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Schwarz-based algorithms for compressible flows
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Abstract

We investigate in this paper the application of Schwarz-based algorithms to com-
pressible flows. First, we study the combination of these methods with defect-correction

procedures. We then study the effect on the Schwarz-based methods of replacing the
explicit treatment of the boundary conditions by an implicit one. In the last part of
this paper we study the combination of these methods with Newton-Krylov matrix-
free methods. Numerical experiments that show the performance of our approaches
are then presented.
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1 Introduction

To compute steady compressible flows one often uses an implicit discretization ap-
proach, which leads to a large sparse linear system that must be solved at each time
step. In the derivation of this system one often uses a defect-correction procedure, in
which the left-hand side of the system is discretized with a lower order approxima-
tion than that used for the right-hand side. This is due to storage considerations and
computational complexity, and also to the fact that the resulting lower order matrix
is better conditioned than the higher order matrix. The resulting schemes are only
moderately implicit. In the case of structured, body-fitted grids, the linear system can
easily be solved using approximate factorization (AF), which is among the most widely
used methods for such grids. However, for unstructured grids, such techniques are no
longer valid, and the system is solved using direct or iterative techniques. Because
of the prohibitive computational costs and large memory requirements for the solu-
tion of compressible flows, iterative methods are preferred. In these defect-correction
methods, which are implemented in most CFD computer codes, the mismatch in the
right- and left-hand side operators, together with explicit treatment of the boundary
conditions, lead to a severely limited CFL number, which results in a slow convergence
to steady state aerodynamic solutions. Many authors have tried to replace explicit
boundary conditions with implicit ones (see for instance [25], [21], and [13]). Although
they clearly demonstrate that high CFL numbers are possible, the reduction in CPU
time is not clear cut.

The investigation of defect-correction procedures based on Krylov methods, to-
gether with implicit treatment of the boundary conditions has been done by the author

in [24]. In [24] the author has also studied Newton-Krylov matrix-free (see also [3],
[22], [23], and [10]) methods combined with mixed discretization in the implicitly de-
fined Jacobian Preconditioner. The preconditioner based on incomplete factorizations
studied in [24] is difficult to parallelize efficiently. The focus in this work is on the
developement of algorithms that are suitable for the parallel computing environment.
In this case, domain decomposition methods that allow the reduction of the global
solution of a given problem to the solutions of local subproblems are preferred. We
propose, therefore, to combine these methods with the preconditioned Newton-Krylov
matrix-free methods developed in [24].

One of the domain decomposition algorithms that has potential applications on
parallel computers is the additive Schwarz algorithm [8]. The other Schwarz-based
method; the multiplicative Schwarz method [8] can also be used in the parallel en-
vironment by using a multi-coloring process. The proposed algorithm is, therefore,
to combine the Newton-Krylov matrix-free methods with the Schwarz-based methods.

The combination of Newton-Krylov matrix-free with domain decomposition methods
was first introduced by the author in [22] and [23]. More precisely, the author has com-
bined the Newton-Krylov matrix-free method with the Domain Decomposition Time



Marching Algorithmthat was introduced by Le Tallecand Tidriri in [11](see also [22]
and[23]).

In the next section, we describe the Euler solver. In section 3, we describe the
methodology studied in this paper. In section 4, a comprehensivestudy of Schwarz-
based methods combinedwith defect-correctionprocedures with explicit and implicit
boundary conditions is performed. We then study the combination of the Schwarz-
based methods with the Newton-Krylovmatrix-freemethods. The last section is de-
voted to some conclusionsand extensions.

2 Description of the Euler solver

2.1 Governing Equations

The bidimensional Euler Equations in conservative form writes

W_ + F(W)_ + G(W)u = O, (1)

where W = (p, pu, pv, e) T, F = (pu, pu.2 + p, puv, u(e + p))T, and G = (pu, puv, pv 2 +
p,v(€+p))2.
Above p is the density, u, v are the velocity components, e is the internal energy, p is
the pressure defined by p - (7-1)(e-(P( u2 + v2)/2)), and finally, 7 is a constant with
7 _ 1.4 for air.

After changing the variables into the curvilinear coordinate

we obtain the following set of equations

I_ + (F)_ + (G), = 0, (2)

where l_ and the contravariant flux vectors, F and G, are defined in terms of the
Cartesian fluxes and the Jacobian determinant of the coordinate system transforma-
tion, through

ITV = J-1W

Q = j-1 (_tW+ _F+ _yG),

and
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j_ a(_,_,r)
c3(x,y, t)

= det(_rlx r/v_v)

From now on, the tilde in the expressions of I7¢',p, and G will be omitted.

2.2 Finite volume scheme

An implicit finite volume discretization of equation (2) can be written as

W.n.+I n [wn+l

q_( _n+l
- G +L½)A LX=0, (3)

where the values are taken at the center of either the cell (i,j) or the interfaces of the
cell (i, j) and its neighbours. Tocompute the fluxesabove, we shall use a flux splitting
approach, whichisdefinedforF by(see[20])

F = F + + F-,

with similar expressions for G. F + is associated with the positive eigenvalues whereas
F- is associated with the negative ones, and G+, G-are defined analogously.
Let 5W = Wi_+1 - Wi_j, then the implicit split-flux discretization of (3) is given by

5W _ + Ar(5{(F + + F-) _+1 + 5n(G + + G-) n't'l) -- O,

where 5{ is defined by

1 F.
_{F = --_[ i+1/2,j- Fi-1/2,j] (4)

and 5. is defined similarly. This yields the following nonlinear system

f(W=+l) = 0. (5)

This nonlinear system will be solved by using the proposed approach of this paper,
which is based on a Newton-Krylov method (see next sections). Now, we shall de-
scribe the more standard defect-correction method, which is based on the following
linearization of first order in time of the nonlinear system above



[I + AT(5_A +- + 5_A-. + 6_B+. + _B-.)]SW '_

The superscripts i and e above indicate that the implicit and explicit operators are dis-
cretized using different schemes. The dots indicate that the difference operators apply
to the product of the Jacobian matrices with _W '_. The matrices A +, A-, B +, and B-
are defined by

A+ = OF+ OF-
OW=' A- - OW '

B + - OG+ B- - OG-
Ow' Ow"

The compact form of the above equation corresponds to the following defect-correction
procedure

A6W" = b. (6)

The different fluxes above are computed using the Roe's approximate Riemann solver
[17]. Three limiters are employed: minmod, Superbee, and Van Leer. The Jacobians
are evaluated using first-order Roe's scheme, or the first-order flux-vector split scheme

[20], which corresponds to the true partials of the positive and negative flux vectors as
described earlier. However, in the context of defect-correction method the flux-vector
split scheme has been shown to give improved convergence rates over the Roe matrices.
Therefore, for the defect-correction approach the Jacobian matrices corresponding to
the flux-vector split scheme are used in the left-hand side. This results in an inconsistent
left and right-hand side operators.

Remark 2.1 For most GFD codes, the implicit spatial differences are only first-order
accurate. The higher-order matrix representation is difficult to obtain, even if it is
possible the resulting matrix is very large, requires a lot of storage, large operation
count in its evaluation, and may be very difficult to invert.

Following this remark, the implicit spatial differences (the left-hand side) in equa-
tion (6) are approximated, only, through a first-order accurate scheme. The ex-
plicit spatial differences (right-hand side) in equation (6) are approximated using the
higher-order formulations of Roe's scheme, that are based on the work of Osher and
Chakravarthy [16].

2.3 Explicit boundary conditions

The boundary conditions are derived using the locally one-dimensional characteristic
variable boundary conditions, which yields (for the derivations see for example [15]):



2.3.1 Farfield-Subsonic Inflow

Pb = (1/2)P_ . P_+ sign(A_)poCo[_:_(u_- u,) + _:y(v,_- v,)]

pb = po+ [(Pb- Po)/C_o]
ub = uo+ _[(P_-P_)/(poCo)]sig_(_)
v_ = vo+ _[(Po-Pb)/(poCo)]sign(_'_)

Above, the point a is outside the computational domain, point b is on the compu-
tational boundary, and i is inside the computational domain.

2.3.2 Farfield-Subsonic Outflow

Pb = P_
pb = po+ [(Pb- Po)/C_o]
ub = u_ + k_[(P_- Pb)/(poCo)]sign(_)

vb = v_ + ku[(P_ - Pb)/(poCo)]sign(A_)

2.3.3 Impermeable Surface

Pb = P, T poCo

_,_= _,_- k_(k_u_+ _,_)

Where the point r is the center of the first cell from the boundary and the minus sign
in equation (2) is used if r is in the positive k direction from the boundary, and the
plus sign is used if r is in the negative direction from the boundary.

2.3.4 Farfield-Supersonic Inflow

In this case all eigenvalues have the same sign. Since we have an in inflow case all
variables are specified.

2.3.5 Farfield-Supersonic Outflow

In this case also, all eigenvalues have the same sign. But now we have an outflow
case, therefore, all variables must be obtained from the solution in the computational
domain. All variables are extrapolated from inside the computational domain to the
boundary.



2.4 Implicit boundary conditions

In the implicit form the above boundary conditions can be written in the form of
operators formulated as functions of the conservation vector W:

fb(w)=o (7)
and are implemented implicitly through:

0fb .
bWo =-h(w).

Using these implicit boundary conditions the author showed in [24], that starting from
a small initial CFL number (10), CFL may be adaptively advanced according to:

CFL"+1 = CFL _ [[f(W)[] _-1
[[/(W)l[- '

where the uperscripts denote the iteration in time. This is the key to the successful
implementation of the preconditioned Newton-Krylov matrix-free method studied in
[24], and which we combine here with the Schwarz-based methods.

3 Description of the methodology

Newton-Krylov methods first proposed by Brown and Saad [3], have been investigated
for compressible Euler and Navier-Stokes equations using unstructured grids in [22],
[23], and [10], and for structured grids in [4], and [5], and [24].

In [22] and [23], the author has studied both transonic and supersonic compress-
ible Navier-Stokes flows. In [4], [5], and [24] a study of a convection-diffusion model
problem, the full potential flows and the transonic compressible Euler flows have been
performed, implicitly defined Jacobian preconditioner.

The most effective preconditioner, ILU, is difficult to parallelize efficiently. On
the other hand domain decomposition methods appear to be effective for the parallel
solution of large systems of linear or nonlinear algebraic equations resulting from the
application of finite element methods or finite difference methods to fluid dynamics

problems. The alternating method introduced by H. A. Schwarz in 1890 [19] appears
to be the earliest domain decomposition method. For two subdomalns this algorithm is
intrinsically sequential. Its extension to include the case of many subdomains was done
by P. L. Lions [12]. As a consequence of this work, the additive Schwarz methods were
developed. Another method, which is a direct generalization of the original alternating
method is the multiplicative algorithm. These methods reduce the solution of the global
problem on the global domain to the solution of subproblems on local subdomains,
obtained by considering an overlapping subdivision of the global domain.



Most of the theory and applications of the Schwarz-based methods have been pri-
marily performed for elliptic and parabolic boundary value problems discretized using
finite element methods. In this paper we shall focus on their applications to the hy-
perbolic problems. We shall also study their combination with the Newton-Krylov
matrix-free methods studied in [24].

3.1 Newton's Method

Consider the following nonlinear system of equations

f(W) = 0, (8)

where f is a nonlinear function from ]R2 to ]R2. Newton's method applied to (8) results
in the following iteration

• Define u0, an initial guess

• For k = 0, 1,2, ... until convergence do

Solve J(Wk)bWk=-f(Wk), (9)

Set Wk+l = Wk + 5Wk, (10)

Of (Wk) is the sytem Jacobian.where J(Wk)=
For the compressible Euler case (see section 2) this Jacobian corresponds to a

higher- order matrix-representation. Using direct-methods to solve the system (9),
the memory requirements and the computational complexity are prohibitive. In this
case iterative methods are preferred and the system (9) is solved only approximately.
The resulting method is called the inexact newton method [6], and corresponds to the
following iteration

• Define u0, an initial guess

• For k -- 0, 1, 2,-.. until convergence do

Solve J(Wk)bWk -- --f(Wk), (11)

Set W_+I = Wk + abWk, (12)

J(Wk) = _-_fw(Wk) denotes the sytem Jacobian as before, and a is a parameter
where

selected using a line search or trust region method ([3] and [7]).



3.2 Krylov methods

The iterative methods we will use to solve the linear system (11) which we rewrite as

J6w = -f, (13)

where f and its Jacobian J are evaluated at the current iterate, are the Krylov method.
If w0 is an initial guess for the true solution of (13), then letting w = w0 + Z, we have
the equivalent system

JZ = r °,

where r ° = -f - Jwo is the initial residual. Let K,_ be the Krylov subspace

Km := Span{r °, Jr°, ... , J'_-lr°}.

Arnoldi's method and GMRES both find an approximate solution

wm= w0 + Zm, with Z._ E K,_,

such that either

(- f - Jw,_) _1_K,_

for Arnoldi's method or

lIf + Jwm[[2 = minw_w0+g,,[lf + Jw[12(= minz_gm][r ° -- JZ[[_)

for GMRES. Here, [[.[[2denotes the Euclidien norm on ]R2 and orthogonality is meant
in the usual Euclidien sense.

In these Krylov methods only the action of the Jacobian J times a vector w, and not J
explicitly is required. In the context of problem (8), this action can be approximated
by difference quotient of the form

f(u + cw) - f(u)J(u)w

where u is the current approximation to a root of (8) and € is a scalar.
Selecting an optimal parameter € in the difference formula for approximating J(u)w
might be a difficult problem. If € is too small then the rounding errors made in the

numerator are amplified by a factor of order -1 which leads to an inaccurate result.

If on the other hand € is too large then the approximation of J(u)w will be poor.
Any reasonable choice of _ should attempt to reach a compromise between these two
difficulties. The technique for choosing the scalar _ we use here is:

-- _ max{[(u,v)I,typuIv[}.



where Ivl= (Ivll,...,Iv l)T,and typu is a given value depending on u and the problem
to be solved. The Krylov method retained in this paper is GMRES. For more detail
we refer to [3].

3.3 Preconditioned Newton-Krylov matrix-free methods

The combination of the Krylov matrix-free methods and the inexact-Newton method

described above results in the Newton-Krylov matrix-free algorithm introduced in [3].
Although the matrix-free method is attractive because it does not form the matrix

explicitly, the matrix is still required for preconditioning purposes. In [22], [23], and
[10] the authors settled for a compromise that uses a block-diagonal preconditioner.
However, most preconditioners require the matrix explicitly. This is true for ILU pre-
conditioner. However as we mentioned earlier, the prohibitive memory requirements
and the computational complexity for the higher-order matrix representation, whether
by analytical or numerical means, makes the explicit calculation of such matrix a diffi-

cult problem. Moreover, if we decide to compute this matrix explicitly the advantage of
the matrix-free method will be lost. In order to overcome these difficulties, we proposed
in [24] to form only, the explicit Jacobian matrix corresponding to a discretization that

is similar to the defect-correction procedure described in section (2). We derived then
an ILU preconditioner based on a lower-order approximation to the true Jacobian.
This included: a) the Jacobian of a lower-order discretization, b) and the Jacobian
obtained using a discretization that allows a less expensive analytical evaluation of
elements. However, the ILU preconditioner studied there is difficult to parallelize ef-
ficiently. Therefore, we propose in this paper to use parallel preconditioners based
on Schwarz domain decomposition methods. In which case, the approximation of the
global Jacobian is reduced to the approximation of local Jacobians defined on subdo-
mains. The latter case can be combined with any of the first two cases a) and b).
This results in a mixed discretization in which the preconditioner of the consistent
higher-order system (11) is derived using an approximation of the Jacobian matrix
that employs a lower-order discretization.

Applying the method proposed above to the fully implicit nonlinear system (5) and
(7), yields the following algorithm

• Define _W_, an initial guess.

• For k = 0, 1, 2,.-- until convergence do

Solve M_l f(W _ + cSW_) - f(W_) = _M_I f(W_)" (14)

Set W_+_= W_+ _W_.



Using right preconditioning, (14) is replaced by

Solve f(W_ + cM-X_W_) - f(W_) = -f(W_). (15)€

The preconditioner M -1 is constructed using an approximation of a lower-order similar
to that used in the defect-correction method to derive the matrix A as described above.

3.4 Additive and Multiplicative Schwarz methods

Let _2 be a polygonal region in JR.2 with boundary 0_. Let n be the total number of
interior nodes in _2. Let

Au= f (16)

be the linear system of algebraic equations resulting from the application of a finite
element, or finite difference discretization of a given set of partial differential equations.
Let {_', i = 1,N,a} be an overlapping decomposition of _2. Let n_ (i = 1,.-., N,d)
denote the number of nodes in the interior of _/._ and Ai the ni × n_ matrix corre-

sponding to the discretization scheme on the mesh in _i'. Let R4 denote the ni x n
matrix corresponding to the algebraic restriction of a vector of length n defined on _2to
a vector of length n_ defined on _/_'. The transpose (p_)T corresponds to an algebraic
extension in which a vector of length n_ defined on _/is extended to a vector of length
n defined on the whole domain f/using an extension by zero on _2\ _2(.

Let u° be a given initial guess, and let u k be the current iterate. The discrete form
of the Schwarz method applied to the problem (16) writes

u k+qy'd = uk+(_-l)/g,'_ + R_Ar_IR_(f - Au1'+(i-_)/lv"_), i = 1,---, N,d (17)

Under the notation Pi = RTA71R_A, we have

u k+x = (I- By, a)... (I- P1)u k + g, (18)

with appropriate g. We note that in this paper we do not use the coarse mesh operator,
and therefore it is not introduced in the definition of the Schwarz methods given here.
Let Oz = (I - PNo,_)"" (I -- PI) denote the iteration operator. If the iteration (18)
converges then its solution v verifies

(I- Oz)v = g. (19)

The equation above defines the multiplicative algorithm for the solution of the linear
system (16).
Now we shall define the additive Schwarz method. We obtain the additive Schwarz

method by modifying the iteration (17) into the following algorithm

Uk+i[N'a = U k+(i-1)[Nsa 27RTA71R_(f - Auk), i = 1,..., Nsa (20)
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This gives the following iteration

Nsd

u k+l = u k + _ RTATIP_(I - Auk), i= 1,... ,Nsd (21)
i=l

If the iteration (21) converges then its solution v is also solution of the following problem

gs_

RT A(I I_Av = g, (22)
i=1

with an appropriate g. The above equation defines the additive Schwarz precondi-
tioner for A. We notice that the multiplicative algorithm is a generalization of the
block Gauss-Seidel method with overlapping blocks, while the additive method is a

generalization of the block Jacobi method (which corresponds to zero overlap).

3.5 Application to the Steady Compressible Euler Problem

The applications of the Schwarz-based methods have been primarily applied to elliptic
and parabolic boundary value problems discretized using finite element methods or
finite difference methods. In this paper we shall focus on their applications to the
hyperbolic Euler problem using the finite volume discretization described in section

2. More precisely, the additive method (22) and the multiplicative algorithm (19) are
applied to the linear system (6) in which the matrix A corresponds to the discretization
scheme of section 2. The resulting method is a defect-correction procedure. The
numerical performance of this method is studied in the next section.

Now, instead of solving the defect-correction iteration (6), we propose to solve the

nonlinear system (5) obtained using the implicit finite volume method (see section 2)
by using the Newton-Krylov matrix-free method in which the action of the Jacobian
on a any given vector is computed using a finite difference method as described in the
subsection 3.3. We then apply the additive method and the multiplicative algorithm
to each linear step of the Newton-Krylov matrix-free iteration. The Schwarz precon-
ditioner is constructed using the matrix of a lower-order discretization obtained in a

similar fashion to that used to construct the matrix A in the defect-correction (6) of
section 2. The numerical study of this combination of the Schwarz-based methods with
the Newton-Krylov matrix-free methods are presented in the next section.

4 Numerical Results

To test the different methodologies developed here we consider a NACA0012 steady
transonic airfoil at an angle of attack of 1.25 degrees and a freestream Mach number

of 0.8. We consider two meshes, with 2048 (the coarse mesh) and 4096 (the fine mesh)
cells, respectively. In all computations performed herein the solution obtained agrees

11



with the standard one. All these calculations are performed on the same Sparcl0 ma-
chine. Since we are dealing with different methods which require varying amounts of
work at each time step we believe that CPU time is the only true measure for com-
paring them. In spite of this, we present also comparisons of the iteration counts. The
relative tolerance in the solution of the linear system is 10-3 for the preconditioned
Krylov methods (ILU/GMRES). The steady state regime is declared when the nonlin-
ear residual norm reaches a value of (or less than) 10-5. And in all tables presented
in this study, we show the number of nonlinear iterations (time steps) and the CPU
time necessary for the solution to reach the steady state regime. We consider also
the terminology x-decomposition, y-decomposition and xy-decomposition. The first
terminology denotes the decomposition in the x-axis direction, the second one denotes
the decomposition in the y-axis direction, and the third one denotes a decomposition
in both directions. They are respectively illustrated in part 1, part 2, and part 3 of
Table 3, for example.

The implementation of the Newton-Krylov matrix-free methods described in section
3, together with ILU/GMRES solver with explicit and implicit boundary conditions,
correspond to the code developed by the author in [9.4]. This code is based, in its
turn, on an EAGLE-derivative code [15] that employs the discretization described in
section 2 with explicit boundary conditions, over a body-fitted grid, and which uses
a linear solver of an approximate factorization (AF) type (see for example [2]). The
Schwarz-based domain decomposition solver uses the PETSc library that was developed
at Argonne National Laboratory [9].

Next, a comprehensive study of the combination of the Schwarz-based methods with
defect-correction procedures with explicit and implicit boundary conditions is reported. "
It is then followed by a study of the combination of the Schwarz-based methods with
the Newton-Krylov matrix-free methodology.

4.1 Study of Schwarz-based methods combined with defect-

correction procedures: Coarse mesh and explicit bound-
ary conditions case

We first study the performance of Schwarz-based methods combined with the defect-
correction procedures. This study is done for both explicit and implicit boundary
conditions. We focus first, on the use of the full nested dissection method as a subdo-
main solver. The use of incomplete factorizations together with GMRES methods, in
replacement of the full nested dissection methods for the subdomain solvers, is then
considered. We note that one often uses the full nested dissection methods for the

solution of subdomain problems. Using then the preconditioned Krylov methods as
subdomain solvers, we perform several comparisons of different Schwarz-based meth-
ods on the test problem described above for various decompositions. An important
parameter related to the use of the Schwarz-based methods is the choice of the over-

12



lap. This crucial issue is also addressed here, for both the full nested dissection and
the preconditioned Krylov subdomain solvers. Another important issue is the choice
of a suitable decomposition of the global domain into local subdomains. This is also
addressed thoroughly in this study.

4.1.1 Study of the overlap

To study the choice of the overlap for the Schwarz-based methods, we first present in
Table 1 the results for different Schwarz methods with an overlap of one mesh size. To
see the effect of the overlap on the Schwarz-based methods studied here, we present in
Table 2 the results corresponding to an overlap of two mesh sizes for different Schwarz-

based methods using the iterative subdomain solvers (ILU/GMRES). We observe first
that, for a given subdomain number the number of nonlinear iterations (time steps)
varies slightly as we change the subdomain decomposition and/or the Schwarz-based
method. Moreover, we observe that the multiplicative Schwarz algorithm outperforms
the additive method for all of the various decompositions studied here. We compare
now the results performed here to those performed in 4.1.3 corresponding to an overlap
of one mesh size (Table 1). We observe that, when the subdomain number increases, the
difference between the CPU time cost of the Schwarz algorithms with two and one mesh
size overlap increases. And this is even more prohibitive for the additive algorithm.
Furthermore this difference is more important for the x-decomposition than for the
xy-decomposition.

4.1.2 The full nested dissection subdomain solvers

We shall study next the Schwarz-based methods using the full nested dissection as sub-
domain solvers. In Table 3 we present the number of nonlinear iterations (time steps)
and the CPU time at convergence (steady state regime), for the different Schwarz-based
methods and for various decompositions, employing the full nested dissection methods
as subdomain solvers. These calculations were performed with a CFL number equal
to 6.5. We observe first that, for a given subdomain solver, the number of nonlinear
iterations (Table 3), is nearly the same for all of the different Schwarz-based meth-
ods and for the various decompositions types. Comparing the block Jacobi method
with the multiplicative Schwarz algorithm (Table 3), we observe that the former out-
performs the latter for all of the decompositions cosidered here, with the exception
of the first x-decomposition. We compare now, the additive with the multiplicative
Schwarz methods. For the x-decomposition the latter outperforms the former for up to
8 subdomains, while the situation is reversed for a decomposition of 16 or more sub-
domains. In the case of the y-decomposition, the multiplicative Schwarz outperforms
the additive Schwarz for the first decomposition, and the situation is reversed for the
second decomposition. Furthermore, the latter prevails over the former for the last
two decompositions. Finally, for the xy-decompositions, the multiplicative Schwarz

13



Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2 × 1 1152 4334 1151 4829 1155 4697
4 × 1 1151 4349 1150 4987 1157 4746

8 x 1 1151 4319 1148 4837 1158 4819
16 x 1 1149 4471 1147 5420 1160 5083

32 x 1 1149 5116 1144 6208 1162 5957
64 x 1 1154 6703 1145 8122 1163 7834

128 x 1 1163 10720 1161 11982 1163 10987

1 x 2 1152 4525 1160 6395 1158 5423

1 x 4 1152 4536 1154 6512 1162 6274
1 x 8 1154 5507 1154 8871 1163 7129

1 x 16 1158 8226 1157 12477 1164 10036

2 x 2 1151 4779 1158 6129 1158 5056

4 x 4 1148 4398 1145 6664 1163 5532
8 x 8 1151 5356 1143 9485 1163 6788

Table 1: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing $chwarz-based
methods with explicit boundary conditions and incomplete factorizations on the coarse-
mesh case.
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Add. Schwarz Mult. Schwarz
Decomp. _erations CPU time Iterations CPU time

2 x 1 1153 5155 1155 4900
4 x 1 1151 5074 1158 4681
8 x 1 1150 5225 1159 4786
16 x 1 1149 5639 1161 5195
32 x 1 1147 6889 1163 6152
64 x 1 1146 9704 1163 8682
128 x 1 1161 15550 1163 13467

1 x 2 1165 6743 1160 5918
1 x 4 1159 8352 1163 6695
1 x 8 1158 10744 1164 8423

1 x 16 1157 18147 1164 12524

2 x 2 1165 7093 1160 5535
4 x 4 1149 8896 1163 6169
8x 8 1147 12002 1163 8043

Table 2: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with explicit boundary conditions and incomplete factorizations and with an
overlap of two mesh sizes on the coarse-mesh case.
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Block Jacobi I Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time ! Iterations CPU time Iterations CPU time
2 x 1 927 8150 926 8297 926 8060

4 × 1 927 7033 926 7248 926 7125
8 x 1 927 6159 926 6483 926 6427

16 x 1 926 5052 926 6280 926 6742
32 x 1 926 4969 927 6746 926 7129

64 × 1 926 5691 926 8490 926 8503

128 x 1 927 7864 926 11555 926 11623

1 × 2 927 6464 927 7664 926 7507

1 × 4 928 5385 927 7635 927 7813
1 x 8 927 5443 926 9683 927 9378

1 x 16 929 6879 926 13289 927 12848

2 x 2 927 6010 927 7877 926 7000

4 x 4 927 4746 928 7589 926 6937
8 x 8 927 4692 926 9129 927 8060

Table 3: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with explicit boundary conditions and full nested dissection on the coarse
mesh-case.

methods outperform the additive Schwarz methods for the four cases. It is also inter-
esting to notice that, for the x-decomposition with 16 or more subdomains the additive
method prevails over the multiplicative one, while this situation is reversed for the

xy-decompositions (4 × 4 and 8 × 8).

4.1.3 The preconditioned Krylov subdomain solvers

We shall study now, the Schwarz-based methods using the preconditioned Krylov meth-
ods as subdomain solvers. In Table 1 we present the number of nonlinear iterations
(time steps) and the CPU time at convergence (steady state regime), for the different
Schwarz-based methods and for various decompositions. These calculations were per-
formed using a CFL number equal to 5. We notice here that, this CFL is smaller than
the one used for the direct subdomain solver (CFL=6.5). For this subdomain solver,
the situation is quite smooth. More precisely, comparing the results given in Table
1, we observe that the block Jacobi method outperforms the multiplicative Schwarz
algorithm, which in its turn, prevails over the additive method. Moreover, the above
observations are valid for all of the various decompositions studied here. For a given
subdomain solver, the number of nonlinear iterations (time steps) (Table 1), is also
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nearly the same for all of the different Schwarz-based methods and for the various
decomposition types.

4.1.4 The full nested dissection versus the preconditioned Krylov subdo-
main solvers

Next, we perform comparisons of the subdomain solvers studied above, and study the
effect of replacing the full nested dissection subdomain solver by the preconditioned
Krylov subdomain solver. In Table 3, the results are obtained using the full nested
dissection methods as subdomain solvers, while in Table 1, those results are obtained
using the preconditioned Krylov methods (ILU/GMRES). We observe first that, for a
given subdomain solver the number of nonlinear iterations (time steps) (Table 3 and
1) is nearly the same for all of the different Schwarz-based methods and for the various

decomposition types. For the x-decomposition and xy-decomposition we observe (Table
3 and 1) that, using the full nested dissection as subdomain solvers is more CPU time

consuming than using the preconditioned Krylov methods (ILU/GMRES) for up to 16
subdomains. As for the y-decomposition, the preconditioned Krylov subdomain solvers
are as attractive as the full nested dissection subdomain solvers only, in the case of a
decomposition of the domain into no more than 8 subdomains.

4.1.5 Global ILU and LU solvers

In this section, we discuss the use of ILU and LU as global solvers. In Table 4, we
present the number of nonlinear iterations (time steps) and the CPU time at conver-
gence (steady state regime) for the full nested dissection (LU) and the preconditioned
Krylov methods (ILU/GMRES) used globally. We observe clearly in Table 4 that to
reach the steady state regime the full nested dissection needs more than four times
the CPU time corresponding to the preconditioned Krylov method (ILU/GMRES).
These observations are in fact not new. It is well known that the full nested dissec-

tion methods are prohibitive, both in terms of the memory requirements and the CPU
time. However, in the context of Schwarz-based methods the use of the full nested
dissection methods is reduced to a local level as subdomain solvers. This makes them

more attractive and efficient to use. (Further discussion is reported in the following
section). Nonethless, for large problems the use of the full nested dissection methods
becomes again prohibitive. And therefore, replacing the full nested dissection solver by
the preconditioned Krylov solver results in a more efficient algorithm, as shown above.

4.1.6 Comparisons of the Schwarz-based methods with the global ILU and
LU solvers

Comparing the results of Table 3 and Table 4 we clearly see that, the block Jacobi
outperforms the global full nested dissection method for all of the decompositions
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LU ILU
Iterations CPU time Iterations CPU time

926 8516 929 2192

Table 4: Iterations counts and CPU times (in seconds) for steady transonic flow at
convergence, employing full nested dissection and incomplete factorizations on the
coarse mesh.

considered here. The other two Schwarz-based methods outperform up to 64 subdo-
mains the full nested dissection method only in the case of the x-decomposition and
the xy-decomposition and with the exception of the additive Schwarz method for the
decomposition 8 × 8. It is also very clear from Tables 1 and 4 that, the global precon-
ditioned Krylov method (ILU/GMRES) outperforms all of the different Schwarz-based
methods for all of the decompositions considered in this study. However, the Schwarz-
based methods have several advantages over the global preconditioned Krylov methods
(ILU/GMRES). The ILU preconditioner is difficult to parallelize efficiently. Moreover,
the Schwarz-based methods and more particularly, the additive Schwarz algorithm,
provide efficient and more attractive parallel algorithms. By reducing the solution of
the global problem into the solution of local subproblems the Schwarz-based methods
allow also to solve very large problems, and therefore, they are preferable to use.

4.1.7 Study of the different decomposition strategies

The above study shows that the use of the preconditioned Krylov methods as sub-
domain solvers for the different Schwarz-based methods studied in this paper is more
attractive than that of the full nested dissection methods. Therefore, we shall study

the different decomposition strategies only, for the iterative solver (Table 1). We shall
compare the three decomposition startegies for each class of Schwarz methods reported
in this paper. For the block Jacobi method it is clear that better performance in terms
of the CPU time is obtained using the x-decomposition than the y-decomposition.
Moreover, the xy-decomposition prevails over the x-decomposition for the last two de-
compositions (4 × 4 and 8 x 8), but not for the first one (2 × 2). For the additive
Schwarz method the x-decomposition prevails over the xy-decomposition which, in its
turn, prevails over the y-decomposition. The same conclusions are also true for the
multiplicative Schwarz method with the particular exception for the 64 subdomains
case where the xy-decomposition prevails over the x-decomposition.
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4.2 Study of Schwarz-based methods combined with defect-
correction procedures: Fine-mesh case and explicit bound-
ary conditions

We study now the performance of Schwarz-based methods combined with the defect-

correction procedures in the case of explicit boundary conditions, using the fine mesh
described earlier. First, the study of the choice of the overlap is performed. In Table 7
we represent the results corresponding to an overlap of two mesh size for the different
Schwarz algorithms using the iterative subdomain solver (ILU/GMRES) that we com-
pare to the results obtained using one mesh size overlap Table 6. The conclusions are
similar to the coarse mesh case. The use of the full subdomain solvers. The results are

illustrated in Table 5 where the number of nonlinear iterations (time steps) and the
CPU time at convergence (steady-state regime) for the different Schwarz-based meth-
ods and for various decompositions are presented. These calculations are performed
with a CFL number equal to 5. Similar conclusions as those obtained for the coarse
mesh are drawn. The replacement of the full subdomain solver by the preconditioned
Krylov subdomain solver (ILU/GMRES) is then performed. Table 6 illustrates the
number of nonlinear iterations (time steps) and the CPU time at convergence (steady-
state regime) for the different Schwarz-based methods and for various decompositions,
employing this iterative subdomain solver. These calculations were performed with a
CFL number equal to 4.5. Again, we obtain the same conclusions as those obtained
for the coarse mesh case.

4.2.1 Conclusions

In the above sections, we have studied several aspects of the Schwarz-based algorithms
with explicit treatment of the boundary conditions. We have shown that, the pre-
conditioned Krylov subdomain solvers result in a more efficient algorithm in terms of
the CPU time and the memory requirements as compared to the full nested subdo-
main solvers. We have also shown that, the block Jacobi method with a large number
of subdomains becomes more prohibitive in terms of the convergence rate using the
preconditioned Krylov subdomain solvers than the full nested dissection subdomain
solvers. However, using the additive and multiplicative methods the preconditioned
Krylov subdomain solvers prevail over the direct subdomain solvers. This clearly shows
that, the block Jacobi methods perform well with the direct subdomain solvers. This
has to be expected since the use of the block Jacobi method relies on giving up some
information. It shows also that for the Schwarz-based methods to be efficient with the

iterative subdomains solvers an overlap is needed. Moreover, the study of Schwarz-
based methods with different overlaps leads to the fact that, an overlap of one mesh
size corresponds to an optimal and efficient choice in terms of the convergence rate. Fi-
nally, both the x-decomposition and the xy-decomposition are found to be preferable to
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Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2 x 1 1483 37573 1483 38048 1483 37213
4 x 1 1483 31215 1483 32672 1483 32169

8 × 1 1484 22930 1483 26475 1483 26007
16 x 1 1483 18445 1483 23234 1483 23351

32 x 1 1483 16442 1483 23643 1483 25048

64 × 1 1483 18410 1483 29007 1483 28858
128 × 1 1483 24298 1483 46536 1483 46931

1 × 2 1485 29566 1484 33559 1483 33294
1 x 4 1484 21728 1484 27205 1484 27064

1 x 8 1485 18574 1484 27407 1484 28104
1 × 16 1485 19169 1484 33095 1484 32892

2 × 2 1484 27090 1484 31576 1483 28936

4 × 4 1483 18677 1484 26393 1484 23356
8 × 8 1484 15233 1485 25755 1484 23382

Table 5: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with explicit boundary conditions and full nested dissection on the fine-mesh
c&se.
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Table 6: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with explicit boundary conditions and incomplete factorizations on the fine-
mesh EaSe.
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Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time

2 × 1 1602 15477 1605 14817

4 x 1 1600 15438 1613 14301

8 x 1 1605 15969 1609 15014
16 x 1 1597 16961 1612 16337

32 x 1 1596 20423 1618 18155
64 x 1 1589 29459 1620 25604

1 x 2 1617 17512 1612 16591
1 x 4 1603 19975 1617 17890

1 x 8 1601 25888 1619 20550
1 x 16 1600 33261 1620 27890

2 x 2 1618 19727 1613 15728
4 x 4 1591 21481 1616 16777
8 x 8 1588 28923 1618 19464

Table 7: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with explicit boundary conditions and incomplete factorizations with an over-
lap of two mesh sizes on the fine-mesh case.
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the y-decompositiion. However, for large number of subdomains the xy-decomposition
might be preferred.

Therefore, in the rest of this paper we will take into account the above conclusions.
More particularly, the Schwarz-based methods combined with other algorithms and/or
other treatments of the boundary conditions will be studied only, for the following
cases:

i) The subdomain solver corresponds to the preconditioned Krylov method.

ii) Only an overlap of one mesh size will be considered.

iii) And the type of decomposition retained is the xy-decomposition.

4.3 Study of Schwarz-based methods combined with defect-
correction procedures: Implicit boundary conditions case

Now, we study the performance of the combination of the different Schwarz-based
methods and the defect-correction procedures using implicit boundary conditions. This
study is performed for both the coarse-mesh and the fine-mesh cases. A comparison
with the previous study for the explicit boundary conditions is also reported.

4.3.1 Study of the performance of Schwarz-based methods

We shall compare here, the different Schwarz-based methods with an implicit treatment

of the boundary conditions. For the coarse-mesh case (Table 8), we observe clearly
that, the block Jacobi method outperforms the additive Schwarz method. Moreover,
the multiplicative Schwarz method outperforms the block Jacobi method for the last
two decompositions. For the first decomposition the latter prevails over the former.
As for the fine-mesh case (Table 9) we observe again that, the block Jacobi method
outperforms the additive method. Furthermore, the block Jacobi method prevails
also over the multiplicative Schwarz method with a close performance for the 8 × 8
decomposition.

4.3.2 Comparisons of the different Schwarz-based methods using explicit
and implicit boundary conditions

We compare now, the performance of the different Schwarz-based methods using im-
plicit and explicit boundary conditions. The author has shown in [24], that the implicit
treatment of the boundary conditions improves the convergence rate for the precon-
ditioned Krylov methods used globally as compared to the explicit one. We focus
here, on the local performance of such methods; i.e. their use as subdomains solvers.
We start first by the coarse-mesh case. For block Jacobi method the use of implicit
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Block Jacobi I Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time I Iterations CPU time Iterations CPU time
2 × 2 423 3310 405 4080 432 3459

4 x 4 425 4031 430 5053 430 3707
8 x 8 418 6219 422 7099 414 4147

Table 8: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with implicit boundary conditions and ILU/GMRES as a subdomain solver
on the coarse-mesh case. These calculations were performed with a CFL number equal
to 100.

Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Rerations CPU time Iterations CPU time

2 x 2 547 8911 553 11096 566 9123
4 x 4 540 9114 552 11899 577 9717

8 x 8 539 11430 546 16215 574 11482

Table 9: Iteration count and CPU time (in seconds) for steady transonic flow at conver-
gence, for various preconditioner/decomposition pairs, and employing Schwarz-based
methods with implicit boundary conditions and ILU/GMRES as a subdomain solver
on the fine-mesh case. These calculations were performed with a CFL number equal
to 100.
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treatment of the boundary conditions improves the rate of convergence as compared
to the explicit treatment only, in the case of modest numbers of subdomains (Table
1 and 8). For a large number of subdomains say 8 × 8, the explicit treatment of the
boundary conditions prevails over the implicit one. One can find an explanation of
this in the conclusions of section 4.2.1. For the overlapped Schwarz-based methods the
situation is quite different. For the additive method, the gain in terms of the CPU time
realized using implicit boundary conditions is more than 25% (Table 1 and 8). This is
even better for the multiplicative method where a gain of more than 32% is realized
repectively for the decompositions 2 × 2, 4 x 4, and 8 × 8. The situation becomes
even more interesting for the fine-mesh case. First, for the block Jacobi method, the
implicit treatment of the boundary conditions improves the rate of convergence for all
of the decompositions considered. And a gain of 32%, 27%, and 32% is realized for the
decompositions 2 × 2, 4 x 4, and 8 × 8 respectively. A gain in terms of the CPU time
of respectively, 38%, 36%, and 24% is also observed for the additive Schwarz. For the
multiplicative method, this gain is respectively 38%, 35%, and 34%. From the above
study we clearly see that, the Schwarz-based methods with overlap perform better than
the zero-overlap block Jacobi method in the context of implicit boundary conditions
as compared to explicit one.

4.4 Study of Schwarz-based methods combined with the Newton-
Krylov matrix-free methods

We study here, the combination of Schwarz-based methods with the Newton-Krylov
matrix-free methods discussed in section 3. For the coarse-mesh case the starting CFL
is 60. The same starting CFL was used for all of the methods and decompositions
studied here. For the fine-mesh case the starting CFL is 30. And this CFL choice is
the same for all of the methods and decompositions studied here. We start by studying
the performance of each Schwarz-based method combined with newton-Krylov matrix-
free method. This is followed by a comparison of this combination with the previous
combination studied in the previous sections, namely the combination of the Schwarz-
based method with the defect-correction procedures.

4.4.1 Performance of Schwarz-based methods combined with Newton-Krylov
matrix-free methods

We shall focus now, on the comparison of the performance of the different Schwarz-
based methods combined with the Newton-Krylov matrix-free methodology. For the
coarse mesh case (Table 10), we observe that the block Jacobi method outperforms the
additive method only in the case of the first two decompositions. For the third decom-
position the latter prevails over the former. The multiplicative method outperforms
the additive method with a reduction of the CPU time of more than 50%. We shall
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I I Block Jacobi Add. Schwarz Malt. SchwarzDecomp. I Iterations CPU time Iterations CPU time Iterations CPU time
2 x 2 23 1251 26 2401 22 1132
4 x 4 26 2115 26 2572 22 1279

8 x 8 31 3301 33 2988 27 1660

Table 10: Iteration count and CPU time (in seconds) for steady transonic flow at
convergence, for various preconditioner/decomposition pairs, and employing Schwarz-
based methods combined with Newton-Krylov matrix-free methods with implicit
boundary conditions on the coarse-mesh case.

I Block Jacobi Add. Schwarz Mult. SchwarzDecomp. Iterations CPU time Iterations CPU time Iterations CPU time

2 x 2 31 5474 31 6102 33 8409

4 x 4 32 5384 28 5708 30 4759
8 x 8 32 6594 35 7493 25 4106

Table 11: Iteration count and CPU time (in seconds) for steady transonic flow at
convergence, for various preconditioner/decomposition pairs, and employing Schwarz-
based methods combined with Newton-Krylov matrix-free methods with implicit
boundary conditions on the fine-mesh case.

compare now, the performance of the above methods for the fine-mesh case. It is clear
from Table 11 that the block Jacobi method prevails over the additive-Schwarz method
for the first decomposition. For the two other decompositions the latter prevails over
the former with a gain of more than 45% for the last decomposition. We should no-
tice here as a consequence of the above discussion that, the block-Jacobi method does
not outperform the multiplicative method. This was the case for the Schwarz-based
method combined with defect-correction procedures studied in the previous sections.

4.4.2 Comparison of the Schwarz-based methods combined with Newton-
Krylov methods and with the defect-correction procedures

We start first, by comparing the results for the the coarse mesh case. The block
Jacobi method in combination with the Newton-Krylov matrix-free methods reduces
the CPU time by more than half as compared to its combination with the defect-

correction procedures (Table 8 and 10). The same conclusion is valid for the additive
Schwarz methods. Furthermore, the multiplicative Schwarz method combined with
the Newton-Krylov matrix-free has a distinct advantage over its combination with the
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defect-correction procedures. The CPU time corresponding to the latter is almost three
times the one corresponding to the former. We shall focus now on the fine-mesh case

(Table 9 and 11). The block Jacobi method in combination with the Newton-Krylov
methods reduces the CPU time by 39%, 41%, and 42% respectively as compared to its
combination with the defect-correction methods, for the decompositions 2 x 2, 4 × 4, and
8 × 8. The additive algorithm combined with the Newton-Krylov methodology reduces
the CPU time by 45%, 52%, and 54% respectively for the decompositions 2 × 2, 4 × 4, and
8 × 8, as compared to its combination with the defect-correction procedures. Finally, for
the first decomposition the multiplicative Schwarz method combined with the Newton-
Krylov methodology reduces the CPU time only by 8% as compared to its combination
with the defect-correction procedures. The results are more impressive for the last two
decompositions, where the former reduces the CPU time by 51% and 64% respectively,
as compared to the latter. To illustrate the overall benefit of the combination of the
Schwarz-based algorithms with the Newton-Krylov matrix-free methods as compared
to their combination with the defect-correction procedures, using explicit and implicit
boundary conditions, we present in Figures 1-6 the curves presenting the logarithm of
the nonlinear steady-state residual versus the CPU time. These curves correspond to
the three class of Schwarz-based methods studied here (block Jacobi, additive Schwarz,
and multiplicative Schwarz) using both the coarse mesh and the fine-mesh. They
correspond also to the particular 8 x 8 subdomain decomposition.

5 Conclusions

In this paper we have proposed and studied several Schwarz-based methods. More
particularly, we have performed the following developments:

i) A full study of the Schwarz-based methods combined with the standard defect-
correction procedures with explicit boundary conditions.

ii) The effect of implicit treatment of the boundary conditions on the above combina-
tion.

iii) The study of Schwarz-based methods combined with Newton-Krylov matrix-free
methods and their comparisons with the combination studied in i).

The different issues related to the use of Schwarz-based methods such as the size
of the overlap, the choice of the decomposition, and the use of the direct and iterative

methods as subdomain solvers, were thoroughly investigated. Taking into account the
different conclusions of these investigations, we have studied the effect of replacing the
explicit treatment of the boundary conditions by an implicit one. We have shown in
particular that, an important gain in terms of the rate of convergence can be achieved
through the use of implicit boundary conditions in the context of Krylov subdomain
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solvers as compared to the use of explicit boundary conditions. The development and
the study of the combination of Schwarz-based methods with Newton-Krylov matrix-
free methods has been then performed. The performance of the preconditioned Newton-
Krylov matrix-free methods used globally has been done in [22]-[24]. We have shown
in this paper, the performance of this methods used locally; i.e. in combination with
the Schwarz-based methods.
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Figure 1: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 × 8 decompositions, employing the block Jacobi algorithm
combined with defect-correction procedures with explicit (DC-explicit) and implicit
(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-
free) methods on the coarse mesh.
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Figure 2: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 × 8 decompositions, employing the additive Schwarz algorithm
combined with defect-correction procedures with explicit (DC-explicit) and implicit
(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-
free) methods on the coarse mesh.
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Figure 3: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 × 8 decompositions, employing the multiplicative Schwarz
algorithm combined with defect-correction procedures with explicit (DC-explicit) and
implicit (DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-
matrix-free) methods on the coarse mesh.
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Figure 4: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 x 8 decompositions, employing the block Jacobi algorithm
combined with defect-correction procedures with explicit (DC-explicit) and implicit
(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-
free) methods on the fine mesh.
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Figure 5: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 x 8 decompositions_ employing the additive Schwarz algorithm
combined with defect-correction procedures with explicit (DC-explicit) and implicit
(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-
free) methods on the fine mesh.
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Figure 6: Steady-state residual versus CPU time (in seconds) for steady transonic flow
at convergence for the 8 × 8 decompositions, employing the multiplicative Schwarz
algorithm combined with defect-correction procedures with explicit (DC-explicit) and
implicit (DC-implicit) boundaryconditions,and with Newton-Krylov matrix-free (NK-
matrix-free) methods on the fine mesh.
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