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VARIATIONAL METHODS IN SENSITIVITY ANALYSIS AND

OPTIMIZATION FOR AERODYNAMIC APPLICATIONS

By
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Department of Mechanical Engineering

Old Dominion University

Norfolk, Virginia 23529

ABSTRACT

Variational methods (VM) sensitivity analysis, which is the continuous alternative to the dis-

crete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality

conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equa-

tions, the variational methods use the generalized calculus of variations, in which the variable

boundary is considered as the design function. The converged solution of the state equations

together with the converged solution of the costate equations are integrated along the domain

boundary to uniquely determine the functional sensitivity derivatives with respect to the design

function.

The determination of the sensitivity derivatives of the performance index or functional entails

the coupled solutions of the state and costate equations. As the stable and converged numerical

solution of the costate equations with their boundary conditions are a prioi unknown, numerical

stability analysis is performed on both the state and costate equations. Thereafter, based on

the amplification factors obtained by solving the generalized eigenvalue equations, the stability

behavior of the costate equations is discussed and compared with the state (Euler) equations.

The stability analysis of the costate equations suggests that the converged and stable solution
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of the costate equation is possible only if the computational domain of the costate equations is

transformed to take into account the reverse flow nature of the costate equations.

The application of the variational methods to aerodynamic shape optimization problems is

demonstrated for internal flow problems at supersonic Mach number range. The study shows,

that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable

range for engineering prediction purposes, the variational methods show a substantial gain

in computational efficiency, i.e., computer time and memory, when compared with the finite

difference sensitivity analysis.
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Chapter 1

INTRODUCTION

This chapter presents the global picture of design optimization and sensitivity

analysis, briefly analyzes the historical and current state of optimization

methodologies, outlines the motivations and objectives of the present research,

and gives a short prelude to the remaining chapters.

1.1 Overview of Aerodynamic Design Optimization and Sensitivity Analysis

In the early times of flight, improvement of vehicle performance was mostly

based first on intuition, empirically accumulated databases, and cut-and-try

procedures [1,2]. Even recently, wind tunnel testing is being employed to perform

optimization work to obtain airfoil performance criteria [3]. While this approach

gave many valuable technical assistances, it was unable to furnish quick and

reliable information to perform on-line design changes.

In recent years, aerodynamic performance has been analyzed by a method of

mathematical optimization. Optimizations can be performed either by those

methods which need no gradient evaluations or by those which require gradient

information.

1.1.1 Nongradient Methods

Variational methods (VM) were widely used to replace nonlinear partial

differential flow equations and their boundary conditions with nonlinear algebraic

equations and their corresponding boundary conditions so that approximate
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solutions could easily be obtained. Bateman [4] is known for his formulation of

the irrotational compressible inviscid flow using variational principles. Rasmussen

and Heys [5] have extensively applied the application of variational methods to

potential flows.

Although the variational methods were used for the flow analysis in Refs. 4

and 5, their application for design purposes is also well documented. With the

Newtonian flow assumption and the linearized supersonic flow analysis, Miele [6

11] used the variational methods (VM) to obtain the optimality criteria. Then,

employing this optimality criteria, he determined the geometry of a slender body

of revolution having minimum pressure drag, optimized a two-dimensional wing

for minimum pressure drag, designed optimal airfoils for supersonic speeds, and

computed the optimal path for vehicles flying in different mediums. This approach

has been used in solving many interesting and complex engineering problems

with application to diversified fields, such as atmospheric and oceanographic

studies [12,13] and planetary sciences [14]. To design nozzle shapes, Rao [15]

combined variational approach and characteristic methods. Shmyglevskii [16]

used VM and methods of characteristics to predict wave drag of high Mach

number flow. Mikhlin [17] treated many mathematical-physics problems using this

same method. In line with Rao [15], Thompson and Murthy [18] combined the

characteristics methods and VM to design a three-dimensional rocket motor

nozzle. In this class of optimization [6 - 18], the complete form of the Euler-

Lagrangian equations and their boundary conditions are derived from the

augmented Lagrangian and, thereafter, they are solved for the extremizing

functions or curves until the measure of criteria is satisfied.

From the combination of wide range of experiences in flow physics and wind

tunnel techniques, the other category of optimization, i.e., the inverse design

approach, has made immense contributions to design optimization. Lighthill [19],
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in his pioneer work of optimization, showed how to numerically optimize a two-

dimensinal airfoil for a prescribed pressure distribution using an inverse design

approach. An ample number of researchers [20 - 24] have also applied this same

method from lower subsonic to hypersonic flow regimes in two-and three-

dimensional problems. Using a stream-line curvature method, Campbell [25] has

also applied this approach to solve constrained optimization to design airfoils.

The inherent problems with this approach, though, are the limitations in casting

all relevant design problems in the form amenable to the inverse design

optimization procedure and the requirement of high level of expertise to

determine a priori the target objective functions. For this approach to work, the

physics of the flow must be determined a priori in terms of the pressure or other

quantities, and thereafter, the geometry that matches the above physical criterion

must be sought.

The other categories are the neural-network optimization approaches [26 -

29]. While their applications are gaining momentum, they also have drawbacks

due to the need for an extensive database, prior ideas about the optimal solution,

intensive computations, and large computer memory.

Note that all the design approaches mentioned previously do not require

gradient computations. Therefore, they are efficient for moderate optimization

problems. The limitations, though, are that those approaches are restricted to a

certain class of problems with large databases and immense expertise and are

confined to simplified geometries and flow field equations.

1.1.2 Gradient-Based Methods (Numerical Design Optimization)

With the advantage of modern hardware and software computer technologies,

numerical design optimization and sensitivity analysis are currently solving
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complete aircraft design in two-dimensional Navier-Stokes and three-dimensional

Euler equations of the fluid flow.

1.1.2.1 Finite Difference Sensitivity Analysis

The simplest, but the most expensive, sensitivity analysis technique used by

gradient-based optimization methods is the finite difference approach. This

method uses the one-sided or central-difference alternative to evaluate the

sensitivities of performance functionals, and consequently, the computational

time invested would increase with the increment of the number of design

variables. This is due to the requirement to perturb each design variable by an

appropriate step size and then compute the flow field variable for each new

perturbed design variable with the chosen flow solver. This approach has an

additional problem to determine the correct step size a priori so that the correct

gradient is predicted within a given degree of accuracy. Despite its shortcomings,

Huddelston and Mastin [30], and others, have applied this approach in their

design procedure with Euler and Navier-Stokes equations as their flow field

approximations. In the optimization package for general purposes optimizations,

Vanderplaats [31] has also incorporated finite difference as an alternative to

acquire the gradient information.

1.1.2.2 Discrete Sensitivity Analysis

The other category of sensitivity analysis technique is the discrete analysis

approach. The computation of the sensitivity equations is based on the Implicit

Function Theorem. Due to the implicit dependence of the functional (objective

function) and constraints on the flow field quantities, the determination of the

sensitivity derivatives is related to obtaining the derivatives of the flow field vector

with respect to the design variables. As the flow field equations are in most cases
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solved in a computational domain, the functional dependence of the metric terms

and the coordinate points with respect to the design variables are also required.

This approach first calls upon the multiplication and assembly of various terms to

a very large sparse linear algebraic equations, which depends on the number of

design variables, and then solution of these sparse system of algebraic equations

for the derivatives of the solution vector with respect to the design variables.

Despite the large computational intensity and huge memory requirements of this

approach, the versatility to incorporate many types of constraints, the need to

perform multidisciplinary designs of moderate geometrical complexity, and the

flexibility to incorporate it with any existing optimization algorithm make it

attractive to perform design and shape optimizations.

A wealth of literature can be found for this category. Hicks [32] and

Vanderplaats [33,34] have used the discrete approach to design airfoils in

transonic flow regimes. Pittman [35] has also used this procedure for supersonic

flow conditions. Using the small perturbation equations in two dimensional flows,

Elbana and Carlson [36] have also employed the technique. Recently Baysal and

Eleshaky [37,38] and Eleshaky and Baysal [39] used this method for both internal

and external flow problems. They also integrated the domain decomposition

method in solving the sensitivity equations. Burgreen and Baysal [40,41] and

Burgreen [42] further extended the methodology to the three-dimensional wing

optimization and introduced an efficient way of parameterizing the curves and

surfaces using the Bezier polynomials. Lacasse [43] applied the method to

optimize multielement airfoils for two-dimensional, thin-layer, Navier-Stokes

laminar equations. With a variant of approximation to the fluid flow, Taylor et al.

[44,49], Newman et al. [45], Korivi et al. [46,48], and Hou et al. [47] introduced an

incremental iterative technique to obtain the gradient information. In doing so,

they have applied this new approach not only to the two-dimensional Euler and
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thin-layer Navier-Stokes turbulent equations for internal and external flows but

also to the three-dimensional Euler equations in supersonic flow regimes.

1.1.2.3 Variational Sensitivity Analysis

The new emerging sensitivity analysis technique for gradient-based

optimization methodology within the optimization community is the continuous

sensitivity (variational sensitivity) analysis which fully exploits the variational

methods. From the modified functional, this approach derives a set of partial

differential equations (PDEs), i.e. the costate equations with their boundary

conditions and the sensitivity equations. In computing the sensitivity derivatives

with respect to the control points or design variables, this approach makes use of

the converged solution of the state and costate equations.

In recent years, variational sensitivity analysis has significantly contributed to

the progress of aerodynamic design optimization. Lions [50], Pironneau [51], and

Glowinski and Pironneau [52] showed the usefulness of the variational approach

in fluid mechanical problems by illustrating how to compute the minimum drag

profile in two-dimensional viscous and laminar flows. Chen and Seinfeld [53)

developed a methodology to compute the performance sensitivity derivatives

using optimal control theory. Koala et al. [54] used this procedure to solve

atmospheric diffusion problems. Koda [55 - 57] further developed this approach

and outlined a numerical algorithm for the computation of functional derivatives.

This approach is well suited to solving the optimum design problems in fluid

mechanics. Meric [58,59] treated optimal control problems governed by parabolic

and elliptic partial differential equations and solved them numerically using

variational methods. In their effort to compare the gradients obtained by "implicit"

and "variational" approaches, Shubin and Frank [60] implemented VM to optimize

the shape of a nozzle of a variable cross-sectional area for steady
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one-dimensional Euler equations. Hou and Sheen [61] used a class of VM to

derive second-order shape sensitivity equations of heat conduction problems.

Jameson [62] regarded the boundary of the flow domain as a control parameter

and then designed airfoils using the potential as well as the two- and three-

dimensional compressible inviscid flows. Cabuk and Modi [63] implemented a

perturbation method to compute the optimum profile of a diffuser for a maximum

static pressure in a two-dimensional steady viscous incompressible flow. Ta'asan

et al. [64] have successfully implemented variational methods and optimized an

airfoil in the potential flow field. Quite recently, Ibrahim and Baysal [65]

demonstrated the versatility of the variational methods to solve aerodynamical

design problems for internal flows in different Mach number regimes including

shock flows. Following the same approach as Jamson [62], Reuter and Jameson

[66] optimized airfoils in potential flows. Also following the same solution method

of Ta'asan et al. [64], Kurivila et al. [67] used the potential equations as their state

equations and optimized the NACA 0012 airfoil for a given pressure distribution.

Iollo and Salas [68] used variational methods to solve two-dimensional internal

flow optimization problem with embedded shock to match a pressure distribution.

In addition to the general application of VM, many researchers have also

proposed a numerical algorithm to accelerate convergence and improve

efficiency for optimal design problems [69,70]. In this class of optimization, the

functional sensitivity derivatives are directly coupled to the solution of a set of

linear partial differential equations, i.e., the costate equations and their boundary

or transversality conditions that result from the variation of the augmented

Lagrangian function. The success of any optimization by this approach is,

therefore, destined to a stable and converged solution of the costate equations.
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1.2 Stability Analysis of Euler and Costate Equations

The most popular schemes to advance any PDE, such as the Euler equations

to steady-state solutions, are the implicitly factored time integration schemes

(ADI). Unfortunately, approximate factorizations introduce errors that propagate

throughout the computational domain. As a result of this, the stability limit is

drastically reduced and the convergence rate deteriorates. To propose the range

of Courant-Friedrichs-Lewy (CFL) numbers for which the allowable maximum

eigenvalues are predicted, a stability analysis of the Euler and costate equations

for the optimization purposes is conducted.

Jesperson and Pulliam [71] studied the stability characteristics of the Euler

equations for different flux-splitting methods. Anderson and Thomas [72] further

conducted stability analysis on the complete three-dimensional Euler equations.

Demuren and Ibraheem [73] have also pursued an extensive and complete

stability analysis of one-, two-, three-dimensional Eluer and two- and three-

dimensional Navier-Stokes equations. The common conclusion of these

researchers [71 - 73] is that the stability solutions of state equations are impaired

becauase of factorization and are dependent on the types of splitting and flux

approximations. Also, the stability deteriorates as the dimensionality of the fluid

equations increases. The stability problem associated with the numerical

integrations of the costate equations was reported in Ibrahim and Baysal [65].

Although no stability analysis was performed for the costate equations in Ref. 65,

its convergence and stability were assured by taking into account the reverse

flow nature of the costate equations.
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1.3 Motivations

The advantage and disadvantage of the various approaches to perform

design optimizations and sensitivity analysis are briefly discussed in Sec. 1.1.

The main thrust of the exposition is intended to understand the complexities

involved in each approach and to take advantage of the best of each approach

as complementary to the others to realize a certain level of optimization goals.

The major problems associated with any gradient-based numerical

optimization are the penalties incurred because of the computational memory

and time in obtaining the sensitivity gradients. These bottle-necks can be

attributed to the repetitive need to solve the flow analysis for a change of any

design variable and the huge memory allocation needed to store the derivatives

of the objective function and constraints with respect to the design variables. This

problem becomes more acute when one wants to design complex geometry

using full Navier-Stokes equations at many design points in a multidisciplinary

mode. While enjoying wide popularity and applicability, discrete sensitivity

analysis has the previously mentioned potential limitations. Although no

methodology exists which would overcome the aforementioned pitfalls of

numerical optimization problems with the current state of computing facilities,

sensitivity analysis by the variation methods (VM) is proposed in this study to

partially alleviate the problems associated with huge memory allocation for

moderate two-dimensional Navier-stokes and three-dimensional Euler equations.

In this study, the motivation can be streamlined into three sub groups: efficiency

in memory, efficiency in time, and generality in application.

1.3.1 Computational Efficiency

Independent of the approach one adopts, the complete optimization of

gradient-based approach requires a repetitive solution of the state equations.
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This being common to all, one is also concerned with the computational intensity

and memory efficiency in the pursuits of the optimal solution. Here, efficiency is

measured by the number of mathematical operational counts (time) associated

with the computation and the computer memory saved in using the new proposed

approach. The sensitivity analysis by the variational methods (VM) proposed in

this study overcomes some of the critical issues by having some flexibility. First,

the sensitivity analysis by VM involves the solution of the costate equations with

their boundary conditions for already converged solution of the state equations.

Also, because there are no metric and grid sensitivities as a result of a unique

feature of the sensitivity analysis by variational methods, a substantial saving in

computer memory is achieved. This is detrimental in large two-dimensional

Navier-stokes and three-dimensional Euler equations.

1.3.2 Generality of the Variational Approach

First, since the costate equations are once and for all derived from the

continuous PDE of the state equation, any robust solution method can be

adopted to furnish the converged solution so that the costate equations can be

solved until convergence is attained. This means that one does not necessarily

have to solve the original state equation from which the costate equations are

derived. Secondly, any other convenient discretization methods different from the

type of discretization one uses for the state equations can be selected for the

costate equations. The requirement that the costate equations be discretized

exactly the same way as the state equations is shown not to be necessary, at

least for quasi one-dimensional Euler equations [74]. Thirdly, any time integration

method different from the time integration method used for the state equation can

be selected to advance the costate equations to steady state. The fourth point to

mention is the design variables. In the approach proposed, note that the shape of
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the domain is considered as the design parameter, and its contribution to the

functional sensitivity derivatives is directly incorporated as shown in Chap. 3 and

Appendices B and C.

1.4 Objectives

From the short motivations mentioned in Sec. 1.3, one would set the following

objectives for the this study:

(I) Develop a design optimization methodology based on sensitivity computed

by the variational methods (VM), which is computationally efficient and

general for aerodynamic optimization applications.

(2) Investigate the causes of slow convergence and establish stability criteria

for the costate equations by performing a complete stability analysis of the

costate and Euler equations.

(3) Demonstrate the concept on quasi one-dimensional Euler flow problems.

(4) Extend the methodology to two-dimensional Euler equations of internal

flows.

1.5 Prelude to Chapters 2 - 7

Chapter 2 presents the general two-dimensional Euler equations of the fluid

flow in conservative forms as used in the general purpose CFL3D computer code

[75] and the quasi one-dimensional Euler equations in conservative and

nonconservative forms [76]. Chapter 3 gives a detailed procedure for

aerodynamic sensitivity analysis of a two-dimensional nozzle problem by the
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variational methods including the pertinent formulations and, finally, the

derivation of the costate equations, their boundary conditions, and the sensitivity

equations. Chapter 4 addresses the numerical approximations, discretizations,

and time integrations of the costate equations. As the numerical solution of the

costate equations are the prerequisite to obtain the gradient information, a

complete numerical stability analysis is presented, and the results are discussed

in Chap. 5 for the one- and two-dimensional equations of the costate and Euler

equations. Chapter 6 demonstrates the applications of variational methods for

sensitivity analysis by applying it to the quasi one-dimensional Euler equations

for conservative and nonconservative flow field quantities. Chapter 7 discusses

the optimization results for two-dimensional internal flow problem of the proposed

approach for aerodynamic sensitivity analysis, and Chap. 8 finalizes the

proposed theme (variational methods) and gives some recommendations for the

future work in this particular area.



13

Chapter 2

FLOW FIELD ANALYSIS

2.1 Rationale for Two-Dimensional Euler Equations

One of the integral parts of an optimization procedure is the correct

approximation of the state equations. Depending on the simplicity, efficiency, and

accuracy of the optimization procedure, any level of approximation to the flow

physics can be adopted. To demonstrate the proposed optimization

methodology, i.e., the variational methods (VM), we have chosen the Euler

equations in conservative form. The choice of the state equations in conservative

form renders it simpler to derive the costate equations along with their auxiliary

conditions and sensitivity coefficients.

2.2 Governing Equations of Two-Dimensional Euler Equations

The Two-Dimensional, unsteady, Euler equations can be written in an integral

form as [75,77]

[!_ O-_t--_ + f_ G._IdS=O (2.1)

where (_ represents the vector of fluxes that is represented by

(_ = Eoi'+Foj (2.2)
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Here, E, and F are the cartesian flux components and 7, and ] are the unit

vectors in the x and y directions, respectively. In Eq. (2.1), _/ is the unit normal

pointing outward at the boundary and is defined as

=[..,.,]" 1 3/

The conservative dimensionalized solution vector and fluxes of the two-

dimensional Euler equations in the Cartesian coordinate systems are given as

Q_.= [p,pu, pv,pe, ] T (2.4)

E = [pu,pu z + p, puv,(pe, + p)u] T

F = [pv,pvu,pv2+ p,(pe, + p)v] r

(2.5)

(2.6)

where p, u, v, e,, p, E, and Fare the density, velocity in the x direction,

velocity in the y direction, total internal energy, pressure, flux in the x direction,

and, flux in the y direction, respectively.

By an assumption of a smooth continuity on the integrand and application of

the divergence theorem, Eq. (2.1) can be transformed to its mathematically

equivalent differential form as

a aeaF
__+n+__=6 (2.7)
at ax o_

Given the reference length L, the free-stream density p., and the free-stream

speed of sound a. the dimensional solution vector Q, and the other relevant
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dimensional quantities in Eq. (2.7) are nondimensionalized with the help of the

following definitions:

x = -- y = -- (2.8a)
L L

u = -- v = -- (2.8b)
a. a.

P= /5 P- /5 (2.8c)
p_ p,a 2-

where the tilda denotes a dimensionalized quantity. To perform time integration in

uniform meshes, Eq. (2.7) is further transformed to a boundary-conforming space

by use of stationary generalized curvilinear coordinate transformation as follows:

= _(x,y) rl = rl(x,y) z = t (2.9)

With the help of Eqs. (2.8) and (2.9), Eq. (2.7) is transformed to

0(2 + 0E 0/_" =0 (2.10)

where

j _ 0(_, rt) _ (x_y. - x.y_)-'
O(x,y)

(2.11)

=_ = j r.....-..-. ].-- - -J"-','-'u,'-'v,'-'e,"
J

(2.12)
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U =_,,u+_,v (2.13a)

m

V = 71,u + r/yv (2.1 3b)

[_= J-'[pU-,puU + P_,pvU + P_y,(P + e,)U] r (2.1 4a)

F" = J-'[pV, puV + P71,,pvV + P71,,( P + e,)V] v (2.14b)

In Eqs. (2.12) - (2.14), (2 is the vector of conservative variables, E and F are the

fluxes, U and V are the contravariant velocities in the new coordinate systems,

and J is the Jacobian of transformation. The pressure P is related to the field

variables through

P = (7 - 1)p{e, - 0.5(u 2 + v2)} (2.15)

The various metric terms in Eqs. (2.9) - (2.14) are computed as

_,, = JY,7 71, = -Jy¢ _y = -Jx,7 71y= Jx¢ (2.16)

2.3 Solution Algorithm

The basic governing equations and their formulations in the finite volume

sense are presented in this section. Also, the various steps in approximating and

advancing the solution to the steady state are briefly discussed.

2.3.1 Finite Volume Formulation

The guarantee to satisfy the mass, momentum, and energy across the cell

faces, the ease with which to deal with complex geometries and discontinuities,
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and the choice to work either on the physical or computational domain make the

finite volume approach preferable to the finite difference approach. In this two-

dimensional approach, the conserved field variables are cell-area averaged and

computed at the cell center while the fluxes are computed at the cell faces with

these cell-centered quantities. If one integrates Eq. (2.6) over the control volume

bounded by lines of constant _ and 77, then the resulting semidiscrete equations

beco m e:

¢)Q_ (2.17)

where i and j are the grid points. We have also taken

A_=I At/=1 (2.18)

and the cell-averaged Q_.j is computed as

(2.19)

2.3.2 Inviscid Upwind Spatial Differencing

A Monotone Upstream Centered Scheme for Conservation Law (MUSCL) is

generally adopted in the CFL3D computer code [75]. For instance, the derivative

in the _ direction is

(2.20)
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where the cell-face fluxes are constructed from the cell-center solution variables,

which are located on the left and right sides of the cell faces. Mathematically, the

fluxes can be expressed as

(2.21)

where _-T-are the nonconservative variables constructed from the upwind biased

interpolations given by

(2.22a)

(2.22b)

with k assuming three different values depending on the order of approximation.

For instance, k = 1 for central difference, = 1/3 for the third-order upwind-biased,

and = -1 for the second-order fully upwind. For flows with large flow field

discontinuities, such as shocks, flux limiting of Chakravarthy-Osher [77] are used

to maintain monotonocity. This can be achieved by

A+ = max[O, min(A+sgnA_,flA_sgnA+)]sgnA, (2.23a)

A_ = max[O, min( A_sgnA+,flA+sgnA_)]sgnA_ (2.23b)

with

fl _ (3 - k)
(l-k)

(2.24)
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and

_=[p,u,v,P] T (2.25)

Also, a number of other upwind-biased interpolations are available in the

literature, such as the Spekreijse, ENO, Venkat, and Superbee [78].

2.3.3 Van Leer Flux-Vector Splitting

The most popular flux-vector-splitting schemes in Computational Fluid

Dynamics (CFD) are the Beam-Warming [79] and Van Leer [80] flux-vector

splittings. The Beam-Warming fluxes are constructed from the approximate

fluxes. The Van Leer fluxes, on the other hand, are computed from the exact

fluxes that fulfill definite criteria to maintain continuous differentiabilty at sonic and

stagnation points. Because of this advantage over the Beam-Warming flux-

vector-splitting method, the Van Leer method is adopted in this analysis. In

practical computation, the Van Leer fluxes and flux Jacobians are split into

positive and negative contributions by use of the local Mach number computed

normal to the cell face. The local Mach number, in the _ direction for instance, is

computed as

m

U U

U= V(_) Me a (2.26)

where a is the local speed of sound and U is the contravariant velocity. For a

flow where Me[ > I, the positive and negative fluxes are expressed assupersonic
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E+ = #, E- = 0 for Me > ! (2.27a)

_E- = _, L'+ = 0 for Me < -1 (2.27b)

For subsonic flow where M¢I

constant _ is given by

< 1, the flux in the normal direction of the cell for

(2.28)

The split fluxes in the 77 direction can be likewise obtained by replacing _ with

77.

From Eqs. (2.24) - (2.28), the split Jacobians in the _ and q directions,

respectively, are obtained from the Van Leer fluxes, which are given in Appendix

E, as

°_'-((2+) =A+ ,;,- (2.29)_.+ a_÷(_-) __= _, +

#+- a_+(_-) #- - a'_-(_+) # =#++,_- (2.30)

2.3.4 Time Integration

Numerical integration in time can be accomplished by either explicit or implicit

schemes. The choice of the type of time integration depends mostly on

convergence, stability, efficiency with computer memory, and the flow physics.

Implicit schemes are robust and stable for any type of flow and are not restrictive

in the range of Courant-Friedrechs-Lewy (CFL) numbers. However, the explicit
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schemes are inexpensive but restrictive with the allowable CFL numbers. To

increase the range of the CFL number and assure stability, either dissipations are

added or a sort of residual smoothing is performed [81]. In the case where the

flow is unsteady, time-accurate explicit schemes are preferable even though

implicit schemes with large time steps are often used as well. Note that, even for

steady flow cases, the solution is marched in pseudo-time where the time is used

as a relaxation factor.

The application of backward Euler linearization in time whereby the higher-

order terms are neglected, the flux E in the _ direction can be approximated as

= A_ (2.31)

Equation (2.31) can be simplified further as

#"÷'(Q)=E"((_)-_ °lL'"((_) °_(_.AI: (2.32)

Now, the partial derivative of (_ with respect to time in Eq. (2.32) is approximated

by

(2.33)

Eq. (2.31) is simplified to

ae
(2.34)
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where n is the time level. If one does the same type of linearization and

approximations for the fluxes in the 7/ direction and puts the approximate

equations into Eq. (2.7), one obtains the following equations in the delta form

(2.35)

where

is the residual and

z_(2" = (2"÷'-(2" (2.37)

is the increment in the solution vector at each time level.

For an initially guessed solution which is close to the final solution, integration

methods like Newton's method or its variations can be used to drive the solution

close to zero. But when the initial solution is far from the final solution, this

method does not reach the quadratic convergence within an acceptable iteration

count. This restriction can be partially alleviated if one uses the alternating

directional implicit (ADI) method [76,77, 82]. This method operates on the

principle of first factoring Eq. (2.35) into easily manageable unidimensional

operators and then sweeping once in the _: direction and next in the 7"/ direction

or vice versa until a steady-state solution is achieved. If one applies the ADI

method to Eq. (2.35) one obtains
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(2.38a)

{I + AZ[S_/} + + _3,_/}-]}A(_" = A(2" (2.38b)

For the steady-state computation, Eqs. (2.38a) and (2.38b) are advanced by a

local time step A_: which is computed for the given CFL number as [82]

(2.39)

where CFL is the Courant-Friedrich-Lewy number.

2.4 Initial and Boundary Conditions of Two-Dimensional Euler Equations

Although the initial condition can be arbitrarily assigned, the usual practice in

the steady-state computation is to initiate the computational domain with the

reference values of the state variables. On the other hand, the boundary

condition cannot be arbitrarily assigned because the solution depends on the

unique determination of the boundary condition that stems from the physical

reasoning of the flow. The far-field boundary condition of the Euler equations, for

example, is derived from the propagation of information along the characteristics

defined by the Riemann invariants as

2a
R ± =U+_ (2.40)

7-1

Then with the help of Eq. (2.40), the normal velocities and the speed of sound at

the body surfaces can be computed. Consequently, the inflow and respectively
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the outflow Cartesian components of the velocities on the outer boundary can be

computed as

(2.41a)

and

(2.41b)

where

._=[U,v]T _=[U,V]T fi = [_,,_j,]T (2.41C)

In Eq. (2.41c), _ can be either in the _ direction or in the q direction.

For inviscid flow with impermeable and adiabatic wall conditions, the

contravariant velocity normal to the wall, and the normal derivatives of the density

and pressure at the wall are assumed to be identically zero. Mathematically, this

can be expressed by

V =0 --°_P=0 --°qp =0 (2.42)
8n an

The extrapolated density and pressure from Eq. (2.39) are then imposed

explicitly on the boundary and updated at every iteration until the solution

converges.
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2.5 Governing Equations of Quasi One-Dimensional Euler Equations

The time-dependent, compressible, quasi one-dimensional Euler equations

[76] are formulated both in the nonconservative and conservative form to

elucidate two design sensitivity approaches, i.e., sensitivity equations derived

from one-dimensional nonconservative field variables and sensitivity equations

from one-dimensional conservative variables.

2.5.1 Quasi One-Dimensional Euler Equations in NonConservative Form

The quasi one-dimensional Euler equations in nonconservative forms are

commonly expressed in terms of the conservation of mass, momentum, and

energy. These conserved quantities of mass, momentum, and energy can be

given, respectively, as

a(ps) a(p.s)
+ =0 (2.43)

Ot Ox

O(pu$) + O(pu 2 + P)S _ p d$ = 0 (2.44)
Ot Ox dx

and

a[(P+pe,)us]a(pSe,)+ = 0 (2.45)
Ot Ox

For the first approach (nonconservative field variables), Eqs. (2.43) - (2.45) are

put in their vector form as

3(S0_.)_ F (2.46)
3t
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where

Q_=[p,pu,pe,] r (2.47)

S is the cross-sectional area, u is the velocity, p is the pressure, ¢, is the total

internal energy, p is the density, and F denotes the vector of the spatial

derivatives.

2.5.2 Quasi One-Dimensional Euler Equations in Conservative Form

Unlike the nonconservative approach, this approach deals directly with the

variation of the conservative fluxes with respect to the conservative field

variables. To realize this objective, let us recast Eqs. (2.43) - (2.45) in a form

amenable to conservative formulation. If one follows this procedure, the time-

dependent quasi one-dimensional Euler equations in conservative forms are

given as

e(sO) eE
Ot _--_--x-/-/" = _ (2.48)

where

H =H,(S,Q)=Fo, pdS,o] r
L dx J

(2.49)

are the source terms.

In Sec. 2.4.1, the one-dimensional fluxes and Jacobians are computed by

both the Beam-Warming and Van Leer flux-vector-splitting techniques. In Sec.
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2.4.2, however, the Van Leer flux-vector-splitting techniques are only adopted.

The discretization, and time integration of both approaches are performed as

given in [76].

2.6 Initial and Boundary Conditions of Quasi One-dimensional Euler

Equations

For the purely supersonic flow case, the flow properties p, u, and e, are

specified at the inflow boundary; whereas, at the outflow boundary they are

numerically computed from the interior points using a second-order extrapolation.

For the supersonic-inflow and subsonic-outflow conditions, the inflow boundary

is specified as in the supersonic conditions. However, at the outflow boundary

location, the pressure is specified whereas the density and velocity are computed

from the interior by a second-order extrapolation.

In the purely subsonic flow condition, the density and the velocity are

specified at the inflow, and the pressure is specified at the outflow boundary.

During the numerical experimentation on the various ways to specify the

numerical and physical boundary conditions that produce stable and converged

solutions, it was generally observed that using first-order extrapolations of the

numerical boundary conditions both at the inflow and outflow boundaries

produced either spurious or non-convergent solutions. However, switching the

inflow boundary to a first-order extrapolation seemed to give comparable results.
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Chapter 3

AERODYNAMIC DESIGN OPTIMIZATION AND SENSITIVITY ANALYSIS

The work done with regard to general aerodynamic optimization problems is

discussed in this chapter. The pertinent elements of aerodynamic shape design

optimization and sensitivity analysis by the application of the variational methods

(VM) are also presented.

3.1 General Scope

Since the 1950's, design and shape optimization for bodies and the numerical

algorithms to improve analysis and optimization processes steadily grew. Now,

with the latest supercomputers and software technology, many design problems

are being solved in a matter of hours. Therefore, the question today is not

whether researchers want to design numerically complex parts, but rather, which

is the most reliable design and shape optimization tool. This quest ultimately

culminates in devising an algorithm to get better gradient or sensitivity

information of the functional or system responses to the change of design

variables or control functions.

3.1.1 Sensitivity Information

At the present time, three main avenues exist to get the gradient information.

The first, and the oldest one, is the finite difference approach. Depending on the

type of approximation and number of design variables, this method requires a

substantial number of converged solutions and is also dependent on the step
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size, which is always arbitrary. The gradient information is commonly obtained by

either forward, backward, or central difference approximations. With the use of

the central difference alternative, for example, the gradient is computed as

+ + #o]
OXo 2_o

(3.1)

The second category is the discrete approach. This is widely used and is

computationally intensive. In its standard form, it also requires huge computer

memory allocation, especially, for the two-dimensional complete Navier-Stokes

equations and, generally, for three-dimensional equations. This can be attributed

to the large and sparse matrices obtained from the sensitivity of the solution

vector and grid terms with respect to the design variables. Generally, the

sensitivity coefficient is derived [83] by the chain rule for implicit functions, for

instance, as

(3.2)

The derivative of the solution vector with respect to the vector of the design

variables _ can be obtained by the implicit differentiation of descrete residual

which is defined as

¢3.31

The determinations of I_-_-I and (-_ ) , which are needed in the computation

of the total gradient or sensitivitiy coefficients of the objective functional, are
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computed by use of the chain rule for implicit functions of the discrete residual

and objective functional with respect to the metric terms and the derivative of the

metric terms with respect to the design variables. This process is also done for

the gradients of the constraint functionals.

The third way of obtaining the sensitivity gradient is through the variational

methods. Unlike the discrete approach, variational methods derive the derivatives

of the functional based upon the calculus of variations. The optimal control theory

is an example of using the variational methods to derive the optimality conditions

whereby the extremizing functions (design variables) are solved for. In general,

variational design optimization blends the concepts of optimal control theory and

calculus of variations [84]. The optimal control theory states the conditions under

which the control variables, parameters, and functions or the combinations of

them can be continuously altered to meet the desired criteria. The optimal control

theory particularly focuses on the following: (1) determination of a mathematical

model of the dynamical or physical system, (2) determination of the admissible

control variables or functions, (3) specification of the performance index or

functional that can be extremized, (4) identification of the physical constraints that

produce unique and converged solutions, and (5) construction of the augmented

functional that consists of the objective functional and the constraints. After the

optimal control problem is explicitly formulated, the fundamental principles of

calculus of variations determines the variation of the augmented functional to the

variation of the admissible control variables or functions or design variables.

3.1.2 Discrete Versus Variational Methods

The discrete approach describes the local behavior of the functional that is to

be differentiated in an infinitesimal region. The variational approach, on the

otherhand, integrates the functional that is to be differentiated over the
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continuous domain or boundary. While both procedures are mathematically

equivalent, the discrete approach is based on differentiation and the variational

approach on the integration. Conceptually, differentiation is an inductive process,

whereas integration is a deductive process. Computationally, integration is a

smoothing operation, i.e., many weak integral (variational) forms can be stated,

whereas differential (discrete) approach is a noisy operation. In short, the

discrete sensitivity analysis involves prior discretization of the continuous flow

field equations and boundary conditions before they are differentiated with

respect to the design variables. On the other hand, in the variational sensitivity

analysis, the continuous state equation in the weak form of the integral is first

differentiated by use of the principle of calculus of variations and optimal control

theory to derive the costate equations, transversality conditions, and functional

sensitivity derivatives, and then they are discretized.

3.2 Constrained Optimization Methodology

A constrained optimization method in general encompasses three elements of

optimization, i.e., design variables, constraints, and objective function.

3.2.1 Design Variables in Variational Sense

In most aerodynamic optimization problems, the design variables are

generally of a geometric nature, such as the coefficients of some geometric

functions, surface grid points [83], aerofunctions [85], or polynomial functions

such as Bezier-Bernstein functions [42, 86] and spline functions [87].

Variational methods treat the boundary of the domain in a continuous fashion,

and therefore, the boundary is considered as part of the solution to the design

problem. With the assumption that the domain _ is sufficiently regular, the

location of points on the boundary -_r can be considered as a continuous design
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variable (Figs. 3.1 and 3.2). Mathematically, the coordinates of the varying

boundary in the continuous sense can be expressed as

._r =f(,_) (3.4)

where -_d are the design variables. In aerodynamic optimization problems, the

vector of design variables is provided for very limited and simplified geometries,

for instance, 4 digit NACA airfoils and some nozzles. However, for general-

purpose geometries, these control points must be determined through iterative

methods from certain functional relationships such as the Bezier-Bernstein

polynomials [42]. Because these polynomial functions are known to generate

smooth curves and surfaces for a minimal number of control points, the function

which describes the curve for the two-dimensional problem, is given by [86]

=
i=0

where

for E e [0,1] (3.5)

B_,,,(E) = C(n,i)E _(1 - E) "-i (3.6)

n!
C(n,i) = (3.7)

i!(n - i)!

In Eqs. (3.5) - (3.7), B_.,,(E) are the blending functions, which are key to the

behavior of the curve, C(n,i) are the binomial coefficients, _ is the normalized

arc length and n is the order of the Bezier-Bernsten polynomials. In this study,

with the use of Eqs. (3.4) - (3.7), the location of the control points can be

considred as the design variables.
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3.2.2 Constraints

Constraints are the integral parts of the optimization procedure that influence

the final outcome of the functional. They can be geometrical, flow-type, equality

or inequality constraints, or a combination of all or some that depends on the

particular optimization problem one wants to address.

In the design optimization process, certain constraints are bound to be

satisfied while the others are violated. Those which are satisfied encompass the

feasible domain, while the violated constraints belong to the infeasible domain.

In the variational formulation of design optimization problems, the flow-type

constraints are expressed in the integral forms. The geometrical and side

constraints, on the other hand, can be formulated either in the integral or discrete

forms. For the general variational approach, generic flow-type constraints are

expressed as

P

for j = 1,2, ..., nconf (3.8)

where F, is the deformed boundary and nconf is the number of generic fluid-type

constraints. The generic geometric-type and the side constraints can also be

given as

Gj (Xo) _<0 forj = nconf+l, nconf+2 ..... ncon (3.9)

and

X,,,.,,r <X_D < X,ff_r for i = 1 2, ndv (3.10)iD -- ' "'"
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where ncon is the total number of constraints, and ndv is the number of design

variables, respectively.

3.2.3 Objective Functional

In the variational methods (VM), the objective functional is defined in the form

of a definite integral involving an unknown state function Q, which can be

dependent on some normal vectors _ and other problem parameters. Then, the

objective functional is extremized at the converged state solution over the curve

of the surface described by the vector of design variables. Mathematically, a

generic functional on the boundary Jr, is defined as

Jr ((_,n) = j" D((_,_) dI_ (3.11)

where D, for the two-dimensional problem, is the objective function specified on

the curve or boundary. The selection of the objective function is mostly dictated

by the flow physics.

3.3 Variational Formulation of Aerodynamic Optimization Problem

In a design optimization where the constraints are absent, the necessary

condition for the objective function to reach its optimal solution is when the partial

derivatives of the function with respect to the design variables are all identically

zero. The sufficient condition for optimality can be further augmented by requiring

the Hessian matrix of the function to be positive-definite at the design points.

Realistic optimization problems involve constraints which have functional

relationships to the functional through the design variables or state variables.

When constraints are involved in the optimization problem, the partial derivatives

of the functional and the constraints cannot be zero at the same time since they
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are functionally related to each other through the optimality criteria [84, 88]. One

common practice is to cast the constrained optimization to unconstrained

optimization through the introduction of the weighting functions or Lagrange

multipliers _.(,_). The other is to sequentially solve a linear or quadratic

programming problem, which is an approximation of the original constained

minimization problem. In the later approach, one needs to derive the sensitivities

of the performance functional.

In the following paragraph, the objective functional defined in Eq. (3.11) will

be used as an example to facilitate the discussion of the procedure to derive the

aerodynamic sensitivity equations by the variational methods. To start the

derivation, the steady state solution of Eq. (2.6), i.e., the residual R(Q), is written

as

(3.12)

and the generic boundary conditions are expressed as

H((_,fi) = 6 (3.13)

Without changing its value, the objective functional .I r can now be modified as

r

(3.14)

where F and _ are the deformed boundary and domain, and _ and /7 are

vectors to be determined.
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3.3.1 Standard Formulation of an Aerodynamic Optimization Problem

A mathematical formulation of the constrained optimization problem can be

expressed as

min {Jr} (3.15)
F

subject to

aj(0, -<o
r

forj = 1,2, ..., nconf (3.16)

Gj(2_) <_0 j = ,qconf+l, nconf+2 .... , ncon (3.17)

and

X lower < Xi D < _( upperiD -- -- "_iD
i =1,2 .... , NDV (3.18)

where the flow field variables (2 are the solution to the state equations, R((2).

The problem statement clearly indicates that the state equations are the

integral parts of the optimization process and, therefore, must be represented by

the highest level of flow field approximations and solved by the most efficient

numerical techniques as dicussed in Chap. 2.

3.3.2 Derivation of Functional Sensitivity Equations

In the derivation of the sensitivity derivatives for the functional and

constraints, the spirit of Ref. 65 is still kept in implementing the variational

methods . But unlike Ref. 65 the variation is performed on the conservative

variables and fluxes with respect to the variation of a variable domain. Let us

define the following expressions for later use:
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--==A and -_-=B (3.19)
oa oa

to be the Jacobian matrices in the x and y directions. The variation of the fluxes

(to the first order) can be written as

&E= A&(_ and &P= #&Q (3.20)

Then the fluxes on the deformed space due to the variation of the boundary can

be approximated as

E(5)= a (O) and F (_) = F-((_) + &F(Q) (3.21)

By application of the principles of calculus of variations and use of the results in

Appendices A and B, the variation of the modified functional can be

approximated by [84]

(3.22)

where _ and ,Y are position vectors of the deformed and undeformed coordinate

systems, respectively. Then, with Eqs. (3.19) - (3.21) and Eqs. (A.2), (A.6), and

(B.5) from Appendices A and B, the Taylor expansion of the integrand of Eq.

(3.22) [84] is computed (the linear part relative to e ) as [84,88,89]
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(3.23)

where c is a small parameter, J, is the space transformations matrix that is given

in Eq. (B.5) as [Js =]I + _'.o_[ and the quantity _" in Eq. (3.27)is the curvature

and can be calculated as [88]

K'=-'V'o ft. (3.24)

where o denotess a dot or inner product and fi is the unit normal which can be

computed from the grid generating routine or from the analytical derivatives of the

Bezier-Bernstein polynomials as [86]

®a 2j[l l j (3.25)

where ® is a vector multiplication sign and j_(E) is defined in Eq. (3.9). In Eq.

(3.23), 5n is defined as

&n= b_ofi. (3.26)

Now, by taking only the linear terms of Eq. (3.23), one obtains
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(3.27)

With Eq.(3.20) and performing integration by parts, the second term in Eq. (3.27)

is expressed as

(3.28)

i

Where A and B are defined in Eq. (3.19). Substitution of Eq. (3.28) into Eq.

(3.27) gives

(3.29)

Note that for the arbitrary variations of &_. and 77_and with Eqs. (3.12) and

(3.13), the last two terms in Eq. (3.29) are identically zero. Then Eq. (3.29)

reduces to
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+ -T _-

F f2 F

(3.30)

In Eq. (3.30), the vectors ,_, and/] can now be determined to eliminate the

terms associated with &Q. Consequently, the costate (adjoint) equations are

given as

in .Q (3.31)

Upon the combination of Eqs. (3.30) and (3.31), the variation of the functional

becomes

(3.32)

With Eq. (A.11) in Appendix A, we now express &_ in terms of &(2 to get

(3.33)

For the sake of computational simplification, the variation of 5._ on the boundary

is limited only to the y component in this study, i.e.,

b_ = [O, Sy] T (3.34)
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(3.35)

Also an approximatation of Eq. (3.26) and use of Eq. (3.34), Eq. (3.26) can be

written as

&n=o_o_

o[,..,.]

= ny o 6y (3.36)

By use of Eqs. (3.33) - (3.36), Eq. (3.32) is now given as

n,O,&y + n,D_c&y- n,DQO.y&y +}dF"

F

F F

(3.37)

For arbitrary 6(2 and the variation of y on the boundary F, Eq. (3.37) gives the

boundary conditions for the costate equations and the sensitivity equations,

respectively, as

{[ _T } on F (3.38)

and
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F

-f{_.r[A-n_ +-Bny]O.y}n,6ydF + f_r[_, +Fy]nySydl-"
F F

42

(3.39)

The unique determination of Eq. (3.39), therefore, demands the unique and

converged solutions of Eqs.(3.12) and (3.13), (3.31), and (3.38).

3.3.3 Derivation of Constraint Sensitivity Equations

With the constraints defined in Eq. (3.16), the residual, and the boundary

conditions, Eqs. (3.12) and (3.13), one can formulate the modified constraints as

r fi r

for j = 1, 2 ..... nconf (3.40)

By following the same procedure as was done for the objective functional, the

costate equations, boundary conditions, and the constraint derivative coefficients,

respectively, can be expressed as

{-X'Xj - E';_j,} = 6 for j = 1, 2, ..., nconf in _ (3.41)

{[ -], , }"An,+Bnj, _.j+g_2+H_/_ =6 for j = 1,2 ..... nconf on F (3.42)

(_J l"a

r

F

for j = 1,2, ..., nconf (3.43)
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As can be discerned from Eq. (3.43), the computation of the constraint sensitivity

equations requires the solution of a new set of costate equations and boundary

conditions as many times as the number of constraints.

3.4 Numerical Optimization

In Sec. 3.2, the elements of gradient-based constrained optimization, i.e., the

parameterization of the boundary, objective and constraint functionals, and the

sensitivity derivatives for an aerodynamic design optimization problem, are

presented. The next logical step is to specify a numerical optimization technique

to search for a better design. The feasible direction method developed by

Vanderplaats and Moses [90] and used by Haftka and Gurdal [91] is

implemented in our study. Two steps are essentially followed in this approach.

The first step is to determine the search direction, ,_, and the second is to

compute the magnitude of the step size a. These two quantities can be

computed as proposed in Refs. 90 and 91 A typical computation of the feasible

direction starts at the boundary of the feasible domain, and its magnitude and

directions are kept constant as long as the search direction keeps the design

variables in the feasible domain while improving the performance index.

Otherwise, a new search direction and step size are recomputed with the new

gradient information and this process continues until the optimality is met.

Mathematically, the feasible direction can be formulated as

,_T o Vg i <_O, (3.44)

where i is part of the active constraints and the usable direction at a point is

given by
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_T o VJ r < 0 (3.45)

The change in design must be sought along the combination of the useable and

feasible directions so that the functional or the performance index is reduced as

much as possible, and the design is kept away from the constrained boundaryas

much as possible. By use Eqs. (3.44) and (3.45) in the method of feasible

directions, the new design variables are updated as

-n + 1 _ -n + o_ (3.46)
X D - X D

where n is the iteration number. The values of the design variables are

continuously altered until the criteria for the optimal solution of the performance

index are satisfied.
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Fig. 3.1 Variation of domain by a One-parameter family of mapping

_n=_._

Fig. 3.2 Boundary variation normal to the original boundary, o_
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Chapter 4

COSTATE EQUATIONS AND SOLUTION METHODS

4.1 Introduction to the Numerical Integration of Costate Equations

The coefficients of the costate equations are constant matrices whose

components are derived from the converged solution of the state equations. (See

Appendix E). They are globally constant in time and locally constant in space. But

the interpretation of constant matrices must be understood in a sense that,

during the time integration of the costate equations, only the costate variables

evolve in space and time to convergence. The costate equations are identical to

the Euler equations in form, but mathematically, they are different in the sense

that they do not meet the homogeneity requirement to put them in a conservative

form like the Euler equations. From the numerical view point, one can adopt any

solution algorithm, which is used for the Euler equations, to the costate

equations. This can be explained by the fact that the fluxes on the cell faces or at

grid points can be artificially constructed by approximating the solution vector of

the costate equations either on the cell face from the right and left sides of the

cell centers or at the grid points in exactly the same way one does for the state

fluxes and solution vector.

4.2 Costate Equations

The costate equations, like the state equations, are solved by use of the time

dependent techniques. The Eqs. (3.31) and (3.41) are, therefore, modified to

include the unsteady term with the proper signs so that this time dependent
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technique is fully exploited. Thus, for instance, Eq. (3.35) in the generalized

coordinates system is expressed as

(4.1)

The proper sign selection of the time term is dependent on the complementary

property of the well-posed boundary conditions of the state and costate

equations. For Eq. (4.1) to be well-posed, the positive sign of the time term is

selected, and Eq. (4.1) becomes

(4.2)

4.3 Boundary (Transversality) Conditions

The objective functional boundary conditions, i.e. Eq. (3.38), in their general

forms are again for the sake of convenience presented here as

on £ (4.3)

The objective functional and the no-mass penetration conditions are defined only

on the solid boundary, and hence their derivative contributions in Eq. (4.3) are

identically zero. Therefore, the boundary conditions for the inlet, exit, and center-

line reduce to

on (£,,,,,, ['c,,,,,, £,.,., ) (4.4)

For the supersonic flow flow, the inlet condition is known, and hence the

variation of the vector of the flow field is identically zero. Therefore, with Eq. (4.4),
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the values of the costate variables at the inlet boundary can be approximated

from the internal stencils. Because the the vector of the flow field is computed

from the internal grids at the exit plane, Eq. (4.4) gives four linear independent

equations for the costate variables, which result in all the costate varibles to be

identically zero. On the centerline, the normal velocity is known to be zero, and

one of the costate variables, for instance ,t.3, is assigned a value, and the

remaining flow field quantities are to be detemined from the resulting 3 x 3

system of equations as given in Eq. (4.4)

One way of treating the boundary conditions, i.e. Eq. (4o3), is to use Eq. (3.13)

and to find a relationship between the conservative field variables (_ by taking the

variation of Eq. (3.13). This procedure eliminates the constant Lagrange

multipliers /3. and modifies the functional sensitivity derivatives, Eqs. (3.39) and

(3.43) by a term resulting from the variation of the normal vector _ at the solid

boundary.

On the solid boundary, on the other hand, the costate variables are

determined by use of the complete form of the compatibility relationships and the

sign of the eigenvalues of the costate Jacobian matrices. Once the values of the

costate variables on the solid boundary are computed, the constant Lagrange

multipliers /] of the no-mass penetration condition can be calculated by solving

the complete set of the boundary condition. The results presented in this study

are obtained by solution of the complete boundary conditions as given in Eq.

(3.42).

4.4 Linearization of Costate (Adjoint) Equations

By the same linearization procedure we used for the state equations, Eq. (4.2)

can be approximated as follows:



(4.7)

By approximation of the time and space terms, Eq. (4.7) then becomes

(4.8)

4.5 Time-Integration Methods

In this study we have used both the implicit and explicit, i.e., the ADI and

Runge-Kutta time-integration, respectively, methods to drive costate equations to

steady state. For the implicit method, the ADI factorization of Eq. (4.8) is used to

split it into the _ and 7"/ sweeps. Let us define the right side R_ of Eq. (4.8) as

(4.9)

where Rx is the residual for the costate equations. Also, Eq. (4.8) can be put in

its split form of Jacobians and fluxes as

(4.10)

Then the _ and 77 sweeps of Eq. (4.10) are given as
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and

(4.12)

For the explicit method, the four stage Runge-Kutta algorithm [81] is adopted

to compute the vector of the costate variables as

_o)= _. (4.13)

(4.14)

_c3)= _..+ a3AzR(2) (4.15)

,_,(4) = ,_n 'Jl" _'4,A"_JI_,(3) (4.16)

,_.+' =_. +-_[R (')

where

+ 2R(,2) + 2R_(3) + R_(4)] (4.17)

a2=l_ a3=]_ 2 a4=1 (4.18)

In advancing the costate equations in time, both the implicit ADI and explicit

Runge-Kutta methods are employed. The results, however, will be presented

only for the ADI method.
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Chapter 5

STABILITY ANALYSIS OF THE TWO DIMENSIONAL COSTATE AND EULER

EQUATIONS

5.1 Rationale for Stability Analysis

The most popular schemes to advance the Euler equations to steady-state

solutions are, among others, the implicitly factored time-integration schemes.

Approximate factorizations unfortunately introduce errors which propagate

throughout the computational domain. As a result of this, the stability limit is

drastically reduced, and the convergence rate deteriorates. To propose the range

of the CFL numbers for which the allowable maximum eigenvalues are predicted,

a stability analysis of the Euler and costate equations are conducted.

5.2 Introduction to Stability Analysis

In solving coupled time-dependent partial differential equations like the Euler

equations, one takes advantage of the hyperbolic nature of the equations.

Because of this fact, numerical upwind methods are devised according to the

direction of the flow information along the characteristics. The most common

upwind methods that take into account the hyperbolicity of the equations are the

Beam-Warming, Van Leer vector-splitting, and the Roe flux-differencing methods

[92]. On the basis of the eigenvalue decompositions, the fluxes and Jacobians of

these methods are split into the backward and forward contributions. The Van

Leer vector-splitting method [80] is shown to produce sharper shocks than the

Beam- Warming flux- vector-splitting approach [79]. In this analysis, the
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Beam-Warming splitting for the one-dimensional Euler equations has been used

for the purpose of comparison only. Otherwise, the Van Leer vector-splitting

technique has been adopted throughout for both the one-dimensional and two-

dimensional Euler equations.

As mentioned in Sec. 1.2, Jesperson and Pulliam [71] studied the stability

characteristics of the Euler equations for different flux-splitting methods.

Anderson and Thomas [72] further conducted stability analysis on the complete

three-dimensional Euler equations. In their analysis, they have investigated

specifically three kinds of splittings: three-factor spatially split, two-factor

eigenvalue split, and two-factor combination split. All three splittings have

different levels of factorization errors. During derivationof the generalized

complex eigenvalue equations, they have also used first-order differencing on the

implicit side (leftside) and fully upwind second-order differencing for the residual

(right side) part. For a Mach number of 0.8 and an angle of attack of 0 °, they

found out that the three-factor splitting has lower CFL stability (CFL = 20),

whereas the other two-factor splittings are stable for all CFL numbers considered.

In their pursuit to optimize the PROTEUS code with multigrid methods,

Demuren and Ibraheem [73] have conducted an extensive and complete stability

analysis of one-, two-, and three-dimensional Eluer and two-, and three-

dimensional Navier-Stokes equations. They have looked at not only the ADI

factorization but also the LU approximation factorization for Euler equations and

Navier-Stokes equations with various levels of dissipation terms. These

inclusions, in fact, encompass the most recent and commonly used

approximation numerical methods, specifically, the upwind and central difference

approximations. Their conclusions are in line with Ref. 72, i.e., the CFL range

over which the maximum eigenvalues are optimized decrease as the

dimensionality of the problem increases. The stability deterioration is dependent
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or augmented by the type of discretizations and factorizations employed in the

numerical computations.

5.3 Objective and Motivation

In the preceding section, the main features of different schemes are analyzed

with the help of the amplification factors for the complex eigenvalue boundary

equations [71 - 73]. The objective of the present stability analysis is not to revisit

the complete stability analysis of different upwind schemes of the Euler and

costate equations with varying approximations. Rather, the main thrust is to

investigate the stability analysis of the costate equations wiih only the spatial

upwind factorization scheme and the Euler equations are included for

comparison reasons. This procedure is necessary because the costate equations

are similar to the Euler equations, and consequently, one will adopt the same

numerical technique for the costate equations. The numerical stability and quick

convergence of the costate equations are very detrimental because the

computation of the sensitivity gradient is directly influenced by the converged

solution of the costate equations, which ultimately controls the whole analysis

and optimization process. For this obvious reason, one has to investigate the

CFL range over which the maximum, average, and L2-normed eigenvalues are

extremized.

Like the previous researchers [71 - 73], first-order difference approximation on

the left side and second-order upwind differencing on the right side of the Euler

and costate equations are used. To investigate the stability limits of the PDE for

the stated factorization of the Van Leer schemes, one solves the generalized

complex eigenvalue boundary value problems given in Secs. 5.4.1 and 5.4.2. In

doing so, one computes the maximum, average, and L2-normed eigenvalues in

the range of 0< _,,oJy <2_ for the desired series of CFL number. Also the
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smoothing factor G, which is related to the damping of the high frequencies in the

multigrid methods, is computed as the absolute value of the maximum

amplification in the range of _ < max(¢o,,_y)<--.37c Following Anderson and
2 2

Thomas [72], the time step which is used in the computation of the amplification

factors for the two-dimensional case is given by

I(
Ay 3_,AX z (5.1)

5.4 One- and Two-Dimensional Euler Equations

The one- and two-dimensional Euler equations in conservative forms and in

Cartesian coordinate systems are given first. Then, they are discretized in the

upwind fashion depending on the positive and negative fluxes and Jacobians. For

the one-dimensional Euler flow, the source terms are included to investigate their

eventual influence in the stability limit of the flow characteristics. Finally, the

approximations and discretizations of the one- and two-dimensional costate

equations in Cartesian coordinate systems are given for completeness.

5.4.1 One-Dimensional Euler Equations

o(sO.)ee
at _ -&-x -/-/" = 6 (5.2)

By an application of the Euler backward approximation in time on Eqs. (5.2), one

obtains

(5.3)
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The use of E ± = A±Q; into Eq. (5.4) results in

• -t'- + - + A--

where the fluxes, the Jacobians, and the source terms are given in Appendix C.

5.4.2 One-Dimensional Costate Equations

From Eq. (2.48), the one-dimensional costate equations

coordinate systems are derived ( see the detail in Chap. 6) as

in Cartesian

_,,- Ar_,,, - Bhr_, + SC T = 5 (5.6)

where Bh, and C are given in Appendix C. By the same procedure as for the

Euler equations (Eqs. (5.3) - 5.5)), the following approximations for the costate

equations are obtained.

- . (5.7)

Although the Jacobian matrices of the costate equations are transposed, they are

given in Appendix C.

5.4.3 Two-Dimensional Euler Equations

From Eq. (2.7), the conservative two-dimensional

Cartesian coordinates are expressed as

Euler equations in
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a_ aE aV=5 (5.el

By application of the Euler backward approximation in time on Eqs. (5.2) and

(5.7), one gets

°_ + A-)+ B +B- AQ" -At Rn (5.9)I+A,. _(A + :

where

R" = -_xx(E°3 + + E-)+--_(F ÷ + F-)
(5.10)

Then, further representation of Eqs. (5.4) and (5.5) in the delta form gives

{ [( +I + At &;A + + S_+A-) + B + S;B- -" Rn (5.11)

where

= + - + -F*R" (&-_E + +S,E ) (S, +S;F-) (5.12)

By use of E ± = A±(2; and F ± =B±(2 in Eq. (5.12), Eq. (5.12) assumes the form of

-- + ÷ -- _rl

{I+At.[S:A ++S+_A-+_xB +S,B ]}AQ =

,_;_+0.+ +'8 -""_: A÷O. (A-Q.)+ ( ) _,{ -Q)f

(5.13)



Factorization of the left side of Eq. (5.13) results in:

5?

-- 4- 4- -- 4/1

{I+At.(_-_A ÷+S+,A-)}{I+At.(S,B +6;B )}AQ =

+ "_--- 4--At. {S_-(A-÷(_)+ S, (Q) + S_ (B4-Q) + S, (B-(_)}"

(5.14)

5.4.4 Two-Dimensional Costate Equations

With Eq. (3.31) and addition of time term with its appropriate sign, the two-

dimensional costate equations are

_.,- Ar_., r--B }l,y = 0 (5.15)

Adoption of the same method as for the two-dimensional Euler equations (Eqs.

(5.9) and (5.13)) results in

{ -I At.[S,(A- +r) +S+(A-)T+_;(B+)r+S;(B-)r]}A_"=At'R_ (5.16)

where

tt _ + T + _ T _ + T

R_={_,[(A )_]+_,[(A )_,]+&y[(B ) &]+S_[(B-)r2]}" (5.17)

Similarly as for Eq. (5.13), factorization of the left side of Eq. (5.16) gives

"1- _ + T + _ T -a
{I-At.[S-_(A4-) r S+(A-)r]}{I-At.[S,(B ) +c_y(B ) ]}A_ =

.= (8-R, {':[(A+)r_,]+'+_[(A-)'_]+'_I(B÷)F&]+ [ )r _,]}"

(5.18)
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For the time increment of the flow and costate field variables, respectively,

the following approximations are used:

AQ" = (_"÷'-(_" (5.19)

A_." = _"+' - _" (5.20)

5.5 Solution Algorithm

To perform the Von Neumann stability analysis of the Euler and costate

equations, the flow field quantities are considered to be constant in the Cartesian

coordinate system. For a constant flow field, the Jacobians are also assumed to

be constant. With this assumption, the flow quantities can be expressed in terms

of wave fronts [72, 77]. Thus, the wave fronts for the Euler and costate flow

variables are represented, respectively, by

___n -n_-_ I(ico_+jcoy)= ¢p roe (5.21)

and

_n --n _---. l(iw, + jcoy)= _p roe (5.22)

where I is the imaginary number defined by ! = _ and co,, o)y are the x and

y modes, and Fp, /30 are the amplification factors and initial constant vectors,

respectively. Now Eq. (5.21)is substituted into Eqs. (5.5) and (5.14), and Eq.

(5.22) into Eqs. (5.7) and (5.18). If the resulting equations are simplified, then the
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obtained, and these are given in the next subsections.
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equations are

5.5.1 Complex Eigenvalue Equations of Euler and Costate Equations

The one- and two-dimensional complex eigenvalue boundary problems of the

Euler and costate equations can be generally represented as

(/, + k)_7 =/_,_17 (5.23)

where /, and k are the left and right side Fourier symbols and V are the

eigenvectors. Here the positive sign corresponds to the costate equations and

the negative sign to the Euler equations. The various matrices defined in the one-

dimensional Euler and costate equations are given in Appendix C, and the

matrices for the two-dimensional analysis are given in Appendix D.

5.5.2 One-Dimensional Euler-Fourier Symbols

The insertion of the one-dimensional form of Eq. (5.21) into Eq. (5.5) gives the

one-dimensional Fourier symbols of the Euler equations as

A-)(,oos o.)+(A++ ]}=SI-At.B h+LAxtA
(5.24)

/_ = _---_[(AAt_. +_ A-)(3+cos2Co, 4cos (.0,) + (A+ + A-)(4sin (.o, - sin2o),)l]

(5.25)
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5.5.3 One-Dimensional Costate Fourier Symbols

The insertion of the one-dimensional form of Eq. (5.22) into Eq. (5.7) gives the

one-dimensional Fourier symbols of the costate equations as

L=I-{At[( +__ k -A-)r(1-cosoa,)+(k++k-) rlsinoa,]}
(5.26)

At r. .
=- tlA - A-) r (3 + cos2o),- 4coso_,)+ (A + + A-) r (4sin o9,- sin2o) )I]

+ AtB r (5.27)

5.5.4 Two-Dimensional Euler-Fourier Symbols

The insertion of Eq. (5.21) into Eq. (5.14) gives the two-dimensional Fourier

symbols of the Euler equations as

[,={I+At[( *-A-)(1-cosW,)+(A*Ax,,A + A- )/ sin co ]}

(5.28)

= 2AxAtt,A[(+ _ A-)(3 + cos2(.O, - 4cos09,) + (A + + A-)(4sin o), - sin2oo )I]

+ 2._y[(BAt r, , -B-)(3 + cos2o), - 4cosc0,) + (B + + B-)(4sin o),- sin 2o),)I]

(5.29)

5.5.5 Two-Dimensional Costate Fourier Symbols

The insertion of Eq. (5.22) into Eq. (5.18) gives the two-dimensional Fourier

symbols of the costate equations as



f [( " ]}At ÷-A-)r(1 cos
L= I-_ A - og_)+(A ÷+A-) lsino_

I-Ty[/8 co,
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(5.30)

._=T_t/AAtr",- A_)r(3 + cos2CO, - 4cos(.O )+ (A ÷ + A-)r(4sin o)- sin 2(.o,)I]

+ + + -
(5.31)

5.6 Results, Discussion, and Recommendations

To confirm that factorization indeed puts a restriction on how to choose the

CFL range for the stable solution of the approximated PDE, a stability

investigation of two-dimensional Euler equations in unfactored form is performed.

Figure 5.1 clearly depicts that the maximum allowable amplification factor is

stable at all CFL numbers considered. As the case of solving Euler equations in

unfactored form is computationally prohibitive, one would rather revert to solving

the factored and easily invertible operators in a unidimensional mode.

To gain insight and confidence in solving numerically adjoint equations for

optimization purposes, a systematic stability analysis is performed on the one-

and two-dimensional adjoint equations along with the corresponding one- and

two-dimensional Euler equations. In addition to the usual analysis of the quasi

one-dimensional Euler equations without the source terms, stability

characteristics with the source terms are also conducted. The study shows that

the range of the CFL number for which the upwind schemes are stable is not

basically affected by the source terms (Fig. 5.2). Note that the costate equations

have two distinguishing features. The first one is that the transposed Jacobians
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are constructed from the converged solution of the Euler equations. This

indicates that those matrices are globally constant in time even though they vary

in space. The second feature is that the matrices have negative entries.

Mathematically, and from the stability view point of a matrix, the eigenvalues of a

transposed matrix are no different from the eigenvalues of the nontransposed

matrices. Therefore, transposition of the matrices has no bearing on the stability

characteristics of the costate equations. Rather, the deterioration of the stability

limit of the costate equations stems from the negative sign of the transposed

matrices (Figs 5.4 and 5.5). Therefore, the correct direction of the flow for the

costate equations is imperative. As can be discerned from Figs. 5.2, 5.3, 5.6, and

5.7, the trends of the stability of the adjoint equations are similar to those of Euler

equations if the flow field is transformed as presented in Ibrahim and Baysal [65].

When the direction of the flow is not taken into account, which is the case with

the costate equations, the stability is limited to very small CFL numbers (Figs. 5.4

and 5.5). This low-stability problem becomes especially apparent when there is

high flow discontinuity in the flow field as mentioned in Ibrahim and Baysal [65].

Therefore, a transformation of the flow field or another numerical approach to

account for the reverse flow direction of the costate equations is highly

recommended.
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Chapter 6

DESIGN OPTIMIZATION OF INTERNAL FLOWS USING QUASI

ONE-DIMENSIONAL EULER EQUATIONS

6.1 Introduction to One-Dimensional Design Optimization

Two approaches, one based on the nonconservative and the other one on

conservative flow field variables, are developed for quasi one-dimensional Euler

equations. In addition to the difference in the representation of the flow field

variables, the first approach incorporates time integration while the second

approach neglects the role of time and only takes the converged residual part of

the solution. These approaches, which are based on the variational methods

(VM), are used to derive the costate(adjoint) partial differential equations and

their transversality (boundary) conditions from the differential equations of the

fluid flow. The costate equations coupled with the flow field equations are solved

iteratively to get the functional derivative coefficients. Then, these derivative

coefficients, combined with the flow field variables, are used to find the boundary

shape which minimizes the performance index (objective functional).

To demonstrate the method through examples, the shape of the nozzle is

optimized for the maximum thrust. For this maximization problem, different inlet

and outlet flow conditions are considered. In the supersonic flow case, the gain in

thrust is remarkably high. Even in the shock and the subsonic flows, the

improvement of the thrust is found to be substantial. As demonstrated through

the cases investigated, a new improvement is that the present variational shape

optimization approach is capable of resolving flows with shocks.
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6.2 Model Problem

To demonstrate the versatility of the proposed approach, the time-dependent,

compressible, quasi one-dimensional Euler equations are chosen as the state

equations. The corresponding adjoint equations (costate) with their transversality

(boundary) conditions are derived by variational methods. In this design

optimization problem, the objective functional is the thrust which is given in Eq.

(6.7), where the cross-sectional area S is the design variable and the governing

equations of the model fluid problem are given in Sec. 2.5 which are

+ - o
Ot Ox

(6.1)

O(pu$) + O(pu2 + P)S _ p d$ = 0 (6.2)
Ot Ox dx

and

O(pSe,) O[(P+pe,)uS]
+ = 0 (6.3)

_t ax

The eqs. (6.1), (6.2),and (6.3) are mass, momentum and energy, respectively,

and p, u, e,, and S, are density, velocity, total energy and cross-sectional area.

The example problem here is to find S(x) where 0 < x < L to maximize

TL

J(Q,S) = I I{PS} dxdt (6.4)
oo
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S(0) _<So and S(L) < S_ (6.5)

where L is the dimension of the geometry and T is the maximum time of

integration.

6.3 Approach 1 : Perturbed State Equations and Performance Indices in

NonConservative Variables

In this approach, we make use of Eqs. (6.1) - (6.3) and the cross-sectional

area S, which is expressed as

S(x,x o) = a + b[tanh(O.8x- 4)] (6.6)

A change of the design function S perturbs the flow variables, which in turn gives

rise to the variation of the functional. Then, the functional derivatives (sensitivity

coefficients) are obtained by perturbation techniques, for which the primitive

variables are redefined as

p='_+Sp u=E+Su e, = _', + &e, (6.7)

and the variation of the boundary is similarly approximated as

S = S + ¢5S (6.8)

where p, u, e,, and S are the nominal values and &p, &u , &e,, and &S are the

perturbed values. First, Eqs. (6.7) and (6.8) are inserted into Eqs. (6.1)- (6.4). In
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the resulting equation, only the first-order terms in the perturbed quantities are

retained. Recalling that the nominal flow values satisfy the flow equations, the

perturbed flow equations are obtained as (the overbar signs are dropped for

convenience)

a(s_p+p_S) a(.sap+psa.+p._s)
= = r, (6.9)

at ax

a(uSSp + pS6u+ puSS) _ a[S(u=ap + 2puSu + SP) + (pu =+ P)6S]

at 3x

+d_ 6p+ p61d--_l= r2 (6.10)

and

a(Se,6p + pSSe, + pe,&S) _

at ax
a[uS(e,Sp+ pSe, + 6P)+ (P + pe,)(S6u+ uaS)] _ r,

(6.11)

Similarly, the functional J in Eq. (6.7) is perturbed. Because the nominal

functional values along with the nominal flow variables satisfy the flow equations,

the perturbed functional is reduced to the following forms for the maximization

problem:

TL

= II{s&P+ PSS}dxdt (6.12)
O0
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Note that the variation of x is not considered in the previous derivations because

the length of the nozzle is not changed in the design process. For this approach,

Eqs. (6.1) - (6.3) are put in their vector form as

°_(S(2) - F (6.13)
o_t

where

__=[p,pu, pe,] r (6.14)

F denotes the vector of the spatial derivatives as given in Eqs. (6.9) - (6.11), and

(2 is the vector of conserved variables. Then Eq. (6.13) can be used to define the

residual for the nonconservative approach as

G(x,t,S,Q)- °_(SO)-F=6 (6.15)
o_t

To eliminate SP, from Eq. (6.15), one may augment J with the flow equation

as

TL

J,(Q_.,_,,S) = J(Q.,S)+ _.f _r (x,t)G(x,t,S,Q_.)_d,
oo

(6.16)

where G is given in Eq. (6.15). Then, the variation of Eq. (6.16) is given as

TL

SJo (Q.,_.,S) = SJ (a,s) + a _ f _r (x,t )G( x, t,S, O )dxdt

oo

(6.17)
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Because the length of the nozzle is unchanged and G &_. is equal to zero, then

Eq. (6.17) is simplified to

TL

O0

(6.18)

The substitution of the variational expressions from Eqs. (6.9) - (6.12) into Eq.

(6.18), gives the following equation for the maximization problem.

OOL L g

!!{ -°_[ Su2 _Sp + 2puSau + S6P + (P + pu2 )aS]- _'2 Ox

+ II*2d.xrt" "dS&p+ p¢_(d__S)_d t
O0

" fITL{oo_1"3 [ o[uSet¢_p+S(P+pet)Su+u(P+pet)6SIO3x

_ Ot

O(Sefip+pS&,+pe,cSSot ).]_dt

(6.19)

The variation of P can be written in terms of the variation of the other flow

variables with the help of an equation of state, such as the perfect gas law,

P=p(7-1)[e,-O.Su 2] (6.20)

Now, Eq. (6.19) can be integrated by parts. For the maximization problem, the

costate equations, the corresponding boundary (transversality) and initial

conditions, and their sensitivity coefficients, respectively, are expressed as
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u 3_= +e, Ok3 + u_._+u2__+[u(ye,-0.5(7-1)uZ)] 3£' -(7-1)(e,-0.5u =)
at _ _ ox ox . ax

(6.21)

(1+ at +P-'_x +_Pu'-_-x +[(7-1)pu2-pe'-l"l--_x =(7-1)pu (6.22)

0'_3
_-'/U ='_3 = --(7-- 1) (6.23)

Ot OX

The boundary conditions of Eqs. (6.21) - (6.23) are given as

T

0

T

+ _ LI {[ps_,_P"S_+S[_'Pe,-'_(_'-'IP"_]_]}o_'=° (_)
0

T

o

The terminal conditions at time T of Eqs. (6.21) - (6.23) are given as

L

f {[S/q,, "{-/.#,S,_, 2 -]" Se, X3]}'dx=O (6.27)
o

/..

.1"{sx,}',_=o (6.28)
o
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L

f. (6.29)
o

The functional derivative coefficients are finally expressed as

rLc az

+ PU-_t + Pe'-"_t + ax

! ! {u(P + Pe,)-_ + P- z: d-_ } &Sdxdt

+ (e + pu2 )-_ }SSdxdt

(6.30a)

as

Because S = S(x, xo), one obtains &S= Tx&Xo, and Eq. (6.30)can be simplified

as

d/° _1" aA, a,,l,2 az3 puaZ_+(p
dx_= JoJolP-_t + Pu-_-t + Pe'-fft-t + ax

II u(P +Pe,)-_+ P- 2t2--_j Ox°
00

+P" J'axo

(6.30b)

Eqs. (6.21) - (6.29) are solved for an already known flow solution from the

flow analysis and given boundary and terminal conditions, i.e., Eqs. (6.24) -

(6.29). From Eq. (6.30), note that the computation of the functional sensitivity

requires the prior solutions of the state and adjoint (costate) equations.

6.4 Approach 2: Perturbed State Equations and Performance Indices in

Conservative Variables

Unlike the first approach, this approach deals directly with the variation of the

conservative fluxes with respect to the conservative field variables. Io realize this

objective, let us recast Eqs. (6.1), (6.2), and (6.3) in a form amenable to
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conservative formulation. If one follows this procedure, the time dependent quasi

one-dimensional Euler equations in conservative form are given as

Ot _'"_x -H'=_ (6.31)

where

E= +pe,).]" (6.32)

H, H, (S, Q) = [0, dS 0] r= p_.,j (6.33)

are the flux and the source terms, respectively. For the derivation of the

o(sO.)
sensitivity, we consider only the steady-state condition, i.e., - 0. Now, let

&

us define a functional, 2, as the integrated force along the given contour S as

L

J = J (PS)dx (6.34)
o

Also the residual R is given as

aE
R = D_ H, (6.35)

Ox

Then, with Eqs. (6.34) and (6.35), the functional is modified by

L L

0 0

(6.36)

Consequently, the variation of the functional is expressed as
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o

(6.37)

OF.
where E, =-_-x. By neglecting the second-order terms and only keeping the

linear parts of Eq. (6.37), one recovers the Euler equations in term of the

variation of the Lagrange multipliers as

6/_T(E, - H,) = 0 in 0 _<x < L (6.38)

Then the variation of the objective functional becomes

L

(6.39)

Let us define the following terms for later use:

OE B,- 014, C OF'
A = o_-Q _ = o3----Q'

dS OH,
= _ mh =

S, dx Os,

(6.40)

The insertion of Eq. (6.40) into Eq. (6.39) and further simplification of the

resulting equation leads to

o[ OQ + (ASO_.) --_Q O(s.)
(6.41)
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Integration by parts of Eq. (6.38) gives

where A, Bh, C, and Mh are matrices given in Appendix C. If one uses Eqs.

(6.40) and considers only the first variation of the functional in Eq. (6.42) to be

zero, then one gets the adjoint (costate), boundary conditions and the functional

sensitivity equations, respectively, as

-A'YL - B,'_ + SC" = 6 (6.43)

[A'_]_=_ /_441

L

0

The insertion of the various partial derivatives of S from Eq. (6.6) into Eq. (6.45)

gives

![  s.LdJ_____= p _S _/_rMh
dxo o_x_j

(6.46)
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6.5 Solution Algorithm and Surface Modification

The state and costate equations are discretized using two vector-splitting

methods: Beam-Warming flux-vector-splitting method for the first approach and

the Van Leer vector-splitting method for the second approach. In both

approaches we have used the speed of sound to serve as a sensor to switch

between different flow regimes at every grid point.

After adding an appropriate time term ,_, into Eq. (6.43), the numerical

integrations of the adjoint equations, i.e Eqs. (6.21) - (6.29) and (6.43) - (6.45),

are accomplished from the maximum value of L to 0 and from the maximum time

value T to 0. To bring this in line with the flow equations, the following spatial and

temporal transformations are carried:

= L - x _"= T - t (6.47)

Then, the discretized forms of the adjoint equations are first transformed by the

above relationships, i.e. Eq. (6.47), and then integrated in time until the

convergence criteria are met.

Based upon the steepest descent method, the optimal cross-sectional area

can be obtained by the recursive relation, which is given as

S m+l = S m- _ dJa

dxo

where d./.__,= { Eqn. (6.30b) or (6.46) } (6.48)
dJ:D

and s is the step size.
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6.6 Numerical Results and Discussion

As the benchmark of the present variational approach, the thrust was

maximized for three different flow regimes. The first regime is a purely supersonic

flow with the inflow conditions at M = 1.5. The inflow conditions for the second

flow regime are identical to those of the first case, but the outflow plane is

prescribed as a subsonic flow, approximately M = 0.43, to form a shock in the

duct. The third flow regime is designed to be a purely subsonic flow with inflow

conditions at M = 0.3. It is observed that the stability limit for both the flow and

costate analyses depends on the type of inflow and outflow conditions. Secondly,

even though the flow and the adjoint equations were both hyperbolic partial

differential equations, their stability criteria were completely different (refer to

Chap. 5).

The convergence history for the flow and costate equations are also different.

In the three cases presented, the rate of convergence depends on the type of

inflow and outflow conditions imposed at the inlet and exit. Although the time

integration of the costate equations is dependent on the fluid flow, its quick

convergence is assured once the flow solution has converged to steady state.

The thrust evolution for the three cases considered are presented in Figs.

(6.1) - (6.3). Despite the presence of a strong shock at the middle of the flow

field, the evolution of the area (Fig. 6.4) and the distributions of the Mach number

(Fig. 6.5) and pressure (Fig. 6.6) are all smooth. Also in Figs. (6.7), (6.8), and

(6.9) are presented the area, Mach number, and pressure histories, respectively,

for the subsonic flow condition. The thrust first increases and then seems to

decrease and settle down as the optimization progresses. The initial increase

and then decrease of the thrust for the subsonic case may be attributed to the

fact that the physics of flow was not accurately modeled for the type of nozzle

configuration considered. A much better thrust augmentation is achieved for the
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supersonic flow condition (Fig. 6.1) as compared with the other flow conditions.

This may be attributed to the noticeable shape change at the upstream location

in comparison with the downstream location (Fig. 6.10). One also observes that

the downstream Mach number (Fig. 6.11) increases and the static pressure

decreases (Fig. 6.12), which results in the increase of the thrust (Fig. 6:1).

To build further confidence in the present variational shape optimization

approach, the mass conservation at every cross section of the initial and

optimized flows were compared (Fig. 6.13). Except for the shock region, the

mass flow rates were found to be constant. The optimized shape produced a

sharper and narrower mass jump at the shock area as compared with the initial

shape. This may suggest that the shock strength attenuation by the optimized

shape is improved as compared with the initial shape.

During the numerical experimentation of the costate equations, the boundary

conditions of the first approach were easier to numerically implement, but the

boundary conditions of the second approach are superior, especially when there

is a flow discontinuity (shock) in the flow field. Apart from this apparent

difference, both approaches give identical results for the optimal solution.

6.7 Conclusions

A proof-of-concept study for a new design optimization method based on the

variational methods has been conducted. The method has been demonstrated

for the quasi one-dimensional Euler equations. The general design optimization

incorporates the optimization, CFD analysis, and the adjoint equations analysis.

The optimization is based on the steepest descent method, and it is intrinsically

coupled with the flow and adjoint solutions.

The thrust maximization for purely supersonic, purely subsonic, and mixed

supersonic-subsonic cases presented demonstrate that the optimized shapes
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and flow variables are efficiently predicted even with the presence of a strong

shock in the flow field. They also suggest that the whole optimization needs

relatively small incremental computer time and memory in addition to the CFD

analysis and therefore, suggest that the present variation methods is an

efficient alternative to perform fluid dynamic design optimization for all types of

flow regimes.
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Chapter 7

RESULTS AND DISCUSSION ON DESIGN OPTIMIZATION OF INTERNAL

FLOWS USING TW0-DIMENSIONAL EULER EQUATIONS

The main thrust of this chapter is to briefly discuss the the numerical results of

the variational sensitivity analysis that are obtained by the use' of two-dimensional

Euler flow equations. Additionally, the efficiency and accuracy of the variational

sensitivity in comparison to the finite difference are analyzed.

7.1 Two-Dimensional Nozzle Optimization Problem Formulation

At least a couple of reasons can be given for choosing the two-dimensional

nozzle geometry in order to demonstrate our point of optimization methodology.

The first one is that one can easily obtain various types of nozzle geometries by

simply using already known analytical expressions for different flow conditions.

The second important reason is also the need to develop a scramjet nozzle

afterbody for the High-Speed Civil Transport. The third one is the need to

develop efficient wind tunnels with optimal shapes for various experimental wind

tunnel applications. The optimization problem demonstrated here seeks the

optimal shape for the maximum thrust in conjunction with the nonreverse flow

condition at the exit. Hence, the example problem is formulated as the

maximization of the functional defined by

Jr = [______.PdF (7.1)
1=
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with the constraint that the static pressure P at the exit assumes a certain

percentage of the ambient pressure p_ for maximum expansion at that exit lip of

the solid boundary. Therefore, the constraint is mathematically posed as

(7.2)

7.2 Two-Dimensional Nozzle Flow

The initial geometry for this internal flow configuration is given in Fig. 7.1. It is

a supersonic nozzle where only half of the physical domain is considered with

137 x 69 grid points. It is a convex type of geometry with the smallest area at the

inlet and a diverging afterbody for supersonic expansion. The only aerodynamic

inequality constraint considered is the criteria on the static pressure at the exit lip

of the nozzle to reach a certain percentage of the ambient pressure as a

necessary condition to avoid any reverse flow from underexpansion as the shape

evolves during the optimization cycle.

To assess the variational methods for sensitivity analysis, computational

efficiency and accuracy calculated by variational methods and finite difference

are compared. One of the obvious limitations with the finite difference is the

uncertainty to a priori determine the step size that will give reliable sensitivity

derivatives. The magnitude of the stepsize is dependent on how accurate one

needs the derivatives to be. If, for instance, one only needs a 10% deviation from

the assumed exact derivative, then the step size must be under a 10% range of

the derivative. In our case of computing the sensitivity derivatives using the finite

difference, we have assigned the step size to be 0.0001.

The x component of the design variables (Bezier control points) are a priori

computed as being spatially invariable, and the variation of the design variables
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is allowed only in the y direction. This apparent limitation of the design variables

must not be a hindrance since addition or deletion of any desired design

variables in the design domain will produce the same result. To verify this claim,

two sets of design variables, in addition to the assumed optimal number of design

variables (in this case the optimum is eight design variables), were investigated.

The first set was performed by increasing the number of design variables by four

and the second one by decreasing it by four from the optimal number of design

variables. Here, the optimal number defined as that number of design variables

which reproduces the closest shape to that of the initial geometry.

As presented in Table 7.1, the CPU time and memory requirements of

complete cycle of optimization for the two additional sets of design variables are

almost identical for the two-dimensional optimization case. Therefore, the eight

design variables are considered as the optimal number of design variables which

produced the desired computational efficiency for our test case. On the other

hand, this slight memory increase as the number of design variables increases

could be a warning to the eventual computational memory increase as the

dimensionality, number of constraints, and design variables increase. The

second aspect of the role played by the number of design variables may be the

influence on the optimal shape (Fig. 7.2). All three categories of the design

variables produced slightly different optimum shapes from each other. Comparing

all three shapes (Fig. 7.2), the shape produced by twelve design variables

appears to follow the shape produced by the four design variables in the

compression area (upstream) and the shape of the eight design variables in the

expansion area (downstream). The shape generated by the optimal number of

eight design variables shows a slight change of shape upstream, from

approximately x=0.1 to x=0.375, and downstream, from approximately x = 0.7 to

x = 1.0 as compared with the shapes generated by the other sets of design
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variables. The shape change in the compression area seems to be more

desirable beause it produces high-pressure ratios and thereby gives more thrust

as one integrates the change of pressure along the changing nozzle shape. The

shape change in the expansion region, on the other hand, reduces the ratio of

the static pressure to the ambient pressure, which results in less thrust

augmentation. This physical phenomena is further reflected in Fig. 7.3 where the

optimal thrust of the eighth design variable shape is higher than the other two

design variable shapes.

From the parametric studies (four, eight, and twelve design variables)

conducted, one may conclude that the eight design variables are the optimal

number of design variables to sufficiently represent the nozzle shape and at the

same time to give a better thrust and computational efficiency.

The evolution of the design variables for the variational methods and the finite

difference approach are given in Figs. 7.4 and 7.5, respectively. Except for the

second and the seventh design variables, the general trend of the evolution of

the design variables in both approaches is similar. In the variational case, the

second design variable approaches the first design variable and the seventh one

tends to come close to the eighth design variable. In the finite difference case,

however, the second and the seventh design variables tend to pull away from the

first and eighth design variables, respectively. As shown in Fig. 7.6, due to the

movement of the second and the seventh design variables in the opposite

direction, the optimal shapes of the variational methods and finite difference are

slightly different. As explained in the parametric studies, the decrease of the

optimal (as compared with the initial) shape or optimal design variables in the

compression region is much more advantageous to the decrease of the optimal

shape or optimal design variables in the expansion region for the supersonic flow

regime. This is due to the effect that the decrease of the shape in the upstream
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results in the substantial gain of high pressure ratio (compare Figs. 7.7 and 7.8)

which favors the augmentation of more thrust (Fig. 7.9) in the design process.

Figure 7.9 also clearly indicates that the pressure distribution in the expansion

region in general and at the lip of the nozzle in particular is within the constraint

specification as imposed in the aerodynamical constraint given by Eq. (7.2).

As given in Table 7.2, the accuracy of the variational methods is verified by

comparing the variational functional sensitivity derivatives to the functional

derivatives of finite difference. If one takes into consideration that the sensitivity

coefficients of the finite difference are dependent on the step sizes, then the

gradient values obtained by the variational methods are well within the

engineering prediction range, except for the second and the seventh sensitivity

coefficients. The discrepancy of those two sensitivity values may be associated

with the difficulty to properly implement the boundary conditions of the adjoint

equations. Despite the differences on these two sensitivity derivatives which

correspond to the second and seventh design variables, the optimal shape and

thrust of the variational methods are comparable with those of the finite

difference as presented in Table 7.3 and Fig. 7.6. It is known that the finite

difference uses function evaluations to compute the gradient information while

the variational methods solve another set of partial differential equations and

sensitivity derivative equations. Due to this, there is a memory increment of

approximately 1.3 mega words as shown in Table 7.4. This slight increment in

memory is negligible as compared with the other gradient-based sensitivity

analysis approaches, such as the discrete sensitivity analysis which requires

higher memory allocation for the given optimization problem.
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Table 7.1. CPU Time and Memory for Four, Eight, and Twelve Design Variables

With Variational Methods

Desi£1n variables

4

CPU time (sec)

868.0463

Memory (MGW)

5.249459

8 864.2226 5.249939

12 866.2128 5.250579

Table 7.2. Sensitivity Derivatives by Variational Methods and Finite

Difference

X D

1

2

3

4

Variational Finite Deviation (%)

methods difference

9.1483E-2 9.4441 E-2 3.1

7.9228E-2 1.1062 E-2 86.0

-6.6563E-2 -4.7906 E-2 28.1

-5.5491 E-2 -5.9409E-2 6.6

5 -4.6421 E-2 -5.3278E-2 12.9

6 -3.8979E-2 -4.6287E-2 15.8

7 -3.2186E-2 -6.9988E-2 53.9
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Table 7.3. Initial and Optimal Values of Functional and Constraint for

Variational Methods and Finite Difference.

Variational

methods

Finite

difference

Initial Functional 0.045481 0.045481

Constraint - 2.10787 -2.10787

Optimum Functional 0.049958 0.49885

Constraint -0.5858 -0.5668

Table 7.4. Efficiency Comparison Between Variational Methods and Finite

Difference.

CPU

time (sec)

Memory

(MGW)

Complete

optimization

Single

analysis

Complete

optimization

Euter

equations

Co-state

equations

Variational

methods

865.098

58.59

5.25 (with

sensitivity

eqs.)

Finite

difference

4356.33

128.23

3.98 (no

sensitivity

eqs.)
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

A versatile design optimization approach must be independent of: (1) the level

of approximations, methods of numerical integration, and discretization of the

flow analysis, (2) the grid points and grid sensitivities, (3) the initial design points

and solutions, and (4) the flow regimes. In the case considered, starting from the

converged solution of the two-dimensional Euler flow equations, the sensitivity

derivatives for the optimal solution are derived (See Chap. 3.) The distinctive

feature of the variational approach is that the converged solution can be obtained

from any level of approximations, methods of numerical integration, and variety of

discretizations of the fluid flow. For instance, either the two-dimensional full

potential or the two-dimensional Euler equations can be chosen for the level of

the flow field approximation. One can also choose either the Beam-Warming, or

Van Leer flux-splitting, or Roe flux-differencing, and any implicit or the explicit

Runge-Kutta time-advancing method can be adopted. The only requirement in

this approach is that the state solution has to completely converge so that the

Jacobian matrices that are needed in the costate, transversality, and sensitivity

derivative equations are accurately constructed. Even though the Jacobian

matrices in the costate equations are transposed, they are the by-product of the

converged solution from the state equations, and there is no extraneous effort

involved in obtaining them.

The time integration of the costate equations, as described in Chap. 4,

requires an understanding of the stability behavior of the costate equations.
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Because of the negative entries of the transposed Jacobians, the Von Neumann

stability analysis indicates that the costate equations are unstable for the CFL

and wave number considered. To make the costate equations stable, the

transformation of the costate°s computational domain in line with the state's

computational domain was undertaken. This unique approach produced a stable

costate solution that is necessary in obtaining the sensitivity derivatives of the

functional and constraints with respect to the Bezier control points.

Variational methods in sensitivity analysis and shape optimization for

aerodynamic applications have been considered. The main components of the

approach are the control theory and calculus of variations where the design

control is the continuous domain boundary represented by the Bezier control

points or design variables, Eqs. (3.5) - (3.7). Because the domain boundary is

continuously evolving until it reaches its optimal shape, the contribution of the

changing domain and domain boundary are used and incorporated in the

derivation of the optimality conditions and sensitivity derivatives through the

surface transformation matrix ./ (Appendix A) and curvatures (Eqs. (3.24 and

3.25)). The use of the steady-state solutions of the two-dimensional Euler

equations results in the derivation of the costate or the adjoint equations, the

boundary or transversality conditions, and the sensitivity derivatives for the

generic design optimization problem where the functional and the constraint are

defined on the domain boundary. The final numerical computation of the

sensitivity derivatives is carried out for the converged state and costate

equations.

Since the stable and converged solution of the costate equations is imperative

for the successful computation of the sensitivity derivatives and design

optimization, a complete stability analysis of the Euler and costate equations is
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treated. Based on the findings of the stability criteria, the stable and converged

numerical integration of the costate equations is guaranteed only if the domain of

integration is transformed in line with the state equations or any other numerical

technique which handles the reverse nature of costate equations is adopted.

A two-dimensional nozzle optimization problem was considered, and the

application of variational methods to compute the optimal shape for the maximum

thrust is presented. During the design process, the supersonic nozzle remained

supersonic while improving the performance index or thrust (Table 7.2). Also,

while the VM's computational accuracy (Table 7.3) is comparable with the finite

difference, its computational efficiency and memory savings (Table 7.4) are found

to be substantial. As memory and computational efficiency are the bottle-necks

for large two-dimensional and three-dimensional problem in general, variational

methods are one of the most viable candidates in solving design optimization

problems.

Design optimization requires gradient information of both the functional and

constraints. But as the number of constraints increases, the computational

intensity and memory may be prohibitive to do any realistic optimization. This can

be overcome by converting the constrained problem into an unconstrained

problem through the introduction of penality function methods. This is highly

important especially for multidisciplinary optimiztion where the number of

constraints and design variables is high. Therefore, procedures similar to the

penalty function methods must be explored to efficiently use variational methods

in obtaining sensitivity derivatves. To further build confidence in the proposed

approach, two-dimensional internal and external flows with shocks must be

investigated. Finally, the concept must be extended to two-dimensional viscous

and three-dimensional Euler flows.
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APPENDIX A

CONTINUOUS DOMAIN IN VARIATIONAL METHODS

Consider the domain _ and the solution vectors Q which are transformed

from an original domain _ and from the nominal solution vector (2 by the

following one-to-one mappings [84]:

_=_(_;_)=_+_F_l+o(_)
LWL=o

(A.1)

where e is a small quantity. Likewise,

=_(x,e)=_(x;o)+ -_c ,=o (A.3)

(A.4)

Now, take only the linear parts of Eqs. (A.2) and (A.4), and one gets

J:_-_:_f_l ---_
L-_--eL=°

(A.5)
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(A.6)

The variation of the solution vector in the usual variational sense (i.e.,

variation at the same coordinate location) can also be defined as

AQ = Q (x) - Q(x) = 6Q

Then for the relation between

established as

6(2 and

(A.7)

&Q, the following expression can be

_-_(_)-_+_-_
=( - (X))+(Q(X)-Q(X)) (A.8)

From the Eq. (A.8), _(_)- _(._) can be approximated by

_(_)__ aO{__= aOa_ (A.9)

and with Eq. (A.9), Eq. (A.8) becomes

-a-y (A.10)

Then with Eq. (A.10), &Q is approximated as

(A.11)
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Equation (A.IO) explains that the total variation of the solution vector &Q is

composed of parts due to the variation of the state vector 8Q and the coordinate

transformation a__Oo_.
Ox
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APPENDIX B

DERIVATION OF THE SURFACE TRANSFORMATION JACOBIAN

For a small quantity e, the transformed space is represented by Eq.(A.1).

Then by the chain rule, the surface Jacobian Js can be obtained as [84]

j =1,2 ..... m; i=1,2 ..... n (B.1)

where &_.j is the Kronecker delta equal to 1 if i = j and 0 otherwise. The second

term on the right hand-side of Eq. (B.1) indicates the contribution due to the

space transformation. Then, the total change of the area due to the space

transformation is the determinant of Eq. (B.1) which is expressed as

j = 1, 2 ..... m (B.2)

Further simplification of Eq. (B.2) gives

]Js = I
j = 1, 2, ..., m (B.3)

where I is the identity diagonal matrix, because the variation of the boundary is

due to the variations of the boundary coordinates and that



132

i=1 i t:=O

(B.4)

then, Eq. (B.3) can be expressed as

IJs = I + _'.o_ I (B.5)

which is the total change of the surface due to the change of the variable domain.
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APPENDIX C

VARIOUS MATRICES IN CONSERVATIVE FORMS FROM THE QUASI ONE-

DIMENSIONAL EULER FORMULATION.

The various matrices defined for the quasi one-dimensional Euler equations in

the Cartesian coordinate systems are asfollows:

1. By use of Beam-Warming flux splitting, the approximate Jacobian matrix A is

computed as [76]

A=S

0 l 0

(7-3)u2 -(7-3)u (7-1)
2

(Y-l) u3-_e, 7e, 3(7-1) u2 7u
2

2. By use of the Van Leer flux splitting, the exact Jacobian matrix A is computed

as [80]

a = local speed of sound

is the flux vector where the components are defined as

=pm .p(u+pm'a)2 =pm (q2 +pm*aq,) z (C.2)
4a 4aq_
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E2vz =ElvL'[(r-l)u+2"pm'a]=ElvL [(7-1)qz+2"pm'aql]
• ' 7 " Yql

(C.3)

E3vL,.,.,E1v[., [(7-1)u+2"pm'a] 2
• , • 2(72_1) _E1,vL"

[(7-1)qz+2"pm'aq,] z

2(72 - 1)q_
(C.4)

where the parameter to switch between positive and negative contributions is

pm = ( + ) (C.5)

and (2 and P are defined as

Q_.=[p, pu, pe,] r =[ql,q2,q3] r

and

P=(},-l)[pe,-p-_-]=(y-l)[q3 -Tq_jqzzl

(C.6)

(C.7)

The derivatives of the fluxes with respect to the conservative variables are

o3E_vz __ 2 (qz + pm'aqt) O(q2+ pm.aq,)-(q2 + pm.aq,) OQ.
_, - aqt OQ,

c)Ezvt. [(7-1)q2+2"pm'aq,]OE, vz.
• _ *,., J[.

,gQ, 7q_ OQ,

°3ql }E_._I 0((7 - 1)q_+ 2. pm.aql)_((¥_ 1)q2 + 2. pm.aq])--_
7 [ q,OQ,.

(C.9)



135

o_E3va [(Y-1)q2+2"pm'aql] 2 cgE1va
, _ ' d I_

o3Q, 2(y 2 -1)q_ OO,

ElvL {2[(y-a)q2+2"pm'aq] O(q2!}2('y-_- 1) q2 cgQ,

(c._o)

Then the Jacobian components are determined from

cgE_L - OE_,vL cgE2,vL OE3 vc 1r

ao--?= ao,'aQ, '_ j
(c.11)

where r is the index looping from 1 to 3 and the other quantities are defined as

I°°!lq____2_ q_J_2
Bh=(?'--I)s" 2 _ qto

(C.12)

C=(y-1) ,-q2,1
ql

(C.13)

M_ = [O,P,O] r (C.14)

where P is given in Eq. (C.7).



136

APPENDIX D

TWO-DIMENSIONAL JACOBIAN MATICES THAT ARE USED FOR THE

STABILITY ANALYSIS

By use of the Van Leer flux-splitting technique in Cartesian coordinates, the

exact Jacobian matrices A and B of the inviscid two-dimensional Euler Equations

are computed. To realize this, let us define the field variables, fluxes, and speed

of sound in the conservative form as

Q. =[p,puk,pe,] r =[q,,q2,q3,q4] r (D.1)

{ 22/]}a= 7'(7-1) -( q2"+q3

I,. 2q,
(local speed of sound) (D.2)

Mj = u--L, (Mach number) (D.3)
a

where the parameter to switch between positive and negative contributions is

pm = (+) (g.4)

and

(. /2 /2uj Mj
+ pm + pm

f_,,,,,, = pm . p. a . - pm . q_. a (D. 5)
4 4
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f_,,,,,, = f_,_,,f_. (momentum components) (D.7)

f_, [(7 2(72-1)q_ + _ (energy in the x direction) (D.8)

(D.9)

f:,+ r[(7-l)qj+2"pm'a] 2 2 1]•L (energy in the y direction) (D.10)

Then the flux vectors in the x and y directions, respectively, are given as

+ + ..t- ITF,,,.=[S.=.,,S;....S...,, (D.11)

The derivatives of the fluxes are

PmI(MJ 12 O[q_'a] __2(q .07=,=7 + (D.12)

°3fL"JcTQ.= + fi.,,_ (D.13)



= _-/ 311 ....

2(7_=-0q'_ +
fL,

,gQ_

+
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(D.14)

°3(f,_,,,,t_)_, [[(?'-l)qi+2"pm'a] 2 (q]']loff'_,,

OO,

+

(D.15)

Then, the A and B Jacobian matrices in the x and y directions, respectively

are constructed as

Oqy::t: ::t: + + T

Lco,'-b--E,' oct j
(D.16)

F,,±
VL,y

_ar

" ± i r_ qT
o_f t,'u_rgy, yOf j,mornOf ,_,

],gQt',gQ,' ,gQ,
(D.17)

where r is the index looping from 1 to 4, and j from 2 to 3.
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APPENDIX E

DERIVATION OF TWO-DIMENSIONAL CONSERVATIVE VAN LEER

JACOBINAN MATRICES IN GENERALIZED COORDINATES

Hyperbolic equations such as the Euler equations of the fluid flow, are

numerically treated based on the direction of the physical propagation of waves.

Therefore, the fluxes and the Jacobian are split into the positive and negative

contributions and are discretized according to the sign of the Jacobian matrices.

The Van Leer flux-vector-splitting technique in generalized coordinates, which

follows this upwinding method and which has the smooth differentiability property

at sonic transitions and stagnation points, is used for our flow analysis and co-

state equations. For the general derivation of the various terms in the splitting

procedure, we define the following quantities:

(E.1)

(direction cosines, k = x , y )

(cell area) (E.2)

P q_
(contravelocity) (E.3)

Q_.= [p,p.j,pe,] r = [q,,q2,q3,q4] 7 (conservative variables) (E.4)
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a= r(_- a)q' (q_+q_
L_-k _--q_J/J '

(E.5)

(local speed of sound)

U Mach number (E.6)
a

where the parameter to switch between positive and negative contributions is

pm = ( + ) (E.7)

f_,,,,,, = rler_ pm . p. a .
(M_ + pm) z (M_ + pm) z

- rlen. pm.q_, a. (E.8)
4 4

f_.,o., = f_.,_,f_ (E. 1O)

7)U 2+ 2 . pm . ( 7 -1)aU + 2a 2
(E.11)

k*(O) : (E.12)

one, iF au uAl'
-- -2, a---

o_O, a LoQ, oo,j (E.13)

By the use of Eqs. (E.1) - (E.13), the derivatives of the mass, momentum, and

energy with respect to the conservative field variables can be expressed as
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r,en"= • a M_aa,
pmlZ O_q_+ql(M_ _2 cga ^+ +pm _+zaq_(M_

°_;-'[ c'r- au+z PmaQ_J aQ, J__1_L_Q, ._°I,_(_)I (E.15)

09,2, = f_ OQ, OQ, (F.16)

q22- (q_ +q_)
2q_ (E.17)

03f,_r_ty±o3f_ s {(a.pm-U) OU [ - (-_-_- 1)] (7+ 1) O-Q_ --_= f:',,,_s, _ + f_-.,_ 2 i_ +-{) -ff-_ + 2. pm U+9 a 1 Oa 4- 0q22

(E.18)

With Eqs. (E.14) - (E.18), the general expressions for the split Jacobian in

conservative variables can be symbolically represented as

Laa,,' -_, ' -_, J (E.20)

where r is the index looping from 1 to 4 and j from 2 to 3. When the computation

is performed in the ¢ dierction, O_v_L denotes the split Jacobian matrices in the
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direction, similarly, when the computation is performed in the q direction,
^+

OFvL denotes the split Jacobians in the qdirection.
OQ,


