
NASA Technical Memorandum 106900

Implementation of a Campuswide
Distributed Mass Storage Service

The Dream Versus Reality

Betty Jo Armstead
Sterling Software
Cleveland, Ohio

and

Stephen Prahst
Lewis Research Center

Cleveland, Ohio

Prepared for the

14th Symposium on Mass Storage

sponsored by the Institute of Electrical and Electronics Engineers

Monterey, California, September 11-14, 1995

Nallonal Aeronautics and

Space Adminisb'ation

Trade names or manufacturers' names are used in this reporx for identification

only. This usage does not o0mtitute an official endorsement, eilh_r expressed

or implied, by the National AeronaultiC_ and Space Administration.

Implementation of a Campuswide Distributed Mass Storage Service

The Dream Versus Reality

Betty Jo Armstead

Sterling Software
Cleveland, Ohio

and

Stephen Prahst

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SUMMARY

In 1990, a technical team at NASA Lewis Research Center,

Cleveland, Ohio, began defining a Mass Storage Service to

provide long-term archival storage, short-term storage for very

large files, distributed Network File Sy stem access, and backup
services for critical data that resides on workstations and

personal computers. Because of software availability and

budgets, the total service was phased in over 3 years.

During the process of building the service from the commer-

cial technologies available, our Mass Storage Team refined the

original vision and learned from the problems and mistakes that
occurred. We also enhanced some technologies to better meet

the needs of users and system administrators.

This report describes our team's journey from dream to

reality, outlines some of the problem areas that still exist, and

suggests some solutions.

INTRODUCTION

The Lewis Research Center is NASA's lead center for

aeropropulsion, space power, space communications, space

nuclear and electric propulsion, and microgravity science.

Research in basic disciplines at Lewis is conducted in the areas

of materials science and technology, structural mechanics, life

prediction, internal computational fluid mechanics, heat trans-

fer, and instruments and control. Lewis also participates in

NASA's High Performance Computing and Communications

Program (HPCCP), which is aimed at producing a thousand-
fold increase in supercomputing speed and a hundredfold

improvement in available communications capability. These
capabilities will let researchers solve today's "grand chal-

lenges"--the intensive, large-scale scientific and engineering

problems critical to meeting national needs.
The Center has over 100 buildings with varying require-

ments for mass storage. These buildings include three wind

tunnels, a full-size-engine test laboratory, and a number of

other test facilities that support aeronautics, space power and

propulsion, and space experiments.

The scientific computing environment includes a Cray YMP

with a T3D parallel processor, a VAX Cluster, a 32-node IBM

RS6000 Cluster, a 16-node IBM SP2, almost 1000 Unix work-

stations, several thousand personal computers, and about 400

Macintosh computers. Data acquisition systems for both steady

state and transient data research are provided.

Since January 1989, a Lewis-developed Central File Archi-

val and Migration Service (CFAM) (ref. 1) has been available

to our Cray users. This service was extended to workstation

users in June of 1991. CFAM is a client/server application
between an IBM MVS server and Unix clients.

In 1990, a team was formed at NASA Lewis to address the

mass storage requirements for the Center's entire computing

complex. The goals outlined by this team were as follows:

(1) Provide long-term archival storage.

(2) Provide short-term storage for very large files, particu-

larly from supercomputing and visualization.

(3) Provide distributed NFS access.

(4) Provide a repository for backing up critical data that

resides on workstations and personal computers (PC).

The Lewis Mass Storage Team defined an architecture that

consisted of a large central mass storage server with high-speed

connections to central systems and a number of departmental

storage servers. These centralized and departmental servers

were to be connected by a dedicated network.

The architecture has been implemented with a central UniTree

system connected to central systems via File Distributed Data

Interface (FDDI) or via a high bandwidth High Performance

Parallel Interface (HIPPI). High performance storage for

supercomputing and visualization is being implemented with a

Maximum Strategy file server. Departmental storage servers

have been implemented with Unix file servers (Sun, DEC, and

IBM). These distributed servers are interconnected via a dedi-

cated FDDI ring. The servers provide both storage for users and

a repository for centrally distributed software packages. In

addition, Hierarchical Storage Management (HSM) software is

being installed on the servers to provide the users with transpar-

ent migration and caching of files to the central server.

Becauseof softwareavailabilityandbudgets,thetotalser-
vicewasphasedinoverthreeyears.Inthisreport,wedescribe,
onbehalfof theMassStorageTeam,theoriginalsystem
requirements,theresultingarchitecture,andthecommercial
technologiesselectedforeachcomponentofthemassstorage
service.Wealsodescribetheenhancementswemadetothose
technologiesandthelessonswelearnedduringimplementa-
tion.Finally,wedescribetheproblemsthatstillremaintobe
solvedandourproposedsolutions.

THEDREAM

In 1991, Lewis Research Center initiated a Mass Storage

Project to provide a vendor-supported "open" mass storage

service that would meet the Center's increasing storage re-

quirements and replace CFAM. Because of budget constraints
and availability of hardware and software, the service was to be

phased in over several years. In the first phase of this project,
the Mass Storage Team obtained end user requirements and

defined the architecture of a Lewis Mass Storage Service.

Requirements

The Lewis Mass Storage Team assembled a detailed set of

requirements for the Lewis Mass Storage Service. These

requirements included large capacity, high reliability, an "open
system" approach, a variety of storage types, fast performance,
and a user-oriented interface.

Capac/ty.--We required the ability to store millions of files and

Terabytes of data. Current estimates for the next 5 years are that

we will be storing from 10 to 100 million files and 10 to 100 TB
of data.

Reliability.--Our top requirement for a mass storage service

was reliability since some research data, such as data acquired

during an experiment, would not be reproducible. We knew that

if researchers could not retrieve data they stored on the service,

for whatever reason, they would lose trust and be apprehensive

about using the service again.

A major component of reliability is data integrity: data must

not be corrupted or lost. Traditional backup methods do not

scale to Terabyte storage systems. We, therefore, require two

copies of each file, one of which must be off-site.

A reliable mass storage service enables researchers to retrieve

their data when they need it. Therefore, we required that system

down time be minimized. Although some down time is typically

needed for correcting faults and doing normal maintenance, we
wanted to restrict down time to one scheduled 2-hr maintenance

window per week.

Commercial Software and Support.--One of our key

requirements was the use of"commerciar' software and support.

This requirement was driven by the limited size of our develop-

ment/support staff. We reasoned that more resources would be

expended on product development and support if a product had a

market that extended beyond our site.

Open System.--An "open" system was also a requirement.

For a mass storage service, the most important open feature is
a standard format for data on the media and meta-data. With

data storage quickly growing into the 10- to 100-TB region, we

saw that it was becoming impossible to copy all the data from
one format to the next. Instead we wanted a service that would

copy data only when forced to do so by media obsolescence.

An "open" mass storage service also would allow any major

system component to be replaced by a component from another

vendor. This would not only allow competition but also protect

us ifa component vendor were to go out of business. Ideally, we

wanted the ability to replace any major component of the
service with a different vendor's product without copying all

the data, retraining all the users, and redeveloping the admin-
istrative environment.

Most of the scientific-based mass storage systems we exam-

ined provided a standard user interface (ftp, NFS, rcp, etc.) but
did not have standard data formats or administrative interfaces.

Storage Types.--We required the ability to provide a variety

of storage options, including disk, tape, robotic support, and

human vault support. We also required the ability to insert new

storage devices as they become available.
Performance.---Our initial performance requirement was

the ability to sustain five l-MB/sec transfers for a total aggre-

gate of 5 MB/sec. The requirement for a single transfer from

supercomputers was 10 MB/sec. We expect performance

requirements to increase and, therefore, require upward

scalability of performance.

End User.---We required the ability to access data from the

desktop environment via a file-system interface. Network File

System (NFS) was the preferred protocol.

We also required standard user interfaces available on the

clients: ftp, rcp and NFS. In addition we required an application

program interface (API) to the storage system for custom

application calls to storage.

Architecture

In designing the Mass Storage Service architecture, the key

challenge was balancing the high capacity requirement, the

higher performance requirement for supercomputing, and the

NFS requirement for desktop systems.

Through our prior experience with hundreds of distributed

clients accessing a single central NFS server, we knew that a
central server would not scale to meet our needs. Based on our

requirements and what we saw in the industry, we developed a

distributed architecture as depicted in figure 1. The major com-

ponents included a high capacity central component, a high

performance component to meet the supercomputing require-
ments, and a distributed component to meet the distributed NFS
load.

Central Component.--The central component would pro-

vide capacity in the multi-terabyte range and performance that

provides an aggregate transfer rate of 5 MB/sec. The main use

LAN Local Area Network

J Supercomputing I ._ I -_

High] I _

performancestorageserver High-speed _network I Visualizati°n I

Central mass Human I/]
st;r2eg:

i I vaultV

I / "" O'=nO'"°Ostorage storage

server [Distributed I Distributed I se_ver
storage storage

I-- server server IBuilding LAN

IBuilding LANBuildingLAN l I I Building LAN [

Figure 1.--Lewis mass storage.

of the central component would be for storing long-term

archival data, such as acquired experimental data, backups, and

migrated files from the distributed servers. The central compo-

nent also would provide space for very large files that would not

fit anywhere else, such as intermediate results from super-

computers. Over time, we envision the central component

becoming a "back-end" service which would primarily store

files that have not been recently referenced. Active files would

reside on high performance and distributed components dis-
cussed in the next two sections.

We expected that the internal architecture of this component

would be a computing system with a variety of large storage
devices, such as disk, robotic tape, human vault, and optical

disk. Hierarchical Storage Management (HSM) software would

manage the storage resources transparently for users.

High Performance Component.--The high performance

component would meet the demands of supercomputing and

visualization. Internally, this component is viewed as either a

third party transfer mechanism to a high-speed disk array or a

special purpose file server. We expected this component to be

capable of transferring data in the range of 10 to 50 MB/sec.

Distributed Component.--The distributed component would

consist of multiple servers that would distribute the load and

provide networked storage close to distributed computing

systems, such as desktop Unix workstations. The distributed

component also would provide NFS access to storage, which

most Unix workstation users require.

We defined the internal architecture of this component as a set

of NFS file servers, each with enough disk storage to store all

active files for its particular work area. Based upon our network
architecture, we determined that an NFS file server in each major

building was appropriate. Our goal in sizing each server was to

provide a 30-day window of storage. In other words, all files read
or written within the last 30 days would exist locally on the

distributed server. Hierarchical Storage Management software

would manage the storage on the servers and move unreferenced

files to the central server, transparent to users.
Server Network Connection.---In looking at the expected

data transfer requirements between the components, we saw
that dedicated networking would be required. To provide this,
a dedicated FDDI connection between all the distributed serv-

ers and the central server was envisioned. The purpose of this

dedicated connection was to provide rapid access to data files
that had been moved from the distributed servers to the central

server. This connection would also provide a good path for

backing up the distributed servers to the central server.

THE REALITY

Based on our requirements and our vision of the ideal mass

storage architecture, we built the Lewis Mass Storage Service

by selecting technologies available in the marketplace and

enhancing them to meet our users' needs.

Central Component - Central Mass Storage Service (CMASS)

We selected UniTree (ref. 2) as the central server for two

primary reasons. First, though UniTree did not completely

meet the "open system" requirement, it appeared to be more

open than other mass storage systems available when we made

the decision. Secondly, it was available from several vendors.

Wetested two prototypes including an IBM RS6000 970 and

in the summer of 1992 started backing up the distributed servers

to UniTree on the IBM RS6000. After analyzing the results

from a governmental "Sources Sought" on mass storage, we

chose Convex as the UniTree vendor for the final system. In

early 1993, we acquired a Convex 3220 with a 100-GB disk

cache and a Storage Technology (STK) Silo, along with UniTree

Version 1.6. In late summer a Metrum RSS-48 cartridge

robot for storing very large files was added. This system was

installed and made available to users in August 1993.

UniTree provides the required backup of client data by

providing the ability to specify two copies of each archived file.

In addition, the repacking function provides a method of

migrating from one media type to another. This function was

used when we migrated from STK 3480 tapes to STK 3490

compressed tapes. This migration allowed us to increase the

near-line storage capacity by a factor of at least four.

UniTree as delivered was reliable, but it lacked many admin-

istrative functions. In addition, it generated a plethora of logs,

and most of the entries were not time stamped. UniTree also

lacked a tape volume manager for shelf volumes. In addition to

writing a number of scripts for backing up the UniTree data

bases and analyzing the logs, the Lewis team took on seven

major projects to enhance UniTree and the central service.
These are described in detail in the following sections.

Workstation Backup .---One reason for providing backup to

UniTree was the need to provide backup to a different physical
location. The need for an automated backup function for

workstations to UniTree became apparent when several users

overwhelmed the system by issuing a recursive remote copy

(rcp-r) to back up their workstations. Also, we determined that

some users were not backing up their workstations at all.

We provided a script that supported workstation backups for Sun,

SGI, HP, Dec Ultrix and RS6000 workstations. This script uses a

simple configuration file that makes it easy for users to backup

specified directories (including a full backup at the start).

script uses a custom Lewis vea_ion of rcp that allows piping.

script uses UniTree wisely, for example, storing the backup as

one file and immediately purging backup files from the disk cache.

Common Message Logger. We started a joint project with

DISCOS (a previous UniTree developer) to provide UniTree with

a Common Message Logger (CML). We designed the CML to

remove the text of a message from the source and to log all

messages to a common tokenized (no message text) log. With

CML, every message contains a time stamp, a severity level,

identity of the module issuing the message, and variable data. The

actual text of the messages is contained in a file distributed with

UniTree and is used by a program that interprets the tokenized log.

CML is now a part of UniTree 1.8 as distributed by UniTree Inc.

EnhancedAeeounting.--To provide more detailed account-

ing, we wrote a set of perl scripts that provides accounting data for

each user. The scripts generate a database from the tape header

database, the tape map and the password file, which can then be

queried to generate reports. The report generator is very flexible.

It provides reports by family, copy number, or location and can be

sorted by user id, number of files or total amount of data for a user.

A summary report shows the total number of users, files, and

Gigabytes for each family, copy number and location. Data

locations are comprised of near-line storage, vaulted, and off-site

vaulted storage. The summary reports also document the users by
both number of files and total amount of data.

Volume Manager/Off-Site Backup.--The lack of a volume

manager (there is one in UniTree 1.8) made it impossible to

remove tapes from the STK Silo and keep track of them. We

wrote a set of perl scripts to enter and eject tapes from the STK
Silo and record them in a "shell" database. We also modified

the UniTree tape map to reflect these operations. We intend to

convert this "shelf" database to a general purpose Volume

Manager when one is available that works with UniTree. The

volume manager, along with the UniTree file copy feature,

allowed us to implement an off-site backup of UniTree files.

Client�Server Application to Add Users.--Lewis Research

Center has long provided the ability for remotely joining users

to the central systems. This is accomplished through a central
database that currently resides on an IBM MVS system and

tools provided to all Lewis administrators for managing their

users' access to the central systems. We developed a client/

server application to join a user to the Convex system and add

the user to UniTree automatically. The administrator initiates

this process by adding CMASS to the user's entry in the central

database. The application also sets up the user directories and

standard options files for the user. This process has relieved

system personnel from a time-consuming administrative task.

Scripts to Emulate CFAM.--We developed a set of scripts

to make it easier for Cray users to make the transition from

Lewis' Central File Archival and Migration Service (CFAM) to

CMASS. These scripts emulated the CFAM commands for

storing, retrieving and deleting files, as well as listing the user' s

files. As part of this effort it was necessary to move 800 GB of
data stored on CFAM to CMASS.

Usage Monitor.--We developed a monitor that shows CPU

usage, gross network activity, and other Input/Output (I/O) on

the central system. This monitor not only has helped identify

bottlenecks but also has provided useful data for capacity

planning on the central system.
As of February 1995, CMASS has about 2.5 TB of data and

is growing at approximately 200 GB a month. Based on past

history, we project the growth will not remain linear.

Distributed Component - Distributed Storage Service (DSS)

We implemented the distributed component with a set of
commercial Unix file servers. As discussed earlier, we felt the

only effective way to provide a large file service was to
distribute the load on a set of servers. Since Lewis networks are

implemented as a set of building LANS interconnected via a

backbone FDDI ring, we chose to locate a server in each major

building or subnet.

4

Thisarrangementprovidesgoodperformanceforallclients
duetonetworklocality,aswellasadegreeofreliability.Ifwehad
locatedalltheserversatacentralsite,anetworkorpowerproblem
atthatsitewouldhavemadestorageunavailabletotheentire
Center.Thisproblemhasneveroccurredwithourdistributed
arrangement.

Atotaloftwelvedistributedserverswereinstalledproviding
over425GBofstorage.Thesewerephasedinoveraperiodof
threeyearswiththefirstprototypesinstalledin1991.Atypical
configurationconsistsof 20GBofSmallComputerSystems
Interface(SCSI)disk,FDDIcardforconnectiontothededi-
catednetwork,ethemetcardforconnectiontothelocalsegment,
and64-MBmemory.MostoftheserversareSuns.

Wedefinedseveraladministrativepracticesforthedistrib-
utedcomponent,includingastandarddirectorystructureand
anadministrativeinterfaceforthebuildingworkgroup.We
automatedthebackupsfortheserversutilizingasetofscripts
tosendthebackupimagestothecentralcomponent.Thefile-
systeminterfacewasinitially NFSwith Applesharefor
MacintoshandLANmanagerforPC'saddedlater.

FortheUnixusers,we implementeda globaldirectory
structure.Asetofautomountfilesweredistributedtocreatea
standarddirectorystructure.Thedirectorystructurepresented
startedwith/r followedbytheservername,for example/r/
buckeyereferstothebuckeyeserver.Underthat,wenamedthe
filesystemsservedfromthatserver.Wedefinedfivestandard
typesoffilesystems:

u/containsuserpermanentfiles(eachusergivenadirectoryinu)
t/containsusertemporaryfiles
s/containscentrallysupportedsoftware
1/containslocalsharedsoftwareanddata
b/containsbackups,mostlyfromPC's,Macsandthedistrib-

utedservers

Theu/andb/filesystemswereconfiguredasmigratedfile
systemsusingtheOpenVisionEnterpriseExtension(HSM)
softwarediscussednext.

Open Vision Enterprise Extension and Netbackup.--

OpenVision Enterprise Extension HSM is a Hierarchical Storage

Management (HSM) product that increases the amount of file

space available to users by migrating files from a local Unix file

system to a remote Unix file system, in our case UniTree. Lewis

acquired a beta version of the software in the summer of 1994,
and, after some initial testing, our Mass Storage Team sug-

gested a number of improvements. These included more

separation of the migration and purge controls, an indicator in

the directory listing output (Is-l) showing that files had been

migrated and purged, and a stage command for users.
To reduce the time it takes to make space available when the

file system fills, we suggested separating the controls for

migration (copying the files to UniTree) and purge (erasing the

files on the server disk cache) functions. This makes it possible

to run the file system nearer its capacity. Since the migrated

files have been copied to UniTree, it is not necessary to back

them up. As a result, the dump files for the file system are much

smaller since the backup software works in conjunction with

the migration software. Netbackup backs up the i-nodes only

for files that have been migrated.

The HSM software provides the following features for each

HSM file system:

• The system administrator can specify the size of the

smallest file that can be migrated/purged.

• Both the system administrator and the user can specify files

that will not be migrated. There is a configuration-specified

limit for the amount of storage a user can keep from migrat-

ing. A policy script (which can be altered by the administrator)

is executed before any file is migrated. This permits sites to

set their own policies for migration of files.

• Users can force migration of specified files, as well as

stage in groups of files.

• Migrated files erased by end users are simply marked as
obsolete and can then be deleted at an administrator's

discretion. Users can request the administrator to restore
an obsolete file that has not been deleted.

• Although the files on UniTree are owned by the server and

have strange names, a related file also is stored that

contains the information from the HSM database including

the user' s path name. This allows the rebuild and/or check
of the HSM database against the files stored on UniTree. It

also means the user must always access the file from the
same server.

The user file access performance is very close to native NFS

for files that have not been purged. Those that have been purged

are staged in from UniTree, causing a delay that is dependent

on whether the file is on the UniTree disk cache or on tape.

Although a simple reference of a file will cause it to be

retrieved, the stage command allows the user to bring in a group

of files in parallel rather than serially.

High Performance Component.--We are currently install-

ing a Maximum Strategy Profile XL file server to meet our

high performance requirements (i.e., transfer rates of at least

10 MB/sec). This server is connected to computer systems,
visualization systems, and the central mass storage component

via a high performance network based on the NetStar GigaRouter

(see fig. 2). We envision this server as a front end for high

performance systems, similar, except for performance, to the

distributed servers. We plan to work toward file migration from
the file server back to UniTree.

Network.--A dedicated FDDI ring connects all the distrib-

uted servers and the central mass storage server. The traffic over

the ring consists of backups, restores, file migrations, and file

stages. The volume of the server backups, as well as the

responsiveness required for file stages, led us to this dedicated

design.

ATM
CMASS
FDDI

HIPPI
LAN

RAID

WAN

Asynchronous Transfer Mode
CMASS Central Mass Storage Service
Fiber Distributed Data Interface

High Performance Parallel Interface
Local Area Network

Redundant Array of Inexpensive Disks

Wide Area Network

CMASS

HIPPI

Remote

tAN system
(on campus) ATM

Remote

WAN system
(off campus)

Cray I

pMP/T3D_

igaRoute_J

ATM "_

iSUsyalistz:tiOn I

IBM cluster

FDDI backbone

High-speed
mass storage

I

Figure 2.reDistributed high performance environment.

LESSONS LEARNED

Communicate With Users

When the Mass Storage Service was released to the users, the

Mass Storage Team set up a reflector to which users could send

questions and comments. Most of the traffic has been related to

setting up the workstation backup, but we believe the quick

responses to questions have been worth the effort. One area we

would like to improve is notifying users of service outages.

Currently, we use groups in Usenet and logon messages on the

central systems, but we know we are not reaching all of the

users.

Provide Backup Software for Workstations and

Personal Computers

Initially, UniTree was made available to the users with a

Graphical User Interface (GUI) ftp, regular ftp, and rcp. No

workstation backup was provided. As a result, the users decided

to use rcp-r for backing up their workstations with the following

negative side effects.

• It created many very small files that can be scattered over

several tapes.

• While it was easy to restore a single file, restoring all of the

files on a workstation was almost impossible because the

files were often scattered over many tapes.

• The backups were taking an unreasonably long time to

create.

We quickly designed and wrote a backup script using a

version ofrcp that allowed piping. In the process of implement-

ing this script, we found it was advisable to read a configuration

file from the central system, which allowed changing of such

items as the destination family, the maximum number of back-

ups retained, and the final destination of backups (Metrum or

STK). The backup script has become very popular and appears

easy for users to install and use.

The PC and Mac users presented a slightly different problem.

Since Unix style piping was not available for these environ-

ments, we implemented a file-system interface using Appleshare

on the Macs and LAN Manager on the PC' s. We created backup

file systems on the distributed servers, which the PC's and

Macs could access using any backup package. These backup

file systems were set up as HSM file systems and were config-

ured so that the backup images were quickly migrated and

purged. In effect, the distributed servers were used as a spooling

area for these backups while also providing the desired file

system for file sharing.

Don't Assume You Know What a User Needs

We had assumed the users would like a GUI ftp interface to

UniTree, so we put a lot of work into modifying MOXFTP to

interface with UniTree. Now the use of MOXFTP is minimal.

About ninety percent of the users prefer rcp or the backup script

previously described.

Too often we discovered problems after the fact. For example,

auser stored microgravity data from the Space Shuttle on UniTree

in what seemed like reasonably sized chunks. However, one of the

first users to access the stored data tried to stage in over 3000 files.

UniTree did not handle this request well, taking over 24 hr to
retrieve the 3000 files. We talked with the user and in a more

controlled fashion brought the files back in and put them (600 at

a time) in tar files. This allowed the user to request 5 rather than

3000 files. In retrospect it would have been much less painful to
create the tar files initially and store them as well.

In a second example, we accidently found out that another
user was planning to store data about the health of the shuttle on

UniTree. This case has a much happier ending because we
conferred with the user before the data was stored. Here we

provided an HSM file system that could hold about 20 GB on

a local distributed server, and we are working with the user to

guarantee that end users of the data do not make unreasonable
requests but still get their data in a reasonable time.

Users Need to Know About Migrated/Purged Files

An operating system such as a Unix make can reference a lot

of files. If the user is not aware that the files are migrated, and

perhaps even purged, Unix can take a very long time because
the files are retrieved serially as they are referenced. Thus the

ftp, rcp and NFS interfaces must allow the user to determine

whether files are migrated, and the user must have the ability to

stage files in parallel. These operations must support multiple
files and wild carding.

Improve Large File System Backups

Initially, one of the uses of UniTree was to back up the
distributed servers. Although this use of UniTree has been suc-

cessful, the backups became very large (more than 10 GB in a

single backup file) as file systems grew. The large backup files are

fine for restoring the whole file system. However, they are
particularly painful to use if all that is required is a single file. One

of the solutions to this problem was to use HSM on the file system
and use the migration function to back up user files. When done

this way, the file system backup contains only the nonmigrated
files and the i-nodes of the migrated files and the HSM databases.

While this reduces the problem to some degree, the disk cache on

the HSM file system can still be very big. We are working with

Open Vision to get their backup product to break the backup files
into more manageable size chunks.

Monitor CPU/Network Performance

Because the Mass Storage System (including the distributed

servers) makes heavy use of the networks, network problems

are often encountered before anyone is aware that anything is

wrong. Therefore, it is necessary to diagnose this type of

problem quickly, notify the system manager, and log the

information. Although we have been successful at identifying

outages and sending e-mail to the appropriate people, slow

transfers, which often indicate network problems, are still not

usually detected. One attempt to rectify this has been to add

logging to the central system from the backup scripts. This is an

exception type logging of either failures or much slower than
usual transfers.

Manage Disk Cache Based on File Type and Size

Prior to installing the HSM software on the distributed servers,

management of the disk cache was handled by setting user quotas.
Although this method works, disk quotas for a large number of

users are difficult to manage. One can take the risk of either filling

the file system or always under-allocating storage. Using HSM,
the problems of managing the disk cache show up in a different

way. The version of HSM we are running does not support quotas
for the server disk cache. As a result, one user can monopolize the

whole disk cache. Currently, this is being handled manually.

However, we plan to implement a gross disk quota by using the
policy script to choose files to migrate.

UniTree has problems similar to HSM in managing the disk
cache. For example, the backup of servers and workstations

was being done at night and full backups were staggered over

several weekends. These files, which in many cases were never
referenced, were taking over the disk cache because the control

of what files to purge was related to size and last access date. In

addition, "time on the disk cache before purging" was set to

3 days, and the controls could not be set differently for different
types of files. After several weekends where almost all of the

nonbackup files were purged, we acquired the ability to set a

"purge immediately after migration" flag. This flag is now set
in all of the backup scripts that we have written, and the crunch
on the disk cache has been somewhat relieved.

Because we allow users to login to the Central Mass Storage

Server, we put their home directory in the UniTree file system
and we were having problems with Unix "dot" environmental

files being purged. We relieved this problem somewhat by
setting a "do not purge" flag for an existing file. However, this

flag did not remain set if the file was modified or replaced.
Reasoning that purging small files does not return much

space, we finally decided that a better solution was to modify
the purge selection criteria so that it would not purge files under
a certain size, except in dire circumstances. (It should be noted

that we can make these types of changes only because we have
a source code license.)

WISH LIST FOR THE FUTURE

Our experience with the distributed servers and the CMASS

server has been enlightening. Some of the problems we expe-
rienced helped us create a wish list for the future.

This wish list has come about for several different reasons.

Some of the items are a result of experience with our total Mass

Storage Service in its current architecture. Others have arisen

becauseofadditionalrequirementsfromtheusercommunity.
Forexample,onegroupatLewisneedstostorecompanycon-
fidential data. Currently, the companies involved do not trust

the Mass Storage service or the networks for this type of data,
hence the need for security and data encryption.

Other requirements are coming from users who need to store
meta-data, which they can query for the data they need to do a

given job. Finally, the people maintaining the Mass Storage
Service are driving yet another set of administrative

requirements.
The following sections contain a description of our dream for

the future:

Open Mass Storage Systems

Mass storage systems have a particularly important need for

Open Systems. As data archives grow, the difficulty in moving

from one system to another becomes greater. Some vendors

may be able to read other vendors' tapes, but will they all? What

if your site is using a system to which few other sites subscribe?

Are you going to have to do the job yourself, or will you need

to spend a substantial amount of resources having it done?
Ideally, standard formats for archives will emerge so that

sites will not need to rely on a single vendor, or themselves, to

shepherd their archives into the future. The mass storage
industry should provide this so that archives could be moved to

different systems without expensive reformatting. It should be
noted that the UniTree Users Group is working with UniTree

Inc. and the UniTree vendors to set some guidelines for the

definition of open mass storage systems. In particular, they will

be documenting the media and meta-data formats for UniTree.
Standards also should provide the ability to grow a

multivendor system. Interoperability standards should allow a

site to integrate a new system component, such as a tape system,

without requiring a major integration effort. For this reason we

support the efforts of the IEEE Storage System Standards

Working Group (Project 1244) (ref. 3).

Global Name Space

Early on we considered installing Andrew File System

(AFS) (ref. 4) on all of the workstations and central Unix

systems. At the time AFS was not available for every type of
workstation and central system. Furthermore, we were not suc-

cessful in selling the idea to our user community since

workstation vendors were providing NFS, but not AFS. As a

result, we do not have a campus-wide global name space. In

fact, users storing files on the distributed servers can access the

files only via the server on which they were created. The files
that are migrated to UniTree are owned by a single user and the

names are unique but not meaningful. We would like to find a

way to convert from this type of architecture to a global name
service, such as Distributed File Service (DFS) from Open

Software Foundation (OSF).

One feature of the HSM software that will help achieve this

goal is that the relationship between the user path and name is

preserved in the HSM File Database. In addition, each file on
UniTree has a companion file containing the same information

contained in the HSM File Database. From this information, we

should be able to convert to a Global Name Space for files. Our

vision is that DFS will become a part of every Unix system and

that we will successfully transform our Mass Storage Service to

exist in that world.

Archive Management

As the amount of data archived increases, the management

of that data becomes important. The issue of archive manage-
ment has been discussed to a great degree. We also have this

requirement. The current method of organizing and locating
data is outdated. It is based on Unix since all of our storage

systems are based on Unix. Users organize their files via a
hierarchical directory structure and file sharing is through Unix

permissions, which are inadequate. Some areas of special
concern are described in the sections which follow.

Corporate Data Storage.--Research data is often stored in
individual user accounts. When individuals leave the organiza-

tion, there should be a procedure to determine what to do about
their data. Whether the data is assigned to someone else

depends on how conscientious the research group is. We need

a corporate-level data storage environment where important
information is stored independent of individuals. The challenge

is in developing a method of doing this that is painless to our

researchers.

Storage of Meta-Data.--We require the storage of addi-
tional meta-data (ref. 5) with archived files. This meta-data

might be part of the archived file structure or might be stored

separately in a related file or database.
Application Program Interface.---We require an interface

for information access. The query method may be the correct

approach, but we are not sure. Human factors should play a key

part in this goal. How do people think when they are looking for
information? What organization and tools will help them wade

through Terabytes of data? We believe that some amount of
research will go on in the data access area for some time. To
facilitate this, mass storage systems need improved interfaces

over ftp, NFS, and rcp. We would like to see an Application

Program Interface (API) to the storage system so that opera-
tions such as staging, retrieving, moving, and so forth, can be

implemented reliably under program control. Although ftp is

adequate for accessing stored files, there may still be a need for
the API. Examples are rearranging datainto files to more nearly
match the users reference pattern, extracting meta-data from

files as they are stored and grouping of like files from a user-

initiated program.
Grouping of"l_e Files." Another practical aspect in this

area is that of grouping "like files" together on the same media.
If information is related, it is best not to spread it out over

thousandsof tapes. As mentioned previously, with UniTree we

solved this problem by collecting related files into one file

using tar. However, this is a crude solution to the problem.

Maintenance and Capacity Planning

The system engineers who maintain the Mass Storage Ser-

vice have identified several ways to reduce the time it takes to

manage the Mass Storage Service and to present the end users

with a transparent, secure, and reliable way to store data.

Currently, system people spend too much time analyzing logs,

managing tapes, spotting network problems and moving files

around. In addition, the storage service must provide data for

capacity planning.

Performance Monitoring and Logging.--A system man-

ager should be able to tell when the mass storage service needs
attention by checking status displays that continually show the

state of the service. These displays should not only show the

current state of the system, but also allow the manager to look

at past history. The system manager must be able to identify

problems (current and past), bottlenecks, and resource status

(where resources include CPU, memory, disk cache, the net-

work, and near-line storage media). Historical data must be

recorded to provide for capacity planning. In order to answer

end user questions, a manager must also be able to track files in

the system from the time of creation, through migration, and

including deletion.

Transaction Logging.--Most of the logs in mass storage

systems seem to be more related to development of systems and

are mostly used to diagnose problems. The transactions being

discussed here are storing and retrieving of files on mass

storage. Transaction information such as the start and end time,
user id, client node name, and file size for each transfer should

be logged. Summary information should include the number of
files stored, the number of files retrieved, and the total amount
of data stored and retrieved for each user. This data is needed

for both reporting system usage information and as an aid to

system administrators.

Currently the only transactions recorded in UniTree are

those that use ftp. However, a large part of the data is stored and

accessed through NFS on the servers and rcp directly to

UniTree. The actual log entries should contain the date and

time, the file name, the user id, client node name, the number

of bytes transferred and the transfer rate. This kind of log would

aid in spotting network and storage media problems.

Dynamic Hierarchies.---We define a hierarchy as the path a

file takes through the Mass Storage Service. For example, auser

may store a file on one of the servers, which then moves it to the

disk cache of the central server, then to a near-line robot, and

finally to a cartridge sitting in a vault. Currently, the time a file

stays on each media depends on time last referenced and its size.

This hierarchy is usually defined by the media types and cost.

The media types may include multiple performance disks,

optical disks, and multiple kinds of tape. The site manager

should have the ability to define multiple migration/caching
hierarchies (ref. 6) and determine which files or families of files

belong to the various hierarchies. For example, the manager

may decide that files smaller than a specified threshold number

of bytes should remain on the disk cache, and that all files

classed as backup should be sent directly to tape. The end user

should also have the ability to choose the hierarchy for a file,
since the hierarchy chosen will determine the cost and perfor-

mance for storing the file.

Media Management.--To handle media with unpredictable

lifetimes effectively, a utility is needed that can detect when

media is nearing the end of its useful life. The system should

allow this procedure to take place automatically when a car-

tridge is loaded for use. If a tape is found to be near failure, all

the data should be moved to a new cartridge and a message sent

to the system logs/monitors that the old cartridge can be

removed from the system. For those tapes that are infrequently

referenced, a sniffer that identifies deteriorating media should

be provided. The site manager should also be able to set in

motion a slow migration from an old media type to a newer one.

This is to prevent the Mass Storage Service from ending up with

media it can no longer read or a crash conversion of data to a

new media. Although UniTree provides the repacking func-

tion, the control is by family rather than media type.

Security and Encryption

As presently constituted, the Mass Storage Service at Lewis

cannot provide storage for proprietary data. This situation must

change since we have a requirement to store company confi-
dential data. We, therefore, need at least one server and the

central server to support both Kerberos and encryption. Even-

tually, we would expect this requirement to be satisfied by DFS

and standard encryption methods.

CONCLUDING REMARKS

The Lewis Research Center has designed and implemented

a Mass Storage Service consisting of twelve NFS servers on a

dedicated FDDI ring, a central server running UniTree, and a

high performance file server. The distributed servers use hier-

archical storage management software that moves data not

recently referenced to the central server. The central server

provides multi-Terabyte capacity and can be scaled to higher

capacity by adding additional storage devices. A Maximum

Strategy file server provides storage for clients with higher

performance requirements such as supercomputing and
visualization.

This configuration, along with the UniTree and Enterprise

Extension software, meets the requirements for Capacity,

Reliability and Commercial Software and Support. The Open

System requirement has been partially met by using commer-

cial software that runs on multiple platforms. We are still

dependingonthe IEEE Storage Systems Standards Working

Group to provide standards that would allow mixed vendor

components. We are working with the UniTree User's Group

(UTUG) to define standards for tape formats and the data bases

that contain meta-data. At this point in time, we can substitute

another vendors UniTree without converting all of the archived
data.

We can add new storage devices as they are supported by

UniTree vendors, meeting our Storage Type requirement. We

have implemented an offsite backup of UniTree data tapes and

meta-data and UniTree has proven to be quite reliable, meeting

our Reliability requirement.

Distributed users access the service through a file system

interface, typically NFS, on the distributed servers which

satisfies the End User requirement. Files not recently accessed

are migrated to the central server. High performance clients

access the Maximum Strategy file server using Network File

System (NFS). Direct access to the central UniTree system is

also provided via rcp and ftp. These commands are supported
on ethernet, Fiber Distributed Data Interface (FDDI), and High

Performance Parallel Interface (HIPPI) networks.

Performance requirements have been met, except when the
central server becomes too heavily loaded. Also meta-data

access on the central server (commands such as ls-1) has been

a source of complaints. We plan to address these problems by

moving user access to the distributed servers and having the

central server play the role of a "back-end" service.

After 2 years of operation, approximately 3 TB (consisting
of 2 million files) of data are stored by the service. The service

is reliable but requires much care and maintenance and we are

constantly working to improve the service. Our emphasis is

now moving toward improved data management using more

meta-data and improving performance.

REFERENCES

1. Perry, R.S.: Now That the Storage Train's Here, Can We

Get Everybody on Board? Proceedings of the Twelfth

IEEE Symposium on Mass Storage Systems, Apr. 1993,

pp. 37--44.
2. McClain, F.: DataTree and UniTree: Software for File and

Storage Management. Digest of papers: Tenth IEEE Sym-

posium on Mass Storage Systems, May 1990,

pp. 126-128.

3. IEEE Reference Model for Open Storage Systems Inter-

connection. Mass Storage System Reference Model, Ver-

sion 5, IEEE Storage Systems Standards Working Group

(Project 1244), Sept. 8, 1994.

4. Goldick, J.S., et al.: An AFS-Based Supercomputing Envi-

ronment, Proceedings of the Twelfth IEEE Symposium
on Mass Storage Systems, Apr. 1993, pp. 127-132.

5. Bedoll, R.; and Kimball, C.: The Importance of Meta-Data

in Mass-Storage Systems. Digest of papers: Tenth IEEE

Symposium on Mass Storage Systems, May 1990,

pp. 111-116.
6. Buck, A.L.; and Coyne, Jr., R.A.: Dynamic Hierarchies and

Optimization in Distributed Storage Systems. Digest of

papers: Eleventh IEEE Symposium on Mass Storage Sys-

tems, Apr. 1991, pp. 85-91.

10

_,.n Ao0,oved
REPORT DOCUMENTATION PAGE OUBNo. 0704-0188

Davis Hi0hwsy. _ 1204, Arlington, VA 22202-4302. and to the Offlm of Mana0_l am uuogm, r'apm rwommon rmJm: tv,,.,,-v,ml, m,-,--,V,-,,.

May 1996 Technical Memorandum

4. _ ANysum_n_ s. _,d_ NUUO_S

Implementation of a Campuswide Distributed Mass Storage Service

The Dream Venm. Reafi_/

e. AUTHOR(S)

Betty Jo Anns_d and StephenP_hst

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSO_NGAMONITOFIING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

WU-None

8. P_-_FORMING ORGANIZATION
REPORT NUMBER

E-9580

10. SPONSOI_NG/MONITOI_NG
AGENCY REPORT NUMBER

NASA TM- 106900

11. SUPPLEMENTARY NOTES

Prepared for the 14th Symposium on Mass Storage sponsored by the Institute of Electrical and Electronics Engineers,
Monterey, California, September 11-14, 1995. Betty Jo Armstead, Sterling Software, 21000 Brookpark Road,
M.S. 142-2, Cleveland, Ohio 44135 (work funded by NASA Contract NAS3-26100); Stephen Prahst, NASA Lewis
Research Center. Responsible person, Stephen Prahst, organization code 1380, (216) 433-5240.

12a. mSlRIBUnOWAVNL_ILffV STATEENT

Unclassified -Unlimited

Subject Category 62

publication is available f_om the NASA Center for Aevo_mce lnform_ce, (301) 621-0390.

12b. I_=_m_T_ON _F.

13. ABSTRACT (Minimum 200 m_rd_)

In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro-

vide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup
services for critical data that resides on workstations and personal computers. Because of software availability and budgets,
the total service was phased in over three yem_ During the process of building the service from the commercial technologies
available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occuned. We
also enhanced some technologies to better meet the needs of users and system administrators. This n_on describesourteam's

journey from dream to reality, outlines some of the problem ureas that still exist, and suggests some solutions.

14. SUBJECT TERm

Mass storage; Hierarchical storage management; Dislributed computing;

Data management

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

12
16. PRICE CODE

A03
20. LIMITATION OF AB_IrhACT

Standard Form 298 (Rev. 2-8g)
F_resorlbed by ANSI SId. Z39-18
298-102

D _

-u C_

z CD
o _L

Q

3

