AIAA 96-2754
Functional Performance of Pyrovalves
Laurence J. Bement
NASA Langley Research Center
Hampton, VA

32nd AIAA/ASME/SAI/ASEE
Joint Propulsion Conference
July 1–3, 1996 / Lake Buena Vista, FL
FUNCTIONAL PERFORMANCE OF PYROVALVES

Laurence J. Bement*
NASA Langley Research Center
Hampton, VA

Abstract

Following several flight and ground test failures of spacecraft systems using single-shot, "normally closed" pyrotechnically actuated valves (pyrovalves), a Government/Industry cooperative program was initiated to assess the functional performance of five qualified designs. The goal of the program was to provide information on functional performance of pyrovalves to allow users the opportunity to improve procurement requirements. Specific objectives included the demonstration of performance test methods, the measurement of "blowby" (the passage of gasses from the pyrotechnic energy source around the activating piston into the valve's fluid path), and the quantification of functional margins for each design. Experiments were conducted at NASA Langley Research Center on several units for each of the five valve designs. The test methods used for this program measured the forces and energies required to actuate the valves, as well as the energies and the pressures (where possible) delivered by the pyrotechnic sources. Functional performance ranged widely among the designs. Blowby cannot be prevented by o-ring seals; metal-to-metal seals were effective. Functional margin was determined by dividing the energy delivered by the pyrotechnic sources in excess to that required to accomplish the function by the energy required for that function. Two of the five designs had inadequate functional margins with the pyrotechnic cartridges evaluated.

Introduction

A number of failures have recently occurred in the use of single-shot, "normally closed" pyrotechnically actuated valves (pyrovalves) in spacecraft hydrazine-powered attitude control systems. These pyrovalves, which were designed to prevent flow of hydrazine until actuation, are opened by electrically firing a pyrotechnic charge; this rapidly burning charge produces gases that drive an internal piston to shear off internal fittings to allow hydrazine flow. Two failure modes have occurred: (1) The burning of the valve's titanium housing threads allowed the initiator cartridge to be jettisoned by the valve's internal pressure at a velocity of over 600 feet/second, and (2) The "blowby" or venting of hot gases and hot particles from the burning pyrotechnic charge around the actuating piston, prior to o-ring seating; these gases/particles entered the fluid path of the valve, and initiated a reaction in the hydrazine, which overpressurized and burst the system plumbing. The first failure mode occurred in a ground test in the European Space Agency Cluster Program. The second failure mode, as indicated by Lockheed Martin, was responsible for the loss of the Landsat 6 and Telstar 4. It was also considered by the Jet Propulsion Laboratory to be a possible cause for the loss of the Mars Observer spacecraft. All of these spacecraft employed essentially the same pyrovalve design.

Several questions have been raised about the design and development of pyrovalves: (1) What is the functional margin, or how well do these devices work, (2) how was the pyrotechnic charge "sized," and (3) how much "blowby" can be expected in pyrovalve designs. The Europeans reduced their main pyrotechnic charge, Hercules High Temp, by 60%, from 325 to 128 milligrams. Was this change justifiable? Was the functional margin affected? The manufacturer of Landsat 6 and Telstar 4 continue to use the full 325-mg charge. The current approach for demonstrating margins is to conduct go/no-go tests, while changing the pyrotechnic load by +/- 15%. If the valve functions (allows fluid flow) with an 85% charge, the implication is that it should work with a 100% charge. Conversely, if the valve doesn't burst with a 115% charge, it shouldn't burst with a 100% charge. Neither test provides a quantitative measurement of functional or containment margins.

The goal of the effort described in this paper was to provide information on functional performance of...
pyrovalves to allow users the opportunity to improve procurement requirements.

The specific objectives were:
1. Demonstrate improved test methods and logic for the functional evaluation of pyrovalves.
2. Quantify the volume of blowby in 5 different pyrovalve designs, and assess the blowby debris produced.
3. Quantify the functional margin of these 5 different pyrovalve designs.

The approach for the test program, conducted at LaRC, was to use the methods and logic in reference 1 to measure performance and to determine functional margins. The measurement of blowby required additional test methods.

A significant challenge in the test program was to obtain sufficient information from the limited number of units available.

**PYROVALVES TESTED**

The pyrovalves evaluated in this program were supplied by manufacturers (Scot and Conax) or were available in NASA inventory. Scot, Conax and Quantic provided design information. The following is a listing of pyrovalve types and the number available of each:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model Number</th>
<th>Manuf. Date</th>
<th>Test Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyronetics</td>
<td>1456</td>
<td>2/74</td>
<td>18</td>
</tr>
<tr>
<td>Scot</td>
<td>6008200</td>
<td>8/91</td>
<td>14</td>
</tr>
<tr>
<td>Conax</td>
<td>1802011-01</td>
<td>8/61</td>
<td>4</td>
</tr>
<tr>
<td>Conax</td>
<td>1832-191-01</td>
<td>6/87</td>
<td>4</td>
</tr>
<tr>
<td>Quantic</td>
<td>1201B-02</td>
<td>2/70</td>
<td>6</td>
</tr>
</tbody>
</table>

Each valve design will be described, as well as the energy source used for its functioning.

**Pyronetics** - A cross sectional view of this design is shown in figure 1. The body is aluminum, 6061-T6. Fluid flow within the valve is prevented by nipples in blind aluminum fittings of the same alloy. The 0.55 inch diameter stainless steel actuating piston has dual o-ring seals. A taper has been machined in the piston, which engages a matching taper in the bore of the valve housing on stroking. Since the original flight cartridge was not known, a gas generating cartridge, the NASA Standard Initiator (NSI)-derived Gas Generating Cartridge (NGGC), reference 2, was used. This cartridge has at least twice the output of the NSI. A "Y" fitting with the NGGC in each leg of the "Y" for redundancy and a booster charge was also evaluated. This "Y" fitting introduced considerably more free volume in which the pyrotechnic charges burned to generate gas. The first portion of the stroke shears off the nipples on the blind fitting. At approximately 0.19 inch of stroke, the tapers engage; the energy in the moving piston is then absorbed by deforming the cylinder wall. A through-hole in the piston blade that shears the nipples is stroked into alignment with the fluid path in the fittings at a stroke of 0.4 inch.

The original assembly procedures for this valve required that no lubrication be used on the o-rings. Any lubrication in this area would migrate onto the tapered interface and reduce the degree of seizing of the piston in the bore. This seizing was necessary to prevent the valve's fluid pressure from dislodging the piston, allowing a leak path into the cartridge's combustion volume. However, as described in reference 1, unlubricated o-rings introduce several functional problems. The dry o-rings produce considerable friction against the cylinder wall, roll on their axes, tearing out material, and cause a considerable increase in energy consumed in stroking the piston. These conditions result in questionable efficiency of the o-rings to seal the working pressure from the pyrotechnic cartridge.

This investigation included an evaluation of performance with and without lubrication. A non-flight, silicone-based lubricant was used for these tests.

**Scot** - A cross sectional view of the Scot valve, qualified for venting air in the Harpoon missile, is shown in figure 2. The body is aluminum 2024-T351. Fluid flow within the valve is stopped by a single nipple in the blind aluminum fitting. The 0.31-inch diameter stainless steel actuating piston has dual o-rings. A Harpoon gas generating cartridge was used to power the piston stroke. The Harpoon cartridge contains about twice the same charge as the NSI (Zr/KClO4). A piston stroke of 0.25 inch first shears off the nipple, then a through-hole in the piston blade is stroked into alignment with the fluid path in the fitting.

**Conax** - Two different designs were evaluated, as shown in figure 3. Both designs employ a metal-to-metal seal between the stainless steel actuating piston and the aluminum (2024-T351) housing bore. That is, the 0.25-inch diameter pistons are oversized, relative to...
the bore; as the piston strokes, the cylinder bore is
deformed to maintain a seal against the pressure
produced by the energy source. Both designs utilize a
primary explosive, diazodinitrophenol, in their
activating cartridges. Primary explosives deliver
considerably more energy, more quickly than the gas-
generating materials used in the other pyrovalve
designs.

Model 1802011-01 requires the shearing of a
diaphragm, machined in the valve body, to allow fluid
flow around the actuating shaft of the piston. The
piston is designed to stroke 0.48 inch to trap the sheared
diaphragm at the bottom of the stroke.

Model 1832-191-01 shears off a nipple in a blind
stainless steel fitting to allow fluid flow around the
actuating shaft of the piston. The nipple is also trapped
at the end of the stroke.

Quantic - The cross sectional view of the stainless
steel Quantic design, qualified for the Apollo program,
is shown in figure 4. The 0.490-inch diameter piston
has a single o-ring. Either cartridge provides sufficient
energy to open the valve. As the piston strokes
through 0.35 inch, the lower blade assembly shears off
nipples on the blind fluid flow fittings; the two
shoulders on the blade are staggered by 0.025 inch, so
that the nipples shear sequentially. A hole through the
blade aligns with the holes in the fittings on stroking.
At 0.190 inch of stroke, a circumferential knife edge on
the piston body engages a reduced-diameter shoulder in
the piston's bore. This knife edge cuts and curls the
shoulder material into a cavity in the piston to
decelerate the moving mass in a controlled manner.
This cutting mechanism, in addition to the lower
portion of the piston wedging into the bore, prevents
valve fluid pressure from dislodging the piston, and
allowing a leak path into the cartridge’s combustion
volume.

This valve was designed to use the Apollo Standard
Initiator (ASI) with a 60 mg booster charge of Hercules
High Temp, an 80/20 RDX/nitrocellulose mixture.
Since this charge was not available, the NGGC,
reference 2, was used.

PROcedures

The effort was divided into five areas: Weight drop
tests, test firings, blowby tests, post-test evaluations,
and functional margin determination. The o-rings in the
Pyronetics and Quantic valves were replaced with new
o-rings for this effort.

Weight drop tests - Impacting weights on the
actuating piston simulated the impulsive input of
pyrotechnic charges. The forces required to stroke the
pistons, during the impact, were measured with high-
response (80 kHz) piezoelectric load cells. The
minimum energy required to accomplish the function
was determined by reducing the drop heights until the
valve failed to function. Higher input energies were
tested by increasing the drop heights to match the
cartridge input levels. One to ten-pound weights were
dropped at heights to over 100 inches.

Test firings - Functional tests were made in steel
mockup valves (without piston capture mechanisms)
and flight valves to determine the energy delivered by
the pyrotechnic cartridges. Pressure measurements were
made, when possible, within the working volume.
New blind fittings/nipples or diaphragms were installed
for each firing in the steel mockup valves; this
duplicated the initial resistance of the piston against
stroking and assured that the combustion characteristics
of the cartridge propellant were duplicated. The energy
delivered by the pyrotechnic cartridges was calculated
from measurements of the velocity of the actuating
pistons at the position of piston stroke completion;
kinectic energy is 1/2 mv^2. An effort was made to
"size" a booster charge to assure sufficient energy
delivery in a "Y" fitting in the Pyronetics valve.

Blowby tests - Blowby volume was measured by
evacuating the fluid flow path and functioning the
valve. A pressure increase within the fluid flow path and
the known volume evacuated allowed a
measurement of blowby gasses in torr-liters. Dividing
this value by 760 (760 torr/atmosphere) and
multiplying by 1,000 (1,000 cc/liter) yielded cubic
centimeters at one atmosphere. The critical sensor to
this test was the pressure transducer, Granville-Phillips
275 Convectron Gauge, which was able to measure
pressure from 0.001 torr to 1000 torr. One or two blowby
tests were conducted on each valve design to measure
the quantity and type of gases, as well as determining
the blowby debris produced. The blowby gas was
analyzed with a gas mass spectrometer. The blowby
debris, which was examined microscopically, was
obtained by rapping the valve body with the axes of the
flow tubes over a clean dish. The Pyronetics and
Quantic designs contained an internal volume of air
between the piston and blind fitting nipples that could
not be evacuated for the test firing. Once the firing was
made, this air was drawn into the fluid flow path. This internal volume was calculated and subtracted from the total amount of gas indicated during the firing.

**Post-test evaluation** - A final assessment of performance was made by examining the post-fire condition of the valves. That is, the amount of stroke achieved by the actuating piston, and the forces required to "push out" the seated pistons were compared to the data collected through weight drop tests.

**Functional margin determinations** - Functional margin was determined as follows:

\[
\text{Functional Margin} = \frac{\text{Energy Del.} - \text{Energy Req.}}{\text{Energy Req.}}
\]

or

\[
\text{Energy Delivered} - \frac{\text{Excess Energy Del.}}{\text{Energy Req.}}
\]

**Energy Delivered** - The kinetic energy delivered by the cartridge to the piston.

**Energy Required** - The energy required to function the valve.

**RESULTS**

The results of the experimental program are presented here in the same order as presented in the procedures section.

**Weight drop tests** - Typical force versus time traces for weight drop tests for the two Conax and the Quantic designs are shown in figure 5. The minimum "energy required" values to function the valves (shear the nipples or diaphragms and stroke to fully open the fluid flow within the valve) are summarized in the functional margin section below.

To evaluate the effects of lubrication in the Pyronetics valve, weight drop tests were conducted with and without lubrication under the same conditions. The sliding frictional forces are shown in figure 6. The average sliding friction for lubricated o-rings was 16 pounds and for unlubricated o-rings, 140 pounds. Unlubricated o-rings were badly torn, when the piston was removed from the bore. The evaluation of the effects of lubrication on the tapered interface between the piston and the cylinder bore in pyrovalves produced typical force versus time traces shown in figure 7. Although different, these traces do not show the effect that lubrication had on the seating of the interface.

Figure 8 shows the amount of stroke induced in the lubricated and unlubricated tapered interface with increasing energy input. Figure 9 shows the effect of lubrication on the pushout forces of the piston/cylinder tapered interface. Although all units exhibited no leakage, the lubricated interface exhibited a minimum of 1,180 pounds at an 800 inch-pound input. This minimum value would provide a seal against 5,000 psi internal pressure (1,180 divided by the piston area of 0.236 square inch).

**Test Firings** - The "energy delivered" values for each valve design are summarized in the functional margin section.

A number of pressure traces were obtained in firing certain valves that permitted measurements without affecting functional performance. Typical pressure traces recorded in several firings to establish a booster size in the Pyronetics valve with a "Y" adapter are shown in figure 10. Figure 11 shows traces recorded for three different cartridge types in the Scot valve. Figure 12 shows pressure traces in the Quantic valve.

**Blowby** - The following table summarizes the blowby volumes measured. The plumbing was configured, except where indicated, to evacuate both the inlet and outlet ports of the valves into a common manifold. Total gas volume was the value in cubic centimeters at one atmosphere, measured from the firings; subtracting the calculated internal volume from this value provides the blowby volumes.

<table>
<thead>
<tr>
<th>Valve/Model</th>
<th>Cartridge</th>
<th>Total Gas Volume</th>
<th>Calc. Int. Blowby Volume</th>
<th>Blowby Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyronetics/1456</td>
<td>NGGC</td>
<td>1.50, 1.48</td>
<td>1.00</td>
<td>0.50, 0.48</td>
</tr>
<tr>
<td>Scot/6008200</td>
<td>*NSI</td>
<td>0.37</td>
<td>0.08</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>*NGGC</td>
<td>1.26</td>
<td>0.08</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>*Harpoon</td>
<td>0.75, 1.01</td>
<td>0.08</td>
<td>0.67, 0.93</td>
</tr>
<tr>
<td></td>
<td>Harpoon</td>
<td>0.18</td>
<td>0</td>
<td>0.18</td>
</tr>
<tr>
<td>Conax/1802011-01</td>
<td><strong>unknown</strong></td>
<td>0</td>
<td>0</td>
<td>unknown</td>
</tr>
<tr>
<td>Conax/1832-191-01</td>
<td>*NGGC</td>
<td>6.13, 3.53</td>
<td>0.39</td>
<td>2.18, 3.95, 1.35</td>
</tr>
</tbody>
</table>

* One fitting evacuated
For the quantities of blowby shown, the Conax 1802011-01 and the Scot (second Harpoon firing) valves produced an indication of carbon dioxide combustion products. Gaseous combustion products, such as carbon monoxide and carbon dioxide, require organic fuels. No permanent gases are produced by gas generating materials that contain metal fuels with metal-oxide oxidizers. For example, the primary gas generating material in the NSI and Harpoon cartridges, zirconium fuel and potassium perchlorate oxidizer, yield a primary combustion product of zirconium oxide. This material can only be a gas during a vapor phase, when it is extremely hot (about 6,000°F) during the combustion. Evidently this hot gas quickly cools and condenses on the walls of the vacuum system plumbing, which prevents detection by the gas mass spectrometer. Some amount of blowby occurred in the second firing of the Conax 1802011-01 valve, because carbon dioxide was detected. This firing achieved a piston stroke that was much greater than the first firing (0.43 versus 0.24 of 0.48 inch total required). However, a leak in the plumbing to the valve opened after the firing and a quantitative measurement of blowby volume could not be obtained.

All of the valve designs introduced some debris in the valve fluid flow path. Shavings were created in shearing the nipples and diaphragms, and in all but the Conax valves, pieces of residue were observed. The largest amount of debris was observed in the Scot valve, following firings with the large-output Harpoon cartridge; shavings up to 0.1 inch in length and combustion residue particles to 0.01 inch occurred. The Conax diaphragm valves had shavings to 0.010 inch. The Quantic valve had shavings to 0.02 inch and residue particles to 0.005 inch.

Post-test evaluation - The averaged results of pushout tests on each of the pyrovalve pistons after valve firings, compared to the retention observed in the weight drop test evaluation, are shown below:

<table>
<thead>
<tr>
<th>Pushout Forces (pounds)</th>
<th>Test Firing</th>
<th>Weight Drop Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyronetics 1456</td>
<td>1,230</td>
<td>940</td>
</tr>
<tr>
<td>Scot 6008200</td>
<td>98 (NSI)</td>
<td>20</td>
</tr>
<tr>
<td>Conax 1802011-01</td>
<td>1,150</td>
<td></td>
</tr>
<tr>
<td>Quantic 1201B-01</td>
<td>505 (NGGC)</td>
<td>150</td>
</tr>
</tbody>
</table>

These values indicate that the pistons would be retained against thousands of psi internal pressures within the valve. For example, the Pyronetics valve with a piston area of 0.236 square inch can withstand an internal pressure of 9,000 psi. Although pushout measurements were not made on the Conax 1802011-01 after firing and the 1832-191-01 after the weight drop test, the similarity in sliding friction would imply roughly equal results.

<table>
<thead>
<tr>
<th>Functional Margin Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuf.</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Pyronetics</td>
</tr>
<tr>
<td>Pyronetics</td>
</tr>
<tr>
<td>Scot</td>
</tr>
<tr>
<td>Conax</td>
</tr>
<tr>
<td>Conax</td>
</tr>
<tr>
<td>Quantic</td>
</tr>
</tbody>
</table>

A negative margin of 0.3 (0.7 of the energy required to fully open the valve) was observed in the Pyronetics valve in the blowby tests. That is, the stroke of the piston in the tapered interface (figure 8) was much less than would have been predicted by the firings in the steel test valve. The blowby firing produced a stroke of 0.144 inch (650 inch-pounds, which when added to the 40 inch-pounds to shear the nipples and stroke, produces an energy delivered by the cartridge of 690 inch-pounds); the firing in the steel valve indicated an energy value of 1,230 inch-pounds which would have produced a 0.200 inch stroke in a firing in an aluminum valve. The Scot valve with the Harpoon cartridge has a very large functional margin; an adequate margin was provided by the NSI. The Conax model 1802011-11 valve also had a negative margin; the piston stroked only 0.24 of the required 0.48 inch. This corroborates the marginal performance predicted in the steel valve firing. The second Conax valve and the
Quantic valve with the NGGC performed without incident.

CONCLUSIONS

In response to a number of spacecraft failures that occurred when single-shot, normally closed, pyrotechnically actuated valves (pyrovalves) were functioned, a Government/Industry cooperative investigation was conducted. Five different pyrovalve designs were obtained from Industry and NASA inventories for experimental evaluation at Langley Research Center. The goal of this effort was to provide information on functional performance of pyrovalves to allow users the opportunity to improve procurement requirements. Specific objectives were to provide test methods and logic to evaluate performance, measure the blowby volume of hot gasses (as well as assess particulate) from the pyrotechnic energy sources around the actuating pistons of the five pyrovalve designs, and to quantify functional margins for each design.

These five pyrovalve designs provided an excellent challenge to performance measurements, due to their wide range of performance. The test methods developed and applied in this program met this challenge by providing performance measurements on many aspects of valve operation. Weight drop tests, simulating the dynamics of pyrotechnic inputs, while measuring functional loads, indicated as little as 20 inch-pounds is required to function the Scot valve to over 1,000 inch-pounds for a Conax valve. The dynamic load measurements recorded during valve functioning allow for interpretation of mechanical events and energy consumption. For the Pyronetics valve, it was found that, contradictory to original assembly requirements, lubrication on piston o-rings and on interface seals produced consistent, acceptable performance.

The energies delivered by the pyrotechnic cartridges in test firings in the valves were determined by measuring the velocities of the actuating pistons. Also demonstrated was the ability to tailor energy delivery through the use of booster charges. The pressure traces recorded during valve operation provide further information on how energy was transferred from the burning gasses to the pistons. For example, a rapid pressure rise delivers more energy to these small-mass, short-stroke pistons.

Functional tests revealed that blowby cannot be prevented by single or dual o-rings in pyrotechnically actuated piston/cylinder configurations. That is, some amount of hot gasses and particles will pass around o-rings before seating is achieved against cylinder walls. However, the metal-to-metal seal employed by Conax completely prevented blowby under conditions that were more severe than the o-ring-sealed valve designs. That is, the pyrotechnic charge used by Conax, a primary explosive, produces a much faster pressure rise and much higher pressure levels than do the gas generating charges employed in the other valve designs.

Functional margin was obtained by dividing the energy delivered by the pyrotechnic cartridge that was in excess to that required to function the valve by the energy required to function the valve. Functional margins varied from some valve designs being overpowered to others being inadequate. The Scot design was considerably overpowered with a margin of 6.4, using the cartridge required by a customer. In fact, an ample margin of 3.9 could be provided by the NASA Standard Initiator (NSI), while reducing the pyrotechnically induced stresses due to excess pressure and heat in the valve. The Conax model 1832-191-01 valve exhibited an adequate margin of 2.7, in spite of requiring a large energy value to stroke against the metal-to-metal seal. The 25 year old Quantic valve had a good margin of 2.4 in using the NSI-derived Gas Generating Cartridge (NGGC), but the NSI produced a margin of only 1.5. The 22 year old Pyronetics valve was marginal (0.3) with the NSI-derived Gas Generating Cartridge (NGGC); a firing in the aluminum flight valve indicated a negative functional margin of 0.3, about half the energy measured in the steel test unit. That is, this energy level would have opened the valve, but would not have been sufficient to stroke the piston sufficiently to align an internal port to allow unrestricted fluid flow. This reduction in performance can be attributed to a greater heat loss from pyrotechnic hot gasses to an aluminum body, compared to the losses from a steel body. This inability to fully stroke points out a weakness in this design; the tapered interface, that was employed to seal the piston in the body and to stop the piston stroke, should have been located such that the piston encountered it after the valve fully opened (the approach used in the Quantic design). The Pyronetics valve must have originally employed an energy source that was much larger than that of the NGGC. The 35 year old Conax model 1802011-01 valve also was inadequate with a negative margin of 0.3; this valve opened, but did not fully stroke as intended. The post-test evaluation of the valves, including piston pushout tests, provided additional corroboration of successful performance.
Based on the results of this investigation, sufficient test information and analyses have been provided to justify the modification of pyrovalve procurements to require quantification of performance and functional margins.

REFERENCES


Fig. 1. Cross sectional view of Pyronetics pyrovalve. The body and blind fittings are aluminum.

Fig. 2. Cross sectional view of Scot pyrovalve. The body and blind fitting are aluminum.
Fig. 3. Cross sectional view of Conax pyrovalves. The bodies are aluminum and the blind fitting is steel.

Fig. 4. Cross sectional view of Quantic pyrovalve. The body and blind fittings are stainless steel.
Fig. 5. Force versus time plots for weight drop tests on the pyrovalves indicated.

Fig. 6. Force versus time plots for weight drop tests on a steel Pyronetics test valve, unlubricated and lubricated o-rings.

Fig. 7. Force versus time plots for weight drop tests on Pyronetics pyrovalves, lubricated and unlubricated tapered interfaces. No o-rings were used.
Fig. 8. Stroke in tapered interface of Pyronetics pyrovalve versus energy input with and without lubrication.

Fig. 9. Pushout forces of tapered interface in Pyronetics pyrovalve versus energy input with and without lubrication.

Fig. 10 Pressure traces recorded in sizing the booster charge for the Pyronetics pyrovalve. Energy values shown are excess to that required to function the valve, excluding piston seating.
Fig. 11. Typical pressure traces recorded in the Scot pyrovalve, using the cartridges shown. Energy values shown are excess to that required to function the valve.

Fig. 12. Typical pressure traces recorded in the Quantic pyrovalve, using the cartridges shown. Energy values shown are excess to that required to function the valve.