An Empirical Comparison of Seven Iterative and
Evolutionary Function Optimization Heuristics
Shumeet Baluja

September 1, 1995
CMU-CS-95-193

o DT
School of Computer Science 3 S e
Carnegie Mellon University o LECT & -
Pittsburgh, Pennsylvania 15213 Lt [

e penney e a2 s s 1

baliuja@cs.cmu.edu w .
-
——— s-:fvnv PSSPV |
Abstract

This report is a repository for the results ootained from a large scale empirical ~cmariscn o1 “even itera-
tive and evolution-based optimization heuristics. Twenty-seven static optimiz:tioa probler .« -vanning
six sets of problem classes which are conmanly explored in genetic algorithm liter3.a/¢, ae examinea.
The problem sets include job-shop scheduling, traveling salesman knapsack. bmpagmc €21, netwol k.
wengnt txmnzabon and standard numerical optimization. Tise searck spaces in these pobjsm-« range
from 2%% 10 22040, The results indicate that using genetic algorithms for the optimization of st ti - fanctions
does not yield a benefit, in terms of the final answer obtained, over simpler opt\mv/abo “auristics.

Descriptions of the algorithins tested and the encodings of the problems are describes o detais tor repro-
ducibility.

Tnis work was started while trz aut'ior was supported by a National Science Foundatic Graduate Fel-
lowship. He is currently supparted by a graduate student fellowship from the National Aeror.autics and
Space Administration (NA%A), administered } oy the Lyndon B. Johnson Space Center. The views and con-
clusions contaired in this docun.ent aze those of the author and should not be irderpreted 2s re‘u‘eser’mg
the ofﬁcxal pohcxes either expre:sed - iniplied, of the National Science Foundation, NASA. ¢y the UUS.

1996 01/ F OHE

Tii 5704 0N SIATLMENG A

Kporvved for public release;
inisiribution Unlimited

Accesion For {

NTIS CRA&I g
OTIC 748
Unannounced
Justif.cation

L

By -
Dist:ibation

Bvaiiab, “y Coces

. Avail and }or
Dist Special

- 4|

Heuristic Static Function Optimization, Evolutionary Algorithms, Genetic Algorithms, Hillclimbing, Pop-
ulation-Based Incremental Léarning

page 3

1. INTRODUCTION

Genetic algorithms (GAs) and other evolutionary procedures are commonly used for static function opti-
mization. Although there has been growing evidence that methods such as GAs are, in general, not well
suited in this domain [De Jong, 1992}, a large amount of research has been devoted to improving their
effectiveness for function optimization. Hybrid mechanisms. ranging from alternate evolutionary meth-
ods to specialized operators and representations which can intelligently use problem specific informa-
tion, have achieved good results in many specific applications. Nonetheless, relatively few of these
techniques work well across a wide range of problems.

The aim of this paper is to compare two standard genetic algorithms with simpler methods of optimiza-
tion: multiple-restart stochastic hillclimbing (MRSH) and population-based incremental learning (PBIL).
Previous comparisons between forms of MRSH and GAs can be found in [Ackley, 1994}, [Juels & Watten-
berg, 1994], [Forrest & Mitchell, 1992], [Mitchell & Holland, 1994}, and [Davis, 1991], to name a few. A
comparison between GAs and PBIL has been made in [Bahsja, 1994](Baluja & Caruana, 1995). This paper
provides a large scale empirical comparison of these algorithms on problems commonly found in GA lit-
erature. Three variants of MRSH, two variants of PBIL, and two GAs are compared.

1.1 The Aims of this Paper

This study aims at answering only one question: “How effective are standard GAs for optimizing static
functions, given a set number of function evaluations, in comparison to other, simpler, algorithms?” This
paper presents results on many large problems; the size and quantity of the problems makes it hard to
give in-depth analysis of the results beyond the algorithmns’ relative performances. A more in-depth anal-
ysis of PBIL in comparison to standard GAs on a problem which was specifically designed to be easy for
the genetic algorithm (and easier to analyze than the problems explored here) is provided in [Baluja &
Caruana, 1995]. This paper does not attempt to address the problem of whether the classes of problems
investigated are suited for evolutionary or iterative function optimization. The focus of this paper is on
comparing seven static function optimization methods on problems which are representative of problems
commonly used as benchmarks in GA literature. No problem specific features have been added to any of
the algorithms; all of the mechanisms used in the algorithms are “standard”, and have been explored and
described in the applicable literature. The inclusion of problem specific mechanisms or more sophisti-
cated features has the potential to improve the performance of all the algorithms.

There are two major concerns with performing a purely empirical comparison of these algorithms. The
first is that each of these algorithms is defined by control parameters, and it is prohibitively expensive, in
practice, (0 thoroughly explore the space of the parameters while providing breadth in the types and
sizes of problems attempted. The GA parameters used here were chosen to work well on many of the
problems, but are not biased to any particular single problem. The parameters for the other algorithms
were chosen in the same manner. In addition, GAs were selected to perform well on the task of optimiza-
tion; they use mechanisms, such as elitist selection and scaling of fitness values, which are often used for
the optimization of static functions [De Jong, 1992). One of the goals of this study is to use the algorithms with
as little problem-specific knowledge as possible. The only problem-specific knowledge used in these algo-
rithms is the number of bits in the solution encoding for each of the problems.

The second concem is that there are many criteria by which the effectiveness of each algorithm can be
measured. As mentioned before, there has recently been some controversy in the GA community as to

page 4

whether GAs should be used for static function optimization. One of the reasons for this controversy is
that GAs “attempt to maximize the cumulative payoff of a sequence of trials” [De Jong, 1992 rather than
attempt to find the single best optimum. Therefore, using the “best answer found” criteria may not be the
best way to measure the GA's abilities. Nonetheless, a considerable amount of effort has been devoted to
making the GAs better in function optimization. “Better” has usually been measured in terms of the best
solution found in a given number of trials. The common forms of measurement for function optimization
are on-line and off-line performance. On-line performance measures the average of all function evalua-
tions up to and including the current evaluations. Off-line performance is a running average of the best
performance values to a particular time. Other measurements include the best solution found in the finai
generation and the best solution found in any generation through the search. Although all these mea-
sures reveal different insights into the search algorithm’s ability, the measure we are interested in this
study is the best solution ever found through the search. The issues of cumulative pavoff, on-line and off-
line performance are not addressed here. The effectiveness of each algorithm is based solely upon the best
answer it can find in the given number of trials.

It is important to understand the scope of these results. All of the empirical comparisons are based upon
static function optimization problems. The performance of each method is judged solely by the best solu-
tion found during the run, given a pre-specified number of total evaluations. There’ ve, the following
classes of problems are not considered here, and should be explored in the future:

¢ Noise in the evaluation function [Grefenstette & Fitzpatrick, 1988].
* Achanging, or time-varying, evaluation function (over the period of a single runj {Cobb, 1593

e Problems in which queries have an associated cost, which must aleo be minimized [Cobn,
1994].

¢ Problems in which multiple “solution vectors” must interact [[angton, 1994}

e Problems in which cumulative pﬁ'v'ﬁn istobe Apt‘ Tizcd ;H"x}aﬁd, 1975) I luG}b'ch }989}

* Problems which use variable-length encodings, or encodings with change over time {Koza,
1992].

Although the above domains are not addressed here, the domain which is concentrated upon covers a
wide variety of problems. A large portion of GA rese rch has been devoted to the types of problems ana-
lyzed in this paper. The field of Operations Research is another source of many similar problems.

The next section describes the simplest algorithm tested, multiple-restart stochastic hillclimbing. This sec-
tion ir followed by descriptions of genetic algorithms, in section 3, and population-based incremental
leaming in section 4. In section 5, the problems attempted and the results obtained are described togethcr.

Section 6 summarizes the empirical results. Section 7 concludes the report and suggests some areas for
future studics.

paze S

2. MULTIPLE-RESTART STOCHASTIC HILLCLIMBING

Multiple-restart stochastic hillclimbing (MRSH) is a method of iterative optimization of static functions. It
is the simplest of the optimization procedures explored in this paper. [Wattenberg and Juels, 1994] have
compared one version of stochastic hillclimbing with GAs on several problems commonly used for gaug-
ing genetic algorithms and genetic programming, and have achieved very promising results. The basic
stochastic hillclimbing algorithm is shown in Figure 1.

V ¢« randuinly generate solution vector
Best « evaluate (V)

loop # [TERATIONS
N « Flip_Random_Bi (V)
of (evaloate (N > Best)
Best + evaluateN)
VeN
Flip_Random_Bit is a funciion which reiums 2 solution string with only one bit changed from its input solutica string.

Figure 1: The stochastic hilldimbing algorithm for binary solution vectors. In the full algorithm,
the best vector along with its evaluation would be saved. In practice the algorithm could be
restarted in random locations many times - and the best solution ever found returmed.

Three variants of this algorithm are explored in this paper. The first variant, (MRSH-1) maintains a list of
the position of the bit flips which were attempted without improvement. These bit flips are not attempted
again until a better solution is found. When a better solution is found, the list is emptied. If the list
becomes as large as the solution encoding, then no single bit flip can improve the solution. In this case,
MRSH-1 is restarted at a random location with an empty list.

The second and third variants of stochastic hillclimbing, (MRSH-2 & MRSH-3), allow moves to regions of
higher and equal evaluation. This is different than MRSH-1, which only allows moves to regions of higher
evaluation. MRSH-2 & 3 differ from each other in the number of evaluations allowed before restarting
search in a random location. In MRSH-2, the number of evaluations is dependent upon the length of the
encoded solution. MRSH-2 allows 10°(length of solution) evaluations without intprovement before search is
restarted. When a solution with a higher evaluation is found, the count is reset. MRSH-3 enforces a much
stricter polic. of restart; after the total number of iterations is specified, restart is forced 5 times during
search, at equally spaced intervals.

3. GENETIC ALGORITHMS

Genetic algorithms (GAs) are biologically motivated adaptive systems which are based upon the princi-
ples of natural selection and genetic recombination. A GA combines the principles of survival of the fit-
test with a randomized information exchange. It has the abilitv to recognize trends toward optimal
solutions, and to exploit such information by guiding the search toward them.

In the standard GA, candidate solutions are encoded as fixed length vectors. The initial group of potential
solutions is chosen randomly. These candidate solutions, called “chromosomes,” are allowed to evolve
over a number of generations. At each generation, the fitness of each chromosome is calculated; this is a

page 6

measure of how well the chromosome optimizes the objective function. The subsequent generation is cre-
ated through a process of selection, recombination, and mutation. The chromosomes are probabilistically
selected for recombination based upon their fitness. General recombination {crossover) operators merge
the information contained within pairs of selected “parents” by placing random subsets of the informa-
tion from both parents into their respective positions in a member of the subsequent generation.
Although the chromosomes with high fitness values have a higher probability of selection for recombina-
tion than those with low fitness values, they are not guaranteed to appear in the next generation. Due to
the random factors involved in producing “children” chromosomes, the children may, or may not, have
higher fitness values than their parents. Nevertheless, because of the selective pressure applied through a
number of generations, the overall trend is towards higher fitness chromosomes. Mutations are used to
nelp preserve diversity in the population. Mutations introduce random changes into the chromesomes. A
gocd averview of GAs can be found in [Goldberg, 1989] [De Jong, 1975].

Two variants of the traditional genetic algorithm are tested in this study. The first, SGA, has the following
parameters: Two-Point crossover, with a Crossover Rate of 100%, Mutation Raie: 0.001, Population Size:
100, Elitist selection (the best chromosome in generation N replaces the worst chromosome in generation
N+1). The second GA used, termed GA-Scale, uses the same parameters, with the following exceptions:
Uniform crossover with a crossover rate of 80%, and the fitness of the worst member in a generation is
subtracted from the fitnesses of each member of the generation before the probabilities of selection are
determined. Both GAs are gencrational, and both emplov the elitist selection mechanism described
abave.

4. POPULATION-BASED INCREMENTAL LEARNING

Population-based incremental leaming (PBIL) is a combination of evolutionary optimization and hill-
climbing [Bz'uja, 1994]. The object of the algorithm is to create a real valued probability vector which,
when sampled, reveals high quality solution vectors with high probability. For example; if a good solu-
tion to a problem can be encoded as a string of alternating 0’s and 1's. a suitable final probability vector
would be 0.01, 0.99, 0.01, 0.99, etc.

Initially, the values of the probability vector are set to 0.5. Sampling from this vector vields random solu-
tion vectors because the probability of generating a 1 or 0is equal. As search progresses, the values in the
probability vector gradually shift io represent high evaluation solution vectors. This is accomplished as
follows: A number of solution vectors are generated based upon the probabilities specified in the proba-
bility vector. The probability vector is pushed towards the generated solution vector(s) with the highest
evaluation. The distance the probability vector is pushed depends upon the learning rate parameter.
After the probability vector is updated, a new set of solution vectors is produced by sampling from the
updated probability vector, and the cycle is continued. As the search progresses, entries in the probability
vector move away from their initial settings of 0.5 towards either 0.0 or 1.0. The probability vector can be
viewed as a prototype vector for generating solution vectors which have high evaluations with respect to
the available knowledge of the search space.

This algorithm is an extension of the Equilibrium Genetic Algorithm developed in conjunction with
Uuels, 1993, 1994}. Another algorithm related to FGA/PBIl is Bit-Based Simulated Crossover (BSC)
[Syswerda, 1992){Eshelman & Schaffer, 1993). BSC regenerates the probability vector at each generatian;
it also uses selection probabilities (as do standard GAs) to generate the probability vector. In contrast,
PBIL does not regenerate the probability vector at each generation, rather, the probability vector is
updated through the search procedure. Additionally, PBIL does not use selection probabilities. Instead, it
updates the probability vector using a few (in these experiments 1) of the best performing individuals.

page 7

The manner in which the updates to the probability vector occur is similar to the weight update rule in
supervised competitive learning networks, or the update rules used in Leaming Vector Quantization
(LVQ) [Hertz, Krogh & Palmer, 1993]. Many of the heuristics used to make learning more effective in
supervised competitive learning networks (or LVQ), or to increase the speed of learning, can be used with
the PBIL algorithm. This relationship is discussed in greater detail in {Baluja, 1954].

4.1 PBIL’s Relation to Genetic Algorithms

One key feature of the early portions of genetic optimization is the parallelism in the search; many diverse
points are represented in the population of early generations. As the search progresses, the population of
the GA tends to converge around a good solution vector in the function space (the respective bit positions
in the majority of the solution strings converge to the same value). PBIL attempts to create a probability
vector that is a prototype for high evaluation vectors for the function space being explered. As search
progresses in PBIL, the values in the probability vector move away from 0.5, towards either 0.0 or 1.0.
Analogously to genetic search, PBIL converges from initial diversity to a single point where the probabil-
ities are close to either 0.0 or 1.0. At this point, there is a high degree of similarity in the ctors generated.

Because PBIL uses a single probability vector, it may seem to have less expressive pov. rthan a GA using
a full popuiation that can represent a large number of points simultaneously. For example, in Figure 2, the
vector representations for populations #1 and #2 are the same although the members of the two popula-
tions are quite different. This appears to be a fundamental limitation of PBIL; a GA would not treat these
two populations the same. A traditional single population GA, however, would not be able to maintain
either of these populations. Because of sampling errors, the population will converge to one point; it will
not be able to maintain multiple dissimilar points. This phenomenon is summarized below:

“... the theorem [Fundamental Theorem of Genetic Algorithms [Goldberg, 1989]],
assumes an infinitely large population size. In a finite size population, even when there is
no selective advantage for either of two competing alternatives... the population will
converge to one alternative or the other in finite time (De Jong, 1975; [Goldberg & Seg-
rest, 1987]). This problem of finite populations is so important that geneticists have given
it a special name, genetic drift. Stochastic errors tend to accumulate, ultimately causing
the population to converge to one alternative or another” {Goldberg & Richardson, 1987].

Similarly, PBIL will converge to a probability vector that represents one of the two solutions in cach of the
populations in Figure 2; the probability vector can only represent one of the dissimilar points.

In addition to moving the prototype vector towards the highest evaluation vector, the prototype vector
can also be moved away from the lowest evaluation vector gencrated in cach generation. However, as the
prototype vector becomes fixed towards either 0.0 or 1.0 for cach bit position, the hamming distance
between the best and worst generated vectors will diminish. If the hamming distance between the best
and worst vector is small, moving away from the worst vector is counter-productive, because it also
moves away from the best vector in many of the bit positions. Instead, the probability vector can be
moved away from the values in the worst vector which differ from those in the respective positions of the
best vector. The full algorithm is shown in Figure 3.

In this study, two variants of the algorithm shown in Figure 3 are used. The first, PBIL, uses the following
parameters: Mutation Probability: 0.02, Mutation Shift: 0.05, .earnir g Rate: 0.1, and Negative Learning

page 8

Population #1 Population #2
0011 1010

1100 01C1

1100 1010

0011 0101
Representation Representation
05,05,0.5,05 05050505

Figure 2: The probability representation of 2 small populations of 4-bit solution
vectors; population size is 4. Notice that the representations for both populations
are the same, although the solution vectors represented are entirely different.

Rate: 0.075. The second algorithm, the PRIL/EGA algorithm, uses the same parameters with the Negative
Learning Rate set to 0.0.

5. AN EMPIRICAL COMPARISON

In this section, the algorithms described previously are applied to six classes of problems: ‘fraveling Sales-
man, jobshop scheduling, knapsack, bin packing, neural network weight optimization, and numerical
function optimization. The results obtained in this study should 1ot be considered to be state-of-the-art.
The problem encodirgs were chosen to be easily reproducible, and to allow easy and fair comparison
with other studies Alternate encodings may yield superior results. In addition, no problem-specific
information was used for any of the algorithms. In the cases in which problem-specific information is
available, it may be able to help all of the search algorithms presented in this study.

In the problems presented in this paper, all of the variables were encoded either with Gray-code or stan-
dard base-2 representation, as indicated with the problem. The variables were represented in non-over-
lapping, contiguous positiuns within the chromosome (solution encoding). The results reported are the
best evaluations found thiough the search of each algorithm, averaged over at least 20 independent runs
per algorithm per probler:. In the problems in which random values are assigned to problem attributes
(such as the location of cities in the Traveling Salesman Problems or sizes of elements in the bin packing

and knapsack problems), the values are consistent across all algorithms attempted and across all 20 trials
for each algorithm.

All algorithms were allowed an equal number of evaluations per run (200,00). In each run, the GA and
PBIL algorithms both were allowed 2000 generations, with 100 function evaluations per generation. In
each run, the MRSH algorithms were restarted in random locations as many times as needed until
200,000 evaluations were performed. The best answer ever found in the 200,000 evaluations was returned
as the best answer found in the run. The final results for the problems are given in tables following the
description of the problems. The best results are highlighted.

5.1 Traveling Salesman Problems (TSP)

The TSP problem is probably the most famous of the NP-complete problems. Given N cities, the object is
to find a minimum length tour which visits each city exactly once. The encoding used in this study
requires a bit string of size Nlog,N bits. Each city is assigned a substring of length Jog,N which is inter-
preted as an integer. The city with the lowest integer value comes first in the tour, the city with the second

page 9

w*e*** Initiakze Probability Vector *****
fori =1 fo LENGTH do Pfi} = 0.5;

whils (NQOT temination condition)
*=*** Generate Samplas *****
fori =1 tc SAMPLES do

sample vectors[’} := generate_sample_vector_according_to_probabilities (P);
evaluations(i; :=Eva'Jate Sciition {samplsfi));

best vactnr = find_vector_with_bes{_eva'uation {sample_vectors, evaiations);
worst_vacto: ‘= find_vector_with worst evaluation (sampie_veciors, evaiuations:

“*** Update Probub: 'ty Vector towards best soiuton =***
fori =1 % LENGTH oc
P{i := Pfi} * (1.0 - LR) + best_vectoril * LR);

" Update Probabuly Avay from Y/orst Soluton =
fori =110 LENGTH do
i (best_vectodi} + worst_vectorli]) then
P} = Pfi] * (1.0 - NEGATIVE_LR) + best_vectlorl} * (NEGATIVE_LR}):

~ Mutate Probebikty Vector *****
fori:=11t0 LENGTH do
(random (C,1) < MUT_PROBABILITY) then
if (random (0,1) > 0.5) then mutate_directic: = 1
eice mutate_direction = Q;
Pli} .= Pfi] * (1.0 - MUT_SHIFT) « mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS (Values Uscd in this Study):

SAMPLES: the number of veciors genarated before update of the probabifty vector (100).

LR: the lsamning raie, how 1ast to exploit the seerch performed (0.1).

NEGATIVE_LR: the negative learring rate, how much to ‘eamn from negative examgles (PBIL = 0.675, EGA = 0 0).
LENGTH: the number of bits in a generated vector (prablem spectfic).

MUT_PROBABILITY: the probabdity for a mutation occurring in sach position (0.02).

MUT._SHIFT: the amount a mutaton alters e va'ue in the bit postion (0.05).

Figure 3: The PBII./FGA algorithm for a binary alphahet

gt stasTa.

lowest comes second, etc. In the case of ties, the city whose substring comes first in the bit string comes
first in the tour. This encoding was taken from [Syswerda, 1992). To minimize the tour length, the evalua-
tion used is 1.0/Tour_Length. Four problems were attempted: the first contained 128 cities, the second
contained 200 cities, and the third and fourth contained 255 cities. The integer encoding of the fourth
problem used Gray-code, while the rest used standard binary code. The results for these four problems
are shown in Table 1. The distances between cities were generated randomly for each problem.

e

B

age 10

Table I: Traveling Salesman Problem - Average Final Tour Length

——— . ————

; i T) R
; PROBI EM | MRSH2 | MKSH2 | MRSH2 | EGA Irert [sca f\:le
| TP 125 many ﬁ:mx E:L:m:," T a2 Tis: “-%:4 T a3
L TSP 200 thnar) S R s o 120120 e X
TSP 3R hnarv o amne ESE 1 | 4Tt wrzen | seisa
TSP 5% Cray-Caede) BTG I | M8 RS S

5.2 Jobshop Scheduling Probiems

Revently, genetic algorithins have been applhied to the jobshop scheduling prebiem bucause it is difticult
for conventional search based methods to find near-optimai soiutions in a reasonable amourt of time
[Fang et ui.. 1993]. A good description of the jobshop probiem is given by Fang:

“In the general job shop problem, there are 1 jobs and m machines: each job comprises a
set ot tasks which must each be done on a different machine for different specified pro-
cosHng times, in a given job-dependent order. ... A legal schedule is a schedule of job
sequences on each machine such that each job’s task order is preserved, a machine is not
processing two different jobs at once, and different tasks of the same job are not simulta-
neously being processed on different machines. The problem is to munimize the total
elapsed time between the beginning of the first task and the completion of the last task
(the makespan)” {[Fang ¢t al., 1993}

The problem is encoded in two ways. The first encoding 1s derived from [Fang «i. i, 1993]. The enact
encoding can be 1ound in [Fang cf 2/.. 1993] and [Baluja, 19%4] The difference between this encoding and
that used by Fang is that in this study, bit string> were used to encode the integers (in standard hinary
encoding) in the range of 1.J. Fang used chunke which are atomic for the GA. Althougk the encoding
used here makes the problem ditficult for these optimization technigues, it is used to provide results
which are comparable 1o other algorithms. As the makespan is to be minimized, the evaluation of the
potential solution i> {1.0/makespani. Two standard test problems are attempted, 2 10 job, 10 machine
problem and a 20-job, S-machkine problem. A description of the problems can be found w "Muth &
Thompson, 1963]. The results are shown in Tabie 1L

Table I1: Jobshop Scheduling - Minimum Makespan - Using Finst Encoding.

i ’ . ! . ! C\-
PROBLEM TBIL SGA '
Scale
Tlobshep ln b yo g e i
[lbshop 205 1205 Sed i2iow
The second encoding v semilar to the encoding used :n the Traveling Salesman Problemn. The draw-
£ s s

back of this encoding 1s 1t 1t uses more bits than the previcus one. Nonetheless, empirically, it revealed
improved results. Each jou is assigned M entrics of size log:(J* My bits, The total length of the encoding is

page 1}

PMTloga(0*M). Therefore, each of these problemsic encoded in a 700 bit solution vector. The value of each
entry {of length log (]"\)) determines the order in which the jobs are scheduled. The job which contains
the smallest valued entry is scheduled first. etc. The vrder in which the machines are sclected for each job
depends upon the ordering required by the problem speaification. The resulls are shown in Table 11 With
this encoding. six out of the seven algorithms perioym better than, or at ieast as well as, the first jobshop
encoding presented ithe perfermance of MRSH-1 does not improve with this encoding)

AR

Table I15: Jobshop Scheduling - Mininium Makespan - Using Second Encoding

] | e~ l.- | GA-
PROBLEM MR MRSt Mra {EGApBL fsea O
o e) -
iobshep 1n1e Li0RgT | GAR.2 476.2 So il P oo “erl wol 4
. lobshop 203 Tuwes ammy U2 | Ls2e 12301 190 5
S ——— - . - PSRN s e ———— - — - - o - -
'abshop 20x5 1164 2 1031 2 10273 GA 6 GoZ ; TR VTN
‘Randomlv generatea) | |
5.3 Knapsack Problem

In the knapsack problem, thore is a single bin of limited capacity, and M elements of varying sizes and
values. The problem is to select the clements which will vield the greatest summed value without exceed-
ing the capacity ot the bin. The e1 aluation of the quality of the solution i< judged in two wavz: If the solu-
tion selects too many clements, such that the summed size of the elements is too large. the solution is
judged by how murch it exceed: the capacity of the bin - the less it exceeds the capacity, the better the solu-
tion. If the sum of the vlement size- is within the capacity of the bin, the sum of the vaiues of the selected
elements is used ax the evaluation. To cnsure that the solutions which overfill the bin are not compet:tive
with those which do not, their evaluations are multiphied by a small constant. Thi: makes the mvahd
solutions competitive only when there are ro solutions in the popuiation which are valid. The evaiua-
tivns are described below.

Y IO/‘ E < -); oy 1 Z vetiue
Gltlicments sclectedBlements selde redbierieni
e . . 7 e 1s less than o
if size is greater than capacity of b ‘

equal to capactly of bin

The weights and values tor each problem were randomiy generated. In the Bt two problems, having 312
and 2000 elements respectively, a unigue element is represented by cach bt When a bitis set to 1, the cor-
responding clement is included. In the third and fourth problems, there are 100 and 120 unique elements,
respectively. However, there are 8 and 32 copies of cach elenient; the number of elements of each type
which are included in the solution is determined by interpreting a bit string, kength 3 Jog,8) bits and §
liog232! bits, into decimal, respectively. The results are given in Table IV. Note that the SGA algonthm
was unable to find vahd soluhion< in the werand and fourth problems,

. PROBI FM

[—

P Knap S 2eler. py)

b - . .

C Keap200helem Ty

 Kiap (08 elen, S opy

[Rm————

| Rnapid2telem, 320y

5.4 Bin Packing

Table IV: Knapsack Problem - Average of Best Valucs

. NMRSH1 T! MRSH2 . MRSHS § FGA PBIL SGA S:I-e
R 241 JESCIE E*F S o2 g
T e T %4 -1 = 0R 110z
143 1w 1oy f e s 49 e

T ssS Na fraQ 265 29264 7 273w

In the bin packing problem, there are N bins of varying capacitics and M clements of varving «izes. The
problem is to pack the bins with elements as tightiy as possible, without exceeding the maximum capac-

ity of any bin. In the problem:s attempled here, the error is measured by:

ERROR = Y 'CAP. ASSIGNED,
i=1 ! ¢ ASSIGNED, is the total size of the elements in bin

3

CAP; is the capacity ofbin

The solution is encoded in a bt string of length M * log:N. [ach element to be packed is ass‘gned a
sequential substring of length log-N whose value indicates the bin m which the element is placed. In
order to minimize the ERROR, the evaluation of the potential solution is 1.0/ ERROR.

Four bin packing problems of varions sizes were tested: 32 bins, 128 elements; 16 bins, 12% elemenis: 4

bins, 256 elements; and 2 bins, 512 elements. All ot the problems generated were guaranteed to have a
solution with 0.0 error. The results are shown belowy, in Table V.

Table V: Bin Packing Problems - Minimum Error

PROBI EM MRSH1 MRSH2 MRSH3 [EGA PBIL SGA | GA-Scale

Bui X bine Ddelem: el s PR . 42 LR Iy
TBmsbmetclemy | ddxiot esxiwel oot Faiaget Veane e r T Taive
 Bin's buns. 236 clem ! WENTS T RN BN EEN A B N
s NG ENSE N AR BTSN

5.5 Evolving Weights for an Artificial Neuzal Network {ANN)

Recently, evolutionary aigorithms have been used to evolve the weights of artiticial neural networks. In
the experiments reported here. the weights of two small vredefuied network architectures were evolved.
In the first test. the object of the neural network was to identity the parity of 7 fiputs. The inputs were
cither O (represented by -0.5) or | (represented by 251 1 the parity was 1, the target output i< 015, if the
parity was U, the target output 1s -(\5. The evaluation was the sum of squares error on the 123 training
examples. A bias input (2 unit whose mpuat is set te 1.0) was also used: this has connections to the hidden
and the output units [Hertz, Krogh & Faimer, 14%3]. The network architecture consisted of & input units

page 13

tincluding bias). § hidden units, and 1 output unit. The network was fuliy connected between sequential
lavers. There were a total of 6 connections in the neta ork, the values of the weights were restricted to the
range of -10.0 to +10.0. All hidden and output units used a sigmod activation function. Weights were rep-
reserted as binary and grav cade, and were assigred 8 non- . erlapping bits m the selution string

draipable Weighis 260~

Orurpur Ui

Figure 4: Network R T
Architecture. : , .
e . Hidden Lits

- 5 Input Units

Bias Unit
(+1

In the second two tests, eight real valued inputs were used. The first two inputs represent the coordinates
of a point within a square with upper left comer {ULC) of (- 1.0, 1.0} and lower right comer (LRC) of (1.0,
-1.05. The task ws to determine whether the point fell inte a square region between ULC(-0.75, 0,7%), and
LRC (0.75,-0.73} and outside a smaller square with ULC (.35, {.35), and LRC (0.35,-0.35). A diagram of
this is shown j.a igure 5. S inputs contained random noise in the region [-1: -1}. This noisc was deter-
mined in the beginning of the run, ard remained the same, in each training example, throughout the run.
The last nput was a bias urit. In total, the network had % inputs {including tsas), 5 hidden units. and 1
output; this created 46 connections. For traininy, 100 unitormiy distributed exemples were used. The
same represeatation and scaling of weights was used as in the previcus problem. In these two problems,
weights were represented as binary and Gray code, respecively. The resulis are shownin fable VL

08 .L - | ' :
96 e '

cd4 -

Figure 5: Training txampies tor the 02
ANN 5quare Problent. 0 . x
-2 ‘
04 : . .

-1+ -08 06 -04 €2 0 02 04 0€ 08

pare 15

Toble VI: ANN Weight Optimization - Sum of Squares Error.

— T T : T

- PROBI FM | MRSHT | MRsH2 MRtz JEGA PR 56 o
CANNTARITY Tbinani i6d | ind | 233 12 HRE N
ANNPARITY 7Gravt | 137 150 'les f%3 Pe2 16 2
 ANNSQUARE (birany) | 141 145 5 e we | arT T an T

. ANN SQUART (Gray} D84 7 R 67 83 K. 93

5.6 Numerical Function Optimization

In this sectior, the seven aigorithms are compared or three numer:c/ | opumization protlems Inthe tirs
and second problcm: the variables i the first portions of the solution strizig hav e a large infuernce on the
quality of the rest of the solution; small changes in their value: can cause large changes in the evainarion
of the solution. In the third problem, each variable can be sct mdopmdomly. Fach vanable, 1, vwas repre-
sented using 9 bits, and was <caled uniformly into the range $2.36. To aveid a division by zero error, a
small constant, C (=0.00001), was added to the denominator of each function. Fach problenr was tested
with the variables represented in standard binarv and Gray code. Resulls are showr in Table VIL The
maximization functions are:

SRS A% =] W
17 wEY
TR TR Y] L. LN TR IR I £ |
; .- .
- [IRt] . - i _ L ™
i 3 - Yo _
-\ ~3 -
(.‘A;.\!!, E s \l)*v" § ¢ —l‘. !
' 1.2 is > !
i PROBLFM 1' MRSHL \lR\H“ ! MI\“H" EGA . PBIL SGA E:-:’
' 3 i LIRS
: Aoy i .
I: inary xul b0 1| : L~,9,r 205 » 212 JRS 72
f— AL i : .
| FiGray Codesondiin Y121 18 17 206 262 P42 e
g i
S -
£2 Binarvy ixioh i 208 E "s (% 201 J.Ak) 440 358 Jex
F2 (Grav Code. (xi00; !4» | 138 128 1.67 5.6 164 163
F3 (Binaryt i 10 js07 1810 75 M5 e wITI 150
;4'_ JONSNISUIP S, .o - -
TS (Cray Coder (10 AR L4166 nined fa3es 36T [aa3a e
: i i L _ U

6. SUMMARY OF EMPIRICAL RESULTS

Many results have been presented i the provious section. This paper has concentrated on breadth; a
large number of problems were attempted with seven vptimication neuristics. It should be noted *hat
because il of the algorithms have tunab'e parameters, itis possible that different sethings may vield dif-
ferent results. Additional mecharisms, whichk take advantage of preblem speafic aformation, may aiso
mprove the performance of each of these metheds. Nonetheivsr, by selecting a variety of protlems and
problem sizes to compare, &bl of the algorithms <houid <how their strengths and weaknaesses in some por
tion of the tes! set.

The relative ranks of the algorithms on ali of the problem: are shov,nn Table VI this table ranss the
algorithms with respect {0 the as erage best rosults produced over all runs. I ~hould be noted that wi¥

only 20 runs per algorithm, not ail of the differences are stabisticaliv sign:ficant. More details on the diffe

entials between each algonthm’s performance were presented in Section 3. In terms of the finai ~olution=
foung, the PBIL algoritam worked the best overa:d, tollowed by the FGA algorithm. In the majority of
problems attempted here (25 out of 27), learning ‘rem negative examples improved the quality of the
final solutions found (PBIL performed beiter than £GAY Only in two of the problems did the negative
leaming hurt the performance ot the PBIL algorithm (EGA periormed metter than T2ii).

In terms of clock speed, the MRSH algoritims worsed the fastest. However, if the time tor each chromo-
=ome/ solution string’s evaluation is much larger than the time for the algonthm’s procedures, this bene-
fit diminishes. Moves to equal regions {rather than only strictly better regions) had mixed resuits overall.
Nonetheless, in :veral problems, such as the jobshop (both encodings) and TSP probiems, the moves to
cqual regions improved performance. In other problems sets, not explored here, it was al:o found that
moves to regions of equal evaluations were important for good performance [Juels & Wattenberg, 1994].
MRSH did well on the largest TSP examined; it was ablc to find a <horter tour than the other algorithme.
{when encoded in binarv and Gray Code). Similarly, in F3, MRSH was able to 1ake the largest advantage
of the gray code.

Although the standard genetic aigonithm (SGAj performed onlv as weli as the MRSH algoriihms, the
GA-scale algorithm performed slightly better. A summary of the resuits can be founct in lable VIIL This
table has the following columns:

. In the cases i which PBIL did better thar: GA-Scale, bus coliurn gives the generation in which
PBIL was able, on average, to surpass the highest evaluation: GA-Scaie found, on average, in its
20 runs. For example, in the firzt problem: TSP-128 (birarvy, the highest evaluation of the GA
was 22758 (Table 1), by generation 210, PBIL was able to surpass thiz evaluation.

)

T'he same numbers are given for GA-Scaie. For example, on the knapsackCi (2000 elem, § copyv;
problem, the highest evaluation PBIL was ablc to obtain was 403.7, in generation 1505 GA-
Scale was, on average, able te surpacssil.

Columine (30.04) and 158 of Tutie VI comipure tiw tnree Jifferent fupes of sigeridings;

i

3. Marks the problems on which anv jorm of MRSH was able to do better than GA-Scale.

1. Marks whern anv form of MRSH did ketter than PBIL.

page 16

5. Marks the problem:s in which GA-Scale vutperformed PRIL.

Tyt o <y N 3 NSO IS £ 3 BN pa v f kg e o .
Colionas 0.7 woid & of Tasie CTH comipare difoovant cavienems of escl algerithon,

. ndicates the problems o witich meves to ectal regions helped the performance of MRS
fhese are the problems inowhich eithor NIRSH-2 or MRSH-3 did beter than MRSII-1.

7. Marks the problems in which earnizg; from vegative examples heiped the PBIL/EGA alge-
rithm. These ave the problems in '.vhicn FBIL pr:rfum‘ed better e EGA.

8. Indicates the problems in which GA-Scale did better than MCA The improvement may be due
to the scaling of fitness values and./or the different crossover operators ({GA-Scale: Urform,
SGA: Two Point).

Yor the problems which were attempred with gray ana binan code, fapie iX provides a iist of which
algorithms benefited from using grav code.

7. CONCLUSIONS

This paper has presented resulis on many prebiems. From the resuits reported in this paper, it i< evident
that algorithms which are simpler than standard GA< can perform comparably to GAs. or both small and
large problems. Other studies have alse shown this for var:ous sets of problems [Juels & Waltenbery,
1994]{Mitchell & Forrest, 1992], etc. In studies analyzing the performance of GAs on particular problems,
these results suggest that analvses -hould include comparizons rnot onhv to other GAs, but also to other
simpler methods of optimization before a benefit is claimed mn favor of GAs. Trois study did not include
techniques such as Simulated Annealing or Iabu Search, which shouid be included in the tuture.

It is interesting to note that the PBII algorithm, which does not use the crossover operator, and redefines
the role of the population 1o ore which is very different than that of a GA, performs either better than or
comparably to a GA on the majority of the proble'ns PBIL ancd GA-« both generate new trrais ba<ed on
statistics from a population of prior trials. The PBIN algorithm oaplaitly maintains these statistics, while
the GA implicith maintamns them in its pepulation. The GA extracts the statistics by the selection and
crossover operators. More delailed comparisons betv een these 1 o algorithms car: be tound in [Baluiz &
Caruana, 1995).

It should be noted that the relative performance of GAs ir comparison to PBIL wiil immprove as the popu-
fation size of the GA increases [Bahsia & Caruara, 1995). As tho popuiation size of the GA increases, the
GA will be able to maintain more dissimilar points in s population, aad will therefore be able 1o use
crossover more effectively. On the other hand, insts current implementation, the PBIL algorithm only use
a fow solution vectors for updating the probability vector regardless of the population size. Nonetheless,
the large population size needed by a GA is not alway: feasible because of the need ta balance the num-
ber of generations required and the total number of evaluations possible. However, even when the
resot-ces to use large populations are avatlable, a large amount of empir:cal work has shown that using
an “parallel island-model” GA may be more effective than a single pannuctic population. The 1siand-

model evolves multiple smiail population in parailel, with onlv a small amount of :nteraction between
subpopulations. The parallel subpopulation model, in many cases. has outperformed the use of a single
large population; see for example: [Davidor el al. 1993])[Gordon & Whatiey. 1993)[Baluia, 1993][Whitlev &
Starhweather. 19907 1f these parallel subpepulations are used instead of a single larce populetion. each
subpopulation can be modeled with individual prebability vectors, as it the PBIL algonithm.

A GA with difterent mechami=m-~, ~uch as ron-stationary mntation rates, local optimization heuzistics.
varailel subpopulations. speciatized crossover, or larger oper-~ting alphabets. may perform better than
the GAs explored here. It shouid be noted, however. that ali of these mevhanisms, with the exception of
specidliced crossover operators, can be used with PBIL with few, :f anv, medifications.

Another direction to expiore in the future is how these algorithm perform with aiternate solution encod-
mgs; in this study only binary encodings were used. Although work has already been conducted in this
atea with GA» ta good introduction. to this can be found in {Fehelman & Schafier, 1942]y, how well will
PBIL or MRSH perform with these alternate encodings? Finally. 10 this study. optimization was only
oxplored in static environments. Future research should alse include scarch and optiruzation in dynamic
environments, or environments which require masimization of cumulative pavolff. The adaptis e nature
ot GA= may reveal a pronounced benefit in these more complex domains.

Table VII: Summary

- of Ranks

[IAINN

1%

H i T-
! s . | i [
) : N -
. ' H e 12
. 1 2 A =
i N i BV
: At NpsH? N & . Qe S Te
: | ‘ T e TH2 3
i ' i el B
: i = be
! ! . 2,2 7
: i . ' < - ;
ST | s 3 : B] o
1 H i
: HE LTS 3 S S
. i ' : : '
it - . _ i SRR B
Ot b | i l 3 H , e
- ?r H 1 i H N
1 . H (. B)
} H : | :
Tibekor o) eRacading o ! M - = i . T 1 i A N
- ‘ i . !
Linhop 203 sbneedeyg 1)) ! ‘ ! o . 2 ; H s 2 []
L H] 1 | i
I : * i i
\ : | | 1 H f !
ook - [- + I -
Inhehen TNIT Lpcoain il : : B i > 2 R 4 2 T ®
- . N i
; . . .
iobshen 274 Incoding 2) i 2 ; 3 B . pooe . T ®
~ — ;_ - - r A1 - - ‘ N - 4T ‘;’ a -
lrbehop 2700 (Ineodng 2 w0 | : : 4 2 A A
— - St + - - e
} ; |
T L me . Ta T 4 B Ty i : te T
Kpap P12 eloem . 1 oopy) 5.2 B . i = < 1 3 2 | @
S e —— 5 R R . R 4 - e e - PO
Knap (2200elem. _wopy H(+ 3 ! [1 : T 2 ; ®
Kvip i€ eam s eopesd] B = - 7 . [J
e (130 ol rn 9 e T s T A : T
ap (120 elem 32 copies ! : = B < H ¢ 2 ® H
L e - -4 : - - - —¢
' o
b e .
Bi:: 32buns. 128 Lam, “3 » > i t - 1 - N)
81 o bae, 125 clom | 2 ® : ! ¢ i] 2 1 . '
Lome P - S f :] [} §
=319 " ! s - R 3 : & ® i
. -ée i t
: e - R {
Bl 2bws, S clem? 2 4 - T S ‘ "R
— B N . R . - el N . i i N .
i ! ! ; R '
' i i
—_— - . . i. RS . H i ; ;
I SNNTFARITY 7 tunars R 3 : : Pz L
3 . i ! ! 5t !
i ANNPARITY 7z, A - : P ' [oy O
. H _ H] —
ANN SOUARE (baans - : ' ° : ? i R
ANN SULARE Gmav, or i : . - p 3 - ¢ e
b1 Encoced mBoarn wut z . = T T T T ®
- = — —— i ¢
F1 Encoced :n Gray Code; ET] j + : [N ’ ? ' e
- : i
i biinioded n Binars) Gine i ¢ : B P2 1 3 B ®
B - B : L = < F—
Il incoded ey nde; “ii B . | g i . i 1 :) [‘ :
i i !
= + = + <
F2 ‘Lnzeced n tinarys K B . - T i o0 ®
. Filbnroned ntaay (oces wy : ; 1 B c [M)
b - i , - .
i ~ 1 i g ! i i H
[CEAL TP bt ; ! : i { (3122 2,
. - PR 1 L t i i i

Table VIII: Comparison of Mctha

ds

page 19

: ——— . R S
H . i
! | = I 1
; 5 1z = z z 3
; =g < L v oZ i<
i %= = = z == O .
i Iz .z = = iz S oie
bl F x - :
! Z = = x - - | :
i ‘= =z Iz g o=
i 2r = = P TG
; E- Do T z3E 5
' R -=Z = = Tz L= :
HEg®) -, - - el - !
‘;‘.:._ 7 T o 2= Z, !
EEZ ET OZE O OCE L3I -7
eI =2l T N L ET S F
Do S - : . ;
COTSD AT T ey DK . [] Y) i ® !
; —_— - - —————— ! ‘
. Y L e @ *
- B ;
T7a - L4 L . T o
: !
; i
- + NP §
RV b ¢ o *
- 4 : :
f i :
e L L ; i i
D Jebehop 1M T acodicg 1 R R ‘ i e ®
p—————— - - - S - - e o + +
* febekop 203 Cncexing 10 107 . ® !
: i
x. i
N . - 1
Jobsson d00d Fiaondary 3t TG L] L4
- e e b
Jbenor I8 Eaccdng 2 418 - ! : 4 4
. 'y
Jobeaas 208 nsading 20 366 ,‘ hd b
i i
|
- — P . ‘3‘
Kaag 512 dem. oy i REPE L4 .
— ——) 3+ o
(WY clem D copys i - 1RR A i ;@
. - . ! ; ! ‘
- — 1 M Bk SR Sheeg : .
Knap I'Melem, © c.opue<t | ~32 . i L ® ! o i
i h i
¥ v - ' : -4
Knap (29 clem . 22 copies) [: i : ;e L
P | T S S |
1 i ' ! i X
| S B i ; i l
| : - L ¢ —
| BL 3 ire 108 e ; ' L R LA
! 4 ; ! : . o
! Binidacec 128 cem f ;. ® 1 e
! [H {
‘ ' . e e ® e
. }- 2 L4 L4 ;
: i : : i
! d !
| ANNPARIDY Ty HESE D ? ; g i
i R i * ! t i
1 T T ' +
I SNNTARITY 7agzay. nle - ; . ; , @ i
§’ . ———— SO 4 R . ‘. . B S
P ANMSCUARE hnaiv R i \ 14 i
. . _) + N .. _. e e —_
P ANNSOUARY 19y D DiC U re e {
¥ N 1 oo i
. H ! ! !
— ! + H H ;
b Fitknode - H r @ I !
: SR — - . 8 — - S R
FleEne-de: . ®
i
A T R et 32 ! ' LR
i : ' . ;
- + .
FoEswonds 4 ey Coded 1272 - ! 7 . @ i L i L
! : i ; B !
IR TR, L9 . i .’ e e .
H § 1 1
: - - 4 B i -
F? Encede? 6 sy Cod:) 4T - o o § L 4
1 : i
SR S A
') : i l i
E— e L ! H
LCIAL L Srnars: ; _— 5, 3 16+ 25 20
i — L M

page 20

Table IX: Algorithms which bencfited by using Gray Code over standasd binary code.

l T it
1 i :
! 1 ! i
f | j g
MESHD O CMIGHI O TGSH D Rl gl soa
i
g i
.
H (
Cqep s T L A I ®
- 1 . i :
! i
" L Ll [
M - -
©ANNPARITY T e ¢ e e oo r
: i bt I
L ANNSCUARF R ¢ . e e "o ®
‘ S 1 ? + i
H ' H ;
3 HE e | e | e o ®
: i : }
| E e e e l ® e .
} P — e
L T e ¢ | o | e °
P ! i ! !

mage 21

ACKNOWLEDGEMENTS

lhanks arc extended to Henry Rowley, Conrad Peelman, Rich Caruara, and Kaar: Ilagstad whe all bely
prooi-read ditferent versions of this paper and provided useful suggestions and discussions. The impetus
and toundations tor this work came from the collaboration with Ari Tuels, atthe University of Calitornia -
Berkelev.

REFCRFNCES

Ackley, D.H. (19877 “An Empirical Study of Bit Vector Furction Oplizuzation” bi Lavis, L ed) Genietis
Aigovitimis god Somindated Annealicz, 1987 Morgan Kautinann Publichers, Tos A'tos, CA.
Baluja. 5. (1993) “The Evolution of Genetic Algonthms: lowards Massive Parallelispy”. In Utgoss, P feds
/ ; - 3 . TB :
Preceediings of the Tenti Interiatond Coaeroncr on Machow Lorig, pp. 1% Morgan Kaufman Pub-
lishers.

Baluja. 5. {1964) “Population-Bascd Incremental Learming: A Method for Integrating Genetic Search
Based Function Optimization and Competitive I caming”. Camegie Melion University. Technical
Report. CMU-CS-94-163. Availzble via anonvmous FIP at reports.adm.cs.cmu.edu.

Baluja. S. & Caruana, R. (1995) “Removing the Genetics from the Standard Genetic Algorithm”, ir A.
Prieditis & S. Russel (ed.) Mociinie earning: Proccedings of the Loelfth Interviational Ceitforcinee. Mor
gan Kaufmann Publishers, Sar Francisco, CA. Report also available via anonvinous FIP a:
reports.adm.cs.cmu.edun (CMU-(CS-45-141;.

Cobb. H. (1992) “Geretic Algorithms for Tracking Changing Environments”, in borrest ied). 7JICGA-5:
Frovecdings of ihe Fiflii dinivinairona! Confercince on Gonetre Algeritim:s. 523-530. Morgan Kaufmarn
Publishers. San Mateo, CA.

Cohn, D.A. (1¥94) “Neural Network Exploration Using Optimal Ixperiment Desiym” in Cowan, Tesauro,
Alspector (eds.) (NIPS-63. Advances i Newwal Information Processing Susicris 679-6%6. Morgar Kaat-
mann Publishers San Mateo, CA.

De Jong, K. (197%) An Ansiyses oF ihe Belowicr (fa Class of Geveirs Adaptice Systediis, Ph.D. Dissertaton.

De Jong, K. (19923 “Genetic Algoritams are NOT Funcl:on Optimizers”. In Whitlev ted } F (0642 F il
tions of Ceirelic Algmvilies-2. 317, Morgan Kaufinann Pubiisher-. San Mateo, CA.

Davis, L. (1491 “Bit-Chmbing, Repre<entational Bia-, and lest Suite Design”, Procoodmivs of the Fonti;
hiterzhona! Coifermnze o Goneiic Algentimes. (18-23). Morgan Kaufmann Pubiichers. San Mateo,
CA

Dawvidor, Y., Yamada. I'. Nakano. R. (1993) “The FCOlegical Tramev. ork 11 Impreving G\ Performance at
Virtually Zero Cost”. In Torrest. S. {ed) ICGA-3 Proceednisgs o the Fifth biternazonal Conferaine on

Genetic Algerithus. 17)-176.

Tsheiman, L]. & Schaffer, D. (11421 "Reai-Coded Genetic Algorithm- and Interval Schemata™ in FOGA 2
Foundations of Gentic Algoritims 2. Morgan Kaufmann Publishers. San Mateo, CA187-202.

Eshelman, L.). & Schatfer, D. (1993) “Cro~sover's Niche”, Yo Forrest teds. (1CG4-5. F rece A gs of tie Bt
faterinaticna! Confererce on Genstic Aigantiniis. %14, Morgan Kaufmann Publishers. San Mateo, CA.

Fang, HL. Ross, P. Come, D. {1933) “A Promising Genctic Aigonthm Approach to Job-Shop Schedubing.
Rescheduling. and Open- Shop Scheduling Problems” In Forrest, S. {ed) ICGA-Z Proceciings of the
Fifth Luteriatzoial Confereiree -m Gevietse Algoritime.

Forre~t, S. and Mitchell, M (1993; “What Makes a Problem Hard tor a Genetic Algomthm” Aachine Lot

pPage 22

miv 13,2 & 3 Klawer Academic Pubbichers. Boston MA.

Geldbery, D.E. (1989) Gone e Algoritames iz Searci, Optimization. and Nackione Leariniz, Addison-Weslev,

Gordon, V3 & Whetlev, D. 11995 “be'ia‘ an Parallel Geretic Algonthms as Furnction Optimvizers,” In
l(""T("\u, S. ll"d) ’(GA S p't'\l\ (ORI .f 1 rl"'n Infein, ’A’(.)ui- (..1 l"t"uuﬂ RO RCIS Y I U\'« TR, i i /'IQI

Gretenstetre, L) & Fitzpatrick. LML (1988) “Genetic Algor:thms< in Noisv Favironments” Machine Learn-
mg, Vol 3No. 273, Kluwer Academic Puttlishers, pp. 101-120

Hertz, I, Krogh, A, & Palmer, G. - 993 Lovdnction fc e Thocey of Newra! Comyputectrm. Addiseon- Weslev.

Holand. . H Adaptation in Natural and Artificial Svstems. Arn Arbor The Unoersity of Mipigar
Pres:

Juels, Arw (4493, 19%§; Personal Conununication. Universitv of Calitorria - Berelev.

Keza, IR. {1942 Genetic Programpurg: On the Prograniming of Comprtess v Means of Naseral Selec-
tion. Cambridge, MA: The MIT Press.

Langton, C. (1994; Artiticial [ite Journal. MIT Pre<s.

Mitchell, M. and Holland. 1. 11994} “When will a Genetic Algomthm Outporform Hill Chmbing” A e es

iz Newral Infermation Processing Sysicits €, 1994, Cowan, Tesauro, Alspector (eds;. Morgan Kaui-
mann Publishers. San | rancisco. CA.

Muth & Thompson (1963) Indusirial Scheduimyg Prentice Hall International. Englewood Clitfs, NJ.

Syswerda, G. (1989 “Uniform Crossover in Genetic Algorithms”. In Freceedmigs of e Third linternatic o
Ceitfereitce on Genelic Algonitioms aiid tictr .»-:.vvlu.."um 2.5.1.D. Schaefier. ed. Morgan Kaufmann.

Syswerda, G. (19921 “Simulated Crossover in Genetic Algorithms™. FOGA-2. 239-233 FOGA 2 Eoenvida
trmis of Genedie Aigeritin:s-2. Morgan Kaufmann Publishers San Mateo, CA.

Wattenberg, M. &]uel:. AL (1994 "Stochastic Hillclimbing a~ a Bascline Method for Fyaluating Genetic
Algorithms,” University of Californa - Berkeley, lechnical Report. CoD-43-834

Whitley, D. & Starkweather. T. “GENITOR IL: a distributed geretic algorithm”. Journal of Fxperimental
and Theoretical Azt:fic: 2l Intelizence 2. 1%4-214.

END

FILMED

DTIC

