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A. SUMMARY

Experiments in this grant renewal have as a general long-term objective

the elucidation of the effects of altered gravitational fields on neural

regulatory mechanisms. More specifically, they focus on the effects of

the neurotransmitter serotonin in the hippocampus. We have selected the

hippocampus for study because rats flown on Spacelab-3 showed an

increased number of serotonergic receptors in this region of the

central nervous system after 7 days in space. A more recent study has

shown that rats exposed to a hypergravic field of 2.0 G for 7 days show

a decreased number of receptors. We propose to examine population and

single cell electrical activity associated with these receptors using

the in vitro hippocampal slice preparation. After development of

experimental techniques, we will utilize centrifuges at the Chronic
Acceleration Research Laboratory to expose animals to a hypergravic

environment. Receptor numbers change relatively slowly so that altered

activity can be studied in rats at 1G following prolonged exposure to

an increased gravitational field. This study will provide information

on the modulation of signaling in the hippocampus by serotonin before

and after exposure to hypergravic fields.



B. RESEARCHPLAN

I. Introduction

The goal of this grant is to study the effect of hypergravic fields on

the modulation of hippocampal electrical activity by serotonin (5-HT).

The proposed study represents a shift from our previous NASA grants

covering three diverse areas in neurobiology (thermoregulation, vestibu-

lar and auditory brainstem evoked responses, and the hippocampus) to

consideration of only one of these areas, the hippocampus. (Thus no

experiments are proposed in the areas of thermoregulation or brainstem

evoked responses, and the only continuing work in these areas will be to

edit manuscripts covering work supported by our previous NASA grants.)

To place our proposed hippocampal experiments in context with relevant

Spacelab-3 experiments and hypergravic experiments, two experiments on

receptor changes in animals exposed to altered gravitational fields are

first described. Our experiments build on these structural/biochemical

observations and extend investigations to related electrical activity at

1G and in hypergravic fields. The background continues with a review

of past studies at IG related to effects of serotonin on hippocampal

electrical activity (i.e., population spikes, intracellular potentials).

2. Background

Increased number of serotonin receptors in rats aboard Spacelab-3.

Miller et al. (1985) determined the number of receptors for several

neurotransmitters in selected brain areas in animals after their return

from space. Six male Sprague-Dawley rats were exposed to microgravity

for 7 days aboard Spacelab-3. Twelve to 14 hours after return to 1 G,

the rats were sacrificed and brain tissue was removed, frozen, and

subsequently assayed for receptor number and affinity. Serotonin

binding in the hippocampus of these rats was 49% greater compared to

that from a control group maintained at 1G (120 & 5 in the flight group

vs 81 + II fmoles/mg protein in the control group; p<O.05). The binding

of serotonin in the lateral frontal cortex was unaffected by exposure to

microgravity. Moreover, in the initial survey of other neural

transmitters in different regions of the brain, changes in binding were

not generally observed. Thus, the hippocampus was a region of the

central nervous system that showed cellular changes attributable to

exposure to a microgravity environment.

Decreased number of serotonin receptors i_2nrat_____sexposed to 2 G. The

experiments reported by Miller et al. (1985), while demonstrating an

effect at microgravity, left open the question of whether hypergravic

fields had any effect on serotonergic receptors. Very recently, Miller

et al. (1986) reported at a Tokyo conference the results of studies in

which they measured serotonergic binding in rats afer exposure to a 2 G

field for seven days. Twelve rats were exposed to chronic accleration on

an 18 fo_t diameter centrifuge and then binding was determined using the

ligand [JH]-5-hydroxytryptamine. A 27% decrease in receptor number was

observed in rats exposed to the 2 G field.



These studies by Miller et al. (1985, 1986) show that hypergravic and
microgravity environments have opposite effects on hippocampal 5-HT
receptor number. In both environments the effects appear to be terminal
field specific, since changes in serotonin binding were not observed in
the lateral frontal cortex. Although receptor changes have been
described in both microgravic and hypergravic environments, there aye no
parallel electrophysiological studies of serotonergic effects on neural
activity. It is therefore unknown if the changes in receptor number
alter the functional characteristics of the neurons. It is this issue

that this grant will address.

Neurochemistry and multiple serotonergic receptors. The population of

5-HT receptors in rat cerbral cortex and hippocampus can be divided into

two types denoted 5-HT 1 and 5-HT 2 receptors (Peroutka and Synder,1979;

Creese and Synder, Ig78), and recent studies (Pedigo et al.,1981)

suggested a further subdivision of 5-HT 1 receptors into two subtypes, 5-

HTIA and 5-HTIB, a classification based on the biphasic inhibition of
spiroperidol (or spiperone) on serotonin binding. Binding inhibited by

low concentrations of spiroperidol defined the 5-HTIA site, whereas the

component that was unaffected by low concentrations of spiroperidol

defined the 5-HTIB site. Beck et al. (1985), De Vivo and Maavani (1986),
Mauk et al. (1985), and And_ad-e and Nicoll (1985) have identified

serotonergic receptors found on hippocampal pyramidal cells as 5-HTIA

receptors. This grant covers effects of binding of serotonin to 5-HTIA

receptors.

The effect of serotonin o__nnpopulation spikes. We plan experiments on

changes in hippocampal electrical activity and the effects of serotonin

using both extracellular and intracellular procedures. Extracellular

methods (described in this section) allow assessment of the system as a

whole, while intracellular methods allow a closer look at the cellular

mechanisms underlying serotonin's effects. The results of the proposed

experiments would provide baseline data for future studies using rats

exposed to microgravic environments.

Several studies have shown that serotonin decreases the amplitude of a

population response of hippocampal neurons (Beck et al., 1985; Beck and

Goldfarb, ]985; Rowan and Anwyl, 1985; Mauk et al., 1985). (The decrease

in amplitude is often preceded by a small transient increase.) When

Schaffer collaterals, axons forming a fiber tract in the hippocampus,

are stimulated, pyramidal cells are excited and generate a synchronous

burst of action potentials. The electrical fields of the action

potentials add to produce an easily detected potential, a population

spike. In experiments where serotonin was superfused over the tissue
and then washed out with buffer, Beck and Goldfarb (1985) showed that

serotonin reversibly decreased the amplitude of the population spike.

The magnitude of this decrease was concentration dependent and was

greater on submaximal than on maximal population spikes. The EC50 for

serotonin was 3.2 pM. Repeated applications of a maximal dose of

serotonin did not_roduce tachyphylaxis. Beck and Goldfarb (1985)

concluded that the reversibility, reproducibility, and concentration

dependence of the serotonergic response in the rat hippocampal slice

preparation make the hippocampus useful for pharmacological experiments

on the modulatory role of serotonin.
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Recent pharmacological studies involving measurementof hippocampal
population spike amplitudes have indeed further characterized
serotonergic mechanisms. Thus Beck et al. (1985) were amongthe first
to suggest that the decrease in population spike amplitude involved a 5-
HTIA receptor because spiperone at i00 nM shifted serotonin and 5-
carboxyamidotryptamine concentration-response curves to the right..Mauk
et al. (1985) also observed that 5-HTIA agonists depressed the amplitude
of population spikes. Slices from Wistar rats were placed in a
submersion chamber, superfused with a continuous flow of modified Krebs
Ringer and maintained at 33-34°C. Evoked potentials following
stimulation of Schaffer collaterals were recorded in the pyramidal
layer. Whenfield potentials had been stable for a least 20 min, dose-
response curves were obtained by applying increasing concentrations of
serotonergic agonists every 30 min. Application of the agonists
buspirone, TVX-Q 7821, and DPATproduced a dose dependent reduction of
the population spike. Effective concentrations were 25-100 _M.

The method of measuring spike amplitudes allows assessment of the
response of a population of pyramidal cells to a variety of compounds.
Beck and Goldfarb (1985) describe in detail superfusion procedures for
obtaining concentration-response curves. They then applied these
procedures (Beck et al., 1985) to show shifts in the concentration-
response curves for a variety of ligands (serotonin alone and in the
presence of lOOnMspiperone or 100nMketanserin). This procedure should
prove sufficiently sensitive to detect an altered response to serotonin
in animals exposed to hypergravic environments if the decrease in
amplitude of the population spike is similar in magnitude to the 27%
decrease in receptor number found in binding studies.

The effect of temperature r pH, and stimulus frequency o__nnpopulation

spikes. Bath temperature has a marked effect on population spike

parameters (amplitude and width) and pH a much smaller effect (Hooper e___t

a l., 1985; Thomas eta]., 1986; appendix A). In experiments designed to

detect changes in the physiological response to serotonin in animals

exposed to a hypergravic environment, these factors must be controlled

or monitored.

Experiments on hippocampal slices have been done at various bath

temperatures -- some investigators maintain bath temperature between 32

and 35°C, others between 29 and 30°C. So that results can be more

readily compared with other studies, one approach is to perform critical

experiments over a range of temperatures.

Stimulus frequency can also modify the height of population spikes and

the activation of intracellular events. Long-term potentiation (LTP) is

a widely studied model of activity-dependent change in synaptic efficacy

that has attracted wide interest as the basis for information storage in

the mam_nalian brain. LTP is induced by increasing stimulus frequency

above about 3 shocks/sec, and is reliably induced by frequencies greater

than I0 Hz. Its onset occurs in seconds and can last for weeks in the

intact animal. During LTP, the amplitude of a population spike is

greatly enhanced. The role of N-methyl-D-aspartate (NMDA) receptors in

inducing hippocampal LTP has been recently established by a variety of
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studies in different laboratories (Col lingridge and Bliss, 1987;
Collingridge et al., 1983; Harris et al., 1984; Peer et al., 1986).
Mg++ blocks NMDA-gatedchannels in a voltage dependent manner. When
the cell is at its resting potential, manyof the channels are blocked,
and when the cell is depolarized Mg++ blockade is alleviated. Calcium
then enters the cell via these NMDAchannels and triggers the sequence
of events that culminate in LTP.

Stimulus frequency must be carefully controlled in studies where

population spike amplitude is measured because high but not low

frequency stimulation induces LTP. As an added complication, Bliss et

al. (1983) found reduction of LTP in the dentate gyrus of the ra--_

following depletion of serotonin, and no effect following depletion of

norepinephrine (NE). They used an in vivo preparation and it was not

possible to determine whether the effect on LTP was due to depletion in

the hippocampus or depletion of other brain areas. Stanton and Sarvey

(1985) used the in vitro slice preparation and found that while NE

reduced the occurrence of LTP in the dentate, serotonin did not prevent

LTP in the hippocampus in either CA1 or the dentate. Further experiments

are required to fully clarify the involvement of serotonin in LTP. On

one hand, by using high frequency stimulation to evoke LTP, the

involvement of serotonin on LTP can be further studied. On the other

hand, by keeping the stimulus frequency less than 1 Hz, LTP is not

evoked (NMDA channels are not opened) and possible effects of serotonin

on LTP are avoided.

The effect of serotonin on intracellular potentials. There are many

recent electrophysiological studies of the hippocampus using

intracellular rather than extracellular techniques. In many cases

intracellular techniques have an advantage; namely, that intermediate

steps in the overall response of the system can be monitored and

effects on particular cellular mechanisms can be tested. For example,

transmembrane potential and membrane resistance provide information on

combined receptor and channel activity. We propose to measure both

potentials and resistance in rats and hamsters exposed to 2G fields. In

addition, factors such as the potential role of GTP/GDP binding

proteins (G proteins), intracellular messengers, and various receptor

types can be investigated using intracellular techniques.

Using intracellular techniques, Andrade and Nicoll (1985) provided

further electrophysiological evidence, in agreement with previous

pharmacological studies, that serotonin binding appears to be

predominantly of the 5-HT 1 type. Recordings were obtained from
pyramidal cells of the CA1 region. Serotonin administered either in the

bath (300nM -20_M) or by microiontophoresis elicited a dose-dependent

hyperpolarization (that could be as large as 20 mY) accompanied by

reduced input resistance. No depolarizing responses to serotonin were

ever observed. Administration of the selective 5-HTIA agonist 8-OHDPAT

(200 nM - 4_M) also hyperpolarized these cells. The classical serotonin

antagonists cyproheptadine and cinanserin were relatively ineffective in

antagonizing responses to iontophoretically applied serotonin, with

IC50s of 50 _M and i00 _M respectively. The selective 5-HT 2 antagonist
ketanserin did not reduce serotonin responses in concentrations up to

200_M. The ergot methysergide elicited a small hyperpolarization and



reduced the serotonin response with an IC50 of 30_M. Similarly, the
non-benzodiazepine anxiolytic, buspirone, which has been reported to be
potent and selective at displacing serotonin from hippocampal membranes,
also elicited a small hyperpolarization (I-4 mV) and reduced serotonin
responses (IC50 = 3_M). Thus, a variety of intracellular results are
consistent with t_e proposal that 5-HT1 receptors are presen_ on
pyramidal cells in the hippocampus.

Intracellular studies have also characterized the channels opened by
serotonin (Segal, 1980; Jahnsen, 1980). Serotonin reduces the input
resistance and hyperpolarizes the cell, results consistent with the
opening of some type of potassium ion channel (Segal, 1980; Andrade et
al., 1986). Intracellular measurements have also indicated that G
proteins are involved in the coupling of signals from serotonergic
receptors to the opening of these potassium ion channels, a major
advance in understanding serotonergic mechanisms(see below).

Receptors_ G proteins and potassium ion channels. Membrane receptors

often signal cellular responses via a coupling system. The measurement

of transmembrane potential and resistance serves to chacterize this

system, from the binding of serotonin through the opening of potassium

ion channels. Since we plan to make these measurements in our

experiments and in this way characterize plasma membrane mechanisms for

the recognition and transduction of serotonergic signals, the coupling

system in pyramidal cells is described in detail.

Andrade et al. (1986) proposed that two classes of receptors in the

hippocampus, 5-HT and GABAB, act through a G protein to open potassium
ion channels. Thus, receptors activated by a diffuse serotonergic fiber

system share the same potassium channels as do receptors activated by

local inhibitory interneurons that release GABA. The critical

experiment pointing toward a shared population of channels was the

demonstration that potassium currents evoked by the agonists are not

additive. Evidence that distinct receptors for serotonin and GABA are

present in the membrane includes the observation that when spiperone (a

5-HT receptor blocker) was applied in sufficient concentration to

completely block the hyperpolarization evoked by serotonin,

hyperpolarization could still be readily evoked by application of the

GABA B agonist baclofen.

Andrade et a1.(1986) tested the system to determine if G proteins were

involved in the transduction of the signal from the receptor to the

opening of the channels. A model involving serotonergic receptors, G

proteins, and potassium channels is shown in Figure I. This model

(proposed by Andrade et al., 1986) involves the following steps in the

shuttling of the G-protein between receptors (5-HT or GABA B) and the ion

channel (which, when open, allows potassium ions to leave the cell and

the cell to hyperpolarize). When GTP is bound to the G-protein, the

GTP-G-protein complex associates with the potassium ion channel, and the

channel opens. When associated with the channel, the G-protein also

acts as a GTPase, hydrolyzing its bound GTP to GDP. As a result,

the G-protein then dissociates from the channel, and the channel
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FIGURE I. Sketch of a pyramidal cell showing a G protein coupling 5-HT

receptors to potassium ion channels, serotonin binds with a 5-HTI

receptor to activate a G protein (Gi) that shuttles through the membrane

(arrows A and C) to bind with a potassium channel protein, thus opening

the channel. The potassium ion efflux through the open potassium channel

leads to hyperpolarization and cell inhibition. The neurotransmitter

GABA binds with a GABA B receptor that activates the same G protein
(arrow B) and hence also opens K+ channels. This process, the opening

of potassium ion channels by either serotonin or GABA, can be inhibited

by increased activity of protein kinase C as shown at lower left.

Serotonin also inhibits the membrane bound enzyme adenylate cyclase as

shown at lower right.



closes. The GDP-G-protein shuttles to the receptor through the membrane
to combine with 5-HT-receptor or GABA-receptor complexes. When
associated with these complexes, GTPdisplaces GDPat the nucleotide
site on the coupling protein, and this GTP-G-protein shuttles back
through the plasma membraneto repeat the cycle.

The experimental evidence that G proteins are involved in the coupling
between the receptors and the potassium ion channel was demonstrated by
experiments showing that the response to neurotransmitters is altered by

treatments that modify G proteins. After intraventricular injection of

pertussis toxin, a specific toxin for some G proteins, pyramidal cells

from treated rats no longer showed hyperpolarization following

application of either serotonin or GABA even though in other respects

cellular activity was the same as controls (e.g., action potentials

could be generated by depolarizing the cell). Additionally, in slices

treated with GDP_S, a compound that binds with G proteins and maintains

them in the inactive state, application of serotonin or GABA B did not

induce pyramidal cell hyperpolarization.

These experiments show that a G protein is associated with the

transduction of the signal from the membrane receptors to potassium ion

channels but do not in themselves show a direct coupling of G proteins

to potassium ion channels. A link that involves a second messenger

within the cytoplasm could be involved, and additional experiments were

carried out to determine if this was the case. By eliminating three

intracellular messengers as being important in this coupling, Andrade

et al. (1986) suggest that the G-proteins directly couple to potassium

ion channels in the plasma membrane. Experiments excluding second

messengers described below illustrate the advantage of the slice

preparation in sorting out cellular mechanisms.

First, Andrade et al. (1986) considered whether cAMP served as an intra-

cellular messenger. Madison and Nicoll (1986a,b) had previously shown

that norepinephrine (NE) binds to beta receptors to increase

intracellular levels of cAMP. The elevated levels of cAMP reduce or

block the current through potassium ion channels opened by

intracellular calcium ions. These calcium-activated potassium channels

hyperpolarize the cell, leading to a waveform called an AHP

(afterhyperpolarization). The experiments to rule out an intracellular

link of cAMP to the effects of serotonin or baclofen (a GABA B agonist)

involved bathing the tissue for at least 15 minutes in 8-bromo-cAMP, a

membrane-soluble analog of cAMP. Loading the cells with 8-bromo-cAMP

(to saturate calcium-activated potassium channel binding sites) had no

effect on the responses of the cell to serotonin or to baclofen. These

cells were loaded with sufficient 8-bromo-cAMP to completely block the

effects of NE on the AHP. The fact that NE had no effect and the fact

that the effects of serotonin and baclofen were unchanged negated the

alternative that cytosolic cAMP was necessary for serotonin to exert its

effect.

Second, Andrade et a1.(1986) considered whether intracellular levels of

calcium ions formed a link between serotonin or baclofen and the influx

of potassium ions. Increased levels of calcium ion in hippocampal

pyramidal cells affect several types of potasium ion channels. The

experiments described above ruled out the possibility that serotonin



opened one type of calcium-activated potassium channel. In additional
experiments, involving the use of tetraethylammonium (TEA), they ruled
out the possibility that calcium opened other types of channels. Thus
Andrade et al. (1986) concluded that calcium ions did not serve as a
second messenger in the serotonergic response.

Third, Andrade et al. (1986) performed experiments they interpreted as
ruling out a role for inositol phospholipids as a second messenger
between a G protein and potassium channels. The activation of protein
kinase C (with the activator phorbol-12,13-dibutyrate) showed that
protein kinase C is not involved in a second messenger pathway. In
addition, inositol triphosphate often acts by releasing calcium from
intracellular storage sites, but changes in intracellular calcium had no
effect on responses evoked by serotonin or GABA.

The lack of evidence for a second messenger involving ionositol
phospholipids, together with a lack of evidence for other second
messengers(cAMPand calcium), led Andrade and Nicoll (1985) to propose
direct coupling betweenG proteins and potassium proteins. The coupling
can modify and can be modified by other cellular mechanisms. The
schematic diagram of a pyramidal cell (Figure I) illustrates added
interactions in the process initiated by serotonin binding on
hippocampal pyramidal cells. First, De Vivo and Maayani (1986) have
reviewed evidence showing that 5-HTIA agonists inhibit adenylate
cyclase. In addition, the serotonergic response can be inhibited by
activation of protein kinase C using phorbol-12, 13-dibutyrate (Andrade
et al., 1968). Figure l includes these added interactions to indicate
mechanismsassociated with events following binding in addition to the
G-protein coupling between the 5-HTIA receptor and K+-channel.

The extracellular and intracellular experiments cited above provide the
background for further study of serotonergic mechanismsas modified by
gravitational fields. Data are consistent with the proposals that
serotonin receptors in the hippocampus conform to the 5-HTIA
classification, and that the hippocampal slice preparation can be us_

to advantage to study functional effects of decreased receptor number.

Coupled with the studies on altered binding of serotonin in microgravity

(Miller et al., 1985) and in hypergravity (Miller et al., 1986), a basis

is formed for further electrophysiological studies on the effect of

hypergravic fields on serotonergic responses. The proposed study is on

cellular events associated with 5-HT receptors after exposure of animals

to a hypergravic environment.

We plan experiments on changes in hippocampal electrical activity and

the effects of serotonin using both extracellular and intracellular

procedures. Extracellular methods allow assessment of the modulatory

effects of serotonin on a major hippocampal circuit, signals over

Schaffer collaterals to hippocampal pyramidal cells. Modulation can be

monitored by measuring the amplitude of the population spike.
Intracellular methods allow a closer look at the effect of serotonin on

intermediate steps in the process. Within the plasma membrane a signal

is coupled from 5-HTIA receptors to potassium ions channels via a G

protein, and these membrane mechanisms are reflected by changes in

transmembrane potentials and membrane resistance. When potassium ion
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channels open in many pyramidal cells, the hyperpolarization decreases

the amplitude of population spikes. The results of the propused

experiments would provide baseline data for future studies using rats

exposed to microgravic environments.

3. Specific questions

(I) Does exposure to altered gravity (2G for 7 days) alter the effect of

serotonin on population spike amplitude?

(2) Does exposure to altered gravity (2G for 7 days) alter the effect of

serotonin on transmembrane potential of hippocampal neurons?

(3) Does exposure to altered gravity (2G for 7 days) alter the effect of

serotonin on the input resistance of hippocampal pyramidal cells?

4. Rationale and experimental procedures

Experiments are designed to further characterize the response of

hippocampal neurons to serotonin under differing gravitational

conditions. The techniques used build on our current methods for

recording extracellular activity (the population spike) in the slice

preparation (Hooper et al., 1985, Appendix items A and B).

Tissue preparation. Hippocampal slices will be prepared in our

laboratory following procedures we are currently using (Hooper et al,

1985; Appendices A and B). Male Sprague-Dawley rats are decapitated, and

their brains quickly dissected and placed in chilled artificial

cerebrospinal fluid (ACSF). The neocortex is removed to expose the

bilateral hippocampi, which are removed. Slices 400-450 microns thick

are cut perpendicular to the long axis of the hippocampus with a

McIlwain tissue chopper. The slices are removed from the razor blade

with a fine sable brush and placed in a petri dish containing chilled

ACSF. The slices are then transferred with a large bore pipette to a

plexiglass holding chamber where they rest at room temperature on ACSF-

saturated filter paper. The holding chamber is provided with humidified

95% O_/5% CO 2 gas. The ACSF consists of (in mmoles): 124 NaC1, 5 KC1,

1.25 _aH2P04, 2 MgS04, 26 NaHCO3, 2 CaC12, and I0 dextrose. At 37°C,

the osmolarity is 305 _5 mOsm and the pH is 7.4.

Recording chamber. We will record from slices in a recording chamber

we have recently built. The chamber is a modification of the one

described by Nicoll and Alger (1981) to include thermoelectric modules

for controlling bath temperature. Approximately i-2 hours after tissue

dissection, a slice is transferred from the holding chamber to the

constant-perfusion slice chamber. The slice is submerged in ACSF

between two nets, the top net serving to hold the slice in place. The

tissue is constantly perfused with oxygen-saturated ACSF at a rate of

1.5 to 2 ml/min via a gravity-fed reservoir system. The ACSF is removed

by suction from a second chamber located behind and connected to the

recording chamber. The entire chamber assembly is mounted in a machined
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brass plate. The temperature of the slice is controlled by heating or
cooling the brass plate with thermoelectric modules situated between the
plate and an aluminum heat sink. Temperature is monitored via a
calibrated thermistor placed in the recording chambernext to the slice.

Extracellular recording following Schaffer collateral stimulation. The

methods will follow those used in our recent studies on population

spikes (Hooper et al., 1985; Apendix items A and B). Extracellular field

potentials evoked by bipolar stimulation of CA1 stratum radiatum (the

Schaffer collaterals) are recorded with glass microelectrodes (4-8

megohm, filled with 3M NaC1) placed in the pyramidal cell layer of CA1.

Stimulus frequency is set to 0.033 Hz to avoid LTP, (except for bursts

at frequencies above I0 Hz in selected experiments to induce LTP). The

software for averaging extracellular fields has been developed for a

Cromemco A/D converter and Zenith i00 microcomputer. The software

enables us to average population spikes and determine mean spike

amplitude.

Intracellular recording. While we have recorded intracellular potentials

in a variety of tissues in past studies (Flaim et al., 1977; Horowitz,

et al., 1969, 1971, 1980, 1982), this will be the first major study in

which we will measure intracellular potentials from hippocampal

pyramidal cells. (Our previous slice studies have involved extracellular

recording.) Fortunately, pyramidal cells are relatively large cells,

which should make them relatively easy to impale. Neurons in the

pyramidal cell layer of area CA1 will be impaled with glass

micropipettes driven with a Kopf hydraulic microdrive. The pipettes

will be pulled on a Brown-Flaming horizontal puller and filled with

4.0M potassium acetate. Pipettes will then be connected to an

oscilloscope and penwriter through a WPI high-impedance preamplifier.

The preamplifier is equipped with a bridge circuit for passing a

calibrated current through the micropipette. Potentials will be measured

relative to a chlorided silver wire located in the suction chamber. A

steady hyperpolarizing current is passed through the micropipette as

cells are impaled to assist in sealing the cell and stabilizing the

resting potential. Input resistance will be determined after a steady

resting transmembrane potential is established by delivering I00 msec

hyperpolarizing pulses. Neurons will be considered healthy if they have:

(a) a resting membrane potential of at least 50 mV that is steady for i0

minutes, (b) action potentials elicited by short depolarizing pulses

delivered through the pipette, (c) an input resistance of at least 30

Mohm. Data from cells meeting these criteria will be used in resolving

the questions posed in this study.

Drug Application. Agonists will be applied to hippocampal neurons by

microinjection, microiontophoresis, or superfusion. Antagonists will be

applied by adding them to the perfusion line of the recording chamber.

Thus the agonists serotonin or 8-OHDPAT will be injected directly into

the recording chamber at concentrations of 300 nM-20 >M and 200 nM-4pM,

respectively, via a calibrated microsyringe (Hamilton). The drugs will

be introduced into the recording chamber through a small hole near the

ACSF inlet to assure consistent application. For microiontophoretic

application (Horowitz et al., 1980), glass micropipettes will be filled

with serotonin or 8-OHDPAT. In some cases, double-barreled pipettes

will be used, one barrel filled with serotonin and the other with 8-
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OHDPAT.Pipettes will be placed next to the intracellular recording
electrode in area CAt via a micromanipulator. A Dagan Model 6400
multichannel current generator is used to control drug
microiontophoresis. The antagonist methylsergide or buspirone will be
mixed with ACSFto concentrations of 30 _M and 3 j,M, respectively.
Switching between media reservoirs (with and without antagonist).will
be accomplished through the use of electric solenoid-actuated valves to
minimize pressure pulses to the impaled neuron. Rapid changeover time
will be achieved with a small recording chambervolume and minimal dead
space in the media tubing (2/3 turnover time is approximately 1.5
minutes at 1 ml/min mediumflow rate).

Protocols. EXPERIMENT i. EXTRACELLULAR RECORDING (see Figure 2) is

devoted to the development of extracellular techniques for measuring the

response of hippocampal pyramidal cells to serotonin at IG and will be

performed in the first year of the grant. We will focus on experiments

to characterize variables (e.g., concentration of serotonin) that modify

cellular activity in order to select an operating range for

reproducible, stable population spikes. The pyramidal cell response is

dependent on Schaffer collateral stimulus variables (pulse amplitude,

duration and repetition rate) and these will be varied to determine

appropriate ranges for obtaining stable recording. We have already

completed several studies characterizing the effects of temperature and

pH on the system (Hooper et al., 1985, Appendix items A and B). All

studies will be performed in the same time period to avoid any circadian

variation in sensitivity to serotonin. Slices from each animal will be

prepared as described above and placed in a holding chamber. Slices will

then be transferred individually to the recording chamber and

experiments performed such that all cells are characterized between 1000

and 1700 hours.

EXPERIMENT 2. INTRACELLULAR RECORDING (Figure 2) is a study also

scheduled for the first year of the grant. This study will develop

intracellular techniques. Hippocampal pyramidal cells in area CA1 will

be impaled and transmembrane potential and resistance measured as

described above. After the membrane potential and input resistance have

stabilized (thus establishing baseline values), agonists will be applied

via microsyringe to the bath or via a micropipette situated next to the

intracellular electrode. The following response variables will be

recorded: (a) maximum change in potential, (b) time to maximum

potential, (c) time to return to baseline resting potential, (d) maximum

change in input resistance, and (e) time course of resistance change.

Responses will not be used unless the membrane potential returns to

within 10% of baseline resting potential. After the neuron has returned

to baseline conditions, the agonist will be applied again with an

antagonist present in the bathing medium. Responses in the presence of

antagonist will be compared with those obtained without antagonist

present.

EXPERIMENT 3. EXTRACELLULAR RECORDING IN RATS EXPOSED TO 2G will be done

in years 2 and 3. Population spike amplitudes will be measured

(Methods, Appendix items A and B) for control rats and rats exposed to

2G fields. This will be a major experimental series because spike

amplitudes reflect the overall activity of the system (the output for a
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EXPERIMENTI.
EXTRACELLULARR_ORDING
Develop methods for
recording population spikes
when perfusing with 5-HT.
Check effect of stimulus
frequency. (year I)

EXPERIMENT 2.

INTRACELLULAR RECORDING

Develop methods for

recording transmembrane

potential and input
resistance when

perfusing with 5-HT

(year I)

EXPERIMENT 3.

EITRACELLULAR RECORDING

IN RATS EXPOSED TO 2G

Measure effect of 5-HT

on population spikes

after 7 day exposure to

2G field.

(years 2 and 3)

EXPERIMENT 6.

INTRACELLULAR RECORDING

IN RATS EXPOSED TO 2G

Measure effect of 5-HT

on membrane resistance

and transmembrane

potential.

(years 2 and 3)

EXPERIMENT 4.

F_TRACELLULAR RECORDING

IN RATS EXPOSED TO

1.5, 2, 2.5, 3, 3.5, _ 4G

Measure effect of 5-HT on

population spike for rats

exposed to hypergravic

fields for 7 days.

(year 3)

EXPERIMENT 5.

EXTRACELLULAR _ING

IN RATS EXPOSED TO 2G

FOR LESS THAN 7 DAYS

Measure effect of 5-HT

on population spike for

rats exposed to 2G for

varying periods of time.

(year 3)

FIGURE 2 -- Outline of experiments.
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volley of action potentials over the Schaffer collaterals). There is a
27%decrease in receptor number in rats exposed to 7 days to a 2G field.
We will be using rats similarly exposed on the small animal centrifuge
at the Chronic Accleration Laboratory).

Experiments wil 1 be performed on two groups of animaIs.. An
experimental group, consisting of 10 male Sprague-Dawley rats, will be
exposed to a 2G hypergravic field for 7 days and and a control group of
10 rats will be housed at IG. Experiments will be performed at IG
within 5 hours after transferring rats from 2G to IG. All animals
will be fed Purina rat chow and water ad libitum and housed at 23-25°C.
Animals from both groups will be identified by a code numberunknownto
the investigator making the measurements.

EXPERIMENT4. EXTRACELLULARRECORDINGIN RATSEXPOSEDTO 1.5, 2, 2.5, 3,
3.5 & 4G will be carried out in year 3 provided results obtained in
EXPERIMENT3 show changes in the amplitude of population spikes. Once
data are obtained for rats exposed to a gravitational field of 2G for 7
days (for direct comparison with data on receptor number), the
gravitational field and the exposure time will be varied. The
gravitational field will be varied in 0.5G steps from 1 to 3G for 7 day
exposure periods. The intent of this experiment is to determine if the
modulatory effect of serotonin on electrical activity is a function of
the gravitational field amplitude.

EXPERIMENT5. EXTRACELLULARRECORDINGIN RATSEXPOSEDTO 2G FORLESS
LESSTHAN7 DAYSwill be carried out in year 3 provided results obtained
in EXPERIMENT3 showchanges in electrical activity. Holding the field
at 2G, the period of exposure will be shortened to determine the minimum
time required to detect effects on acclimation.

EXPERIMENT6. INTRACELLULARRECORDINGIN RATSEXPOSEDTO2G will be done
in years 2 and 3. This is a major experimental series comparing
resistance and transmembranepotential changes in rats exposed to 2G and
IG.

(In developing techniques for the six experiments both hamsters and rats
will be used.)

5. Data interpretation

Changes in the amplitude of population spikes will first be compared
between animals exposed to IG and to 2G for 7 days. A significant
decrease in mean spike amplitude in rats exposed to 2G vs IG controls
would demonstrate that functional neuronal changes accompany the

observed reduction in receptor number. The extent of these changes

would be then determined as the gravitational field is increased and as

the period of exposure is decreased.

Changes in transmembrane potential in response to serotonin or a 5-HT I
agonist will be compared in hippocampal slices from rats exposed to a Z

G hypergravic field and control rats kept at i G. A significant change

in rats exposed to hypergravity would lend support to the hypothesis

that there is a direct affect of the gravitational field on hippocampal

serotonin responsiveness. No significant change in serotonin

14



responsiveness in rats exposed to hypergravity would indicate that
membrane (receptor) changes induced by gravity are not reflected in
changes of electrical activity.

Changes in input resistance in response to serotonin or 5-HT1 agonist
will be compared in hippocampal slices from rats exposed to a 2 G
hypergravic field and control rats kept at 1G. Changes in input
resistance will be comparedwith changes in transmembranepotential to
determine if resistance and transmembranepotentials are correlated with
gravitational fields. A decreased resistance (or an increased
conductance) would indicate an increase in the numberof open channels.

C. SIGNIFICANCE

This proposal outlines neurobiological experiments on rats at earth
gravity and in hypergravic fields. The series of experiments deal with
serotonin receptors in the hippocampus. Receptor binding has been shown
to be modified by microgravity and hypergravic environments. This study
will focus on electrical activity mechanismsat the membranelevel as a
link to functional changes.

Core experiments will use animals exposed to 2 G fields for 7 days. The
period of 7 days is chosen so that data obtained at 1G and 2 G can be
compared with recent Spacelab 3 experiments and with hypergravic
experiments on serotonin receptors. Moreover, there is a great deal of
data available on rats exposed 2 G fields.

The results of the proposed experiments serve as baseline data for
future studies in hypogravic fields, including experiments on a space
station. The studies involving the neurotransmitter serotonin will
provide data on the effects of hypergravic fields and determine whether
the numberof binding sites is accompaniedby changes in physiological
function. If so, further experiments involving this transmitter could be
performed on neural tissue after prescribed periods of exposure to a
microgravity environment, with analysis of tissue samples performed
shortly upon return of the animals to earth.
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E. PROGRESS REPORT (1985-1987)

Description of research. Over the past year we have shifted our

experimental work almost completely to the hippocampus and away from

studies on thermoregulation and the vestibular and auditory system. Our

hippocampal experiments are related to a striking experimental finding

from Spacelab-3, namely that there is an elevation in serotonin binding

in rats exposed to microgravity for 7 days. This observation led us to

focus primarily on developing techniques to study the hippocampus where

the changes in receptor number have been reported. The goal of the

experiments was to lay the basis for determining if there are functional

changes in hippocampal neurons after exposure to hypergravic fields.

In addition to hippocampal studies, we completed experiments on

vestibular, auditory and thermoregulatory systems that concluded a

series of NASA supported projects on sensory mechanisms and regulatory

systems.

Thus we finished one series of experiments and started another one on

hippocampal slices. All focused on central neural function as modified

by altered accleration fields.

Hippocampal studies. Our major emphasis in recent experimental studies

was centered on mastering the hippocampal slice preparation. A primary

goal was to gain command of the techniques for recording electrical

activity in the hippocampal slice preparation. We focused on thermal and

pH effects on hippocampal electrical activity. With our shift in

emphasis to the effects of neurotransmitters on cellular activity, a

simulation study was completed on the effects of temperature on ion

channel activity in hippocampal cells (Appendix C).

Experimental methods The hippocampus was sliced and placed in chilled

artificial cerebrospinal fluid (ACSF). Slices 400-450 microns thick

were cut perpendicular to the long axis of the hippocampus with a

McIlwain tissue chopper and placed in a holding chamber. The chamber

was provided with humidified 95% O 2 / 5% CO 2 gas. The ACSF consisted of

(in mmoles): 124 NaC1, 5 KC1, 1.25 NaH?PO 4._ MgS04, 26 NaHC03, 2 CaC12,
and i0 dextrose. At 37°C, the osmolar_ty was 305 +5 mOsm and the pH was
7.4.

Approximately 1-2 hours after tissue dissection, a slice was transferred

from the holding chamber to the submerged, constant-perfusion slice

chamber. The slice was submerged in ACSF between two nets, the top net

serving to hold the slice in place. The tissue was constantly perfused

with oxygen-saturated ACSF at a rate of 1.5 to 2 ml/min via a gravity-

fed reservoir system. The ACSF was removed by suction from a second

chamber located behind and connected to the recording chamber.

Temperature was monitored via a calibrated thermistor placed in the

recording chamber next to the slice. Action potentials from a

population of hippocampal pyramidal neurons were evoked by stimuating an

afferent fiber tract, the Schaffer collaterals. The temperature and the

pH of the ACSF bathing the slice were varied by controlling the

temperature of a water chamber jacketing the recording chamber.
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Experimental results. The effects of pH and temperature on hippocampal

slices were studied in detail (references 5A, I, 3, 4 and 6).

Thresholds for evoked activity were significantly different in noncold-

acclimated, cold-acclimated and hibernating hamsters, and may reflect

acclimation of hippocampal neurons to cold. Plots of population spike

amplitude (action potentials from a group of pyramidal cells) versus

temperature have bell-shaped curves. The population spikes increased in

amplitude as temperature was lowered from 35°C, reached a peak amplitude

between 25 and 20°C, and then decreased until a response could not be

evoked when temperature was further lowered. Techniques were thus

developed for studying population spikes in the slice over a range of

bath temperatures. Pilot studies on the effect of serotonin on

population spikes were initiated. These techniques will be used in the

experiments proposed in this grant renewal.

Simulation of the effect of temperature on ion channels in nerve

membranes. We have developed a model to predict the effect of

temperature on the electrical activity of a hippocampal pyramidal cell

(5). With the development of brain slice techniques for voltage-clamping

single cells, several types of ion channels in membranes of mammalian

nerve cells have been identified and characterized in sufficient detail

to allow a simulation of channel currents. Four populations of membrane

channels in the pyramidal cell were simulated. Equations for current

through these ion channels are similar to those first developed by

Hodgkin and Huxley for sodium and potassium channels in the squid axon

and more recently extended by Traub to include not only these channel

types but, in addition, calcium and calcium-mediated potassium channels

in hippocampal cells. Voltage and/or concentration dependent rate

functions were used to describe the kinetic behavior of each population

of channels. A temperature dependent term was included for each rate

function to simulate the effect of changing temperature on neural

activity. Model simulations correspond to experimental data over a

range of temperature from 40°C to 35°C.

Vestibular and auditory system. Pulse angular acceleration evokes short

latency far-field responses that can be attributed in large measure to

the activation of the vestibular periphery and brain stem nuclei. The

frequency spectrum of bone conducted vibrations coupled to the skull of

rats during impulse angular acceleration stimulation was estimated to

have greatest power at 2-3 kHz. The intensity of these vibrations was

approximately 5 dB lower than the vibrations evoked by bone-conducted

auditory clicks, which had their greatest power between 9 and II kHz.

Moreover, the amplitudes of the first two major components of the

response evoked by angular acceleration were greater than the first two

major components of the response evoked by bone-conducted clicks. These

results indicate that in rats, one can evoke far-field responses due to

activity over the vestibular system and that this activity can be

distinguished from auditory evoked responses (2, 9, I0).

Our data confirms a previous report that noninvasive procedures can be

used to record brainstem vestibular evoked responses in rats. Particular

attention was devoted to ruling out the possibility that what had been
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called a vestibular response was in reality an auditory response.
Stimulus characteristics were precisely determined. Using this type of
stimulation, the amplitudes of the first two major components of the
response evoked by angular acceleration were greater than the first two
major componentsof the response evoked by bone-conducted clicks.

Thus, two independent laboratories have reported brainstem vestibular
responses. These far-field potentials provide a meansto record overall
brainstem activity using noninvasive techniques. Wehave concluded
experiments in this area and have manuscripts in preparation. (While we
have turned our attention to the hippocampus, one of our former
collabo_tors, Dr. T. Jones, is carrying on an indepedent series of
studies on brainstem-evoked responses based, in part, on these studies.)

Thermoregulatory studies Previous studies in a variety of laboratories

showed that the rat, dog, and monkey have an impaired ability to

regulate their body temperature when exposed to hypergravic fields. One

set of experiments using the rat was directed toward clarifying

mechanisms underlying this impairment. The rat was chosen as an

experimental animal because of studies at earth gravity, i G, that

provided basic background for further studies both at zero-G and in

hypergravic fields from 1.5 to 4 G.

One series of completed experiments (7) showed that rats acclimated to a

gravitational field of 2.1 G are able to regulate their core temperature

better when cold stressed at 2.1 G than are rats acclimated at earth

gravity (I G). Rats acclimated to 2.1 G also increased tail temperature

(T t) and decreased core temperature during exposure to 5.8 G. Thus,

rats acclimated to 2.1 G were not able to regulate their temperature

when exposed to higher gravitational fields. Acclimation did not result

in a change in thermoregulatory ability at 1 G. It appears that rats

acclimated to i G conditions continue to regulate their core

temperature, albeit at a lower core temperature, when placed in a

hypergravic field of 2.1 G.

Another series of completed experiments (2, 8) compared groups of rats

acclimated to gravitational fields of 1 or 2.1G. That is, one group was

born and raised at 2.1G and belonged to the 12th generation of rats

living continuously on a centrifuge in a 2.1G field, except for brief

periods of routine care at 1G. The finding that rats acclimated at 2.1

G could thermoregulate better than rats raised at I G when cold stressed

at 2.1G shows that acclimation to a hypergravic environment can modify

the activity of a neural control system in mammals. However, rats

acclimated to 2.1G were not able to regulate their core temperature

when first exposed to 5.8 G indicating that acclimation at one level of

a hypergravic field does not improve the ability of the animal to

thermoregulate at higher field levels.

(While we have concluded the experimental series on temperature

regulation in rats exposed to hypergravic fields, one of our

early collaborators, Dr. C. Fuller, is carrying on related hypergravic

studies on temperature regulation and circadian rhythms.)
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g. BUDGET

Grant No. : NASA NAG 2-341

Period covered by budget: March 1, 1988 - February 28, 1991

SALARIES

Staff Res. Assoc.

Employee Benefits

Total Salaries

SUPPLIES

Animal procurement & care,
misc. lab supplies, publication

costs, equipment maintenance.

EQUIPMENT
Electronics & micromanipulators

for intracellular recording

and signal processing.

TRAVEL

P.I. to present papers at FASEB

and at ASGSB annual meetings.

1988-89 1989-90 1990-91

16,000 17,000 20,000

4,640 5,100 6,200

20,640 22,100 26,200

3,000 4,000 5,000

4,500 3,000 1,000

2,000 2,100 2,300

TOTAL DIRECT COSTS

TOTAL INDIRECT COSTS

(39.2%)

TOTAL

30,140 31,200 34,500

10,051 11,055 13,132

$40,191 $42,255 $47,632
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H. BUDGET JUSTIFICATION

We have the equipment required for the proposed experiments on

hippocammpal slices except for two micromanipulators to hold

additionalelectrodes for stimulating fiber tracts and/or to hold

pipettes for iontophoretic injection of compounds and for measuring

electrical potentials.

I. AVAILABLE FACILITIES

We have the standard hippocampal slice equipment required to stimulate a

fiber track (in our experiments Schaffer collaterals) and record

extracellular and intracellular activity in hippocampal pyramidal cells.

Thus we have an air table, Brown-Flaming microelectrode puller, WPI

amplifier, Zenith computer, XY plotters, WPI stimulators, and associated

electronic equipment.

The PI has a laboratory of over 800 sq ft. In addition, the facilities

at the Chronic Acceleration Research Unit on the Davis Campus, including

animal centrifuges in the Unit, will be used to expose rats to a

hypergravic environment.
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