)

maintains locality but may lead to inaccurate or out-of-equilibrium formulas. The energy balance

technique is accurate and upholds equilibrium, but brings in material properties and may lose

locality.

4.5 Practical Recommendations

In production programs the force computation module may not be aware of "interior details" such

as the element type and material properties. Then it appears best to take a compromise value for the

coefficients. For example: _Pt = 3/4 = 0.75, _,, -- 2/3 and co = 1, a set that satisfies rotational

equilibrium. The difference between two equilibrium force systems is a self-equilibrated force

system. By Saint-Venant's principle its effect should be felt only within a few element layers.

Thus for fine meshes the choice for load lumping should make little difference. But the effect
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Figure 3. Slender bearn under axial loading:. E -- 32, v varies, h = 1;
root contraction allowed for v # 0; four-overtaid-trian$1e
mesh units used; a 32 x 2 mesh is shown in Co).

can be important for coarse meshes, or when accurate local stresses are desired. The numerical

experiments of Section 6 corroborate this observation.

For distributed forces tangential to element sides no such difficulties arise because the only

possible tangential displacement interpolation is linear. Consequently the node force lumping of

the constant strain triangle (CST) can be used.

5. ACCURATE RECOVERY OF STRAINS AND STRESSES

One of the goals of high-performance elements is to achieve comparable accuracy in stresses and

displacements at any location. Two steps are necessary to attain tha t objective:

1. Identify superconvergent points (also called Barlow points) at which higher order stresses (or

stress components) are most accurate.

2. Devise interpolation-extrapolation procedures for "transporting" that accuracy to other loca-

tions of interest; for example the corner points.

For the EFFAND and FF membrane elements these steps are being investigated and will be the

subject of a future communication.

6. EXAMPLE 1: UNIFORMLY STRETCHED BEAM

The first numerical example, illustrated in Figure 3, is a cantilever beam of rectangular cross section

and length/height ratio 16:1. The beam is under constant uniaxial stress crxx = 100. Consequently
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Table 5 Results for Beam Under Uniaxiai Loading

Element Load Quantity Poisson's ratio

Lumping v-0 v-l/4 v---1/2

EFFAND EB or HCI (_) Vxv 100.00 100.00 100.00

HFFAND EB or HCI (_) v_c 100.00 100.00 100.00

EFFAND EB or HCI (_) Max o'_ error 0% 0% 0%

EFFAND HCI (I) vxo 101.12 101.32 103.92

EFFAND HCf (I) vxc 99.74 99.73 99.63

EFFAND HCI (1) Max o-xx error 22% 29% 71%

EFFAND LI v.o 103.35 103.94 111.75

EFFAND LI v_c 99.23 99.19 98.88

EFFAND LI Max o,_x error 61% 87% 211%

CST LI VxD I00.00 I00.00 I00.00

CST LI vxc I00.00 I00.00 I00.00

CST LI Max Gxx error 0% 0% 0%

the beam functions as a bar throughout its length as long as root contraction for v :fi 0 is permitted;

it is also important to set the drilling rotation to zero at the root. A regular 32 x 2 mesh of square

elements, each square being fabdcated by four half-thickness overlaid triangles, is used. The elastic

modulus E = 32 is chosen so that the exact end deflection is always 100.
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Of course thisproblem should be solvedexactlyby any membrane element with any mesh.

The purl_oseof theexample isto illustratepotentialdifficultieswith the treatmentof the applied

distributedloadsf m crx -- I00 atx -- 32. Allenergybalance(EB) loadlumping methods listedin

Table 4, as wellasHCf(3/2),yieldfixed-endmoments 4-fH2/8 - :I:125atthetop/bottomnodes

of the end section,whereas HCf(1) yields4-fH2/12 -- -4-83.33.On the otherhand, the linear

interpolationmethod (I,I)giveszero end moments. All theseloadlumpings satisfyequilibrium.

Displacement resultsas well as maximum stresserrorsforEFFAND and CST elements are

shown inTable 5.For EFFAND allloadlumpings giving(15)yieldtheexactsolutionasexpected.

For Poisson'sratiosv - 0 and ¼ the end displacementerrorinduced by LI isof the order of 3%,

which isnot unreasonable. But maximum stresserrorsat near-end locationsreach levelsof 60

to 90%. Errorsdisappearrapidlyas one moves from the end, as itmay be expected from Saint-

Venant'sprinciple,and areimperceptibleforx < 28. For many applications,however, those stress

errorlevelswould be intolerable.

Resultsfor HCf(1) fallI/3 of the way between those of EB and LI. Errorsfor v -- I12 are

about threetimeshigher,thesebeing exacerbatedby the use of avery low ]_- 0.01.

Obviously the CST has no problems with LI load lumping or rootdrillingrotationsettings,

and would be the cheapest and safestelement for thisproblem. This observationunderscoresa

generalrulewellknown topractitionersoffiniteelement methods: Any refinementdevice_ here,

the inclusion of drilling freedoms _ increases the potential for element misuse.
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Table 6 Tip Deflections (exact=100) for Beam under End Moment

Element v Load Mesh: x-subdivisionsx y-subdivisions

Lumping 32x2 16×2 8x2 4x2 2x2

ALL-3i 0 EBZ 87.99 75.47 37.01 5.51 0.42

ALL-3m 0 EBZ 81.02 51.62 9.64 0.74 0.04

ALL-7i 0 EBZ 85.43 67.44" 23.65 2.55 0.17

CST 0 LI 53.33 33.33 13.33 3.92 1.02

EFFAND 0 EBZ 100.00 I00.00 IOO.00 IOO.OO 100.OO

FF 0 EBZ 100.25 99.15 98.38 98.08 97.98

ALL-3i l/4 EBQ 87.08 76.48 38.32 5.42 0.39

ALL-3m 1/4 EBQ 81,36 53.57 9.59 0.70 0.03

ALL-7i 1/4 EBQ 84.92 69.09 24.25 2.47 0.16
CST 1/4 LI 54.05 36.36 15.75 4.82 1.28

EFFAND 1/4 EBQ 99.99 99.99 99.99 99.96 100.07

FF 1/4 EBQ 98.36 97.17 96.58 96.34 96.27

ALL-3i 1/2 EBH 81.26 72.61 35.76 4.58

ALL-3m 1/2 EBH 76.80 51.06 8.26 0.56

ALL-7i 1/2 EBH 79.48 65.95 21.98 2.04

CST 1/2 LI 50.00 36.36 17.39 5.63

EFFAND 1/2 EBH 99.98 99.98 99.98 99.98

FF 1/2 EBH 91.27 90.66 90.22 90.06

EFFAND 0 HCI(½) 97.51 97.50
EFFAND 0 HCI(I) -loo.OO loo.01
Z_AND 0 U 99.98 ]00.0I
E_a:A_D o EBZ loo.oo 10o.oo
_'FANV 0 _Q 99.99 100.00
EFFAND 0 EBH 99.97 99.99

0.31

0.02

0.17

1.52

99.97

90.01

97.50

100.00

loo.01

100.00

loo.00

100.00

EFFAND 1/2 HCI(_) 98.68 97.67
EFFAND 1/2 HCI(1) 101.36 100.19
_ANV 1/2 L1 1oi.66 1oo.2o
F_.FFANV1/'2 _z 1ol.75 loo.o9
_ANV i/2 _Q lOO.31 lOO.04
EFFAND I/2 EBH 99.98 99.98

97.51

I00.00

99.99

99.99

100.130

99.97

7. EXAMPLE 2: CANTILEVER UNDER END MOMENT

We take up again the slender cantilever beam of Example 1, but now subjected to an end moment

M = 100. The problem is illustrated in Figure 4. The modulus of elasticity is adjusted to E = 768

so that the exact tip deflection 8tit, = ML/(2E1) is 100. Regular meshes ranging from 32 x 2 to

2 x 2 are used, each rectangle mesh unit being composed of four half-thickness overlaid triangles.

The element aspect ratios vary from 1:1 through 16: l.

Table 6 reports computed tip deflections (y displacement at C). It displays the effect of four

variables: element type, element aspect ratio, load lumping, and Poisson's ratio. The first two axe
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the most important. The element types are identified following Table I.

The root clamping condition was imposed by setting

Vxl --" l_x2 = l}z3 --" 0) l}y 2 -" 0, _xl --" 0x2 "- 0x3 = 0) (16)

where I, 2, 3 are the root nodes, numbered from the top. It is essential to leave vyl and vy3

unrestrained for v :fi 0. This allows for the Poisson's contraction at the root and makes the exact

solution merge with the displacement solution (3) over the entire beam.

The first 18 lines of Table 6 compare elements for aspect ratios varying from l:l to 16:l as

colunms, and Poisson's ratios of 0, 0.25 and 0.50. The EB load lumping formula appropriate to v

is used for all elements, except for CST, for which the LI lumping -- which is consistent for that

element -- is used. The last 12 lines compare the effect of different load lumping formulas on

EFFAND.

Because two elements through the height are used, the discretizations arc nothing more that

repetitions ofthetestmesh unitofFigureIalongthelength.Consequently thecomputed deflections

should be 100/_(p, r).Thisprovidesa valuablenumericalconfirmationof theMacsYma resultsof

Tables2-3. Discrepanciesfrom 100/77forelements otherthanEFFAND and CST aredue to the

use ofEB loadlumpings which were not rederivedforeach element.

Because _/(v,r) -- lfor EFFAND, thattriangleshould maintainsfullaccuracy forallv and

r.The slightdiscrepancyfrom 100.00% for v - 0.25 iscaused by EBQ not being inexactenergy

balance, as explained in Section 4.3. The slightdiscrepancyfor v'- 0.5 isdue to the use of

-- 1 - y = 0.01 rather than 0 to keep correct rank.

The FF element with fixed I - y = 0.5 maintains good to excellent accuracy. The Allman

triangles perform well for unit aspect ratios, but rapidly become overstiff for aspect ratios over 2: l,

and arc inferior to the CST for aspect ratios exceeding 8: I. Of the three numerically integrated

versions 3i is consistently superior, followed by 7i.

The last 12 lines in Table 6 show that the EFFAND accuracy for low Poisson's ratio is not

affected by the choice of load lumping formula as long as equilibrium is maintained. In fact the

results for v -- 0.25 arc virtually identical to v -- 0, and arc not shown here. The effect becomes

more significant, however, as v approaches 1/2. For v -- 0 the only visible difference from the

exact solution are the results for HCI(3/2), which violates rotational equilibrium by about 3%.

8. EXAMPLE 3: CANTILEVER UNDER END SHEAR

The shear-loaded cantilever beam defined in Figure 5 has been selected as a test problem for

plane stress elements by many investigators since originally proposed in [9]. A full root-clamping

condition is implemented by constraining both displacement components to zero at nodes located

on the x = 0 section.. Drilling rotations must not be constrained at the root because the term

Ouy/ax in the continuum-mechanics definition is nonzero there. The applied shear load varies

parabollcaUy over the end section and is consistently lumped at the nodes.
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Fibre 5. Cantileverunderend shear:.E --30000,v = I/4,h - I;root
contractionnotallowed;four-overiaid-lrianglemesh units;

a 8 x 2 mesh isshown in(b).

The main comparison value is the tip deflection dc -" vyc at the center of the end-loaded

cross section. One perplexing question concerns the analytical value of 8c. An approximate

solution derived from 2-D elasticity (based on a polynomial Airy stress function) gives 8,t --

0.34133 + 0.00145 -- 0.35583, where the first term comes from the bending deflection PL3/3EI,

I -- H3/12, and the second from a quadratic shear field. The shear term coefficient in the second

term results from assuming a warping-allowed root-clamping condition that is more"relaxed" than

the fully-clamped condition prescribed on the FE model. Consequently in [9] it was argued that 8a

should be an upper bound, which was verified by the conforming FE models tested at that time.

The finest grid results in [7] gave, however, 8c _ 0.35587, which exceeds that"bound" in the

fifth place. The finest EFFAND mesh ran here -- 128 × 32 -- gave a still larger value: 0.35601.

The apparent explanation f0.r this paradox is that if v _- 0, a mild singularity in ayy and rxy, induced

by the restraint uylx_-0 = 0, develops at the comers of the root section. This singularity "clouds"

convergence of digits 4-5. (In retrospect it would have been better to allow for lateral contraction

effects as in Example 2 to avoid this singularity.) The percentage results in Tables 3-5 of [7]

therefore contain errors in the 4th place.

Tables 4 gives computed deflections for rectangular mesh units with aspect ratios of 1:1, 2:1

and 4:1, respectively. Mesh units consist of four half-thickness overlaid triangles. For reporting

purposes the load was scaled by 100/0.35601 so that the "theoretical solution" becomes 100.00.
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Table 7 Tip Deflections (exact -- I00) for Beam under End Shear

Element Mesh: x-subdivisions x y-subdivisions

8x2 16x4 32x8 64× 16 128×32

ALL-3i 96.41 98.59 99.59 99.91 99.99

ALL-3m 82.70 94.78 98.57 99.62 99.91

ALL-7i 89.43 96.88 99.16 99.79 99.96

CST 55.09 82_59 94.90 98.65 99.66

EFFAND 101.68 100.30 100.03 100.00 100.00

FF 99.15 99.71 99.87 99.96 99.99

4x2 8x4 16x8 32x16 64x32

ALL-3i 82.27 93.22 97:86 99.38 99.83

ALL-3m 54.23 81.84 94.52 98.50 99.61

ALL-7i 70.7I 89.63 96.93 99.15 99.77

CST 37.85 69.86 90.04 97.25 99.28

EFFAND 96.68 98.44 99.37 99.78 99.93

FF 94.27 97.85 99.23 99.74 99.92

2x2 4x4 8x8 16x16 32x32

ALL-3i 42.53 72.66 90.72 97.32 99.27

ALL-3m 12.39 31.81 63.68 87.24 96.41

ALL-7i 26.16 56.93 83,54 95.14 98.69

CST 17.83 43.84 75.01 92.13 97.86

EFFAND 92.24 96.99 98.70 99.48 99.81

FF 89.26 96.37 98.66 99.50 99.83

The data in Table 7 generally follows the patterns of the previous example; the main difference

being the lack of drastically small percentages because element aspect ratios only go up to 4:1. Of

the three Allman triangle versions again ALL-3i outperformed the others. The resuRs for FF and the

optimal EFF-ANDES triangles are very similar, without the latter displaying the clear advantages of

Example 2. The data for FF and (?.ST changes slightly from that of Tables 3-5 of [7] on two accounts:

four-triangle, rather than two-triangle, macroelements are used to eliminate y-directionaLity, and

the normalizing "theoretical" solution changes by +0.00014 as explained above.

9. EXAMPLE 4: COOK'S PROBLEM

Table 8 gives results computed for the plane stress problem defined in Figure 6. This problem was

proposed by Cook [10] as a test case for nonrectangular quadrilateral elements. There is no known

analytical solution but the EFFAND results for the 64 x 64 mesh may be used for comparison

purposes. The last 6 lines in Table 8 pertain to quadrilateral elements. Results for HL, HO and

Q4 are taken from [10] whereas those for Q6 and QM6 are taken from [11]. Results for the free-

formulation quadrilateral FFQ are taken from Nygfu'd's thesis [12]. Further data on other elements

is provided in [13].
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16

Figure 6. Wing-like plane stress structure (Cook's problem):
E = l, _ = I/3, h --- l; root contraction not allowed;
two-triangle mesh units; a 2 x 2 mesh is shown.

P=I

For triangle tests, quadrilaterals were assembled with two triangles in the shortest-diagonal-cut

layout illustrated in Figure 6 for a 2 x 2 mesh. Cutting the quadrilaterals the other way or using

four-overlaid-triangle macroelements yields stiffer results.

The performance of the drilling-freedom triangles was similar, with ALL-3i giving the best

results, especially for coarse meshes. It should be noted that accuracy of the FF, EFF and ANDES

triangles for this problem is dominated by the basic stiffness response. Conscquendy the deflection

values provided by the FF and EFFAND elements, which share the same basic stiffness, are virtually

identical.

10. ELEMENT FORMATION TIMES

Table 9 gives a breakdown of formation times of the stiffness matrix for an individual triangle.

Times are on milliseconds measured on a Sun 4/260; all floating-point computations being carried

out in double precision (DP). Tt, and Th denotes times spent in forming the basic and higher order

stiffness matrices, respectively. All elements use the same basic stiffness routine written in 1984.

For elements labeled ANDES- 1991, EFF- 1991 and FF- 1986, the subroutines listed in the Appendix,

compiled with t=77 for Sun-OS level 4.1.1, were used. The element labeled FF-1984 shows the
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Table 8 Results for Cook's Problem

Vertical deflection at Cfor subdivision
Element 2x2 4×4 8x8 16x 16 32×32 64×64

ALL-3i 21.61 23.00 23.66 23.88 23.94

ALL-3m 16.61 21.05 23.02 23.69 23.87

ALL-7i 19.01 21.83 23.43 23.81 23.91

CST 11.99 18.28 22.02 23.41

EFFAND 20.56 22.45 23.43 23.80 23.91

FF 20.36 22.42 23.41 23.79 23.91

FFQ 21.66 23.11
I-IL 18.17 22.03

I-IG 22.32 23.23

Q4 11.85 18.30

Q6 22.94 23.48

QM6 21.05 23.02

23.79 23.88 23.94

23.81

23.91

23.43

23.95

timing for the first FF element implementation reported in [7], and illustrates the progress since

made in reducing the higher order stiffness formation time. The CST is formed by the basic stiffness

subroutine when called with at, = 0, in which case all computations dealing with rotational freedoms

are skipped. No data is _ven for the ALL elements because their shape function subroutines are

far from optimized, and as a result their formation times are between 5 to 10 times w depending

on the integration rule -- those of ANDES and EFF.

Table 9 DP Element Formation Times on Sun 4/260 in msec

Implementation Tb Th Tt, + Th I_ code bytes

ANDES-1991 1.34 1.55 2.89 4739

EFF-1991 1.34 1.90 3.24 6698

FF-1986 1.34 2.07 3.41 4507

FF- 1984 1.34 6.71 8.05 8173

CST 0.77 0.00 0.77

From this data it can be concluded that the ANDES implementation has a slight edge over that

of the EFF, which is turn is somewhat faster than the FF-1986 implementation. The last column of

Table 9 gives the length in nonblank characters of the Kh subroutine, excluding comments. As can

be seen the FF-1986 implementation is the most compact one, closely followed by ANDES.
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11. CONCLUDING REMARKS

The present study confirms the beneficial effect of adding drilling degrees of freedom to 3-node

plane stress triangles when in-plane bending performance is to be enhanced. Successful elements

of this type can be constructed using methods that lead to element families. Two such families have

been compared here: numerically integrated versions of the Allman tria.ggle, and the FF, EFF and

ANDES triangles based on parametrized variational principles.

The numerical studies indicate that the performance of most of the 9-dof triangles is comparable

for meshes containing elements of unit aspect ratio, or in problems where in-plane bending actions

are secondary. (It can be argued, however, whether drilling freedoms are cost-effective under such

conditions.) As regards the three tested versions of the Allman triangle, the one integrated with the

3-interior-point rule consistently outperformed the other two. For meshes containing elements of

high aspect ratio under dominant in-plane bending action, the IF, EFF and ANDES elements with

optimal parameters clearly outperformed the others.

i i I ?

Figure 7. Elongated mesh units in thin-tube wall modeling.

Meshes with highly elongated triangles are quite common in many slender structures such as

composite tubes and aerospace vehicle skins. Triangles with aspect ratios of 20:1 or even 50:1 are

not uncommon (see Figure 7). To handle such problems it would be advantageous to extend the

present EFF and ANDES elements to plane strain and axisymmetrie conditions.

Despite substantial variation in implementation "flavors", the performance differences among

the optimal FF, EFF and ANDES elements are relatively slight. Any of them would make a
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fine choice for a general-purpose program whether as a stand-alone two-dimensional element, or

as the membrane component of fiat shell elements. The ANDES formulation appears to have a

substantial edge in simplicity that would be valuable in extending the rotational-freedom concept

to three-dimensional elements. This is counterbalanced, however, by the advantages accruing from

the knowledge of internal displacements in FF and EFT elements in the applications discussed in

Sections 3-.4.
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Appendix A. COMPUTER PROGRAMS

This Appendix provides listings of the Fortran subroutines that implement several of the elements tested in

the present study. A brief description of the subroutines is given below. A detailed description of calling

sequences is presented in the comments at the beginning of the code.

SM4M.This is a driver subroutine for computing the total stiffness matrix of membrane elements with 3

degrees of freedom per node, one being a drilling freedom. It is normally called to form the stiffness matrix

of a quadrilateral composed of either two triangles, or four "overlaid" triangles of half thickness. It can also

form a single triangle.

SH3MB.This forms the 9 x 9 basic stiffnessmatrix I_ used by all high-performance elements. Coefficient
ab has been left as a free parameter tofacilitate certain studiesas weft asto permit the formation of the CST,
which is obtained if at, = 0.

SM31_rF. Forms the higher order stiffnessof the 1985 Bergan-F¢lippa triangle using a fast implementation
that is a slight modification of that presented in [I4]. The scaling factor/3 = 1 - y is left as a parameter
although p = 0.5 is recommended.

SM3MH_'F. Forms the higher order stiffness of the optimal EFF triangle described in Part L It has ah -- 5/4

hardwired, but the scaling factor fl is left as a subroutine parameter.

SM3MHANDF..S.Forms the higher order stiffness of the optimal ANDES element described in Part 11.The optimal
p factors (7) are hardwired for the midpoint rule _ = 0.

The numerically integrated Aliman elements are formed by subroutine Sld3KALL.This is not listed here because

its shape function implementation is far from optimized and as a result the element formation is slow.

Some general comments on these subroutines follow.

Initialization. None of the subroutines clears the stiffness array internally. They simply add the stiffness matrix

entries to the incoming array. The calling-program is supposed to take care of initialization. In conjunction

with the locator array LS discussed below, this decision is intended to simplify macroelernent formation.

Stiffness Locator. All subroutines utilize a location pointer array LS to direct stiffness entries into the stiffness

array SM.This has two practical uses:

(a) The ordering of degrees of freedom can be easily changed, as illustrated in the examples given under

the USAGE section of SM4Mand SH3MB.Note, however, that the sequential ordering LS = 1, 2, 3 ....

has different interpretation in the driver SM4Mand triangle subroutines as regards the position of drilling
freedoms.

Co) The formation of macroelements is facilitated. This is already illustrated by the method used by SMa.2q

to merge triangles by simply setting up their stiffness locator arrays appropriately. Another important

application, not illustrated here, is the formation of shell elements in which the plane stress stiffness

becomes the membrane component.
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Subroutine Listings

!
F

l
C=DECK SM4M

C=PURPOSE Driver to form material membrane stiffness of quad assembly

CfAUTHOR C. A. Felippa, June 1984

CfVERSION July 1991

CffiE_YIPMENT Machine independent

CfKEYWORDS finite element

CfKEYWORDS material stiffness matrix membrane plane stress drilling

CfBLOCK ABSTRACT

C

C

C

C

C

C

CfEND ABSTRACT

CffiBLOCK USAGE

C

C The calling sequence is

C

C

C

C

C The inputs are:

C

C TYPE(1:3) Element

C ALL

C AND

C CST

C EFF

C FF

C

C TYPE(4:5) For ALL

C 1C

C 3I

C 3M

C 7I

C

C OPT

C

C

C

C

C X

C

C

C Y

C

C

C DM

C

SM4M is a driver that forms the material stiffness matrix of a

membrane quadrilateral formed by 2 or 4 triangles (optionally a

single triangle). Three nodal dof (2 translations, 1 drilling
rotation) are assumed. Several element formulations may be used.

CALL SM4M (TYPE, OpT, X, Y, DM, ALPHAB, GAMMA,

IAT, LS, SM, M, STATUS)

type argument (upper case assumed):

Allman' s element

ANDES-1991 element

CST, drilling freedoms are iEnored

EFF-1991 element

FF-1984 element, fast reformulation of 1986

elements specifies integration rule:

1-interior point (centroid)

3-in_erior-point rule

3-midpoint rule

7-int erior-point rule

Options character (upper case assumed):

B Form basic stiffness only (FF/EFF)

H Form higher order stiffness only (FF/EFF)

If neither of these, form total stiffness.

(4 x 1) array of x coordinates of quad nodes.

(only first 3 used if IAT=O).

(4 x 1) array of y coordinates of quad nodes.

(only first 3 used if IATffiO).

(3 x 3) membrane force-to-strain constitutive matrix.

Assumed to be already thickness-integrated.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

ALPHAB

GAMMA

Rotational lumping factor for basic stiffness

Applies to AND/FF/EFF elements only.

(1-GAMMA) is H.O. stiffness scale factor (AND/EFF/FF)

1 o+++++++o 4 1 o+++++++o 4

+ + + + + 4"

+ IAT=I + + IAT=2 +

+ + + + + +

2 o+++.H-++-H-++0 3 2 0+++++++++++0 3

IAT Identifier of assembly type (cf. sketch above):

0 Single triangle.

1 2 triangles: 123 and 341 (diagonal 1-3)

2 2 triangles: 124 and 234 (ctiagonal 2-4)

3 4 half-thicE overlaid triangles: 123,341,124,234

LS (12 x I) array of stiffness location pointers.

For the standard freedom ordering

uxl,uyl,theta2, ux2, ... uy4,theta4

set LS = 1,2,3,4,5,6,T,8,9,I0,11,12. To get

uxl,uyl,ux2,uy2, ... uy4,thetal, ... theta4

set LS = 1,2,9,3,4,10,5,6,11,6,7,12, and so on.

Other settings are useful vhen this element is to be

inserted in a shell element as membrane component.

SM Incoming stiffness array. NOT CLEARED by SM4M.

M First dimension of SM in callin E program.

The outputs are:

SM Output stiffness array with bending stiffness

coefficients added in. The (i,j)-th entry of the

(12 x 12) element membrane stiffness is added

to SM(K,L) ,here K=LS(I) and L=LS(J).

STATUS Status character variable. Blank if no error

detected; else returns appropriate message.

C=ENDUSAGE

C=BLOCK FORTRAN

subroutine SM4M

$ (type, opt, x, y, dm, alphab, gamma, iat, Is, sm, m, status)

C

C

C

C

ARGUMENTS

character type*(*), opt, status*(*)

double precision x(3),y(3),dm(3,3), alphab,gamma

integer iat, m, is(*)

double precision sm(m,m)
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C

C

C

C

C

C

C

C

C

2500

C

$
$

TYPE & DIMENSION

double precision x¢(3), y¢(3), f, fb, fh

integer i, j, ias, n, p

integer ntrigs(0:3), tnodes(3,4, 0:3), lst(9)

integer nt(3)

DATA

data

data
ntrigs /1,2,2,4/
tnodes /1,2,3, 9*0,

1,2,3, 3,4,1, 6.0,

1,2,4, 2,3,4, 6.0,

1,2,3, 3,4,1, 1,2,4, 2,3,4/

LOGIC

status : ' '

ias = max(O,min(iat,3))

f " 1.DO/(l+ias/3)

fb = f

fh ffi f*(1.D0-gamma)

if (opt .eq. 'B')

if "(opt .eq. 'H')

fh = 0.0

fb = 0.0

do 3000 j ffi1,ntrigs(ias)

do 2500 i = 1,3

n - tnodes(i,j,ias)
nt(i) ffi n
x¢(i) = z(n)
_(i) = y(n)

IstC2*i-1) -

ls¢(2*i ) =

ls¢( i+6) -

continue

is(3*n-2)

is(3*n-1)

is(3*n )

if (%Tpe(l:3) .eq. 'ALL') then

p = ichar(type(4:4))-ichar('O')

if (type(5:5) .eq. 'M') p - -3

call b'_3H/l/J. (z'c,y_c, din, p, f, lst,sm,m, status)

else if (type(l:3) .eq. 'CST') then

call SM3MB (rt,_c, din, O.0D0, fb, 1st,sin,m, status)

else if (type(l:3) .eq. 'AND' .or.

type(l:3) .eq. 'EFF' .or.

type(l:2) .eq. 'PF') then

call SM3MB (xt,yt, din, alphab,fb, Ist,sm,m, status)

if (type(l:3) .eq. 'AND') then

call SM3MHANDES (xt,y¢, dm, fh, ist,sm,m, status)

else if (type(l:3) .eq. 'EFT') then

call SM3MHEFF (rt,_, dm, fh, Ist,sm,m, status)

else if (type(l:2) .eq. 'FF') then

call SM3MHFF (rt,yt, dm, fh, ist,sm,m, status)
end if

347

!
F

t

I

F:

E

I

I

I
!

&-4



I
F

t

i

else

st atlts =

end if

if (status(in1) .ne.

3000 continue

return

end

C=END FORTRAN

'SM4M: Illegal TYPE ¢rg_ment'

' ') return

I C=DECK SR3MB

I
I

E

I
!

[

C=PURPOSE Form basic membrane stiffness of 9-dof triangle

C=AUTHOR C. A. Felippa, June 1984
C=VERSION June 1984

C=E_UIPMENT Machine independent

C=KEY_ORDS finite element membrane plane stress

C=KEY_ORDS basic material stiffness matrix

C=BLOCK ABSTRACT

C

C SM3MB forms the basic stiffness matrix of a 9rdof plane

C stress triangle (see CMAME, vol 50, pp 25-69).

C It can generate the CST as special case.

The calling sequence is

CALL SM3MB (X, T, DM, ALPHAB, F, LS, SM, M, STATUS)

C

C=END ABSTRACT

C=BLOCK USAGE

C

C

C

C

C

C The inputs are:
C
C X

C ¥

C DM

C ALPHAB

C F

C LS

C

C
C

C

C

C SM

C M
C

C
C

C SM

C

C

C

C STATUS

C

(3 x 1) array of x coordinates of triangle nodes.
(3 x 1) array of y coordinates of triangle nodes.

(3 x 3) matrix relating in-plane forces ¢o strains.

Rotational lumping factor; if zero form CST.

Factor by vb/ch stiffness entries vill be multiplied.

(9 x 1) array of stiffness location pointers.

For the conventional dof arranEement

wxl,_l,thetal,_x2,_72,theta2,vx3,vy3,theCa3

set LS : 1,2,4,5,7,8,3,6,9. The arraageme_t
vxl,vyl,vx2,vy2,vx3,vy3,thetal,¢heta2,theta3

is obtained if LS - 1,2,3,4,5,6,7,8,9.

T-comi:_ material stiffness array.

First dimension of SM in calling program.

The outputs are:

Output stiffness array vi_h basic stiffness

coefficients added in. The (i,j)-th entry of the
basic element stiffness is added to SM(K,L),

where K=LS(I) and L=LS(J).
Status character variable. Blank if no error

detected.
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C=END USAGE

C=BLOCK FORTRAN

subroutine

$

C

C

C

C

C

C

SM3MB

(x, y, dm, alphab, f, is, sm, m, status)

TYPE _ DIMENSION.

character*(*)

integer

double precision

double precision

double precision

double precision

double precision

double precision

integer

status

m, Is(9)

x(3) 0y(3), dm(3,3), aulphab,f, sm(m,m)

area2, c, 1¢(9,3)

e11, el2, el3, e22, e23, e33

x21, x32, x13, y21, y32, y13

x12, x23, x31. y12, y23, y31
sl, s2, s3

i, j, k, i, n

LOGIC

sCatus = ' '

if (f .eq. 0.0) return

x21 = x(2) - x(1)

x12 = -x21

x32 - x(3) - xC2)

x23 = -x32

x13 = x(1) - x(3)

x31 = -x13

y21 = y(2) - y(1)

y12 = -y21

y32 = y(3) - y(2)

y23 = -y32

y13 = y(1) - y(3)

y31 = -y13

area2 = y21*x13 - x21*y13
if (area2 .le. 0.0) then

status = 'SM3MB: Negative area'

if (area2 .eq. 0.0) status = 'SM3MB: Zero area'

return

end if

it (I I) = y23

lt(2

1¢(3

1¢(4

lt(S

1¢(6

1¢(i

1¢(2

lt(3

1¢(4

i¢(5

lt(6

lt(I

,1) = o.o
,1) = y31
,1) = 0.0

,1) = y12
1) = 0.0
,2) = 0.0

,2) = z32

,2) = 0.0

,2) = x:l.3

,2) = 0.0

,2) = x21

,3) = x32
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I_ (2,3) = y23

Iz (3,3) - x13

Zt(4,3) = y31
it (5,3) -- z21

it(6,3) = 712
n = 6
if (alphab .he. 0.0)

It(7,I)

It (7,2) =
lt(7,3) =
It(8,t) =

lt(8,2) =
lt(8,3) =
it (9, z) =
11:(9,2) =
It(9,3) :
]I =

end if

then

= y23. (y13-y21) *alphab/6.
x32. (x31-x12)*alphab/6.

(x31*y13-x12*y21) .alphab/3.

y31. (y21-y32)*alphab/6.

x13. (x12-x23)*alphab/6.

(x12*y21-x23*y32) .alphab/3.

y12. (y32-y13).alphab/6.

z21. (x23-x31)*alphab/6.
(x23*y32-x31*y13) *alphab/3.
9

C _

e11 =
e22 =
e33 =
e12 =
e13 =
e23 :
do 3000

1=

31 =

32 =

S3 =
do 2500

k=
sin(k,1) =
s=(l,k) =

2500 continue
3000 continue

return
end

C=END FORTRAN

0.5D0*f/area2
c * dm(1,1)
c * dm(2,2)
c * d=(3,3)
c * dmC1,2)
c * din(l,3)
c * din(2,3)

j =.1,=
lsCj)
e11=IZ(j,Z) + e12*It(j,2) + e13*it(j,3)

e12*It(j,1) + e22*it(j°2) + e23*it(j,3)

e13*It (j,1) + e23*lt(j,2) + e33*It(J,3)

i = 1,j
i,(i)

sm(k,l) + (31.i¢(i.I) + s2*It(i,2) + s3.i¢(i,3))

sm(k,l)

I

!

I.

C=DECK SM3MHANDES

C=PURPOSE Form high-order material s¢iffness of 9-dof ANDES triangle

C=AUTHOR C. A. Felippa, June 1991

C=VERSION July 1991
C=EQUIPMENT Machine independent
C=KEYWORDS finite element

C=KEYW0RDS material stiffness matrix hiEh-order
C=KETVORDS triangle membrane assumed natural deviatoric sCra/n
C=BLOCK ABSTRACT
C

C SM3MANDES forms the higher order element stiffness matrix

C of a 9-dof membrane trianEle based on the ANDES formulation.
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C Implementation moderately optimized for speed.
C

C=END ABSTRACT

C=BLOCK USAGE

C

C

C

C

C

C The inputs are:
C

C X

C Y

C DM

C

C F

C SM

C LS

C

C M

C

C The outputs are:
C

C SM

C

C

C

C STATUS

C

C

C=END USAGE

C=BLOCK FDRTRAN

subroutine

$

C

C

C

C

C

C

C

The calling sequence is

CALL SM3MHANDES (X, Y, DM, F, LS, SM, M, STATUS)

(3 x 1) array of x coordinates of triangle nodes

(3 x 1) array of y coordinates of triangle nodes

(3 x 3) matrix constitutive matrix already

integrated through the thickness

Factor by which all stiffness entries will be multiplied.

Incoming material stiffness array.

(9 x i) array of stiffness location pointers

(see examples in SM3MB)
First dimension of SM in calling program.

Output stiffness array with higher order stiffness
coefficients added in.

The (i,j)-th entry of the basic element stiffness is added

to SM(K,L), where K=LS(I) and L=LS(J).

Status character variable. Blank if no error

detected.

SM3MHANDES

(x, y, dm, f, Is, sm, m, status)

AKGUMENTS.

integer is (9), m

double precision xC3),yC3), dmC3,3), f, smCm,m)
character status* (*)

TYPE & DIMENSION

double precision x12, x21, x23, x32, x31, x13

double precision y12, y21, y23, y32, y31, y13

double precision 121,132,113

double precision chi213,chiS21,chi132

double precision area, area2, area43

double precision c(3,3), e(3,3), et(3), d(3), qm(3,3,3)

double precision t(3,3), tfac, kth(3,3)

double precision s(3), ryij(6), sum, w(3), wfac

integer i, j, k, 1
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LOGIC

status = _

if (f .eq. 0.0) return

x12 = x(1) - x(2)

x21 = -x12

x23 = x(2) - x(3)

x32 = -x23

x31 = x(3) - x(1)

x13 = -x31

y12 = y(1) - y(2)

y21 = -y12

y23 = y(2) - y(3)

y32 = -y23

y31 = y(3) - y(1)

y13 = -y31

area2 = z21*y31-x31*y21
if (area2 .le. 0.0) then

status = 'SM3MHANDES: Negative area'

if (area2 .eq. 0.0) status = 'SM3MHANDES: Zero area'

return

end if

area =

121 =

132 =

113 =

tfac =

¢(1,1) =

t(1,2) =

O. 5DO*area2

sqz_ (x21**2+y21**2)

eqrt (z32**2+y32**2)

sqr_ (x13**2+y13**2)
O. 25DO/are8**2

¢fac*y23*y13*121**2

tfac*y31*y21*132**2

t(1,3) = _fac*y12*y32*113**2
• _C2,1) = Zfac*x23*x13*121**2

tC2,2) = ¢fac*x31*x21*132**2

t(2,3) = tfac*x12*x32*113**2

¢(3,1) = ¢fac* (y23*x31+x32*y13) *12 I*.2

¢ (3,2) = ¢fac* (y31*x12+x13*y21)*132**2

_(3,3) = ¢fac* (y12*x23+x21*y32) *I13..2

wfac = 0.75DO*f.area

e(1,1) = _rfac*dm(1,1)

e(1,2) = wfac*dm(1,2)
e(1,3) = wfac*dm(1,3)

e(2,1) = wfac*d_(2, 1)

eC2,2) = wfac*dm(2,2)

e(2,3) = ,,rfac*dm(2,3)

e(3,1) = wfac*dm(3,1)

e(3-,2) = ,,rfac*dm(3,2)

e(3,3) = wfac*dm(3,3)

do 1600 j = 1,3
do 1400 i = 1,3

e¢(i) = e(i,l).¢(l,j)+e(i,2)*t(2,j)+e(i,3)*t(3,j)

1400 continue

do 1500 i = 1,3

c(i,j) = tCl,i),etC1)+t(2,i)*et(2)+t(3,i)*e¢(3)
1500 continue

352



1600

25O0
2600
2800

con_lnue

area43 = (2.DO/3.DO),amea2

ch1213 = area43/121**2

chi321 = area43/132**2
cbi132 = area43/113**2

qm(t,l,t) = -0.25.chi213

¢_(1,2, 1) = -qn(1,1,t)
qm(1,3,1) = 0.0

qm(2,1,1) = 0.25.cbi321

qm(2,2,1) = 0.50.ch1321

qm(2,3,1) = qm(2,1,1)
q=(3,1,1) = -0.50.chi132

q=(3,2,1) = -0.28.cb1132

q=(3,3,1) = qn(3,2,1)
q=(1,1,2) = -0.25.cbi213

q=(t,2,2) = -0.50.chi213

q=(1,3,2) = qm(1,1.2)
q_(2,1,2) = o.o
_(2,2,2) = -0.25"ch1321

cE_(2,3,2) = -qm(2,2,2)
_(3,1,2) = 0.25.chi132

c_(3,2,2) = c_(3,1,2)
c_(3,3,2) = 0.50.cbi132

_(I,1,3) = 0.50"ch1213

<_(I,2,3) = 0.25.chi213

qn(1,3,3) = qm(1,2,3)
q=(2,1,3) = -0.25,chi321

_(2,2,3) = _(2,!,3)
c_(2,3,3) = -0.50.chi321

cp(3,1,3) = 0.25,cbi132
c_(3,2o3) = 0.0

c_(3,3,3) = -_(3,1,3)
_'_h (I, 1) = 0.0

_h(1,2) = 0.0

_h(1,3) = 0.0

k'th (2,2) = 0.0

kth(2,3) = 0.0

k_h(3,3) = 0.0

do 2800 k = 1,3

do 2600 j = 1,3

d(1) = c(1,1)*qm(1,3,k)+c(t.2)*q=(2.j,k)+c(1,3).qm(3,j,k)

d(2) = ¢(2,1)*qm(l,j,k)+c(2,2)*qm(2,j,k)+c(2,3).qm(3,j,k)
d(3) = c(3,1)*q=(1,j,k)+c(3,2)*c_(2,j,k)+c(3,3).c_(3,_,k)
do 2500 i = 1,j

E_h(i,j) = Eth(i,j) +

$ qm(1,i,k)*d(1)+qm(2,i.k).d(2)+qm(3,i,k).d(3)
kzh(j,i) = kth(i,j)
continue

continue

continue

s(1) = kth(l,1) + kth(1,2) + kth(1,3)

s(2) = kl;h(2,1) + kl;h(2,2) + k1;h(2,3)

s(3) = k_h(3,1) + kth(3,2) + kth(3,3)
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xyij (1) = 0.25*x32/area

Iyij (2) = 0.25*y32/area

ryij (3) = 0.25*xl3/area

ryij (4) = 0.25*y13/area

ryij (5) = 0.25*x21/area

ryij (6) = 0.26*y21/area

do 4000 j = 1,9
l = is(j)
do 3600 i = 1,3

if (j .le. 6) then

v(i) = s(i)*xyi j (j)

else

v(i) = Eth(i,j-6)
end if

3600 continue

sum = wCt) + wC2) + w(3)

do 3700 i = 1,j
k = is(i)

if (i .le. 6) then

sin(k,1) = sm(k,l) + sum*xyij(i)

else

sm(k,l) = sm(k,l) + w(i-6)

end if

sm(l,k) = stuCk,l)

3700 continue

4000 cont inue

return

end

C=END FORTRAN

C=DECK SM3MHEFF

[

.

I

!

(.

C=PURPOSE Form hiEh-order material stiffness' of 9-dof EFF triangle

C-AUTHOR C. A. Felippa
C=VERSION June 1991

C=EE_TIPMENT Machine independent

C=KEY_/ORDS finite element

C=KEYWORDS material stiffness matrix

C=KEY_ORDS trianEle membrane hiEh-order extended free formulation

C=BLOCK ABSTRACT

C

C

C
C

C

C

SM3MEFF forms the higher order stiffness matrix of a 9-dof

membrane trianEle based on _he ex_ended free formulation.

This implementation has alphah=5/4 hardwired, and is

optimized for maximum formation speed.

C=END ABSTRACT

C=BLOCK USAGE

C

C

C
C

C

C

The calling sequence is

CALL SM3MHEFF (X, Y, DM, F-, LS, SM, M, STATUS)

The inputs" are :

354



C
C X

C ¥

C DM

C

C F

C

C SM

C LS

C

C

C M

C

C The outputs
C

C SM

C

C

C

C

C

C STATUS

C

C

C=END USAGE

C=BLOCK-FORTRAN

subroutine

$

C

C

C

"°.

(3 x 1) array of x coordinates of triangle nodes

(3 x 1) array of y coordinates of triangle nodes

(3 x 3) matrix constitutive matrix already

integrated through the thickness

Factor by which all stiffness entries will be multiplied.
It is beta or 0.5*beta

Incoming material stiffness array.

(9 x I) array of stiffness location pbinters

(see examples in SMSMB).

three rotational D0F will appear at the end.

First dimension of SM in calling program.

are:

I

Output stiffness array with higher order stiffness
coefficients added in.

The (i,j)-th entry of the basic element stiffness is added

to SM(K,L), where K=LS(I) and L=LS(J).

(Drilling freedoms are internally 7,8,9)

Status character variable. Blank if no error

detected.

SM3MHEFF

(x, y, dm, f, ls, sm, m, status)

ARGUMENTS

integer

double precision
character*(*)

ls(9), m

xC3),y(3), dm(3,3), f, sm(m,m)

status

TYPE & DIMENS I0N

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

double precision

integer

LO

status = ' '

if (f .eq. 0.0)

zO,yO, z10,x20,x30, y10j20,y30
x12, x21, x23, x32, x31, z13

y12, y21, y23, y32, y31, y13
aa12,aa23,aa31,ss12,ss23,ss31,ssl,ss2,ss3

caa12,caa23,caa31, sum

ca, caxlO, cax20, tax30, cay10, cay20, caT30
area, area2, kfac

kqh(6,6) ,b_t (6,3) ,hqt (6,3) ,kch(3,3)

s (S) .v(e) ,xyij (3)

ell,e22,e33,e12,e13,e23

i,_,k,l

GIC

return
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z12 = z(1) - x(2)

x21 = -x12

x23 = z(2) - x(3)

z32 = -x23
x31 = x(3) - x(Z)

x13 = -x31

y12 = y(1) - y(2)

y21 = -y12

y23 = y(2) - y(3)

y32 = -y23

y31 = y(3) - y(1)

y13 = -y31
area2 = x21*y31-z31*y21
if (area2 .le. 0.0) then

status : 'SM3MBEFF: Negative area'

if (area2 .eq. 0.0) status = 'SM3MBEFF: Zero area _

return

end if

area =

xO =

yO =
xlO =
x20 =

x30 =

yl0 =
y20 =

y30 =
aa12 =

aa23 =

aa31 =

¢aa12 =

caa23 =

caa31 =
ss12 =

ss23 =

ss31 =

ssl =

SS2 =

SS3 =

caylO =

cay20 =

cay30 =
cazl0 =

car20 =

cax30 =

O. 5DO*area2

(x(t) +x (2) +x (3))/3.

(yCl)+y(2)+y(3))/3.
x(1) - xo

x(2) - xO

x(3) - xO

yCt) - yO

y(2) - 3_)
y(3) - yO
2.25D0. (z30**2+y30**2)

2.25D0- (xlO**2+ylO**2)

2.25D0. (x20**2+y20**2)
15. DO/(32. *aa12)

15.DO/(32.*aa23)

t5.DO/(32.*aa31)

x12**2+y12**2

x23**2+y23**2

x31**2+y31**2
O. 25D0. (ss12-ss31)

O. 25DO* (ss23-ss 12)

O. 25D0. (ss31-ss23)

O.1875DO*ylO

O.1875DO*y20

O. 1875DO*y30
O. 1875DO*xlO
0.1875D0*x20

0.1875DO*x30

hmt (1,1) = caa12* ( (-ss3+O. 6DO*aa12)*y30+area*x30)

hint(l,2) = 3.*cay30 - hmt(1,1)

hint(l,3) = cay30

hm_,(2,1) = caylO
hint(2,2) = caa23* ((-ssl+O. 6DO*aa23)*ylO+area*xlO)

hint(2,3) = 3.*caylO - hint(2,2)

hint(3,1) = caa31*((ss2+O.6DO*aa31)*y20-area*x20)

h=t (3,2) = cay20
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2000

hint(3,3) = 3.*cay20 - hint(3,1)
hurt (4 1) = caa12* ((ss3-O.6DO*aa12)*x30+a-rea*y30)

hint(4 2) = -3.*cax30 - hint(4,1)

hm_ (4 13) = -cax30

h_(5.1) = -caxlO

hmt (5.2) = caa23* ((ss 1-0.6DO*aa23)*x10+area*ylO)
hmC(5 3) = -3.*caxlO - hint(5,2)

hmt (6,1) = caa31* ((-ss2-O. 6DO*aa31)*x20-axea*y20)
hint(6.2) =-cax20

hint(6 _3) = -3.,cax20 - hint(6,1)

do 2000 j = 1,3

sum = (2.DO/g.). (km_ (1, j)+lmt (2, j) +lint (3, j))

hqt(1,j) = sum- (4.DO/3.).hm¢(1,j)

hq_c(2,j) = sum- (4.DO/3.)*hm¢(2,j)

hqt(3,j) = sum- (4.DO/3.)*hmt(3,j)

sum = (2.D0/9.)* (hint (4, j)+hmt (5, j)+hm¢ (6, j))

hqt(4,j) = sum- (4.DO/3.)*hm¢(4,j)

hqt(5,j) = sum- (4.DO/S.)*hmt(5,j)

hqt(6,j) = sum- (4.DO/S.)*hm¢(6,j)
continue

kfac = 1.5DO.f/area2

ell = kfac * dm(1,1)

e22 = kfac * clm(2,2)

e33 = kfa¢ * dm(3,3)

e12 = Efac * dm(1,2)

e13 = kfac * dm(1,3)

e23 = kfac * dm(2,3)

kqh(1,1) = 2*(ell*y30**2-2*e13*x30*y30+e33*x30**2)

kqh(1,2) = ((e13*x10-e11*ylO)*y30+(e13*y10-e33*xlO)*x30)

kqh(1,3) = ((e13.x20-e11,y20)*y30+(e13*y20-e33*x20)*x30)

kqh(1,4) = 2.(e13*y30**2-(e33+e12)*x30*y30+e23*x30**2)

kqh(1,5) = ((e12.x10-e13,ylO)*y30+(e33*ylO-e23*xlO)*x30)

kqh(1,6) = ((e12.x20-e13*y20)*y30+(e33*y20-e23*x20)*x30)

kqh(2,1) = kqh(1,2)

kqh(2,2) = 2*(e11*y10**2-2*e13*x10*y10+e33*xlO**2)
kqh(2,3) = ((e13*xlO-ell*ylO)*y20+(e13*ylO-e33*xlO)*x20)

kqh(2,4) = ((e33,x10-e13,ylO)*y30+(e12*y10-e23*xlO)*x30)

kqh(2,5) = 2.(e13.ylO**2-(e33+et2)*xlO*ylO+e23*xlO**2)
kqh(2,6) = ((e33*xlO-e13*ylO)*y20+(e12*y10-e23*xlO)*x20)

kqhCS,t) = kqh(1,3)

kqh(3,2) = kqh(2,3)

kqh(3,3) = 2*(ell*y20**2-2*e13*x20*y20+e33*x20**2)

kqh(3,4) = ((e33*x20-e13*y20)*y30+(e12*y20-e23*x20)*x30)

kqh(3,5) = ((e12,x10-e13*ylO)*y20+(e33*ylO-e23*x10)*x20)

kqh(3,6) = 2,(e13,y20**2-(e33+e12)*x20*y20+e23*x20**2)

kqh(4,1) = kqh(1,4)

kqh(4,2) = kqh(2,4)

kqh(4,3) = kqh(3,4)
kqh(4,4) = 2*(e33*y30**2-2*e23*x30*y30+e22*x30**2)

kqh(4,5) = ((e23*x10-e33*ylO)*y30+(e23*ylO-e22*xlO)*x30)

kqh(4,6) = ((e23*x20-e33*y20)*y30+(e23*y20-e22*x20)*x30)

kqh(5,1) = kqh(1,5)
kqh(5,2) = kqh(2,5)
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kqh(5,3) =
kqh(5,4) "-

kqh(5,5) =
kqh(5,6) =
kq_(6,I) =
kqh(6,2) =

kqh(5,3) =

kqh(6,4) =

kqh(6,5) =

kqh(6,6) =
kthCt,t) =
kth(1,2) =

kth(2,2) =

kth(z,3) =
hl;h (2,3) =

k_h(3,3) =

do 3500 j
do 3200

w(i) =
$
$

32O0

33OO

3500

3600

$
$

kqh(3,5)
kqh (4,5)

2* (e33,ylO**2-2*e23*xlO*y10+e22*xlO**2)

((e23*xlO-e33*ylO)*y20+(e23*ylO-e22*xlO)*x20)

kqh(1,6)

kqh(2,6)

kqh(3,6)

kqh(4,6)

kc_(5,6)
2* (e33*y20** 2-2*e23*z20*y20+e22*z20**2)

0.0

0.0

0.0

0.0
0.0

0.0

= 1,3

i = 1,6

kqh(i,1)*hqt(1,j) + kqh(i,2)*hq_(2,j)

+ kqh(i,3)*hqt(3,j) + kqh(i,4)*hqt(4,j)

+ kqh(i,5)*hqt(5,j) + kqh(i,6)*hq_(6,j)
continue

do 3300 i = 1,j

k-ch(i,j) = k_h(i,j) + hqt(1,i),w(1) + hqt(2,i)*w(2)

+ hqt(3,i)*w(3) + hqt(4,1)*w(4)

+ hqt(5,i)*w(5) + hqt(S,i)*w(6)

k_h(j,i) = k_ch(i,j)
continue

continue

s(1) = k_h(1,1) + k_h(1,2) + kth(1,3)

s(2) = k_h(2,1) ÷ kth(2,2) + k_h(2,3)

s(3) = k_h(3,1) ÷ kch(3,2) + k_h(3,3)

ca = 0.25D0/area

ryij(1) = ca*x32

ryij (2) = ca*y32

xyij (3) = ca*xl3

ryij(4) = ca*y13

ryij(5) = ca*x2l

xyij(6) = ca*y21

do 4000 j = 1,9

]. = zs(j)
do 3600 i = 1,3

if (j .le. 6) then

w(i) = s (i)*ryij (j)
else

w(i) = kth(i, j-6)

end if

continue

sum = w(1) + w(2) + w(3)

do 3700 i = 1,j
k = Is (i)

if (i .le. 6) then

sm(k,l) = sm(k,l) + sum*xyij(i)
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else

sm(k,l) = sm(k,l) + w(i-6)

end if

sm(l,k) = sm(k,l)

3700 continue

4000 continue

return

end

C=END FORTRAN

C=DECK SM3MHFF

I
F

[,,

@

I
C=PURPOSE Form HO material stiffness of 9-dof membrane FF-1984 trianEle

C=AUTHOR C. A. Felippa, June 1984

C=VERSION September 1986

CzEQUIPMENT Machine independent

C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix

C=KEYWORDS trianEle membrane hiEh-order free formulation FF 1984
C=BLOCK ABSTRACT

C

C

C

C

C

C

SM3MH forms the high order stiffness matrix of the BerEan-

Felippa membrane triangle (CMAME, vol 50, pp 25-69). A faster

reformulation (Finite Elemen_ Handbook Series, Pineridge

Press, pp 139-152) of the original implementation is used.

C=END ABSTRACT

C=BLOCK USAGE

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

The callimg sequence is

CALL SM3MHFF (X, Y, DM, F, LS, SM, M, STATUS)

The inputs are:

X

%,

DM

F

LS

SM

M

(3 x I) array of x coordinates of triangle nodes

(3 z I) arra 7 of 7 coordinates of triangle nodes

(3 x 3) matrix relating membrane forces to strains

Factor by which stiffness entries will be multiplied.

(9 x I) array of stiffness location pointers

(see SM3MB for examples)

Incoming material stiffness array.

First dimension of SM in callin E program.

The outputs are:

SM

STATUS

Output stiffness array with higher order stiffness

coefficients added in. The (i,j)-th entry of the

(9 by 9) H.O. membrane stiffness is added to
SM(K,L), where K=LS(I) and L=LS(J).

(Drilling freedoms are 7,8,9 internally).

Status character variable. Blank if no error

detected.
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C=END USAGE

C=BLOCX FORTRAN

subrout ine

C

C

C

$

SM3MHFF

(z, Y, din, Z, Is, sin, =, "status)

ARGUMENTS

character.(.) status

integer Is(9), m

double precision zC3), y(3), _(3,3), f, smCm,=)

LOCAL VARIABLES

double precision

double Precision

double precision

double precision

double precision

double precision

integer

xc(3), 7c(3), dzc(3), d7c(3), hh(3,9)

so_(3,3), qz(3,3), co,(3,3), r(3,3)

area, area2, lambda, cj, sj, csJ

ell e el2, e13, e22, e23, e33, jxx, jxy, jyy

det, gamma, EEE, mu, mux, muy, mumu, tau

sum, sl, s2, s3, s4, sb, s6, xO, yO
i, j, k, i

LOGIC

status = _ 3

_re_O = • (yC2)-y(1))*Cx(1)-x(3)) - (xC2)-x(1))*(y(1)-y(3))
if (area2 .le. O.O) _hen

status = 'SM3MHFF: Negative area'

if (area2 .eq. O.O) status = 'SMSMHFF: Zero area'
re_rn

end if

if (f .eq. O.O) return
_0 =

70=
area =

lambda =

zcC1) =
XC(2) ==

zcC3) =
yc(Z) =
ycC2) =
ycC3) =
dzc(1) =
,:tzcC2) =
_c(3) =
dye(l) =

dyc(2) =
dycC3) =
ell =

e22 =
e33 =

e12 =

e13 =

e23 =

(xC1)+z (2) +x(3))/3.0

(yC1)+y(2)+y(3))/3.0
O. 5*area2

1.O/sqrt Carea)

lambda * (z(Z)-zO)

la_x_ * (xC2)-zO)

labda * (xC3)-xO)

lambda * (yCl)-yO)

lambda • (yC2)-yO)

lambda * (y(3)-yO)
zc(3) - xc(2)

zc(1) - zc(3)
xc(2) - xc(1)
yc(3) - yc(2)
yc(l) - yc(3)

yc(2) - yc(1)
d=(t,t) • z
d=(2,2) • f

dm(3,3) * f

dm(1,2) • f

¢1m(1,3),, f
dm(2,3) • f
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C

$
$
$

2400
2500

C

j_ =

jxy=
jH =

-2.*(xc(1)*xc(2)+xc(2)*zc(3)+xc(3)*xc(1))/3.0
(xc(1)*yc(1)+xc(2)*yc(2)+xc(3)*yc(3))/3.0

-2.*(yc(1)'*yc(2)+yc(2)*yc(3)+yc(3)*yc(1))/3.0

do 2500
=

muy =
ZIlUHIU =

_1 =

ganma =
tau =

ggg=
cj =

sj =

rCi,j) =
rC2,j) =
rCS,j) =
¢SJ =

ax(j ,_) =
qx(j ,2) =
qz(j,s) =
qy(j.1) =
qyCj,2) =
oyCj,3) =
Sl =
52 =
53 =
54 =
s5 =
56 =
do 2400

j =1,3
-3. O*xc (j)/2.0
-3. O*yc (j)/2. O'
nnm**2 + muy**2
sqrz(mumu)
2.Olmu

O.25D0" (dxc (j) **2+dyc (j)**2-gamma**2)
(mmu-3.0.¢ au) *gamma*lambda/24.
mux/mn

muylmu

-la_bda * (cj*xc(1)+sj*yc(1)) +
-lambda * (cj*zc(2)+sj*yc(2)) +
-lambda * (cj*xc(3)+sj*y¢(3)) + r=,W>g
cj*sj

-0.5*csj*cj
-0.5*sj**3

-csj*sj
0.5.cj*.3
o.S*csj*sj
csj*cj

ell*qx(j,l) + e12*qx(j,2) + eZ3*qx(j,3)
el2*qx(j,1) + e22*qx(j,2) + e23*qx(j,3)
e13*qx(j,1) + e23*qx(j,2) + e33*qx(j,3)

ell*qy(j,1) + e12*qy(j,2) + eI3*qy(j,3)
e12*CLV(j,1) + e22*cl_y(j,2) + e23*qy(j,3)
e13*qy(j,1) + e23*cly(j,2) + e33,qy(j,3)

i= 1,j
sqh(i,j) = jxx * (qx(i,1)*sl+qx(i,2)*s2+qx(i,3)*s3)

+ jxy * (qx(i,l)*s4+qx(i,2)*s5+qx(i,3)*s6
+qy(i,l)*sl+cLY(i,2)*s2+qy(i,3)*s3)

+ jyy * (_TCi,1)*S4_tTCi,2)*s5+u.7(i,3)*S6)
continue

continue

hh(Z,7) =
hh(2,8) =
hh(3,9) =
_(t,9) =
hh(3,7) =
hh(2,7) =
Ib(l,8) =
hh(3,8) =
_h(2,9) =
det =
do 2700
_(i,7) =
_(i,8) =
bb(i,9) =
SUm =

r(2,2)*r(3,3) - r(2,3)*r(3,2)
r(3,3)*r(l,1) - r(3,1)*r(1,3)
r(1,1)*r(2,2) - r(1,2)*r(2,1)
r(1,2)*r(2,3) - r(1,3)*r(2,2)
r(2,1)*r(3,2) - r(3,1)*r(2,2)

r(2,3)*r(3,1) - r(2,1)*r(3,3)
r(3,2)*r(l,3) - r(1,2)*r(3,3)

r(3,1)*r(1,2) - r(3,2)*r(1,1)

r(l,3)*r(2,1) - rC2,3)*r(1,1)

rCl,l)*hh(1,7) + rCi,2),hh(2,7) + rCI,3)*hh(3,7)

i = 1,3

-hh(i,7)/det

-hh(i,8)/det

-hh(i,9)/det
-0.25DO*lambda*(hh(i,7)+hh(i,8)+hh(i,9))
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2600

2700

C

do 2600 j = 1,3

hh(i,2*j-1) = -su_*dzc(j)

hh(i,2*j ) = -su_*dyc(j)
continue

cont_uue

do 4000 j = t,9

I = is(j)
sl = sqh(1,1)*hh(I,j) + sqh(1,R)*hh(R,j) + sqh(1,3)*hh(3,j)

s2 = sqhCI,2),hh(l,j) + sqhC2,2)*hh(2,j) + sqhC2,3)*_h(3,j)

s3 = sqh(l,3)*hh(l,j) + sqh(2,3)*hh(2,j) + sqh(3,3)*hh(3,j)

do 3500 i = 1,j
k = is(i)

sm(k,l) = sm(k,l) + (sl*hh(l,i) + s2*hh(2,i) + s3*hh(3,i))

sm(l,k) = sm(k,l)
3500 continue

4000 continue

return

end

C=END FORTRAN

I

I

I

f

{
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PARAMETRIZED VARIATIONAL PRINCIPLES

FOR MICROPOLAR ELASTICITY

ABSTRACT

A parametrized six-field variational principle for micropolar compressible linear elasticity is pre-

sented. The primary variables are symmetric and skew stresses, symmetric and skew strains,

micropolar rotations, and displacements. The governing functional is characterized by six free pa-

rameters. The connection between this formulation and the functionals with relaxed stress symmetry

and independent rotations fields proposed by Reissner and Hughes-Brezzi for classical (non-polar)

linear elasticity is examined. It is shown that the Hughes-Brezzi functionals are special cases of the

parametrized functional but that the Reissner functionals are not. The former may be interpreted

as a regularization (consistent stabilization) of the Reissner functionals that places them within the

framework of micropolar elasticity. An eight-field parametrized principle that accounts for couple

stresses is briefly described in the Appendix. "
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1. GOVERNING EQUATIONS

Consider a compressible linear micropolar body under static loading that occupies the volume V.

The body is bounded by the surface S, with outward external normal hi. The surface is decomposed

into S : Sa U St. Displacements are prescribed on Sa while surface tractions are prescribed on St.

Rectangular Cartesian coordinates will be used throughout.

The four unknown volume fields are the displacement vector ui, the infinitesimal strain tensor

y/j, the stress tensor r/j, and the (ant/symmetric) microrotation tensor 0/j. The stress and strain

tensors are not symmetric. The symmetric and ant/symmetric parts of the stress tensor are trii

and s/j, respectively. The symmetric and ant/symmetric parts of the strain tensor are e/j and #ij,

respectively. The ant/symmetric tensor of infinitesimal rotations (also called macrorotations) is ta/j.

The problem data include: the body force field bi per unit of volume in V, body couples ci per unit

of volume in V, prescribed displacements di on Sd, and prescribed surface tractions _/on St.

The governing field equations for an isotropic micropolar continuum without couple stresses are

written below following Novacki (1970), with some notational changes. In the following equations,

_;_./is the Kronecker delta, E,'jk denotes the permutator symbol (Ei./k = + 1 or -- 1 if i, j, k are distinct

and form a positive or negative permutation, respectively, of 1, 2, 3; else _ijt = 0), _. and p. are the

Lam_ coefficients, and r is a micropolar modulus that relates the ant/symmetric tensors c;b/1and sij.

In addition, a comma denotes partial derivative with respect to the space coordinate whose index

follows.

Strain-displacement and rotation-displacement equations in V:

= uj.;-oi = eo +a,o -o,j =co"

= ½(u .i -

eij --'_ l (yij -I- Y]i) = l (uj.i + uij), (1)

Constitutive equations in V:

rij = (/z + r)yzy + (p. - r)_,ji + _._Y'kt: = az/+ s;j,

trij = ½(rij + rji) = 21_ eij q- ),8ijektc,

I
sij = _(rij -- rji) = 2r dPij.

Equilibrium equations in V:

_ji.j -}" bi -- _rji.j -}- Sji.j "_ bi = O,

6ijk Tjk "]- Ci = O.

Stress boundary conditions on St:

rijnj -" ti.

(2)

(3)

(4)
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Displacement boundary conditions on Sa:

ui =di. (5)

The foregoing equations apply if the presence of couple stresses mij is neglected. The variational

treatment is extended to that case in the Appendix.

For completeness, and to facilitate correlation with other references, equations (1)-(5) are restated

below in direct (index-free) tensor notation:

3,= Vu-_0= e+_- 0=_e+ q_,

w = ½(V - VT)U = skew (Vu),

e = ½(V + Vr)u = symm (Vu) = symm "7,

_b= w - 0 = ½(V - Vr)u - 0 = skew (Vu - 0_)= skew 7,

Z= (l,z +x)',[+ (/.z -x)7 r +A.I trace 7= o- +_s,

cr = symm Z = 2/z e + _. I trace 3',

s_= skew _v-= 2K _b,

div Z + b = div _ + s__)+ b = 0,

2 axial _-£+ c = 0,

in V

(6)

Here an underlined bold symbol denotes a second order or higher tensor. This convention is used

to distinguish tensors from their vector/matrix representations introduced in Section 2.1. No such

distinction is needed for vectors such as u.

2. NOTATION

2.1 Matrix Notation

To facilitate the construction and manipulation of variational matrix expressions, stresses and strains

will be arranged as column vectors constructed from the respective tensors. The arrangement rules

vary according to the symmetry properties and are best illustrated by specifics.
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For symmetric stress and strain tensors:

1711 ell

I ell el2 el3

0-11 0"12 0"13 0.33 e33 , (7)
O" m O'12 0"22 0"23 ---_ O" = , e m el2 e22 e23 _ e -
-- / 0"23 - 2e23

0"13 0"23 0"33 [ 0"31 e13 e23 e33 2e310"_2. 2e12

where cr31 = a13 and e31 -- e13- The factor of 2 in e maintains equivalence of stress-strain inner

products; cf. (12) below.

For antisymmetric (skew) stress and strain tensors:

S E0s s31,s l E0 2031--S12 0 $23 -_ S -- ' S31 . , _ -- --_12 0 ¢]723

o [ ] - -¢'13 0

I 0 Or2 0131
O= -012 0 023 ---0=

L.-°13 -023 0

where s31 = --s13 and ¢_31 = -4h3-

2023} I 0 0)120-713
2031 , w__= --O.712 0 0.723

2012 L-Wt3 -_3 0

24_23

-- ¢_ -- 2_1

24q2

(8)

2w12
(9)

The factor of 2 applies only to kinematic skew (rotational)

tensors, and again maintains inner product equivalence; cf. (12) below.

For general (unsymmetric) stress and strain tensors:

I Tll TI2 _13 1_21 _22 _23 =-- W'--

T31 _32 T33

_11

"c2"_

T33

_z3

_n

TI3

I Ylt Yt2 3/131
Y21 3"22 Y23 ------'y=Y31 3'32 Y33

_11

Y22

Y33

Y:z3

Y31

Y12

Y32

Yl3

• Y21

(IO)

With these conventions operations between tensors of equal type can be easily translated to matrix

form. For example, the inner products

o" " e -- 0"ijeij _ o'Te, s" _ = so@: = sr_b. (11)

Problems arise, however, in combining different types. For example, -r = o" + s is an inconsistent

matrix operation because vectors o" and s have different dimensions. This difficulty can be cir-

cumvented by introducing "uncompressed" versions, in which components of symmetric and skew
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tensors are arranged as general tensors:

0-22 I

O'33 [

0-23 I

a31

O'12

0"23

0"3t

O'12

S"-

' 0

0

0

$23

$31

S12

--$23

--$31

• --S12

r

ell

e22
i

e33

e23

e31

el2

e23

e31

• el2 ,

0

0

0

¢23
¢31

(#12

-0-23
-hi

, --(#12

(12)

Furthermore, 7- = *-r and 3' = *7, thus no distinction is needed there. This convention will let us

consistently expand expressions such as the inner product of total stresses and strains:

r,jy_; = "rr7 = (*or+ "s)r(*e + *40 = _'re + sr4_. (13)

2.2 Matrix Form of Governing Equations

Using the matrix notation of Section 2.1, field equations (1)-(3) may be represented as follows.

Strain-displacement equations:

7 = *e +*_b, e=Du, ck=w-O=Ru-O.

Constitutive equations:

-r = "o" +*s, o" = Ee, s = G_b.

Equilibrium equations:

Dro "+ Rrs + b = 0, 2s+c=0.

In the above equations,

n

- O/axl

0

0

O/Ox2

0 0 -

0/0x2 0

0 0/0x3

O/Oxl 0

O/Ox3 O/Ox2

0 O/Oxl_

0

_ O/ax3

R

-O/Ox2 O/OXl 0
0 -a/ax3 a/ax2

O/Ox3 o -o/axl

are the symmetric gradient and curl operators, respectively, in matrix form, and

E __

L+21z /z /_ 0 0 0-

_z _.+2/z /., 0 0 0 [

/z # )_+21z 0 0 0 I

0 0 0 tz 0 0

0 0 0 0 /z 0

0 0 0 0 0 I.*_

Ii o 0-1
I, G=K 1 0,

0 11

(14)

(15)

(16)

(17)

(18)
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In the sequel E and G are not restricted to these isotropic forms but can be arbitrary nonsingular

symmetric matrices. This allows anisotropy in the constitutive equations, subjected however to the

restriction that the pairs (tr, e) and (s, 3') remain constitutively uncoupled.

For future use, introduce the constitutive matrix C that relates r to 3':

2.3 Reduction to Classical Elasticity

Micropolar elasticity reduces to classical linear elasticity if the couple body force c vanishes. If

so the second equilibrium equation 2s + c = 0 shows that s = 0, and r = tr + s = tr is

symmetric. Under the assumption that G is nonsingular, the second constitutive equation in (16)

gives q_ = G-Is = 0, and 3" = e+ q5 = e is symmetric. Furthermore, 0 = w, that is, microrotations

and continuum-mechanics rotations coalesce.

2.4 Field Dependency

For the investigation of variational methods in Sections 3 and 4, the field-dependency notational

conventions used by Felippa (1989a, b,c, 1"991) and Felippa and Militello (1989,1990) are followed.

An independently varied field will be identified by a superposed tilde, for example 6. A dependent

field is identified by writing the independent field symbol as superscript. For example, if the

displacements are independently varied, the derived symmetric strain and stress fields are

e" = D6, o" = Ee" = ED6. (20)

Using this convention, tildeless symbols such as u, e and tr are reserved for the exact or for generic

fields. If a symbol derives from two independently varied fields, both fields appear as superscripts:

for example q_,0 = Rfi - O.

2.5 Integral Abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted parentheses and

square brackets, respectively, around the integrand. For example:

fs fs, fs,= = de=f f dS, If]s,(f)v def f dV, Iris def f dS, [f]& -- f as.

(21)

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted

in the usual manner

f =f eg v, (p,q)v d'df p,jq,jav=fprqdV, (22)

and similarly for surface integrals, in which case square brackets are used.
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3. GENERALIZED STRAIN ENERGY FOR CLASSICAL ELASTICITY

The method used to construct parametrized micropolar variational principles in Section 4 repre-

sents a generalization of the corresponding principles of classical linear hyperelasticity, which are

summarized in this section. These principles have the general form

I'I = U - P. (23)

Here U is the generalized strain energy, which characterizes the stored energy of deformation, and

P is the forcing potential, which characterizes all other contributions. The conventional form of P

is

pc = (b, fi)v + [fi - d, &"]s, + [i, fi]s," (24)

where o', = trrn, n being the unit external normal on S. The other two forms of P, called pa

and pt for displacement-generalized and traction-generalized, respectively, are studied by Felippa"

(1989a, b,c). These (mesh-dependent) forms are of interest in hybrid finite element discretizations.

As the forcing potential is not affected by parametrization, attention will be focused on U.

For a compressible material, the generalized strain energy introduced in Felippa and Militello

(1989,1990) has the following structure:

1 • e 1 • u
U ' " (&,e_)v-- 2J,, + j,2(&, e)v + jr3(&, e")v + _J22(0", e)v + j23( °'e' e")v + _J33(er , e")v,

(25)

where jll through J33 are numerical coefficients. The three independent fields are stresses &,

strains _ and displacements ft. Following the matrix notational conventions stated in Section 2.4,

the derived fields that appear in (25) are

o"e=E_, o a'=EDfi, e_=E -l&, e"=Dfi. (26)

As an example, the U of Hu-Washizu's functional is obtained by setting A2 = - 1, jr3 = 1, j22 = 1,

all others being zero:

, - = , • (&,e" _) (27)= :(,, + -U.(&,_,fi) _(o',t• e)v+_t(b"e"-_)v+_(°" -o'e,e°)v v"

Equation (25) can be rewritten in matrix form as

U=_

°a L symm
jL,Ijl3ii}h2I j23I _ dV.

j33I e"

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix

(28)

Vjtt j12 j13]J = /jl2 j22 A3 (29)
[_jt3 j23 j33
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is seen to fully characterize (25) and consequently, once the forcing potential P is selected, the

functional (23). (Tojustify the symmetryofJ note, for example, that j13(O', eU)v -- _J131• (_., eU.)v.+-

½J,3(eo,o )v,etc.)
On replacing (26) into (28), U may be expressed in terms of the three independent fields as

j3o1j12I j22E j23ED

fi j13 DT j23DrE j33DrED

dV,

fl

(30)

Using (30) the first variation of U may be presented as

8U = (Ae, 85")v + (Aa',Se)v --(divo", 8fi)v + [o",, 8fi]s, (31)

where

Ae = jlte °" + jl2_ + jl3e u, Ao" -- j120" q- j220"e q- j230 _, 0" -- jt3_ q- j23_r e q-j33 o'u. (32)

The last term in (32) combines with contributions from the forcing potential variation. For example,

if P is the conventional forcing potential (24), the complete variation of FIc = U - pc is

81"I¢ = (Ae, 8&)v + (Air, 8_)v - (div o" + b, 8fi)v + [o". - [, 8fi]s ' - [fi - d, 8&his _. (33)

Using pa or p, does not change the volume terms. Consequently the Euler equations associated

with the volume terms of the first variation

Ae = 0, Atr= 0, div tr' + b = 0, (34)

are independent of the forcing potential. For consistency of the Euler equations with the field

equations of classical elasticity one must have Ae = 0, Air = 0 and o" = tr if the assumed stress

and strain fields reduce to the exact ones. Therefore

jll + jl2 + jr3 = 0, jr2 -4- j22 -4- j23 -----0, jr3 + j23 "4- j33 -- 1. (35)

Because of these constraints, the maximum number of independent parameters that define the entries

of matrix J is three. The specialization of these functionals to conventional and parametrized forms

is discussed by Felippa and Militello (1989,1990).

Insofar as E-l appears in (30), this development is valid only for compressible elasticity. Extensions

of this variational principle to cover incompressibility are discussed by Felippa (1992).
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4. GENERALIZED STRAIN ENERGY FOR MICROPOLAR ELASTICITY

For a micropolar elastic material without couple stresses the variational principle is structurally

similar to (23):

Fire =Um - Pro, (36)

where Um now also depends on _,, _ and O, and P,n may be pc p_ or P_. The following

generalization of U to Um is postulated:

- T
G"

S

S _

S uO

"jllI6 j1216 j1316 0 0 0 ] e°

j1216 j2216 j2316 0 0 0 1

j1316 j2316 j3316 0 0 0 e"

0 0 0 j4413 j4513, j4613 _s

0 0 0 j4513 j5513 j5613 _5

0 0 0 j4613 j5613 j6613 .q_.e.

dV, (37)

where 16 and I3 denote the identity matrices of order 6 and 3, respectively, and the new derived

fields are

q_S=G-IL s 4,=G_, q5_°=Rfi-0, s "°=G_b "°=G(Rfi-0). (38)

The block structure of the kernel matrix in (37) results from the inner product orthogonality (14)

of symmetric and antisymmetric tensors. The symmetry of the j coefficients is an assumption that

remains to be verified.

On substituting (38) and (26) into (37), U,,, is expressed in terms of the six independently varied

fields &, _, fi, i, _ and 0"

_r T

$
0

-jltE -l j1216 jI3D 0 0 0

j1216 j22E jz3ED 0 0 0

jl3D r j23DTE j33DrED j46R r j56RrG-j66RTG

+j66RTGR

0 0 j46R j44G -! j4513 -j4613

0 0 j56GR j4513 j55G -j56G

0 0 -j66GR --j4613 -j56G j66G

O"

13
dV.

(39)

The kernel matrix in the above quadratic form must be symmetric, a condition that verifies the

symmetry assumptions in (37). As for the forcing potential, the conventional form changes to

pc = (b, fi)v + ½(c, 0)v + [fi - d, "rn]s a + [i, fi]s, = pc + ½(c, O)v + [fi - d, Sn]s _. (40)

Similarly, the generalized forcing potentials P_ and p t are obtained by augmenting pa and pt,

respectively, with ½(c, 0) v + [fi - d, s]Sd. [The t/2 in the c term arises from the presence of factor

2 in the definition (9) of the microrotation vector 0.]
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The first variationof Um is

8Urn = (Ae, S&)v + (Ao',8_)v -(Dras+Rrs ', 8fi)v

+ (A,_,_)v + (As,8_)v- (s',8_)v+tas +s', _an]s.
where Ae, Ao" and o" are the same as in (32), and

(41)

Adp = j44dP s "t- j45¢_ + j46dP uO, AS = j45S + j55 S_ + j56 SuO, St = j46S Jr" j56 S_ + j66 SuO. (42)

Note that (Dras + Rrs ') = diva s + divs' = div-r', where -r' = *as + *s'. The first variation of

rim = U,. - P_ is

_r_..= (Ae,8_)v+ (A,,,8_)v- (div_-'+ b, 8a)v+ ("_, 8_)v
(43)

+ (,,,, ½(2 '+ + 8a]s,-t -a,
Following the same argument as in Section 3, it is found that consistency with the field equations

requires, in addition to (35), that

j44 + j45 + j46 "-- 0, j45 + j55 + J56 -" 0, j46 q" j56 at- J66 -- 1. (44)

It follows that the parametrized functional of micropolar elasticity

n_ = Um(a. _, _,_, 4,, O) - P,., (45)

depends on 12 - 6 = 6 free parameters through Urn. Specific instances of (45) are characterized

by the functional-generating symmetric matrix

"ill jr2

jr2 j22

jm = jr3 j23
0 0

0 0

0 0

j13 0 0 0 -

j_ 0 0 0

j33 0 0 0

0 j,_ j45 j,*6

0 j4s j55 js6

o j,6 j56 j66

(46)

subjected to the six constraints (35) and (44). The nonzero 3 x 3 blocks in Jm characterize weightings

for symmetric and antisymmetric fields, respectively, and one is free to "mix or match." For example,

I O -1 1 0 0 0 1

-1 1 0 0 0 0

1 0 0 0 0 0 (47)
Jm = 0 0 0 0 -1 1 '

0 0 0 -1 1 0

0 0 0 1 0 0

represents the choice of the Hu-Washizu principle for both symmetric and antisymmetric fields.

The variational principles of Reissner (1965) and Hughes and Brezzi (1989) will be now examined

in light of the preceding developments.
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5. NON-POLAR FUNCTIONALS WITH INDEPENDENT ROTATIONS

5.1 The Reissner Functionals

Reissner (1965) proposed a functional of Hellinger-Reissner type for classical (non-polar) elasticity

(c = 0) in which u, "7-and 0 are to be treated as independent fields. In this functional the stress

symmetry condition s = 0 appears as a weak condition with 0 playing the rble of multiplier. In the

present notation the functional, herein called rIRl = URI -- P,_, can be written as

UR,=-'5(o',- E-t&)v+(_"Vfi-0)v , P_=PC+[fi-rl, gn]s_, (48)

where Vu is the gradient of the displacement vector. Expanding inner products, noting that "7-r (Vu-

0) = "r'r3,_'* = (*o" + "s)r (*e" + "05"'_'), and making use of (13) yields

UR, = -½(&, C) v + (&, C) v + (s, dP"°)v

, - = ½(fi.,e,,)v +, -,, + t(?,,qb-0) + ½(s,,0 _b)-- -_(o',e )v + _(o-,e)v _ v ' v"

(49)

This corresponds to taking

Jm _--"

-1 0 1 0 0 0-

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 0 0

(50)

It can be seen that the first consistency condition in (44), namely j¢4 + ja5 + j46 "" 0, is violated.

Consequently I'I R I is not a valid functional for micropolar elasticity. Inspection of (50) reveals that

conditions (44) can be met by simply changing j44 to - 1, and that is precisely the regularization of

Hughes-Brezzi described in Section 5.2.

Reissner also proposed a second functional i'I R2 = UR2 -- P_ of Hu-Washizu type, in which

UR2- ½(e, Ee)v + (o',eU-_)v + (s' qb"°-_)v

' " +
(51)

which corresponds to the J,,, of (47) except that j55 = 0. Now the second consistency equation in

(44) is violated. Thus this second functional is also inconsistent with micropolar elasticity, but may

be corrected by changing j55 to 1.

5.2 The Hughes-Brezzi Functionals

Hughes and Brezzi (1989) investigated the possible application of the Reissner functionals to

construct finite elements with "drilling" degrees of freedom for classical elasticity. Their analysis

shows that the first Reissner functional would lead to unstable discrete approximations. The physical
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cause of this instability is that deviations from stress symmetry do not produce strain energy. To

circumvent that difficulty, they proposed stabilizing URI by adding a penalty-like term of the form

1(?" "s)v' (52)

where 2" > 0 is a pseudo-modulus with dimensions of stress (in their paper this modulus is called y,

a symbol used here for total strain). Although 2" plays the same role as x in the micropolar theory,

for the intended application it is afictitious quantity to be chosen by numerical experiments. The

term (52) can be encompassed in the present framework by choosing G = 2-I3, which allows that

term to be written as- ½(g, _s)v. Adding this to Unl yields the first Hughes-Brezzi functional:

UHBI "- _i(_, c-l_.)v ..{_ (_, V_II _ _)v
(53)

l _uO' + eU)v+ +

This befits the form (37) with the generating matrix

Jm --

--1 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 -1 0

0 0 0 0 0

0 0 0 1 0
m

0

0

0

1 '

0

0

(54)

whose coefficients satisfy (35) and (44). Thus the stabilization procedure has also the effect of

rendering the functional consistent with micropolar elasticity.

For the second Reissner functional, the stabilization term added to UR2 is ½(s*, _) v, which effec-

tively transforms the first term in (51) from (_, E _) v to (_, CxD v. The resulting Jm is (47).

An obvious generalization of this "repeating block" rule is

Jm

"Am Az A3 0 0 0 -

jx2 jzz j23 0 0 0

j13 j23 J33 0 0 0

0 0 0 ill j12 jl3

0 0 0 j12 j22 j23

0 0 0 J_3 j2a j33

(55)

with the coefficients satisfying (35). This three-parameter family permits symmetric and antisym-

metric stress and strain fields to be merged into total stresses and strains. The resulting functionals

l'I(_', _, 6, 0) may be viewed as having at most four independent fields. Note, however, that this

choice is but a special case of (46).
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5.3 A Two Field Functional

The simplest generating matrix with the block structure (55) is

Jm -"

"0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0-

0 0

0 0

0 0 '

0 0

0 1

The resulting two-field functional is I'IA = UA -- pc, with

uA(a,b) = -" (s"° ,0"°) •

(56)

(57)

This may be viewed as a generalization of the minimum potential energy functional, to which

it reduces if the second term is dropped. It can be obtained from a more general functional for

elastoplasticity proposed by Atluri (1980), who recommends taking 2" = 412 in s "° = t_qY"°. Hughes

and Brezzi (1989) also investigated the functional (57) but made no recommendation on _.

6. CONCLUSIONS

The functional FI,, = U,, - P,, extends the parametrized functional I7 = U - P of classical linear

hyperelasticity to include three more independently varied antisymmetric fields: skew stresses,

skew strains, and microrotations. This extension is made here in the context of micropolar elasticity

without couple stresses.

Another application of these functionals is the construction of finite element interpolations for clas-

sical linear elasticity in which the rotational field 0 is varied independently from the displacements.

The objective is to relax stress symmetry into a weak condition. It is in this context that the func-

tionals of Hughes-Brezzi have been proposed. A membrane element with drilling freedoms based

on these functionals has recently been constructed by Ibrahimbegovic (1990). The present study

indicates that the Hughes-Brezzi functionals fit the framework of micropolar elasticity if fictitious

modulus 2" is identified with the micropolar modulus K.

The Hughes-Brezzi functionals Can be readily generalized into a three-parameter family defined by

(55), in which the same weighting is applied to symmetric and antisymmetric fields. However this

is just a subspace of the six-parameter functional (45) characterized by the J,, matrix (46), which

allows such weights to be separately chosen.
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Appendix. Parametrized Functional for a

Micropolar Medium with Couple Stresses

In this Appendix the preceding variational formulation is extended to account for the presence of couple

stresses m,-j. Two changes in the field equations occur. The angular-momentum equilibrium equation gains a

divergence term:

mji.j "_ 6ijk T.jk "_- ¢i --" O, (58)

The constitutive equations must be augmented by a relation between the couple stresses and microrotation

vector derivatives, which for the isotropic case is

mij = rt'l_ijSk.k "F rr2Oi.j q- rr38j.i. (59)

Here rrt, rrz and rr3 axe constitutive coefficients with dimension of force, and for compactness we have used

the microrotational vector components 81 = 2023, 82 = 2831 and 03 = 2812 in accordance to the convention of

Eq. (9). The gradients of 8; will be denoted by Xj, = 8i.j, which may be interpreted as "curvatures:'

In addition, the boundary conditions (4)-(5) are augmented with

A

mjinj "- mni = w on Sw,

where S • S,,, tOSo.

Next, define the vectors and matrices

m _ {/'tilt

X = {XLt

-zra

7l"1

0

H= 0

0

0

0

0

m22 m33

X22 X33

JT I 71"l

_4 _'1

yr L 7r4

0 0
0 0
0 0
0 0
0 0
0 0

m23 m31 rot2 m32 rot3

X23 X31 XI2 X32 XI3

0 0 0 0 0 0 °

0 0 .0 0 0 0

0 0 0 0 0 0

zr2 0 0 rr3 0 0

0 rr2 0 0 rr3 0
0 0 rr_ 0 0 rr3

rr3 0 0 rrz 0 0
0 rr3 0 0 rr2 0

0 0 _r3 0 0 rrz

8i= Oi on Se, (60)

}Tm21 ,

Xz_ }r,

, Q=

-a/axt 0 0 -

0 a/ax2 0

0 0 a/ax3

0 0 a/ax2

a/ax3 0 0
0 a/ax, 0

0 a/ax3 o
o o ala_t

a/a_2 o o

(61)

in which Ir4= rrt + 7r2+ rr3. Matrix H can be generalized to account for anisotropy without difficulty. Little

is known experimentally about couple stress constitutive behavior, however, even in the isotropic case.

With the foregoing definitions, the matrix field equations that include the effect of the couple stresses are

X = QS, m = HX, Qrm + 2s + c = 0. (62)

The first two are appended to the kinematic relations (14) and constitutive equations (15), respectively, whereas

the latter replaces the second of (16).

A parametrized variational principle that accounts for couple stresses is easily obtained by including two

independently varied fields: couple stresses _ and curvatures _. Functionals U,_ and pc axe augmented with

couple stress terms

U,,,cs =Um + Ucs, P_c_ = pc + pCcs, (63)
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where

/ }TE I9 gi.l/ }[.Iv mX jSSI9 jsgI9 _ dr, (64)
Ucs

" m° syrnrn j9919 X°

PcCs= [w' 8Is, + [O - 8, m"]s_" (65)

The derived fields in (64) are m x = H:_, X m = H-ira, X e = QO, and me = HQO; also I9 denotes the 9 x 9

identity matrix.

The first variation of l'l,_c_ = U,_cs + P_cs is

81"l,,cs = (Ae, 8&)v + (Ao',Se)v --(R r'r' +b, 86)v + (A4_, &_)v

+ (As, 8_) v -- ½(Qrm' + 2s' + c, 80)v +[1-;- [, 8fi]s '

where m' = j79m W jsgm x + j99m °. The consistency conditions are (36), (45), and

(66)

jrr + its + j79 = 0, jTs + j88 + js9 = 0, j79 q" J89 "4" ]99 -- 1. (67)

It is seen that extending the variational principle (45) to accommodate couple stresses brings three additional

free parameters, for a total of nine. This may be reduced to three free parameters, however, by extending the rule
-7. 7" -

(55) with another 3 x 3 repeatingblock. Note that if onechooses j99 = 1,otherszero, U_ = ½(0 Q HQ0) v'
and no additional independent fields over those in (45) appear.

The couple-stress theory of elasticity attracted theoretical attention in the 1960s but it is rarely used in practice,

particularly in static situations. For modeling micropolar and oriented media the simpler equations of Section

1 are more common. This is especially true in homogenization of filamentary composite materials, where

the body couple c and the micropolar modulus _c can be estimated from component-level non-polar data

complemented by statistical and periodicity arguments; see for example Berglund (1977).

Although couple stress models can be generated in the continuum limit of regular and defective-lattice theories

-- see for example Askar (1985) -- the difficulties in characterizing and measuring moduli such as rrl, rr_

and zr3 are significant, and the theory has to be regarded as experimentally inconclusive. Furthermore the

additional boundary conditions (60) are not easily interpreted physically. Consequently the main development

of the paper focuses on the zero-couple-stress case. This has the additional advantage that the reduction to the

classical non-polar case is easily accomplished.
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