A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.
FIG. 1

MOVEABLE BODY PART

SENSOR/TRANSUDER

LINEARIZOR

NORMALIZER

DISCRIMINATOR

CONVERTER

PROSTHESIS
FIG. 2

SHOULDER HARNESS

LINEAR POTENTIOMETER

ATTENUATOR POTENTIOMETER

BAR GRAPH DRIVER

CURRENT DRIVER

SOLENOID/MOTOR ARRANGEMENT

PROSTHESIS
FIG. 4
OUTPUT SIGNALS FROM BARGRAPH DRIVER

FIG. 5
The present invention relates to prosthetic devices and specifically to an improved control system and method for controlling a prosthetic device to achieve a high level of control over an artificial arm or limb.

Primary to the present invention is the combination of the well-known harness-and-shoulder control hardware such that the conventional shoulder shrug control movement associated with the moveable body part ranging from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part provides control by the user to the prosthetic device. Wherein the control system comprises (a) a shoulder harness for engaging the body part and for receiving the movement from the body part, (b) a linear potentiometer for receiving the sensing signal from the transducer to be a linear function of the magnitude of the distance moved by the body part, (c) a normalizer for normalizing the linear signal received from the linearizer to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part, (d) a discriminator for dividing the normalized signal received from the normalizer into a plurality of discrete command signals, and (e) a converter connected to the prosthetic device for receiving the discrete command signals and driving the respective moveable sub-prostheses of the prosthetic device. Further, the present invention provides that the discrete command signals may be sustained linear commands, unsustained linear commands, sustained logarithmic commands or unsustained logarithmic commands. Still further, the respective logarithmic commands can be sequential or non-sequential, and similarly, the linear commands can be sequential or non-sequential.

In yet another embodiment of the present invention, a control system for use with a prosthetic device is provided. The prosthetic device comprises a plurality of moveable sub-prostheses and incorporates an implementation of the well-known harness-and-shoulder control hardware such that the conventional shoulder shrug control movement associated with the moveable body part ranging from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part provides control by the user to the prosthetic device. Wherein the control system comprises (a) a shoulder harness for engaging the body part and for receiving and modifying the movement from the body part, (b) a linear potentiometer for receiving the movement from the shoulder harness and for generating a linear sensing signal in consonance with the movement of the body part, (c) an attenuator potentiometer for receiving the linear signal from the linear potentiometer and for scaling the linear signal to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part, (d) a bar graph driver for receiving the scaled linear signal from the attenuator potentiometer and for dividing the scaled signal into a plurality of discrete command signals, (e) a current driver for receiving the discrete command signals from the bar graph driver and for generating drive signals, and (f) a solenoid/motor arrangement in operational association with the prosthetic device for receiving the drive signals from the current driver and controlling the respective moveable sub-prostheses of the prosthetic device.

In yet another embodiment of the present invention a method is provided for controlling a prosthetic device. The method of controlling the prosthetic device is associated with a prosthetic device comprising a plurality of moveable sub-prostheses in association with an implementation of the well-known harness and shoulder control hardware such that the conventional shoulder shrug control movement associated with a moveable body part ranging from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part provides control by the user to the prosthetic device. The method for controlling this prosthetic device comprises the steps of receiving the movement from the body part, generating a sensing signal in consonance with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of body movement from the no-shrug position of the moveable body part.
through the full-shrug position of the moveable body part, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable sub-prostheses of the prosthetic device.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings which are incorporated in and constitute a part of the specification, illustrate a preferred embodiment of the invention and together with the general description of the invention given above and the detailed description of the preferred embodiment given below, serve to explain the principles of the invention.

FIG. 1 is a flow diagram illustrating one embodiment of the control system for prosthetic devices of the present invention;

FIG. 2 is a flow diagram of another embodiment of the control system for prosthetic devices of the present invention;

FIG. 3 is a detailed schematic of one embodiment of the present invention illustrating a control system for prosthetic devices;

FIG. 4 is a schematic view of a preferred embodiment of the control system for prosthetic devices associated with the present invention; and

FIG. 5 is a drawing illustrating the versatility of the present invention with respect to individual users.

The above general description and the following detailed description are merely illustrative of the generic invention, and additional modes, advantages, and particulars of this invention will be readily suggested to those skilled in the art without departing from the spirit and scope of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the present preferred embodiments of the invention as described in the accompanying drawings.

FIG. 1 is a schematic of a preferred embodiment of the present invention illustrating a control system for prosthetic devices. The prosthetic device utilized with the present invention has a plurality of moveable sub-prostheses. The prosthetic device, and its plurality of moveable sub-prostheses, incorporates the implementation of the well known harness-and-shoulder control hardware. The well known harness-and-shoulder control hardware provides that the conventional shoulder shrug control movement associated with a moveable body part can range from the no-shrug position to the full-shrug position of the moveable body part. The movement of the body part provides control by the user to the prosthetic device.

The control system of the present invention, illustrated in FIG. 1, comprises generally a sensor/transducer 104, a linearizer 106, a normalizer 108, a discriminator 110, a converter 112 in operative association with the moveable body part 102 and the prostheses 114. The sensor/transducer 104 engages the moveable body part 102. The transducer 104 generates a sensing signal operatively associated with the movement of the body part 102. The sensing signal generated by the transducer 104 is applied to the linearizer 106. The linearizer 106 linearizes the sensing signal to create a linear function of the magnitude of the distance moved by the body part 102. The linearized signal from the linearizer 106 is provided to the normalizer 108. The normalizer 108 normalizes the linear signal to be a function of the entire range of body part 102 movement from a no-shrug position through the full-shrug position of the individual user. The normalized signal created by the normalizer 108 is provided to the discriminator 110. The discriminator 110 divides the normalized signal into a plurality of discrete command signals. The discrete command signals created by the discriminator 110 are provided to the converter 112. The converter 112 is in operational association with the prosthetic device 114. The converter 112 receives the discrete command signals from the discriminator 112 and uses the signals for driving the respective moveable sub-prostheses 114 of the prosthetic device.

FIG. 2 is a flow diagram illustrating another embodiment of the control system for prosthetic devices associated with the present invention. The primary elements of the embodiment of the control system illustrated in FIG. 2 are a shoulder harness 102, a linear potentiometer 204, an attenuator potentiometer 206, a bar graph driver 208, a current driver 210, a solenoid/motor arrangement 212 and a prosthetic device 214. As with the prior embodiment, the prosthetic device has a plurality of sub-prostheses. Furthermore, the prosthetic device incorporates an implementation of the well known harness-and-shoulder control hardware such that the conventional shoulder shrug control movement associated with a moveable body part can range from the no-shrug position to the full-shrug position of the moveable body part. The movement of the body part provides control by the user to the prosthetic device 214. The control system illustrated in FIG. 2 comprises the shoulder harness 202 for directly engaging the moveable body part and for receiving the movement there from. The body movement from the shoulder harness 202 is applied to the linear potentiometer 204. The linear potentiometer 204 generates a linear sensing signal in consonance with the movement of the shoulder harness 202. The linear sensing signal of the potentiometer 204 is applied to the attenuator potentiometer 206. The attenuator potentiometer 206 scales the linear sensing signal. Preferably, the scaling applied by the attenuator potentiometer 206 provides a function of the entire range of body part movement from the no-shrug position of the moveable body part to the full-shrug position of the moveable body part. The scaled linear signal from the attenuator potentiometer 206 is applied to the bar graph driver 208. The bar graph driver 208 divides the scaled signal into a plurality of discrete command signals. The discrete command signals are used by the current driver 210 for generating drive signals. The drive signals generated by the current driver 210 are applied to the solenoid or motor arrangement 212. The motor arrangement 212 is in operational association with the prosthetic device 214. The prosthetic device receives the drive signals from the motor arrangement 212 as provided by the current driver 210.

FIG. 3 illustrates a more detailed version of yet another embodiment of the present invention. FIG. 3 is quite similar to FIG. 1, but includes more specificity with respect to variations on acquiring an appropriate signal for a prosthetic sub-prostheses 358 in association with a moveable body part 302. A moveable body part 302 provides motion which is detected by a transistor 304. The sensor/transducer 304 provides an analog signal 306. The analog signal 306 is provided via a line 308 to a linearizer 310. The linearizer 310 creates a linear sensing signal 312. The linear sensing signal 312 is provided via a line 314 to a normalizer 316. The normalizer 316 provides a normalized signal 318. The normalized signal 318 is provided via a line 320 to a discriminator 322.
The discriminator 322 generates specific command signals 324. The command signals 324 are provided via a line 326 to a converter 328. The converter provides four distinct options: the command signals can be sustained linear commands 330, sustained logarithmic commands 332, unsustained linear commands 334 or unsustained logarithmic commands 336. The sustained linear commands 330 can be sequential commands 338 or non-sequential commands 342. The sustained logarithmic commands 332 can be sequential commands 340 or non-sequential commands 346. Similarly, the unsustained linear commands 334 can be sequential commands 344 or non-sequential commands 350. And, lastly, the unsustained logarithmic commands 336 can be either sequential commands 348 or non-sequential commands 352. The respective commands are provided to an electromechanical device 356 in association with a drive signal 354. The electromechanical device 356 is in operational association with the prosthesis 358.

FIG. 4 illustrates a schematic view of one embodiment of the control system for prosthetic devices of the present invention. The invention illustrated in FIG. 4 also employees the favored harness-and-shoulder shrug control. It should be noted that the shoulder hardware does not include mechanical portions as does prior used devices. A shoulder harness 402 incorporates a powered linear potentiometer 404. The linear potentiometer 404 generates a linear electrical signal in working relationship with the conventional shoulder shrug control movement. The linear signal is provided to an attenuator potentiometer 406. The attenuator potentiometer 406 facilitates the scaling of shoulder physical movement with the electrical sensing signal. The scaling accommodates various users. For example, children or elderly persons with less shoulder shrug capability can function just as easily as users with great flexibility in shoulder shrug capability. Thus, for example, some individuals might only be able to create a one inch “shrug” whereas other users might be able to force a three inch “shrug.” The attenuator potentiometer 406 is adjusted to a desired electrical output, for example, one volt for a full shrug. An analog signal is created and fed to a bar graph driver 408 which receives electrical power from battery 410. The bar graph driver 408 converts the analog input signal from a zero shrug to a full shrug via a plurality of discrete sustained sequential linear commands. For example, ten discrete commands might be appropriate. Alternately, the bar graph driver 408 can convert the analog input signal to a plurality of sustained sequential logarithmic digital commands. Yet still another alternative for use with the bar graph driver 408 is to provide a “dot” mode of operation of the bar graph driver. Thus, discrete nonsustained digital commands can also be generated. By cascading two bar graph drivers, outputs comprising twenty discrete command signals may be obtained. It is obvious to one skilled in the art that additional cascading is possible.

Each of the outputs from the ports of the bar graph driver 408 are fed into a current driver 414 via a different respective one of a group sinking current limiting resistors of a plurality of sinking current limiting resistor 412. The current driver 414 drives a solenoid or other arrangement 416. The arrangement 416 results in finger movement in, for example, a sequential manner such that with a no shrug, all fingers would be in the extended position. As the “shrug” begins, the thumb and fingers would move sequentially to the closed position. All of the discrete commands may not be required. See, for example, FIG. 5. As another example, the “shrug” transducer may be located on the right shoulder for finger digit control and a duplicate system can be mounted on the left shoulder for providing wrist rotation control. The wrist rotation control can be adapted by using a stepping motor located at the wrist which incorporates a plurality of steps received via the bar graph driver 408. Yet still another preferred embodiment of the present invention provides that one or more of the digital commands, or other selected steps equating to a full “shrug” could be used as a “home” or reset command. Thus, simultaneously, all the fingers will return to a specific configuration. Therefore, fingers which may have been “shrugged” to a gripping position would move back to the extended position when the home or reset command is engaged.

It is appreciated by those skilled in the art that the control system of the present invention can be used on any device requiring signal translation, analog or otherwise. The analog signal translation can encompass either linear or logarithmic discrete commands, and progressive commands, and include homing capabilities. Further, an audible tone can be generated by each discrete command to provide further feedback for finger or wrist positions via, for example, earphone feedback.

FIG. 5 illustrates the control signals associated with a digit and wrist control mechanism. The respective diode matrix can be directly programmed by the user. The output signals from the bar graph driver are provided on the abscissa and the digits and gripping information are provided along the ordinate.

A method for controlling a prosthetic device is also provided in association with the present invention. The method for controlling the prosthetic device comprises the steps of receiving the movement from the body part, generating a sensing signal in consonance with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear system to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable sub-prostheses of the prosthetic device.

Additional advantages and modification will readily occur to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus, and the illustrative examples shown and described herein. Accordingly, the departures may be made from the details without departing from the spirit or scope of the disclosed general inventive concept.

What is claimed is:

1. A control system for use with a prosthetic device, the prosthetic device comprising a plurality of moveable sub-prostheses and incorporating any implementation of harness and shoulder control hardware such that the shoulder shrug control movement associated with a moveable body part ranging from the no-shrug position of the moveable body part through the full-shrug position of the moveable body
part provides control by the user to the prosthetic device, the control system comprising:

(a) a shoulder harness for engaging the body part and for receiving the movement from the body part,
(b) a linear potentiometer for mechanically receiving the movement from said shoulder harness and for generating a linear sensing signal in consonance with the movement of the body part,
(c) an attenuator potentiometer for receiving the linear sensing signal from said linear potentiometer and for scaling the linear sensing signal to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrug position of the moveable body part,
(d) a bar graph driver circuit for receiving the scaled linear signal from said attenuator potentiometer and for dividing the scaled signal into a plurality of discrete command signals,
(e) current driver means operatively associated with said bar graph driver circuit for receiving the discrete command signals from said bar graph driver circuit and for generating electrical drive signals, corresponding to said command signals, and
(f) a solenoid/motor arrangement for receiving the drive signals from said current driver means and controlling each of said moveable sub-prosthesis of the prosthetic device by a different one of said drive signals.

2. A control system as set forth in claim 1, wherein said attenuator potentiometer includes means for adjusting the scaling of said linear sensing signals to accommodate different ranges of shrug movement by different users of the prosthetic device.

3. A control system as set forth in claim 1 further including programmable means for controlling the application of said drive signals to the moveable sub-prostheses of the prosthetic device in selected sequence.