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Abstract

Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation

techniques were applied to the problem of identifying pilot-vehicle dynamic

characteristics in flight simulation. A brief investigation of the effects of noise,

input bandwidth and system delay upon the FFT and LSE techniques was

undertaken using synthetic data. Data from a piloted simulation conducted at

NASA Ames Research Center was then analyzed. The simulation was

performed in the NASA Ames Research Center Variable Stability CH-47B

helicopter operating in fixed-basis simulator mode. The piloting task consisted

of maintaining the simulated vehicle over a moving hover pad whose motion

was described by a random-appearing sum of sinusoids. The two test subjects

used a head-down, color cathide ray tube (CRT) display for guidance and

control information. Test configurations differed in the number of axes being

controlled by the pilot (longitudinal only versus longitudinal and lateral), and in

the presence or absence of an important display indicator called an

"acceleration ball". A number of different pilot-vehicle transfer functions were

measured, and where appropriate, qualitatively compared with theoretical pilot-

vehicle models. Some indirect evidence suggesting pursuit behaivor on the

part of the test subjects is discussed.
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1.0 Introduction

A pilot when combined with a modern aircraft, whether an

airplane or helicopter, forms one of the most complicated systems

to be analyzed by a control engineer. Once the basic problem of

stability is solved, the issue of handling qualities can be raised. In

order to improve handling qualities, a better integration of man and

machine is required, and in order to achieve better man machine

integration, the system dynamics must be evaluated and optimized.

The first step in this process is the measurement of the vehicle and

pilot dynamics. The measurement of human dynamics is complicated

by the fact that human characteristics are task dependent. Their

dynamics can change dramatically depending upon the type of task

being performed, and their familiarity with it. Dynamics can also

vary between pilots for the same task.

Early work in the area of human pilot dynamics (e.g. ref. 1) has

led to the formation of a vast data base, which has aided many

researchers in their development of models of the human pilot. Over

the past three decades, many models have been proposed and tested.

Models varying in complexity from the Crossover Model for single

loop systems to the Structural Isomorphic Model. Although the

crossover model is the simplest, it is the most general. When

expressed mathematically the crossover model appears as,

KpKce'_ _c e'_
YpYc = ' S =" S (1)



where Yp is the pilot transfer function, Yc is the plant transfer

function, Kp and K c are gains, _ is the system time delay, and o_c is

the crossover frequency. This model states that no matter what the

plant dynamics, the operator compensates for them and the system

crossover model is preserved. As the name implies this model is

accurate near the crossover frequency, but if the low or high

freqencies are important a different model must be used. The

precision model for single loop systems (ref. 2) is accurate for a

broader frequency range than the crossover model. If a more

complicated model is required there are several multiloop examples

to choose from. The McRuer Structural Isomorphic Model (ref. 2), the

Linear Optimal Control Model (ref. 3), and the Hess Structural Model

(ref. 4) are three options available.

This paper uses simple single-loop models for generation of

data that is used to test the least squares identification process and

the Fast Fourier Transform analysis. Once the simple models were

identified properly, a more complicated multiloop example was

exercised. After the multiloop example was completed the

identification procedure was used to identify vehicle pilot

dynamics from data obtained from a CH-47B helicopter at the NASA

Ames Research Center.

2.0 Background

2.1 Brief review of techniques for human transfer
function estimation.

When deciding upon an identification technique there are many

choices, and depending on the system being identified there will be



advantages to using one method over another. Some of the different

methods used employ orthogonal filters, spectral analysis

techniques including Fast Fourier Transforms, and least squares

estimation.

The orthogonal filter method is a generalized technique that

models the system dynamics as a series of transfer functions or

linearly independent filters. The set of linerarly independent filters

are of the form

r- Ill
G(joD = e'ZJ9

L 1 p2 ('r.lj(i) - 1) 1+ + • (2)
(1:1jo) + 1)(_j_ + 1)

where l_1, P2' " " " are determined by a regression technique, and 1:1,

"r,2, . . are predetermined time constants. The time constants are

selected from models of the pilot that include the sensory organs,

muscular mechanics, and the feedback therein. (see ref. 5 pg.4)

Although general, the results from the orthogonal filter method are

some what difficult to interpret due to the many parameters in the

model.

Power and cross power spectral densities can be computed to

determine the pilot dynamics using spectral measurement

techniques. The power spectral density of a random singal x(t) is

derived from the autocorrelation function
T

(l)xx('L') = lim"-_ T--t== 2-_.Ix(t)x(t+_dt (3)
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which can also be defined as one half of a Fourier Transform pair

1 .re (o})eJo_ t 'xx = xx (4)

where _xx(O_) is refered to as the power spectral density of x(t), and

Cxx(CO)= fCxx(_e "jc°t , (5)

Similarly the cross power spectral density of two random signals

x(t) and y(t) is defined as

Cxy(CO)= rex y (_ e'Jcot- _. (6)

Now if x(t) and y(t) are the input and output of a linear system,

respectively, the transfer function of that system can be obtained

as

H(jo}) CxY((°) H(s)I (7)
_xx(_) _j_

where H(s) is the system transfer function in the Laplace domain.

If the input data can be described as a sum of sinusoids Eq. 7

can be simplified and the transfer function can be obtained using a

Fourier Coefficient method where
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C),(j(I))

HUe) = C x (je.))
(8)

where Cy and Cx represent Fourier coefficients whose real and

imaginary parts are defined as

T i
1

Re[Cy(Jcoi) ] .. _iiJY
(t)sin (o}it)dt (9)

T i
1

Imag[Cy(jCoi) ] -- _'iJY(t)
co s (coit) d t ( 1 O)

Each sine wave must have an integral number of cycles over the

entire run length (no partial waves), and no sine wave can have a

frequency that is an integral multiple of another frequency. The

relative amplitudes are selected so that the resulting input

represents an input disturbance which occurs naturally in the task.

Another benefit of using fourier coefficients is the Fast Fourier

Transform (FFT). The FFT takes advantage of the periodic properties

of sinusoids to reduce the computation time dramatically, but

requires the number of data points to be an integer power of two.

The least square error (LSE) method is the simplest approach

mathematically, but computationally requires a large amount of

storage space due to the matrix manipulations involved. In order to



perform a least squares identification on a single-loop pilot-vehicle

system an appropriate model must be chosen. Model selection varies

from the simple crossover model,

Ke'T'S

YpYc = S (11 )

to higher order models like the precision model for single loop

systems, (see ref. 2 pg 29)

Yp=Kpe'F°[I L" " _ r-4o _ _2 2_Ns. (12)

Once a model has been chosen, the input and model output error are

minimized using a least squares technique. After the error has been

minimized the coefficients are obtained, and the closeness of fit is

determined.

2.2 Least squares and sum of sines - Hess/Mnich.

The Hess/Mnich research consisted of the identification of

pilot dynamics from inflight tracking data using least squares and

Fourier transform analysis. The NASA Ames Dryden Flight Research

Facility with NASA Langley provided data from two flight tests for

evaluation of pilot characteristcs. The task used for generating the

data was an F-14 aircraft pursuing a T-38 target aircraft in both

level flight and in a "3-G" wind up turn at a mach number of 0.55 at
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an altitude of 10,000 feet with a separation distance of 800 feet.

The F-14 pilot was using a gunsight reticle on a head-up display.

The task of the F-14 pilot was to keep the reticle centered on the T-

38 aircraft throughout the run. In addition to normal disturbances,

the reticle in the F-14 was driven using a sum of sines as input so

that the FFT results can be compared with the least squares results.

(see ref. 6)

The least squares technique used by Hess/Mnich for analysis

is implemented in a software package called Nonintrusive

Parameter Identification Program (NIPIP) (ref. 7). This program

uses a general model with undetermined coefficients and determines

the coefficients by comparing the data to the output of the model

using a multiple linear regression technique (running least squares

estimation). This program is capable of identifying linear and

nonlinear relations between input and output as long as the

relationships are linear with respect to the unknown coefficients.

NIPIP uses a time frame length, the period over which the

identification is to be performed, that can be specified as any part

of the time history. NIPIP also has the option of sliding the frame

along through the time history, removing old data as new data is

entered, which yields a moving average through the time history.

The sliding time window was not required for the Hess/Mnich

analysis.

The mathematical basis for the NIPIP program is a running

least squares estimation technique. The coefficients of a prescribed

difference equation approximating the relation ship between the
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input and

consider the following difference

output of a linear system are estimated. For example,

equation

Yk -- alYk-1 + blXk + Vk (13)

where Yk, Xk, and Vk are the system output,input, and modeling error at the kth

sampling instant, respectively. Now considering a set of N measurements of the

variables Yk and Xk, one can write

Y=HC' +V

where

-Y1 -

Y2

Y=

-YN-

[!']
,-[..j ,,-Ex,.,x,j

,_

(14)

C'=_b 1 ] (15)
1

.VN.

Now C' is found by minimizing the sum of the squares of V , where,

V=Y-HC' (16)



and the sum of the squares is

J = (Y- Hc')T(Y - HC') (17)

Minimizing a scalar 3 with respect to a vector C' requires

and

aJ
_C-'r=0

r- a2J -]

det Lac,2j >0

(18)

(19)

applying Eqs. 18 and 19 to Eq. 17 yields

HTHc'= HTy
(20)

Solving for C' yields

C' = (HTH) "1HTy (21)

It can be shown that

N

_.THTH = FkF k

k=l

(22)

and
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N

HTy= F k
k=l

(23)

Then

/k__l /'1_

T T
C' - Fk Fk Fk Yk

k-1

(24)

where N is the number of data points. (see ref. 7)

In addition to using NIPIP and the FFT to analize flight data

Hess/Mnich also used a model to generate simulated data to test the

two methods. Since the NIPIP program cannot identify time delays

exactly, they chose their model with a second order denominator and

a time delay that represents simplified human neuromuscular

dynamics. The exact form of the mathetical model chosen was,

2e-.15s
Yp = 2 (25)

(1_) +0.4S +1

However, by changing the order of the model ,time delays with

integer multiples of the sampling period can be assumed and

identified using a least squares technique. Then the quality of fit

can be compared. This is the procedure followed in the Hess/Reedy

research implemented in the Reedy subroutines.
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Hess/Mnich produced good results with the simulated data.

However due to a problem with the sum of sines input to the head up

display the flight test results were not as well behaved as had been

expected. Through averaging they were able to save the data and the

results indicated that the crossover model fit the data in the area of

crossover. (see ref. 6 fig. 9-12)

2.3 Desciption of the Reedy identification - similarity

to NIPIP

The Reedy program consists of a least squares method applied

to the data, either simulated or measured, where the transt_r

function is determined and converted from the z-domain into the w'-

domain via the bilinear transform;

Z = l+(T/2)w'
1 -(T/2)w' (26)

where T is the sampling rate. Since the coefficients of the discrete

transfer function are nearly impossible to interpret in the discrete

time domain, the Bode plots are used to convert to the frequency

domain where analysis can be readily accomplished. The Bode plot is

made using the w'-plane transfer function as an approximation of

the S-plane. This approximation is valid when , (see ref. 8 pg 196)

0osco<< =-- (28)
/¢
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The previously described process is performed by two

computer programs implemented as macros on CTRL-C, a computer-

aided control system design package (ref. 9). The first macro is an

identification of the coefficients of a difference equation

representing the pilot model. The coefficients are determined by

using a CTRL-C least squares method similar to the one described in

part B of the background section. The identification macros are

created by selecting a model from table 1; for example entry 3,

y blz "1

_" (z) = 1-alz-1 (28)

where Y is the output, X is the input, and b1 and a 1 are the

coefficients to be identified. Next the difference equation is found;

Y(z) (1-alz-1) , X(z) (blz'l) (29)

or, in the discrete time domain

Yk - alYk-1 = bl Xk-1 (30)

then

Yk " alYk-1 + blXk. 1 (31)

The set of N measurements yield eqn (14), with the desired

coefficients obtained from eqn (24). After the parameters have been

determined the model is simulated to obtain the model output Y'k
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which is then compared with the original output Yk to obtain the

quality of fit;

R2=1 .._,,f(Yk " Y'k) 2

._Yk 2
(32)

an R 2 value of unity indicates an exact fit. This procedure is

similar to the least squares portion of the NIPIP program without

the sliding window. Although NIPIP would have performed the task,

the least squares routines were written so that the student

investigator would have a better understanding of the identification

process and not simply be executing a "canned" program.

The second macro has several characteristics that must be

taken into account when operated independently of the first macro.

First, the numerator and denominater must be defined as Num and

Den respectively before running the transformation program. Num

and Den must be the same size, they must be row vectors, and then

coefficients must be in descending powers of Z. If they are not the

same order or contain zero coefficients, zeros must be added

appropriately inorder to achieve this constraint. The transformation

macro operation is very simple when used in conjuncton with one of

the compatible least squares identification macros. The only

information necessary is the sampling rate. The program will pause

to display the w'-plane transfer function, and after depressing the

return key the magnitude and phase Bode plots will be constructed.
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Both macros are completely self contained programs and can be ran

independently when necessary. Copies of these programs are in

appendix III.

2.4 Example cases; Noise effects, Input Bandwidth

effects, Delay Estimation techniques.

The example cases are simulations performed on the Advanced

Continuous Simulation Language (ACSL) (ref. 10) to generate data for

the identification process. Many examples were run to build an

understanding of the identification process and gain experience with

the procedures. The ACSL simulation programs were written by

Ronald A. Hess, Professor of Mechanical Engineering University

California at Davis. Several examples of the simulation programs

are listed in appendix III.

A total of six examples were run each varying in complexity.

Five test cases were run using the same system transfer function,

and one higher order multi-loop example was used. This transfer

function

1 00e "Tos

s [s2+4s+100]
(33)

was chosen because it represents a second order system with an

integration and a time delay and is typical of pilot-vehicle dynamics

(YpYc) in single-loop tasks. The simulations were run with a time

step of 0.05 seconds for 102.4 seconds yielding 2048 data points
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(211), thereby meeting the "power of 2" requirement for FFT analysis.

The FFT was used as a comparison to the least squares in some of

the examples. The first five test cases run were, an open loop

system with "r.o=0.0 seconds (figure 1), a closed single loop system

with _=0.0 seconds (figure 2), a closed single loop system with

"r<)=0.0 seconds and injected noise (figure 3), a closed single loop

system with T.o=0.3 seconds and injected noise, and a closed single

loop system with _-0.0 seconds, injected noise and a bias error

(figure 4). In each of these test cases the C(s)/E(s) transfer

function was identified. The last example was a multi-loop hovering

helicopter with a realistic pilot model with noise and a bias error

(figure 5). The Q/Xe transfer function was identified in this case.

The Q/Xe transfer function is a "composite", and it is similar to a

transfer function to be measured in the CH-47B simulation to be

discussed later. From these six examples many comparisons can be

made. The effects of noise, bias, delay, cutoff frequency, and open

loop versus closed loop dynamics on the quality of the

identifications will be discussed presently.

An injected noise signal with a root-mean-square (RMS) value

of 0.1 times the input RMS does not effect the identification to any

appreciable extent. This is indicated in figure 6 andtable 2.

Increasing the RMS value to 1.0 times the input RMS, however,

severely compromises the least- squares identification.

In table 2 and in subsequent tables listing the model used for

the identification of the transfer function, the model column

contains a code. The first two digits represent the entry position in
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table 1,the second two digits represent the time delay in integer

multiples of the sampling rate, and the last digit indicates if the

routine contains a bias identification. For example, Z8DOB

represents entry 8 with zero delay and a bias identification.

The effect of bias appears in figure 7 and table 3. Although

not as dramatic as the noise effects, the bias error reduces the

ability to identify the system correctly. In table 3 the last three

rows correspond to runs in which a unity constant bias term was

added to the simulation (fig. 4), and when an identification routine

with a bias identification is used a definite improvement results.

The effect of delay is apparent in figure 8 and tables 4 and 5.

As expected, increasing the delay decreases the correlation

coefficient. It is important that the delay be correctly identified

for best results. Table 5 shows that when the delay in the

identification matches the delay in the system the correlation

coefficient is maximized.

The effect of input cutoff frequency is shown in figure 9, 10

and 11 and in tables 2, 3, 4, and 6. Cutoff frequency appears to have

no effect on the open loop and closed loop with zero noise, zero bias

and zero delay examples. However, in all other test cases the

increase in cutoff frequency reduced the correlation coefficient.

This effect is most noticeable in the delay, noise, zero bias

example, and can be seen in the last three rows of table 4. The sum

of sines cutoff frequencies and their corresponding magnitudes are

listed in table 7.
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Identification of the open-loop transfer function in closed-

loop versus open-loop operation was also undertaken and the results

appear in figure 12 and 13 and in table 6. Two different inputs were

utilized; the sum of sines and a unit step. The sum of sines, open-

loop identification varies slightly at the high and low ends of the

frequency range, but the deviation is insignificant. Identification of

the open-loop transfer function in closed-loop versus open-loop

operation with zero noise using both FFT and LSE techniques was

undertaken. The medium cutoff sum of sines input was used.

The results appear in figures 14 and 15.

The last example was the multi-loop hovering helicopter with

a realistic pilot model. Comparisons were made between the FFT,

the least squares without bias, and the least squares with bias. The

results show that the least squares with bias corresponds very well

with the FFT, and yields a high correlation coefficient. See figures

16, 17 and table 8. The value of bias calculated by the identification

subroutines cannot be compared with the bias in the single loop

examples, due to the location in the model were the signals are

measured.

3.0 A multi-axis manned simulation task

Data obtained from the CH-47B variable-stability helicopter at

the NASA Ames Research Center was analyzed using the LSE and the

FFT identification procedures outlined previously. The transfer

functions identified are presented in bode form to facillitate

comparison. The experimental tracking task was performed while
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the helicopter was in the attitude command/attitude hold dynamic

mode (ref. 11). During the precision tracking task the pilot

attempts to maintains a hovering position above a pad symbol, while

the pad symbol is driven by a forcing function. The forcing function

is a random appearing sum of sinusoids (tables 9 and 10). The

sampling interval for the simulation was 0.05 seconds. A run length

of 102.4 seconds yielding 2048 (211 ) data points was used in order

to meet the "power of 2" requirement of the FFT analysis technique.

The subjects used in this experiment were an engineer and a

test pilot. Each of the two subjects performed five runs on three

different configurations of a tracking task. In the first

configuration the pilot controled only the longitudinal motion of the

helicopter with the aid of the complete display (figure 18 ). In the

second configuration the subject controlled both the lateral and

longitudinal motion of the helicopter with the aid of the complete

display. In the final configuration the subject controlled both the

lateral and longitudinal motion of the helicopter, but without the

acceleration symbol on the display.

Three transfer functions were analyzed using the different

configurations; these were: X/Xpad, Xball/Xpad, and Xball/Xball error

(see figure 19). The X/Xpad transfer function is defined between the

longitudinal position of the helicopter and the longitudinal position

of the hover pad, measured in feet from a fixed point on the earth.

The Xball/Xpad "composite" transfer function is defined between the

position of the acceleration symbol relative to the center of the

display and the position of the hover pad measured from a fixed
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point on the earth, both measured in display units. The Xball/Xball

error transfer function is defined between Xball and the

longitudinal error between the displayed hover pad and the

acceleration ball, again, both in screen units. The X/Xpad transfer

function was analyzed using all three configurations, while the

composite and the Xball/Xball error transfer functions were

analyzed using only the first two configurations.

For the YJXpad transfer function identifications a good

correlation exists between the LSE and the FFT when the

acceleration symbol is present (see figures 20 - 23 ), but when the

acceleration symbol is removed the comparison becomes poor (see

figures 24 and 25 ). The correlation coefficients are lower for LSE

identifications without the acceleration symbol (see tables 11 - 16

), and a lightly-damped mode appears in the bode plots. The mode,

evident in both the FFT and the LSE plots, indicates a decrease in

closed-loop system stability. Another comparison demonstrating

the utility of the acceleration symbol appears in figures 26 and 27 .

These two figures are plots of the actual output X, the simulated

output X' for subject 1 and the command signal Xpad. The simulated

output comes from the LSE program just before calculating the

correlation coefficient. After the parameters or coefficients of the

transfer function are identified, the program simulates the

identified transfer function and compares the simulated output to

the actual output. It is this simulated data that is plotted with the

actual data versus time in figures 26 and 27. The correlation

coefficients for figure 26 and 27 are 0.9883 and 0.7997 respectively
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(see tables 13 and 15 ). From this analysis it is obvious that the use

of the acceleration symbol greatly increases the pilots ability to

maintain a hovering position over a moving object. The poor

performance evident in figure 26 even with the acceleration ball is a

result of the challenging nature of the sum of sines input.

Figures 28-31 show the LSE and FFT measurements for the

Xball/Xball error transfer function, for each subject and

configuration. Tables 21-24 show the pertinent parameters for

these measurements. As the tables indicate, only the FFT

measurements were reliable for this transfer function. The LSE

technique yielded either unstable transfer functions (unbounded R2

values) or very low R2 values. This poor identification performance

with the LSI:: technique may be do to the effects of noise injection by

the subjects (remnant). Note that large noise injection did adversly

effect LSE identification performance in the example case in Section

2.4.

The FFT results of figures 28-31 and tables 21-24 were quite

acceptable. The data can be interpreted in terms of the crossover

model of Eq. 11, with crossover frequencies on the order of 2.0

rad/sec and time delays of approximately 0.2 secs.

The composite transfer function Xball/Xpad yields important

information about the assumed pilot control structure shown in

figure 19. This loop structure assumes single-loop compensatory

behavior on the part of the pilot, i.e. that Xe, itself, is not used by

the pilot, only what has been called Xball error. Thus, although

figure 19 shows two loops being closed, only the inner loop is
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assumed to be closed by the pilot. Now, in order to improve tracking

performance , the pilot might adopt what would be interpreted as

pursuit behavior in the single loop manual control structure of

figure 19 (ref. 2), or multi-loop behavior in terms of the multi-loop

manual control structure of figure 32. In other words Xe might be

used by the pilot and be subject to compensation. The resulting

compensated signal would then be compared with Xball and the

difference be used to close the inner control loop. This is the multi-

loop manual control structure shown in figure 32. Note that the

inner loop error signal is now not Xball error, but some internally

generated error based upon the difference between the compensated

Xe (called Xec in figure 32 ) and Xball.

Figures 33-36 show measured composite transfer functions

Xball/Xpad for the two subjects for longitudinal tracking alone and

simultaneous longitudinal and lateral tracking. Now the transfer

function Xball/Xpad can be writen as a product or composite of two

other transfer functions as,

Xball Xball Xe
(34)

Now, the second of these, Xe/Xpad, is the error-to-input transfer function for the

outer loop. Figures 20-23, show the closed loop X/Xpad transfer functions

obtained in this study. Defining bandwidth as that frequency where the phase

goes through -90 degrees these figures indicate a closed loop bandwidth of
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around 0.30 rad/sec. This means that the Xe/Xpad transfer function will be very

close to unity for all frequencies much beyond 0.30 rad/sec. Thus

Xball Xball

Xpad Xe
(35)

for co>0.30 rad/sec. But the transfer function can be obtained as

Xball Xball/Xball error
(36)

-'_e =1 +Xball/Xballerror

Recall that the Xball/Xball error transfer function has already been obtained, at

least in terms of FFT measurements (see figures 28-31). Taking the FFT

measurements of figure 28 as a representative sample, an acceptable fit to the

data was obtained in the form of a rational transfer function. Now, forming

Xball/Xe using this fit, and approximating Xe/Xpad as

Xe s

X-'-_ad= s + 0.3 (37)

one obtains figure 37 from the product on the right hand side of Eq. 34. If no

compensation of Xe is occuring, then figure 34 should resemble figures 33-36

in the frequency range co • 0.03 rad/sec. Looking at the amplitude ratio,

this is not the case for frequencies above around 2.0 racl/sec. The

measurement of figures 33-36 all indicate that the amplitude ratios

are relatively flat and greater than unity in value, whereas the

amplitude ratio of figure 37 has begun to fall off at around 2
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rad/sec. The LSE result with the highest R2 value (run 4, table 20) is

shown for comparison. Thus, some form of pilot compensation as

suggested in figure 32, is probably occuring in the outer loop to

cause this discrepancy. This does not imply that the FFT

measurements assuming the loop closure structure of figure 19 are

incorrect, rather they reflect the effective compensatory behavior

of the pilot.

Thus the FFT and least-squares measurements of the

composite transfer function have led to the discovery of pursuit

behavior in terms of a single-loop manual control structure as

shown in figure 19, or, equivalently, multi-loop behavior, in terms

of the control structure of figure 32. While the evidence for this

behavior has been obtained indirectly, the data supporting it has

been quite consistent. As the pertinent figures and tables for the

Xball/Xpad transfer functions indicate, twice the standard deviation

of the FFT data is typically less than a symbol width in magnitude,

and the R 2 values for the least squares data are typically greater than 0.95.
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4.0 Conclusions

1.) After preliminary investigation with synthetic data, Fast

Fourier Transform (FFT) and Least Square Error (LSE) estimation

techniques were applied to the identification of pilot-vehicle

dynamics in a realistic flight simulation task.

2.) With the exception of the identification of the Xball to

Xball error transfer function, comparisons between the FFT and LSE

techniques were, in general, good. No acceptable LSE identification

of the aforementioned transfer function was found. It was thought

this poor LSE performance might be attributed to human noise

injection in the inner control loop.

3.) The FFT identification of the Xball to Xball error transfer

function could be described in terms of the well-known crossover

model of the human pilot.

4.) The identification of a composite transfer function

yielded some indirect evidence of pursuit tracking behavior on the

part of the test subjects.
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6.0 Appendix I Tables
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Entry
No. z-Transform

TABLE 1

No. of

Unknowns Physical System

3

2

bl Z'l

blTZ'l

1 -z 1

blz'l

1-alz-1
2

K (pure gain)

K
s (integrator)

Ka

s+a (1st-order lag)

4

5

6

7

8

9

blZ-l+b2z-2

1 -a 1Z "1 -a2z-2

blz'l+b2z'2

1.alz.l.a2z. 2 (z'P)

bl z'l+b2z-2

1_alz.1 (z'p)

blz-l+b2z-2
|

1 -alZ'l-a2z'2

b 1z'l+b2z'2+b3z-3

1 -a 1 z'l-a2z-2.a3z- 3

b 1z 1+ b2 z.2+ b3 z.3+ b4 z. 4

1 -a 1Z "1 -a2z-2.a3z-3

4

4

3

4

6

7

KJ

K(s+a)e.ps
[;;=]

.K(s+a)

(s+b) e'PS

.K(s+a)

s(s+b)

K(s.a)

(s+b) [_;oo]
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INPUT

TABLE 2 - NOISE AND CUTOFF FREQUENCY COMPARISON

ACTUAL IDENTIFIED LOOP

R 2 NOISE DELAY BIAS STRUCTURE MODEL

_SINES

MED CUT 0.9997 0.0 0.0 N.I. CLOSED
_SINES

LOW CUT 0.9940 0.1 0.0 N.I. CLOSED
_.SINES

MED CUT 0.9809 0.1 0.0 N.I. CLOSED
_SINES

HIGH CUT 0.9552 0.1

_SINES

Z8D0

Z8D2

Z8D2

* N.I. - NOT IDENTIFIED

MED CUT 0.1114 1.0 0.0 N.I. CLOSED Z8D4

0.0 N.I. CLOSED Z8D2
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INPUT, R2

TABLE 3 - BIAS COMPARISON

ACTUAL IDENTIFIED LOOP

NOISE DELAY BIAS STRUCTURE MODEL

LOW CUT 0.9802

T, SINES

MED CUT 0.8916

T, SINES

0.1 0.3 N.I. CLOSED

0.1 0.3 N.I. CLOSED

HIGH CUT 0.7276 0.1

_SINES

LOW CUT 0.9969 0.1

T, SINES

MED CUT 0.9904 0.1

T, SINES

HIGH CUT 0.9839 0.1

* N.I. - NOT IDENTIFIED

0.3 N.I. CLOSED

0.3 0.9961 CLOSED

0.3 0.9911 CLOSED

0.3 0.9954 CLOSED

Z8D4

Z8D4

Z8D5

Z8D3B

Z8D3B

Z8D4B



31

INPUT

TABLE 4 - DELAY COMPARISON

ACTUAL IDENTIFIED LOOP
R2 NOISE DELAY BIAS STRUCTURE MODEL

LOW CUT 0.9940 0.1 0.0 N.I. CLOSED
'_-".SINES

MED CUT 0.9809 0.1 0.0 N.I. CLOSED
_".SINES

HIGH CUT 0.9552 0.1

_SINES
0.0 N.I. CLOSED

LOW CUT 0.9802 0.1 0.3 N.I. CLOSED

_SINES

MED CUT 0.8916 0.1 0.3 N.I. CLOSED
'_"_SINES

HIGH CUT 0.7276 0.1

* N.I. - NOT IDENTIFIED

0.3 N.I. CLOSED

Z8D2

Z8D2

Z8D2

Z8D4

Z8D4

Z8D5
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INPUT R2

_,SINES

TABLE 5 - IDENTIFIED DELAY COMPARISON

ACTUAL IDENTIFIED LOOP

NOISE DELAY BIAS STRUCTURE MODEL

MED CUT 0.9338

_,SINES
MED CUT 0.9540

T.SINES

MED CUT 0.9809

_,SINES

MED CUT 0.9555

T, SINES

MED CUT UNSTABLE

T, SINES

MED CUT UNSTABLE

_,SINES

MED CUT UNSTABLE

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

0.1 0.0 N.I. CLOSED

* N.I. - NOT IDENTIFIED

Z8D0

Z8D1

Z8D2

Z8D3

Z8D4

Z8D5

Z8D6
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INPUT R2

TABLE 6 - OPEN VS. CLOSED LOOP

ACTUAL IDENTIFIED LOOP

NOISE DELAY BIAS STRUCTURE MODEL

_SINES
LOW CUT 1.0

MED CUT 1.0

__,SINES
HIGH CUT 1.0

_SINES
LOW CUT 0.9998

_,SINES
MED CUT 0.9997

_SINES
HIGH CUT 0.9998

STEP 1.0

STEP 0.9999

0.0 0.0 N.I. OPEN

0.0 0.0 N.I. OPEN

0.0 0.0 N.I. OPEN

0.0 0.0 N.I. CLOSED

0.0 0.0 N.I. CLOSED

0.0 0.0 N.I. CLOSED

0.0 0.0 N.I. OPEN

0.0 0.0 N.I. CLOSED

Z8D0

Z8D0

Z8D0

Z8D0

Z8D0

Z8D0

Z8D0

Z8D0

* N.I. - NOT IDENTIFIED
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TABLE 7 ,,_SINES

12

r(t) = Ao_,Aisin(_t)
i=1

LOW CUTOFF

Ao=1/1.546

(rad/sec) A i

MED CUTOFF

Ao=1/3.03

Ai

HIGH CUTOFF

Ao= 1/4.02

A i

0.1841 1

HELICOPTER

Ao= 1

A i

17.6

2

3

4

5

6

7

8

9

10

11

12

0.3068 1

0.4909 1

0.7977 0.1

1.1660 0.1

1.7790 0.1

2.8230 0.1

4.6630 0.1

6.9330 0.1

8.9580 0.1

12.0880 0.1

17.9780 0.1

1

1

1

1

1

0.1

0.1

0.1

0.1

0.1

0.1

1

1

1

1

1

1

1

0.1

0.1

0.1

0.1

17.6

17.6

17.6

1.76

1.76

1.76

0.88

0.88

0

0

0
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INPUT

TABLE 8 - MULTI-LOOP HELICOPTER COPARISON

ACTUAL IDENTIFIED LOOP

R2 NOISE DELAY BIAS STRUCTURE MODEL

_-".SINES 0.9644 0.0 0.0 N.I. MULTI Z9D0

_".SINES 0.9664 0.0 0.0 -14.01 MULTI Z9DOB

_-'_SIN ES 0.9573 0.1 0.0 N.I. MULTI Z9D0

_Y-".SINES 0.9578 0.1 0.0 -13.95 MULTI Z9DOB

* N.I. - NOT IDENTIFIED
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TABLE 9 - _'.SINES FOR THE LONGITUDINAL DIRECTION OF THE
CH-47B HELICOPTER.

12

r(t) = Ao,_Aisin(_t)
i=1

J O_j (rad/sec) AMPLITUDE NO. OF CYCLES

1 0.1841 17.6 3

2

3

4

5

6

7

8

9

0.3068 17.6 5

0.4909 17.6 8

0.7977 17.6 13

1.1660 1.76 19

1.7790 1.76 29

2.8230 1.76 46

4.6630 0.88 76

6.9330 0.88 113
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TABLE 10 - _-'.SINES FOR THE LATERAL DIRECTION OF THE CH-47B
HELICOPTER.

12

r(t) = Ao_Aisin(_t)
i..1

O_j (rad/sec) AMPLITUDE NO. OF CYCLES

1 0.2454 17.6 4

2 0.4295 17.6 7

3 0.6750 17.6 11

4 0.9204 17.6 15

5 1.4110 1.76 23

6 2.2700 1.76 37

7 3.7430 1.76 61

8 5.7060 0.88 93

9 7.7930 0.88 127
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7.0 Appendix Ii Figures
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-_ G(s)

FIGURE 1 - OPEN LOOP

G(s)

FIGURE 2 - CLOSED LOOP

N(s)

G(s)

FIGURE 3 - CLOSED LOOP WITH NOISE N(s)

_N(s) [B(s)

FIGURE 4 - CLOSED LOOP WITH NOISE N(s) AND BIAS B(s)

Xc
YPx

X

FIGURE 5 - MULTI-LOOP HOVERING HELICOPTER MODEL
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8,0 Appendix III Computer Programs



75

"* ACSL multi-loop helicopter simulation **

PROGRAM HEUl

CONSTANT TFIN=110.

CONSTANT TDX=0.15

CONSTANT KEXI=I.

CONSTANT QX2.= 1.,14.14,100.

CONSTANT K=98.03

CONSTANT K1=1.

CONSTANT K2=10.

CONSTANT T1 =2.5

CONSTANT T2=.369

CONSTANT XU=-0.05

CONSTANT G,,,32.2

CONSTANT MU=.0311

CONSTANT MTH=-8.

CONSTANT MDE=.585

CONSTANT MQ=.-5.

CONSTANT TL=3.0

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

KY=.0071

ta=0.2

kn=1.0

m=0.0

s=0.02710

mn=0.00121285

ARRAY QX2(3)

CINTERVAL CINT=0.05

INITIAL

UNIFI(1717)

END $ "OF INITIAL"

DYNAMIC

DERIVATIVE
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DX=TRAN (0,2,100.,QX2, U I)

UM I=(.01"TI)*LEDLAG(100., T I,DX,0.)
"UMXI=K2"UMI"

"UMXI =(K2/T2)*LE D LAG (T2,.01 ,UM1,0.)"

UMXI =(K2"T2)*LE D LAG(0.,T2,UM 1,0.)
UI =UCXI-UMI-UMXI

UCXI =KEXI *D ELAY(XI EN,0.,TDX,300)

xIe =thc-th

XI EN=THC-TH+en+0. I

en=kn*(ou(ta,m,s).mn)

XC=17.6*(SIN(.1841*T)+SIN(.3068,T)+SIN(.4909°T)+SIN(.7977,T)+...
0.1 *(SIN(I. 166*T)+SIN (1.779*T)+SIN(2.823*T))+...

0.05*(SIN(4.663*T)+SIN(S.e34*T)))
XE=XC-X

THC=-KY*LEDLAG(TL,.01 ,XE,0.)
UD=XU*U-G*TH

THD--Q

QD=M U°U+MTH*TH+MQ*Q+M D E*(DX*K)
XD=U

TH=INTEG(THD,0.)

Q=INTEG(QD,0.)

U=INTEG(UD,0.)

X=INTEG(XD,0.)

TP=I ./TFIN

VXl E=TP" INTEG(X1 E**2.,0.)

VTHC=TP*INTEG(THC"2.,0.)

VXC=TP'INTEG(XC**2.,0.)

VX=TP*INTEG(X'*2.,0.)

VDX=TP*INTEG(DX*-2.,0.)

nbar=tp'integ(en,0.)
END $ "OF DERIVATIVE"

TERMT(T .GE. TFIN)

END $ "OF DYNAMIC"

END $ "OF PROGRAM"



"" ACSL closed-loop simulation, sum of sines input with noise, *"

"" delay, and bias.

program ndbsin

array d(4)

constant d-1 .,4.,100.,0., ta-0.2, kn-1.0, mn-0.00236539, m=0., s=0.03215

constant wl-0.1841, w2-0.3068, w3-0.4909, w4-0.7977, w5=1.166

constant w6=1.779, w7=2.823, w8=4.663, w9-6.933, w10-8.958

constant wl 1-12.088, w12-17.978, td-0.3
tfin=102.4

cinterval cint-0.05

INITIAL

UNIFI(3333)

END $"OF INITIAL"

dynamic
derivative

ed=delay(el+n,0.,td,300)

c=tran(0,3,100.,d,ed)
el=r-c+1.

e=el-1.

n=kn'(ou(ta,m,s)-mn)

r=(sin(w 1*t)+sin (w2"t)+sin(w3*t)+0.1 *(sin(w4*t)+sin(w5*t)+...

sin(w6*t)+sin(w7*t)+sin(w8*t)+sin(w9°t)+sin(wl 0"t)+...

sin(w11*t)+sin(w12*t)))/1.546
tf=l Jtfin

nbar-tf*integ(n,0.)

end $ "of derivative"

end $ "of dynamic"

termt(t.ge.tfin)

end $ "of program"
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°* ACSL closed-loop simulation, sum of sines input with noise, **
*" and delay. it

program ndsin

array d(4)

constant d=1.,4., 100.,0., ta=0.2, kn=1.0, mn=0.00303933, m=0.0, s=0.04131

constant wl =0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5= 1.166

constant w6=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958

constant wl 1 =12.088, w12=17.978, td=0.3
tfin=102.4

cinterval cint=0.05

INITIAL

UNIFI(3333)

END $"OF INITIAL"

dynamic

derivative

ed=delay(e+n,0.,td,300)

c=tran (0,3o 100. ,d,ed)
e=r-c

n=kn*(ou(ta,m,s)-mn)

r=(sin(wl *t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...

sin (w6*t)+0.1 *(sin (w7*t)+sin (w8*t)+sin(w9*t)+sin (wl 0*t)+...
sin(w11*t)+sin(w12"t)))/3.03
t/=l ./tfin

nbar=tf*integ(n,0.)
end $ "of derivative"

end $ "of dynamic"

termt(t.ge.tfin)

end $ "of program"
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*" ACSL closed-loop simulation, sum of sines input with noise. ""

program nsin

array d(4)

constant d=l .,4.,100.,0., ta=0.1, kn=1.0, mn=0.05276090, m=0., s=1.0

constant wl-0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166

constant w6-1.779, w7-2.823, w8=4.663, w9=6.933, w10=8.958
constant wl 1=12.088, w12=17.978
t'fin=102.4

cinterval cint=0.05
INITIAL

UNIFI(3333)

END $"OF INITIAL"

dynamic

derivative

c=tran(0,3,100.,d,e+n)
e=r-C

n=kn'(ou(ta,m,s)-mn)

r=(sJn(wl "t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...

san(w6"t)+0.1 *(sin(w7"t)+sin (w8*t) +sin (w9"t) +sin (wl O't)+...
sin(w11 *t)+sin (w12*t)))/3.03
tf=l Jtfin

nbar=tf'integ(n,O.)

end $ "of derivative"

end $ "of dynamic"

termt(t.ge.tfin)

end $ "of program"
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** ACSL closed-loop simulation with sum of sines input. *"

program sin

array d(4)

constant d=l .,4., 100.,0.

CONSTANT wl =0.1841, w2=0.3068o w3= 0.4909, w4=0.7977, w5=1.166
constant w6=1.779, w7=2.823, w8=4.663, w9=6.933

CONSTANT W10=8.958, W11 =12.088, W12=17.978
tfin=102.4

cinterval cint=0.05

dynamic

derivative

c=tran (0,3,100. ,d,e)
e=r-c

r=(sin(wl *t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...

s in(w6*t) +si n(w7*t)+sin (w8"t)+0.1 "(sin (w9*t)+sin (wl 0"t)+...
sin(w11"t)+sin(w12*t)))/4.02
end $ "of derivative"

end $ "of dynamic"

termt(t.ge.tfin)

end $ "of program"
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// *'* z-domain to w'-domain transformation subroutine °'*

T=0.05;

ZZ=SlZE(NU);

N=ZZ(1,2)-1;

x = [1/21];
Y = [-T/2 1];
K=N+I ;

A=0"ONES(N,K);

B=0"ONES(N,K);

C=0;D=0;DD=0;CC=0;NUM=0;DEN=0;

YY=I ;M=I ;XX=I;

FOR I=1 :K;...

FOR J=l :M;...

L=J+K-I;...

A(I,L)=XX(1,J);...

B(I,L)=YY(1 ,J);...

END;...

XX=CONV(XX,X);...
YY=CONV(YY, Y);...

M=M+I ;...

END;

Q=K;

FOR P=I :K;...

C(P,:)=NU(1,P)'CONV(A(Q,:),B(P,:));...

D(P,:)-DE(1,P)'CONV(A(Q,:),B(P,:));...
Q-K-P;...

END;

CC=C';DD-D';S=2*N+ 1;Q2=K;

FOR R=I :K;...

NUM(1 ,Q2)=SUM(CC(S,:));...

DEN(1 ,Q2)=SUM(DD(S,:));...
Q2=K-R;...

S=S-1 ;...

END;

NUM,DEN

n=NUM;

q=DEN;
PAGE



[a,b,c,d]=tf2ss(n,q);

v=logspace(-1,2);

[mag,pha]-bode(a,b,c,d, 1,v);
WINDOW('211')

a=[0.1,0.01 ;100,10;33.3,3.33];
plot(a,'scale')

plot(v,mag,'loglog','dotted,)

title('magnitude',' ,)

WINDOW('212')

aa=[0.1 ,-300;100,-50;33.3,50J;
plot(aa,'scale')

plot(v,pha,'logx','dotted,)

title('phase',' ')
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// "** PROGRAM FAST FOURIER TRANSFORM subroutine "*
LOAD H <RRR -A;

T=H(153:2200,1);

E=H(153:2200,2);

C=H(153:2200,3);

R=H(153:2200,4);

FFTC=FFT(C);

FFTE=FFT(E);

FFTR=FFT(R);

W=[. 1841;.3068;.4909;. 7977; 1.166;1.779;
2.823;4.663 ;6.934];

FOR I==1:9;...

N= ROUN D(W(F)*2048/(20,2,PI)+ 1);...

MAGC(F)=SQRT((REAL(FFTC(N)))**2+(IMAG(FFTC(N))),,2);...

MAGE(F)=SQRT((REAL(FFTE(N))),,2+(IMAG(FFTE(N))),,2) ;...

PHAC(F),180"ATAN(IMAG(FFTC(N))IREAL(FFTC(N)))ipI;...

PHAE(F),180,ATAN(IMAG(FFTE(N))/REAL(FFTE(N)))/pI;...
M DB(F)=(MAGC(F)/MAGE(F));...

END;

FOR E=1:9;...

N= ROUND(W(E)*2048/(20*2*PI)+ 1);...

IF REAL(FFTC(N)) < 0. ,PHAC(E)-PHAC(E)+180.;...
END;

FOR H=1:9;...

N= RO UN D(W(H)*2048/(20*2, pi)+ 1);...

IF REAL(FFTE(N)) < 0. ,PHAE(H)-PHAE(H)+180.;...
END;

FOR G=1:9;._

IF PHAC(G) < 0., PHAC(G)-PHAC(G)+360.;...
END;

FOR K=1:9;...

IF PHAE(K) < 0., PHAE(K)--PHAE(K)+360.;...
END;

PHAS = PHAC-PHAE;

A=[. 1 .0001 ;10 1 ;4.95.250J;
PAGE



WJNDOW('2__,)
//PLOT(A,'SCALE,)

PLOT(W,MDB,'POINT.2,,,LOG LOG,)
YLABEL('MAGN/TUDE,)
TITLE('FFT')
WINDOW('212')
PLOT('SCALE')

PLOT(W,PHAS,'POINT..2, ,LOGX,)
YLABEL('PHASE,)

XLABEL('FREQUENCYRAD/SEC')
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//** z8d0b; LSE identification using model 8, zero delay, with bias *"
E1 =H(3:2047,2);

E2=H(2:2046,2);

E3=H(1:2045,2);

C1=H(3:2047.3);

C2=H(2:2046,3);

C3=H(1:2045,3);

C=C1;E=E1;

Y=H(4:2048,3);

B=ONES(2045,1);

A=[C1 .C2.C3, E 1, E2, E3,B];
P=A\Y

a 11 =p(1,1 );a 12=p(2,1 );al 3 =p(3,1 );

b11=p(4,1);b12=p(5,1);b13=p(6,1);

BIAS=(P(7,1)/(B11+B12+B13))
BB=BIAS'B;

NU=[0 B11 B12 B13];

DE=[1 -A11 -A12 -A13];

[A1 B1 C1 D1]=TF2SS(NU,OE);
EE=E+BB;

X= DSIM (A1 ,B1 ,C1 ,D1, EE');
XX=.X';

R2=1-(SUM ((C-XX)**2))/SUM(C**2)



//** zSd0b; LSE identification using model 8 with a 3 time// **

constant delay
E1 =H('3:2044,2);

E2=H('2:2043,2);

E3--H('1:2042,2);

C1=H(6:2047,3);

C2=H(5:2046,3);

C3=H('4:2045,3);
C=C1;E=E1;

Y=H(7:2048,3);

A=[C 1, C2,C3, E1 ,E2, E3.];
P=A\Y

A 11 =P(' 1,1 );A 12= P(2,1 };A 13 = P('3,1};

B11=P('4,1);B12=P('5,1);B13=P{6,1);

NU=[0 0 0 0 B11 B12 B13J;

DE=[1 -All -A12 -A13 0 0 0 J;

[A1 B1 C1 DlJ=TF2SS('NU,DE};
x=DSIM(A_,a_,C_,D_,E');
R2= I"((SUM((C-X')**2))/SUM{{C**2)))

llt

t@
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//"* z8d0b; LSE identification using model 8// *t

El=H(3:2047,2);

E2=H(2:2046,2);

E3..H(1:2045,2);

C1 ".H(3:2047,3);

C2=H(2:2046,3);

C3--H(1:2045,3);
C=C1;E-E1;

Y"H(4:2048,3);

A=/C1 ,C20C3, E1, E2, E3];
P=A\Y

A11=P(1,1);A12'..P(2,1);A13=P(3,1);

911=P(4,1);B12"-P(5,1);B13=P(6,1);
NU=[0 B11 B12 B13];

DE=I1 -A11 -A12 -A13];

[A1 B1 C1 D1J'-TF288(NU,DE);

X=OS M(AI,BI,Cl.D ,E,);
R2=1 "( (SU M (( C-X')"2) )ISUM( (C**2) ))
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//z9dO; LSE identification using model 9 *"
//

El=H(4:2047,2);

E2=H(3:2046,2);

E3=H('2:2045,2);

E4=H(1:2044,2);

C1 =H('4:2047,3);

C2=H(3:2046.3);

C3=H(2:2045,3);
C=C1;E=E1;

Y=H('5:2048,3);

A=[C1 ,C2,C3, E1, E2, E3,E4J;
P=A\Y

A11=P(1,1);A12=P(2,1);A13=P(3,1);

B11=P(4o 1);B12=P('5,1 );B13=P{6,1);B14=P(7,1);
NU=[0 B11 B12 B13 B14];

DE=_I -All -A12 -A13 0J;

CA1 B1 C1 DlJ=TF2SS(NU, DE);
X= DSIM (A 1,B1 ,Cl ,D1 ,E');

R2= I "((S U M (( C-X')"2 ))ISUM ((C..2 )))
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