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Abstract 
This paper describes a rational reconstruction of 
Einstein’s discovery of special relativity, validated 
through an implementation: the Erlanger program. 
Einstein’s discovery of special relativity 
revolutionized both the content of physics and the 
research strategy used by theoretical physicists. This 
research strategy entails a mutual bootstrapping 
process between a hypothesis space for biases. defined 
through different postulated symmetries of the 
universe, and a hypothesis space for physical theories. 
The invariance principle mutually consaains these two 
spaces. The invariance principle enables detecting 
when an evolving physical theory becomes 
inconsistent with its bias, and also when the biases for 
theories describing different phenomena are 
inconsistent. Structural properties of the invariance 
principle facilitate generating a new bias when an 
inconsistency is detected. After a new bias is 
generated, this principle facilitates reformulating the 
old, inconsistent theory by treating the latter as a 
limiting approximation. The structural properties of 
the invariance principle can be suitably generalized to 
other types of biases to enable primal-dual learning. 

In troductionl 
Twentieth century physics has made spectacular 

progress toward a grand unified theory of the universe. 
This progress has been characterized by the development of 
unifying theories that are then subsumed under even more 
encompassing theories. Paradigm shifts are nearly routine, 
with the postulated ontology of the universe changing from 
the three dimensional absolute space of Newtonian physics, 
to the four dimensional space-time of relativistic physics, 
and through many other conceptual changes to current 
string theories embedded in ten dimensions. Theoretical 
physicists attribute much of the success of their discipline 

lThis research was supported in part by a sabbatical while 
the author was a member of the Kesml Institute, and in 
part by a subcontract through Recom Technologies to 
NASA Ames Research Center. 

to the research strategy first invented by Einstein for 
discovering the theory of relativity [Zee 861. 

At the heart of Einstein’s strategy u~as the primacy of 
the principle of invariance: the law? of physics are the 
same in all frames of reference. This i-nnciple applies to 
reference frames in different orientauons. displaced in 
time and space, and moreover to reference frames in 
relative motion. This principle also applies to many other 
aspects of physics. including symmetries in families of 
subatomic particles. The application of the invariance 
principle to “two systems of coordinates. in uniform 
motion of parallel translation relatively to each other” was 
Einstein’s fmt postulate: the principle of special relativity 
Einstein 19051. 

Einstein’s genius lay in his strategy for using the 
invariance principle as a means of unifying Newtonian 
mechanics and Maxwell’s electrodynamics. This strategy 
of unifying different areas of physics through the 
invariance principle is responsible for many of the 
advances of theoretical physics. In the parlance of current 
machine learning theory, Einstein’s strategy was to 
combine the principle of special relativity with his second 
postulate, the constancy of the speed of light in a v a c ~ m .  
to derive a new bias. (This second postulate , a 
consequence of Maxwell’s equations: [Einstein 1905 ’:L’s 
that experimental attempts to attribute it to a light metilum 
were unsuccessful.) This new bias was designed and 
verified to be consistent with Maxwell’s electrodynamics. 
but was inconsistent with Newton’s mechanics. Einstein 
then reformulated Newton’s mechanics to make them 
consistent with this new bias. He did this by treating 
Newton’s mechanics as a limiting approximation, from 
which the relativistic laws were derived through 
generalization by the new bias. 

Einstein’s strategy is a model for scientific discovery 
that addresses a fundamental p d o x  of machine learning 
theory: to converge on a theory from experimental 
evidence in non-exponential time, it is necessiuy to 
incorponte a strong bias [Valiant 841, but the stronwr the 
bias the more likely the ‘correct’ theory is exclude, >rn 
consideration. Certainly any conventional analysis I ‘at 
could be learned in polynomial time would exclude ;i 
unified theory of physics. The paradox can be avoit* i 
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machine learning algorithms that have capabilities for 
reasoning about and changing their bias. Even if a strong 
bias is ultimately ‘incorrect’, it is still possible to do a great 
deal of useful theory formation before the inconsistencies 
between the bias and empirical facts becomes a limiting 
factor. The success of the Galilean/Newtonian framework 
is an obvious example. To avoid the paradox, a machine 
learning algorithm needs to detect when a bias is 
inconsistent with empirical facts, derive a better bias, and 
then reformulate the results of learning in the incorrect bias 
space into the new bias space [Dietterich 911. The Erlanger 
program described in this paper is such an algorithm. 

Einstein’s strategy is essentially a mutual bootstrapping 
process between two interrelated hypothesis spaces: a 
space for biases, and a space for physical theories. The 
invariance principle defines the space of biases; each bias 
is a different postulated set of symmetries of the universe, 
formalized through a group of transformations. The 
invariance principle also defies a consistency relationship 
that mutually constrains the bias space and the space for 
physical theories. The hypothesis space for biases has a 
rich lattice structure that facilitates generating a new bias 
when a shift of bias is necessary. The hypothesis space for 
physical theories has an approximation relation between 
theories (limit homomorphisms) that, after a shift in bias, 
facilitates generating a new theory from an old 
(approximate) theory and the new bias. The entire process 
converges if learning in the bias space converges. 

This paper builds upon the considerable body of 
literature on relativity and the role of symmetry in modem 
physics. Its contribution includes identifying and 
formalizing the structural relationships between the space 
of biases and the old and new theories that enabled 
Einstein’s strategy to succeed, in other words, made it 
computationally tractable. The tactics for canying out the 
components of this strategy have been implemented in the 
Erlanger program, written in Mathematica v.1.2. 

The next section of this paper presents an overview of 
Einstein’s strategy. The following section introduces the 
invariance principle, which determines the consistency 
relationship between a bias and a physical theory. It also 
describes the procedure for detecting inconsistency. The 
following section presents the tactic for computing a new 
bias using the invariance principle. It takes the reader 
through the Erlanger program’s derivation of the Lorentz 
transformations. The section after defines l i m i t  
homomorphisms, a formal semantics for approximation. 
The following section describes BEGAT: BiasEd 
Generalization of Approximate Theories, an algorithm that 
uses the invariance principle and the semantics of limit 
homomorphisms to generate components of the new 
theory. The paper concludes with a generalization of 
Einstein’s strategy called primal-dual learning, which 
might be applied to other types of biases. 

Overview of Einstein’s Strategy 
Einstein’s strategy for deriving special relativity will 

first be explained through an analogy with symmetries and 
tangents of geometric figures. Then the structural 
components of the invariance principle interrelating the 
bias space and the space of physical theories will be 
outlined and the overall research strategy described with 
respect to these components. The next section will describe 
the mathematics of the invariance principle a;S it applies to 
theories of physics. 

Symmetry and Group Theory 
The symmetries of a geometric figure are invertible 

transformations that map the figure to itself. For example, a 
square is mapped to itself by various transformations about 
its center: horizontal reflections. vertical reflections. and 
ninety degree rotations. Because these transformations are 
invertible, they f o n  a group. 

A group is any set with a constant identity element, a 
binary operation defined on any two elements, and an 
inverse operation mapping any element to its inverse. A 
transformation group consists of elements which are 
transformations of some other set S; each transformation is 
a bijection from S to S. A transformation T defined on S is 
an automorphism of a subset F 7 S iff T( F) = F . Hence if 
S is the two dimensional plane and F is a geometric figure 
such as a square, then the symmetries of F are those 
transformations T such that T(F) = F . Restrictions can be 
placed on the transformations considered: for example, 
transformations that preserve topological structure are 
called homeomorphisms while transformations that 
presewe distance are called isometries. The isometries of a 
square include horizontal reflections, vertical reflections, 
and multiples of ninety degree rotations about it center. 

Symmetries can be represented through transformation 
equations: for example, the equations for a rotation of 8 
degrees about the origin in two dimensions define new 
primed coordinates for each point in terms of the original 
coordinates: X’ = xcos e - p i n  e , y’ = xsin 8 + y cos 8. If 
8 is a constant, then these equations represent a single 
transformation. If 8 is a parameter, then these equations 
represent a set of transformations. Note that for any 8 , a 
circle with its center at the origin is mapped to itself. Hence 
these equations denote a set of automorphisms of all origin- 
centered circles. One way to prove this algebraically is to 
solve for the equation of a circle, i.e., reduce x 2  + yz = r 2  
to a set of functions for y in terms of x for different 
quadrants. plug the definitions of these functions into the 
transformation equations, and then show that the new 
points also satisfy these equations. 

The method implemented in the Erlanger program is 
slightly different because it is based upon an equivalent but 
alternative approach to defining symmetries. (See 
[Friedman 831 for a thorough analysis of the relation 
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. .  

between these two approaches, as applied to space-time 
theories.) Instead of viewing the transformations as 
mappings from points to points within a single reference 
frame. the transformations are viewed as mappings 
between reference frames. A figure is symmetric if it 
appears exactly the same in the new reference frame as it 
does in the old reference frame. In this alternative 
approach, the transformation equations are the same except 
that the sign of the parameter is inverted. because rotating 
the reference frame 8 about the origin is equivalent to 
rotating the figure by -8 about the origin: 
x' = xcose + p i n  8 , y' = -xsin 8 + ycose. 

An Analogy to Einstein's Strategy 

Electrodym .s 

Newton's 
mechanicd 

Low velocity 
region. 

Figun 1. 
Einstein's strategy for deriving special relativity is 

illustrated through the simple geometric analogy in Figure 
1. Newton's mechanics is represented by the circle on the 
right, its set of symmetries are all  rotations and reflections 
about its center. This set of symmetries is inconsistent with 
the invariance of the speed of light, a deductive 
consequence : f  Maxwell's electrodynamics that is 
represented by !he small bold circle on the left. 

Einstein derived the set of symmetries consistent with 
the constant speed of light by first generalizing from the 
particular circle representing Newton's mechanics to 
symmetries for all possible circles, Le., rotations and 
reflections about all possible centers. He then specialized 
this set of all possible circular symmetries by solving for 
the center of the circle consistent with the constant speed of 
light. This new symmetry was verified to be consistent with 
Maxwell's electrodynamics. 

Einstein then derived relativistic mechanics, represented 
by the larger left circle, through two constraints: that it be 
circularly symmetric around the same center as 
electromagnetic phenomena, and that it be tangent to 
Newton's mechanics as relative velocities approach 0. Note 
that Newton's mechanics had only been empirically 
verified at low velocities compared to light: the rest of the 
circle was assumed from the originally postulated 
symmetries dating back to Galileo. In this manner Einstein 
unified electromagnetism and mechanics under the same 

set of symmetries while still accounting for the wealth c f  
experimental confirmations of Newton's theory at lo- 
velocities compared to the speed of light. Althoug! 
simplistic, this geometric analogy captures the essential 
extensional relationships between Newton's mechanics, 
Maxwell's electromagnetism, and relativistic mechanics. 

One of the crucial facts about symmetry as bias is that 
the groups corresponding to different figures form a lattice 
ordered by the subset relation. (More generally, the 
ordering is defined through group homomorphisms.) There 
is a contravariant relation between the complexity of an 
object and its set of symmetries. For example. a square is 
more complex than a circle, hence the group of 
transformations for a square is a subset of the group of 
transformations for a circle. As explained in the next 
section, this relation between geometric figures and their 
symmetries also holds between theories of physics and 
their symmetries. This contravariant relation is essential to 
the bootstrap learning of Einstein's strategy. 

Structural Relations Exploited in Einstein's 
Strategy 

Figure 2 illushates the structural relations between the 
bias space and the space for physical theories that was 
exploited by Einstein, and indicates how these same 
srructud relations might be exploited in other types of 
bias. 

Figure 2 
1. The diamond represents a space of biases for physical 

laws. The biases are different postulated symmetries of the 
universe. As modem physics has evolved, the bias has 
evolved. Each bias in this space is formalized 1s a 
transformation group. 

2. The consistency relationship between a I? a 
transformation group) and a physical theory is repre .d 
by a solid black line. The diagram illustrate. :at 
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Newtonian mechanics is consistent with the Galilean 
transformation group. 

3. When an inconsistency is detected between an 
experimental fact and the current bias, then a new bias is 
computed. The new bias is computed by combining the 
new observation, an upper bound (represented by a hollow 
circle) and lower bounds (represented by a solid black 
circle). The upper bound is a superset of transformations 
that constrains the types of transformations that are 
considered. The transformations in this superset that are 
consistent with the new observation are selected for the 
new bias. This selection is done by symbolically solving 
for those transformations that are consistent with the new 
observation, rather than enumerating over all the 
transformations in the upper bound. The calculation is 
simplified through the use of lower bounds. Einstein 
derived the Lorenu transformations through this procedure. 

4. Laws in the new hypothesis space are constrained to 
be consistent with the new bias and also to have, as a 
limiting approximation. the laws in the old hypothesis 
space. This limiting approximation is indicated by the 
arrow from relativistic mechanics to Newtonian mechanics. 
In fact, the new laws can often be derived from the old 
laws by using the new bias to reformulate the old laws. 
This was the method Einstein used to generate relativistic 
mechanics. 

The power of Einstein's strategy is that his framework 
scales up from special relativity through the history of 
twentieth century physics. although the mathematics 
becomes considerably more complex. From the viewpoint 
of machine learning. the power of Einstein's strategy is his 
mutual bootstrapping between the bias space and the 
hypothesis spaces by exploiting the structural relationship 
between them: the invariance principle. 

Symmetry as Bias: the Invariance Principle 
Symmetry is a unifying aesthetic principle that has been 

a source of bias in physics since ancient times. In modem- 
physics this principle is stated as: 'the laws of physics are 
invariant for all observers.' An invariance claim is a 
universally quantified statement of the form 'For all 
events/histories of type F, for all reference frames of type 
R,  Physical Theory P holds'. An invariance claim implies 
that a group of transformations mapping measurements 
between different observers'also maps physical theory P 
onto itself. Such a group of transformations defines the 
postulated symmetries of the universe, and is the type of 
bias used by theoretical physicists. The transformations are 
parameterized by the relation between two different 
observers, such as their relative orientation or velocity. For 
example, Galileo defined the following transformation 
equations relating measurements for observers in constant 
relative velocity v parallel to the x-axis: 
{x' = x - vt. I' = r )  These transformations are consistent 
with Newton's theory of mechanics. 

The invariance principle defines a consistency 
relationship between physical theories and groups of 

transformations. The following definitions are standard and 
sufficient for our purpose of understanding and 
implementing Einstein's strategy for deriving special 
relativity. However, the reader should be aware that these 
definitions are a simple starting point for a deep, well 
developed mathematical theory that has had a profound 
impact on theoretical physics. (A good mathematical 
exposition focused on special relativity is [Aharoni 651. a 
more sophisticated philosophical and foundational 
treatment is [Friedman 831.) 

Below, Gis a transformation group. An invariant 
operation is a special case of a covariant operation. Laws 
are invariant if they define the same relation after they are 
transformed by the action of the transformation group. A 
sufficient condition for a theory to be invariant with respect 
to a transformation group Gis if all the operations are 
covariant and all the laws are invariant. 
Invariance of an operation or form: 
Invariant(op,G) e V(g E ~ , x l  ... x,,) 

op(x, 3 x2 9.. . . x, ) = op(g(x1. x* . . . ., x, )) 
Covariance of an operation or form: 
Covariant(op,G) @ 

V(g E G.xl . . .x , )  

V(g E G,xl ... x , )  
op(g(x1 .x2 ....* x, 1) = g(op(x1 *x2 9 .  .. . x, )) 

op(x,.x, 91. .  Jn)= g-l(op(g(x,,x2 ..... x , ) ) )  
Invariance of a physcial law expressed as a universally 
quantified equation: 

Invariant(V( ...) tl( ...) = t2( ...), G) e 
V(g E f j ,xl . . .x , )  

tl(x, .x, ,... .x,)  = t2(x1 .x2 .... , x,)  
= t l(g(x, .x, 9 .... x, )) = tZ(g(x1 .x2 ... .. x, )) 

More generally, a theory is invariant with respect to a 
transformation group Giff all the transformations in the 
group are automorphisms of the models of the theory. This 
is equivalent to proving that the theory and the 
transformation equations together imply the same theory in 
other frames of reference (though see [Friedman 831 for 
qualifications). 

Invariance of a theory I: 
Invariant(I,G) e 

1 V ( g E ~ ) l C I / g a n d I / g b I  
V(g E G) Models(I) s g(Models(l)) 

where I / g denotes substituting variables with the 
terms defined by the transformation equations 
Because of the inverse property of groups, 
the two conjunctions imply each other. 

V ( g E G ) l b  5Vg-l 
implies ~ ( g  E G)I / g t  (I / g-')/ g 
implies V(g E G) I / g t  I 
To check an invariant predicate, the Erlanger program 

back-substitutes transformation equations into a form or 
law and then compares the result to the original form or 
law. If the function or relation are the same, then the 
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invariant predicate is me. In essence the Erlanger program 
assumes the law holds good in the original reference frame 
and then transforms the law into measurements that would 
be observed in a new frame of reference. (This can be done 
independent of whether the law is invariant.) If these 
measurements agree with the law stated in the new frame 
of reference. then the law is invariant. The steps of the 
algorithm are described below and illustrated with the 
example of determining whether the Galilean 
transformations are consistent with the constant speed of 
light, Einstein’s second postulate. The input is the 
definition of the law for the constant speed of light, and the 
transformation equations relating variables in the original 
frame of reference to the variables in the new (primed) 
frame of reference: 
Invariant(x2 = C 2 t 2 ,  {x = x’+  vt’. t = t ’ ) )  

1. Solve the law in the new frame of reference to derive 
expressions for dependent variables (This t m s  a re!xion 
between variables into a disjunction of 2: ’  J f  

: 3 
substitute expressions in the new frame of referem. b r  

variables in the old frame ot reference; this yields a :,:w 
law relating measurements in the new frame of reference: 
(x’ + VI’)’ = c2rt2 

3. The substitutions derived in step 1 are applied to the 
new law derived in step 2: 

( ( c ~ ’ + v r # ) ~  = c 2 P .  (-ct8+  VI')^ = c2t8’) 

substitutions.): ( ( X ’  = Ct” .C’ = -CI ‘ ) )  

2. Use the parameterizc L transformation equatlr 

’ 4. If the law(s) derived in step 3 is a valid equality(ies). 
then the law(s) is invariant. For this example they an not, 
so the Erlanger program determines that Einstein’s second 
postulate is inconsistent with the Galilean transformations. 

Deriving a New Bias 
The invariance principle can be used not only to verify 

that a physical law is consistent with a particular bias. -’ut 
also to generate a new bias when a physical law is 
inconsistent with the current bias, as when the constant 
speed of light is inconsistent with the Galilean 
transformations. There are important structural aspects of 
the invariance principle that enabled this aspect of 
Einstein’s strategy to succeed. In particular, the consistency 
relationship is contravariant: a weaker physical theory is 
consistent with a larger set of transformations. (For the 
purposes of this paper, ‘weaker‘ can be thought of as ‘fewer 
deductive consequences’, though this is not entirely correct. 
This only holds if each law transforms into itself.) Thus 
when an inconsistency is detected between a bias 
represented by a set of transformations and an evolving 
physical theory. the physical theory can be relaxed, leading 
to an enlarged set of transformations. This enlarged set is 
then filtered to compute the new bias. 

Assume that a physical theory T (e.g. Newton’s 
mechanics) is consistent with a transformation group G 
(e.g. the Galilean group). Further assume that G is the 
largest transformation group consistent with T. Then a new 

empirical fact e is observed (e.g. the constant speed of 
light), such that e is not consistent with G. Then T is 
relaxed to T’ (e.g. Newton’s first law), thereby enlarging G 
to G’ (e.g. the set of all linear transformations). The new 
bias is the subset of G’, i.e. G”(e.g. the Lorentz group), 
such that T’ with e is consistent with G”. Then the laws in 
( T  - T? are transformed so that they are consistent with 
G”and have as limiting approximations the original laws. 
This section describes an implemented algorithm for 
deriving G”, while the next sections describe transforming 
the laws in (T - T?. These same algorithms can also be 
used when trying to unify theories with different biases, 
such as Newton’s mechanics and Maxwell’s 
electromagnetism. 

The Lorentz group is a set of transformations that relate 
the measurements of observers in constant relative motion. 
The Lorenu: group is a sibling to the Galilean group in the 
space of biases. Einstein’s derivation of the Lorentz 
transformations implicx + relied upon structural properties 
of the lattice of transformation groups. In particular, 
Einstein constrained the form of the transformations with 
an upper bound, derived tiom Newton’s fist law: a body in 
constant motion stays in constant motion in the absence of 
any force. This is his assumption of inertial reference 
frames. an assumption he relaxed in his theory of general 
relativity. The largest set of transformations consistent with 
Newton’s first law are the four dimensional linear 
transformations. Of these, the spatial rotations and 
spatiaVtemporal displacements can be factored out of the 
derivation. because they are already consistent with 
Einstein’s second postulate. (The Erlanger program does 
not currently have procedures implemented to factor out 
subgroups of transformations - these are under 
development.) This leaves an upper bound for a subgroup 
with three unknown parameters (a ,df)  whose independent 
parameter is the relative velocity (v): 

x =  a(x’+vt‘) t = &’+ft’ 
This upper bound includes both the Gaia -..n 

transformations and the Lorenu: transformations :.le 
DeriveNewBias algorithm takes the definition of an upper 
bound, such as the one above, including lists of the 
unknown and independent parameters, a list of invariants, a 
list of background assumptions, and information on the 
group propenies of the upper bound. When this algorithm 
is applied to Einstein’s second postulate of the constant 
speed of light, the derivation of the Loren& transformations 
proceeds along roughly the same lines as that in Appendix 
1 of [Einstein 19161. This derivation and others are 
essentially a gradual accumulation of constraints on the 
unknown parameters of the transformations in the upper 
bound, until they can be solved exactly in terms of the 
independent parameter which defines the relation between 
two reference frames. The algorithm is described below, 
illustrated with the example of deriving the Lorentz 
transformations. 

The input in this example to the DeriveNewBias 
algorithm is the upper bound given above, two invariants 
for a pulse of light - one going forward in the x direction 
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and one going backwards in  the x direction 
{ x  = ct.  x = -a}, the assumptions that the speed of light is 
not zero and that the relative velocity between reference 
frames is less than the speed of light, and information for 
computing the inverse of a transformation. The steps of the 
DeriveNewBias algorithm: 

1. Constraints on the unknown parameters for the 
transformation group are derived separately from each 
individual invariant. This step is similar to the procedure 
which checks whether a law is invariant under a 
transformation group. However, instead of steps 3 and 4 of 
that procedure. the system of equations from steps I and 2 
are jointly solved for constraints on the unknown 
parameters. For the two invariants f0r.a pulse of light, the 
derived constraints are: 

a = (-C% + cf) / (c  - v) .  a = (c2d + cf) / ( c  + v )  

2. The constraints from the separate invariants are 
combined through Mathematica’s SOLVE function. In the 
example of the Lorentz derivation, this reduces the 
unknown parameters to a single unknown 0: 

a=f, d = ( f v ) / c 2  
3. In the last step, the group properties are used to 

further constrain the unknown parameters. Currently the 
implemented algorithm only uses the inverse property of a 
group, but the compositional property is another SOurce of 
constraints that cou!d be exploited. First, the constraints on 
the unknown parameters are substituted into the upper 
bound transformation definition, yielding a more 
constrained set of transformations. For the Lorentz example 
this yields 

x =  f ( x ’ + v t ’ )  t = fr’  + f ix ’  1 c2 

Second, the inverse transformations are computed. The 
information given to the algorithm on the group properties 
of the upper bound define how the independent parameter 
for the transformation is changed for the inverse 
transformation. For relative velocity. this relation is simply 
to negate the relative velocity vector. This then yields the 
inverse transformations: 

x’ = f ( x  - V I )  r ’ = f l - ( j i J x ) l c 2  
The inverse transformations are then applied to the right 

hand side of the uninverted transformations, thereby 
deriving expressions for the identity transformation: 

x = f( f ( x -  V I ) +  v ( P  +)) 

These expressions are then solved for the remaining 
unknown parameters of the transformation (e.g.f), whose 
solution is substituted back into the transformations: 

= ++xp j J d z  & 1  
2 c - v  c + v  

The result is the new bias, which in this example is 
equivalent to the standard definition of the Lorentz 
transformations (the definitions above are in Mathematica’s 
preferred normal form). 

Limit Homomorphisms: Approximations 
between Theories. 

Once a new bias is derived, a learning algorithm needs 
to transfer the results of learning in the old bias space into 
the new bias space. Unless the relationship between the old 
bias and the new bias can be exploited, in the worst case 
this means running the learning algorithm with the new 
bias over all the examples used to derive the old theory. 
The shift in bias from the Galilean transformation group to 
the Lorentz transformation group required a global 
reformulation of all the theories of physics, from 
kinematics to fluid dynamics, and later quantum 
mechanics. Yet in all these reformulations, the relativistic 
theory was derived from its non-relativistic counterpart 
without exhaustively considering the experimental 
evidence justifying the non-relativistic theory. This was 
done by treating the non-relativistic theory as an 
approximation to the new, unknown relativistic theory; and 
combining this constraint with the Lorentz transformations 
to derive a corresponding relativistic theory. 

A theory such as Newton’s mechanics that has a high 
degree of experimental validation over a range of 
phenomena (e.g. particles interacting at low velocities 
compared to the speed of light), represents a summary of 
many experimental facts. If a new theory is to account for 
these same experimental facts, it must agree with the 
observable predictions of the old theory over the same 
range of phenomena. Hence the old theory must 
approximate, to within experimental error, the new theory 
over this range of phenomena (and vice versa). By showing 
that an old theory is a limiting approximation to a new 
theory, it is unnecessary to exhaustively reconsider all the 
experimental evidence justifying the old theory. This 
approximation criteria for partially validating a new theory 
is well accepted, both within scientific communities and 
within the philosophy of science. However, the 
development of relativity theory went beyond a posr-hoc 
verification of this approximation criteria: the 
approximation criteria was used to derive the new theory. 

Various notions of “approximation” have been 
developed in AI to support reasoning between approximate 
theories, and even generating approximate theories from 
detailed theories [Ellman 90,921. The problem of 
generating a new theory from an approximate theory and a 
new bias requires a precise definition of approximation 
with a well defined semantics. This section describes limit 
honwmorphisms. which are homomorphisms that only hold 
in the limiting value of some parameter. Limit 
homomorphisms can be viewed as an extension of fitting 
parameter approximations [Weld 92) with additional 
algebraic structure that adds the constraints needed to 
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derive the new theory, and not just model the 
approximation relation. 

A limit homomorphism is a map m from one domain to 
another such that for corresponding functionsf1 andj: ,he 
following equality converges as the limit expression RS 
to the limiting value: 

lim m(fi (XI .. .Xn >) = fi (m(+ ). .. m(X, 1) 
Another motivation for this definition of approximation 

is to resolve a fundamental disagreement between Kuhn’s 
view of the paradigm shift from Newtonian to relativistic 
physics, and the view of most physicists. Most physicists 
agne with the logical positivists: Newtonian physics is a 
limiting approximation of Einstein’s physics. Kuhn argues 
that this is spurious [Kuhn 62, pg. 1021. because the 
corresponding concepts in the relativistic and Newtonian 
mechanics are different. A limit homomorphism combines 
a map between corresponding concepts and a limiting 
approximation. thus achieving a limitinn approximation 
between two different conceptual domains. 

A well known type of limit homos .?ism within 
computer science is fl -order computati. .omplexity. 
For example, the n -order computationa: .Aexity of a 
sequence of program statements is the mu.  .mn of the n- 
order computational complexity of ii\e individual 
statements: 

To determine the Q -order computational complexity of a 
program. this limit homomorphism is recursively applied to 
the definition of a program. Similarly, to determine the 
non-relativistic quantity corresponding to a relativistic 
quantity, the appropriate limit homomorphism is 
recursively applied to the definition of the relativistic 
quantity. 

Within physics. limit homomorphisms define the 
relationship between new, unified theories and the older 
theories they subsume. If the mapping function m is 
invertible, the’i a limit homomorphism can be defined in 
the reverse &r -:tion. The limit homomorphisms between 
Newton’s me- iianics and different formulations of 
relativistic mechanics are invertible. Thus from an u priori, 
mathematical viewpoint neither Newtonian mechanics nor 
relativistic mechanics is intrinsically more general than the 
other - the mathematical relationship is symmetric: each is 
a limit homomorphism of the other. These theories agree 
on their predictions when velocities are low. but diverge as 
velocities approach the speed of light. Relativistic 
mechanics is a posrcriori more general becausc its 
predictions agree with experimental facts for high 
velocities, hence the theory is more generally applicable. 
Relativistic mechanics is also extrinsically more general in 
the sense that its bias is consistent with electrodynamics, 
and hence relativistic mechanics and electrodynamics can 
be unified. 

expr+viluc 

lim n(s1; s2;. . . s, ) = yaX(R(S, ).n(s, 1.. . .asn )) 
inpul--r- 

BEGAT: (BiasEd Generalization of 
Approximate Theories) 

While the intrinsic mathematical relationship between 
Newtonian and relativistic physics is not one of 
generalization Friedman 831. the process of generating 
relativistic mechanics from Newtonian mechanics is one of 
generalization. This section describes the mathematics 
justifying this process. and an implemented algorithm 
based on these mathematics that derives relativistic 
kinematics. Extensions currently undergoing 
implementation are described that will enable it to derive 
different formulations of relativistic dynamics. 

It is clear from a reading of [Einstein 19051 that 
Einstein derived relativistic mechanics from Newtonian 
mechanics, by treating the latter as a limiting 
approximation that was valid in low velocity refer-nce 
frames and applying the Lorentz transformations in xr 
to generalize to the relativistic laws. For exampi in 
section 10. paragraph 2 of [Einstein 19051: “If the elec ;on 
is at rest at a given epoch, the motion of the electron erwies 
in the next instant of time according to the equations 
[Newton’s equations of motion] ... as long as its motion is 
slow.” Einstein then generalized to the relativistic equation 
of motion by applying the Lorentz transformations to 
Newton’s equations of motion. Einstein even constrained 
the laws of relativistic dynamics to have the same form as 
Newtonian dynamics. 

This point needs to be made because [Kuhn 621. which 
many in AS take as a definitive source on scientific 
revolutions, argues otherwise with respect to the genetic 
relationship between Newtonian and relativistic mechanics 
[Kuhn 62. pg. 1031: “Though an out-of-date theory can 
always be viewed as a special case of its up-to-date 
successor, it must be transformed for the purpose. And the 
transformation is one that can be undertaken only with the 
advanuges of hinitsight, the explicit guidance of the more 
recent theory. .... t ~ t  it [the old theory] could not suffice for 
the guidance of research.” The first sentence is true. but the 
remaining part 01 ihe paragraph is demonstrably false as 
applied to Einstein’s derivation of relativistic mechanics. 
As is clear from the selection of Einstein’s paper in the 
preceding paragraph, Einstein not only used Newton’s 
theory to guide his .search for the proper relativistic laws, 
he transformed, with foresight, the old (Newtonian) laws to 
obtain the new (relativistic) laws. Few physicists or 
philosophers/historians of science currently subscribe to 
Kuhn’s interpretation. 

When both the old theory and the new theory comply 
with the invariance principle, then the difference in the 
biases will determine the limit point, Le. the range of 
phenomena over which they must agree. The following 
mathematical sketch explains what this limit point must be, 
when the theories postulate the .ume number of 
dimensions. The two biases will shiuc >ome subgroups in 
common (e.g. the spatial rotations) 2nd differ in other 
subgroups (e.g. the subgroup for relative velocity). For the 



subgroups that differ, the identity transformations will be 
the same. Hence the value of the parameter (e.g. relative 
velocity) that yields the identity transformation must be the 
limit point (e.g. 0 relative velocity). Furthermore, assuming 
that the transformations in the differing subgroups are a 
continuous and smooth function of their parameter(s), and 
that the functions in the respective theories are smooth and 
continuous, then the bounding epsilon-delta requirements 
for a limit are satisfied. 

Thus, given a new bias, the new theory must be derived 
so that it satisfies two constraints: the theory is invariant 
under the new bias, and the old theory is a limit 
homomorphism of the new theory. The limit 
homomorphisms between Newtonian physics and 
relativistic physics can be defined through the composition 
of tupling (or projections) that are invertible, with Lorentz 
Imnsformations applied to the various entities of the theory. 
Because the Lorentz transformations are also invertible, the 
composition is invertible. In other words, the limit 
homomorphism is defined through a standard 
homomorphism at the limit point, which will be denoted h ,  
and Lorentz transformations denoted g. 

The two constraints on the new theory, that it be 
invariant under the new bias and that it have as a limiting 
approximation the old theory, can be solved to generate the 
new theory when the limit homomorphism is invertible. 
The new theory and the limit homomorphism are derived in 
tandem. In essence, the msformations in the new bias are 
used to ‘rotate away’ from the limit point, as Einstein 
‘rotated’ a description of Newton’s equations for an 
electron initially at rest to reference frames in which it was 
not at rest. (Here ‘rotate’ means applying the 
transformations in the subgroups of the new bias not 
contained in the old bias, e.g. the Lorentz transformations.) 

For the operations of the new theory, these two 
constraints can often be directly combined as follows: 
1. New, unknown operation is covariant wrt new bias 

Equivalently: op(x, .x, .... J,,) = 8-l (op(g(x, ,x2 ..... x, 1)) 
2. New, unknown operation has limit homomorphism to old 
operation op’: 

op(g(x, .x2 ..... x, )) = g(op(x, .x2 ... . .x, )) 

lim h(op(x,  . x2 .... .x, )) = op’(h(x, ).h(x2 ..... h(x, )) 
1, *.J” + 

limit point 

Thus: op(x,,xz ,..., x,) = 

8- l  (h-’(op’(~g(xl)),h(8(x, ) )* . .* .h(g(xn)))))  
where g(x, .x2 ,..., x,) = limit point 

In words, the new operation is obtained by : 
1. Finding a transformation g that takes its arguments to 

a reference frame where the old operation is valid. 
2. Applying the inverse transformation to define the 

value of the new operation in the original reference frame. 
Applying BEGAT to derive the laws of the new theory 

is a similar two step process: first, a transformation is 
determined that takes the variables to a reference frame in 
which the old laws are valid. and then the inverse 

transformations are symbolically applied to the equations 
for the old laws. 

The algorithm is underconstrained. because of the 
interaction of the definition of the new (unknown) 
operation and the definition of the (unknown) 
homomorphism h. In parts of [Einstein 19051, Einstein 
assumes that h is the identity, for example in his derivation 
of the relativistic composition of velocities ( described 
below), and then derives an expression for the new 
operation. In other parts of [Einstein 19051. he assumes that 
the old operation and the new operation are identical, for 
example in his derivation of the relativistic equation of 
motion. In that derivation he kept the same form as the 
Newtonian equation (Le. force = mass * acceleration) and 
then solved for a relativistic definition of inertial mass, and 
hence h. To his credit, Einstein recognized that he was 
making arbitrary choices [Einstein 1905 section 10. after 
definition of transverse mass]: “With a different definition 
of force and acceleration we should naturally obtain other 
values for the masses.” 

The following illustrates how the BEGAT algorithm 
works for a simple operation when h is the identity. 

Note that when h is the identity: op(x, .x2 ,..... r,) = 

BEGA? && as ’input the definition of the old 
operation, the list of transformations for the new bias, and a 
definition of the limit point. For the composition of 
velocities, the old operation is simply the addition of 
velocities: 

v l  is the velocity of reference frame R, w.r. t. R, 
v2 is the velocity of object A w.r. t. reference frame R, 
and the output is defined in reference frame Ro 

Newton - Compose(vl,v2) = vl+ v2 where: 

The transformations are the Lorentz transformations 
derived earlier. The limit point is when R, is the same as 
R,. i.e. VI  = 0. The first part of the reasoning for the 
BEGAT algorithm is at the meta-level, so it is necessary to 
understand some aspects of the notation used in the 
Erlanger program. Variables are represented by an 
uninterpreted function of the form: 

var[event, component, reference-frame]. This form 
facilitates pattern matching. Transformations have 
representations both as lists of substitutions and as a meta- 
level predicate of the form: 

p m e t e r ]  The independent parameter for relative velocity 
has the form: var[end-framerelveloity~tart-framel. Thus 
v l  is represented, as var[R,,relvelocity.R,l and v2  as 
var[A.velocityR, I. 

1. BEGAT first solves for g. the transformation which 
takes the arguments to the limit point. This transformation 
maps the reference frame for the output to the reference 
frame for the limit point. The result is obtained by applying 
a set of rewrite rules at the meta-level: 

Transform[start-frame, end-frame, independent- 

TransformlR,R, .var[R,selvelocity,R, I1 
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This transformation maps reference frame R, to 
reference frame R,. 

2. BEGAT next solves for the value of the variables 
which are given to the old operation, i.e. Avl). g(v2). For 
g(v1)  it symbolically solves at the meta-level for: 

Appl y [Transform[R,R, ,var[R,,relvelocityRl]], 
varCR, ,rehelocity, R,]], 

obtaining var[R,,relvelocityR,], i.e. Avl)=O 
Forg(v2) it symbolically solves at the meta-level for: 
Apply[Transform[R,R, ,var[R,.relvelocityRlll. 

var[A,velocity. 
R,l1. 

obtaining var[A.velocity,R,]. i.e. 8(v2)=v2 since v2 is 
measured in R,. 

This meta-level reasoning about the application of 
transformations is necessary when the input variables and 
the output variables are defined in different reference 
frames. 

3. BEGAT next symbolically applies the old operation 
to the transformed variables: 

Newton - compose(g(vl),g(v2)) = 0 + v2 = v2 
4. BEGAT finally applies the inverse transformation to 

this result to obtain the definition for the relativistic 
operation: Relativisticcompose(vl.v2) = 

Apply~ransformlRI.Ro.varlR, selvelocityP Jl. 

The transformation derived previously for velocities is 
now applied to var[A.velocity, R,], yielding the definition 
of the operator for relativistic composition of velocities: so 
BEGAT calls DeriveCompositeTransformation with the 
definition for velocity (i.e.V = &/&). and the Lorentz 
Transformations for the components of the definition of 
velocity - namely the transformations for the x co-ordinate 
and the time co-ordinate derived earlier. 
DeriveCompositeTransformation then symbolically applies 
these transformations to the components of the definition, 
and then calls Mathematica's SOLVE operation to 
eliminate the Ar, At components from the resulting 
expression. The result is the same definition as Einstein 
obtained in section 5 of [Einstein 19051: 

var[A,velocity, R, 11 

Relativistic-compose(vl.v2) = (vl+v2)/(1 +(vlv2)/c2) 

Deriving Relativistic Dynamics 
This subsection describes how the invariance principle 

can be used to derive other components of the new theory 
and the limit homomorphism, illustrated with one 
derivation of relativistic dynamics. Different background 
assumptions lead to different limit homomorphisms m and 
different formulations of the equations for relativistic 
dynamics. In his original paper, Einstein reformulated the 
Newtonian equation by measuring the force in the 
reference frame of the moving object and the inertial mass 

and acceleration in the reference frame of the observer. (In 
essence, Einstein did not complete step 2, for reasons too 
complex to explain here.) This leads to a projection of the 
Newtonian mass into separate transverse and longitudinal 
relativistic masses. 

A subsequent formulation of relativistic dynamics 
consistently measures masses, accelerations, momentum 
and energy in the reference frame of the observer, resulting 
in a single relativistic mass that varies with the speed of the 
object. In this formulation the mass of a system is the sum 
of the masses of its components, and is conserved in elastic 
collisions. The modern formulation of relativistic 
dynamics. based on Minkowski's space-time and Einstein's 
tensor calculus, requires that components that transform 
into each other be tupled together. Thus because time 
coordinates transform into spatial coordinates. time and 
space are tupled into a single 4-vector. Consequently 
energy and momentum are also tupled together. In this case 
m maps Newtonian inertial mass to rest mass, and maps 
Newtonian acceleration and forces to their 4-vector 
counterparts. 

In all three cases the derivation strategy is based directly 
on the invariance principle and the principle that the non- 
relativistic theory be a limiting approximation to the 
relativistic theory. The strategy is to assume that the laws 
of dynamics are invariant under the Lorentz 
transformations, and then to solve for the limit 
homomorphism that makes them invariant. (If it is not 
possible to consistently solve for the limit homomorphism, 
then the theory cannot be invariant.) These limit  
homomorphisms are composed of two maps: fiist a tupling 
or projection map from the components of the original 
theory to components of the new theory (H) ,  and second 
of Lorentz transformations for components of the new 
theory(G). These two maps are generated by the 
derivations. 

Derivations based on the tensor calculus are the most 
elegant because the tensor calculus is essentially a syntactic 
encoding G I  .he invariance principle, as applied to biases 
defined by qoups of linear homogenous transformations. 
However, sn explanation of the grouptheoretic basis of the 
tensor calculus is beyond the scope of this paper. Instead 
we will describe the justification and strategy that applies 
to the first two derivations of relativistic dynamics, and 
then illustrate it with pan of Einstein's original derivation. 
This derivation has been partially simulated in interactive 
mode with Mathematka 1.2. The justification and steps of 
this derivation an also the same as that for relativistic 
electrodynamics; more specifically, the derivation of the 
L m n a  transformations for electric and magnetic fields. 

Recall the defmition of the invariance of a theory under 
a transformation group G , where 5fT is the new theory: 

Invariant(&7.G) W H  E G)%T / gb %T 
This is combined with the constraint that the old theory 

is a limit homomorphism of the new theory, where L3c is 
the definition of the components of the old theory in terms 
of the components of the new theory: 

!?@uf3(c M 
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When the limit homomorphism is invertible, we also 
have: 

mUrm= 
Because this inverse limit homomorphism can be 

factored into a tuplingjprojection map H and the new bias 
G.  this last constraint can be combined directly with the 
invariance principle to yield a single constraint between the 
old theory and the new theory. : 

wll E @(mu W l  d= m 
By the definition of a limit homomorphism, the old 

theory is defined with respect to the reference frame for 
which the limiting value holds (e.g. zero relative velocity). 
The transformations in G take the result of applying the 
tupling/projection map Hto this reference frame and 
transform it to all other reference frames. The constraint is 
satisfied when the new theory, defined with respect to any 
reference frame le, is a consequence of the old theory, the 
tupling/projection map H ,  and the vansformation g from 
the reference frame for the old theory to the reference 
frame R .  We will now show how this constraint can be 
used to derive the new theory. illustrated with Einstein's 
derivation of relativistic dynamics. 

In all derivations of relativistic dynamics, it is assumed 
that the new equation has the same form as the Newtonian 
equation, but that the definition of the components might 
be different; according to X and c j .  Thus if X and c j  are 
partially known. say X' and G' are defined for some of the 
components, then the remaining parts of 31 and Gare 
derived by setting up the following unified constraint and 
solving for the remaining parts of the limit homomorphism: 

where M' has the same form as the Newtonian theory 
but with new variables which are functions of 
corresponding variables in Or and the parameters of the 
transformation group c j  . 

Einstein's derivation of relativistic dynamics proceeded 
as follows. First, the old theory (07) was Newton's 
dynamics relating a particle's inertial mass, acceleration. 
and the force exerted upon the particle (Einstein considered 
the case where the force was exerted by an electric field 
with a particle of charge E ) .  This law is valid in the 
reference frame of the particle: 

v(g€c j ) (MuX' )1g ' t  M' 

EE, 
d2r d2Y m y =  

d2x  
M ~ m ~ = E E x  

dt m z = E E y  dt 
Through previous derivations, H' and G' were known 

for space, time, and electromagnetic fields: though Einstein 
did not use the transformations for the electromagnetic 
field. The map H' for space and time was the identity, 
while cj' was the Lorentz transformation equations for 
space and time generated by DeriveNewBias. (A different 
background assumption where H' tuples space and time 
into a single 4-vector would yield the tensor formulation of 
relativistic dynamics). Thus Einstein needed to solve for 
the relativistic definition of inertial mass as a function of 
the non-relativistic mass and the parameter of the Lorentz 

transformation group: namely, the relative velocity 
between reference frames. Because the relative velocity is a 
vector quantity with x.y,r components: the definition of the 
inertial mass is also set up with x.y,r components. These 
components of the inertial mass might later be identified. In 
the following, v is the relative velocity between the 
reference frame of the particle and an observer moving in 
the positive x direction, and p is a term defined with 

The 
respect to the magnitude of v: p =  

unprimed variables are in the reference frame of the 
particle, while the primed variables are in the reference 
frame of the observer. The constraint relating Newton's 
dynamics, the Lorentz transformations. and relativistic 
dynamics is instantiated from the unified constraint above: 

x = P ( x ' + v t ' )  1 

Note that Einstein defines the force in the reference frame 
of the particle, even on the right hand side. The equations 
for Newton's dynamics are then partially transformed into 
the reference frame of the observer by applying the Lorentz 
transformations. yielding a simplified constraint: 

m:(m.v)-= d2x' EEx 
df'2 
d2y' 
d f 2  
d2r' 
d t 2  m:(m,v)- = &fjz 

m;(m,v)- = EE, 

This constraint is then solved for definitions of the 
relativistic inertial mass in terms of the Newtonian inertial 
mass and the parameter between the reference frame of the 
particle and the observer. Solving this constraint is a simple 
directed inference problem [Smith 911; reasoning 
backwards from the right hand side a match is derived 
between the variables for the relativistic inertial mass and 
terms on the left hand side: 

mi(m,v) = mp3 
m;(tn,v)=m/P 
m;(m,v) = mS2 
The definitions for the y and z components of the 

inertial mass are identical, so they can be combined into a 
single 'transverse' inertial mass. In alternative derivations 
of relativistic dynamics, all the components of the inertial 
mass are identical. 

While the particular derivation tactics currently 
implemented or undergoing implementation in the BEGAT 
algorithm might not be directly applicable to other types of 
biases, it is likely that analogues can be found. Research 
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toward generahzing BEGAT is described after a review of 
related work. 

Related Research 
Within AI, this research is related to scientific discovery 

and theory formation [Shrager and Langley 901, qualitative 
physics [Weld and de Kleer 901. change of bias in machine 
learning [Benjamin 90a1, and use of group theory 
[Benjamin 90bl. The research in this paper appears to be 
the F i t  addressing the automated rediscovery of scientific 
revolutions of twentieth century theoretical physics. Most 
of the work in scientific theory formation has been on 
incremental theory revision (normal science). Previous 
research on scientific revolutions includes conceptual and 
qualitative accounts of the geological revolution in plate 
tectonics [Thagard and Nowak 901 and tCe chemical 
revolution of the oxygen theory [O'Rork, .lams, and 
Schulenburg 901. Recently, [Thagard 92' , addressed 
automating the comparison of competing .:ories. and 
applied it to comparing Einstein's relativity ,,ieories with 
competing theories. 

The notions of approximation within qualitative physics 
are closely related to limit homomorphisms. The well 
known calculii for qualitative physics reasoning usually 
include some sort of homomorphism from the reds Forbus 
841 [Kuipers 861. The use of limits (fitting parameters) to 
define approximation relations between models is 
described in [Weld 891. Within machine learning, research 
on declarative representations and reasoning about bias is 
most important, see the collection of papers in [Benjamin 
%I. The research described in this paper is one approach 
to addressing an open problem presented in [Dietterich 911: 
analytically comparing biases. The declarative bias used in 
theoretical physics is group theory. A good collection of 
papers, many of which focus on the use of group theory in 
AI reasoning and problem solving. is in the workshop 
proceedings [Benjamin 90bJ. 

The mathematical model and the research strategy 
presented in this paper are consistent with the physics 
literature. References accessible to the layman include [Zee 
861 and [Davies and Brown 881. With respect to that 
literature the chief innovations of this paper are the result 
of focusing on the structure of derivations with the aim of 
formalizing them. This focus is peculiar to AI: to the best 
of my knowledge it has not been addressed before. The 
closest previous works may be various pedagogical 
explanations found in textbooks such as [Skinner 821. 
[Taylor and Wheeler 661, and [French 681. 

Conclusion: Toward Primal-Dual Learning 
A hypothesis of this research is that Einstein's strategy 

for mutually bootstrapping between a space of biases and a 
space of theories has wider applicability than theoretical 
physics. Below we generalize the structural relationships of 
the invariance principle which enabled the computational 

steps of Einstein's derivation to succeed. We conjecture 
that there is a class of primal-dual learning algorithms 
based on this structure that have similar computational 
properties to primal-dual optimization algorithms that 
incrementally converge on an optimal value by alternating 
updates between a primal space and a dual space. 

Let 9 be a set of biases with ordering relation a that 
forms a lattice. Let I be a set of theories with ordering 
relation 4 that forms a lattice. Let Cbe a consistency 
relation on B x I  such that: 

C(b,t) and b' Q b * C(b',t) 
C(b, t )  and t' 4 t C(6,t') 

This definition is the essential property for a well- 
structured bias space: As a bias is strengthened. the set of 
theories it is consistent with decreases: as a theory is 
strengthened, the biases it is consistent with decreases. 
Hence c define5 a contravariant relation between the 
ordenr.: in biaw snd the ordering on theories. 

be the .*. -:. bias function from I + 'B such that Lr .  
C ,  I.r)and ~ t ( b , r ) ~ b ~ ' U ( r ) . L e t I , b e a f u n c t i o n  
from B x I -, 3 such that D(6. t )  = b A a([). where A is 
the lattice meet operation. 

I, is the DeriveNewBias function, which takes an 
upper bound on a bias and filters it with a (new) theory or 
observation to obtain a weaker bias. (For some applications 
of primaldual learning, D should take a lower bound on a 
bias and filter it with a new theory or observation to obtain 
a stronger bias. ) I, is welldefined whenever B ,  I, and c 
have the properties described above. However, depending 
on the type of bias, it might or might not be computable. If 
it is computable, then it defines the bootstrapping from the 
theory space to the bias space when an inconsistency is 
detected. 

The bootstrapping of BEGAT from a new bias to a 
new theory that has a limiting approximation to the old 
theory requires two capabilities. First, given the old bias 
and the new sibling bias, the restriction of the old theory to 
those instances compatible with the new bias must be 
defined and computable. Second, given this restriction. its 
generalization by the new bias must also be defined and 
computable. 

As an example of BEGAT with a different type of 
bias, consider the problem of learning to predict a person's 
native language from attributes available in a data base. We 
will assume that one's native language is the same as the 
language spoken by one's mother, but that the mother's 
language is not in the data base. A declarative 
representation for biases that includes functional 
dependencies was presented in [Davies and Russell 871 and 
subsequent work. Let the original bias be that the native 
language is a function of the birth place. This bias would 
likely be consistent with data from Europe, but might be 
inconsistent with 'ne data from the U.S. because of its large 
immigrant p0puili.m. Assume that a function I, derives a 
new bias where :?e native language is a function of the 
mother's place of origin. The following l imi t  
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homomorphism formalizes the intersection of the original 
bias and the new bias: 

lim mother's - origin(x) = birth - place(x) 
Uimmigranrr+O 

The restriction of the original theory to concepts 
derived from the limiting value (e.g. non-immigrant data) is 
compatible with this new bias. Furthermore, the concepts 
learned from this restricted set can be transferred directly to 
the new theory by substituting the value of the birth place 
attribute into the value for the mother's place of origin. 

Future research will explore the theory and application 
of primal-dual learning to theoretical physics and other 
domains. Given the spectacular progress of twentieth 
century physics. based on the legacy of Einstein's research 
strategy, the computational advantages of machine leaming 
algorithms using this strategy might be considerable. 
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