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Abstract

Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation
techniques were applied to the problem of identifying pilot-vehicle dynamic
characteristics in flight simulation. A brief investigation of the effects of noise,
input bandwidth and system delay upon the FFT and LSE techniques was
undertaken using synthetic data. Data from a piloted simulation conducted at
NASA Ames Research Center was then analyzed. The simulation was
performed in the NASA Ames Research Center Variable Stability CH-47B
helicopter operating in fixed-basis simulator mode. The piloting task consisted
of maintaining the simulated vehicle over a moving hover pad whose motion
was described by a random-appearing sum of sinusoids. The two test subjects
used a head-down, color cathide ray tube (CRT) display for guidance and
control information. Test configurations differed in the number of axes being
controlled by the pilot (longitudinal only versus longitudinal and lateral), and in
the presence or absence of an important display indicator called an
"acceleration ball*. A number of different pilot-vehicle transfer functions were
measured, and where appropriate, qualitatively compared with theoretical pilot-
vehicle models. Some indirect evidence suggesting pursuit behaivor on the

part of the test subjects is discussed.
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1.0 Introduction

A pilot when combined with a modern aircraft, whether an
airplane or helicopter, forms one of the most complicated systems
to be analyzed by a control engineer. Once the basic problem of
stability is solved, the issue of handling qualities can be raised. In
order to improve handling qualities, a better integration of man and
machine is required, and in order to achieve better man machine
integration, the system dynamics must be evaluated and optimized.
The first step in this process is the measurement of the vehicle and
pilot dynamics. The measurement of human dynamics is complicated
‘by the fact that human characteristics are task dependent. Their
dynamics can change dramatically depending upon the type of task
being performed, and their familiarity with it. Dynamics can also
vary between pilots for the same task.

Early work in the area of human pilot dynamics (e.g. ref. 1) has
led to the formation of a vast data base, which has aided many
researchers in their development of models of the human pilot. Over
the past three decades, many models have been proposed and tested.
Models varying in complexity from the Crossover Model for single
loop systems to the Structural Isomorphic Model. Although the
crossover model is the simplest, it is the most general. When

expressed mathematically the crossover model appears as,

K.K.e® ©.e
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where Yp is the pilot transfer function, Yo is the plant transfer

function, Kp and K, are gains, t is the system time delay, and W is

the crossover frequency. This model states that no matter what the
plant dynamics, the operator compensates for them and the system
crossover model is preserved. As the name implies this model is
accurate near the crossover frequency, but if the low or high
freqencies are important a different model must be used. The
precision model for single loop systems (ref. 2) is accurate for a
broader frequency range than the crossover model. If a more
complicated model is required there are several multiloop examples
to choose from. The McRuer Structural Isomorphic Model (ref. 2), the
Linear Optimal Control Model (ref. 3), and the Hess Structural Model
(ref. 4) are three options available.

This paper uses simple single-loop models for generation of
data that is used to test the least squares identification process and
the Fast Fourier Transform analysis. Once the simple models were
identified properly, a more complicated multiloop example was
exercised. After the multiloop example was completed the
identification procedure was used to identify vehicle pilot
dynamics from data obtained from a CH-47B helicopter at the NASA

Ames Research Center.

2.0 Background

2.1 Brief review of techniques for human transfer
function estimation.

When deciding upon an identification technique there are many

choices, and depending on the system being identified there will be



advantages to using one method over another. Some of the different
methods used employ orthogonal filters, spectral analysis
techniques including Fast Fourier Transforms, and least squares
estimation.

The orthogonal filter method is a generalized technique that
models the system dynamics as a series of transfer functions or
linearly independent filters. The set of linerarly independent filters

are of the form

. B Bo(tyjo- 1)
R - -)\J 1 2 . ..
Glw) = e | Tio+ 1 (fjo+ 1)(Gio+ 1) :I (2)

where B, B,, . .. are determined by a regression technique, and t,,

T, . . . are predetermined time constants. The time constants are

selected from models of the pilot that include the sensory organs,
muscular mechanics, and the feedback therein. (see ref. 5 pg.4)
Although general, the results from the orthogonal filter method are
some what difficult to interpret due to the many parameters in the
model.

Power and cross power spectral densities can be computed to
determine the pilot dynamics using spectral measurement
techniques. The power spectral density of a random singal x(t) is

derived from the autocorrelation function
T

1
Oxx(9 = im —Tlx(t)x(tﬂ)dt (3)



which can also be defined as one half of a Fourier Transform pair

1 .
0yy(9 = o~ [, (w)elot (4)
where &, ,(w) is refered to as the power spectral density of x(t), and

Opl) = [0, (Roiiat (5)

Similarly the cross power spectral density of two random signals

x(t) and y(t) is defined as

~

0 @)= [, (geiot - (6)

Now if x(t) and y(t) are the input and output of a linear system,
respectively, the transfer function of that system can be obtained

as

D, . () ‘
: xy' ;
Hio) = 5 o= Hel @

where H(s) is the system transfer function in the Laplace domain.
If the input data can be described as a sum of sinusoids Eq. 7
can be simplified and the transfer function can be obtained using a

Fourier Coefficient method where
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where Cy and C, represent Fourier coefficients whose real and

imaginary parts are defined as

Ti
Re[Cy (joy] = T~ [y()sin(at)at (9)
'0
Ti
Imag[Cy (jy)] = - %Jy(t)cos(mit)dt | (10)

Each sine wave must have an integral number of cycles over the
entire run length (no partial waves), and no sine wave can have a
frequency that is an integral multiple of another frequency. The
relative amplitudes are selected so that the resulting input
represents an input disturbance which occurs naturally in the task.
Another benefit of using fourier coefficients is the Fast Fourier
Transform (FFT). The FFT takes advantage of the periodic properties
of sinusoids to reduce the computation time dramatically, but
requires the number of data points to be an integer power of two.
The least square error (LSE) method is the simplest approach
mathematically, but computationally requires a large amount of

storage space due to the matrix manipulations involved. In order to



perform a least squares identification on a single-loop pilot-vehicle
system an appropriate model must be chosen. Model selection varies

from the simple crossover model,

Ke™™

to higher order models like the precision model for single loop

systems, (see ref. 2 pg 29)

, Jo+r1 /T jot+1
Yp=er'JthL, K ! 5 (12)
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Once a model has been chosen, the input and model output error are

minimized using a least squares technique. After the error has been
minimized the coefficients are obtained, and the closeness of fit is

determined.

2.2 Least squares and sum of sines - Hess/Mnich.

The Hess/Mnich research consisted of the identification of
pilot dynamics from inflight tracking data using least squares and
Fourier transform analysis. The NASA Ames Dryden Flight Research
Facility with NASA Langley provided data from two flight tests for
evaluation of pilot characteristcs. The task used for generating the
data was an F-14 aircraft pursuing a T-38 target aircraft in both

level flight and in a "3-G" wind up turn at a mach number of 0.55 at



an altitude of 10,000 feet with a separation distance of 800 feet.
The F-14 pilot was using a gunsight reticle on a head-up display.
The task of the F-14 pilot was to keep the reticle centered on the T-
38 aircraft throughout the run. In addition to normal disturbances,
the reticle in the F-14 was driven using a sum of sines as input so
that the FFT results can be compared with the least squares results.
(see ref. 6)

The least squares technique used by Hess/Mnich for analysis
is implemented in a software package called Nonintrusive
Parameter Identification Program (NIPIP) (ref. 7). This program
uses a general model with undetermined coefficients and determines
the coefficients by comparing the data to the output of the model
using a multiple linear regression technique (running least squares
estimation). This program is capable of identifying linear and
nonlinear relations between input and output as long as the
relationships are linear with respect to the unknown coefficients.
NIPIP uses a time frame length, the period over which the
identification is to be performed, that can be specified as any part
of the time history. NIPIP also has the option of sliding the frame
along through the time history, removing old data as new data is
entered, which yields a moving average through the time history.
The sliding time window was not required for the Hess/Mnich
analysis.

The mathematical basis for the NIPIP program is a running
least squares estimation technique. The coefficients of a prescribed

difference equation approximating the relation ship between the



input and output of a linear system are estimated. For example,

consider the following difference equation

where Y|, X, and V are the system output,input, and modeling error at the kth

sampling instant, respectively. Now considering a set of N measurements of the
variables Y| and X, one can write

Y=HC' +V (14)

where
r—Y1—
Yo
Y= '
YN
F-F1-'
F2 1
H= Fk= [Xk_1 Xk] C'=[_:1] (15)
_FN.
I'V1-
Va
V= -
_VN_

Now C' is found by minimizing the sum of the squares of V , where,

V=Y-HC (16)



and the sum of the squares is

J=(Y-HCYT(Y - HC) (17)

Minimizing a scalar J with respect to a vector C' requires

oJ
3C = 0 (18)
and
2
0<J
det >0 19
[30'2] 19

applying Eqs. 18 and 19 to Eq. 17 yields

HTHC =HTY (20)
Solving for C' yields

C' = (HTHy THTY (21)

It can be shown that
N
T
HTH = )" FeFy (22)
k=1

and
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N
T
HTY = ZFkYk (23)
k=1
Then
N 4 N
, T T
C'= ZFka ZFkYk (24)
k=1 k=1

where N is the number of data points. (see ref. 7)

In addition to using NIPIP and the FFT to analize flight data
Hess/Mnich also used a model to generate simulated data to test the
two methods. Since the NIPIP program cannot idehtify time delays
exactly, they chose their model with a second order denominator and
a time delay that represents simplified human neuromuscular

dynamics. The exact form of the mathetical model chosen was,

-15s

20

Yy=—3% (25)
(75) +0.4s +1

However, by changing the order of the model ,time delays with
integer multiples of the sampling period can be assumed and
identified using a least squares technique. Then the quality of fit
can be compared. This is the procedure followed in the Hess/Reedy

research implemented in the Reedy subroutines.



Hess/Mnich produced good results with the simulated data.
However due to a problem with the sum of sines input to the head up
display the flight test results were not as well behaved as had been
expected. Through averaging they were able to save the data and the
results indicated that the crossover model fit the data in the area of

crossover. (see ref. 6 fig. 9-12)

2.3 Deséiption of the Reedy identification - similarity
to NIPIP |

The Reedy program consists of a least squares method applied
to the data, either simulated or measured, where the trans}ér
function is determined and converted from the z-domain into the w'-

domain via the bilinear transform:

7 o 1(T/2)w’ (26)

1-(T/2)w'

where T is the sampling rate. Since the coefficients of the discrete
transfer function are nearly impossible to interpret in the discrete
time domain, the Bode plots are used to convert to the frequency
domain where analysis can be readily accomplished. The Bode plot is
made using the w'-plane transfer function as an approximation of

the S-plane. This approximation is valid when , (see ref. 8 pg 196)

—|no

W << (28)
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The previously described process is performed by two
computer programs implemented as macros on CTRL-C, a computer-
aided control system design package (ref. 9). The first macro is an
identification of the coefficients of a difference equation
representing the pilot model. The coefficients are determined by
using a CTRL-C least Squares method similar to the one described in
part B of the background section. The identification macros are

Created by selecting a model from table 1; for example entry 3,

1
Y b1Z
¥ (2) = Ta .z (28)

where Y is the output, X is the input, and b, and a, are the

coefficients to be identified. Next the difference eduation is found;
Y(2) (1-a,z7") = X(2) (b,z’") (29)

or, in the discrete time domain
Yk-a,Y) g = by Xy (30)

then

Yk = a,Yk_1 + b,Xk_1 (31)

The set of N measurements yield eqn (14), with the desired

coefficients obtained from eqn (24). After the parameters have been
determined the model is simulated to obtain the model output Y'

12
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which is then compared with the original output Y, to obtain the

quality of fit;

R2 . 1 %‘Y :")2 (32)
k

an R2 value of unity indicates an exact fit. This procedure is

similar to the least squares portion of the NIPIP program without
the sliding window. Although NIPIP would have performed the task,
the least squares routines were written so that the student
investigator would have a better understanding of the identification
process and not simply be executing a "canned" program.

The second macro has several characteristics that must be
taken into account when operated independently of the first macro.
First, the numerator and denominater must be defined as Num and
Den respectively before running the transformation program. Num
and Den must be the same size, they must be row vectors, and then
coefficients must be in descending powers of Z. If they are not the
same order or contain zero coefficients, zeros must be added
appropriately inorder to achieve this constraint. The transformation
macro operation is very simple when used in conjuncton with one of
the compatible least squares identification macros. The only
information necessary is the sampling rate. The program will pause
to display the w'-plane transfer function, and after depressing the

return key the magnitude and phase Bode plots will be constructed.
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Both macros are completely self contained programs and can be ran
independently when necessary. Copies of these programs are in

appendix IlI.

2.4 Example cases; Noise effects, Input Bandwidth
effects, Delay Estimation techniques.

The example cases are simulations performed on the Advanced
Continuous Simulation Language (ACSL) (ref. 10) to generate data for
the identification process. Many examples were run to build an
understanding of the identification process and gain experience with
the procedures. The ACSL simulation programs were written by
Ronald A. Hess, Professor of Mechanical Engineering University
California at Davis. Several examples of the simulation programs

are listed in appendix Ill.

A total of six examples were run each varying in complexity.
Five test cases were run using the same system transfer function,
and one higher order multi-loop example was used. This transfer

function

100e"%S
8[52+4s+100]

(33)

was chosen because it represents a second order system with an

integration and a time delay and is typical of pilot-vehicle dynamics
(Ych) in single-loop tasks. The simulations were run with a time

step of 0.05 seconds for 102.4 seconds yielding 2048 data points
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(211), thereby meeting the "power of 2" requirement for FFT analysis.
The FFT was used as a comparison to the least squares in some of

the examples. The first five test cases run were, an open loop
system with %=0.0 seconds (figure 1), a closed single loop system

with %=0.0 seconds (figure 2), a closed single loop system with
T=0.0 seconds and injected noise (figure 3), a closed single loop
system with 1=0.3 seconds and injected noise, and a closed single
loop system with %=0.0 seconds, injected noise and a bias error
(figure 4). In each of these test cases the C(s)/E(s) transfer
function was identified. The last example was a multi-loop hovering
helicopter with a realistic pilot model with noise and a bias error
(figure 5). The Q/Xe transfer function was identified in this case.
The Q/Xe transfer function is a "composite”, and it is similar to a
transfer function to be measured in the CH-47B simulation to be
discussed later. From these six examples many comparisons can be
made. The effects of noise, bias, delay, cutoff frequency, and open
loop versus closed loop dynamics on the quality of the
identifications will be discussed presently.

An injected noise signal with a root-mean-square (RMS) value
of 0.1 times the input RMS does not effect the identification to any
appreciable extent. This is indicated in figure 6 and table 2.
Increasing the RMS value to 1.0 times the input RMS, however,
severely compromises the least- squares identification.

In table 2 and in subsequent tables listing the model used for
the identification of the transfer function, the model column

contains a code. The first two digits represent the entry position in
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table 1,the second two digits represent the time delay in integer
multiples of the sampling rate, and the last digit indicates if the
routine contains a bias identification. For example, Z8D0OB
represents entry 8 with zero delay and a bias identification.

The effect of bias appears in figure 7 and table 3. Although
not as dramatic as the noise effects, the bias error reduces the
ability to identify the system correctly. In table 3 the last three
rows correspond to runs in which a unity constant bias term was
added to the simulation (fig. 4), and when an identification routine
with a bias identification is used a definite improvement results.

The effect of delay is apparent in figure 8 and tables 4 and 5.
As expected, increasing the delay decreases the correlation
coefficient. It is important that the delay be correctly identified
for best results. Table 5 shows that when the delay in the
identification matches the delay in the system the correlation
coefficient is maximized.

The effect of input cutoff frequency is shown in figure 9, 10
and 11 and in tables 2, 3, 4, and 6. Cutoff frequency appears to have
no effect on the open loop and closed loop with zero noise, zero bias
and zero delay examples. However, in all other test cases the
increase in cutoff frequency reduced the correlation coefficient.
This effect is most noticeable in the delay, noise, zero bias
example, and can be seen in the last three rows of table 4. The sum
of sines cutoff frequencies and their corresponding magnitudes are
listed in table 7.
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Identification of the open-loop transfer function in closed-
loop versus open-loop operation was also undertaken and the results
appear in figure 12 and 13 and in table 6. Two different inputs were
utilized; the sum of sines and a unit step. The sum of sines, open-
loop identification varies slightly at the high and low ends of the
frequency range, but the deviation is insignificant. Identification of
the open-loop transfer function in closed-loop versus open-loop
operation with zero noise using both FFT and LSE techniques was
undertaken. The medium cutoff sum of sines input was used.

The results appear in figures 14 and 15.

The last example was the multi-loop hovering helicopter with
a realistic pilot model. Comparisons were made between the FFT,
the least squares without bias, and the least squares with bias. The
results show that the least squares with bias corresponds very well
with the FFT, and yields a high correlation coefficient. See figures
16, 17 and table 8. The value of bias calculated by the identification
subroutines cannot be compared with the bias in the single loop
examples, due to the location in the model were the signals are

measured.

3.0 A muilti-axis manned simulation task

Data obtained from the CH-47B variable-stability helicopter at
the NASA Ames Research Center was analyzed using the LSE and the
FFT identification procedures outlined previously. The transfer
functions identified are presented in bode form to facillitate

comparison. The experimental tracking task was performed while
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the helicopter was in the attitude command/attitude hold dynamic
mode (ref. 11). During the precision tracking task the pilot
attempts to maintains a hovering position above a pad symbol, while
the pad symbol is driven by a forcing function. The forcing function
is a random appearing sum of sinusoids (tables 9 and 10). The
sampling interval for the simulation was 0.05 seconds. A run length
of 102.4 seconds yielding 2048 (2”) data points was used in order
to meet the "power of 2" requirement of the FFT analysis technique.

The subjects used in this experiment were an engineer and a
test pilot. Each of the two subjects performed five runs on three
different configurations of a tracking task. In the first
configuration the pilot controled only the Iongitudinal motion of the
helicopter with the aid of the complete display (figure 18 ). In the
second configuration the subject controlled both the lateral and
longitudinal motion of the helicopter with the aid of the complete
display. In the final configuration the subject controlled both the
lateral and longitudinal motion of the helicopter, but without the
acceleration symbol on the display.

Three transfer functions were analyzed using the different
configurations; these were: X/Xpad, Xball/Xpad, and Xball/Xball error
(see figure 19). The X/Xpad transfer function is defined between the
longitudinal position of the helicopter and the longitudinal position
of the hover pad, measured in feet from a fixed point on the earth.
The Xball/Xpad "composite" transfer function is defined between the
position of the acceleration symbol relative to the center of the

display and the position of the hover pad measured from a fixed



point on the earth, both measured in display units. The Xball/Xball
error transfer function is defined between Xball and the
longitudinal error between the displayed hover pad and the
acceleration ball, again, both in screen units. The X/Xpad transfer
function was analyzed using all three configurations, while the
composite and the Xball/Xball error transfer functions were
analyzed using only the first two configurations.

For the X/Xpad transfer function identifications a good
correlation exists between the LSE and the FFT when the
acceleration symbol is present (see figures 20 - 23 ), but when the
acceleration symbol is removed the comparison becomes poor (see
figures 24 and 25 ). The correlation coefficients are lower for LSE
identifications without the acceleration symbol (see tables 11 - 16
), and a lightly-damped mode appears in the bode plots. The mode,
evident in both the FFT and the LSE plots, indicates a decrease in
closed-loop system stability. Another comparison demonstrating
the utility of the acceleration symbol appears in figures 26 and 27 .
These two figures are plots of the actual output X, the simulated
output X' for subject 1 and the command signal Xpad. The simulated
output comes from the LSE program just before calculating the
correlation coefficient. After the parameters or coefficients of the
transfer function are identified, the program simulates the
identified transfer function and compares the simulated output to
the actual output. It is this simulated data that is plotted with the
actual data versus time in figures 26 and 27. The correlation
coefficients for figure 26 and 27 are 0.9883 and 0.7997 respectively

19
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(see tables 13 and 15 ). From this analysis it is obvious that the use
of the acceleration symbol greatly increases the pilots ability to
maintain a hovering position over a moving object. The poor
performance evident in figure 26 even with the acceleration ball is a
result of the challenging nature of the sum of sines input.

Figures 28-31 show the LSE and FFT measurements for the
Xball/Xball error transfer function, for each subject and
configuration. Tables 21-24 show the pertinent parameters for
these measurements. As the tables indicate, only the FFT
measurements were reliable for this transfer function. The LSE
technique yielded either unstable transfer functions (unbounded R2
values) or very low R2 values. This poor identificgtion performance
with the LSE technique may be do to the effects of noise injection by
the subjects (remnant). Note that large noise injection did adversly
effect LSE identification performance in the example case in Section
2.4,

The FFT results of figures 28-31 and tables 21-24 were quite
acceptable. The data can be interpreted in terms of the crossover
model of Eq. 11, with crossover frequencies on the order of 2.0
rad/sec and time delays of approximately 0.2 secs.

The composite transfer function Xball/Xpad yields important
information about the assumed pilot control structure shown in
figure 19. This loop structure assumes single-loop compensatory
behavior on the part of the pilot, i.e. that Xe, itself, is not used by
the pilot, only what has been called Xball error. Thus, although

figure 19 shows two loops being closed, only the inner loop is
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assumed to be closed by the pilot. Now, in order to improve tracking
performance , the pilot might adopt what would be interpreted as
pursuit behavior in the single loop manual control structure of
figure 19 (ref. 2), or multi-loop behavior in terms of the multi-loop
manual control structure of figure 32. In other words Xe might be
used by the pilot and be subject to compensation. The resulting
compensated signal would then be compared with Xball and the
difference be used to close the inner control 'loop. This is the multi-
loop manual control structure shown in figure 32. Note that the
inner loop error signal is now not Xball error, but some internally
-generated error based upon the difference between the compensated
Xe (called Xec in figure 32 ) and Xball.

Figures 33-36 show measured composite transfer functions
Xball/Xpad for the two subjects for longitudinal tracking alone and
simultaneous longitudinal and lateral tracking. Now the transfer
function Xball/Xpad can be writen as a product or composite of two

other transfer functions as,

Xpall  Xpall, Xe
Xpad Xe xpad

(34)

Now, the second of these, Xe/Xpad, is the error-to-input transter function for the
outer loop. Figures 20-23, show the closed loop X/Xpad transfer functions
obtained in this study. Defining bandwidth as that frequency where the phase

goes through -S0 degrees these figures indicate a closed loop bandwidth of



around 0.30 rad/sec. This means that the Xe/Xpad transfer function will be very

close to unity for all frequencies much beyond 0.30 rad/sec. Thus

Xpall . Xpall (35)
Xpad Xe

for o>0.30rad/sec. But the transfer function can be obtained as

Xball__ xball’xball error
Xo 1+ Xball'Xball error

(36)

Recall that the Xball/Xball error transfer function has already been obtained, at
least in terms of FFT measurements (see figures 28-31). Taking the FFT
measurements of figure 28 as a representative sample, an acceptable fit to the
data was obtained in the form of a rational transfer function. Now, forming

Xball’Xe using this fit, and approximating Xe/Xpad as

X
) S

- 37

Xoag 5+ 03 (37)

one obtains figure 37 from the product on the right hand side of Eq. 34. Ifno
compensation of Xe is occuring, then figure 34 should resemble figures 33-36
in the frequency range w > 0.03 rad/sec. Looking at the amplitude ratio,
this is not the case for frequencies above around 2.0 rad/sec. The
measurement of figures 33-36 all indicate that the amplitude ratios
are relatively flat and greater than unity in value, whereas the

amplitude ratio of figure 37 has begun to fall off at around 2

22
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rad/sec. The LSE result with the highest R2 value (run 4, table 20) is
shown for comparison. Thus, some form of pilot compensation as
suggested in figure 32, is probably occuring in the outer loop to
cause this discrepancy. This does not imply that the FFT
measurements assuming the loop closure structure of figure 19 are
incorrect, rather they reflect the effective compensatory behavior
of the pilot.

Thus the FFT and least-squares measurements of the
composite transfer function have led to the discovery of pursuit
behavior in terms of a single-loop manual control structure as
shown in figure 19, or, equivalently, multi-loop behavior, in terms
of the control structure of figure 32. While the evidence for this
behavior has been obtained indirectly, the data subporting it has
been quite consistent. As the pertinent figures and tables for the
Xball/Xpad transfer functions indicate, twice the standard deviation
of the FFT data is typically less than a symbol width in magnitude,

and the R2 values for the least squares data are typically greater than 0.95.
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4.0 Conclusions

1.)  After preliminary investigation with synthetic data, Fast
Fourier Transform (FFT) and Least Square Error (LSE) estimation
techniques were applied to the identification of pilot-vehicle
dynamics in a realistic flight simulation task.

2.)  With the exception of the identification of the Xball to
Xball error transfer function, comparisons between the FFT and LSE
techniques were, in general, good. No acceptable LSE identification
of the aforementioned transfer function was found. It was thought
this poor LSE performance might be attributed to human noise
injection in the inner control loop.

3.) The FFT identification of the Xball to Xball error transfer
function could be described in terms of the well-known crossover
model of the human pilot.

4.) The identification of a composite transfer function
yielded some indirect evidence of pursuit tracking behavior on the

part of the test subjects.
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TABLE 1

Entry No. of
No. z-Transform Unknowns Physical System
1 b,z" 1 K (pure gain)
b, Tz!
2 » 1. S 1 Sﬁ(integrator)
b,Z'1 Ka
3 1-a12'1 2 aﬁst-order lag)
. b,z +b,z"2 . Ko?
1-a,z7'-a,z-2 [Cw]
b Z'1+b 2.2 K s+a
5 s (2?) 4 sl g
1-a,27"-a,z (Gw]
-1 -2
6 w (z-p) 3 M e-ps
1-a,z"! (s+b)
b2 +b,z°2 K(s+a)
7 4 :
1-a,z77-a,22 s(s+b)
. b1z"+bzz'2+baz‘3 ) K(s+a
1-a,27-a,22.3,2"3 (s+b) [Ga]
o b,z '+b,22+b,z%+b 274 , KIC, @]

1‘812-1'822-2°332.3 [C1 ;031][C2;0.)2]



TABLE 2 - NOISE AND CUTOFF FREQUENCY COMPARISON

ACTUAL IDENTIFIED LOOP
INPUT  R2  NOISE DELAY BIAS STRUCTURE MODEL

Y SINES

MED CUT 0.9997 0.0 0.0 N..  CLOSED 2800
Y SINES

LOW CUT 0.9940 0.1 0.0 N..  CLOSED Z8D2
Y SINES

MED CUT 0.9809 0.1 0.0 N..  CLOSED Z8D2
Y SINES

HIGH CUT 0.9552 0.1 0.0 N..  CLOSED Z8D2
Y SINES

MED CUT 0.1114 10 0.0 N..  CLOSED Z8D4

* N.I. - NOT IDENTIFIED



TABLE 3 - BIAS COMPARISON

ACTUAL IDENTIFIED LOOP

INPUT+ R® NOISE DELAY  BIAS STRUCTURE MODEL
> SINES
LOW CUT 0.9802 0.1 0.3 N..  CLOSED Z8D4
Y SINES
MED CUT 0.8916 0.1 0.3 N..  CLOSED Z8D4
> SINES
HIGH CUT 0.7276 0.1 0.3 N..  CLOSED Z8D5
S SINES
LOW CUT 0.9969 0.1 0.3  0.9961 CLOSED Z8D3B
D SINES
MED CUT 0.9904 0.1 0.3  0.9911 CLOSED Z8D38B
> SINES
HIGH CUT 0.9839 0.1 0.3 09954 CLOSED Z8D4B

" N.I. - NOT IDENTIFIED
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TABLE 4 - DELAY COMPARISON

ACTUAL IDENTIFIED LOOP

INPUT ~ R? NOISE DELAY  BIAS STRUCTURE MODEL

> SINES

LOW CUT 0.9940 0.1 0.0 N..  CLOSED Z8D2
> SINES

MED CUT 0.9809 0.1 0.0 N..  CLOSED Z8D2
Y SINES

HIGH CUT 0.9552 0.1 0.0 N..  CLOSED Z8D2
Y SINES

LOW CUT 0.9802 0.1 0.3 N.I.  CLOSED Z8D4
Y SINES

MED CUT 0.8916 0.1 0.3 N..  CLOSED 28D4
> SINES |

HIGH CUT 0.7276 0.1 0.3 N..  CLOSED 28D5

“N.I. - NOT IDENTIFIED
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TABLE 5 - IDENTIFIED DELAY COMPARISON

ACTUAL IDENTIFIED LOOP
INPUT R2 NOISE DELAY BIAS STRUCTURE MODEL

Y SINES

MED CUT 09338 0.1 0.0 N1 CLOSED Z8D0
Y SINES

MED CUT 09540 0.1 0.0 N.L. CLOSED Z8D1
Y SINES

MED CUT 09809 0.1 0.0 N.I. CLOSED 28D2
> SINES

MED CUT 09555 0.1 0.0 N.I. CLOSED Z28D3
Y SINES

MED CUT uUNSTABLE 0.1 0.0 N..  CLOSED Z8D4
Y SINES

MED CUT uNsTABLE 0.1 0.0 N.I. CLOSED Z8D5
> SINES

MED CUT uUNSTABLE 0.1 0.0 N.IL. CLOSED Z8D6

* N.I. - NOT IDENTIFIED



TABLE 6 - OPEN VS. CLOSED LOOP

ACTUAL IDENTIFIED LOOP

INPUT R? NOISE DELAY BIAS STRUCTURE MODEL
> SINES
LOW CUT 1.0 0.0 0.0 N.I. OPEN Z8D0
Y SINES
MED CUT 1.0 0.0 0.0 N.I. OPEN Z8D0
Y SINES
HIGH CUT 1.0 0.0 0.0 N.I. OPEN Z8D0
> SINES
LOW CUT 0.9998 0.0 0.0 N..  CLOSED Z8D0
> SINES
MED CUT 0.9997 0.0 0.0 N..  CLOSED Z8D0
Y SINES
HIGH CUT 0.9998 0.0 0.0 N..  CLOSED Z8D0
STEP 1.0 0.0 0.0 N.I. OPEN Z8D0
STEP 0.9999 0.0 0.0 N.L. CLOSED Z8D0

*N.I. - NOT IDENTIFIED
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TABLE 7 - Y'SINES

12
f(t) = Ay )" A sin(wt)
i=1

LOW CUTOFF MED CUTOFF HIGH CUTOFF HELICOPTER

A,=1/1.546 A,=1/3.03 A,=1/4.02 Ay=1
i @, (rad/sec) A, A, A A
1 0.1841 1 1 | 1 17.6
2 0.3068 1 1 1 17.6
3 0.4909 1 1 1 17.6
4  0.7977 0.1 1 1 17.6
5 1.1660 0.1 1 1 1.76
6 1.7790 0.1 1 1 1.76
7 2.8230 0.1 0.1 1 1.76
8  4.6630 0.1 0.1 1 0.88
9 6.9330 0.1 0.1 0.1 0.88

10  8.9580 0.1 0.1 0.1 0

11 12,0880 0.1 0.1 0.1 0

12 17.9780 0.1 0.1 0.1 0



TABLE 8 - MULTI-LOOP HELICOPTER COPARISON

ACTUAL IDENTIFIED LOOP
INPUT  R2 NOISE DELAY BIAS STRUCTURE MODEL

2.SINES 0.9644 0.0 0.0 NI MULTI Z3D0
2SINES 0.9664 0.0 0.0  -1401 MULTI Z9D0B
2SINES 0.9573 0.1 0.0 N MULTI Z9D0
2.SINES 0.9578 0.1 00  -13.95 MULTI Z9D08

" N.I. - NOT IDENTIFIED



TABLE 9 - Y SINES FOR THE LONGITUDINAL DIRECTION OF THE
CH-47B HELICOPTER.

12
r(t) = AOZAisin(mlt)
i=1

i @, (rad/sec) AMPLITUDE NO. OF CYCLES

1 0.1841 17.6 3
2 0.3068 17.6 5
3 0.4909 17.6 8
4 0.7977 17.6 13
5 1.1660 1.76 19
6 1.7790 1.76 29
7  2.8230 1.76 46
8 4.6630 0.88 76

9 69330 0.88 113



TABLE 10 - ) SINES FOR THE LATERAL DIRECTION OF THE CH-478
HELICOPTER.

12
) = Ay Asin(at)

j=1

i W (radsecy  AMPLITUDE NO. OF CYCLES

1 0.2454 17.6 4
2 0.4295 17.6 7
3 0.6750 17.6 11
4  0.9204 17.6 15
5 1.4110 1.76 23
6 22700 1.76 37
7 3.7430 1.76 61

8 5.7060 0.88 93

9 7.7930 0.88 127
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FIGURE 3 - CLOSED LOOP WITH NOISE N(s)
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FIGURE 4 - CLOSED LOOP WITH NOISE N(s) AND BIAS B(s)
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FIGURE 5 - MULTI-LOOP HOVERING HELICOPTER MODEL
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FIGURE 8 - DELAY COMPARISON, MEDIUM CUTOFF FREQUENCY.
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FIGURE 10 - CLOSED LOOP CUTOFF COMPARISON, ZERO NOISE
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FIGURE 11 - CLOSED LOOP CUTOFF COMPARISON, WITH NOISE
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FIGURE 12 - OPEN LOOP VS. CLOSED LOOP, STEP INPUT
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FIGURE 16 - MULTI-LOOP FFT VS. LEAST SQUARES WITH BIAS, AND ZERO NOISE
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FIGURE - 18 Hover Display Symbology.
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FIGURE - 19 Hypothesized pilot loop closures with acceleration ball display
symbology.
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FIGURE 20 - X/Xpad TF ID for Subject 1, Longitudinal Tracking Only
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MAGNITUDE

PHASE (DEG)

FIGURE 21 - X/Xpad TF ID for Subject 2, Longitudinal tracking only,
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MAGNITUDE

PHASE (DEG)

FIGURE 22 - X/Xpad TF ID for Subject 1, Lateral and longitudinal Tracking.
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MAGNITUDE

PHASE (DEG)

FIGURE 23 - X/X

Pad TF 1D for Subject 2, Lateral and longituginal tracking.
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FIGURE 24 - X/Xpad TF ID for Subject 1, Lateral and longitudinal
trackin vgithout the accele[ation symbol.
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X POSITION

X POSITION

FIGURE 26 - X position vs. time plot for X/Xpad, subject 1,
lateral and longitudinal tracking.
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FIGURE 27 - X position vs. time plot for X/Xpad, subject 1, lateral
and longitudinal tracking, no acceleration symbol.
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FIGURE 30 - Xball/Xball error TF ID for Subject 1, Lateral and longitudinal tracking.
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FIGURE 31 - Xball’Xball error TF ID for Subject 2, Lateral and longitudinal tracking.
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FIGURE 35 - Xball/Xpad TF ID for Subject 1, Lateral and longitudinal tracking.
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FIGURE 36 - Xball/Xpad TF ID for Subject 2, Lateral and longitudinal tracking.
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0 FIGURE 37 - XbaII{Xpad TF for Comgensatory Pilot Behavior.
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Computer Programs
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** ACSL multi-loop helicopter simulation **
PROGRAM HELI1

CONSTANT TFIN=110.
CONSTANT TDX=0.15
CONSTANT KEX1a1.
CONSTANT QX2a1.,14.14,100.
CONSTANT K=98.03
CONSTANT K1=1,
CONSTANT K2=10.
CONSTANT T1=2.5
CONSTANT T2=.369
CONSTANT XU=-0.05
CONSTANT Ga=32.2
CONSTANT MU=.0311
CONSTANT MTH=-8.
CONSTANT MDE=.585
CONSTANT MQ=-5.
CONSTANT TL=3.0
CONSTANT KY=.0071
CONSTANT ta=0.2
CONSTANT kn=1.0
CONSTANT m=0.0
CONSTANT s=0.02710
CONSTANT mn=0.00121285

ARRAY QX2(3)
CINTERVAL CINT=0.05
INITIAL

UNIFI{1717)

END $ "OF INITIAL"

DYNAMIC
DERIVATIVE
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DX=TRAN(0,2,100.,QX2,U1)
UM1=(.01"T1)*LEDLAG(100.,T1,DX,0.)
"UMX1=K2*UM1*
"UMX1=(K2/T2)*'LEDLAG(T2,.01,UM1,0.)*
UMX1=(K2T2)*LEDLAG(0.,T2,UM1,0,)
U1=UCX1-UM1-UMX1
UCX1=KEX1*DELAY(X1EN,0., TDX,300)

x1e =thc-th
X1EN=THC-TH+en+0.1
en=kn*(ou(ta,m,s)-mn)

XC=17.6"(SIN(.1841°T)+SIN(.3068"T)+SIN(.4909°T)}+SIN(.7977* T)+...

0.1*(SIN(1.166°T)+SIN(1.779" T)+SIN(2.823T) +..
0.05*(SIN(4.663"T)+SIN(6.934°T)))

XE=XC-X

THC=-KY*LEDLAG(TL,.01,XE,0.)

UD=XU*U-G*TH

THD=Q

QD=MU*U+MTH*TH+MQ* Q+MDE*(DX*K)

XD=U

TH=INTEG(THD,0.)
Q=INTEG(QD,0.)
U=INTEG(UD,0.)
X=INTEG(XD,0.)

TP=1/TFIN
VX1EaTP*INTEG(X1 E*2.,0.)
VTHC-TP"INTEG(THC"2..0.)
VXC-TP'INTEG(XC“Z.,O.)
VX=TP*INTEG(X**2.,0.)
VDX-TP‘INTEG(DX"2.,0.)
nbar=tp*integ(en,0.)

END $ "OF DERIVATIVE"

TERMT(T .GE. TFIN)

END $ "OF DYNAMIC*
END $ "OF PROGRAM"
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** ACSL closed-loop simulation, sum of sines input with noise, **
o delay , and bias. i
program ndbsin

array d(4)

constant d=1.,4.,100.,0., ta=0.2, kn=1.0, mn=0.00236539, m=0., s=0.03215
constant wi=0.1841, w2=0.3068, w3=0.4809, w4=0.7977, w5=1.166
constant wb=1.779, w7=2.823, wB=4.663, wi=6.933, w10=8.958
constant w11=12.088, w12=17.978, td=0.3

tfin=102.4

cinterval cint=0.05

INITIAL

UNIFI(3333)

END $"OF INITIAL"

dynamic

derivative

ed=delay(e1+n,0.,td,300)

c=tran(0,3,100.,d,ed)

el=r-c+1.

e=el-1.

n=kn*(ou(ta,m,s)-mn)
r=(sin(w1*t)+sin(w2"t)+sin(w3*t)+0.1*(sin(w4*t)+sin(w5*t)+...
sin(wé*t)+sin(w7*t)+sin(w8*t)+sin(w3*t)+sin(w10*t)+...
sin(w11*t)+sin(w12°1)))/1.546

tf=1./tfin

nbar=tf‘integ(n,0.)

end $ "of derivative”

end $ “of dynamic”

termt(t.ge.tfin)

end $ "of program"”
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** ACSL closed-loop simulation, sum of sines input with noise, **
- and delay .

program ndsin
array d(4)

constant d=1.,4.,100.,0., ta=0.2, kn=1.0, mn=0.00303933, m=0.0, s=0.04131
constant wi=0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166
constant w=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958
constant wi11=12.088, w12=17.978, td=0.3

tfin=102.4

cinterval cint=0.05

INITIAL

UNIF1(3333)

END $"OF INITIAL"

dynamic

derivative

ed=delay(e+n,0.,td,300)

c=tran(0,3,100.,d,ed)

e=r-c

n=kn*(ou(ta,m,s)-mn)

ra(sin(w1 ‘t)+sin(w2‘t)+sin(w3't)+sin(w4't)+sin(w5‘t)+...
sin(w6°t)+0.1 '(sin(w?'t)+sin(w8't)+sin(w9't)+sin(w1 0*'t)+...
sin(w11*t)+sin(w12°)))/3.03

tfa1./tfin

nbar=tf*integ(n,0.)

end $ “of derivative"

end $ "of dynamic*

termt(t.ge.tfin)

end $ "of program"



** ACSL closed-loop simulation, sum of sines input with noise. **

program nsin

array d(4)

constant d=1.,4.,100.,0., ta=0.1, kna1 .0, mn=0.05276090, m=0., s=1.0
constant w1=0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166
constant wb=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958
constant w11=12.088, w12=17.978

tin=102.4

cinterval cint=0.05

INITIAL

UNIF1(3333)

END $"OF INITIAL"

dynamic

derivative

c=tran(0,3,100.,d,e+n)

e=r-C

n=kn*(ou(ta,m,s)-mn) ,
r=(sin(w1 't)+sin(w2't)+sin(w3"t)+sin(w4't)+sin(w5‘t)+...
sin(w6°t)+0.1 ‘(sin(w7't)+sin(w8‘t)+sin(w9't)+sin(w1 0*t)+...
sin(w11*t)+sin(w12*1)))/3.03

tf=1/tfin

nbar=tf*integ(n,0.)

end $ "of derivative”

end $ "of dynamic”

termt(t.ge.tfin)

end $ "of program*®
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** ACSL closed-loop simulation with sum of sines input. **

program sin
array d(4)

constant d=1.,4.,100.,0.

CONSTANT w1=0.1841, w2=0.3068, w3= 0.4908, w4=0.7977, w5=1.166
constant wb=1.779, w7=2.823, w8=4.663, w9=6.933
CONSTANT W10=8.958, W11 =12.088, W12=17.978
tfin=102.4

cinterval cint=0.05

dynamic

derivative

c=tran(0,3,100.,d,e)

e=r-c

r=(sin(w1 "t)+sin(w2‘t)+sin(w3't)+sin(w4't)+sin(w5't)+...
Sin(wB*t)+sin(w7*t)+sin(w8*1)+0.1 *(sin(w9*t)+sin(w10*t)+...
sin(w11*t)+sin(w12*1)))/4.02

end $ “of derivative®

end $ "of dynamic*

termt(t.ge.tfin)

end $ "of program*
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/I *** z-domain to w'-domain transformation subroutine ***
T20.05;
ZZaSIZE(NU);
N=2Z(1,2)-1;
X=[T/21];
Y =[(-T/21);
K=N+1:
A=0"ONES(N,K);
B=0"ONES(N,K);
C=0,D=0;0D=0;,CC=0;NUM=0;DEN=0;
YY=1,Ma1;XX=1;
FOR I=1:K;...
FOR J=1:M:...
Lad+K-l...
A(lL,L)=XX(1,J):...
B(,.L)=YY(1,J):...
END;...
XX=CONV(XX,X);...
YY=CONV(YY,Y)....
M=M+1:...
END;
Q=K;
FOR P=1K:...
C(P,:)=NU(1,P)*CONV(A(Q,),B(P.)):...
D(P,)=DE(1,P)*CONV(A(Q,:),B(P,3));...
Q=K-P....
END;
CC=C';.DD=D'";S=2°N+1;Q2=K:
FOR R=1K:...
NUM(1,Q2)=SUM(CC(S.));...
DEN(1,Q2)=SUM(DD(S,)));...
Q2=K-R;...
SaS-1....
END;
NUM,DEN
n=NUM;
q=DEN;
PAGE



[a.,b,c,d]=tf2ss(n,q);
v=logspace(-1,2);
[mag,pha]=bode(a,b,c,d,1,v);

WINDOW('211"
a=[0.1,0.01;100,1 0,33.3,3.33);
plot(a,'scale’)
plot(v,mag,'loglog','dotted‘)
title('magnitude’,’ )
WINDOW('212))

aa=[0.1,-300;100,-50;33.3,50);
plot(aa,'scale')
plot(v,pha,'logx','dotted")
title('phase’,’ )
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/I *** PROGRAM FAST FOURIER TRANSFORM subroutine ***

LOAD H <RRR -A:

T=H(153:2200,1);

E=H( 153:2200,2);

C=H(153:2200,3):

R=H( 153:2200,4);

FFTC=FFT(C);

FFTE=FFT(E);

FFTR=FFT(R);

W=[.1841 -3068,.4909;.7977:1.1 66;1.779:

2.823;4.663;6.934];

FOR F=149:...

N=HOUND(W(F)'2048/(20'2"Pl)+1);...

MAGC(F)-SQRT((REAL(FFTC(N)))"2+(IMAG(FFTC(N)))“2);...
MAGE(F)-SQRT((REAL(FFTE(N)))“2+(IMAG(FFTE(N)))"2);...

PHAC(F)=1 80'ATAN(IMAG(FFT C(N))/REAL(FFT C(N)YPI:...
PHAE(F)-180'ATAN(IMAG(FFT E(N))/REAL(FFT E(N))PI:...
MDB(F):-(MAGC(F)/MAGE(F));...
END;
FOR Ea1.9:;...
N=ROUND(W(E)'2048/(20'2‘Pl)+1);...
IF REAL(FFTC(N)) <0. .PHAC(E)-PHAC(E)+180.;...
END;
FOR H=1:9:...
N=ROUND(W(H)'2048/(20'2'Pl)+1);...
IF REAL(FFTE(N)) <0. ,PHAE(H)-PHAE(H)+180.:...
D;
FOR G=1.9....
IF PHAC(G) < 0. , PHAC(G)-PHAC(G)+360.:...
END;
FOR K=1.9:...
IF PHAE(K) < 0. , PHAE(K)-PHAE(K)+360.:...
END;
PHAS = PHAC-PHAE:
A=[.1.0001;10 1:4.95 .250];
PAGE
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WINDOW('2111
//PLOT(A,'SCALE)

PLOT(W,MDB, POINT=2,.0GLOGY
YLABEL(MAGNITUDE)
TITLECFFT)

WINDOW('212)

PLOT('SCALE)
PLOT(W,PHAS,'POINT-2, L oG X
YLABEL('PHASE)

- XLABEL(FREQUENCY RAD/SEC)
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/1 ** 28d0b; LSE identification using model 8, zero delay, with bias **

E1=H(3:2047,2);
E2=H(2:2046,2);

E3=H(1:2045,2);

C1=H(3:2047,3);

C2=H(2:2046,3);

C3=H(1:2045,3);

C=C1;E=E1;

Y=H(4:2048,3);

B=ONES(2045,1);
A=[C1.C2.C3.E1.E2,E3,B];

P=A\Y
a11=p(1.1);a12=p(2.1);a13-p(3.1):
b11=p(4,1);b1 2=p(5,1);b13=p(6,1);
BIAS=(P(7,1)/(B11+B12+B1 3))
BB=BIAS*B;

NU=[0 B11 B12 B13];
DE=[1-A11-A12 -A13];

[A1B1C1 D1]=TF2SS(NU,DE);
EE=E+BB;
X=DSIM(A1,B1,C1.D1.EE');
XX=X;
R2=1-(SUM((C-XX)“2))/SUM(C*‘2)
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//** z8d0b; LSE identification using model 8 with agdtime **
I/ constant delay i
E1 =H(3:2044,2);

E2=H(2:2043.2);

E3=H(1 :2042,2);

C1=H(6:2047.3);

CZ=H(5:2046.3);

C3=H(4:2045,3);

C=C1;E=E1;

Y=H(7:2048,3).‘

A=[C1 .C2,C3.E1.EZ,E3];

P=A\Y

A1 1=P(1,1):A12-P(2,1);A13-P(3,1);

B1 1=P(4,1);B12-P(5,1);B13-P(6,1);

NU=(0000B11 B12B13);

DE=[1-A11-A12 -A13000 1

[A1B1C1 D1]-TF2$S(NU.DE);

X=DSIM(A1.B1,C1,D1.E');

R2=1 -((SUM((C-X')“2))/SUM((C“2)))
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//** z8d0b: LSE identification using model 8 **
/

E1=H(3:2047,2):
E2=H(2:2046,2):

E3=H(1:2045,2);

C1=H(3:2047,3):

C2-H(2:2048,3);

C3=H(1:2045,3);

C=C1;E=E1;

Y=H(4:2048,3):
A=[C1,C2,C3,E1,E2,E3):

P=AlY

A11=P(1,1);A12-P(2,1 ):A13=P(3,1);
B11=P(4,1);B12.P(5,1 ):B13=P(,1);
NU=[0 B11 B12 B13):

DE=[1 -A11.A12-A13):

[A1B1 C1 D1J-TF2sS(NU, DE);
X=DSIM(A1,81,C1,01,€);
R2=1-((SUM((C-X')"2))/SUM((C“2)))



// 29d0; LSE identification using model g **
/

E1 =H(4:2047,2);

E2-H(3:2046,2);

E3=H(2:2045.2):

Ed4=H(1:2044,2);

C1=H(4:2047,3);

02=H(3:2046,3):

C3-H(2:2045.3);

C=C1,E=E1;

YaH(5:2048,3):

A=[C1,C2,C3,E1 ,E2,E3,E4);

P=A\Y

Al1=P(1 ,1);A12-P(2,1);A13-P(3.1 ):

B1 1-P(4,1);B12-P(5.1):B13-P(6,1);B14-P(7.1);
NU=[0 B11 B12B13 B14);
DE=[1-A11-A12 -A13 0];

(A1 B1C1 D1]-TF2SS(NU.DE):
X-DSIM(A1,B1,C1,D1.E'):
R2-1-((SUM((C-X')“2))/SUM((C"2)))
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