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1 Introduction

We have been carrying forward a program to confront x-ray observations of clusters
and their evolution as derived from X-ray observatories with observations of the cosmic

microwave background radiation (CMBR). In addition to the material covered in our

previous reports (including three published papea's), most recently we have explored
the effects of a cosmological constant on the predicted Sunyaev-Zerdovich effect from

the ensemble of clusters. In this report we summarize that work from which a paper

will be prepared.

2 Cosmological Background

The z-dependence of the Hubble expansionparameter is given by

d - H - HoE(z)=Ho[f_(l+z)3+II_(l+z)2+f_a] 1/2. (1)
a

Here the redshift is 1 +z = ao/a(t), and f/, f_R, and [2A axe constants

12 8rrGpo 1 f_^ = A
= 3--_' f_R= (n,aoR)-------r' 3--_,' (2)

and they satisfy the equation f/+ I2R+ f/^ = 1.

The angular size distance (the ratio of the physical size and the angular size) is

da(z,)(l+z_) -- Hoaor(z) = H, aoRsinh/_jo _-_j (3)

for open models (f/+ [_A _< 1, while for close models sinh should be replaced with sin.
The luminosity distance, defined as f = L/4_rd_, where L and f are the bolomelric

luminosity and bolometric flux, respectively, is equal to

az(z) = (l+z)2aa(z) (4)

The number of objects per unit red.shift is

a.,¢ = nou,__3&(z), &(z) = [noaor(z)]2
az e(z) '

(5)

where no is the comoving density.

3 Evolution in fl = 1, A = 0 Universe

In a flat universe (with cosmological density parameter f_ = 1) there is no preferred

timescale. Consequently, a power law (scale-free) mass spectrum of initialdensity
fluctuations will evolve in a self-similar fashion.
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Ka_r (1986) assumed self-similar evolution to derive scaling equations for the charac-
teristic values of cluster parameters. IfM is the total mass within a sphere of radius R,

the spectrum of primordial fluctuations can be pa_ametrized in terms of the rms density
fluctuations in the sphere as (6p/p)rms ocM -(_+_)/s, where the index n is a free param-

eter. Since fluctuations grow as (1 +z)-t for f_ - 1, the mass scale of the density fluctu-

ations which just becomes non-linear at a redshlft z is given by Mm. o¢ (1 + z) -6/(_+3).

The requirement that MNL increases with time along with the convergence of (_P/P)m

yield the constraint -3 < n < 1. For cold dark matter (CDM) models, the local slope

of the specWam of mass fluctnations on the scale of clusters of galaxies is n m - 1 (Blu-
menthal et aL 1984); n= 1 is the natural spectrum arising in the cosmic siring model

(V'denkin 1985); and the spectral index n= 0 corresponds to a Poisson dislrilmtion of
initial fluctuations. The perturbation spectrum on cluster scales depends also on the
fraction of so-called "hot" dark matter (van Dalen & Shaefer 1992). We only use n as

a parameter for the evolutionary models, without any physical meaning. Kaiser's laws

for characteristic density p*, radius R*, temperature (or velocity dispersion) T*, and

the comoving cluster number density N" are:

p" oc (l+z) 3, (6)

R* oc (l+z) -(5+n)/(3"_), (7)

T* cc (l+z) (n-t)l(n+3), (8)

N* cx (l+z) 6/(_+_). (9)

Equations (7) and (8) follow from the virialization condition at turn arotlnd, while (9)

is a consequence of the self-similar scaling M'N* = const.

4 Evolution with fl < 1

Using the Press-Schechter (Press & Schochtex 1974) formalism we can calculate the
fraction of matter which is in gravitationally bound within systems with mass exceed-

ing M as a fraction of space, where the linearly evolved deity field, smoothed with
the window function corresponding to mass M, exceeds some density threshold 6c. For

Gaussian initial perturbations this can bewrittenas:

n R) ' (10)

where o(R) isthe rms densityvariationon scaleR, correspondingtomass M (=

4_rp/,R3/3).

Following the approach of Carroll, Press & Turner (1992), we can use the fractional
perturbation growth rate, with respect to that in an ft = 1 universe:

[° ]'5 1+5. +n4 n (11)g(a) = _a

5 [1 209n n2 ] -tg(f_) = 2f_ 70 + 140 140 + fPp (12)

for A = O, and



fortheflat Universe. In an fl = 1 universe, the growth rate is oc (1 +z) -I, therefore

,,(R,z)= o(R,O)g(f_(z))I (13)
g(_,) l+z'

where the z-dependence of the density parameter ft is given by

l+z

ft(z) = ft01 + fl'-'---_ (14)

for A = 0, and

(1 + z)3 (15)
n(z) = n,l__+_(l+z) 3

for ft + flA = 1. The cluster mass function is derived by differentiating eq (10) and
multiplying the result by pb/M:

6c da(M,z)
1 M,]__Pt, exp 2a2-_,z) ] d . (16)n(M,z)aM = -V _ _ :(M,z) aM

The characteristic feature of the mass function determined by eq (16) is the exponential

cutoff at mass M" defined by equation _/2w _(M °,z) = 1. For the power taw spectrum

of primordial perturbations 6k oc kn the rms density contrast on scales, cbrresponding

to mass M, is also given by a power law:

/1+3

a(M) oc M -a, a=_, (17)

which enablesus toderive(usingeq [13])thescalinglaw forthecharacteristicmass

M •

I

(g(fl(z)) 1 )'_M* oc k,g(f/,) l_z (18)

For aflatcriticaldensityUniverse(f_(z)= I)theabove equationreducestotheKaiser's

law M" oc(I+z) -6/(n+3).

For a very wide range of initialdensitycontrastvalues6, theexpansionfactorof a

spherical perturbation at turn-around is Rr/R_ <x 6 -_, and the radius of the same per-
turbation after virialization is simply proportional to the turn-around radius (eg. Barrow

& Saich 1993). This can be used to derive the sealing law for the characteristic density

p* (the density ofan M* cluster):

p" oc ((_)3oc

and the characteristic radius R"

fg(f_(z)) 1 )-3(M') 1-i- (19)

= k,g-F l-:-z: " (20)
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The virial temperature (or velocity dispersion) can be written as:

1
Finally, the comoving number density of M* clusters is

1

I {g(n(o)1 )-;

SOthat N'M* = const.

(21)

(22)

5 Y-parameter evolution

The total microwave flux from a cluster is determined by the integrated Y-parameter

(Markevitch et al. 1994):

Yl = / dw / k_--_ozn,(l)dl =
. k,Tt l

_re¢, _"c2 _., (23)

where T, (oc T) is the electron tempeaature and N, (oc M) is the total number of ek_rons

in the inlracluster gas. Using this equation, we can write the scaling law for the fl_ total

y-parameter from the entire cluster population per unit redshift as:

. .dA/" .M 1
YiN-_z oc M'r'N'edz _ (24)

dz

where Y_" is the integrated Y-parameter for M* clusters, and d.M/dz is the volume per
unit redshift evolution. Using the relation (see previous sections)

1 (1+0 2
N'M" = const = (25)

we finallywritethey-parameterpe_unitredshiftscalingas:

T*(1 +z) 2dy oc (26)
ez E(z)

where E(z) is defined by eq (1) and the T" scaling law is defined by eXl (21). The

local dy/dzlz=o can be measured using various local cluster samples. The redshift
dependence ofdy/dz, calculated assuming n = - 1 and normalized to its local value is

shown in Fig 1.

As the figure shows, the integrated effects of the hot gas in clusters on the microwave

background do not differ significantly for three popular cosmological models. The
three models shown are for an open universe (fl = 0.3), a standard CDM universe

(fl -- 1) and a universe with a significant cosmological constant (fl = 0.3, A = 0.7).
Thus, the introduction of a non-zero cosmological constant in an open universe model,

will not produce a conflict with COBE limits on the spectral distortions in the cosmic

microwave background radiation.
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Figure 1: The redshift dependence of dy/dz for n = -1 and normalized to its local
value is shown for three sets of popular cosmological models. The figure shows that the

effect of clusters on the integrated S-Z effect for a cosmological model with f_ = 0.3,

A = 0.7 does not differ significantly from that in a model with f_ = 0.3, A = 0.
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