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Abstract 

Recent simulations of the interaction between planar surfaces 

and model Atomic Force Microscope (AFM) tips have suggested 

that there are conditions under which the tip may become unsta-

ble and "avalanche" toward the sample surface. Here we investigate 

via computer simulation the stability of a variety of model AFM tip 

configurations with respect to the avalanche transition for a num-

ber of fcc metals. We perform Monte-Carlo simulations at room 

temperature using the Equivalent Crystal Theory (ECT) of Smith 

and Banerjea. Results are compared with recent experimental re-

sults as well as with our earlier work on the avalanche of parallel 

planar surfaces. Our results on a model single-atom tip are in ex-

cellent agreement with recent experiments on tunneling through 

mechanically-controlled break junctions. 
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I. INTRODUCTION 

Several recent studies have reporledl - 5 an avalanche effect in adhesion. These 

reports indicate that there are conditions under which solid surfaces will collapse 

together even when the initial interfacial spacing is significantly larger than the 

bulk interplanar spacing. This, of course, is intimately tied to the question of 

the stability of the tip in the scanning tunneling microscope (STM) or the atomic 

force microscope (AFM) when the probe tip is brought into near contact with the 

sample surface. In fact, the first suggestion that solid surfaces could jump together 

was made by Pethica and Suttonl who were primarily interested in the interaction 

of a metallic tip with a fiat surface because of its relevance to the STM/ AFM. 

Their analyses were based on a Lennard-Jones pair potential and on continuum 

elasticity theory. These approximations have serious limitations which the au­

thors themselves have pointed out. l Subsequently others have investigated2- 5 the 

stability of adhering fiat surfaces using more appropriate semi-empirical methods 

and have found quantitative evidence for an avalanche effect. 

Some investigations of the interaction of a model STM/ AFM tip with a sample 

surface have been carried out in the recent past. 6-9 The~e have either involved 

tight-binding6 (TB) or self-consistent-field pseudopotential7 studies with no re­

laxations of the atoms in the tip and sample or molecular dynamics (MD) studies 

using semi-empirical methods such as the Stillinger-Weber potential for Si. 8 The 

former have generally focused on small model tips with or without a "support" 

and concentrated on the electronic effects such as the creation of tip-induced lo­

calized states. The latter group of investigations have tended to model larger and 

2 



considerably blunter tips often concentrating on actually crashing the tip into the 

sample much as a nano-indenter does or on the friction involved in sliding a tip 

over a sample surface.9 They have not, in general, worried about the stability of 

the tip when in proximity with the sample surface. 

In this paper we present a study of tip-stability in a model of the AFM using 

the Equivalent Crystal Theory (ECT) introduced by Smith and Banerjea10- 12 

and later modified by Smith et al.13 We present results of simulations of the 

interactions between tips of two different geometries - a single atom or .a pyramid 

of five atoms attached to the flat surface of a semi-infinite slab - and a flat sample 

surface. The simulations have been conducted using the Metropolis Monte-Carlo 

algorithm14 at a temperature of 300K for a number of fcc metals and for fcc iron. 

Preliminary results of similar simulations for Ni at zero temperature have been 

. presented elsewhere.15 

II. SIMULATION PROCEDURE 

The results presented below are obtained from Monte Carlo simulations per­

formed using the Equivalent Crystal Theory (ECT)10-12 which is based on the 

Universal Binding Energy Relation (UBER)16 and has been shown to provide 

accurate energetics in a wide variety of reduced-symmetry situations, including 

layerwise avalanche,2,4,5 surface relaxation,l1,12,17 and surface reconstruction18. 

The ECT, which has now been modified13 to better handle shear-type distortions, 

expresses the energy of a collection of atoms as a sum over individual atomic 

contributions. Each atomic contribution comprises four different terms. The first 

of these terms depends essentially on the local density in the inunediate neigh-
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borhood of the atom in question and is generally the largest single contribution 

to the surface or interface energy. The second term accounts for local deviations 

in symmetry away from that of the ground-state crystal and local variations in 

nearest-neighbor distances. The other two terms depend on changes in bond an­

gles and account for shear-like distortions. It ha.c:; been shown 18 that the la.c:;t two, 

bond-angle-dependent terms contribute little to the relaxation energies of metal 

surfaces. Hence, in this study we have neglected the last two terms of the ECT 

energy expression13 and essentially usedthe earlier version10- 12 of the ECT. 

The model system used in this work consists of two parallel slabs of metal 

atoms separated by a gap normal to the fcc (001) interface. Each slab consists 

of seven atomic layers, each layer being 5 x 5 lattice constants. Projecting into 

the gap from one of the slabs is an atomically sharp tip in perfect registry with 

the underlying atomic plane. The two slabs are arranged so· that the "tip" comes 

down on the four-fold hollow in the centre of the surface of the other, "sample" 

slab. In this work we have, for computational reasons, restricted our attention 

to tips containing either a single atom, or a five-atom pyramid consisting of a 

single-atom tip layer atop to a four-atom ba.c:;e layer. This tip, either the single 

atom or the five-atom pyramid, is attached to one of the slabs a.c:; described above. 

The initial configuration of the computational cell is set by adjusting the gap 

to a value between zero (where the single tip atom is in its ideal crystallographic 

position with respect to both slabs), and two lattice constants, a separation known 

to be larger than the critical separation at which avalanche occurs for planar 

surfaces approaching each other.2 Subsequently, all atoms in the tip and in the 
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three layers of each slab closest to the gap are allowed to relax so as to minimize 

the total energy of the computational cell. The relaxations are performed on a 

cubic lattice, but there are no additional constraints, e.g. the relaxations are atom­

wise, rather than layer-wise as in previous work. 4 A sequence of four refinements 

is performed, using progressively smaller step sizes, with the smallest being 0.001 

lattice constants. The standard Metropolis Monte Carlo algorithm14 is used, with 

a temperature of 300 Kelvin. 

III. RESULTS 

Simulations have been carried out for the fcc metals Cu, Ni, Ag, and Au, as 

well as for fcc-Fe. The results -for all of these are qualitatively the same with 

the possible exception of Au. Hence, we present here only the results for Ni, as 

representative of four of the metals studied, and for Au, which appears to be 

somewhat different from the other metals. 

Displayed in Figs. 1 and 2 are the results of the simulations of a single-atom Ni 

tip and in Figs. 3 and 4 are sho~n the results for the Ni five-atom tip. While Figs. 

1 and 3 show plots of the relaxed energy of the appropriate system as a function of 

the rigid separation, Figs. 2 and 4 show plots of a variety of interlayer separations 

as functions of rigid separation. The scale of the horizontal axis in all four figures 

is chosen so that a rigid separation of 0.5 lattice constants corresponds to the 

situation in which all atoms are in their bulk crystallographic positions. Figure 2 

shows the separations between the tip atom and the adjacent slab (to which the 

tip atom remains attached at large separation), and between the tip atom and the 

opposite slab. The rigid separation is also plotted for comparison. It can be seen 
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that the tip atom exhibits clear avalanche behavior-for separations larger than a 

material-dependent critical separation, the tip atom remains in the vicinity of the 

slab to which it is initially attached. When the separation falls below the critical 

value, however, the tip atom finds it energetically favorable to occupy a position 

in the center of the gap. It should be noted that the two tip-slab separations do 

not add up to the rigid separation because there is relaxation of the slab layers 

as well. It should also be noted that the behavior of the slabs differs from that 

exhibited in the layerwise avalanche of metal surfaces. 2- 5 These studies found that 

when two slabs are brought closer together than a critical separation, not only 

will the surface layers avalanche together, but the adjacent layers in each slab will 

follow, giving rise to a rarefaction wave which propagates away from the gap. In 

the current work, in all cases the slab surface layers remain further apart than 

the critical separation, even when the rigid separation is 0.5. We therefore do not 

expect to see a layerwise avalanche. In addition, the atoms directly beneath the 

tip atom are more strongly bound to the slab than to the tip, and are unlikely 

to avalanche towards the tip as it migrates toward the center of the gap. This is 

precisely the behavior exhibited by our model system. While there is a distinct 

puckering of the slab surface directly under the tip atom on either side of the gap, 

the puckered atoms never complete the avalanche process and remain attached to 

their respective slabs. 

The relaxed interfacial energy of the computational cell for the single-atom Ni 

tip is displayed in Fig. 1. The energy plot does not clearly exhibit the sharp drop 

characteristic of layerwise avalanche. This can be understood by recalling that, of 

over 1000 atoms in our computational cell, only the single tip atom avalanches, so 
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that the fractional difference in energy is small. This is unlike the case of layerwise 

avalanche2 between approaching flat surfaces where the entire surface on either 

side moves out and the energy released in the process is comparable to the surface 

energy of the appropriate surface. A similar situation arises in the case when 

the approaching flat surfaces are out of registry. 5 There too, there is little or no 

evidence of avalanche in the energy plot but the phenomenon clearly shows up in 

plots of the appropriate interlayer distances. 

Results for the five-atom Ni tip are displayed in Figs. 3 and ,4. Again the 

tip atom avalanches, but the slab layers do not. Further, the four atoms which 

constitute the "base" of the five-atom pyramid behave like surface atoms and do 

not avalanche although they do relax outward by a small amount. The 'main 

reason for this is that these atoms do not stand to gain much energy by moving 

outward as they have only one nearest neighbor in that direction - the tip atom. 

So this reduced coordination in the "outward" direction suppresses the avalanche 

effect even in the base of the five-atom pyramidal tip. Once again the avalanche 

effect does not show up in the plot of the energy for the same reasons as jn the 

case of the single-atom tip. 

Figures 5 and 6 show results for a single-atom Au tip approaching a Au (001) 

surface and Figs. 7 and show similar results for the five-atom Au tip. One can see 

from Figs. 6 and 8 that in this case while the tip atom does move out into the gap 

between the "support" and the "sample", there is no sharply defined avalanche in 

the case of either the one-atom or the five-atom tip. The reason for this apparent 

absence of a sharp transition in the case of Au is not clear. However, Au surfaces 
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are known to behave differently from those of other fcc metals.18 It is not clear 

whether or not the different behavior seen for Au here is related to the different 

behavior of Au surfaces. We are currently investigating similar phenomena in the 

case of the related metals Pt, Pd, and Ir in order to help clarify this matter. 

IV. DISCUSSION 

We have carried out Monte Carlo simulations of the stability of AFM tips for 

a variety of fcc metals at room temperatw:e. We find that an atomically sharp tip 

will undergo avalanche - that is, when the interfacial gap between the tip atom 

and an atomically flat slab falls below a critical value, the tip will move away 

from the slab to which it was initially attached, to a new equilibrium position 

within the gap. For the symmetric case of a single tip atom between two semi­

infinite planes, the equilibrium position is exactly halfway between the two slabs. 

This is in excellent agreement with the results of recent experiments on tunneling 

in mechanically controlled break junctions (MCBJ)19 in which the authors see 

evidence of tunneling through "a single atom" in the much necked down junction 

and conclude that this solitary atom is situated midway between the two sides of 

the broken junction. In addition, we find that the atomic layers underneath the 

tip relax outward into the gap but do not go far enough to avalanche. Similar 

conclusions may be drawn for the five-atom pyramidal tip although in this case, 

for obvious reasons, the tip atom does not sit exactly midway between the two 

surfaces. 

As we have already mentioned, the behavior of the Au tip approaching a Au 

surface is quite different, qualitatively, from that of the other metals we have 

8 



• 4 .. 

studied. The reason for this is not clear yet. However, we hope that our ongoing 

investigations of similar systems involving Pt, Pd, Ir, etc. will shed some light on 

whether or not this difference is related to the fact that Au surfaces, unlike those 

of the other metals studied here, undergo symmetry-reducing reconstructions. 

In the case of adhesion between flat planar surfaces we have shown5,17 that the 

avalanche phenomenon is affected by the degree of registration between the two 

approaching surfaces. Avalanche is strongest and sharpest when the two surfaces 

are in perfect registry and is considerably weakened when the registry is lost and 

more so when only a few surface layers are permitted to relax. We are currently 

investigating the equivalent effect in the case of avalanche at an atomically sharp 

tip, i. e.when the tip is brought down onto the sample at sites other than the 

four-fold hollow of the fcc (001) surface. 
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Figure Captions 

Figure 1. Plot of relaxed energy vs. rigid separation for a single-atom Ni tip 

approaching a Ni (001) surface. 

Figure 2. Plots of relaxed interplanar separations vs. rigid separation for a 

single-atom Ni tip approaching aNi (001) surface. 

Figure 3. Plot of relaxed energy vs. rigid separation for a five-atom Ni tip ap­

proaching aNi (001) surface. 

Figure 4. Plots of relaxed interplanar separations vs. rigid separation for a five­

atom Ni tip approaching a Ni (001) surface. 

Figure 5. Plot of relaxed energy vs. rigid separation for a single-atom Au tip 

approaching a Au (001) surface. 

Figure 6. Plots of relaxed interplanar separations vs. rigid separation for a 

single-atom Au tip approaching a Au (001) surface. 

Figure 7. Plot of relaxed energy vs. rigid separation for a five-atom Au tip 

approaching a Au (001) surface. 

Figure 8. Plots of relaxed interplanar separations vs. rigid separation for a five­

atom Au tip approaching a Au (001) surface. 
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