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1. INTRODUCTION

Genetic algorithms (GAs) and other evolutionary procedures are commonly useci ior static _unction opti-
mization. AIthoush there has be_n growing evidence that methods such as GAs are, in general, not weLl

suited m _ domain [De Jong, 1992], a large amount of research has been devoted to improving their
effectiveness for function optimization. Hybrid mechanisms, ranging from alternate evolutionary meth-

ods to specialized operators and repreramtations which can intellig¢_ntly u_ problem specific/_dorma-

tion, have achieved good results in many specific applications. Nonetheless, relatively few of these
techniques work well aaoss a wide range of problems.

The aim of this paper is to compare two standard genetic algorithms with simpler methods of optimiza-

tion: multiple-rest-art stochastic hilklimbing (MRSH) and population-based incremental learning (PBIL).
Previous comparison._ betwec,n forms of MRSH and GAs can be found in [Ackley, 1994], [Juels & Watten-

berg, 1994], [Forrest & Mitchell, 1992], [Mitchell & HoUand, 1994]o and IDav_, 1991], to name a few. A

comparison betwee_ GAs and PBIL has been made in [Baluja, 1994][Baluja & Caruana, 1995]. 1his paper
provides a large scale empirical comparison of these algorithms on problems commonly found i_ GA lit-

eratta_. Tluee variants o! MRSH, two variants of PBIL, and two GAs ate compared.

1.1 The Aims of this Paper

This study aims at answering only one question: "How effective are stand_d GAs for optimizing sta_c

functions, given a set number o[ hmction evaluations, in comparison to other, simpler, algorithms?" This

paper presents results on many large problems; the size and quantity, of the problems makes it hard to

give in-depth analysis of the results beyond the algorithums" relative performances. A more in-depth anal-

ysis of PBIL in comparison to standard GAs on a problem which was specifically designed to be easy for

the genetic algorithm (and easier to analyze than the problems explored here) is provided in [Baluja &

Caruana, 1995]. This pape_ does not attempt to address the problem of whether the clas._es of problems
investigated are suited for evolutionary or iterative function optimization. The focus of this paper is on

comparing seven static function optimization methods on problems which are representath, e of problems

commonly u_i as benchmarks in GA literature. No problem specific features have been added to any of

the algorithms; aU of the mechanisms used in the algorithms are "standard", and have been explored and

describeci in the applicable literature. The inclu._ion of problem specific mechanisms or more sophisti-
cated features has the potential to improve the performance of all the algorithms.

There are two major concerns with perfmming a purely" empirical comparison of these algoriffuns. The

first is that each of these algorithms is defined by control parameters, and it is prohibitive b, expensive, in

practice, ',o thoroughly explore the space of the parameters while providing breadth in the type_ and

sizes of problems attempted. The GA parameters used here were chosen to work well on many" of the

problems, but are not biased to any particular single problem. The parameters for the other algorithms

were chosen in the same manr_r. In addition, GAs were selected to perform well on the task of optimiza-
tion; the}, use me-,.hanisms, such as elitist sek-.ction and _aJing of fitness values, which are often used for

optimization of static functions [De Jong, 1992]. One of the goals of this study is to use the algorithms _cith

as little problem-specific knowledge as passible. The only problem-specific knowledge used in these, algo-

rithms is the number of bits in the solution encoding for each of the problems.

The second concern is that there are many criteria by which the effectiveness of each algorithm can be

measured. As mentioned before, there has recently been ._me controversy in the GA community as to
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whether GAs should be used for staticfunctionoptimization.One of the reasons for thiscontroversy is

thatGAs "attempt tomaximize the cumulative payoff ofa sequence of trials"[De Jong, 1992]ratherthan

attempt tofindthe singlebestoptimum. Therefore,using the "bestanswer found" criteriamay not be the

bestway tomeasure the GA's abilities.Nonetheless,a considerableamount ofefforthas been devoted to

making the GAs betterinfunctionopRmization. "Better"has usuallybeen measured in terms otthe best

solutionfound ina given number oftrials.The common forms ofmeasurement forfunctionoptimization

are on-lineand off-lineperformance. On-line rerformar_measures the average of allfunction evalua-

tionsup to and including the currentevaluations.Off-lineperformance isa running average of the best

performance values toa particulartime.Other measurements includethe bestsolutionfotmd in the f_a|

generation and the best solutionfound in any generation through the search.Although allthesemea-

sures reveal differentin._,ightsinto the search algorithm'sabiliW,the measure we are.interestedin this

study isthe bestsolutionever found through the search The issuesofcumulative payoff,on-lineand off-

lineperformance arenot addressed here.The effectivenessofeach algorithmisbased solelyupon thebeat

answer it can find in the given number of trials.

It is important to understand the scope of these results. All of the empirical comparisons are based upon

static function optimization problems. The performance of each method is judged solely by the best solu-

t'ion found during the run, given a pre-specified number of total evaluations. The_re/ .'e, the following

classes of problems am nat considered here, and should be explored in the future:

• Noise in the evaluation tunction [Gzefenstette & Fitzpatrick, 1988].

• A changing, or time-varying, evaluatioc, funct/on (over the period of a single run) |Cobb, i993].

• Problems in which queries have _. as__iatcd cos__t,which _m.ust _a.l.so_he.m..i._n..'._..i.zedICob..n._
1994].

• Problems in which multiple "solution vectors" must interact [[ angton, 1994].

- Problems in xchich curnu|ativ_ payoff L,_to _ "' ., f_..._a ,c_ ,,,-_,_0_ ,oomU/K: LIP_.Ji.IIilIL*_L [i AOU_Mt4_, l_l,JJ, L%.Jt)JJJCl_, ,LTU_J.

• Problems which use variable-length encodings, or encodings with change over time {Koza,
19921.

Although the above domains are not addressed here, the domain which isconcentrated upon covers a

wide vazietyofproblems. A largevortionofGA zese rch has been devoted tothe _'pes ofproblems ana-

lyticalinthispaper.The fieldofOperations Research isanothersource ofmany similarproblems.

The next section descr/bes the simp,'est algorithm tested, multiple-restart stochastic hillclimbing. This _q_c-

tion ir followed by descriptions of genetic algorithms, in section 3, and population-based incremerlta]

learning in section4.I_ section 5, the problems attempted and the resulL_ obtained are described togethc, r.

.Section 6 summarizes the emph--icai results. Section 7 concludes the report and suggests some areas for
future studies.
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2. MULTIPLE-RESTART STOCHASTIC HILLCLIMBING

Multiple-restart stochastic hillcl/mb/ng (MRSH) is a method of iterative optimization ot static functions. It

i_ the simplest of the optimization procedures explored in this paper. [3Nallenberg and ]uel.% 1994] have

compared one version of stochastic hiOclimbing with GAs on several problems commonly used for gaug-

i_.g genetic algorithms and genetic programming, and have achieved very promising results. The basic
stochastic hillclimbing algorithm is ._own in Figure 1.

_ II • i i

V (-- ram_o, nls gra_na¢ _haion v¢clor

Be_ _ evaluate 0.')

10op # ITF.RATIONS

N 4- _lip_Random_Bh (V)

d (e_aluale _._, > Be_}

V_--N

Flip Rmndom Bi! is a fu,s_ion which_orns a_l_,/on _ng v,_hc,ra) or_e_.itc,_ ,r_-, i_si_,_ _u,'k-_ st,-_,r,g.
i ,

Figure 1: The stochastic hilldimbing algorithm tor binary solution vectors. In the full algorithm,

the best vector along with its evaluation would be saved. In practice the algorithm could be

resta_ed in random locations many times - and the best _Aution ¢oer tound returned.

Three variants of this algorithm are explox_ in this pape_ The first variant, (MRSH-1) maintains a li_t ot

the position of the bit flips which were attempted without improvement. These bit flips are not attempted

again until a better solution is found. When a better solution is found, the list is emptied. If the list
becomes as large as the solution encoding, then no single bit flip can improve the solution. In this case,

MRSH-1 is restarted at a random location with an _npty list.

The second and thizd variants of stochastic hil]climbing, (MRSH-2 & MRSH-3), allow moves to _gion.,, of

higher and eaptal evaluation. This is different than MRSH-1, which only allows moves to regions ot higher

evaluation. MRSH-2 & 3 differ from each other in the number of evaluations allowed before restarting

search in a random location. In MRSH-2, the number of evaluations is dependent upon the length of the

encoded solution. MRSH-2 aliow_ lO'0ength of solution) evaluations without irr_roz,_nm! before search is
restarted. When a solution with a higher evaluation is found, the count is reset. MRSH-3 en/orces a much

stricter polio-, of restart; after the total number ol iterations is specified, restart is folced 5 times during
search, at eqaally spaced intervals.

3. GENETIC ALGORITHMS

Genetic algorithms (GAs) are biologically motivated adaptive systems which are bd.,,_d upon the pr/nci-

pies of natural selection and genetic recombination. A GA combines the principles of sun, ival of the fit-

test with a randomized information exchange. It has the abiti_' to recognize trends toward optimal
solutions, and to exploit such information by guiding the search toward them.

In the standard GA, candidate solutions are encoded as fixed length vectors. The initial group of potential
solutions is chosen randomly: These candidate solutions, ca]led "chromosomes," are. allowed to evolve

over a number of generations. At each generation, the fitn_ of each chromosome is calculated; this is a
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measure of how well the chromosome optimizes the objective function. The subsequent generation is cre-
ated through a process of selection, recombination, and mutation. The chromosomes are probabilistically
selected for recombination Imbed upon their fitness. General recombination (crossover) operators merge
the information contained within pairs of selected "parents" by placing random subsets of the informa-

ti,.m from both parents into their respective positions in a member of the subsequent generation.
Although the chromosomes with high fitness values have a higher probabilily of selection for recombina-

tion than those with low fitness values, they are not guaranteed to appear in the next generation. Due to
the random factors involved in producing "children" chromosomes, the children may or may aot, have
higher fimess values than their parents. Nevertheless, because of the _lecfive pressure applied through a
number of generations, the overall trend is towards higher fitness chromosomes. Mutations are used to
i_elp preserve diversity in the population. Mutations introduce random changes into the chromosomes. A
good overview of GAs can be found in [Goidberg, 1989] [De Jong, 1975].

Two variants ot the traditional genetic algorithm are tested in this study. The first, .qGA, has the following
parameters: Two-Point cm._scn,'er, with a Crossover Rate of 100%, Mutation Raie: 0.001, Population Size:
100, Elitist selection (the best chromosome in generation N replaces the worst chromosome in generation
N+I). The second GA used, termed GA-Scaie, uses the same parameters, with the following exceptions:
Uniform crossover with a crossover rate of 80%, and the fitness of the worst member in a generation is
subtracted from the illnesses of each member of the generation before the probabilities of selection are

determined. Both GAs are generational, and both empl_- the elitist selection mechanism described
above.

4. POPULATION-BASED INCREMENTAL L_ARNING

Population.based incremental learning (PBIL) is a combination of evolutionm 3, optimization and hill-
climbing [l_h_a, 1994]. The object of the algorithm is to create a real valued probabili .ty vector which,
when eaunpled, ix,veals high quality, solution vectors with high probability. For example; if a good solu-
tion to a problem can be encoded as a string of alternating 0's and l's, a suitable final probability, vector
would be 0.01, 0.99, 0.01, 0.99, etc.

Initially, the values of the probability vector are set to 0.5. Sampling from this vector yields random solu-
tion vectors because the probability, of generating a I or 0 is equal. As search progresses, the values in the
probability vector gradually shift to represent high evaluation solution vectors. This is accomplished as
foUows: A number of _lution vectors are generated based upon the probabilities specified in the probe-
biLity vector. The probability vector is pushed towards the generated solution vector(s) with the highest
evaluation. The distance the prohabilit V vector is pushed depends upon the learning rate parameter.
After the probability vector is updated, a new set of solution vectors is produced by sampling from the
updated probabili_, vector, and the cycle is continued. As the search progresses, entries in the probability
vector move away from their initial settings of 0.5 towards either 0.0 or 1.0. The probability v_tor can be
viewed as a proto_'pe vector for generating solution vectors which have high evaluations with respect to
the available knowledge of the search space.

This algor/thm is an extension of the Equilibrium C_aet/c Algorithm developed m conjunction with
[luels, 1993, 1994]. Another algoril_hm related to EGA/P811 is Bit-Based Simulated Crossover (BqC)

[Syswerda, 1992][Eshelman & Schaffer, 1993]. BSC regenerates the probability vector at each generation;
it also uses selection probabilities (as do standard GAs) to generate the probability vector. In contrast,

PBIL does not regenerate the probability vector at each generation, rather, the probabili_, vector L,;
updated through the search procedure. Additionally, PBIL does not use selection probabilities. Instead, it
updates the probabili_, vector using a few (in these experiments 1) of the best performing individuals.
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The manner in which the updates to the probabili_, vector occur is similar to the weight update rule in

supervised competitive learning networks, or the update rules used in Learning Vector Quantization

(LVQ) [Hertz., Krogh & Palmer, 1993]. Many of the heuristics u.r_ci to make learning more effective in

supervised competitive learning networks (or LVQ), or to increase the speed ot learning, can be u_d with

the PBIL algorithm. ]'his relationship is discussed in greater detail in [Baluja, 19_4].

4.1 FBIL's Relation to Gen_d¢ Algodt,hms

One k_" feature of the early portions of genetic optimization is the parallelism in the _arch; many diverse

points are represented in the population of earl), generations. As the search progresses, the population of

the GA tends to converge around a good solution vector in the function space (the respective bit pogitions
in the majority, of the solution strings converge to the ._ame value). PBIL attempts to create a probability

vector that is a prototype for high evaluafioea vectors for the kmction space being exp!o.red. As search

progresses m PBIL, the values in the probability vector move away from 0.5, towards eider 0.0 or 1.0.

Analogously to genetic search, PBIL converges from initial diversi_, to a single point where the probabil-

ities are dose to either 0.0 or 1.0. At this point, there is a high degree of similarity in the _ors generated.

Because PBIL uses a single probability vector, it may seem to have less expressive pov. r than a GA using

a fullpopulation that can represent a large number of points simultaneoq_ly. For example, in Figure 2, ",he
vector representations tot populations #I and #2 are the same although the members of the two popula-
ti.ons are quite _t. This alTpears to be a tundamental limitation of PBIL; a GA would not treat these

two populations the same. A traditiarhal single population CA, however, would not be able to maintain

either of these pop_ations. Because of sampl/ng errors, the popidation will converge to one point; it v,%l]

not be able to maintain multiple di_anilar points. This phenomenon is summarized below:

"... the theorem [FurMamental Theorem of Genetic Algorithms [Goldberg, 1989]],

assumes an infinitely large populalion size. In a finite size population, even when there is

no selective advantage for either of two competing alternatives.., the population will

converge to one altg_mative or the other in finite time ODe long, 1975; [Goldberg & Seg-

nest, 1987]). This problem of finite populatiocts L,;so/mportant that geneticists have given

*t a special name, genetic drift. Stochastic errors tend to accumulate, ultimately causing

the population to converg_ to one alternative or anoth_" [Goldberg & Richardson, 1987].

Similarly, PBIL will converge to a probability vector that represents one of the txvo solut/ons in each of the

populations in Figure 2; the probability vector can only represent one of the dissimilar points.

In addition to moving the prototype vector towards the highest evaluation vector, the protob, pe vector

can also be moved away/tom the lowest evaluation vector generated in each generation. However, as the

prototype vector becomes fixed towards either 0.0 or 1.0 for each bit position, the hamming distance

between the best and worst generated vectors will diminish. If the hamming distance between the best

and wors_ vector is small, moving away from the worst vector is counter-productive, because it aL,.o

moves away from the best vector in many of the bit positions. Instead, the probability vector can be

moved away from the values in the worst vector which d.iller fzom those in the respective positions 04 the
best vector. The full algorithm is shown in Figure 3.

In this study, two variants of the algorithm shown in Figure 3 are used. The first, PBIL, uses the following

parameters: Mutation ProbabiStv: 0.02,Mutation Shift: 0.05, l_eamu g Raw: 0.1, and Negative Learning
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Pop_afion _ Populatmn#2
001i 1010
i100 0101
1100 1010
0011 0101

Representation Representation
0.5,0._0.5,0.5 0.50.50.50.5

Figure 2: The probabili_, representation of 2 small populations o(4-bit solution
vectors; populaUon size is 4. Nolice that the representations for both populations
are the same, although the solution vectors represented are entirely different.

Rate: 0.075. The second algorithm, the PFIL/EGA algorithm, uses the same pazameters with the Negative
Learning Rate set to 0.0.

5. AN EMPIRICAL COMPARISON

Inthissection,thealgorithms describedprexdoush"areappliedtosixclassesofproblems:TravelingSales-

man, jobshopscheduling,knapsack,bin packing,neuralnetwork weightoptimization,and numerical
functRm optimization. The results obtained in this study, should not be considered to be state-of-the-art.

The problem encodipgs were chosen to be easily reproduc_le, and to allow easy, and fair comparison
with other studies Alternate encodings may, yield superior _,sult_ In addition, no problem-specific
information was used for any of the algorithms. In the cases in which prcbicm-specific information is
available, it may be able to help all of the _arch algorithms lnt-_mted in this study.

IntheimmblemspR-a_md inthispaper,allof_ variableswere encoded eitherwithGray-codeorstan-
dardbase-2 r_tation, as indicated with the problem. The variables were represented in no_t-over-
lapping, contigmms positions within the chromosome (solution encoding). The n_sults reported are the
best evaluations found tlu oush the search of each algorithm, averaged over at least 20 independent runs
per algorithm per pmblen:. In the problems in which random values alreassigned to problem attributes
(such as the location of cities in the Traveling Salesman Problems or sizes of element_ in the bin packing
and knapsack problems), file values are consistent across all algorithms attempted and across all 20 trials
for each algorithm.

All algorithms were atUowed an equal number ot evaluations per run (200,000). In, each run, ,*,heGA and
PBIL algorithms both were allowed 2000 generations, with 100 function evaluations per genexation. In
each run, the MRSIt algorithms were restarted in random locations as man)" times as needed until
200,000 evaluations were performed. The best answer ever tound in the 200,000 evaluations was returned

asthebestanswer found intherun.The finalresultsfortheproblems aregivenm tables_oUowing the

descriptionoftheproblems.The bestresultsarehighlighted.

S.1lhveling Salesman Problems (IS?}

The TSP problem is probably the most famous of the NP-complete problems. Given N cities, the object is
to find a minimum length tour which visits each cit_" exactly once. The encoding used in this study
requires a bit string of size NlogzN bits. Each cit3, is assigned a substring o! length log2N which is inter-
preted as an integer. The city with the lowest integer value comes first in the tour, the city. with the ._econd
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"" ""tnit_ ProbabH_ Vector• "
to¢i :=1 to LENGTH do P[i_= 0.5;

while (MOTte,minabonconditmn}
..... GenerateSan'W_ .....

for i :.1 to SAMPLESdo
sample vec'tors_;]:,,gene,,ate_sample_vector_a:corcIIngto_probabilit3e$,_P);
evalLmtions[i]:=Eva_JateSc,l;lion(=arr;ko[_]);

best v_+,_ :. rmd_vector_with_best_.evatu_o_(samlde_vectors.evak,_lions);
wo_t_vecto, .= find_vectorwith worst eva_uaSon($a_pie vectors,eva_uations);

..... Up.re Probebi'qy Vectortowardsbestso/_J_ ""
_.o¢i :=1 to LENGTHOc

Pt'; :=I_!" O.0- LR)+ bestvec_,q "_..R,,_;

--" Update,P:',-_t,._, Ar._y fromWo_s/S,_, _,"_"_
for i :=1 to LENGTHdo

if IbeSt_VeCto_ = worst vecmqi])
Ptl] :. P[i]- (1.(3-NEGATIVE_LR)+ best.vc¢i0_l]" (_,_GAT;VE_LRi;

"'_'MuBteProb_Vec_r .....
tort :=1to _TI.I ¢1o

il (ra_lom (C.I) < MUT_R=IO(BABII,,JTY)_n

if (rardm_ (0,1) • 0.5) tramrnutate_dkr_cn := 1

eve mulate_direction:=O:

P[i] :- _" (1.0 - MUT S_HII=13+ mu_te_direction"(MUT_SHIFT);

l i i ii i

IL_;mt_ co_$1'Mcrs (Yallual}scdia =l=bStud)):
SAMPLES:tlhe_ ot vectorsgene_aledbeforeupdateolthe_oba_ty vector(100).

LR: thekwni_ mie,howkBt to exploitthe seerchpedom_ (0.1)

NEGATIVE LR: I_ negaliveleam_j rate.howmuchtolearn tom negalWeexa,nples (PBL = 0.075, EGA- 0 0).

LENGTH: _e numbero_bits ina generatedvecto_(problemspecific).

IMUT__ILITY: tqhep_belblft'y1ora mt/*.a_on_ in _lCtl positron(0.02).

MUT +SHIFT:the amou_ a nlutat,or_=_ers_e va:ue_n_ bit_'vo5_o_..(0.05).

I:igu_ :_:The PBII/FGA algori_m for a bm__.O, _]ph.._.h,_!.

lowe=,t comes second, etc./n _ cam of ties, the city whose substring comes first in lhe bit string comes
first in the tom. This encoding was taken from [Syswerda, 1992]. To minimize the tour length, the evalua-

tion used is 1.0/Tour_Lengtlk Four problems were attempted: the first contained 128 cities, the second

contained 200 cities, and the third and fourth contained 255 cities. The integer encoding of the fourth

problem used Gray-code, while the rest used standard bmat 3. code. The results for these four problems

are shown in Table L The distances between citie=, were generated randomly for each problem.
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52 Jobshop Schedu!ing Problems

Rectmtly, genetic algorithms have been apphed to the j(l_shop _hedu',,klg preblem bt_au_e it ts dLilacuR

for conventional search t,a_d method-- to iind near-optima1 _olution_- in a rea_,onable amount (,f time

[Fang et aL. 1993]. A good de',c_ption of the jobshop problem is gw_m by Fang:

"In the general job shop pr_61em, the_ are i jobs and m machines: each job comprise-; a

_et el tasks which must each be done on a differet_t machine for different specified pro-
ct.,ssing times, in a given job-dependent order.... A legal Khedule is a _:hedule of job

sequences on end,, n_dtit_ such that each iob'., ta_k order i._ preserved, a machine is not

pro_es_ing two different jobs at once. a_d diiferent ta_ks of the _,'mae job are not simulta-

neously being pmce<-.ed on different machines. The problem is to mm_,ize tim total
elapsed tm_e between tl_e begi_mmg of _e first ta_k and the completion of t_a last tagk

(the makespan )" [Fang ct aL, 1993 !.

[he prtl',lem is encoded in two ways. The firgt encoding is derived from lFang c: .% 1_:3!. 'lhe exact

encndwg can be mtmd in [Fang et eL. lq93] oa_d [Balula. 1994] "lhe ditfereaxe bet_eet: th_s encoding and

that u.sed by Fang is ti_at m thL- _tud,x; bit _-tring_ ssere used to encode the integers (in standard binary

encoding) m the range of 1..J. F,_g used chunk.,- which are atomic for the GA. Aithoug_ the encoding.

u_-,ed here makes the problem difficult for the_ optin,Azatioa tedmique_-, it i_ u_ed to Frov_de resuIt_
which are comparable Io olher aigoritlun:. A2, tl,_¢ maXespam i_ to be minimi/ed, the eva}t:atton of t'ho

potemial solution i_ (!.0./mak_pani. h_o _,tmndard te_t problem,, are .attempted, a 1(! job, 1O macha_

probienl and a 20-job, .C-machine prdrqeva. A do_crlption of the problems can be found u" !Muth &
Thompson, I°m3_. The result_- are shown m table li.

Table !I: Jobshop ._cheduling - Minimum Makes

/o}_h,.plOtl- ;"',p _ !0._;_ : ' ,'.,

.... . [

_an - Using First Encoding.

IZ(;A I PBll.

",'M.3 '" i "t-" l

,_,,I _, , 12C_ _; I.%.J _21_._

The _-cr_nd encoclb:g w se_.i!ar to the encoding used :n the lra:e!i::g balesm,m l'r_qe.'n. _t'.,.e' d:a::'-
back of thi_- encoding t: tt It u._e: IltoP¢ blt_ than the Fre_ iou_- one. Nonetheless, cmlviricaily, it revea[eC,

Unproved re__ults. Each j(o L- assigned bl entrtcs of dze I,_g:(J*M! bit< Th( total length of the receding is
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I*M'I_,g,(J*M). Th,_refore. each of the_e problem _. ,,: encoded in a 700 bit solution vector. 1he ".'gue o! e._ch

entry ,Cot length log_,(J'M)) determine_ the erder an w'hlch the jobs are .ocheduled. "Ihe it_b whica contai:_.-
!he smallest ca]tied entry is >cheduled fir_-t, etc. lhe order in which the machin,_x are ;elected to: each iob

det_pd,; upon the ordering rc-qum-d by th,- problem spec_f'-cat:on _,e results are shown m labh.. 111. I_/ith

thi_ encoding: six oul of the seven algorithm.-- perform better than, or at ;.east as well a_, the .'trot jobd,_o_
e,:codmg pre._ented (the pcrfer.'r.ec.ce ef MRSH-! does not im?r,_',e w:th tN g emcod i._g I

1Cable 111: Jobshop S¢lg, dul/ng - ),linin,um .Makes pan - [sing Second Encoding

!.-,bshcp 21_x
eRand.:_mh" gene:'.ateal

, , i .MRq]t I MRSH2 i MF, S1131 ROBI.EM

k,l:_hep 10xl,_ if,C;9.,- i '._;_.2 _,7fl.2 'k- ;-'.

i k4"6hep 2[t_ '" " 121".-_ 11
1

,, - , _-,: - c/.5 (],,fi..l._ If,31 2 .....:"

L,

EGA .rmIL I.JAL

Gt_' o-

1_82.0

5GA

.m7.i

] GA-

i _'ale.%1t

i_i-t 2 i lc,tl3.i i
1 !

5.3 Knapsack Problem

In the knapsack probh:m, the-re i,; a single bin oi limited capacity, ..and M elements of vao,mg sizes and

values. The prtxhlem is io select the elements whkh will yield the greatest .-ummed vaIue without exceed-

mg the capacity ot th,, bin. The ex aluation of the quali_ el the solution is judged in Ixvo wav_: If the solu-

tion _-clects too many element;, such that tl'w gummed size of the e!ements is too large, the solution is

judged by how much it exceeds the capacity of the bm - the tess it exceeds the rapacity, the better the solu-
tion. if the stm_ ot the element ..-ize, is withLq the capacity of the bin, the sum of the vaiueg el the seh_'ted

elements is used a.-_tbe evaluation. To engure that the .q_lution._ which oxerfi]l the bin are not compel.bye
:dth thoc, e which do not, their evMuations am multiplied by a ._mall _:un.qm_L /hi_- make_ tee m_alid

soiution_ competitive only _vhel_ +.._ere are r.o sMution-, m the popuiation which are valid. The evaiua-
tk, n_ are de..-,-ribed below.

_,u-fox I _ ,,:_ - _X ,,:,
aU.Eiem_ nts s__c_,,'dEb,,,: .._;ts

if _ize is grealer, lha_ ..."p"ci,.,,:.... ...; ,..,,_""
:', _i?e :_ le_ lh3n o1

equal k, capaci:} of bin

-I'he weights m:d value_- _or e,ttl_ problem were random.:) gcp.esated. In t2_,.,!i,.:t two prt,blem:, h3x !nK "_12
•u_d 2000 elemenb re_-pect_xelv, a u:uque elemer, t i, rcprc,,entcd by each b:.t. l,Vnen a b_t ig set to 1, the co--

responding clement is included. In the third and fourth problems, _hew are 10t, cmd 12d ,mique elements,

respectively. However, 'here are 8 ,-rod 32 copies o[ caci_ eie_,_nt: d',e -x_unl.,er of element-_ t,I earl: t)Fe

w]uc..h are/J_cluded ix] the .-ulation i_ _tetc:mmcd b) interF._tmg a bit -_t_mg, length 3 (log2S } bit> mid
(iog2321 bits, into decimal, respective!y The msutts art" given Ln Table IV. Note that the SC, A a]g,_nthrn

wa_ unable to find vahd _oh_tior_, in the _ecavd and ¢c_urth pr,'_hlem_.
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"[able IV:

i • [ ..... _ .........

Kzlai Cl_,-I..:q. q _j [ _7.; ; .4._ _'2;7

K:_,.:,,l_}rlv:_:..,_,p)t I 14,:..; IM_ !_I I

• bh,,q,',l 2,1 t-le:n , "_2,p} i g-IS." S"I I t-:O 0

Knapsack Problem - Average of Best Valme._

FGA PRIL

2c. :,,= 4 2q2,3 4

._.'.

44 3

GA-_'ale

: 723

1)=2

P

5.4 Bin Packing

In the blx packing problem, there are N bir,sot varying calvacitSeq and M element_ of varying size_. TEe

problem is to pack the bins w)th e!enle_t_ as tightly as po;_ible, wi.q_oitl exceeding the maximum capac-
ity of any bin. In the problems attempted here, me erro_ ks measuIed by:

N

ERROR = _ CAP i ASSIGNED. 1

CAt-' i i_- _u _.apacity ot tin i

ASSIGX'ED, i, the total size of the ¢lemeP, t_ m bin

The ._olution is encoded in a b,.t string of length M " '.,og:N. Each element to he packed i_ a_,,:gned a

sequential substring of length log?N whose valtle indicates the bm m which the element is placed. In

order to minimize the ERROR, the evaluation of the potential _,_olttt.ioni_ 1JJ/ERIiOR.

Four bin packing problems of variants sizes were tested: 32 bin.% 128 elements; 10 bins, 12_ elements: 4

bi,as, 256 element_; _d 2 bin_-, 512 element_ Alt ot the problen_ generatt_l were guaranteed to ha_e a
solution with 0.0 error. The results are -how_ belera; iv, Table V.

Table V: Bin Packing Problems - _Miaimum Emtr

PROBI.LM _MR._H1 MR_SH2 MRSH3

3m '32 I'.in-.;2g rle:r;.'. ¢: ,'_ . ,.:,S ,_.._?
.............. 4 - ; - .

Bz"t]6bin,.12_cterrC ,. 44 _ !0": i ,,.,. _ 1¢? _._ , I_, :

i 2 xiO'" ' .._ xK _ ! --.: _,1: "'
, gm:lt.,ms 236etcm.t _ 24 10"" J 1
' B::; '12b:ns. 312 clem ) !i _ I 24 _ _,.... _ ?.5, I,.:"

EGA I'BIL

'4-* , .42
- +

_."'_,|0? ! "-_ t':;

-,iv, !--;Lri

4.,, ,_ i(; "_ i _'f _ 1'-''_

r )

-_;A i GA-_ale '
' i

t.C. _, :8"

_.S Evolving Weights for an Artificial Neural ,,_-,,,,.,,,,'_'-_..... " ,.-_,,.,,'• "'_

Recentl}; evolutionary algorithms have been u_,d Ic) evMve the weight_ el arlfliciai neural nel_orks. Ea
the experiments reported here, the _ eights ot h,, o _'nal} ureddu _ed network architectarcs _ ere evolved.

In the first tt.'_t. _e obiect of the neural ra:twozk _ a._ to ider, tit) the parity of 7 '-"aput,. n.,t. haput.-, were

either 0 (repre_entcxt by -0.5) or ! (.-_pre-ented by ,3.-_). If the i-.arit,," tva_ I, the target output i< 0.5; if the

parity was IL the target output is 4!.5. "lhe evaiuat,on was the ._um of :-quares error on the 128 la'aw_g
examples. A bias iuput (a tltatt who.m l_p'at i.- set It, !.0) was a!s_) u-_d; fl'hs has ct)n_ection-., to the laidd_n

and the output units [Hertz, Krogh & l'axneL 19931. I.he net_vork architecture con-ibtect el 8 inl.,ut unite
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(L-ac]udmg bias)• 5 hidden unit_, a,3d I ot,tFut unlt. The ,let',,'ork was iullv cornier.ted between _equential

_avers. There were a total of 46 co_u_txtioils iv. the _et,_ urk. the values ¢,f the weight_ wow rcstric:ed to the

range of -10.0 to +lO.0. All hidden and outpl:t uv.i,'q ,a_ed a .,,igmo,d activalion fi_nc_ion. Weights wer_ rel._-

re._er,ted _ ::'marx" and gray code. a_d were assigned S non-. _erla_pLng bits u_ t!._, .-o]_ition _trmg

Figure 4: Net'., ork
Architecture.

"i:aii:abl_e Wc;gh;_ i-'_6_, - Oc:F,: l".;i:_
,_'2 _..

" " " ..... " _" HMdc,_ I. _:it._

/ ..-"_,_..'-._--" --.-.: - .,- ..... ,

Bia_ [ ",'nil

In the eecond two tests, eight real valaea inputs were used. The [_r.-,ttwo inFut_ represent the coordLnak,_

of a point within a square with ,:pper left comer {UI_C) of _-!.0. i.0) and lower right comer (I RC) r,t ,i.0,

- I.O.L ]'he ta_,k w-:g to determine wh,_her lhe point fel; inlo ,_ ._luare region be,'ween ULC(-tI.,__, O,,"SL and

LRC (0.75,-0.75_ and outside a smaller square wilh ULC I.-0.35: t2,35), and I.R(. _0.35,-Lk35b A diagram ot
this is _.hown i.x Figure 5. 5 inputs contained random noi_ in the region [-i:- !]. This no_._c wa_ deter-

mined in the bega_ing ot the run, ar,d rcmaincd the game, in each training example, Ihroughoal the _tin.
The last input was a bi,_ unit. Ia_ total, the network had _ inputs (including _'_as), 5 hidden units, a_d 1

outpul, this _realed 46 _.onne,:tlon._. Ft,_ training, 1L_0 uniformly d'.'_tr_.buted example_ were u_d. The

_me repre:,e:Ration and ._aling of ;'.'e_ghts wa_ x:sed ag in the l_rev,oug problem. In _.he._¢ two rroblems,
weights were reprc_nted a_ b_aary and Gray cc_e, _esF_ecLvely. |he re_alt._ arc ._,ov,_ _,a_ Fable VI.

0.8 i '

06 ,

i'igure 5: liah_mg bxan_p_e_ h>r th,.,

._NN Square Probk!n_..

0.4

0.2

0i

-C.2

.0_. '

-C6

-0 8 "

-1 -

-I -08 -06 -04 -02 0 02 0.4 0£ ,9.8
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T_ble

...... I ..... r

• PROBI FM I .MRqH; 1

ANN I'ARITY 7(binary) i i6.1 ,

._
A1N,_ PARII"_ 7::Gr:v} _ 13.7

VI: A NN VCeight Optimizalion - S_m of Squares Error.

-',N_._..qQUARE I_mar)g _: i-t.1
T .....

ANN .._L;ARE _'Cr_)) i 8 4 '

,MRbH2 MR>H3

i_! _ -

::5.1 1(,.4
i.

2t.3 :17.5

7. q , 9.3

E{;A

!

'* PBII

l
l

12_ , 112
t

',> !_.2
L_

ll.t- !f, 9

_7 i b.3

t; .X-
q_,.\

" - _3.0

5.6 Numerical Function Optimization

hi tiff: _ctkm, the seven algo_t2"m:s arc com_'arcd o_ :htce mimer:c,", ,:'_p_i,r, izal;o.'-t }_a)L'iem.- h_ U'e lir-:

and second problem_, thc variable_ m the firs| portion._ o,' k_:e ._olu:_en .,,trklb; h_, e d l:_rge mSiuer, ce on the

quality of fl_e test o[ ihe stfluhcnl; smaU dlmige.- in their _aJue: Lan cau.-v I;,rgc c_anf,(,,, _r_ *.be ev/fi_}a:io_.

Cd lhe _)lutiun. In Lhe tb.ixd probJem, each variaDl_ can i'm set mdel')_ndentl): Fa_-h variable. -.. wa_ :_p_.

s_-_nted u_-mg 9 bits, and _as _aled uniformly i_lo ',he raage ±2 _'_. l'o a_eid ,_ divi._:on by zero err(,:, a

small constant. C (---O.O0001L was added to the dent, minator t,f ea_ tradition. Fach problem _as h'_ted

with lahe variables rep_'esented in slandard b_._arv and Gray cc_'le Resulls arc. showe. |:t ]abh: VII. lhe

maximi;,ation rune!ions are:

?1 _ _i "_ #" tl

• , , _ - 2 ..|[_(l: '. i.e - .__. - '':

i ,) _:)

i' -e , I

"7, - _ f

PROBI_FM ! RIR.. -H,_ '! MRSH2

I i :_hnaryl. _xl_i'_ !! 1 (')4 ' 2.01

I:1 :Gra_ {'._]÷:,xb i_l t

t 2 ,B'nary) ixl,Z,)

, 1:2'C.r_y C_.t_-: _,i,30>

F3 IBmar_; ;x IOP',

' F3 ICrav (g_le} (xl(_',:;

i
i MR: _H:'_ 1 kGA

: 6.07 I i.a3

;_ 1.21 i _ 1_q ! ;17

_ 3.,3_ ' 3._ 2.a.l
)

1- !

li
1 . L.

2._

1-t.57

331.60

I'BIL

2.62

4.4i)

5.61

10.43

St ;.X

i .q2

3..'3S

._.64

v.171

(;A-

1.72

I.Tg

4.(').'_

1.... ('

_6 77 2_',35 .....
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6. SUMMARY OF EMPIRICAL RESULTS

.Miu,,v re.-.',flts hi_'te been pre-_,lted in the pr+.viou< section. This pa}',el has cono-.ntrated on breadth; a
!n."_.le mtmber of problems were atten',.qed w:th .-ex ent, ptimiz,_tlon neuri.stic__. It sl'_o'ald be noted that

because a_i of tl',e al_orithmg have tunable paramt:ter-;, it ic. p_'_g;ible that difierc,nt _'t_ings n_.ay yield dii-
., ,, t_: reqcltg. Addiliollal mec!',amsms, white take adval:tage of preblem sl-'e_tfi'- .:_fu."mation, may ai.-,.,

:reprove :he pe:fo:mance ot cad: ot tqe.-e m_thed.-. N_,nethele.-._. b_ ._e',ectm,z a v,trietv o: pro>tew.s and

t.':-_,blem >i/e> to compare, all e,f ',_w algorithms d_ouid <how their ;trcngth< and we,:k:_c, sst, s m some p(,r
tion of the lest set.

The relative rank_ of the algorithms on all of eh{. e:-oblem- ate shov, n m T;,b!e VII; 'dl;__table rm_._s the

algorithw_ with re.',pcct *,t,the a',erdge b_.-t r :_-ult.- p:oduced over a'.l runs. it ;ht,u_d br, n,',!cd that wit'

onh' 20 run_ per algorithm, not ,all of the difference_ are ¢t,_.ll_twaIi,¢ _gn!f:c._nl. More details on the d:flet

enti,'d.¢ between each algordi_m's 10eriormalice were pxe-.ent_d ia, _ctiu;; .5. In term:, ot the lmai >Ollltlt}ll.-.

iotmd, the PBIL algorithm worked the be;t overall, iollowed by thr. F(;A algorithm. In tl_e majori.'.y of

Frc61ems attempted here (Z-q out of 27), learnmg ;rein negative examp!es m_proved the qualit7 of the

final solutiorts/ound IPBIL pcrtorated better thaa LGA). Only m *we ot _.¢ i..r,_blEm.', did the negative

learning hurt the perlormar, ce oi the PBIL algorithm {EGA performed getter than P,_it _.

In terms of clock speed, tim MRSH algorlti+m.,, wor.,Ed +,he _+te.-t. However, it ILac tm_.e/or eath chromt>-

.-ome/solution __tring'_ evaluation is much larger t.l--,'mthe time for the algorithm% procedures, +hL bene-
fit diminishes. Moves to equal region_ (rathe r than only strictly better _egionsl had n:: xed re._uit+ t, ve¢_l.

Nonetheless, in :veral problems. +uch a.-. the iob_-hop dx+th encoding-,_ and TSP pn bJt'lms, the moves re

equal region._ improved perfon_nau'_.-e. In other problems __ts, not explored here, it was ai_-.t, lotmd tiaat
move+ to regio,as of Equal evalaatio:_ ++ere important for got_l performance [Juels & Wattenberg, 1"}911.

MI_SH did well tm the largest "I'SP examined: it wa+ abk to find a _hortc.r to:lr than the other algorithm<

(when encoded in binary and Grav Code). _%milarl,_; in F3, .MRqH +va_ able to take !i+e largest adva_p.l,_ge
of the gray code.

Although the _tandard get, eric ,_!gorithm (.qC";A_performed on_v a_ wel_ as Ihe MRSH ,-3gorii_m,% _he
GA-__cale algorithm pedormed _qiglatly belier A summary of Ihe resaRs ca.e, l:_, ram.., mlable \:1!l. l-hJ_

tab!e h,_ the f_llo_.mg colunm_:

J. In the cases m u.h2d_ PBIL did better tha_: GA-_aI6, lJ_ii col_u'r:n gives 12_cgei:/./a{i,;il in _hL¢tt

PBIL was able, on averagE, to ._urpa.-.', tt_.+.b,jgJle..-t el aluatu,s: (;A-ScaJc found, on ax i-rage.. "n it_

20 runs. For c×ample, in the "ir-_t problem: TSP-128 Ibir.arv |, the hight.gt cvah:atior, of lhe GA

was 2275..S {Table I), by generagon 210, PBIL was able to sa_:pas, tia_s evaluation.

Fhe _ame numt_er_ are given tot GA-_x:ale. For example, on tee ke_aps.ack01 .'.2t3i¥_elem, i c(_py)

problem, the-highoat evaluation PB|I wa_ able-to obtai_ _ ,_s 403.7, in gcner,_.tlon 15,35 GA-
averac,,, _",'*o to _Ul'paSS it..C,cale was. on _ --o ......

Ct,!l.,,m._ {3J/4) ,m,/'5.' 0f ,'q,/;/e VIIi :-,,+;p.,r, taw :;:r+._ ,'.;+_'cr:',,:::t,vc: :,,"::;_,','rith;+;-:

3. _Marks the problems on which any iorm o! .X,II,L_H_ e.._a!qe to do I-+,th,_ '.,l'an ( ,\-._ ale.

t. Mark¢ when any {orm of MRqt | did bct|er tkan PB!I..
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5. Marks the problemq in :vhicg CA-7%"_]c oat:,,erformecl PBII.

(-i. I.nciicates +at, plL,bh.,nt> or. ++b.iuh m,.:x e: tt_ et:u._ ret:itm.,- he!ped the re"f+,..-rn.mc," ,ff ,XlRql 1.

I hc.-:e itre the problem, m which eiti:er MRSt t-2 e,r Y+IR¢,II-3 did b+t'.er thai_ MRSt+-I.

"7,
, . Mark.-. ".he l.,rob!.'em._ in wkicla ',,:.+rni::,: fr+,m +,e;,am'e ,-xample._ he;pod +hc. PI lt... E(,,+ algo-

rithm. These are ',he pr_,b_.e_+s m :vh-d't PBIL periur,ced bette: t]l/a', EGA.

,q, . lv.dicale_ the pmblem_, in v,hch GA-Scale did bert.or th.--m _..qA The impr_+vemenl may. be dt,e

to the scaling el lib'tess values and.,'o: the d:ite:ent _.rv,._,_er t,peraq.,r> {GA-.",,.ale: Um+orm,
_;A: T_o Point).

For the problems wlqdl were attemp,;eti _v'&, gra_ ea:c binar_ _.ode. /able IX provides a list ot which
aigorithm._ benefited fr.om using gray cc_e.

7. CONCLUSIONS

1lois pal._er tu._ p_esel_ted r_eults on man) problem_. Fr_,m the re.-uits reported in this paper, it i_ evident

that algorithms whidn are simpler than standard GA- can pcrf,m: comparably to t,A_. oe bolh smM1 and

large problems. Other studies have also sl_,o',vn this ."or vat:oas sets o1 problems [loci.-. & _'_,'attenberg,

1994][Milchell & F(,rr_t, 1_#921,etc. In studie_ _ulalyzing the per/orman_.e of GA> on particular problema,
thea,e results sugge--t that analyses should mc]ude compari_.ons not oek" to oilier GA _, but al,o l,,,+o!her
simpler methods oi optimization before a benefit is clai:r, ed m favor eI GAs+ "I>is stadv did not u,clude

techniques s_,ch as Simulated A.,-mealmg ot labu t_ea:ch, _ bdch __houid be kicladed ia the future+

It i, interesting to note that the I'BII algorithm, wl_ich doe_ not use the crossover operator, and redefme__

the role of the populahon ',o one _ch_ch is very differe.'.tt th._l :h_t of a GA, perform_- either better than _,r

comFarably to a GA on fl_,e mait,t_t_ oi the problem_,. PBIL ant, GAs bott', ,generate nc.w tr:als ba_d on

,tati_-tics from a populating, of pr_,,r trials, l'bo PBII algorithm cxpla_:tly maintains these statL_'.ics, _vhik
the CA implicit!y maml,_ms them in ils poiatdalio,1. "12.tc(;A ex!ra_.ts the _tdtl-_tit._ _'_' the _Ae_.tit,n and

crossover operators. More detailed com.pari,,ns _tv, ee.-. t.he__e t_ t, al_ori.¢.,ur.., col: be toned iz'l _.B._lu!,_:&
Caruana, 19051.

It _hould be not_.xt that tlae relatix e perior:nance of (;As ir _ompari._tm to PBIi. wE! improve a, th(_ popu-

lation size of the G.'\ increa_c.s IBal'aia & Car'aaea, 199._]. As the popu],ation size of the (;A increa_e_, the

GA will be abie to mamlam more ,:lissm-tilar points m ,Is populatmn, and wi'_,l therefore be able to u._

cro_over more effectively O1",_e _,tiier hand, in ;t._ current mwleraentation, the I'BIL atgont._m_ tml.-,+u_e

a few sokltion vect,_r._ for updating the probabi!ity vectr_r regardles_ of the poFulation _ize. Nonethek.s_,
the large po},ulatton size lteeded b_ n GA i__not ,dway__ Seaeib.:'e ['_.'ause of the need It, b-A_lce the z,,+m-

her ot generations required and the tota_ number oi evaluations po.,_ible. Howe_ er, even when the

resoc,'ee_ to u_ large population_ are +lvailable, a large ,amount c,f empmcal work I_a_, _bmvn that -_sing

;; .... sul_,lt, pannuctic populat_t,n Tl:e t_i_ltl-an "'parallel isle-_d-modeT" GA maybe mole e,e_:l_ th,m a .
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m,_del evolves mtdliple small poFulation in paraile!, with only a ,;n_all amount of :_h raction bet_een

._ubpopalatiuns. Tile paralhq _bpc_pulation model, in m,_v ca+s. has outperlormed the use of a ,ingk"

larg, e population; _e for example: [Daxidur c:. at. i9931[Gordoa & V_:hRiey. 1993jlBalui:l. lq0:qlW'nifley ,_

Starkweather. 1_._)0]. If tl--,__ parallel subp,z,p'.datior.s are used in,toad of ,_ _,;r.,_le lar_te popu'.ati_,l_, e,t_b.
st)bpopubttit>e. _.m: be mt)dek.d with individual prebabdity rectors, as m tl:,. P_IL aigonflun.

A GA with di/terent mevham:m-, -,uch as r.on-_tationarv mutation rates, local upti,mzata,,_ l,.eta.'l_tit_.

e.aralh:l ,.ubpopulationq, _p_cia;ized cros__over, or lar_er oper,.tmg alphabets, may perform bvttcr thor.

the GAs explored here. It shouid be acted, however, that alJ ot the._ mrx-hani:,m _, w-th the exception o'_
H._cia.'.ized cro,,.,-over operators, ,ran be zl_ed with PBIL with iew, .'.(any. meddlcali_ms.

Another direction to expiore m thtq fut_are i_ how thes,- aigorithm perform le:iih alternate _-,olution encod-
rags; in this study or.ly bin,_y encoding_ were ascd Although work has already been cor_ducted in tEL,,

/Lte._ with GA_ ta gv_ad introductior, to this can be found iv [Fshelman & _'ha f:er, !q'_2]!, how _ell will

PBIL or MR.qH perform with these alleraate encodmgs? Fmail). m :1_ _,tud_. optimization wa'; onh"

explored in static envixonments, l'uture re._eax_-h >ho,,lld ab,o _meludt, st,arch and ol_tima/at_op. :n dynamic

env,,xonments, or environments x_'bicb require n_,_xirniFali(,n oi cumHlal_,_e payoff. The ._daptz_ e nature

ot GAs may rev,'al ,_pmnou:_eed benefil m these mo:e complex domam_
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Table VIii: Comparison of Methods
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Table IX: Algorithms s_'hich benefited h_ ,sin_ Gra._ ('ode oser standard binar3, code.
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lh:mks arc exh,ndcx'l to llenrv R:,wley, Col_r:_d l'e,:hnan, l.'dd- C:_.:'-_:y._. a_d Kaa:i l'lag;t,_.d who _]! l'el?
pro,of-read diifcre:'t x'erHo:l_ ol :hi._ Faper arid pn)vidcd u.:ciu_ _ugge__hons and dt_<_assior.-. 'I i_e inwetu_
_u:d _<,t:ndations to_" thi,_ work came from fl:e co',laboration wi:h Ari lull:, at tke Univcrqtv ,_ Ca'itorma -
B,'rke:e:,.
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