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LIST OF SYMBOLS

Bold type always indicates a vector quantity

For variables, italics indicates a scalar quantity

Vectors with Greek symbols are indicated by plain text with no italics

Unless otherwise specified, subscripts refer to partial derivatives with respect to
the subscripted variable.

a, denotes the skew symmetric matrix representation of the cross product:

0 -a a a,
=| aq, 0 -a, | where a= a,
-a, a, O a,

Characteristic velocity of the rocket motor. C=g, s,

The drag coefficient of the spacecraft, see Eq. (1.4)

Denotes the set of i-dimensional vector functions continuous with
respect all arguments, vector and/or scalar

An NxN matrix where the jth diagonal element is 2

Rocket motor thrust direction at time 1 (a unit vector)

The component of the eccentricity vector in the X-direction of OXYZ
The component of the eccentricity vector in the Y-direction of OXYZ
The component of the eccentricity vector in the Z-direction of OXYZ
A Force acting on the spacecraft; cause of force denoted by subscript
Earth's gravitational acceleration at sea-level

An auxiliary function defined for derivation of the necessary
conditions

The Hamiltonian, defined in the usual manner for bang-bang optimal
control problems

The switching function, defined in the usual manner for bang-bang
optimal control problems

The component of the angular momentum vector in the X-direction of
OXYZ

The component of the angular momentum vector in the Y-direction of
OoXYZz
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Ri
r()
r(s)

u(n)
v(r)
v(r)
V(1)
w(?)

The component of the angular momentum vector in the Z-direction of
0XYZ

The identity matrix - if subscripts are given they denote its dimensions
Specific impulse of the rocket motor

A cost functional or performance index

The constant describing the mass distribution of the central body; for
Earth it is often taken as J,=1082.61x10-6

Total spacecraft mass at time ¢

The 3x3 matrix diag(1,1,3)

This is a Rectangular Cartesian inertal reference frame. Here O is
fixed at the gravitational center. The directions X,Y,Z form a right-
handed system; X and Y are in the equatorial plane. Z completes the
right-handed system.

The equatorial radius of the gravitating body - for oblateness effects
Denotes the set of i-dimensional real numbers

Radius vector from origin O of OXYZ 1o spacecraft's location at time ¢
Magnitude of r(s)

Reference altitude for reference atmospheric density (p,) in
atmospheric model, see Eq. (1.4)

The cross sectional area of spacecraft used in computing drag, see Eq.
(1.4)

The upper bound on rocket motor thrust magnitude

Time ‘

Transfer time, the total length of time required to execute the transfer
Rocket motor thrust magnitude at time ¢

The gravitational potential function, see Eq. (1.5). This definition only
holds in Section I

Denotes the set of piece-wise continuous scalar functions with one
scalar argument. This definition does not hold in Section 1

The component of v in the X-direction of OXYZ

The component of v in the Y-direction of OXYZ

Velocity vector in OXYZ at time ¢

Magnitude of v(r)

The component of v in the Z-direction of OXYZ

Weight of spacecraft at initial point of transfer,

vii



x(1)
x(1)
y(1)
2(1)

X )

Q,, a/

V(x)

The component of r in the X-direction of OXYZ

Vector [r7(1) v7(r) m(t)]T; this definition changes in Section III
The component of r in the Y-direction of 0XYZ

The component of r in the Z-direction of OXYZ

State used in numerical computation

These vectors contain the orbital elements which are used to specify
the initial and final orbits of the transfer, respectively.

A vector containing the orbital elements of the ith transfer orbit. For
an N burn transfer the zeroth orbit is the initial orbit and the Nth orbit
is the final orbit. This only applies for numeric subscripts.

Constant from the atmosphere model describing air density variation
in the prescribed altitude region, see Eq. (1.4); this definition changes
in Section ITI

Dummy nonsquare matrix used for generality in Lemma I11.1
Dummy matrix function used for generality in Lemma II1.2

The latitude angle of the current position from the equator; thrust
angle in plane; this definition changes in Section III

The Lagrange multiplier associated with the constraint on er
magnitude

The Lagrange multiplier associated with m

The Lagrange multiplier associated with r

The Lagrange multiplier associated with v

The gravitational constant for the central body

Lagrange multipliers associated with boundary conditions at initial and
final points

Ammnospheric density at reference altitude (ro) for atmospheric model,
see Eq. (1.4)

The independent variable used in numerical computation, represents

normalized time
Vector function that calculates the orbital elements for the state x

Symbol Definitions Applying Only to Section 111, Subsection 111 2 .2

I

Transfer time for the jth burn
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m,‘(t)

f(xj(t),erj (t))

4, (Y,‘.nmu)

Thrust direction function for the jth burn

Lagrange multiplier functions for the jth burn

A vector containing the Lagrange multipliers associated with the
respective boundary condition. Even indices indicate association with
the final orbit; odd indices indicate association with the initial orbit.
The initial condition for the mass of the jth bun

The Lagrange multiplier associated with the initial mass constraint of
the jth burn

The mass as a function of time for the Jth bum

Represents the state dynamics with the thrust always on, as in the one-
burn problem.

Adjoined cost functional for the jth burn of an approximate discretized

problem; application of a direct optimization method is anticipated
Final mass from the discrete problem, Jth burn, at the ith time node

Same as v; except that these are for the discrete problem’s boundary

conditions
Function that computes the initial orbital elements associated with the

initial state y ;, for the discretized problem

Function that computes the initial orbital elements associated with the
initial state y, ,, for the discretized problem

The Lagrange multiplier associated with the initial mass constraint of

the jth burn for the discretized problem
Lagrange multipliers associated with the state Yy, for the jth burn at

time node i, discretized problem .
Thrust direction at time node i, for the Jth burn, discretized problem

Constraint at time node i for the jth burn that enforces implicit

integration, discretized problem

Symbol Definitions Applying Only to Section 111, except Subsection 111.2 2

f(x(r))
g(¥(r),v(r))

Defined in problem (P}, the state dynamics without control
Defined in problem { P}, the controlled portion of the state dynamics
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(1)

(1)
(ur)

{(P)

¥(1)

A1)

Defines a set of necessary conditions that represent a typical
application of optimal control theory, excluding Pontryagin's
Minimum Principle; defined in subsection I11.2.4.

Defines a set of necessary conditions that represent the Patched
method; defined in subsection I11.2 4.

Defines a set of necessary conditions that represent the Modified
Paiched method; defined in subsection I11.3.1.

A definition for an optimal control problem that generalizes the
optimal orbit transfer problem; defined in subsection I11.2.4.

The fixed initial time for the problem (P)

The free final time for the problem {P)

The switching times defined as variables in the conditions {I)

For conditions {II}) and {111}, the initial time of bumn i

For conditions {17} and {111}, the final ime of bumn i

Defined in problem {P}, the scalar control that appears linearly in the
Hamiltonian; this is assumed to be a bang-bang control

The maximum value allowed for the control u(r)

Defined in problem {P}, the control vector that optimal control
determines to be a continuous function of time.

State vector in problem {P) that contains all states except y(1). In
problem {P}, conditions (I}, {II}, and {III} these states are defined
for the time interval (12

One of the states in problem {P}, separated from the rest of the state
vector so that it may be treated separately. In {P) and {I} this state is
Defined for the time interval [ro.tf]

Defined in conditions (7}, Lagrange multiplier vector functions
associated with the whole state vector - it is partitioned as

SGRENO

Defined in conditions {17}, Lagrange multiplier vector functions
associated with the whole state vector on the ith u=u,,, arc, which is
the interval r e [t‘,zﬁ] for i=1,..N - it is partitioned as [2-.”7(:) 2:,,.(1)]
Defined in conditions {I'}, Lagrange multiplier vector functions

associated with the state vector x(1)



A(D)

A
A ()

V:

Defined in conditions {7), Lagrange multiplier vector functions
associated with the state y(r)

Defined in conditions {17}, Lagrange multiplier vector functions
associated with the state vector x(r) on the ith u=u,,, arc, which is the
interval r e [t‘,tﬁ] fori=1,, N

Defined in conditions {11}, Lagrange multiplier vector functions
associated with the state y(r) on the ith U=u,,,, arc, which is the
interval 1 € [r,,tﬁ] for i=1,.N

Defined in conditions (7}, the Lagrange multipliers associated with the

boundary conditions at the initial time

Defined in conditions {1}, the Lagrange multipliers associated with the
boundary conditions at the final ime

Defined in conditions {17}, the Lagrange multipliers associated with
the boundary conditions at the time 1, fori=1,.N

Defined in conditions {17}, the Lagrange multipliers associated with
the boundary conditions at the time 1; for i=1,..N

Defined in conditions {11}, the Lagrange multiplier associated with

the state xand A =[A, A,T]T

Defined in conditions (111}, the Lagrange multiplier associated with r
Defined in conditions {II1), the Lagrange multiplier associated with v
Defined in conditions {111}, Lagrange multipliers associated with
boundary conditions at i; i=0,N+1

Symbol Definitions Applying Only to Section I'V

Lagrange multiplier symbols are the same as above, however, here they refer to a
minimization problem.

Marrix in the differential equations for the linear correction to the state

and Lagrange multipliers, control correction accounted for
Matrix in the differential equations for the linear correction to the state

as depending on the Lagrange multiplier corrections, control
correction accounted for
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dr,

H

P, S, V()
P(1), 5(r), V(1)
m(s), n(r)
{1)ystive I}

A’:.‘
di,

Ox (1)

a(r)
66(1)
0
OL(D)

Matrix in the differential equations for the linear correction to the
Lagrange multipliers as depending on the state corrections, control
correction accounted for

Correction to final time

The Hamiltonian

Sweepback marrices used to compute P(r), S(r), V()
Sweepback matrices for free final time

Sweepback vectors used to compute P(1), S(z), V(1)

Time nodes for discrete guidance with time-to-go

Length of guidance time interval i

Correction to final time, computed at start of guidance time interval i
Linear correction for the state of the nominal trajectory, control
correction accounted for

Sweepback scalar

Control (thrust direction angle) correction

Thrust direction angle (control)

Linear correction for the Lagrange multipliers of the nominal
trajectory, control correction accounted for

Linear correction for the constant Lagrange multipliers, control
correction accounted for

Cost function for minimization problem

Linear correction to boundary conditions, control correction accounted

for
Hamiltonian for minimization problem
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SUMMARY

This report presents new theoretical results which lead to new algorithms for the
computation of fuel-optimal multiple-burn orbit transfers of low and medium thrust.
Theoretical results introduced herein show how to add bumns to an optimal trajectory and
show that the traditional set of necessary conditions may be replaced with a much simpler
set of equations. Numerical results are presented to demonstrate the utility of the

theoretical results and the new algorithms.

Two indirect methods from the literature are shown to be effective for the optimal
orbit transfer problem with relatively small numbers of burns. These methods are the
Minimizing Boundary Condition Method (MBCM) and BOUNDSCO. Both of these
methods make use of the first-order necessary conditions exactly as derived by optimal

control theory.

Perturbations due to Earth’s oblateness and atmospheric drag are considered.
These perturbations are of greatest interest for transfers that take place between low Earth
orbit altitudes and geosynchronous orbit altitudes. Example extremal solutions including

these effects and computed by the aforementioned methods are presented.

It is a commonly accepted notion in the field of optimal orbit transfer that the
more burns an optimal transfer executes, the lower the cost. Unfortunately, many
numerical methods are not robust enough to simply “jump” from an N-burn solution to an
N+1 burn solution. A new algorithm is presented which greatly eases this process. The
method is just as easily implemented in the framework of MBCM as BOUNDSCO, any
indirect method, or a hybrid method. |
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Using this algorithm and the indirect methods mentioned above, the phenomena
of multiple solutions is demonstrated for the optimal orbit transfer problem. A simple
empirical guideline is proposed which chooses between two or more multiple solutions
when using this algoﬁtﬁm. It is not claimed that the algorithm will obtain the globally

optimal solution.

Intuitively, one might want to think of an optimal multiple-burn transfer not as
one large trajectory, but as a sequence of optimal one-burn transfers between transfer
orbits that are optimally chosen. For ideal gravity, a strong relationship is shown to exist
between these two problems. Based on this relationship, two new numerical methods are
presented which iteratively compute optimal orbit transfers. The first method, named the
Patched Method, appears to be very robust yet sluggish in convergence. The second
method, named the Modified Patched Method (MPM) seems somewhat less robust but
much faster in convergence. For optimal orbit transfers in ideal gravity with large
numbers of burns, MPM seems to be superior to the other methods investigated in this

report.

Finally, an investigation is made into a suboptimal multiple-burn guidance
scheme. This scheme is, in fact, seen to have somewhat less than desirable terminal
error.  This terminal error is improved through a time-to-go indexing scheme. Future

directions for multiple-burn guidance are suggested.

The FORTRAN code developed for this study has been collected together in a
package named ORBPACK. ORBPACK and a user manual are provided. The manual is

included as an appendix to this report.
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SECTION 1
THE ORBIT TRANSFER PROBLEM

L1 Introduction
The most popular motor today for performing orbit transfers is of high thrust and
usually a solid, sometimes a liquid rocket motor. These typically have a specific impulse,
or Iyp, in the lower hundreds of seconds (250s-450s) and thrust in the thousands of
Newtons! and up. In this range, they can be considered impulsive?, applying changes in
velocity on a time scale much shorter than the orbit period. For many years the study of

optimal orbit transfer has focused on these impulsive motors.

With the hopes of lower fuel consumption due to an / sp typically in the thousands
of seconds, electric propulsion has recently grown in popularity and many studies have
been performed to develop the motors; a major satellite manufacturer is already designing
satellites which use a Xenon Ion Propulsion System (XIPS)3. The thrust produced by
these motors is in the tens to thousandths of Newtons; for example, XIPS produces 18
thousandths of a Newton with an I, just under 3,000 sec. Obviously, orbit transfer
maneuvers with such electric propulsion will take more time and practical transfers can
no longer be modeled as impulsive. Since it is necessary to specify the maneuver with
continuous functions as opposed to discrete impulsive events, the optimal transfer

problem has been too complicated for exact analytical solutions.

Hertz, J. R.., and Arson, W. J., Space Mission Analysis and Design, Kluwer Academic
Publishers, Boston, 1991.

ZRobbins, H. M., “An Analytical Study of the Impulsive Approximation,” AJAA Journal,
Vol. 4, No. 8, 1966, pp. 1417-1423

3Christensen, R. A, ed., “Space Propulsion’s Latest Thrust,” Vectors, Vol 37, No. 1,
1995, Hughes Electronics, Los Angeles.



Numerical methods for the computation of optimal orbit transfers have been
widely studied. These numerical methods fall into three categories: direct, indircct,-and
hybrid methods. Direct methods parameterize the thrust program and then attempt to
optimize these parameters while satisfying boundary conditions. Indirect methods
employ the mathematics of optimal control to formulate a Two-Point Boundary Value
Problem (TPBVP) which can then be approached with a variety of numerical methods.
Hybrid methods are a combination of the two. These methods are often formed by
simply removing difficult conditions from the TPBVP and optimizing some equivalent

cost function over the released parameters.

The main objective of this research was the computation of fuel-optimal low and
medium thrust orbit transfers. Here, medium thrust was taken as 1 > T/W,2 0.01 and
low-thrust as 0.01 > T/W, 2 0.001. This particular definition has been made because it is
the initial acceleration which the rocket motor produces compared with the gravitational
acceleration at that point that determines how easily changes in the initial orbit will be
made. In contrast, comparing the initial rocket motor acceleration with the weight of the
spacecraft as it would measure on the planet’s surface does not directly indicate the

motor’s ability to move the spacecraft away from a very high orbit.

Of the utmost interest was the ability to compute highly efficient transfers for the
ideal case. This will provide mission planners with the ability to compute a "best"
transfer which can be used to judge more practical schemes. However, the ideal case
does not quite represent reality; the ability to handle orbit perturbations is desirable as
this would produce more realistic "best" transfers. For trajectories that spend much time
near or beyond geosynchronous orbit, the dominant orbit perturbations will result from

either Earth oblateness effects or atmospheric drag.!



Software using multiple-point shooting and modified-shooting techniques were
used and produced many solutions. Using these, some characteristics of the solution have
been observed and studied. Identification of these characteristics has resulted in the
development of a new method for improving optimal orbit transfers. The method
introduces additional burns to optimal ideal-gravity orbit transfers using an under-
exploited property of the switching function. A set of improved transfers were

constructed and these uncovered new properties of optimal transfers.

Furthermore, two new methods have been developed. The first is a new hybrid
approach called the Patched Method. This method combines the robustness of a direct
approach and the greater convergence speed of the multiple-shooting approach in a
configuration that can handle transfers with large numbers of bumns. However, the

Patched Method pays for its robustness with speed.

The second new method is the Modified Patched Method (MPM). MPM trades
back some of the sluggishness of the Patched Method for a small loss in robustness. This
trade-off is accomplished by making use of properties specific to the orbit transfer
problem. Some of these properties appear to be new, developed here for the first time.

Overall, MPM seems to be superior to any of the other methods applied in this report.

The other objective of this research was the examination of a capable guidance
algorithm for multiple-burn orbit transfer. Work on this has produced a one-burn
guidance algorithm using neighboring optimal feedback control. This guidance algorithm

could be used on a burn-by-bum basis to produce a sub-optimal trajectory.

The spacecraft is represented by a point mass and assumed to be a thrusting craft

acted upon by the aerodynamic drag and oblate-body gravity forces of a central body.



The central body, or planet, is also represented as a point mass positioned at its own
center of gravity. Furthermore, the problem is restricted to crafts of mass much smaller
than that of the central body; therefore, the planet is assumed fixed in inertial space. This
inertial space is described with a rectangular Cartesian inertial reference frame (OXYZ2).
The central body is fixed at the center O of this frame and the z-axis is perpendicular to
that body’s equator. All motion within this frame agreeing with the above assumptions

must satisfy Newton’s Second Law:
TF=2TY (1.1)

where m is the spacecraft’s mass, v is its velocity with respect to the reference frame, and
y P

ZF represents the sum of forces on the craft.

In this case, gravity, drag, and thrust make up the total force acting on the craft.
This gives

mV =Ter —Fy00 = Foraviy (1.2)

in which the thrust is some time-varying function 7(r) independent of a time-varying

direction er(r). This is most clearly derived by considering a momentum balance of the
spacecraft as it expells mass to produce thrust; absorbing the dm/dr term into the thrust

term produces Equation (1.2).

The thrust direction is expressed as the unit vector e;{1). For a three-dimensional

thrust vector the control requires a magnitude and three components or two angles. For
two dimensional problems, the one magnitude and only two independent control

components or one angle is required.

It is assumed that the fuel consumption of the motor is represented by



m T 3
Se— 1.
2.l (1.3)
where g, is Earth’s gravitational acceleration at sea level and Iy, is the motor’s specific

impulse.

It is assumed that the atmosphere surrounding the central body can be described
by an exponential model as in the standard atmosphere4 resulting in the following
acrodynamic drag force:

1 ~Birr,)
Fou= 5P SCoyy (1.4)
where B is a constant from the atmosphere model describing air density variation in the
prescribed altitude region, P, is the atmosphere density at the altitude ro, S is the cross-
sectional area of the craft, Cp is the craft’s drag coefficient, v is the magnitude of the

velocity v, and r is the magnitude of the position vector r.

The gravitational potential energy to the second harmonic is$

U=”r—m+%JzRfﬂ3(l—3cos2(9)) (1.5)
r

where R, is the equatorial radius of the central body, 8is the latitude angle of the current
position from the equator, y is the gravitational constant for the central body, and J, is a
constant describing the mass distribution of the central body; for Earth J,=1082.61x10-6.

There are additional mass distribution terms, but the series is truncated here. 6 is

4Anderson, J. D., Fundamentals of Aerodynamics, New York: McGraw-Hill Book Co.,
1984.

3Space Technology Laboratories, Fli
New York: Wiley, 1963,

ght Performance Handbook for Orbital Operations,



described with Cartesian coordinates by 2=r cos(6). This gravitational potential exerts

the following force on the spacecraft:

2 2
Fooin = %% = —{%H %;u, %[N - 5(1) IJ}r (1.6)

r r

where N =diag{1,1,3} and I is the identity matrix.

The equations of motion for the spacecraft are

x(r)=1(x(1),T(r), e (1)) (1.7)
where
x(r):[rT(t) vi(1) m(z)]T (1.8)
and
) v , (1.92)
f(x(6).T(t).e, (1)) = %e,-%r—{%;ﬂzf—;(ﬁ—S(f)) r-%%e"{""’SCDw (1.9b)
~T/(s.1,) (1.9¢)

The thrust magnitude has both an upper and a lower bound. The upper bound is
called Ty,,,, the lower bound is zero. Therefore, the followin g inequality constraint must

be satisfied for all time ¢ € [O,If] :

- 0ST<T,,, (1.10)



For the purposes of this study a simple atmosphere model was chosen. The model
was not intended to accurately represent the Earth’s atmosphere, or any other planet for
that matter. It is implemented only for the purpose of demonstrating the methods used
herein and to allow examination of its effects on the optimal transfer.

The model was defined from a reference altitude of 450 km above the planet’s
equator. The entire atmosphere region was assumed isothermal with a temperature of
1,000K. The density at the definition altitude was defined to be 1.184x10-12 kg/m3. The
definition point for this model was taken from the 1976 U.S. Standard Atmosphere§.
Also, it was assumed that Cp=2, a common approximation for spacecraft’, and the cross
sectional area of the satellite was arbitrarily chosen to be 47 m?2.

For problems in which the ideal gravity assumption is acceptable, coasting
wrajectories are well understood and can be analytically represented. Therefore, it is
simplest to optimize the exit, or “thrust on,” point on the initial orbit and the entry, or
“thrust off,” point on the final orbit. A real spacecraft implementing the orbit transfer
could simply wait in the initial orbit until arrival at the initial orbit exit point, indicating

that the maneuver should begin.

Hence, the boundary conditions must determine all orbital elements except

position on orbit, and are written as

v(x(t,)=q, (1.11a)
v(x(t,))=a, (1.11b)

where the function y determines these orbital elements for the state in qQuestion and «,,
and o, are vectors containing the desired values at the initial and final points,

respectively. Such a determination could be accomplished several different ways.

SUnited States. COESA. U.S. Standard Atmosphere, 1976, Washington: GPO, 1976.
'King-Hele, D. Theory of Satellite Orbits in an Amnosphere, London, Butterworths, 1964.



However, using the angular momentum and eccentricity vectors is perhaps the simplest.8

For planar transfers, all motion can be placed in X-Y plane and the components of the \"g

function are

V,=h=xv-yu
v, = pe, =[(v? = p/r)x—(r v)u] (1.12)
W, = ue, -[(v —u/frly- rTv v]

Where h is the angular momentum, e, is the X-component of the eccentricity vector, and

ey is the Y-component of the eccentricity vector.

In the three-dimensional case, these vectors will compose six components. Since
the angular momentum and eccentricity vectors are always perpendicular, one of these
components will be redundant and thus removable. There is one resmiction on which
component is removed; it can be seen clearly by considering the property that the vectors

are always orthogonal, expressed as
he,+he +he, =0 (1.13)

A component of one of the two vectors can be removed if it can be computed using
Equation (1.13). In other words, since Eq. (1.13) always holds, knowledge of the
removed component is implied and it is unnecessary to explicitly compute it. Another
way to state this is to say that the six components are linearly dependent. Therefore, if

for the orbit transfer problem in question, h,#20 on a terminal orbit, then the \ function

components can be written as

8Kaplan, M. H. Modern Spacecraft Dynamics and Control, New York, John Wiley &
Sons, 1976.



Vi=h =yw-zv (1.142)

Vi=h =zu-xw (1.14b)
Vy=h = xv-yu (1.14c)
V. = le, -[ (v =p/r)x=(rTv u] (1.144)

where x,y, and z are the components of r in OXYZ and u,v, and w are the components of

vin OXYZ.

If the initial or final portion of a transfer traverses altitudes where ideal gravity is
not a valid assumption, then the boundary conditions likely need to be reformulated. For
example, a trajectory that begins at a very low Earth-altitude cannot truly coast with zero
cost because energy would be lost due to atmospheric drag. For such a transfer, it would
be more realistic to fix the initial point. Likewise, some missions may be more interested
in delivering the spacecraft to a specific point in space, in which case the final condition

should be a rendezvous condition.

Anticipating numerical applications, note that the problem can be
nondimensionalized. This aided by making all states roughly the same order. In the
presentation of example solutions, the hat (*) notation will be dropped and solutions are
assumed nondimensionalized unless stated otherwise. The non-dimensionalizations

follow:

I:Er/r* : ﬁzsm/m* (1.15a-b)
i =1/ (1.15¢)

and they require the following:

i}sv/\fu/r* fl 5://1}r*3/y (1.15d-e)



~

rer/r* p=pr* (1.15f-g)
(6.5C,) = p.5C, (r*/m*) (&.7,)= 8.1, /u (1.15h-i)
T=(T/m*) /(p /r*’) R =R/r* (1.15j-k)

The choices of r® and m™ are completely arbitrary. However, it needs 1o be said that
after a problem is solved by these nondimensionalizations rescaling must be exercised
with caution; rescaling changes the atmosphere model and changes the equatorial radius
used for the oblateness terms. For example, a given transfer with nondimensionalized

parameters must specify the value for R, if oblateness effects were considered. If, after

rescaling, one intends this transfer 10 represent a maneuver about Earth then r® must be
such that R, is the radius of Earth by Equation (1.15k). Similar arguments may be made
concerning the nondimensionalized parameters for atmospheric drag effects.

Substitution of Egs. (1.15a-k) into Egs. (1.9a-c) shows that the nondimensional
dynamic equations are equivalent to Egs. (1.9a-c) with u=1 (the value of J,, however, has
no dimensions and is not changed). In Eq. (1.9a), choosing the scalings for r and ¢,
shows that the only consistent scaling for v is Eq. (1.15d). Then, in Eq. (1.9b) it is clear
that Egs. (1.15a-h) and (1.15j-k) are required for consistency. Substitution into Eq. (1.9b)
also shows that the factor u appears on both sides of Eq. (1.9b), in the numerator of every
term; therefore, it may be dropped from both sides. Finally, substitution into Eq. (1.9¢)

reveals that Eq. (1.15i) is required for consistent scaling.

10



SECTIONII

COMPUTATION OF OPTIMAL ORBIT
TRANSFERS

ILL Literature Revi

One of the carliest and most notable applications of the calculus of variations to
the orbit transfer problem was by Lawden. His work established the now widely-used
pointer vector theory. Lawden also derived many useful analytical results including an
analytical solution for the Lagrange multipliers over coast arcs in ideal gravity!0; his
expression is easily configured to trajectories where the transfer time is unconstrained.
He went on to conclude that for the case of escape from a circular orbit, tangential
thrusting would be nearly optimal!!; however, he noted that this thrust program may not
fare so well in other cases. Lawden studied the possibility that, in addition to arcs of
maximum thrust and null thrust, arcs of intermediate-thrust may exist in an optimal
transferl2. He later wrote a general review of rocket trajectory optimization!3 and stated

that issue of the existence of intermediate-thrust arcs was still unresolved.

After Lawden's formulation was published, many other researchers produced

solutions to the Lagrange multipliers over coast arcs in ideal gravity. A set of

Lawden, D. F., Optimal Trajectories for Space Navigation, London, Butterworths, 1963.

10Lawden, D. F., “Fundamentals of Space Navigation,” Journal of the British
Interplanetary Society, Vol. 13, No. 2, 1954, pp. 87-101, 1954.

Hlawden, D. F., “Optimal Escape from a Circular Orbit,” Astronautica Acta, Vol. 4, No.
3, 1958, pp. 218-233.

12Lawden, D. F., “Optimal Intermediate-Thrust Arcs in a Gravitational Field,”
Astronautica Acta, Vol. 8, No. 2, pp. 106-123.

13 awden, D. F., “Rocket Trajectory Optimization: 1950-1963,” Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 4, 1991, pp. 705-711.
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expressions derived by Danby!4 appear to be the earliest such work. This was actually
for the equivalent problem of determining the matrizant. At almost the same time, P‘ines
published work which derived constants of integration!$, some which apply during any
part of the trajectory, even intermediate-thrust arcs, and some in restricted cases. Later,
both Eckenwiler!6 and Hempel!? produced formulations valid in a two-dimensional
system. Lion and Handelsman!8 derived equations for a three-dimensional system.
Glandorf!® produced a very useful form for the Lagrange multiplier's that used the
current radius, velocity, and angular momentum vectors as reference directions. Vinh20
developed equations which reduced the solution of the Lagrange multipliers for any

central force field to a problem of simple quadratures.

These analytical results have all proved useful in many studies of optimal orbit
transfers. However, to date no closed-form expressions have been obtained for optimal
orbit transfers, including the fuel-optimal thrust-limited case considered in this report.
Therefore, numerical methods are used to produce exact solutions for this problem which
has challenged the most sophisticated algorithms. These methods are traditionally

divided into three types: indirect, direct, and hybrid.

14Danby, J. M. A, “The Matrizant of Keplerian Motion,” AJAA Journal, Vol. 2, No. 1,
1964’ pp' 16'19.

15Pines, S., “Constants of the Motion for Optimum Thrust Trajectories in a Central Force
Field,” AIAA Journal, Vol. 2, No. 11, 1964, pp. 2010-2014.

16Eckenwiler, M. W., “Closed-Form Lagrangian Multipliers for Coast Periods of
Optimum Trajectories,” AJAA Journal, Vol.3, No. 6, June 1965, pp. 1149-1151.

17Hempel, P. R., “Representation of the Lagrangian Multipliers for Coast Periods of
Optimum Trajectories,” AIAA Journal, Vol. 4, No. 4, June 1966, pp. 720-730.

18] ion, P. M., and Handelsman, M., “Primer Vector on Fixed-Time Impulsive
Trajectories,” AJAA Journal, Vol. 6, No. 1, 1968, pp. 127-132.

15Glandorf, D. R., “Lagrange Multipliers and the State Transition Matrix for Coastin g
Arcs,” AIAA Journal, Vol. 7, No. 2, 1969, pp. 363-365.

20Vinh, N. X., “Integration of the Primer Vector in a Central Force Field,” Journal of
Optimization Theory and Applications, Vol. 9, No. 1, 1972, pp. 51-58.
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I1.1.1. Indirect Methods
Indirect methods convert the optimization problem into a TPBVP though optimal
control theory. The most popular indirect methods by far seem to be the shooting and

multiple-point shooting methods.

Among the studies using indirect methods, the work by Brown, Harrold, and
Johnson?! produced an indirect method named OPGUID/SWITCH which handles
rendezvous trajectories or free entry/exit points and free final time using a modified set of
boundary conditions. Results with OPGUID/SWITCH were presented for medium thrust

levels and two to three burns.

Another indirect method, developed by McAdoo, Jezewski, and Dawkins?2 and
dubbed OPBURN, was actually a combination of two approaches. The first
approximated ideal gravity using a model for gravitational accelerations linearly varying
with altitude. This assumption results in a linear steering law and was used to simplify
low-accuracy calculation of the transfer. The data from this approach were used as the
starting iterate of another, more accurate code. Results with this method were presented

for medium thrust acceleration levels and two to three bumns.

Edelbaum, Sackett, and Malchow?23 produced computer code 1o solve minimum
time transfers (one bum) using equinoctial orbital elements as state variables. Constraints

On exposure to solar radiation were considered. This method relied heavily upon the

21Brown, K. R., Harrold, E. F., and Johnson, G. W., “Rapid Optimization of Multiple-
Burn Rocket Flights,” NASA CR-1430, Sept., 1969.

22McAdoo, S., Jr., Jezewski, D. J., and Dawkins, G. S., “Development of a Method for
OptimalgMancuvcr Analysis of Complex Space Missions,” NASA TN D-7882,
April, 1975. .

23Edelbaum, T.N ., Sackett, L. L., and Malchow, H. L., “Optimal Low Thrust Geocentric
Transfer” AIAA Paper 73-1074, Proceedings of the AIAA 10th Electric
Propulsion Conference, Lake Tahoe, Nevada, November 1973.
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method of averaging and was named SECKSPOT. Horsewood, Suskin, and Pines2¢
modified SECKSPOT to produce a code for the optimization of multiple-burn rendezvous
orbit transfers with plane changes between circular orbits with low-thrust in an idea)

cravity field. The transfer times for these trajectories were fixed.

A study by Redding?’ handled point-to-point, or rendezvous, low-thrust transfers
with plane changes. The method presented in the study includes the reduced set of
boundary conditions established earlier by Brown, et. al.2! It was limited to transfers to
geosynchronous orbits in an ideal gravity field and no results are discussed for elliptical
termunal orbits. Solutions with low-thrust were obtained for ransfers with two to six

burns.

I1.1.2. Direct Methods

The most common technique for direct methods is to discretize the control and
possibly the state, then optimize the performance index by varying the control and state at
each node of the independent variable. This optimization is usually subject to some
constraints. In orbit transfer optimization, it obviously makes sense to use any helpful
results from the application of optimal control theory. Almost universally, direct
methods for orbit transfer optimization make use of a bang-bang assumption which
eliminates the possibility of intermediate-thrust arcs. The control is then taken as a

combination of switching times and directions.

The Direct Collocation with Nonlinear Programming (DCNLP) technique makes

use of polynomial approximation to both perform integration and approximate the control

24Horsewood, J.L., Suskin, M.A., and Pines, S., “Moon Trajectory Computational
Capability Development,” NASA Lewis TR-90-51, Cleveland, Ohio 44135, July
1990. . ’

LRedding, D.C., “Optimal Low-Thrust Transfers to Geosynchronous Orbit,” NASA
Lewis SUDAAR 539, Cleveland, Ohio 44135, Sept. 1983.
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at nodes. Dickmanns and Wells26 made a significant contribution using a DCNLP
method based on piece-wise Hermite polynomial approximations for the state and
Lagrange multipliers. More recently, Hargraves and Paris?7 used this technique in their
OTIS (Optimal Trajectories by Implicit Simulation) program. The Direct Transcription
and Nonlinear Programming (DTNLP) technique is very similar to DCNLP, with

transcription replacing collocation for implicit integration.

Using DCNLP once then DTNLP later, Enright and Conway?28:29 examined
circular, point-to-point planar transfers with ideal gravity. The methods demonstrated in
these studies were shown effective for two- and three-bumn wrajectories. In using the
DTNLP method, a technique was developed for calculating the Lagrange multipliers so
that Pontryagin’s Minimum Principle could be checked. In some cases, it was found that

this principle had been violated.

Vulpetti and Montreali3® used nonlinear programming to optimize transfers
between circular orbits with inclinations. They did include oblateness and drag in their
gravity model; their thrust acceleration level was about 0.0019g. Example transfers

included from two to four burns. Pourtakdoust and Jalali3! used DTNLP for three-

2Dickmanns, F.D., and Well, K.H., “Approximate Solution of Optimal Control Problems
Using Third Order Hermite Functions,” IFIP-TC7, VI Technical Conference on
Optimization Techniques, Novosibirsh Springer, 1974,

2'Hargraves, C.R., Paris, S.W., Vlases, W.G., “OTIS Past, Present, and Future,”
Proceedings of the 1992 AIAA conference of Guidance, Navigation, and Control,
Hilton Head, S.C. 1992

28Enright, P.J. and Conway, B.A., “Optimal Finite-Thrust Spacecraft Trajectories Using
Collocation and Nonlinear Programming,” Journal of Guidance, Control, and
Dynamics, Vol. 14, No. 5, 1991, pp. 981-985.

2Enright, P.J. and Conway, B.A., “Discrete Approximations to Optimal Trajectories
Using Direct Transcription and Nonlinear Programming,” Journal of Guidance,
Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994-1002.

30Vulpetd, G. and Montereali, R.M., “High-Thrust and Low-Thrust Two-Stage LEO-
LEO Transfer” Acta Astronautica, Vol. 15, No. 12, 1987, pp. 973-979 (84-354)

31Pourtakdoust, S.H. and Jalali, M.A., “Optimal Three-Dimensional Orbital Transfer
Using Direct Optimization Methods,” Engineering Systems Design and Analysis,
Vol. 64-6, ASME, 1994, pp. 53-58.
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dimensional two-burn transfers with a medium thrust level. All these studies mentioned

above either used fixed final time, fixed entry/exit positions in orbits, or both.

Another direct method that is gaining in popularity makes use of a technique
called differential inclusion.32 Coverstone-Carroll, V. and Williams, S.N.33 ysed
differendal inclusion concepts in a direct optimization scheme that produced one- and
two-burn planar interplanetary rendezvous trajectories. The title of the study states that
these trajectories are for low-thrust, but the thrust levels fit in the medium thrust range

defined for this repor.

I1.1.3. Hybrid Methods

Methods are called hybrid if they don't fit neatly into either of the above
categories. Typically, hybrid methods for the orbit transfer problem involve some use of
the Lagrange multipliers and the Euler-Lagrange equations but also use direct

optimization to determine other parameters of the trajectory.

Zondervan, Wood, and Caughey34 used a hybrid method to study three-burn
transfers with plane changes in ideal gravity and for thrust levels in the medium and low-
thrust range. Their approach was to take the indirect setup and release the switching

function constraint. The switching points were then optimized directly.

32%Kisielewicz., M., Differential Inclusions and Optimal Control, Kluwer Academic
Publishers, Boston, 1991.

3Coverstone-Carroll, V. and Williams, S.N., “Optimal Low Thrust Trajectories Using
Differential Inclusion Concepts,” Proceedings of the AAS Rocky Mountain
Guidance Conference, Colorado, 1994.

34Zondervan, K.P., Wood, L.J., and Caughey, T.K., “Optimal Low-Thrust, Three-Burn
Orbit Transfers with Large Plane Changes,” Journal of the Astronautical
Sciences, Vol. 32, No. 3, 1984, pp. 407-427.
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Ilgen33 used a hybrid scheme called HYTOP to compute low-thrust transfers for
an Orbit Transfer Vehicle (OTV) study. The HYTOP algorithm uses the fact from
optimal control theory that the pointer vector function is continuous for the duration of
the transfer. The pointer vector function, and only this function, is discretized into piece-
wise linear functions. The state was represented by equinoctial orbital elements. The
final mass was then optimized over the choice of the pointer vector function parameters

subject to the TPBVP constraints.

Each hybrid method is unique, these two are by no means representative of all that
have been attempted. To date, there does not appear to be any standard hybrid

methodology.

112 Using Indivect Methods snd Homatogs to Comaute S

The following subsections describe work in this research effort using indirect
methods and homotopy to compute solutions. Modified forms of both shooting and
multiple-point shooting were found capable of computing medium thrust transfers with
small numbers of burns and some low-thrust transfers. In this domain, a new method for
increasing the number of burns in a transfer was developed and is based a new property
of the switching function. This new method was used to demonstrate that optimal orbit
ransfers may have multiple solutions. Also, when using this method there is a rule-of-
thumb that may help compute the more efficient of the multiple solutions, thus, avoiding
the need to compute all possible transfers and comparing the cost directly. However,

there is no guarantee of a global minimum.

I1.2.1. Application of Optimal Control

For this problem the choice of performance index is clear:

3%Iigen, M.R., “A Hybrid Method for Computing Optimal Low-Thrust OTV
Trajectories,” Proceedings of the AAS Rocky Mountain Guidance Conference,
Colorado, 1994 (AAS 94-129).
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J=m(1,) 2.1

where m(1)) represents the mass of the spacecraft including its fuel at the end of the orbit

transfer. The intention, then, is to maximize the performance index, viz. maximize the

mass at the end of the transfer.

The TPBVP is constructed using the necessary conditions in the usual manner.36
Include the steering direction vector constraint in the Hamiltonian, which can be defined

for the optimization problem as

H(x(1),T(1),e7 (1), A(1)) = AT (D (x (1), T (7)€, (1)) + A(e; (e, (n)-1)  (2:22)

2
H=ATverT [.T.e,_ﬁr-{ y_Jz-Ris-[ - (E) ]}r (2.2b)
m r
1P, —pir-r T
_5%8 A -)SCDV\) A, E+l (e, e,—l)

from which the Euler-Lagrange equations are obtained as ODEs governing the Lagrange

multipliers

P, ﬁe'ﬁ(""’SCDv(l Tv)r (2.3a)

. oHY B(rer ATv)v
"'“(X) =h,+ 1L c,,[wi(_v)_J (2.3b)

36Bryson, A.E. and Ho, Y. -C., Applied Optimal Control, New York: Hemisphere
Publishing Corporanon
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i =-2== —A,Te; - l-&2-e'ﬂ("")SCDvl,Tv (2.3¢)
m 2m
The next Euler-Lagrange equation is easily derived as
(T, : T T. 1 T _
=Ee— ;l' eT+ll(eT er-l)“' =‘;X' +2A.er “O (2.4)
T

so that the necessary condition is satisfied if e, =4, /JA,| and 4, = (T]r,

)/(2m); in other
words, the thrust direction is parallel to A,, which Lawden thus referred to as the pointer

vector. This choice is further supported by a sufficient condition: note that

JoH
de,de,

=21,I=1]k,|l>0 (2.5)
m

when A,

>0, T>0, and m finite. Also, note that if any one of these is violated during a

burn, the trajectory is immediately indeterminate. The choice for the Lagrange multiplier

A, has been made and does not need to be solved for.

The switching function is derived by an application of the maximum principle.

The thrust magnitude, which has bounds T nax and 0, will give H its maximum value if it
is at its maximum value when Hy > 0 and at its minimum when Hr < 0. The switching

function is

H; = M‘ A" (2.6)
m gl,
and the switching law is
H,>0, T=T, .
H, <0, T=0 @7
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If Hy were to be zero for a finite time the control would be singular. Higher-order
derivatives of Hr would then be needed 1o calculate 7. In subsection IL.1,, it was noted
that this singular control has been investigated by many different researchers but no

conclusions are widely accepted as to when, or if, it will be part of the optimal control.

Many authors21.34.25.37 have identified the switching law, and associated

switching function, as a source of strong sensitivity in numerical solutions.

To complete the TPBVP, the methods of optimal control supply a set of natural

boundary conditions

A(z,):{ax(tf)(x(:,,),x(z,),vo,v,)JT (2.82)

T
oG
AMi,)=- P )(x(zo),x(tf),vo,v/)J (2.8b)
where G is defined as

G(x(ro),x(r,),v,,v,) = m(r,)+ v,T[\y(x(t,))-— a,]+ vo"[w(x(ro))— ao] (2.9)

and y(x) was defined in Equations (1.12). Therefore, the natural boundary conditions

can be expressed as

37Chuang, C.-H. and Goodson, T.D. “Optimal Trajectories of Low- and Medium- Thrust
Orbit Transfers with Drag and Oblateness,” Submitted 10 the Journal of the
Astronautical Sciences.
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NAREE
rl,(to). o T (2.10)
()] “- S v
l,(r,)=
where
L R

[%(x)] (2.11)

and the subscript "X" denotes the skew symmetric matrix representation of the cross

[-v.] [(VTV)I -wi+ (—r%w(”ﬁ - (rTr)I)}

product.

The last condition deals with the final time. For free transfer time the

transversality condition must be satisfied

G (2.12)

11.2.2. BOUNDSCO
One method used here to solve the TPBVP is a modification of the multiple-point
shooting method. The specific algorithms are those given by H. ’J. Oberle in the

subroutine BOUNDSCO38, written in FORTRAN.

The state defined for the optimal control problem differs slightly from the state

used in BOUNDSCO. The state used in BOUNDSCO for numerical computation is

380berle, H. J., “BOUNDSCO - Hinweise zur Benutzung des Mehrzielverfahrens fiir die
numerische Lésung von Randwerproblemen mit Schaltbedingungen”, Hamburger
Beitrdge zur Angewandten Mathematik, Berichte 6, 1987.
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[

z(‘t)=[xT(‘t) AT(t) 1, T v,T]T

and includes a state denoting the transfer time, I, and the v, and v, vectors, from the
natural boundary conditions. BOUNDSCO does not allow user-defined parameters that
are determined in the iteration process, only functions of time; therefore, these last
quantities must be included in the state z and specified to have zero derivatives with
respect to time. Also, BOUNDSCO is restricted to problems with a fixed partition of the
independent variable; therefore, the independent variable has been defined as e [0,1]

with 1= 71,. This requires that the system dynamics be properly transformed to the

independent variable 7 so that

x(1)] [x(1)]
AT A7)
i , |1=] 0 t,dt
dar v, 0
L V/J L 0 j

and these derivatives with respect to 7 are Eqgs. (1.92)-(1.9¢) and (2.3a)-(2.3c). If x had N
components, then the BOUNDSCO state, z, has 2N+2(N-2)+1 components.

BOUNDSCO addresses the switching function sensitivity problem by the explicit
inclusion of switching points in the problem formulation. The number of switching
points is not changed by BOUNDSCO. It iteratively drives the guessed switching points
to be zeros of the switching function, Eq. (2.6). The user must then decide in which
intervals to have the thrust on and in which to have thrust off, Unfortunately, with this
scheme the switching law, Eq. (2.7), may not be satisfied and must be checked after

BOUNDSCO claims convergence to a solution.
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11.2.3. The Minimizing-Boundary-Condition Method

The second method used herein is called the Minimizing-Boundary-Condition
Method (MBCM)3%. MBCM is a modified shooting algorithm in which the switching
structure of the optimal control is implicit. The program checks the switching function
and the switching law to ensure that Egs. (2.6) and (2.7) are satisfied at each integration

step.

As a modification to the simple shooting method, MBCM, expands the set of
available solutions by removing one boundary condition while keeping the same number
of unknowns. The choice of this boundary condition is arbitrary. With the number of
unknowns unchanged, the solutions become a one-dimensional family. Since this gives a
much larger set of solutions, it is much easier to solve the resulting boundary-value
problem. Once that is accomplished, the search for the solution that incorporates the final
boundary conditions is treated as a minimization problem. The gradient is numerically
calculated and used to update the initial state until the last boundary condition is satisfied.
This method is about as effective as BOUNDSCO in solving the two-point boundary-

value problems for the solved optimal orbit transfers.

I1.2.4. Example Two-Burn Extremal

A solution is presented in this subsection, obtained by both BOUNDSCO and
MBCM. It is nondimensionalized and assumes ideal gravity. The transfer is made
between two planar, aligned orbits. The solution’s trajectory is shown in Figure 2.1. The
transfer time has been optimized and is 19.05. The initial mass is 1.608. The initial

semimajor axis is 3.847 and eccentricity is 0.02378. The final orbit semimajor axis is 1.5
and eccentricity is 0.333. The product galsp 1s 1.313 and the thrust level is 0.03.

3Chuang, C.-H., and Speyer, J.L., “Periodic Optimal Hypersonic SCRAMjet Cruise,”
Optimal Control Applications and Methods, Vol. 8, 1987, pp. 231-242.
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Since initial altitude for the transfer is 3.905, the initial 7/W,, is 0.2845 and the
transfer may be categorized as a medium thrust transfer by the definition stated earlier..
With the initial orbit higher than the final orbit, this transfer may be viewed as an optimal
descent transfer. However, since atmospheric drag has not been considered, it should not
be viewed as an optimal de-orbiting transfer, where the spacecraft would be intentionally

placed in an orbit low enough for drag to eventually destroy it.

Two burns are used to complete the transfer. Most of the change in energy occurs
in the longer second burn, but most of the change in angular momentum occurs in the

first burn.

I1.2.5. Example Three-Burn Extremal Considering Perturbation Effects

In this subsection, another example transfer is presented. This transfer was also
obtained with both BOUNDSCO and MBCM. However, this is a three-burn transfer
whose terminal orbits are not planar. The initial orbit has the same semimajor axis and
eccentricity as the transfer from Fig. 1 except now the orbit is inclined 20°, has a right
ascension of 13°, and an argument of perigee at 15°. The final orbit is also identical but
inclined 1° with 0° right ascension and an argument of perigee at 0°. The thrust level and
specific impulse are also the same. This solution includes oblateness effects but excludes
drag effects. For the computation of oblateness effects, Earth's value for J, (1082.61x10-

6) was used along with R,=0.9696. Since this transfer is intended to be about the earth,

r®*=6578 km must be specified as it ensures the correct equatorial radius scaling.

24



I B e oo Y
4 Eanay o PR SO NP P
-4 -3 -2 -1 0 1 2 3
X

Figure 2.1 Two-Bum Extremal Orbit Transfer Solution with Free Final Time.

The trajectory is shown in Figs. 2.2-2.3. This is a fixed transfer time transfer with
1,=28.75. Recall that this is a descent trajectory; the initial orbit is higher than the final
orbit. It is interesting to look at this transfer in terms of the normalized time, 1, the
energy, E, the angular momentum, &, the semimajor axis, g, the eccentricity, e, the right
ascension, £2, the argument of perigee, o, and inclination, i, for certain segments and
points on the trajectory. For the first burn A71=0.3616, AE=-0.07760, and Ah=-0.6566.
The burn ends at what would be an orbit of a=2.409, e=0.5420, 02=8.320°, @=1.123°, and
i=1.665°. For the second burn A1=0.1450, AE=-0.1048, and Ah=-0.1310. The second
burn ends at what would be an orbit of a=1.601, e=0.3742, 02=-1.073°, @=0.3892°, and
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i=1.202°. For the third burn A1=0.02420, AE=-0.02101, and Ak=-0.01865. The final
mass for this transfer is 1.1656, the initial mass was 1.527. As aresult of the oblateness
effects, this transfer has podrcr performance than if it could be performed in ideal gravity,

where it’s final mass would be 1.1659.
If drag is considered in the trajectory, performance improves and the final mass is

1.1663. This is consistent with a descending transfer whose final orbit is rather low. The
altitude of perigee for the final orbit is 6578 km where drag needs to be considered;
therefore, atmospheric drag can be used to improve performance. Obviously, with the
consideration of atmospheric drag, this transfer could be considered as an optimal de-
orbiting transfer.

The loss in performance caused by the oblateness effect is expected. The terminal
orbits have their apses aligned; since the oblateness effect causes the line of nodes to
regress, the optimal thrust program must fight this effect to return the orientation to that
of the initial orbit. The improvement caused by drag is also expected for this is a
descending trajectory and drag encourages descending trajectories.

It is interesting to note that the change in right ascension was almost exactly
divided between the first two burns while the change in both inclination and argument of
perigee happened almost entirely in the first burn. The change in inclination can be most
dramatically seen in Fig. 2.3. The bum at the top of the figure is the first burn. The next
two burns are difficult to distinguish but not very interesting from this vantage point. The
second coasting orbit, or transfer orbit, is quite similar to the final orbit; fittingly, the

third burn imparts the least energy of any of the burns.
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This example demonstrates the ability of these methods to obtain exact solutions
to the orbit transfer problem for nonplanar trajectories that include perturbing effects.

BOUNDSCO typically can obtain such trajectories within the desired tolerance if given
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the solution under ideal gravity as the initial guess. However, performance usually
becomes unacceptable if the number of burns was increased beyond six; this is an
empirical observation and by no means constitutes an absolute limitation of
BOUNDSCO. There may well be certain cases in which BOUNDSCO can compute
transfers with more than six burns quite easily; however, experience indicates that these

€cases are uncommon.

IL3 A New Property of the Optimal Switching Function

A very interesting property of the optimal control solution under ideal gravity is
that the initial and final values of the switching function are equal. Even more interesting
is that for the free transfer time problem they are both equal to zero at the initial and final

times.

This property may be explained with the following theorem. In the following, C i
denotes the set of i-dimensional vector functions that are continuous with respect to all
arguments, vector and/or scalar, and U denotes the set of piece-wise continuous scalar

functions with one scalar argument.
Theorem 1.1 : Given a bang-bang optimal control problem of the form:
iy
J = [[L(x(r).0)+ M(x(z),1)u(r)]dr where L(x(r),r) € C° and M(x(1)r)eC’

and subject to the following:

x(r) = £(x(2), 1) + g(x(2), v(2).)u(r), x(r) € C°, v(1) e C?;
Upin S Ut S, u(t)eU ;
vi(x(1;)) =0, wf(x(zf)) =0, v,(x(1))eC?, \y,(x(r, )) €C,

t; and 1y are free for optimization
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and satisfying the following assumptions:

G L{x(e:);) = L{x(t/)17 )
i) [ (x(0)/ox()f(x(1).0) = 0.[ 3y, (x(1))/ox(1)Jr(x(s).r) = 0;
(iii) u(r;)=u(1)=0

then, considering the usual optimal control formulation, introduction of the (D)
functions, and the Hamiltonian H(x(1),v(r),u(),A(1),r) function35, the following
statements are true:

(1) The switching function, S(x(r),A(¢),r) = A(r)T g(x(1),v(z),0) + M(x(t),1), satisfies
S(x(1:). M6)) = S(x(t7 ) Mry)) = =L{x(ty ).t7) fu(t7) if and only if
H(x(1;),v(5;)u(t;).A(5;),5)= 0 and H(x(rf),v(zf),u(tf),l(tf),tf) =0.

(2) If the Hamiltonian is autonomous with 1, and 1, fixed, then
S(x(e) A (5) = S(x(tf),l(tf)) and

S(x(tr )My )) = (Bl ) vley )l )M ) - L{x{t;))] /u(sy).
Proof:

In the usual optimal control formulation, the boundary conditions at 7; and 4

result in the familiar natural boundary conditions on the Lagrange muldpliers, written as

T A
Mi)=~(y;/x) vieR
T
Mi)=(owy/ox) vy e R”
which involve the constant Lagrange multiplier vectors v; € R? and v 7 €R% where R/

denotes the set of i-dimensional vectors with real-valued components. Now, consider the

dot product of A(z;) and A(t)) with vectors calledn, € R” and n, € R", respectively:
p i f 1 2 ;
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T
A#) my =‘V1T(3\V1/9")n1
T
Mriy) my==-v/T(3y/ox)n,
This shows that, at both the initial and final times, any vector in the null space of the

relevant constraint gradient matrix is perpendicular to the corresponding Lagrange

muluplier vector. Assumption (ii) indicates appropriate choices for n; and n, as

n, =f(x(1,).1,)

With these choices, the Hamiltonian at either terminal time may be written in the

following form:

H(x(1),v(1),u(r),A(1),1) = [).(z)Tg(x(t), v(1),1)+ M(x(r),z)]u(r) + L(x(1),7)
Statements (1) and (2) follow immediately. |

The theorem is useful because it leads to a method for finding time-optimal
extremals with additional Umay arcs when umi,=0. Although not attempted in this work, it

may also lead to a method for finding extremals with fewer upmgy arcs.

Applied to the orbit transfer problem with ideal gfavity and free transfer time,
condition (1) implies the switching function must be zero at the entry/exit points. A
similar condition was successfully used in the place of Egs. (2.10) by Brown, et. al.2! for
free transfer time problems in ideal gravity. In that work, however, the condition was

used as a boundary condition in order to reduce the number of variables in the problem.
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One may make more use of this property of equal switching function values than
a boundary condition; it can be used to help add burns, improving the performance of

extremal orbit transfers as shall be seen in the following subsections.

I1.3.1 Family of Extremals

Exploitation of the property described earlier by Theorem I1.1, along with the
favorable performance of these indirect methods allowed the study of the characteristics
of families of solutions. Herein a family of solutions is defined as a set of solutions
whose transfer times and numbers of burns vary but whose terminal orbits do not. The
optimal terminal points will vary from solution to solution because they are free for

optimization.

Figure 2.4 displays a family of optimal transfers. Each data point in the figure
represents an extremal orbit transfer by its total transfer time and final mass. The
transfers are planar and the dynamics do not take drag or oblateness effects into account.

Furthermore, their terminal orbits are the same as for the transfer shown in Figure 2.1.

Though this family appears quite disjointed, it is actually quite connected. These
connections can be best seen by starting at the leftmost transfer (point (1) in Fig. 2.4) and
tracing solutions of increasing transfer time. The solutions from point (1) to point (2) are

the original set of two-burn solutions, obtained via homotopy and a TPBVP solver

(BOUNDSCO and MBCM).

At point (1) the total burn time equals the transfer time; point (1) is a one-burn
solution. Point (2) represents a local optimum in transfer time; the Hamiltonian for point

(2) is zero and this satisfies the transversality condition.
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Figure 2.4 Plot of a Family of Optimal Transfers as Final Mass versus Transfer
Time

As a result of Theorem II.1, the switching function at point (2) indicates the
existence of additional solutions. The situation is shown in Figure 2.5. Because of the
slope of HT and the fact that it is zero at both the initial and final times (from Theorem
IL1), the transfer may be extended optimally by the addition of a coast arc at the
beginning and/or at the end of the transfer. This may seem trivial; one might observe that
coast arcs can always be added; however, this particular situation leads to the addition of
burns. Lawden’s solution!? to the costates on a coast arc shows that on such an arc with
a vanishing Hamiltonian the switching function is periodic. This means that the
switching function, once crossing zero, must return to zero. In other words, for an n burn
transfer like that represented by Fig. 2.5, the periodicity of the coast arc switching
function hints at the existence of two different n+1-burn solutions and an n+2-burn

solution; each by different additions of coast arcs.

To optimally extend a transfer with coast arcs such that the switching function

will again vanish, it is required that the switching function at a terminal orbit both be
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equal to zero and have an appropriate sign for its slope: positive at the initial time and/or
negative at the final time. This situation can be seen in Figure 2.5 below, for the portion

of the switching function labeled “Original Transfer.”

s T f
£ I /A
S E NewCoast / \ New Coast
L £ :
FRI G / (right)
I /
'; 0_I
[70] - \
é \/
' ' ' Tunc.
=0« Original Transfcr* =
=0 -~ — =1
Extended Transfer=®@
=0 4% —P 1=]
Extended Transfer=®
Figure 2.5 Extending the Switching Function to Create More Optimal Transfers;

symbols @ and @ refer to points in Figure 2.4

One may observe that the process does not guarantee a new bumn - only a new
coast arc. However, using numerical methods, one may discover that the burn can be

lengthened.

Adding the coast arc is trivial; lengthening the burn arc is not. The following
burn-addition procedure worked well. To add a burn to an n-burn solution with optimal
transfer time that begins and ends with a burn arc: Append a coast arc to the solution at
the chosen time, initial or final, making sure that states and costates are continuous. This
is easily done by integrating forward from the final time or backward from the initial

time. At both ends of the new coast arc the switching function must be zero. Use this
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extended transfer as a guess for the numerical routine setup for an n+1-bumn problem with
a slightly longer transfer time. Finally, use homotopy to obtain an n+1-bum solution with

a longer transfer time.

For the guesses constructed in this report, the new coast arc was extended so that
the switching became positive for a finite time. Since the thrust was set to T, . for this
new interval, the boundary conditions were violated and the new arc was a non-optimal
burn because the natural boundary condition was violated. However, it was found that

this new bum aided in the convergence of iterations.

There are three options for creating the next transfer in the family: extend the
transfer to right, extend it to the left, or extend it in both directions. However, because of
numerical difficulties, this last option was not favored. First, consider extension to the
right. Physically, this corresponds to adding the new burn closer to the final orbit. The
resulting transfer is represented by point (6) in Figure 2.4. Starting with point (6),
solutions with longer transfer times were easily found but solutions with shorter transfer

times were not found at all.

Now consider the second option, extension to the left. Physically, this
corresponds to adding a burn near the initial orbit. The resulting transfer is represented
by point (3) of branch (3-4-5) in Figure 2.5. Numerical difficulty was discovered in
attempting to find a solution with a greater transfer time than point (3); however,
solutions with lower transfer times were found constituting branch (3-4-5). Additionally,
note that this branch, though a branch of optimal solutions, is unfavorable when
compared to branch (6-7) of the family. This example of multiplicity may be viewed as a
rearrangement of the burns in the trajectory. It has not been shown analytically, but there

is likely a connection to a similar result for non-optimal impulsive trajectories!8,
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By the above discussion, points (2) and (3) and (6) are, in fact, the same transfer.
The only difference between these transfers is the addition of a coast arc, which makes no
difference in the performance associated with the transfer. This means that the branches
of the family are connected and these connections are as follows, with the transfer time
increasing: (1) to (2) (which is identical to (6)) to (7); or (5) to (4) to (3) (which is
identical to (2)).

Figure 2.6 shows the switching function corresponding to the transfer represented
by point (7). Compare this to Figure 2.5. The situation is repeating itself; the terminal

switching points in Fig. 2.6 are close to zero. Clearly, one may attempt to expand this

family of transfers from point (7).
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Figure 2.6 Switching Function of Transfer at Point 7 in Figure 2.5

I1.3.2 Multiple Solutions in the Family

Evidence of the existence of multiple solutions was found. For a specified
problem (including specification of the transfer time and the number of burns) there may
exist more than one extremal transfer. Such multiple solutions are represented by any

point on branch (3-4) and any point on branch (6-7) which have equal transfer times.
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Conditions for multiplicity are not clear, but it is clear that solutions are not necessarily
unique. It is also clear that one cannot say that just because the transfer time for one
solution is longer than another, the former has a greater final mass; although this is

ypically an assumption made in the literature.

One cannot help but wonder why the solutions of branch (6-7) are more fuel-
conservative than those of branch (3-4). Both branches are extensions of branch (1-2),
but the difference is where the new burn is placed. When the bumn was placed near the
initial orbit, far from the attracting body, the branch was unfavorable. When the burn was
placed near the final orbit, close to the attracting body, the branch was favorable. A
principle often seen in impulsive trajectories seems to carry over in some form to finite
burn trajectories; it appears to be better to implement changes in velocity near the
atrracting body, where changes in velocity will produce large increases in the already
large kinetic energy, as opposed to far away from the atracting body, where kinetic

energy is lower.

Finally, it is clear that during the burn addition process, one may control the
placement of new burns. By tending to place new bumns closer to the attracting body,

undesirable solutions might be avoided.

The possibility of multiple solutions was recognized by Brusch4® for one-burn
low-thrust transfers originating from a circular orbit. Brusch also provides some
excellent analysis concerning this phenomenon. In this research, it was found that
multiple solutions exist for multiple-burn low-thrust transfers originating from an
elliptical orbit. That the phenomenon may occur for the more general case indicates that

there are likely many cases with multiple solutions.

40Brusch, R.G. and Vincent, T.L., “Low-Thrust, Minimum-Fuel, Orbital Transfers,”
Astronautica Acta, Vol. 16, pp. 65-74.
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IL4. Conclusions
In this section the indirect methods BOUNDSCO and MBCM have demonstrated
the ability to solve the optimal orbit transfer problem for small numbers of burns and

small numbers of revolutions. Particular solutions have been presented in some detail.

These solutions demonstrate some effects of drag and oblateness on the optimal transfer.

A new method for adding burns to time-optimal orbit transfers has been
presented. This method is based on a newly observed property of the optimal switching
function and a proof has been given for this property. The method has proven its

practcal utility by generating a family of solutions.

This family of solutions is a set of fixed-time optimal transfers with identical
terminal orbits and parameterized by transfer time. Using this family, some new
properties of optimal orbit transfers have been seen: multiple-burn transfers are not
necessarily unique, transfers with greater transfer time do not necessarily have greater
final mass, and local optima do not necessarily occur at transitions between N and N+1

burns when using homotopy to increase the transfer time.

Addressing the inclusion of orbit perturbations, neither BOUNDSCO nor MBCM

had difficulty obtaining solutions with atmospheric drag or oblateness terms.
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SECTION IIT

NEW METHODS FOR OPTIMIZING ORBIT
TRANSFERS

IL1 Introduction
The bang-bang structure of the optimal orbit transfer solution is well-known. This
means the optimal transfer is made up of a series of individual interior transfers between
a sequence of orbits beginning with the specified initial orbit and ending with the desired
final orbit. However, the fact that these transfers are, individually, optimal transfers has

not yet been widely exploited. In this section, this notion is expressed concisely in a

mathematical sense and shown to be quite useful for numerical methods.

Two methods that originated with this notion are presented. First, the Patched
Method is a hybrid method with a greatly reduced number of parameters. In fact, not

only are the number of parameters reduced, but they are all free for optimization.

The Patched Method also takes advantage of another simple idea: any interior
one-burn transfer taken between two neighboring interior orbits of an N-burn transfer
should be easier to solve than the N-burn transfer as a whole. It then makes sense to
consider using the orbital elements of each intermediate transfer orbit as free parameters.
Given these parameters, the performance (final mass) is computed by solving each

individual one-burn problem in succession.

The Patched Method, however, pays for its robustness in speed. Therefore, it
seems to be most useful as a way of refining and developing initial guesses for the second

method, the Modified Patched Method (MPM). MPM is an indirect method; no variables
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are directly optimized. It enforces conditions necessary for the transfer to be an extremal
solution. MPM assumes a bang-bang structure; however, as in BOUNDSCO, the Patched
Method, and many other methods found in the literature, MPM does not enforce
satisfaction of Pontryagin's Maximum Principle. For this problem, Pontryagin’s
Maximum Principle supplies the switching law as Eqs (2.6) and (2.7). These methods
only guarantee that the thrust will switch values at the zeros of the switching function,
Eq. (2.6); they do not guarantee that the polarity will be consistent with Eq. (2.7).

However, this turns out to be an easy condition to check after iterations converge.

A few reasonable and common assumptions are made in both methods. It is
assumed that the only forces on the spacecraft are ideal gravity and the thrust from the
rocket motor. The number of arcs of maximum thrust is assumed fixed; choosing the
number of burns is often desirable and makes the problem easier to solve. The first and
last arcs are assumed to be of maximum thrust; however, no generality is Jost here under
the assumption of ideal gravity. Arcs of intermediate thrust are assumed not to exist in
the trajectory because numerical experience indicates that such arcs are rare if they exist
atall. It is assumed that no part of the trajectory will be rectilinear; in other words, the
angular momentum vector never vanishes. Rectilinear trajectories are unlikely to ever be
of interest in an orbit transfer problem and, if they are of interest, the implications of zero

angular momentum should motivate the development of specialized software.

I1L2. The Patched Method

Usually, when a hybrid method is formulated the assumption is made that the
solution to this new problem is always a solution to the original problem. Intuitively, this
is often easy to accept. However, it is even more reassuring to prove whatever

equivalency exists between the original formulation and that used by the hybrid method.
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This subsection describes the architecture of the Patched Method, explaining how
it functions. Also, it is shown that necessary conditions from the traditional problem
statement are, in fact, equivalent to the necessary conditions which arise from the

optimization loop of the Parched Method.

IIL2.1. Architecture of the Method

The architecture of the Patched Method is best described as an inner and an outer
loop. Given a choice of orbital elements, the inner loop solves each one-bumn problem in
succession. Each one-burn transfer has its terminal points and transfer time free for
optimization. However, the result is a suboptimal transfer; it lacks the optimal choice of
intermediate transfer orbits. The choice of transfer orbits is made by the outer loop via

unconstrained minimization of the complete trajectory’s fuel consumption.

The method that has been chosen for the outer loop is the conjugate gradient
method. Since such methods tend to have better performance if they are supplied with an
analytical gradient, such a gradient was formulated for this case; the formulation will be
presented in this section. The particular FORTRAN code is taken from a common .

referencedl,

The architecture of this method indicates a useful new paradigm for the orbit
transfer problem. One might think of the multiple-burn transfer optimization problem as

optimizing the fuel used by choice of the intermediate transfer orbits, expressed as

N i 3.1
givena,,0y.m,c,T;  min Etﬁ(ai-,,a,,T,c,mo—chI(H))

a;. i=LN-1 ' =

41Press, W.H., et. al. Numerical Recipes: the Art of Scientific Computing, New York:
Cambridge University Press, 1989.
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where £,=0 and lﬁ(a,_,,a,,T,m,) shall be called the transfer time function which

computes the optimal transfer time for the orbit ransfer problem defined by the initial
crbital elements «,_, the final orbital elements @;, the thrust level 7, the initial mass m,
and the fuel consumption rate ¢. In (3.1), the value for the initial mass of each bum is
calculated knowing the transfer times for the burns before, giving an unconstrained
minimization problem; alternatively this could have been expressed as a constraint on the

minimization.

In this section it will be proven that certain conditions necessary to solve (3.1) are
equivalent to certain conditions necessary to solve the orbit transfer fuel-optimization
problem, under centain assumptions. It will be seen that the restrictions imposed are few
and quite practical; however, it is not claimed that the two problems themselves are
equivalent; this may or may not be true. Nevertheless, this paradigm has certain
advantages. The problem expressed in (3.1) is a parameter optimization problem. If an
expression for the transfer time function were available, this would quite likely be easier

to solve than the TPBVP.

Unfortunately, there are no analytical expressions or approximations for the
transfer time function. The Patched Method must compute it numerically in the inner
loop. The inner loop uses both Direct Collocation wikth Nonlinear Programming
(DCNLP) and multiple-shooting to solve the one-burn transfer. Each time the optimal
solution for a one-bumn trajectory is required, either method may be used. For the first
iteration, the choice is up to the user. If DCNLP is requested, the solution is found for a
high tolerance. Once this tolerance is achieved, a multiple-shooting guess is constructed.
Multiple-shooting is then used to r;ducc the error to the desired, lower, tolerance. If
multiple-shodting was requested as the initial method and it fails, a DCNLP guess is

constructed and DCNLP is attempted. If DCNLP is successful, then muldple-shooting is
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used again. This structure was chosen because it was found that DCNLP was typically
much too slow to use with each outer-loop iteration but multiple-shooting typically could
not converge rough guesses. The failure of multiple-shooting typically occurred with the
first iteration if the initial guess for the transfer was poor or the failure would occur if the

outer loop took too large a step.

II1.2.2. Using Direct Method Solutions as Guesses for Indirect Methods

At this point, the question of converting the solution from a direct method to the
guess for an indirect method arises (the inverse process is trivial because the solution
obtained by an indirect method inherently contains more information). The adjoined

performance index for the jth of N one-burn problems (j=1,...N) is

J,=m, (Ij) + vzj-]T[\v(xl(O)) - a,_,] + Vz;T[W(X,(tﬁ )) _ a/] (3.2)

+&,7[m,0)-B,]+ '.fxf(r)[f(x, (1).7,(1)) - X, ()]

where x,(1) is the state, u(1) is the control, L is the free final time (the initial time is fixed

at 0), a;.; and o; are the initial and final boundary parameters, y;(x) and yo(x) are the

boundary constraint vector functions, m;(t) is the spacecraft mass,f(xj(t),en(t)) is the
state dynamics, and m;(1;) is the performance index to be maximized. The parameter Bis
fixed while solving each one-burn; its value is equal to initial mass constraint (m,) or the

final mass of the previous burn:

A, =mf"(’/(1-1)) 3.3)

The discretized version for the same problem, divided into M nodes indexed by i

and designed for a direct method, follows:
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Sy = nz;-lT[Cl(y/.l) - O‘H] + nzIT[Cz(y,,M)- a/] (3.4)

+o,T[ﬁ:'J,,. —ﬁj] + guH’A,(yN ,,)

where y; is the state, @ is the control, {;(y) and {x(y) are the boundary constraint

functions, Ay, ;) are integration constraints, 7 4 1s the spacecraft mass, and M 1S
the performance index to be maximized Assignment of B; , in this case, is similar to Eqn.

(3.3) as follows:
ﬁ/ = m]-x.u (35)

Since, for any 1<k<M, both formulations solve the same problem with j=k, one
can assume that J, = J, for any choice of o and Q.7 Withim,_, ,, = ml_l(t/(j_l)), then

o], dI, oI, a7 a, o7,
. . 4 {~, and L - {—. The implications of this are

da, oa,’ o, Ja,, 3’"/-1(’,(,--1;) O, _,

/

best seen in the first-order changes for both performance indices:

&, = 5m,(t,)
"'sz-lT[Wu(x,' (0))6";(0) - &x,‘—l]
+sz[‘4’z;("/(’z ))5xj(tj)— 5(1/]
+¢,7[6m,(0)- 5B,]
+H(x,(1, ) e, ()01, ))d’j
+Z[H,(xj(t),e,j(t),lj(t))é‘xj(t)

+H,(x, (). e, (1), 4, (1)) e, (1) - A jTij(t)]dt

(3.6)
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&, = &,
My, [C, (v,)0y,, - 6cr, ]
+n2/.7[§2’ (¥, )0¥, 00 = 50‘;]
+o,7[&m,, - 68,

M M
+§ “;,.-TAu,,» (v,000, Wy, + 2 “JJTAH,, (¥;000,, po,,

i=]

(3.7)

Knowing the solutions for both optimal control problems, one can substitute for the state
and control of the local extremals into Egs. (3.6)-(3.7), respectively. The resulting

equations are simply:

& ==y, 78, ~v, Téa - £.78B, (3.8)

J

&, = "'121-1750-1-1 - n,fé‘a, - ofé’ﬁ, (3.9)

It is now quite clear that since the gradients were surmised to be approximately equal,

then Vz;.1=13;.1, V2="3, and &=0)

A simple approach to converting a solution obtained with a direct method into an
appropriate guess for an indirect method is now clear. One may use a direct method to
compute T,,_;, My, and 0,; then use Eq. (2.8b) to obtain an approximation of the
costates at the initial time. Knowing the states and the costates at the initial time,
obtaining an approximate time history merely requires the solution of an initial value

problem.

I11.2.3. Gradient of the Cost Function
For this application, the gradient of the cost is required. The cost for the entire

transfer is



N
Joverat = 215 = -%‘E[m(w) - m(0)] (3.10)

j=

where the mass at the end of the jth burn is a function of a, @;.;, and mj.;. This is
obviously equivalent expression to (3.1). Omitting some simple steps of calculus and

algebra, the gradient of the cost functional Joverarr, may easily be written as

aj go v [ H c?m,.l(t,(m))]{am.,x(I,(m)) _ aM,.x(tf(iol)) 5m. (’ﬁ)}' i=1,.,N=2

aa‘ T |ea om(r) aa, om(1;)  da,

3.1
o] _-gl, amN(:,,,)_ amN(:,N) c?m,v-,(t/w-”)
day, T | da,, 9”1~-x(f,(~-1)) oo,

Equations (3.11) are not yet sufficient to implement the Patched Method.
Expressions for evaluating the terms in Egs. (3.11) are required. To begin, note that m; is

the performance index of the jth burn. Referring back to Eq. (3.8), one observes that

v, _om, () =-v, T (3.12a)
3(1,-_, da,_, -1
oJ; a’"/(’ﬁ) T
oo, oo, | ¥ (3.12b)
dJ; om, (tﬁ)
B =-¢ (3.12¢)
%, om, (’/(1-1)) ’
so that Eqs. (3.11) can be restated as
ol _&l,| A _
a— T {l—‘[( J*l) [vzmT +8uVa ) i=1.,N=2
(3.13)
-a_J - %[V T + C Vv T] ’
R IR AT
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Which, simply, gives the gradient of the overall cost function in terms of the Lagrange
multipliers from each respective one-bum problem. It is interesting to note that zeroing
this gradient supplies simple relations between the Lagrange multipliers associated with
the beginning of one burn 1o those associated with the termination of the previous burn.
It is the "patching” together of optimal burns implied by these relations that inspired the

name of the Patched Method.

II1.2.4. An Equivalent Set of Necessary Conditions
The following results will prove useful to showing the practicality of the Patched

Method conditions and, later, the practicality of the Modified Patched Method conditions:

LemmalIl.l: If the matrix I' € R"™*" yields rank(I")=n—1 and satisfies

I'f=0, f e R” while f satisfies A"f=0, A e R" and f'f 2 0,
then A may be expressed as A = I'"v where ve R,

Proof:
If rank(T)=n-1, Tf=0, and f™f # 0, then f is in the null space of T and it is

obvious that rank([l"'r f]) = n. This in turn implies that there exists a ve R*/ and f e R

such that
v
2 =[r" fH
[ 1),
Now,k’f=0=>vTIT+[3fo=O=>ﬁfo=0=:ﬁ=0. |

Lemma II1.2:  Consider the following system of ordinary differential equations:

Lod_
@) EX(I)-f(')
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i %Mr)=-[§f(x(r))] A()

and a matrix function I'(x), if—%l‘(x(x))ﬂ‘%f(x(:)):O, then the vector
function A(r) = I‘(x(:))Tv is a solution to the differential equation (ii).

Proof:
To show that a function is a solution to (ii), it suffices to substitute the function

into both sides of (ii) and show that equality holds.

LHS= %(I‘(x(:))Tv) = [% l‘(x(t))]rv

RHS.= -[%f(x(:)):, T(x(t))Tv

The left hand side will equal the right hand side if %I‘(x(r)) + I‘%f(x(r)) =0. |

The following definitions are precursors to a theorem that will prove the
equivalence between necessary conditions for the Patched Method, which will be
expressed in the definition of conditions (I }, and necessary conditions derived from the
usual application of optimal control theory, which will be expressed in the definition of
conditions {I}. The specific problem formulation for which such conditions are

equivalent will be defined as {P).

In what follows, C? denotes the set of i-dimensional vector functions that are
continuous with respect to all arguments, vector and/or scalar, and U denotes the set of

piece-wise continuous scalar functions with one scalar argument.
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Definition: The optimal control problem (P} is of the form:

minimize J = y(r,) subject to the following constraints:

x(e) = 1(x (1)) + g(3(r). v(1))u(r), x(r) e C°, v(1) e c?;
3(1)= cult), y()e C?
O<u(t) S umg, ,u(t)eU ;

v(x(t,))-a, =0, \y(x(t,))- o, =0, y(x(1))eC’,;

Y(t)=Yo s
I is free for optimization, 1, is fixed

and satisfying the following assumptions:

(i)[%(x(x))}f(x(z)) _

(i1) u(1)#0, u(t)=0, and the number of arcs with u=u,__ is N
(iii) g(x(2).y(r),v(1)) is not linear in v(z)

(iv) the solution only contains arcs with 4=0 or U=Upmay |

(v) rank(%:—(x(t))) =n-1;
(vi) (d ;x\y(x(r))+%w(x(r)) f(x(s )))= 0 when x(1) = f(x(s))

(vii) £ (x())f (x(1)) = 0 Vr € [IO,I/]

Consider the usual optimal control formulation, introduction of the Lagrange
multiplier functions A(r), the Hamiltonian H( 1), (1), v(2)u(r), k(r)) function, and the

following partition of ?:(t)

. o |A0] - 0o : 0
A(r)= L.’(I)J A (eCt A mec
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Definition: For optimal control problem {P}, the conditions {/} are
H(x(1).y(0)v(0)u(0) A (1)) = £, (1) £(x(1)
+A T g0 v0)+ A, ()]ur) = 0
Zh0=| 2] 1,0)

2

> g(x(e). v(1))]“(!)

%&(r)»i,m’[

i,m’[;av- g((1) v(r))] -0

A (1) g0, W)+ A (1,)=0, i=1,...2(N -1)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

These are the transversality condition, Eq. (3.14); the Euler-Lagrange differential

equations, Egs. (3.15)-(3.17); the natural boundary conditions, Eqgs. (3.18)-(3.20); and

that the switching function vanishes at the switching points, Eq. (3.21). Itis also required

by conditions (I} that the contro! u(r) switch values across each switching point, in a

pattern consistent with assumption (ii).

Definition: For optimal control problem (P}, the conditions (I7} are
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H,(x(1), (). v (1) 5, (1)) = i.(zf( (1)
)v(z)+cl t)] =0

[l (1) g

L= 210 r))] 0

%z’,m»i,m £ e600) ko
u(t)=u,,
A (x)[ (>(r)~(r))}

A

u(r)=0, te[

+ Tf(x(r))d:

I) }’( ¢l) -)(tf)

t]

J

(3.22)

(3.23)
(3.24)

(3.25)

(3.26)
(3.27)
(3.28)

(3.29)
(3.30)

(3.31)

where Egs. (3.22)-(3.26) are defined fors € [1,,1,] and the following partition is

defined

A ()= B‘gﬂ JAunec? A necy
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All conditions in {11} are defined for i=1...N except Egs. (3.30)-(3.31) which are
only defined for i=1..N-1. Finally, r,=1, is assigned and the value for Iris seen to
be I

Theorem 111.1: If and only if

{x(r),y(z), v(:),u(x),i(:)l re [ta,t,]},\?,,\‘l,,z/, {t,‘-l i=1...2(N- l)} (3.32)

satisfies {/} then

{x(t),y(t), v(:),u(r)[ re [tl,tm]}, {(A—.‘(t), te [t‘,tﬁ]J,r‘,rﬁ,Go‘,\"ﬁ[ i= l,...N} (3.33)

satisfies {II'), assuming that the constraints and assumptions from {P} are
satisfied.

Proof:
It will be shown, for both the necessary and sufficient parts of the theorem, that if

one condition holds, then a construction may be made such that the other is satisfied.

Assume that (3.32) satisfies {I). A solution to {11} will be constructed from

(3.32) going backwards in time. For the last U=u,, ., arc, wherer € [tN,t,N], define

Vp =Y, (334)
v = Lana (3.35)
Au(t)=A(), re [r,,.,tm] (3.36)

These definitions allow Egs. (3.14)-(3.18) and Eq. (3.20) to imply satisfaction of Eqgs.
(3.22)-(3.26), (3.28), and (3.29) fow € [1,.,1,,] and i=N. Eq. (3.21) for i=2(N-1) specifies

that the switching function is zero at the beginning of this interval, where 1=ty.
Therefore, satisfaction of Eq. (3.22) for i=N clearly implies that Aan( )f (x(:N))= 0.

Iy

Considering this result, Lemma I11.1 with I'(x(r, ))= -?—xy-(k(t,v )) and assumptions (i), (v),
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and (vii), implies that there exists a~V,, € R*™ such that Eq. (3.27) is satisfied for i=N.

This completes the definitions for the final u=u,,,, arc.

Consider the next interval, where te[t/(h._l),th.], the definitions will now be

extended into this interval. Define tgy. )=1,5x.3). The conditions {I} specify that u(1)=0
for 1 in this interval. This implies that Eqgs. (3.31) with i=N-1 are consistent with the

switching structure of {I). Define

A (0)= i,(r), e [zﬂ._l,rh,]

With this definition and that Eq. (3.27) is satisfied for i=N, Lemma II1.2 with
T(x(1))= %‘%(x(:)) and assumption (vi) implies that the Lagrange multipliers satisfy

A, (’/(N—l)) = [%(x(’fw-l)))]T[-\’}"”] =h, (t‘“""”)

The definition Vv, ,_,, = -—‘—1—- v, then implies that Eq. (3.30) for i=N-1 is satisfied.

A, (1)

The construction for the last u=0 arc is complete.

Define

Ina = 8 anea)

- )
Ay (1) =——A(1), ol
N 1( ) l’(th.) ( ) tE[IN 1 f(N-l)]

Note that this definition implies satisfaction of (3.29) for i=N-1 because
):)(rh')-—-iy(tj(h'-]))' This also makes satisfaction of Eq. (3.30) for i=N-1 imply

satisfaction of (3.28) for i=N-1. After establishing these constructions, the arguments for

the previous u=u,,,, and u=0 arc may be repeated. With each repeat, the construction is
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made with scaling by an even earlier value from i,(x) in the following sequence

i,(t, )i=N,...2. Such repetition may be continued until the beginning of the first burn
1s reached. At this point, the definition

1

N
=—,_Vo

v,
1 '1)(,2)

implies satisfaction of (3.27) with i=1 and completes the proof of the “if” part of the

theorem.

Assume that (3.33) satisfies (II}. The construction of the solution to {1} will

proceed backwards in time. Consider the last u=u,,, arc, wherer e [IN,t,N]. Define

-

A%

1=V

Law-1) =1y
A=A, retviy]

Forre [t,,,tm] and i=N, this construction lets Egs. (3.22)-(3.26) and (3.28) and (3.29)
imply satisfaction of Eqgs. (3.18) and (3.20) at the final point and Eqs. (3.14)-(3.17)
during the interval. Now, it is obvious that satisfaction of Eqgs. (3.14) and (3.27) with i=N
in this interval under assumption (i) implies that Eq. (3.21) is satisfied for i=2(N-1); in

other words 1,,,_,, is a switching point. This completes the construction for the last
$2(N-1) p P

U=u,,,, arc.

The definitions will now be extended into the interval [tn.1)t8]. With Egs.
(3.31), the conditions {17} specify that u(1)=0 for ¢ in this interval. Define L5 2N-3)=UN-1)
This implies that Eqgs. (3.31) are consistent with this switching structure of {I } up to and

including this interval. Now define
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A= [%(x(r))}r[—m]

for all 7 in this interval. Knowing u(r)=0 and that Egs. (3.31) are satisfied in this interval,

Lemma II1.2 with assumption (vi) and F(x(r)):%(x(r)) implies satisfaction of Eq.

(3.15) in this interval. Define

A(n)= i,N(’N)

for all 7 in this interval. Knowing u(1)=0, this immediately implies satisfaction of Eq.
(3.16) in the interval. Finally, since Eq. (3.14) was satisfied in the previous interval, Eqgs.

(3.15)-(3.16) are satisfied continuously from I=1¢to any point in the current interval, and
since the control switched values at a switching point, then Eq. (3.14) is satisfied in this

interval. This completes the construction for the last u=0 arc.

Define 1,5 4)=ty.;. Consider the interval [In.1tn.1))- Conditions (IT) specify

that this is a u=u,,,, interval which, by the definitions, is consistent with the switching

structure of {I}. Define

Aa(0)= Ao (1 )R, 0 (1)

i,(’) = )‘yh‘(th' )}*,(N-n(’)

in this interval. Equations (3.22) and (3.28) with i=N-1 imply that #7y. ) is a switching
point. Considering the definitions, Eq. (3.28) with i=N-1 and Eq. (3.30) with i=N-2
obviously imply continuity of the Lagrange multipliers ):,(r) across the switching point

I1n.1) continuity of i,(r) across this point is immediately implied by the definition.

Therefore, Eqs (3.15) and (3.16) are Satisﬁcd across the switching point.
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The previous arguments for the final U=u,,, and u=0 arcs may be repeated,
implying satisfaction of the conditions in {I} for each interval. After repeating the
arguments and reaching the beginning of the trajectory, the following definitions will

have been made and are presented for the sake of clarity:

3= [ﬁ ()][ (O] [-9.] refiapn) 1=2,0-1

A( =[ r], te[m ,),,], i=2..N-1

Jmisl

i(:): [ﬁl—”(tj)}:‘(t), t e[t,,:ﬁ], i=l..N-1

Finally, for the first u=u,,,_ interval, one more definition is required. The definition

[ fsw}.

=2
forces satisfaction of Eq. (3.27) with i=1 to imply satisfaction of Eq. (3.19). u

The theorem does not assure satisfaction of Pontryagin’s Minimum Principle.

This principle requires that

u(r)=0 when &, (1) g(y(s),v(r)) + ch (1)>0
u(t)=u,, when i (£)f g(y(),v(1)) + ci,(:) <0

(3.37)

It should be noted that in the application of the Patched Method to the optimal
orbit transfer problem, a second-order condition was taken into account. Lawden’s

pointer vector theory is a second-order condition and is explicitly specified. Also, note
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that this condition was determined considering the maximization problem instead of the

equivalent minimization problem.

To apply Theorem IIl.1 to the orbit transfer optimization problem, the
assumptions of the theorem must be satisfied. Assumptions (i), (iii), and (vii) are
obviously satisfied. There may still be debate over assumption (iv); however, based on

numerical experience, orbit transfers that violate (iv) are rare if they exist at all.

Assumption (ii) is made in anticipation of the ideal gravity assumption. In such a
case, coasting before the first burn contributes zero cost and coasting after the final burn
contributes zero cost. It therefore makes no sense to allow such arcs as part of the
trajectory to be calculated. If an initial and/or final coast arc is desired, it may be added

to the computed trajectory without affecting optimality.

Rectilinear orbits will be explicitly excluded from candidate orbit transfer
trajectories. Such orbits intersect the center of gravitation and are, therefore, rarely of
interest for the orbit transfer problem. With this exclusion made, assumptions (v) and

(vi) may now be shown true for the orbit transfer optimization problem.

Itis desired that if A =|r x v|# 0, then the vector function

r [ ] rxv
W(x)=W([ D= L Osa)ly -£ €Cy
v vx(rxv) mr

yields rank[-‘zgg—))=5. Note that this formulation for y(x) calculates the angular

momentum and eccentricity vectors, then removes the third component of the eccentricity

vector. y(x) as defined above yields
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[-v.] [r.]

vIv)I- v + —T“T(rrT - (rTr)I)} [2rvT —(rTv)1- vrT]

> )

a"J"(X):[sts 05-1] [(

where the subscript "X" denotes the skew symmetric matrix representation of the cross

product. The result, rank(-a—wgw)=5 is desired. The task is simplified by the
X

following simple manipulation

which makes use of the identity a,b, =ba™ - (a™b)I. This, in combination with

1 0
rank{ (I, 0. > "’D:S
([ o X][ vy I

implies

[-v.] [r.]

Wrxrx:! [rvT - v ]

rank( a\y(x(t)))= min< S |, rank [

It is most convenient to consider, without loss of generality, the following rotation of

vectors r and v into the X-Y plane via an orthonormal matrix W defined such that

x 7
Wr=y| and Wv=|v
0 0
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. . ! A
It is easy to show that this rotation does not affect rank(awg‘( ))) Substitution reveals

that, after rotation,

(" 0 0 -v 0 0 y7m
0 0 0 0 -
[-v,] [rx] v .y l(; y x Ox
rank [ T# / rxrx:! [r\‘T-VrT] = rank - gxy 0 0 -k 0
o pr g 0 A 0 o
Lo o 000 o

where h=xv-yu andg = L“ It can be shown that

(7r)

[0 0 —v 0 7
0 0 u 0 -x
detf| v —u 0 x 0 |l=-gxh’

—

T O 0 v 0 y7)
0 0 u 0 -x
det|| v -u 0 y O]|=gy
-&' ey 0 0 0
\Lgxy -gx* 0 h O J
Ny (x(1))

so that as long as h=0, B has a nonzero minor of order 5. In other words, as long

as the orbit is not rectilinear, rank[@) =5

Now, for assumption (vi) it must be shown that if the vector function f(x) is
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()| ]

and y(x) is as already defined, then when %x(t) =1(x(r)),

(%% (x(r))+ %w(x(:))%f(x(z))) =0

Itis easy to show that

; [0] [1]

—f(x)= M LR

ox —rl+3 —3TIT 0
[ GRS J )

l"l‘)

Note that the time notation ha

R

° d
XW(X)Xf(X)=[IS” Os:x][
Iﬂu ==V,

s been dropped for convenience. Evaluating

Ml] MIZ

M, sz where

I"xz = —F‘:Tﬁrx

My =(viv)I-wT + —T”ﬂﬂ-(rr'r - (rTr)I)
r'r
u 3 Tv
M, =—"x ( )+2 rv +2 vr
(")

l’l‘)

. _ .0
Next, the time derivative of each term in a—\y(x) can be expressed as:
X
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dr (rTr)”2 h
d
E(rx)- v,
d/1y__o A
E( TV) = -2(r—T:)WI'VT

3u ,
E Wrr =W(r\7+\r7)—m(r7\)rrr

i H ____ M T
dr (rTr)th_ (rTr)‘W(r )
d, 1 =T ___H T
d{(r\ J=w ('._TJW(" )
d d
Z0rT)==(n7)
LT e o To _H
~ (r'v)=vTs W

With these expressions it can easily be shown that

d J a d
—=—Vy{x({)+—vy(x(1))=—1(x(1))=0

2 3 VXO)+ -y (x()) 5=1(x(r))

This is more than just satisfaction of a simple condition that proves useful to the theorem.
In fact, this shows that Eq. (2.12) is the solution of the ODEs for the Lagrange
multipliers, Egs. (2.3a-c), when the Hamiltonian vanishes and ideal gravity is assumed.
As reviewed earlier, many previous research efforts have focused on obtaining such

solutions, but the form found herein is different from those.

IIL2.5. Solution using the Patched Method with Eleven Burns
The plots below represent the current capability of the Patched Method. The

eleven-burn solution represented by these plots has a larger number of burns than
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obtained BOUNDSCO or MBCM, in this study. Few solutions, if any, with this number
of burns have been obtained in the literature. However, the Modified Patched Method,
introduced in the next subséction, has produced solution with even larger numbers of

burns.

Also indicative of the Patched Method, the convergence tolerance for the outer

loop was set relatively high, 103, to prevent prohibitively long computation times,

For this example, the thrust leve] is 0.09698, the product 8./ 5p 15 0.3929, the initial
mass is 10. The initial orbit is circular with a radius of 1; the final orbit has an
eccentricity of 0.398 and a final semimajor axis of 1.708. With this information the value
of T/W, for this transfer is callculatcd to be 0.009698, placing it in the low-thrust transfer

range.

Figure 3.1 is a plot the transfer orbit elements, viz. angular momentum,
eccentricity vector X-component, and eccentricity vector y-component, versus transfer
orbit number. The shape of the angular momentum and eccentricity x-component curves
seem to indicate a second order polynomial fit could be used to reduce the number of
variables in the problem. The eccentricity y-component is always small in this transfer;
suggesting that it could be assumed zero or, more generally, the same parameterization
may be used. The zeroth orbit is the fixed initial orbit and the eleventh orbit is the fixed

final orbit.
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Figure 3.1 Orbital Elements of Each Transfer Orbit of Eleven Burn Solution

Figure 3.2 shows the angular position of the initial orbit exit point and final orbit
entry point of each versus the index enumerating which transfer orbit the bum ends at.
The symmetry of this plot is somewhat surprising. Even though each transfer orbit has its
apse roughly aligned with the X-axis, each pair of angular positions are not reflected
about the x-axis. The trend over time is almost exactly opposite between the two
positions, but note that the values are not quite the negatives of each other, Also, it is

clear that each burn of this ransfer are perigee bumns; each occurring around perigee.
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Figure 3.2 Orbit Transfer Terminal Points Indexed by Ending Orbit

Another interesting trend is found in Fig. 3.3, showing the bumn length versus the
same index as before. The burn length decreases monotonically with each successive
burn, but does not decrease linearly. One can, of course, observe a relationship in the
trend of burn length and angular positions from Figure 3.2. Both plots have a sharp
change at the third burn which holds till the fourth burn and then returns to follow the
trend from the first two. The irregular trend for this burn is attributed to the high

tolerance given for the convergence criteria.
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Transfer Time (nondimensional)

he Modifi tch h 1PM
The Relaxed Patched Method is tailored to the orbit transfer optimization problem
through known relations concerning the behavior of states and costates at different points
along the trajectory. The concept central to these relations is that each burn of a multiple-
burn orbit transfer qualifies as an optimal transfer between its own local terminal orbits.

This method uses an algorithm similar to shooting methods.

This method puts forth an algorithm for computing problem constraints given the
values of the problem variables. The number of variables and constraints are equal.
Also, the method can be used with any multi-dimensional root-finding algorithm. The
discussion below describes the variables and computation of the constraints for a two-

burn trajectory.



In the following description of the variables and constraints, the vector
a=[2T ).,T]T is used instead of the more common AT AT A,]T so that 4, can be

discussed separately.

The arc between points #1 and #2 is assumed to be an arc of maximum thrust.
Referring to Fig. 3.4, the variables at #1 are the initial true anomaly, 6;; the first burn
length, 15; and, the vector of constant Lagrange multipliers for the start of the first bumn,

v,. The only constraint associated with point #1 is for v, to have unity magnitude.

tinal orbit

initial orbit

#1

Figure 3.4 Diagram Illustrating the Layout of a Two-Burn Transfer

Knowing the true anomaly, 6, and the rest of the orbital elements, a, state, x(r)

may be calculated with the function X(6;a). Therefore, the Lagrange multpliers, A1),

and the state, x(r;), at the initial orbit exit point may be computed using

x(1,)=%(6,/at,) (3.38)
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A(r)= [ﬂ(x(z, ))Tvl (3.39)

Where y(x) is a function that calculates the orbital elements o given the state x. The
Lagrange multipliers, A1), and final state of the first burn, x(t;), are calculated by

numerical integration of the Euler-Lagrange and state differential equations.

The vector variables Q; and v, are associated with point #2. These are used to

evaluate the constraints at point #2 as
\y(x(tﬂ)) =q, (3.40)
T
7&(1&:[%()&(:,))] v, (3.41)

The trajectory between points #2 and #3 is assumed to be an arc of null thrust,

The variables 6, the initial true anomaly for the second burn, and I52, the second burn
length, are associated with point #3. With these values, the Lagrange multdpliers and the

state may be calculated, much as before, with
x(12) = %(6,;a,) (3.42)

A(r)= [%XV—(X(IZ ))TV2 (3.43)

Using the integration results from the first burn and Eg. (3.43), the following constraint is

evaluated at point #3

l)‘"('ﬂ)l=|7"(5 ) (3.44)
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The arc between points #3 and #4 is assumed to be of maximum thrust. The
variables 6,, a,, and v,, specified at points #2 and #3 enable the calculation of the
Lagrange multipliers, l(tﬂ)', and final state, X(152), in the same manner as the previous
burn - numerically integrating from 1, to ! with the initial conditions Egqs. (3.42) and

(3.43).

The two-bum trajectory ends at point #4. The constant Lagrange multiplier vector

V3 is associated with this point. The constraints evaluated at point #4 are
v(x(t),)) = e, (3.45)

M) = [%(x(x,, ))]Tv, (3.46)

These constraints complete the system.

With the discussion of the formulation for a two-burn trajectory concluded, the
formulation for a more general problem is clear. For an N-burn trajectory with O, O,

my,T,g8, and/ sp Specified, the variables are

{ali=1..N-1}{6,1li= Lo NL{vli=1,..N+1) (3.47)

By use of which, the following quantities are calculated

x(t)=%(6,0,,);i=1..N (3.48)
A(L)= [%(x(q))]rv,,; i=1..N (3.49)
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( s T ’
x(tﬁ)= x(1,)+ jf(x(l))+mv(z)d: (3.50)
l‘. a T
l(lﬁ)zl(t‘)-i» ][—g (x(t)):, A(r)dr (3.51)
) h A1) L j=1,...N
where V(I) = m (352)
T {
and m(r)=m, ——]—(t— I+ -z;(tﬁ - zj)), te [r,,tﬁ] (3.53)
| olsp "~ J
The constraints that must be then evaluated and satisfied are
vi|=1 (3.54)
w(x(tﬁ))= o;i=1,..N (3.55)
T
A(tﬁ)=[%:—(x(:ﬂ))] Vi i=1..N (3.56)
M) =(en) s i= 1 N -1 (3.57)

This gives a total of 2N(M+1) variables and the same number of constraints, where M is
the number of orbital elements. For nonplanar transfers M=5 but for planar wansfers, it is

more efficient to rotate the coordinate system so that M=3.

In summary, the Modified Patched Method executes the following procedure for
the ith burn, i=1...N, of an N-burn transfer. Given the current iterates 6;,0a;,;,and v,,
(note, however, that @, is not an iterate but a specified constant) calculate x(1;) and A(7)
with Eqs (3.48)-(3.49). If i=1, evaluate the scaling constraint, Eq. (3.54). Given t;, and
the calculated initial values x(7,), A(7;), compute x(15), A(1s) with Eqs  (3.50)-(3.53).
Evaluate the bumn terminal point constraints, Eqs (3.55)-(3.56). If i<N, evaluate the
switching function constraint, Eq. (3.57), where A,(z;, J) 1s calculated with (3.49) knowing

Vil
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When implementing MPM on a computer, the angular variable 6; should be
replaced by the variables l;;, I, and the constraint Li#+ l,2=1. This common substitution

removes the periodic redundancy that may confuse a numerical method.

Completion of the iterative process updating the variables in (3.47) to satisfy the
conditions in Egs. (3.54)-(3.56) allows the final condition of the Modified Patched
Method to be checked. Briefly, this checks the switching law:

MA(I)OTT

m(t) gl (3.58)
]_(I_l 2' (l) 0 T= 0
m(t) g1,

This condition is, in fact, borrowed directly from the application of Pontryagin's
Maximum Principle. When all conditions are satisfied, it may be claimed that an

extremal solution has been obtained.

The relationship between the Patched Method and MPM is primarily in the use of
Eqgs. (3.49) and (3.56), which perform basically the same function as Egs. (3.27), (3.28),
and (3.30) from the Patched Method. However, MPM also includes a tcchmquc
apparently first employed by Brown, et. al.2! which removes one Lagrange multiplier

(A») and significantly affects the way the switching conditions are handled. This

technique is present here as the use of Equation (3.57).

IIL3.1. Equivalency of MPM Conditions and Necessary Conditions
This subsection is concerned with proving the equivalency between necessary
conditions and the Modified Patched Method conditions. From the standpoint of showing

mathematical equivalence, some combinations of variables and constraints in MPM are
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unnecessary. Essentially, guessing intermediate orbital elements can be replaced by

requiring the state to be continuous between burns.

Definition: For optimal control problem {P}, the conditions (111) are

i[>0 (3.59)

()= [%%(x(xﬁ))fv‘,,; i=1..N (3.60)
A(r,):[%(x(r,))jv,.; i=1..N (3.61)

’}('n ) B(5(t) ¥(12)) = Mr) &0 (1) V(1)) 5 =L N -1 (3.62)

[ ()= )'J[ (x(0)+ 200 Ve )it |

M) =2(r)+ }[-—%f(x([))fl(!)d!

< %

3 [i=l,...N (3.63)
where K(I)T[g g(x(2), v(r)):, =

and y(1)=y, + cup,| t—1,+ i(tﬂ —tj)), reft.t]
~ i )

x(1)=x{t;)+ Tt D)t

Y1) =y(r,)= >(rﬁ) =L N (3.64)
u(z)=0, te[tﬁ,t“,]

A

J

lll(tm)Tg(yE'm)» Vtn ));>0 (3.65)

where 1,=1, is assigned and the value for Iyis seen to be 1y,

Theorem I11.2: If and only if
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{x(t), YOM)uln) A e [x,,z,]},o,,o,,:,,{x,,yi =1..2(N-1)} (3.66)
satisfies {J) then
{x).5) VM enin ] {rrdi=1. N vli=1. N+ Gen

satisfies (111}, assuming that the constraints and assumptions from {P} are
satisfied.

Proof:

Both sufficiency and necessity will be proven by assuming satisfaction of one set
of conditions and then constructing the solution to the other. From here on, assume that
the constraints and assumptions from {P) are satisfied. The “if”” part will be proven after
the “only if” part. To prove the “only if” part, it will be useful to follow time in reverse

from 1=t/ to the initial time, =1,
Assume that (3.67) satisfies {J1] ). Define a scaling factor yeR,

Tl ) e

Equation (3.65) ensures that the Y exists as a finite real number. Define \7, =YV

()= 7M1 ), and recall that 17y, Note that this construction makes satisfaction of

(3.60) with i=N imply satisfaction of (3.18). Now, dc'ﬁnc }:,(1,)=1 which satisfies

(3.20); this makes the switching function in the form of Eq. (3.21) vanish for r=ty.

It is obvious that when assumption (i) holds, Eq. (3.18) is satisfied, and Eq. (3.21)
vanishcs for i= =ty then Eq. (3.14) is satisfied at =1, Now, extend the construction so that
M) =), 1€[1y.1,] and Eq. (3.16) is satisfied. Note that this and Egs. (3.63) imply
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that all Euler-Lagrange differential equations, Eqs. (3.15)-(3.17), are satisfied in this
interval. Therefore, the Hamiltonian is constant in the interval and is hence equal to zero
at r=ry. Now, with the Hamiltonian zero, assumption (i) and Eq. (3.61) with i=N imp]iés
that the switching function vanishes again at t=ty. Define 15,y ;=ty. Since by (3.64) and
(3.63), the bang-bang control, u(r), switches from Upmgay 10 ZETO at t=2y, the Hamiltonian

will be continuous across this switching point and, therefore, zero.

Lemma II1.2 with I‘(x(z)):%i’-(x(x)) forze [t,w_,,th.]. Eq. (3.64), and assumption

(vi) implies satisfaction of Eqgs. (3.15) and (3.17) in this interval. Extend the construction
so that i,(t)= i,(l,,v)= /'i,(:,h,_,) in the interval, thereby satisfying Eq. (3.16). Having
this construction, knowing that the switching function vanishes at r=r) that u(r)=0 is
assigned in this interval by (3.64), satisfaction of Eq. (3.62) implies that the switching
function vanishes at t=tpy.;. In order to imply satisfaction of Eq. (3.14) at the end of this
interval, it must be recognized that again, the bang-bang control switches values at 1=l ).

Define fyon. 1=t

The arguments in the preceding two paragraphs may be repeated until the initial
time, 1, is reached. Recall that 1,=1,. DefineV, = -, and recall that previous

definitions require i,(ro)= (1,); these definitions imply satisfaction of (3.19). The
proof of the “only if” part is complete.

For the “if” part of the theorem, assume that (3.66) satisfies {I}. Define
A(r)= i,(r), te [to,t,] and recall that 1=t and 1;=1,. Define v,=~V, and v, = v,

Given assumption (i), it is immediately obvious that all conditions in {111} except Egs.
(3.59), (3.62), (3.65), (3.61) with i#1, and (3.60) with i#N. Note that (3.61) and (3.60)

each apply at a switching point and when U=Uy,,,. Furthermore, Eq. (3.14) specifies that

the Hamiltonian is zero throughout the trajectory. Therefore, by Lemma II1.1, Eqs '(3.]4),
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(3.21), and assumptions (v) and (vii) there exists a different value v for each switching
point such that Egs. (3.60) and (3.61) hold; however, Lemma Iﬂ.l does not guarantee that
the value of v at one end of the kth u=0 arc (i=k-1 in (3.60)) equals the value of v at the
other end (i=k in (3.61)). But, Lemma I11.2 withI"(x(r)) = %‘:—(x(t)) and assumption (vi)

T
implies that A, (1) = [%(x(x))] V solves (3.15) when u=0. Therefore, the value of v at

one end of a u=0 arc must equal the value of v at the other end of the u=0 arc.

Eq. (3.65) is implied by the switching function vanishing at =1, Finally, it is

obvious that the boundary value problem cannot be solved if i,(t) = 0; therefore ]\'/ol >0,

by assumption (v). That implies satisfaction of Eq (3.59). u

HO1.3.2. MPM Example Solutions
The following examples satisfy all the conditions implied by the Euler-Lagrange
equations and the Pontryagin Maximum Principle. All quantities have been

nondimensionalized.

The first example solution is a 5-burn transfer reproducing a solution presented in
a paper by Redding. Both the initial orbit and the final orbit are circular. However, there
is an inclination of 28.5° between them. In this presentation of the solution, the initial
orbit is equatorial and the final orbit is inclined 28.5°. The initial orbit radius is 1, the
final orbit radius is 6.4. The initial nondimensional acceleration is 0.0517 and the
nondimensional characteristic velocity is 0.567. Both the transfer computed by Redding
and this solution calculated with the Modified Patched Method have final transfer orbits
with €=0.723 and an inclination 26.5° away from that of the final orbit. Perigee burmn
durations for both range from 1.26 to 1.13. Both have a total transfer time of 60. Finally,
it is worth noting that the solution presented here was computed without knowing the

particulars of Redding’s solution.
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The second example is a 19-burn transfer. The initial nondimensional
acceleration produced by the rocket motor (T/m,) is 0.09698 and the initial
nondimensional characteristic velocity (go/sp) is 0.3929. The initial orbit is circular with
a radius of 1, the final orbit has eccentricity of 0.73315 and a semimajor axis of 9.26.
The total burn time for this trajectory is 26.84. Figures 3.8 — 3.9 show data in similar

form for this transfer as Figures 3.5-3.7 for the previous transfer.

This 19-burn trajectory was extended to a 27-burn trajectory. This process
involved the determination of transfers with 20, 22, 23, 24 burns, etc. It was found that
adding burns one at a time was usually successful, two at a time slightly less successful,
and so on. It was also interesting to see the decreasing improvement of the transfer’s

performance as plotted in Figure 3.10.
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Figure 3.9 Transfer Time vs Orbit Number for each Burn of a 19-Burn Transfer
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The third example is the aforementioned 27-burn trajectory. All parameters are

identical between this transfer and the previous except the number of burns. The total

burn time for this trajectory is 26.64. This is only a 0.7% decrease in transfer time for

42% more burns.
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The fourth transfer is identical to the third except that the final orbit has an
inclination of 63.4° This inclination angle was chosen because it is large and represents
the inclination of the useful Molniya class of orbits. To obtain the solution, the planar
transfer was used as the initial guess and the Modified Patched Method obtained the

solution in 6 iterations. The following figures represent the transfer.

Each of these transfers show similar trends. An almost linear variation in the
largest components of the angular momentum and eccentricity vectors and for the transfer
time when plotted against the orbit or burn number. However, this trend is broken for the
last burn. In each transfer, the last burn is an apogee burn and all previous burns are
perigee burns. Each perigee burn steadily changes the angular momentum and
eccentricity. The apogee burn then makes a last large change that brings the spacecraft to
the final orbit. This last burn is also considerably longer than the burn before it. In the 5-
burn case, Fig. (3.7) shows that the last bumn is much longer than the first bumn. In the 19-
burn case, Fig. (3.9) shows the last burn almost just as long as the previous burn; in the

27-bum case, Fig. (3.15) indicates that it is considerably longer.
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Figure 3.15 Transfer Time vs Orbit Number for each Bumn of a 27-Burn Transfer
with a 63.4° Plane Change

One feature that seems common to the large number of burns case and the small
number of burns case is the use of the distant burn for inclination changes. Referring
back to the nonplanar 3-burn transfer shown in Figs. 2.2-2.3, it is clear that the first burn
is making most of the inclination change. Also, it is clear from the 27-bumn transfer
represented in Fig. (3.13) that the h, component of the angular momentum vetor, which
indicates the inclination, has very little variation until the final burn takes its value from

almost zero to almost -2. This same trend can be seen for the 5-burmn transfer represented

by Fig. 3.5; where the 4, component indicates inclination for this transfer.

IIL4, Inclusion of P bation T
Neither the Patched Method nor MPM are equipped to produce exact solutions to
fuel-optimal orbit transfer problems in the presence of orbit perturbations. Note that

including orbit perturbations will cause assumption (i) from {P} to be violated.

The tradeoff between making the ideal gravity assumption and obtaining solutions

with much larger numbers of bumns was deemed acceptable. It is hoped that the
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techniques used in this tradeoff will find application in future research into the orbit

transfer problem inclugiing perturbations.

However, BOUNDSCO was able to obtain a solution including orbit perturbations
for the 5-burn wransfer presented above in Figure 3.5. Perturbations are considered for
this trajectory as opposed to the others, because BOUNDSCO iterations did not converge
for the others, even after several trials including initial guesses that were slightly

perturbed from the exact solution.

Figures 3.16-3.18 shows the changes in orbital elements and transfer time induced
by the inclusion of atmospheric drag and oblateness effects. It is clear that the extremal
trajectory includes a lengthened second burn which raises the energy of the second
transfer orbit, thereby raising its altitude and decreasing the effect of drag. It is not so
clear what decides that the longer burn will be the second and not the first. The nodal
regression seems to manifest itself as a decreasing H, component; it is interesting to note
that, like inclination changes, the extremal transfer doesn't make the correction until the
last burn. Turning attention to the bumn lengths, note that the amount by which the first
burn is shortened almost exactly counters the amount by which the next burn is
lengthened. A similar trend shows itself for the third and fourth burns. The last burn is
only slightly shorter, but not enough to indicate whether the total bum time is longer or
shorter. In fact the final mass of the ideal gravity transfer was 3.762; for the transfer with
perturbations it was 3.760. This is a performance loss of only 0.07%, a surprising result

considering that the individual burn times change by as much as 1.6%.
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Figure 3.18 Decrease in the Burn Times for the 5-Burn Transfer of Figure 3.5
Considering Orbit Perturbations

IS Conclusions
In this section, two new methods for computing multiple-burn orbit transfers are
presented. These methods, the Patched Method and the Modified Patched Method, have
been developed specifically to fill an apparent gap in computational ability for fuel-
optimal transfers with large numbers of burns. For this type of problem, both methods

have out-performed BOUNDSCO and MBCM from the previous section.

The conditions upon which each of these methods are based on have been proven
equivalent to necessary conditions. However, for both methods it is required that

Pontryagin's Maximum Principle be checked after iterations have stopped.

The Patched Method, though slow, was very robust in obtaining solutions.
Because of its use of a direct method, it was usually able to obtain the one-bum solutions
between each pair of orbits. Also, the optimization of the transfer orbits usually
proceeded well in the sense that each iteration would produce a better choice of orbital

elements. However, the overall method tended to be quite slow because the cumulative
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time required to compute the one-burn transfers in succession was quite long and

increased with number of burns.

MPM computed solutions beyond the capability of any of the other methods
investigated in this report. MPM was much quicker and slightly less robust, as would be
expected of a method more akin to multiple-point shooting. Therefore, it is suggested
that the Patched Method be used with a very low tolerance to obtain initial guesses for

MPM.

Neither the Patched Method nor MPM is designed to handle orbit perturbations.
However, the marked improvement in performance found with these configurations
should be motivation enough for a future research effort to produce similar configurations

that can handle orbit perturbations efficiently.

Also in this section, a new formulation for the solution of the Lagrange
multipliers is presented. This formulation is valid over coast arcs where the Hamiltonian

vanishes.
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SECTION IV
GUIDANCE FOR OPTIMAL ORBIT TRANSFERS

IV.L Introduction
The guidance scheme examined here is an implicit one which implements
neighboring optimal feedback guidance. An implicit guidance systern was chosen due to
the fact that that type of guidance system often handles disturbances well42, Neighborin g
optimal feedback guidance was chosen because it has the advantage of being a feedback
system, as opposed to open-loop guidance and it can be implemented very easily as with

a gain-scheduling scheme. There also appears to be a lack of studies in the literature

which examine this type of guidance scheme for this problem.

In this formulation, the initial orbit exit point is assumed to be perturbed from the
nominal point but the other boundary condition, specifying the final orbit, is assumed
unchanged. The goal is to use the controller to bring the trajectory to the final orbit at

some point with minimal fuel.

In order for this guidance scheme to be implementable, the neighboring trajectory
must exist; the sufficient conditions for a local extremal must be satisfied. The
satisfaction of these conditions for the nominal solution will be shown. Following that,
the guidance scheme will be investigated, including the use of a time-to-go indexing

scheme.

42Naidu, D. Subbaram. Aeroassisted Orbital Transfer: Guidance and Control Strategies.
New York: Springer-Verlag, 1994,
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Many researchers have used the first variation 10 compute extremal solutions to

the fuel-optimal orbit transfer problem. However, few, if any, have made use of the-
conditions related to the second variation of the cost functional in computation. These
provide sufficient conditions which, when met, declare an extremal solution as a locally

weak optimal solution.

Once the second variation of the cost functional is verified so that it is known
whether the sufficient conditions are met, the information obtained can then be used 1o
implement a guidance scheme. Guidance schemes can typically be divided into two
categories: implicit and explicit. Implicit guidance systems are characterized by the fact
that the vehicle’s motion must be precomputed on the ground and then compared 10 the
actual motion. The equations which need to be solved are based upon the difference
between these measured and precomputed values. The solutions to these equations are
used in the vehicle’s steering and velocity control. Explicit guidance systems are
generalized by the fact that the vehicle's equations of motion are modeled and solved for
by on-board computers during its motion. The solutions for the equations are solved
continuously and are used to determine the difference between the vehicle’s current
motion and its destination. Commands are then generated 1o alleviate the anticipated

€ITor.

Guidance schemes have been presented in various papers.43 A guidance scheme

which is implemented using a linear tangent law is presented by Sinha, Shrivastave, Bhat,

43Chuang, C.-H., Goodson, T.D., Ledsin ger, LA, “The Second Variation and
Neighboring Optimal Feedback Guidance for Multiple Burn Orbit Transfers,”
Proceedings of the 1995 AIAA Conference on Guidance, Navigation, and Control,
Baltimore, Maryland, USA.
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and Prabhu.#4 In a paper by Lu5: a nonlinear guidance law is developed using two
different strategies. One strategy uses optimal control theory to generate a new optimal
trajectory onboard from the start, while the other uses flight-path-restoring-guidance to
bring the trajectory back to the nominal. A guidance scheme that is developed using
inverse methods for unthrusted, lift-modulated vehicles along an optimal space curve is
presented by Hough.4¢ Linearized guidance laws applicable to many different types of
space missions are presented by Tempelman.47 These guidance laws are based on fixed
and free final time arrivals. Naidu4? presents a neighboring optimal guidance scheme

applicable to aeroassisted orbital transfers.

IV.3. Preliminary Considerati

Earlier, the optimal orbit transfer problem was given as a maximization problem.
To conform to the convention used for the second variation3S it is transformed to a
minimization problem. For the minimization problem, the performance index can be

made negative and considered a cost functional

J=-mt,) (4.1)

As the necessary conditions are first-order conditions, they remain unchanged. However,

Lawden’s pointer vector theory is second-order and requires that the control be such that

T I}‘vl 4.2)

44Sinha, S. K., S. K. Shrivastava, M. S. Bhat, and K. S. Prabhu. “Optimal Explicit
Guidance for Three-Dimensional Launch Trajectory,” Acta Astronaurica. Vol. 9,
1989, pp. 115-125.

45Lu, P., “A General Nonlinear Guidance Law,” Proceedings of the the AIAA Guidance,
Navigation, and Control Conference, Scottsdale, Arizona, 1994,

46Hough, M. E., “Explicit Guidance Along an Optimal Space Curve,” Journal of
Guidance, Control, and Dynamics. Vol. 12, 1989, pp. 495-504.

47Tempelman, W., “Linear Guidance Laws for Space Missions,” Journal of Guidance,
Control, and Dynamics. Vol. 9, 1986, pp. 495-502.
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Furthermore, Pontryagin's Minimum Principle requires that an extremal solution satisfy

Hg<0, T=T,_

4.
Hy>0, T=0 “3)

where

H, = _(B‘_ + LJ 4.4)

m gl

If an extremal solution to the maximization problem is given as state time history
x(1), Lagrange-multiplier time history A(t), and Lagrange multipliers v, (associated with
boundary conditions) then an extremal solution for the minimization problem with the

cost function in Eq. (4.1) can be constructed as x(1), -1)*A(1), and (-1)*v.

Additionally, it makes more sense in the planar guidance problem to consider the

control as an angle 6, rather than individual components of a unit vector. This simplifies

analysis because the control is now a scalar. Equation (4.2) now gives

1an(8) = —% (4.5)

L

A practical approach to guidance is suggested by previous results in this report. If
a multiple-burn transfer can be thought of as consisting of multiple optimal one-bum
transfers, then it should be reasonable to examine a guidance scheme that attempts to
match each of the intermediate transfer orbits of the multiple-burn transfer. In other

words, use neighboring optimal feedback guidance for one burn at a time.
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This is not suggested to be an optimal guidance scheme. By focusing on each
burn with neighboring optimal feedback, but not considering the trajectory as a whole,

this guidance scheme becomes a sub-optimal guidance scheme.

Each burn can be considered an extremal solution. These extremal solutions are
considered to have a fixed initial point and free transfer time but the final point is only
constrained in that it must lie on the final orbit. Recall, however, that in computing the
multiple-burn transfer the initial point was not fixed; this condition is imposed for
practical considcrations. If the spacecraft is delivered to the correct orbit, and coasting to
the nominal burn-on point has zero cost, then there is no reason to attempt to compute a

new burn-on point. This reasoning holds for the beginning of each burn.

Considering the second variation of the augmented cost functional, J, a new
optimal control problem can be stated.38 In this new problem, the state is dx, the control
ou, and the Lagrange-multipliers are 6A and dv. The new problem is linear and can be

solved using a sweepback method. For the problem considered here, x=[rT vT m]T and

u=6.

When the final time is free for optimization, the transversality condition must be

satisfied by the nominal solution. The notation for this condition is

éGY () _
Q(x,v,t)ll_,/ —(?)m! -(ax x)m/ =0 (4.6a)
where
G(x,v) = 0(x)+ vIy(x) (4.6b)
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In general, neighboring optimal feedback guidance allows consideration of

changes in boundary conditions. No such changes are considered, assuming that the

destination orbit is fixed. Formulation will be made below for the free final time case.

The change in state and costate can be estimated with a linear time-varying

dynamic system. This dynamic system is given below, where it is understood that matrix

functions are evaluated with the nominal trajectory.

d . _ o
Eéx-A(z)ch B(1)oA

%51 = —C(1)8x - AT(1)8)

where
A(n)= f, - qu;’Hu
B(r)=f HI T

C(t)=H_ -H_HIH,

Evaluating Eqs. (4.7)-(4.11) the recurring terms in the differential equations are:

2 T
o0 ()3 mp g
r r r )
00 M %)-—3‘? 0
f = r r r
11 0 0 0 0
01 T 0 0 0
0 0 ——cos(6) ——sin(6) OJ
L m m

T
f,=[0 0 -I-sin(e) -7;cos(6) 0]
m m
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4.7)

(4.8)

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)



Q 0
H,= 0 zlalav, (4.14)
m

Q= 3_,,,[{(3/13 +4,y)r? - S(Rr)x’} {(Auy +A,x)r* - S(XIr)xy} J 4.15)

r {(Auy +A,x)r? - S(Hr)xy} {(3A,y +A,x)r* = S(Hr)xy}
H_ = ZM (4.16)
m
H, =0 (4.17)

note that r=[x y]', v=[u V|, and A, =[A, A]" are taken as the nominal

trajectory. Using the sweepback method for nonlinear terminal constraints the form for

SA and 8y can be written as

A1) = B(2)8x () + 5 (r)av (4.18)

Sy = ST(1)x(1) + V(1)av (4.19)

which allows the solution for dv to be written as

av=V"(z,) 6y -5"(1,)ox(s,)] (4.20)

As mentioned above, 8y=0 will be considered here. The matrices P(:), 8(z), and V(1),

are computed using the following relations:

P(r)=P(r)- '“—(2’(‘:# 4.21)

S(r)=S(s)- l“%{;(’l 4.22)

n(e)n’(z)

V()= V() - o)

(4.23)
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Now the matrices P(r), S(r), V(1), m(1), n(r), and the scalar function a(r) are computed

from a dynamic system. The boundary condition equations for this system are given by:

P(I/) = [¢n + (VTW. )’ ]m/ (4.24)
S(t,)=[v1]., (4.25)
V(,)=0 (4.26)

where in the development for the orbital transfer these are:

(a b d e 0
b ¢ f g 0
Pi,)=|d f h i O (4.27)
e g i j O
00 0 0 0]
x 3x 2x y 3x’y
a= wv,u F-—r-s—""r—a + V.l ';3"‘ 3 (4.28a)
y _3x% x  3n?
b= vzp[?- 3 :‘+ vsp[?— S (4.28b)
sy 22 2] [x 37 (4.28¢)
c= v3/,1[r3 " + r3}+ sz"[ra i
= -V (4.28d)
€=V~ V,u+2v,v (4.28¢)
f==V,= Vv +2vu (4.28f)
&= —Vzu (428g)
h=2v,y (4.28h)
I==V,x=V,y (4.281)
j=2v,x (4.28j)

and expression for Eq. (4.25) was previously given as Eq. (2.11).



Following from the assumptions expressed as Egs. (4.18)-(4.19), the following
nonlinear equations for P, S, and V must be integrated backwards. The results will be

used 10 check the sufficient conditions governing a minimizing solution.

P=-PA-A"P+PBP-C (4.29)
S=-(AT-PB)S (4.30)
V=8"BS (4.31)

t =-(AT ~ PB)m (4.32)
n=S"Bm (4.33)
a@=m'Bm (4.34)

with the following boundary conditions applying

T
m(r, )= (Zx—ﬂ) (4.35)

hl/

n(r,) = (%)m’ (4.36)

dQ’
a(r)=(S) (437)
l'l,

The sufficient conditions for a minimizin g solution can now be stated as follows:

convexity condition: H,,(r) > 0 for 1, <t st (4.38)
V(1) exists for ¢, <1<t 4.39

normality condition: i ! (4.392)
a(r) exists for 1, S1 < 1 (4.39b)

conjugate point condition: P(z) - S(r)V-'(:)S7(s) finite for 1, St<1, (4.40)
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The convexity condition is satisfied for any transfer satisfying Equation (4.5). This can
be seen by noting that Eq. (4.16) is positive definite, irrespective of the time history for

the Lagrange multipliers.

The eigenvalues of V are plotted in Figure 4.1. Figures 4.2-4.4 plot the elements
of the conjugate point condition matrix. Figure 4.5 is a plot of a(t). Figure 4.1 shows
that V is positive definite in the required interval. Figure 4.5 shows that a(t) is negative
definite in the required interval. Since the normality condition requires that the inverse of
V and a(1) exists in the interval, this solution is normal. Figures 4.2-4.4 show that the
conjugate point condition is satisfied. The elements are bounded in the required interval
and grow asymptotically at the final time; the curves in the figures have been truncated to
show their variations prior to this asymptotic growth. Therefore, this solution satisfies

the sufficient conditions for minimizing the cost functional with free transfer time.

It seems appropriate to first attempt the guidance scheme for a relatively
uncomplicated transfer. Such a transfer was presented in Fig. 2.1 and discussed in
subsection [I.2.4]. The transfer is planar; no plane changes occur. The guidance scheme

considered here will be simulated for this trajcctoi'y.

IV.4.1. Neighboring Optimal Feedback Guidance

Conveniently, construction of a neighboring optimal feedback guidance law uses
the same information as that required to check the second variation of the cost functional.
As a result, much of the derivation required of guidance law has been stated already. The
remaining discussion will describe how to form the feedback control law and adjust the

characteristics of the bang-bang control in a feedback law.

The control, 86, for the fixed final time problem can be found usin g
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86(s) = -HZ[(FTP)sx + fSav] (4.41)
= ~H[1](-SV-57)|6

and the change in the final tdme, dry, is:

T T 4.42)
dr, = —[(—";— - % V87 J]ch

Evaluating d1, determines when the thrust will be turned off to complete the transfer.
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Figure 4.3

Figure 4.4
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Figure 4.5 Plot of a(t) for Two Burn Extremal, Last Burn

This continuous feedback law has been constructed by estimating dv at each instant of

time instead of solving for dv at the initial time and then using this value for all tme

The feedback law depends on P, S, and V as functions of time. A particular
advantage of neighboring optimal feedback is that the linearized TPBVP only has to be
solved once. Afterwards, sampled values of the feedback gains may be stored. The
feedback gains may then be computed for any time by interpolation between stored
values. Use of this control should keep the spacecraft on a ‘ncighboring optimal solution

and deliver it to the required orbit.

The block diagram for the feedback controller needed for neighboring optimal feedback

guidance is shown in Figure 4.6.
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Figure 4.6 Diagram of Neighboring Optimal Feedback Controller Implementation

where A1(1) is the feedback gain from Eq. (4.41), computing 86 .
IV.4.2. Simulation of the Guidance Algorithm

Justification for a feedback algorithm lies in Fig. 4.7 and Fig. 4.8. It can be noted
that there is error in the variation of the states from the neighboring optimal trajectory
when guidance is not used, Fig. 4.7, i.e., when the control cormrection is not used.
However, Fig. 4.8 shows that a feedback law is needed because when implementing it,
the errors in the variation of the states becomes much less, comparatively, than that using
no guidance whatsoever.  The neighboring optimal trajectory referenced in Fi gs. 4.7-4.8

was computed with BOUNDSCO.

IV.4.3. Time-To-Go Implementation

Since this problem is a free final-time problem, the possibility exists that the final-
time will increase and the guidance algorithm will “run out of gains™; this is a familiar
issue for neighboring optimal feedback guidance. The approach used in this study is
based on discretizing the gains by N time nodes { 1o ty) Where 1y, is earlier than the
nominal 1z The gains at the nominal 1, will be infinite and impractical to store. Both the

gains for calculating df,, via Eq. (4.42), and for 86, via Eq. (4.41), are then calculated at

any time by linear interpolation between stored values.
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To consider time-10-go, the guidance must make active use of the dt; estimation.
Since both the nominal and the actual trajectories start at ¢,, dt,, can be initially calculated
using the gains at that time. The length of the first guidance interval is then found by

relating it to the estimated time-to-go.

443
Ar (4.43)

sl

t, +dr
=.£_r_£(,2_,1)
!

Then, at the end of the i-Ith guidance interval, the gains at 1, are used to calculate dis.

Using this information, the length of the ith guidance interval can be computed as

i1 (4.44)
1, +di = A
Ar. = /= -
r.u I/ - l‘- (lH»l l‘)

This continues until Az, is computed as zero or a negative number or until i=N. When

i=N, the Nth gain is used for the entire interval Ary. When this interval ends, the

guidance scheme is finished.

The plots below compare guidance performance with and without this time-to-go
formulation. The curves feprescnt the time history of the boundary condition errer, i.e.
Egs. (1.12) minus the desired orbital elements, evaluated continuously. Figure 4.9 makes
continuous use of the gains but indexes these gains at the current actual time without
calculating dr,. For the perturbation simulated, the transfer time needs to increase and this
first scheme must terminate prematurely. Figure 4.10 makes use the discretized gains and
time-to-go formulation. This simulation also incorporates a practical saturation limit on
the size of the gains. The improvement due to the time-to-go formulation is obvious

when comparing these plots. Therefore, this is both a practical and superior
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implementation of the continuous burn guidance considering the boundary condition
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Figure 4.10 Plot of Boundary Condition Error for'Diﬁcrctc Guidance with Time-to-
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IV.5. Multiple B Guid

The guidance for multiple burns can also be discretized. For the two bumn case,
discretized guidance using time-to-go is used for the first burn. The guidance algorithm
will place the spacecraft on the intermediate transfer orbit via the neighboring optimal
trajectory. Since the cost on this coast arc is zero, the spacecraft can coast on this arc
until it reaches the point at which the next burn is to start. Once the spacecraft reaches
this point, discretized guidance using time-to-go can be used again for the second burn.
The boundary conditions for the second burn should than be satisfied by the neighboring

path. For multiple burns, this guidance scheme is extended in a straightforward manner.

The guidance scheme detailed above was used to recover the two burn transfer of
Fig. 2.1 in the presence of an initial perturbation. Fig. 4.11 shows the boundary condition
errors for the first burn given an initial perturbation of 10-3 in non-dimensionalized units.
The boundary conditions are satisfied rather well for this bumn. The resulting boundary
condition errors for the second burn are shown in Figure 4.12. The boundary conditions

are satisfied very well for this burn.

Figures 4.13 & 4.14 show the boundary condition errors during the second burn
for a perturbation of the same magnitude as above in only the x position and the u
velocity, respectively. Note that the error in the boundary conditions is sli ghtly greater in
Figure 4.14. This suggests that the trajectory is more sensitive to disturbances in the u

velocity than in the x position.
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The resulting orbit transfer trajectory is shown in Figure 4.15. This plot corresponds to

the boundary condition errors as shown in Figures 4.11 and 4.12.
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1Y.6, Conclusions
Extremal one bum trajectories have been shown to be weak locally optimal
solutions using sufficient conditions. This does not prove that the multiple-burn transfer
from which they were taken is itself a weak locally optimal solution, but it does allow the

use of a new suboptimal guidance scheme.

This scheme was shown to reduce the terminal errors for small perturbations of

the initial state. To increase the size of allowable perturbations, a time-to-go indexing
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scheme was simulated. This time-to-go indexing did improve the performance of the

guidance scheme.

The suboptimal multiple-burn guidance with time-to-go indexing was simulated
tor a planar transfer. The performance of this guidance scheme did not match
expectations. The implication is that the region in which a linear control correction is a
valid assumption was quite small. Actually, this is not a surprising conclusion since
obtaining the nominal solutions is usually quite a challenge for iterative algorithms that
attempt linear corrections for each iteration. If indeed this implication is correct, then a

more sophisticated approach for neighboring feedback control is required.

106



SECTION VY

CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER STUDY

Y.L Transfers with Small Numbers of Burns
It has been found that methods already present in the literature are capable of
computing fuel-optimal orbit transfers with small numbers of burns. The methods
investigated here were multiple-point shooting and modified shooting. However, a
common way to attempt to increase the performance of a transfer is to increase the

number of burns executed and, unfortunately, these methods are not very robust in that

sense.

A new method has been introduced that is very useful for adding burns to fuel-
optimal orbit transfers. The method is used in conjunction with homotopy and an
iterative technique for computing transfers; the iterative technique must incorporate
knowledge of the Lagrange multipliers. The method does require that the initial point,
the final point, and the transfer time be free for optimization. It also assumes that the
transfer is performed under the influence of ideal gravity. This assumption is required to

obtain the switching function property that the method relies on.

It is recommended that this method be further developed such that orbit
perturbations are taken into account. Since the switching function property in question
no longer applies for this case, the task is challenging. Obviously, a fairly different
approach must be taken. It is likely that requiring trajectories to begin and end with coast

arcs will be necessary, since cost arcs will no longer be orbits. Perhaps then some
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conditions may be identified under which the coast arcs could be extended to find optimal

locations for the bumns to be added.

3 wj |
The results of this research point to the Modified Patched Method as a practical
way to compute fuel-optimal transfers with large numbers of burns. It does not appear
that such a method existed previously in the literature, making MPM and theoretical

results behind it the central contributions of this report.

An interesting spin-off of the theoretical development is a new formulation for the
integration of the Lagrange multipliers over a time-optimal coast arc for the nonplanar
case assuming ideal gravity. The formulation results from satisfaction of Lemma III.2.
This particular formulation proved quite useful for MPM and may prove useful in future

algorithms and future theoretical developments.

MPM does not allow for orbit perturbations. This restriction was a small price to
pay for performance previously unobtained, viz. the ability to compute transfers with
upwards of 27-burns and large inclination changes. Now that this performance has been
obtained for the ideal gravity case, it is suggested that a future research effort should be
able to produce a method with similar performance, or better, while taking orbit

perturbations into account.

If an attempt is made to adapt MPM for orbit perturbations without recovering
any properties lost, then MPM will degenerate into multiple-point shooting. This study
has already concluded that multiple-point shooiing does not perform well for large
numbers of burns; therefore, some recovery of the properties from Theorem I11.1 -and/or

Theorem I11.2 must be made. Since the concept central to both the Patched Method and
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MPM is the relationship of the optimal orbit transfer problem with the problem expressed
by (3.1), it seems reasonable to expect some form of (3.1) to be recovered in the presence

of orbit perturbations.

A suboptimal multiple-burn guidance scheme was developed through this
research and its performance investigated. The scheme may be described as "burn-by-
burn” neighboring optimal feedback guidance with a time-to-go indexing scheme for each

burn. The performance of this guidance scheme did not match expectations.

Since guidance has much practical imporntance, it is suggested that future research
attempt to develop an improved guidance scheme. It is likely that this would involve
techniques to improve neighboring optimal feedback or replacing this with some other
one-burn guidance scheme. On the other hand, a future research effort might attempt to
find an optimal guidance algorithm for the multiple-burn transfer as a whole. Since there
is a strong relationship between the sufficient conditions for optimality and the
computation of neighboring optimal feedback gains for the one-burn problem, a similar
relationship might be expected for the multiple-burn problem. If an optimal multiple-
burn guidance scheme is developed, it will likely lead to the development of sufficient

conditions for the optimality of multiple-burn transfers.
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ORBPACK is a collection of FORTRAN 77 programs for computing
optimal orbit transfers. For the most part, these are all indirect
methods; they are concerned with solving the Two Point Boundary
Value Problem provided by optimal control theory.

None of these routines guarantee a globally optimum solution: only
extremal solutions are claimed by convergence of iterations. With
the exception of MBCM, solutions obtained with these methods must
have their switching law checked. One must be sure that, in the
computed solution, the thrust is on when the switching function is
positive and the thrust is off when the switching function is
negative. Furthermore, these methods assume that no intermediate
thrust arcs will be found in the solution.

The charts below summarizes the programs in ORBPACK:

Solvers

Suggested Use
BND3D Multiple Shooting BNDSCO medium/low thrust;
(BNDSCO) few burns
MBCM3D Shooting w/ Minimizing VF02AD medium/low thrust;
Boundary Condition Method few burns
PAT2D Patched Method BNDSCO; IMSL medium/low thrust
MPMM2D, Modified Patched Method IMSL; ODEPACK medium/low thrust;
MPMM3D short burns
Accessories
Name Use Libraries
GSHOOT random shooting for one-burn guesses IMSL; ODEPACK
MPM2D3D convert MPMM2D files to MPMM3D files | N/A
MP2BEND convert MPMMa3D files to BND3D files ODEPACK
BND2MBCM convert BND3D files to MBCM files N/A

All codes as supplied in ORBPACK solve multiple burn orbit
transfers with free final time and free initial and final points.
BND3D is already configured so to switch between free and fixed
final time problems. MBCMS3D can easily be reconfigured for such.
PAT2D, MPMM2D, and MPMM3D have fixed configurations.

PAT2D, MPMM2D, and MPMMS3D are also fixed to solve only
problems where ideal gravity is assumed. BND3D and MBCM3D
are configured to solve problems that include drag and oblateness
effects. Finally, codes with the “2D” suffix are configured to solve
planar transfers; the “3D” suffix indicates that the code is
configured for nonplanar transfers.

Applied Contro! Laboratory August 1995
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II. Orbit Transfer Problem Definition

0.1. Parameters

All the programs in ORBPACK require the following orbit transfer
parameters to be determined:

For the gravitating body:
* the gravitational constant for the central body (u )

For the rocket motor:
* maximum thrust
* specific impulse (gp)

For the terminal orbits, BND3D and MBCM3D require:
* semimajor axis

eccentricity

right ascension (degrees)

argument of perigee (degrees)

inclination (degrees)

For the terminal orbits, MPMM2D, MPMM3D, and PAT2D require:
* angular momentum vector (X, Y, Z components)
* eccentricity vector (X, Y components)

Each program also requires a value for Earth’s acceleration at sea-
level (g,) in appropriate units; this number is only used in
conjunction with the specific impulse to compute the fuel
consumption.

BND3D and MBCM3D can account for oblateness and drag effects.
For oblateness: R, is the equatorial radius of the central body and J,

is a constant describing the mass distribution of the central body;
for Earth J,=1082.61x10-6. For drag: Bis a constant from the

atmosphere model describing air density variation in the
prescribed altitude region, P, is the atmosphere density at the

altitude r,, S is the cross-sectional area of the craft, and Cp is the
craft’s drag coefficient.

The gravitational potential, including oblateness, is modeled as:

pum 1 2 pgm 2
U= T+EJZR' 7(] - 3cos (6))

where r is the magnitude of the position vector r. The drag force is
modeled as:

F,, = %p”e'ﬂ' A YoRYY

where v is the magnitude of the velocity v. Note that this form for the
density variation indicates an isothermal region of the atmosphere.

August 1995
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O.2. Scaling It is very useful for numerical methods to work with numbers that
are at or near the same order. This can be accomplished through
nondimensionalizations. Such nondimensionalizations for the
orbit transfer problem follow:

rsr/r®

mwm/m®

= t/\/r""/y

and they require the following:

Ve v/\,‘u/rﬁ
f] = I]/‘\/rag/y

Fowmr, [r®

L4

(/5,,5(}0) = p,,SCD(rQ/mQ)

R =R/

Note that these nondimensionalizations result in dynamics with
u=1. The choices of ¥ and m¥ are completely arbitrary. A choice
for m™ might be one such that the initial nondimensionalized mass
is 1 or 10. A choice for r¥ might be the radius of the planetor a
number such that the initial semimajor axis, radius of perigee , or
an “average” radius is 1.

Applied Control Laboratory Augus!t 1995
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ITI. Making Guesses for the Optimal Transfer

There are many different ways that one could conceive of to make
guesses. The routines for making guesses, listed below, have been
provided.

The tutorials in Chapter VIII demonstrate how to make guesses with
these methods.

I11.1. GSHOOT Random The subroutine GSHOOT will randomly make guesses for the one-

Guess (Single Burn Only) burn orbit transfer problem in two dimensions. Input for GSHOOT
is a text file. Its output consists of two text files which represent data
for direct and indirect methods.

How to use GSHOOT GSHOOT requires a file, named “GINPUT,” for input. A typical
“GINPUT” file follows:

MJ =1.00

GO = 1.00
Isp « 0.5673
THRUST = 0.5166
MO = 10.C0C0
Al = 1.00030
EO = C.000
wo = 0.000
AD = 1.285
ED = 0.219
WD = 0.000
TMAX = 0.000
NGS = 100

NIX = 3

where MU (u ) is the gravitational constant, GO (g,) is the
gravitational acceleration of the earth at sea level, ISP U,p) is the
motor’s specific impulse, and Thrust is the motor’s thrust level. MO
(m,) is the initial mass for the transfer. The next parameters
specify the terminal orbits: AO (a,) is the initial orbit’s semimajor
axis, EO (e,) the initial orbit’s eccentricity, and WO (w,) is the
initial orbit’s argument of perigee; AF (ap), EF (ef), and (wy) are the
corresponding parameters for the final orbit. TMAX is the
maximum burn time; if it is set to zero, then TMAX is assigned by
GSHOOT to the amount of time required for the mass to vanish.
NGS is how many guesses to make; half of these will be almost
tangential thrusting with random initial true anomaly and the
other half will have random initial direction and random initial
true anomaly. For a detailed description of the file format, see
Appendix A.

GSHOOT will create output files “DIRECT.DAT” and
“INDIRECT.DAT” which can be used to construct a multiple burn
guess in the PATCH2D file format. Both of these files have
identical headers:

August 1995 Applied Control Laboratory
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How GSHOOT
works

T LI ]
GO LI ]
ISP « ¢
AC LI ]
EXC = ¢
EYC s ¢
AF .« ¢
DPF = ¢
EYF « ¢

These output files contain the necessary information

If this output file represents a guess for any but the last burn, delete
the last three of these lines (AF, EXF, EYF) when constructing the
multiple-burn guess file. However, if this guess is for the last burn,
keep the last three lines and delete lines six through eight (AO, EXO,
EYO). If the guess is any but the first burn, then delete the first three
lines (T, GO, 1SP).

GSHOOT makes a random guess by choosing the constant
Lagrange multipliers (v) as a random vector with unity magnitude.
Since all the Lagrange multipliers may be scaled by an arbitrary
constant, there is no loss of generality. The state vector is computed
knowing the initial orbital elements and randomly choosing the
Initial true anomaly. Next, the vectors ?y and ., are calculated for
the initial time, using the following equation:

[Kr(n)J i [ﬂ(x(,”))fv o

A (r,) Ix

The initial value for A is found by specifying that the switching
function is zero at the initial time:

(3.21

An(t,)=(.1,,) (1)

That the switching function is zero at the initial time is known to be
true for the free transfer time and free terminal points problem.
With the initial state and costate known, the initial value problem is
integrated forward in time until either the desired final semimajor
axis (AD) is reached. the current radius becomes small, the
spacecraft enters a parabolic orbit, or the mass becomes small.

For guesses that are almost tangential, A, is chosen to be (+/-) v and
A, is chosen to be (+/-) (wrd)r. The positive sign usually produces
orbit raising and the negative sign orbit lowering. Note that this
initial guess for the costates zeros the Hamiltonian when the
switching function is zero. Therefore, the v,’s can be found by
solving the least-squares problem of Eq. (3.1).

GSHOOT will try as many guesses as the user requests. The guess
that best meets the required boundary conditions will be output.

Applied Control Laboratory
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IIL2. PAT2D Sub-Optimal
Transfer Guess (Multiple
Burn Only)

Usine PAT2D to
Compute Guesses

PAT2D creates sub-optimal trajectories in the sense that the choice
of intermediate transfer orbits has been fixed and each burn is an
optimal one-burn orbit transfer. PAT2D iterates upon the choice of
intermediate transfer orbits until it finds a choice that gives a local
maximum in final mass The PAT2D program is described in
detail in Chapter V.

PAT2D requires two files for input. The first file,
“PATCH2D.TOLS,” sets accuracy levels and limits the number of
iterations (for more information on this file, see Chapter V). The
second file, “PATCH2D.GUESS,” supplies the guess information
for both the choice of intermediate transfer orbits and the trajectories
of the burn arcs between them. This latter file must be in the PAT2D
format (for more information, see Appendix A and Chapter V).

The guess information from GSHOOT, or some other source, must
be put into the PAT2D format. When run, the first thing that PAT2D
will do is solve the one-burn problems defined by the intermediate
transfer orbits. Often, the output from this step alone is a

sufficiently good solution guess . This output is contained in the file
“PATCH2D.INITIAL.”

On the other hand, it is not uncommon for that output to be an
insufficient guess. In this case, one approach is to allow PAT2D to
iterate. At some point during the iteration, the user may take the file
“PATCH2D.BEST” and use it as an initial solution guess.
Alternatively, the user may set a rather loose stopping criterion for
PAT2D and wait until this criterion is met. In this approach, the file
“PATCH2D.SOL” will be the solution guess.

August 1995
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IV. The Modified Patched Method (MPMM2D, MPMM3D)

IV.1. Using MPMM2D to
Csapute Solutions

Data File (Input)

MPMM2D

MPMM3D

The subroutine MPM2D (MPM3D) is a realization of the Modified
Patched Method in two (three) dimensions. The file “MPMM2D.f
(MPMM3D.f) contains an implementation of MPM2D (MPM3D,
using IMSL's NEQNF to solve the nonlinear equations, its
FORTRAN program name is MPMM2D (MPMM3D).

MPMM2D (MPMM3D) requires only one input file, which must
follow the PAT2D (PAT3D) format (see Appendix A). This data file
must be named “MPM2D.GUESS” (“MPM3D.GUESS")

The code “MPM2D3D.f* will convert an “MPM2D.GUESS" file into
a “MPM3D.GUESS" file. In this code, no other input is required
except “MPM2D.GUESS”

In “MPM2D.GUESS,” (“MPM3D.GUESS") the tolerance setting
(TOL) is the root-finding tolerance. The tolerance used in
numerical integration is one-thousandth of this number. No
information in the header is ignored.

For MPMM2D (MPMM3D), the option SEL may only be chosen as 1
or 2. These options indicate the data for the burn is given in the
format for an indirect method. MPMM2D (MPMM3D) will treat
both SEL=1 and SEL=2 identically.

MPMM2D (MPMM3D) only uses specific items from the PAT2D file
format. The lines below are representative of the data for one burn
in the PAT2D format. The underlined “#” symbols indicate which
number items are important to MPM2D calculations.

a = #

ex = 3§

ey =3

NODE = 3

SEL = 1

index.x,y,u,v,m.lx,ly,lu,lv,lm.t!,gl,g2,93,g4.gs.ge
1.8, 8, %, 0, 8, ¥, ¥, %, ¥, %, X. %, ¢, ¢, s 4 32
2, ¥, W, %, %, %, &, LIS U DU DA B ' ¥, 8, %, @
3,08, 4, %, ¥, ¥, .08, 4, ¢, ¥, %, ¥, 4, 4, 9, 8
4.0,#,!,0U,Ot,',t,',l.d,i,t,t,l,u

hx = &

hy =8

hz L}

ex = g

e/ = %

NODE = 3

SEL = 1

INDEX,XIY,Z,U,V,W,M,LX.LY.LZ,LU,LV,LW.LM.TF,GI,GZ,GB,GG,GS.GG,GT.GE,SS,GZT
12,084,800, 4.9, 0, 9, 4,4, 9, .08, 4. 0 4, 8 0, 0, 8 5 s 3 3
2,!,1,',',Q,.‘...,O,l,l,.,.,‘,O‘.,.,O,.,O,O‘OAO' .
DO T TN PO DO D T DEY T D T N S .08 8, 0 K 4, 8 8, s s
LEA TN P PO PR I 0 P O D O T T T .00, 0, 0. 0, % 0 s v s

Applied Control Laboratory
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The important number items are “a,” “ex,” and “ey” with “x,” “y,”
“m,” “tf,” “g4,” “g5,” and “g6” on the first line only. All other
numbers are read by the program but not used. The “x” and ‘y”
coordinates are used only to compute the true anomaly angle that the
burn begins at. The only mass value remembered is the initial
mass value. The mass costate is used to scale the constant
Lagrange multipliers “g4,” “g5,” and “g6” in a manner consistent
with patching the burns together; otherwise, it is not used.

MPM2D Iteration Listed below is sample screen output from “MPMM2D F~
Info to Screen

Cur  Norm Tee Best Norm (at) ¢ Short Time  Bns Bst wrst El Ele

0 45051E-00 1 0.450S1E-00 1 0.11289E+C) 4 0 30952E+CC 18
0.4505.E-00 45 C.4S0S1E-00 1S 0.112B9E-01 4 0.30952g-0¢C iB
0.63%52E-02 90 0. .635S0E-02 B9 0 10S51E«C1 4 0.28B471E-0: i4
0 4ESTSE-02 135 0 .48%75E-02 105 0. 1060€6E-D1 4 C.24346E-C2 ié

Total Burm Time = €.51402842448¢
Final Mass = 4.065434637841

Shortest Burn Length = 1.128883878329
Shortest Burn is 04

The first block of text is the iteration table. The column “Cur.
Norm” shows the current 2-norm of the constraint errors in the
absolute sense. The iteration, or number of times called, at which
this value was computed is listed in column “It#.* The lowest norm
of constraint errors yet computed, next to the iteration number it was
computed at is given under the “Best Norm (at) #” column. The
length of the shortest burn at the current iteration is under “Short
Time“ and the burn with this length is indicated under the “Bn#*
column. Finally, the largest absolute value of a constraint
component for the best norm is listed under “Bst Wrst E1.* with
“El# listing which constraint component this is.

MPM3D Iteration The iteration table from MPM3D is slightly different. It has the
Info to Screen following header:

where “WRST C. EL.” indicates the worst element of the current
iteration constraint error vector.

For MPMM2D and MPMM3D, below the iteration table is the
number of function calls required to reach an error level indicated
by the tolerance. After this, some statistics of the solution are given.
The “Total Burn Time* is the total amount of time the motor is on.
The “Final Mass* is the mass of the spacecraft at the end of the
transfer. The “Shortest Burn Length” is length in time of the
quickest burn. Finally, the burn number for this quickest, or
shortest, burn is listed.

August 1995 Applied Control Laboratory
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Data File Output

IV2. The Structure of the
MPMM2D (MPMM3D) Code

The subroutine MPM2D (MPM3D), if desired, creates an output file
that gives the status of iterations. The file is named
“MPM2D.ISTAT* (“MPM3D.ISTAT"). This file is useful for
computer systems that operate under a queuing system because such
a system often does not show output to the screen until after execution
is completed. However, such queuing systems usually allow files’
that are created and closed to appear in the users directory.
Therefore, during execution under a queuing system, the user may
list the contents of “MPM2D.ISTAT" (“MPM3D.ISTAT") and see
current iteration information. The content of “MPM2D.ISTAT"
(“MPM3D.ISTAT") is three lines long: the first two lines are the
table headings from the iteration table, the third line is the current
entry in the iteration table.

Both the main routine MPMM2D (MPMM3D) and MPM2D
(MPM3D) contribute to a file named “MPM2D REPORT"
(“MPM3D.REPORT”). The first lines in this file gives feedback
from MPMM2D (MPMM3D) while reading “MPM2D.GUESS"
(“MPM3D.GUESS") 5o that any errors in that file may be easily
identified.

The first eleven lines give the header parameters. At the beginning
of each line, the text from “MPM2D.GUESS” (“MPM3D.GUESS") is
given, then the number read from that line, and finally, in
parentheses, the name of the variable which MPMM2D (MPMM3D)
has assigned this number to. This same pattern is continued as
MPMM2D (MPMM3D) reads the orbital elements of the transfer
orbits.

The twelfth line and lines below are printed as each line of the input
are read. Following this is a listing of the values of each variable
used by MPM2D (MPM3D) for the first iteration; then a listing of the
constraint values when given these variables.

Next is the iteration table as printed to the screen. Following this. a
total number of calls to MPM2D (MPM3D). Then a listing of
variables and constraint evaluations for the solution. Finally. at
the bottom of the file is the solution summary statistics just as
printed to the screen.

The other file created by MPMM2D (MPMM3D) is “MPM2D.SOL"
(“MPM3D.SOL"), the solution file. This file contains the solution to
the orbit transfer problem in the PAT2D (PAT3D) format.

The structure of the MPMM2D (MPMM3D) program is generalized
in the following diagram, not intended as a formal flow chart:

Applied Control Laboratory
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MPMM2D/MPMM3D Diagram

IMSL SOLVER (NEQNF)

ODEPACK INTEGRATOR
(LSODE)

| lDNTEGRATION Loop

The main routine, calls the multidimensional nonlinear equation
solver, IMSL’s NEQNF, with the guess from “MPM2D.GUESS”
(“MPM3D.GUESS") The solver calls MPM2D (MPM3D) iteratively
to solve the problem and to nhumerically compute partial derivatives.
This recurrent use of MPM2D (MPM3D) is illustrated in the
diagram by a loop with an arrow on it, connecting the two blocks.

MPM2D (MPM3D) evaluates the MPM conditions given the
variables. For each burn in the orbit transfer problem, variables
are sent to BURN. This subroutine integrates each burn arc by
calling LSODE and evaluates boundary conditions for that burn by
calling BCC (BCC). The derivatives for integration, required for
LSODE, are supplied by FBURN. FBURN is called repeatedly by
LSODE during solution of each burn’s initial value problem.

August 1995
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V. The Patched Method in Two Dimensions (PAT2D)

V.1. Vising PAT2D to
Compute Sub-
Optimal/Extremal Solutions

V.2. How PAT2D Works

PAT2D Diagram

The subroutine FUNC is a realization of the Patched Method in two
dimensions. The file "PAT2D.f" contains an implementation of
FUNC with the conjugate gradient method. The conjugate gradient
algorithm was taken from "Numerical Recipes" and is only
slightly modified from what is presented there.

PAT2D requires two input files for execution. These files specify
iteration parameters ("PATCH2D.TOLS") and the initial solution
guess ("PATCH2D.GUESS"). The "PATCH2D.GUESS" file must
be in the PAT2D format (see Appendix A). The format for
"PATCH2D.TOLS" is much simpler and demonstrated in the
example below:

FTOL = 1.00000000000000000000E-08
LTOL = 1.00000000000000000000E-07
GTOL = 1.00000000000000000000E-03
TOL2 = 1.00000000000000000000E-0%
ITMX = 200

MFUN = 200

MITN = 1000

ITME = 15

The FORMAT edit descriptors for the first four lines, containing
REAL values, are (1X,A6,D27.20) and likewise for the last four
lines, containing INTEGER values, (1X,A6,16). The value for
FTOL specifies the function value stopping criterion, when the
change in total burn time after a line search is less than FTOL the
iteration stops. The value for LTOL is the line search tolerance.
GTOL specifies how small the 2-norm of the gradient should be fore
stopping. TOL2 is the tolerance for DCNLP one-burn solutions.
ITMX is the maximum number of allowed conjugate gradient
iterations. MFUN limits function calls and MITN limits the
overall iteration count for DCNLP. ITNB limits the number of
multiple-shooting iterations performed by BOUNDSCO.

The diagram below shows the general structure of the code in the file
“PAT2D {7

CNSTRN BCC

GRADENT
. - . | BNDSCO LOOP

'

' '

! rosorm |  GRO
[ [

[ '

DIAGRAM

---------

B
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The subroutine FUNC is the heart of PAT2D. This is the function
that, given the choice of intermediate orbital elements, calculates
the total burn time for the transfer. FRPRMN is the conjugate
gradient routine, from “Numerical Recipes,” that iteratively calls
FUNC and DFUNC (gradient routine) to find the optimal choice of
intermediate transfer orbits.

PAT2D has a two-loop structure; there is an inner loop
(FUNC/ONEBRN) and an outer loop (FRPRMN). The outer loop
successively changes the transfer orbits until a minimum is found
in the total burn time (maximum of final mass). The inner loop
solves the one burn trajectories between each transfer orbit. Solving
this trajectories yields the burn time s for each intermediate

transfer. These burn times are summed, giving the output of
FUNC.

Note that each successful outer loop iteration produces a suboptimal
transfer. This transfer satisfies all the conditions on the state but is
not an extremal transfer.

The main routine loads the solution guess and calls FUNC once,
before FRPRMN does. This is done because there is no assurance
that the trajectory guesses in the PATCH2D.GUESS file will
successfully produce a suboptimal solution. The output from this
first call is named “PATCH2D.INITIAL” and is often a good guess
for MPMM2D. However, if this is a poor guess, then a good strategy
1s to allow PAT2D several iterations to produce a transfer closer to
the solution.

The inner loop iterations are a little complicated. This is the result
of an attempt to make them robust. It is also designed so that each
successful inner loop iteration produces a solution to the Two Point
Boundary Value Problem (TPBVP) with BOUNDSCO, a multiple-
point shooting algorithm (MS). However, it is widely known that
direct methods often have a large region of convergence than
indirect methods. Therefore, Direct Collocation with Nonlinear
Programming (DCNLP) has also been implemented.

The following diagram shows how the ONEBRN subroutine
interprets the user’s selection as to what is the appropriate first
action, use MS or DCNLP first?

August 1995 Applied Control Laboratory
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ONEBRN Flow Chart part 1
(abridged)

ONEBRN Flow Chart part 2
(abridged)

Sel MS ang
DCNLP

Parameters

Convert MS

Yes to
MS guess soive with MS ouess
e M 0 i DCNLP guess

Note that a MS guess can be given for DCNLP in this structure. A
DCNLP guess cannot be given for MS because a DCNLP solution is
required in the conversion process from DCNLP information to MS
information.

The next diagrams shows how MS (BNDSCO) and DCNLP (IMSL’s
DNOONF) are incorporated:

Partorm
DCALP
nerators

Convert DCNLP
solnor to M8
guess

Has BNDSCO beenr triec
CFTMAX times of 1s the

nOTMec change in orbra!
slements larper thar

Has perturbatior
umit (CFP) been
reachec”?

Attempts with either method have a similar structure. Ifa failure in
iterations occurs, the guess is perturbed and the method attempted
again. After each failure, the perturbation size is increased. If MS
fails too many times, control is handed over to DCNLP. However, if
DCNLP fails too many times there is no backup and an error exit
occurs.

After ONEBRN succeeds in computing a MS solution, the SEL
parameter is set to 2 for that burn.

Applied Contro! Laboratory
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Output files:

"PATCH2D HIST" (iteration data)

"PATCH2D.INITIAL" (first suboptimal sol) first optimal
solution obtained, in patch2d format

"PATCH2D.SOL" contains the extremal solution obtained to
tolerance

"PATCH2D BURN" (iteration status) prints iteration status;
file is useful when program is being run under a queuing
system and screen output is withheld. Printed after a burn is
solved.

"PATCH2D.COST" (iteration status); file is useful when
program is being run under a queuing sys and screen output is
withheld. Printed after a complete transfer is solved.
"PATCH2D.CURRENT" contains current suboptimal
trajectory, unless it is the best.

"PATCH2D.BEST" contains best suboptimal trajectory to date
"PATCH2D.PERT" gives information as to the progress of
solving the current burn.

"FRPRMN.OUT" output from conjugate gradient routine,

'FRPRMN

"FRPRMN.ITERATES" current output from FRPRMN, for info
when using a queuing system

August 1995
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VL The Multiple Shooting Approach (BND3D)

V1.1. Using BND3D to
Compute Solutions

Normal Execution:
Free Final Time, No
Homotopy

The BND3D program implements the modified multiple-point (MS)
algorithm of BOUNDSCO (Boundary value problem solver with
Switching Conditions). BOUNDSCO makes use of Newton’s
method, a Broyden update, and Deuflhard’s relaxation strategy.
One should refer to the BOUNDSCO manuall! for detailed
information on BOUNDSCO. Note that BOUNDSCO does not make
use of an analytical gradient.

BND3D also has a homotopy loop around BNDSCO. A homotopy
variable U is defined such that, as the loop repeats, U will change
from 1 to UMIN (The choice of UMIN is set by the user, but usually is
chosen as 0). Certain parameters for the orbit transfer problem
definition are included in the homotopy loop and vary as the value of
U changes. A tutorial using homotopy is included in the Tutorials
section.

The code MP2BND will convert MPMM3D input files into BND3D
input files.

BND3D requires two input files: “BND3D.SCRIPT” which contains
instructions and parameters, and another file (named by user)
which contains the solution guess.

The format of the file “BND3D.SCRIPT” depends on how BND3D is
to be used. This format is best described line-by-line. The
character in the first column of each line is ignored.

The four different layouts of the “BND3D.SCRIPT” file are
described below:

® Line 1: (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

* Line 2: (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “1” on this lines chooses the free final time
option.

* Line 4: (1X,16) A “0” deselects the homotopy option.

Line 5: (1X,I16) A “1” on this line tells BNDSCO to insert nodes
for the switching times in the output; a “0” says not to.

10berle, H.J, Grimm, W, “BNDSCO: A Program for the Numerical Solution of Optimal Control
Problems,” English Translation of DFVLR-Mitt. 85-05.

Applied Control Laboratory
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Fixed Final Time;
No Homotopy

Free Final Time,
Homotopy Activated

Line 6: (A,D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

Line 7: (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

Line 8 (1X,14) The maximum number of iterations.

Line 9: (1X,A28) The name for the file containing the solution

* Line 10: (1X,I6) A “1” on this line requests detailed solution

information (“BND3D.EXTRA” and the file named on
the next line). A “0” indicates otherwise.

Line 11: (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line 1: (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2: (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “0” on this lines chooses the fixed final time
option.

* Line 4: (AD12.5) The value for the final time.
* Line5: (1X,16) A “0” deselects the homotopy option.
* Line 6: (1X,16) A “1” on this line tells BNDSCO to insert nodes

for the switching times in the output; a “0” says not to.
Line 7: (A,D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.
Line 8: (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

e Line 9: (1X,14) The maximum number of iterations.

Line 10: (1X,A28) The name for the file containing the solution

Line 11: (1X,16) A “1” on this line requests detailed solution
information (“BND3D.EXTRA” and the file named on
the next line). A “0” indicates otherwise.

Line 12: (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line I: (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2. (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here; this
output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “1” on this lines chooses the free final time
option.

August 1995
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Fixed Final Time,
Homotopy Activated
(in this case, the
fixed final time is
also achieved
through the homotopy
loop)

¢ Line 4. (1X,16) A “1” gelects the homotopy option.
* Line 5: (1X,16) the suggested number of homotopy loops to

perform

Line 6: (*) Enter UMIN, the value of the homotopy variable to stop
at. The homotopy variable, U, starts at 1 and ends at
UMIN. Enter “0.0” here to attempt to achieve the values
below.

Line 7: (*) Enter the desired maximum thrust level

Line 8: (*) Enter the desired specific impulse

Line 9: (*) Enter the desired final orbit semimajor axis

Line 10: (*) Enter the desired final orbit eccentricity

Line 11: (*) Enter the desired final orbit argument of perigee

Line 12: (*) Enter the desired initia) orbit semimajor axis

Line 13: (*) Enter the desired initial orbit eccentricity

Line 14: (*) Enter the desired initial orbit argument of perigee

Line 15. (*) Enter the desired initia) orbit argument inclination

Line 16: (1X,16) A “1” on this line tells BNDSCO to insert nodes
for the switching times in the output; a “0” says not to.

Line 17: (A\D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

Line 18: (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

Line 19: (1X,14) The maximum number of iterations.

Line 20: (1X,A28) The name for the file containing the solution

Line 21: (1X,16) A “1” on this line requests detailed solution
information (“‘BND3D.EXTRA” and the file named on
the next line). A “0” indicates otherwise.

Line 22: (1X,A28) The file name for additional information (if a
“1” on the previous line).

Line 1: (1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

Line 2: (1X,16) Here, a “1” indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a “0” indicates
otherwise. Usually, one would place a “0” here: this

-output is usually only useful in finding errors in the input
file.

Line 3: (1X,16) A “0” on this lines chooses the fixed final time
option.

Line 4: (AD12.5) The value for the final time.

* Line 5: (1X,16) A “1” selects the homotopy option.
* Line 6: (1X,16) the suggested number of homotopy loops to

perform

Line 7: (*) Enter UMIN, the value of the homotopy variable to stop
at. The homotopy variable, U, starts at 1 and ends at
UMIN. Enter “0.0” here to attempt to achieve the values
below.

® Line 8: (*) Enter the desired maximum thrust level
® Line 9: (*) Enter the desired specific impulse

Line 10: (*) Enter the desired final orbit semimajor axis

Applied Control Laboratory
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V12. The BND3D Guess File

Line 11: (*) Enter the desired final orbit eccentricity

Line I2: (*) Enter the desired final orbit argument of perigee

Line 13. (*) Enter the desired initial orbit semimajor axis

. Line 14: (*) Enter the desired initial orbit eccentricity

Line 15: (*) Enter the desired initial orbit argument of perigee

Line 16: (*) Enter the desired initial orbit argument inclination

Line 17: (1X,16) A “1” on this line tells BNDSCO to insert nodes
for the switching times in the output; a “0” says not to.

* Line 18: (A,D12.5) The value on this line sets the BNDSCO
parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

* Line 19: (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

* Line 20: (1X,]4) The maximum number of iterations.

* Line 21: (1X,A28) The name for the file containing the solution

® Line 22: (1X,16) A “1”" on this line requests detailed solution
information (“BND3D.EXTRA" and the file named on
the next line). A “0” indicates otherwise.

* Line 23: (1X,A28) The file name for additional information (if a

“1” on the previous line).

Format

The BND3D Guess file (named in “BND3D .SCRIPT") has a specific

format. The first twenty lines specify orbit transfer parameters of

type DOUBLE PRECISION and have FORMAT edit descriptors

(1X,A9,F30.15). These parameters are as follows and in this order-:

MU gravitational constant of the central bedy (1.0 for no
dimensions)

REQ equatorial radius of the central body

2 constant describing the mass distribution of the
central body; for Earth J,=1082.61x10-6

GO acceleration at sea-level

BETA constant from the atmosphere model describing air
density variation in the prescribed altitude region

RO ro +REQ

ROU atmosphere density at the altitude o

S cross-sectional area of the craft

CDh drag coefficient

ISP specific impulse

THRUST maximum thrust

Al initial semimajor axis

El initial eccentricity

OMEGAI initial argument of perigee (degrees)

RAI initial right ascension (degrees)

1.1 initial inclination (degrees)

AF final semimajor axis

EF final eccentricity ‘

OMEGAF final argument of perigee (degrees)

RAF final right ascension (degrees)

I.F final inclination (degrees)
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V1.3. How BND3D Works

The 21st line (1X,15) gives the number of intervals (# nodes - 1).
The next line is a dummy string line (1X,A) that, on output, is used
to provide a header for the data in the following lines (useful in
plotting results).

The next (# nodes) lines gives the BND3D state at each node with
edit descriptors (1X,F30.15,25(A2,F30.15)). The BND3D state is as
follows:

01 2 3 ¢ 5 6 7 8 9 10 11 12 13 14 15
(T. X, ¥, 2, U, V. W, M, L-X, L-Y, L-2, L-U, L-V, L-w, L-M, TF,

{ FINAL ORBIT } { INITIAL ORBIT )
16 17 18 1% 20 21 22 23 24 25
Gl, G2, G3, G4, G5, G&, G7, GB, G9, G1l0)

<X.Y.,2> IS POSITION <L-X,L-Y.L-2> IS LAMEDA-F
<U,V,W> IS VELOCITY <L-U.L-V.L-W> IS LAMBIA-V
M IS MASS

L-M IS LAMEDA-M
T IS THE NCRMALIZED TIME [0.1)

Where TF is the final time and G# are components of the constant
Lagrange multipliers (v); G1-G5 being v for the final boundary
conditions and G6-G10 being v for the initial boundary conditions.

The nodes are entered in the reverse order, starting with the final
node and ending with the initia) node.

Following the node information is a line (1X,15) for the number of
switching points. It is suggested to use an even number of switching
points - this indicates to BNDSCO that the first and last intervals are
burn arcs.

The next lines (1X,F30.15), one for each switching point, give the
switching times in normalized time [0,1). No lines after these are
read.

BND3D supplies the necessary routines (F and CON) to BNDSCO
“F” supplies the derivatives of the state and “CON” evaluates the
boundary conditions. The routine “BCC” computes repeated
formulas, “LSG” loads the solution guess, “SAVSOL” saves solution
data in the same format as the guess data. The routine “DJFSYB"
performs numerical integration.

Applied Control Laboratory
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The flow diagram below indicates the interdependence of the
BND3D subroutines.

BND3D Flow Diagram

[LSG |
MAIN
J HNMTOW LOoP

BNDSCO ]

( ITERATON and

GRADIENTLOOPS
m‘m [con

INTEGRATION LOOP

BCC
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VII. The Minimizing Boundary Condition Method (MBCM3D)

VII.1. Using MBCM3D to
Compute Solutions

The Minimizing Boundary Condition Method (MBCM) is a relaxed
simple shooting algorithm. Instead of using a multidimensional

nonlinear equation solver for the two point boundary value problem
(TPBVP), it transforms the TPBVP into a nonlinear programming

(NLP) problem.

As included in ORBPACK, MBCM3D uses the square of the
Hamiltonian as the NLP cost function. All other boundary
conditions are taken as NLP constraints.

MBCMa3D requires one input file, MBCM3D.GUESS. This file has a

very specific format. The first 47 lines of this file have the
FORMAT edit descriptors (1X,A9,E30.15). They describe, in the
following order:

MU gravitational constant of the central body (1.0 for no
dimensions)

REQ equatorial radius of the central body

J2 constant describing the mass distribution of the
central body; for Earth J,=1082.61x10-6

GO acceleration at sea-leve!l

BETA constant from the atmosphere model describing air
density variation in the prescribed altitude region

RO ro +REQ

ROU atmosphere density at the altitude r,,

) cross-sectional area of the craft

CD drag coefficient

ISP specific impulse

THRUST maximum thrust

Al initial semimajor axis

El initial eccentricity

OMEGAI  initial argument of perigee (degrees)

RAl initial right ascension (degrees)

I-1 initial inclination (degrees)

AF final semimajor axis

EF final eccentricity

OMEGAF final argument of perigee (degrees)

RAF final right ascension (degrees)

I-F final inclination (degrees)

[the next 14 lines give the initial state)

TF

transfer time

(the next 10 lines give G1-G10]

ACC

solution tolerance

Where G# are components of the constant Lagrange multipliers
(v); G1-G5 being v for the final boundary conditions and G6-G10

being v for the initial boundary conditions. '

The last line of “MBCM3D.GUESS" (1X,A9,110) gives the maximum
number of iterations.

Applied Control Laboratory

August 1995



Page 22

ORBPACK Users Manual

VI12. How MBCM3D Works

MBCM3D Flow Diagram

The code “BND2MBCM.f* will convert a BND3D guess file named
“BND3D.GUESS” into a MBCM3D guess file (“MBCM3D GUESS").

MBCM3D uses VF02AD to solve the NLP problem. VF02AD uses
reverse communication: the main routine calls OF to compute NLP
cost and constraints given input; then GRD to compute gradients;
then calls VF02AD to compute the new iterates. The main routine
then uses these new iterates as input for OF and repeats the loop until
VF02AD signals convergence.

OF evaluates the TPBVP as a NLP. The shooting problem is
integrated with RK, a Runge-Kutta integration routine. Integration
of the shooting problem is interrupted often to check the sign of the
switching function. If a sign change is detected, the integration
interval is adjusted until the exact switching point is located.
During this process, OF keeps track of the sign of the switching
function and appropriately adheres to the optimal switching law.
This should ensure that the switching law is followed, however, it is
always prudent to check the switching law after a solution is
claimed.

The flow diagram below indicates the interdependence of the
MBCMa3D subroutines.

RK

OF DERIV
MAIN | ‘ BCC

GRADENT INTEGRATION
L oOP Loor
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August 1995

Applied Control Laboratory



ORBPACK Users Manual Page 23

VIII. Tutorials
The following tutorials demonstrate some aspects of using
ORBPACK that the user may commonly encounter.
V11.1. Planar Five Burn This tutorial demonstrates the use of the supplied code in solving a
Transfer planar transfer from a circular LEO to circular GEO. The initial
radius is 6600 km, the final radius is 42241 km. The initial rocket
motor thrust is 9.918 kN; its Isp is 450 seconds. The initial mass is
20980 kg. A five burn solution is desired.
After nondimensionalization, these parameters are: initial
mass=10, thrust=0.5166, go=1, Isp=0.5673, initial radius=1, final
radius=6.4.
Based on the characteristics of these types of transfers, the following
guess for the transfer orbits may seem reasonable:
a e
1.285 0.2189
1.570 0.3584
1.856 0.4550
3.707 0.7262
All their apses are aligned and the final transfer orbit is similar to
the Hohmann transfer orbit.
Use GSHOOT to The trajectory for each burn will now be guessed using GSHOOT.

Construct a Guess The “INDIRECT.DAT” files produced by GSHOOT will then be
concatenated together to form an “MPM2D .guess” file. The first
burn input file for GSHOOT (“GINPUT”) is supplied as
“Tutorials/2D 5burn/GSHOOT/burn VGINPUT* and listed below:

Mu = 1.0C
Ge = 1.00
Isp = §.5€72
Thrust = 0.5166
Mo = 10.0000
ac = 1.00C0C
e: = C.QC?
we = 0.00C
ad = 1.28%
ed = 0.219
wd = 0.000
T™AX = 0.000C
NGS = 100
NIX = 3

GSHOOT reports:

Bes: constant Lagrange multipliers (initial)
C... 0.15245E+00 O0.9BEZOE-00 0.145B.E-03
Best 1nitial true anomaly
ver 0.53047E+C)
Best transfer time
tf= 0.19312E+01
Best relative errors (h.ex,ey,Hs)
G... O.1BBi7E-OF -0.49B2CE-C1 0.15555E-C2 0.27599E-02

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn VINDIRECT.DAT“ The second burn
“GINPUT” is [“Tutorials/2D 5burn/GSHOOT/burn 2/4):
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Hu = 1.00
Go s 1.00
1sp = 0.5673
Thrust = 0. 5166
Mo = 10.00C0
ao x 1.28%
ec s 0.219
wo = 0.000
ad = 1.570
ol = 0.3584
wd = 0.000
TMAX = 0 COO
NGS = 100
NIX =3

GSHOOT reports:

Best constant Lagrange multipliers (init:al)

C... 0.7C359E-00 (.17901E+00 -0.244C2E-14
Best initial true anomaly

vos 0.5645S1E+03
Best transfer time

tf= 0.11458E-01
Best relative errors (h, ex.ey, Hs)

G... 0.10B46E-07 -0.82845SE-02 ~0.16307E-02 0.3213%E-03

The resulting file has been supplied as “Tutorials/2D
Sburn/GSHOOT/burn 2/INDIRECT.DAT* The third burn *° is
[“Tutorials/2D 5burn/GSHOOT/burn 3/4):

Mu = 1.00
Go = 1.00
Isp = 0.%€73
Thrust = 0.5166
Mc = 10.0000
a0 = 1.%70
e0 = 0.3584
w0 = 0.000
ad = ]1.856
ed = 0.4550
wd = 0.000
TMAX = 0.000
NGS = 100
NIX = 2

GSHOOT reports:

Best constant Lagrange multipliers (init:al)

C. .. 0.56451E-0C 0.26192E+C0 -0.10330E-34
Best initial true ancmaly

vo= 0.60064E+21
Best transfer time

tfz 0.79429E+00
Best relative errcrs (h, ex, ey, Hs)

G... 0.92574E-C8 C.48454E-02 0.13288E-0; -0.3543€E-02

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn3/ The fourth burn “" [“Tutorials/2D
Sburn/GSHOOT/burn 4/4):

mu = 1.00
Go = 1.00
Isp = 0.%€73
Thrust = 0.5166
Mc = 10.0C00
ac = ] .B56
e0 = 0.4550
wo = 0.000C
ad = 3707
ed = C.7262
wd = 0.00C
TMAX = 0.000
NGS = 100
NIX = 3

GSHOOT reports:
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Best constant Lagrange multipliers (initial)

C... D.64422E-00 0 3091%E-0D0 0.35928BE-1¢
Best initial true anomaiy

vor 0.53782E-01
Best transfer time

tf= 0.1B2€5E+0Q1
Best relative errors (h.ex,ey, Hs)

G... 0.5BE2BE-DF -0.39904E-01 0.17988E-01 -0.36813E-C2

The resulting file has been supplied as “Tutorials/2D
5burn/GSHOOT/burn 4 The fifth burn " [“Tutorials/2D
Sburn/GSHOOT/burn 5/4}:

mu = 1.0C
Go = 1.00
1sp = 0.5€72
Thrust = 0.516¢
Mo = 10.CC00
ac = 3.7C7
ec = 0.72¢€2
we = 0.000
agd = € 407
ed = 0.006C0
wd = C.00C
TMAX = 0.00C
NGS = 100

J KIx s 3

GSHOOT reports:

Best constant lLagrange multipliers (initial)

C... 0.2B015E+0C -0.71802E+00 -0.€37i5E~0C
Best initial true anomaly

vos= 0. 3009€E-01
Best transfer taime

tf= 0.32219E.01
Best relative errors {h.ex, ey, Hs)

G... 0.26077E-11 -0.93204E-0Z -0.25981F-01 C.5380BE-CL

The GSHOOT output has been supplied as “Tutorials/2D
5burn/GSHOOT/burn 5/

The files easily concatenate. The resulting file has been supplied
as “Tutorials/2D 5burn/GSHOOT/MPM2D .guess*

Attempt Computation At this point, we have a solution guess for the entire trajectory in the

of Solution with PATCH2D format. One option for obtaining the solution is to run
MPMM2D MPMM2D with this input. However, one may get a iteration history
like this:

MPMM2D Output
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If MPMM2D Fails,
Use PATCH2D

Cur. Norm Ice Best Norm (at) ¢ Short Time Bne Bst Wrst El. Els

0.68735%E+01 1 0 68735E-0Q1 1 0 .79429E-20 3 0 34T4sE-LL 42
0.68735E+01 45 0.68735E-01 45 0.79429E-2¢ 3 0 34045E-7) 42
0 6B7ISEO] 90 0.6B873%E-01 45 0.794¢29E-00 3 0.3404%E-C1 41

BCC: Possible conflict in orbit cheace
A=-2 617712643152
E=2 3356£695225¢
W2 $5€150238017
{LOCATION 01)
BCC: Possible conflict in orbit choice
Az-2 6177126431%2
Exl 335666952254
W=2 556150238017
! TION #1]
BURN WARNING. BCC CLAIMS AN ERROR
IN THE INITIAL PCINT CALTULATICON
Wizd 6B43418860008E-14
W2e=1l B5B57697915%2
W3=0.7387094236308
|LOCATION 1)
BCC. Possible conflict in orbit choice
A=xd 117497825609
Ex] 458915419969
W=-0 5075814176646
{LOCATION 1)
INCONSISTENT:
A* (1€0-E**2) .LT.OEOQ
STCP (called by BCC )
CP. 20.155s, wallciock: 29.93%s, 33.7% of 2-CPU Machine
HWM mer. 223617, HWM stack. 26610, Stack overflows: 0

Note that the current norm error started at 6.3735: though such a
large error does not always induce failure of MPMM2D, it may.

In such a situation, the more robust PATCH2D is useful. Since the
file format is identical, this is very convenient. PATCH2D does
require one additional input file, for its inner loop tolerances. The
file is called “PATCH2D tols” and for this tutorial, it has been
supplied as “Tutorials/2D 5burn/PATCH2D/PATCH2D tols* and
listed below:

FTOL = 1. 0000C0C0CCC00530000C0E-C8
LTOL = 1.00000C000C0C0CO00200E-07
GTCL = 1.0000C0C0C0000223C000E-03
TCL2 = 1.00000000000000C00003E-05

We have chosen a rather strict tolerance for “function
improvement” convergence, a slightly less strict tolerance for “line
search” convergence, a very loose tolerance for “gradient norm”
convergence, and a rather loose convergence tolerance for DCNLP
iterations.

It needs to be said that the drawback to PATCH2D is its speed. For
this tutorial, PATCH2D was run. After renaming
“MPM2D.GUESS” to “PATCH2D.GUESS” and running PATCH?2D,
we see the following iterations:

August 1995
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Use PATCH2D

Function TOL (FTOL) ¢ 1. E-E
Gradient TCL (GTOL = ) E-2
Line Search TOL ILTOL) = 1 E-"
Max ¢ 1terates [ITMAX) = 200
ITe Cost Func Improvement
O D0 66455E<Ci1 0 .0DDOCE~DQ
1 0.66455E-01 0. 00000E-00
2 0 .66C21E+D1 -0 ¢3418E-01
3 0.65911E+D1 -0 54372E-0)
4 0.658BSE-01 -0.%€988E-01
5 0.€5831E+0) -0.6235BE-0)
€ 0 65554E<0) -0 9C139E-C1
7 0.€S4ETE-C) -0 9€RIEE-C1
B 0.€5¢25E+01 -0.10299E-00
9 0.6541€E+01 -0.10288E-00
10 0.65372E«01 -0.10E33E+00
11 0.65329E+0) -0.3112%9E+00
b 0.6S218E-02 -0.11366E-00
13 0.65312E-01 -D.11432E-00
14 0 €5311F-01 -0.11435E+00
15 0 €5311E-0i -0.11436E+00
1€ C.65311E-01 -C.11437E-00
17 0.65310E«C1 -0.11446E+00
18 0. €530CE+CL -0.11458E«0C
15 D.653CPE-0: -0.114€6E-00
20 0. €S30BE-C: -0.11471E+00
21 0 €SITEE+0. -0.11473E-00
22 0 €S3CTE<CY -C . 1147SE+00
23 0.€5307E<01 -0.11481E-0C
24 . ES3D6E-01 -0.11487E00
25 € €530€E-0) -0.11489E+00
2€ 0.65306E-01 -0.11490E~00
27 0 €S3CSE+C: -0.11501E-00
2B Q E83C3E«01 -C.11%34E-0C
29 0.€5250E-0) -0.1204BE-00
30 0.65209E-01 -0.124€3E+00
31 0.€52C7E-01 -0.12481E+00

14167E-C1

L30533E-CL
.75971E.C]
.21314E-01
.18041E-01

0 B6E37E-C1
0.21908E-0C:
0.52307E-C2
0.10740E-01
0.55562E-01
0.13385E-C1
0.12299E-01
0.17B44E-02
C. BPSSSE-CZ
¢ BS2BEE-T:
C.21341E-02
0.13259E-C2
C.S005CE-04
€. 3i0%6E-04
0.16464E-04
O.1R€21E-C3
0.24295E-C2
C.14832E-C2
C.1CCIBE-C:
0.1125BE-04
G.7€724E-04
0 10€44E-C3
0.13474E-C3
C.32032E-34
0 '

4]
c
d
¢

L2T2C8E-T3
106E€E-CL
CB3211E-C2
C.3¢787E-C3
0.23515E-03

L47211E-C2
.67211E-C2
.18438E-02
.SE9BLE~C1
.12130E-02
.B225CE~C1
.18580E-C2
.11952E-02
.39034E~01
.75207E~01
.71069E-01
.BOSERE~O2
.32664E-C1
134988-01
.S5807E-C0
.33032E-00
.76877E«0C
11374E-C1
.19365E~Ci
.B3263E- 0
.54440E-00
43573E-0C
.BO4IEE-00
.155€9E-01
.43370E-00
.70424E-C0
.SE30BE~D0

R e N Y - LI AL S N
[
~
w

The PATCH2D code had been left to run overnight, about 12 hrs. It
did not satisfy any convergence criterion by the 31st iteration,
execution was terminated. The output file “PATCH2D.BEST" has
been put into in the “Tutorial” folder as “Tutorials/2D
Sburn/PATCH2D/PATCH2D.BEST*

Now, this file was renamed to “MPM2D.GUESS"

Output for MPMM2D to “MPMM2D.” The iterations are listed below:

0.
[}

OO0O0O0O0O0ODODUOOOOO

sve

§C24CE-00 1

-4024CE-D0 45
.353€2E-C2 80
L24411E-06 135
.654L4E-C7 -3
.2906BE-10 <25
.72482E-07 27¢C
.11927E-06 315

4705BE-C7 360

.2E231E-08 405

23782E-06 450

-14141E-10 495
.11785E-08 540
.40513E-06 585
.47061E-07 630
.78723E~07 675

COO0ODVOO00ODODDODOO0O0O

BEST NORM (AT ¢ 3sfe)

.4C240E+C0
.40240E+00
ISI61E-C2
3SEECE-10
.30394E-10
.29068E-10
.29068E-10
.2696BE-10
LS2244E-10
.20320E-10
.15318E-10
-13€15E-10
-13€15E-10
-13338E-10
.11624E-10
.9B522E-11

FATAL ERRJF. 3 from NEONF.
The user may try a new anitial

.11
.11
211
.11

544
595
€5¢

1 0.€7
4l 0.67
72 0.10

121 ¢.12
1% 0.1
225 .11
225 C.
276 0.
331 0.15
380 0.11
441 C.11
433 0.11

o]

]

0

o]

The itera

RT TIME BN

€6EE-CC
6€E5E-C0
959E«(3
JEEE-C:
2BEE~CS
28EE-

2BEE~CI
2BBE-C1
2EEE~D2
28BE-C2
2BEE+Q)
28BE-C1
28BE~C)
28BE-C1

bOLBOLOOLLLDNEL WL

and used for input

BST WRET EL Els

.92BSBE~11
L7€828E-11

At G
ol

L R N S N N N N N T
FL e e N N e L G

€C7ELE-LL

tion has not made good progress

guess

Obviously, the solution was found; however, a shortcoming in the
NEQNF solver did not allow it to claim convergence. This seems to
be common among nonlinear equation solvers. An easy fix is to
perturb the guess slightly. In this case, the eccentricity of the first
transfer orbit was perturbed from

| ex

= 0.14423753€690€72B3€2€0E-00
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V2. Convert MPMM3D
File to BND3D File, Run
BND3D

Run MP2BND

to

| ex

* 0.16433753650672836260E-00

For this new guess, in the “Tutorial” folder as “Tutorials/2D
5burn/MPM2D.GUESS,“ the MPMM2D iterations are:

CUR. NORM ITe BEST NORM (AT)
0.40418E-00 1 0. 4041BE-00
0.40418E-00 45 0.4041BE-00
0.306B7E-01 90 0.30687E-01
0. 46830E-07 135 0.21092E-10
0. €09CEE-07 1BC 0.18042E-10
0.30214E-06  22% 0.17836E-10

SHORT TIME  BNe

E€7€ESE-CO
.106BBE~01
-11288E-21
.11288E-0:
.112B8E-C1

TCTAL BURN TIME = 6.5127506740S1
FINAL MASS = 4. 068387805015

SHORTEST BURN LENGTH = 1.128B31615888
SHORTEST BURN IS 44

SOLUTION SAVED

3 C.31525E«00 kI
3 0.31525E-0C 34
3 0.14737E-01 26
4 D.13€3SE-10 23
4 C.14477E-10 22
4 0.1406SE-1C 22

The solution file is given in the “Tutorial” folder as “Tutorials/2D
S5burn/MPM2D.SOL".

This tutorial demonstrates how to use MP2BND to convert a
MPMM3D file to a BND3D file.

The file “Tutorials/MPM to BND3D/MPM3D.GUESS* is a solution
to an orbit transfer problem, as claimed by MPMM3D. The
particular problem it solves is not relevant, but it will be clarified

anyway. The header of this file follows:

TOL
MU
T
Go
Isp
hxo
hyo
hzo
exo
eyo
hxf
hyf
hzf
exf
eyf
NORB

L R R R R TR A I I A B N B

CO 00000000000 OO

-10000000000000000000E-08
-10000000000000000000E+01
-51658300000000068053E+00
.10000000000000000000E+01
.56730939999999909278E+00
-47715876030000003993E+00
-00000000000000000000E+00
.87881711269999840397E+00
.00000000000000000000E+00
-00000000000000000000E+00
.00000000000000000000E+00
.00000000000000000000E+00
.25298517739999937248E+01
-00000000000000000000E+00
.00000000000000000000E+00

w

The orbit transfer is, therefore, from LEO to GEO and circle to circle
in 6 burns. Now, suppose we want to further investigate this problem
with the more general BND3D code, so that oblateness and drag

effects can be modeled.

The main task here is to simply run MP2BND. This code will
create the file “BND3D.GUESS” which hds been supplied as
“Tutorials/MPM to BND3D/BND3D GUESS.”
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Run BND3D to check It is prudent at this point to use BND3D to check MPMM3D’s results.

In this tutorial, the following “BND3D.SCRIPT" file was used:

BND3D.GUESS
0

1

0

0

1d-4

1d-10

100
BND3D.SOL

1
END3D.REINT

which is supplied as “Tutorials/MPM to BND3D/BND3D.SCRIPT.”
This says the input file is “BND3D.GUESS,” don’t show B.C. errors
to the screen, solve with free final time, don’t include switching
points as nodes in the output, FCMIN=1D-4, TOL=1D-10, use no more
than 100 iterations, save solution as “BND3D.SOL.” provide
additional info and save this info in “BND3D.REINT.” The output
BND3D produces to the screen is listed below:

B.C.s>¢
FREE FINAL TIME 1
HOMOTOPY . ©

MU= 1.000800000000000C0

REQ= 0.00000C000000002000E+60
J2= 0.0000000000000C0CC0E«00
Go= 1.00000000000000000
BETA= 0.0000CCC000000000COE-00
RO= 0.00000CC00CELCO0000ELD
FOU= €. 0CCCCLC0C0leoCoCOCE-CC
S= C.0000000005000C200CE+00
CD= 0.00020000C000000000E«Cr .
18p= 0.5€730599995999£956;
THRUST= C.S1€53000000001014

Al= 1.00C00000010838792

El= 0.00CCC000000C000C00E-C0
OMEGAI= 0.0000000C0005C0000CE-00
RAl= 85.95599905970¢£E80

1-1= 2B8.5000020009010828

AF= €.640014952E4209102¢6

EFs= 0.0CC00CC32C00C00000E-00
OMEGAF=  0.0000GCSI00CC0000C0E-0C
RAF= C.00LI0{CI0000000000E-C0
1-F= G.00C0L00000000C00D0E-CD
NCTE: ANGLES MUST BE IN DEGKEES
M= &

*N= 2%

MAAAAAAA AR EE L L L R v-'-oo-'o-'.--n.-.-'p.--..o-'.o-...-.-'c--

A A A A A L

INITIAL DATA

N=25 M=44 MS=10

PRESCRIBEC RELATIVE PRECISION .10D-09
MAXIMUM PERMITTET NUMEER OF ITERATIONSLOC

--u'.o--'.--"o"-v"ot'-'-'v't.t-cv--"v

1T AES ERR. LEVEL) LEVEL2 LEVEL? RELAX . NEw CONT (M NIFM ™
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o .14D-07 .11D-07 .11D-07 .76D-08 [¢] .3ED+08 §3o-C2
.14D-07 .11D-07 .11D-07 .76D-C8 .000
1 -14D-07 .67D-07 .67D-07 .14D-07 1 36206 .89D02
.14D-07 .67D-07 .67D-07 .14D-07 .001
2 .14D-07 .67D-07 .67D-07 .14D-07 2 .36D-08 .89D+C2
.14D-07 .6€D-07 .66D-07 .13D-07? .008
3 .14D-07 6€D-07 . 66D-07 .13D-07 3 -36D-CB .B5D-02
.1.D-07 5.0-07 .81D-07 10D-07 J121
4 - 21D-07 51D-07 $1D-07 .10D-07 4 .3€D-CB .B9D+22
.34D-15% .4432-1% J72D-32 -43D-10 1. 0¢cC
) .34D-1% 44D-1% .7ID-12 .44D-1C S LIED-C8 .89D.C2
.26D-15% .31p-1% .28D-14 .58D-12 1 000
€ .262-1% .31D-1% 33D-i4 .43D-12 € . 200409 .85DC2
73D-15% .210-34 J32p-18 .77D-11  1.000
7 .I3C-15 .2iD-14 21D-14 73p-12 0 .37D«CE LB90.02
.43D-1% .12D-14 12D-14 .42D-13 .23¢
e -432-15 120-14 13D-14 .5CD-22 1 47D-09 B9D+C2
.47D-16 .1BD-16 .24D-16 .76D-14 1.20C
9 -47D-16 .18D-16 .19D-16 .12D-14 2 .22D«09 .89D-C2
.2eD-18 .BlD-18 .11D-17 -14D-15 1 .00C
10 .22D-18 .BlD-18 .31D-17 .16D-15 3 .2CD+CS .89D+02
.75D-20 .38D-19 .14D-18 .25D-16 1.000
11 .78D-20 .38D-19 .B83D-19 .15D-16 4 .47D+08 .BSD 02
.32D0-21 .66D-21 .550-20 .87D-17  1.000
12 .320-21 .66D-21 .35D-20 .33D-17 ) 45D-+08 .89D+02
.16D-21 .550-21 .56D-20 .€1D-37 1.000
13 .16D-21 .55D-21 .79D-20 .35D-16 0 .37D<0 .89D-22
.48D-22 .170-21 .26D-19 .1CD-16 .449
14 .482-22 .17D-21 .26D-19 .10D-i6 0 37D+ -89Te02
-1€2-25 .580-24 .50D-19 .22D-37 1.0c¢
15 .36D-28 .58D-24 .51D-19 .43D-17 ¢ L3708 LE9D-C2
.365-25% .10D-24 .€60-21 -18D-17  1.000
1¢ .36D-2% .100-24¢ .66D-21 .9B8D-1¢ 1 420-38 gez-22
.1BD-25 .20D-24 .36D-19% .19D-17 1,008
.29D-25 .2BD-24 .40D-15 .5€D-1" 423
.22D-25% .270-24 .35p-19 .520-17 cec
.382-25% .26D-24 .23D-1% .11D-17 .oc?
.28D-2% .80D-28 .93D-2¢ .68D-18 L0012
17 .282-25 .50D-25 .58D-20 .170-17 ¢} .37D+CB .85D-C2
.36D-25% .70D-24 .18D-19 .96D-18 .0C1
18 .36D-2% .70D-24 .17D-19 .95D-18 [¢} .37D<08 .B9D-22
.480-25 .95D-25 .96D-21 .33D-18 .103
19 .2BD-25% .95D-25 .27D-20 .16D-18 1 e-)eidey) .B80-C2
SCLUTICN CBTAINED AFTER 20 ITERATION STEPS
SCLUTION DATA
SWITCHING PCINTS
NAME OF FILE FOR SOLUTICON DATA: ->BND3ID. SOL <=

It eventually computes the solution to its own criterion, however, it is
clear that BND3D has verified the MPMM3D solution.

Useful Information The information provided by BND3D.EXTRA is arguable

in BND3D.EXTRA essential. This file contains data for the switching function and
Hamiltonian as functions of time. The plot below is a graphical
representation of what BND3D.EXTRA provides
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Useful Information
tn BND3D.REINT

VII.3. Run BND3D with
Homotopy

(— switching) [----- HAMILTONIAN
BND3D.EXTRA
0-h. .- 0

o 017 210°% %
z -]
E 0.2 1 ¢ 410" =
£ s
5 034 610° ©
> £

04 810° 3

0.6 . : 1.210°

0 0.2 04 L 4p 06 08 1

The Hamiltonian is almost zero, and very close to the tolerance.
The jumps in the Hamiltonian at the switching points is a common
numerical phenomenon. Also very important, note that this
verifies the assumed switching structure: thrust on at the

beginning, precisely ten switching points, and thrust on at the end.
Finally, note the hump between the fourth and fifth burns, noting the
location of such humps is often useful in deciding the location of an
additional burn

The file “BND3D.REINT” also supplies useful data in the form of a
detailed trajectory. The complete state and costate is included. The
plot below, a projection of the trajectory onto the x-y plane, was
created using the raw data in the “BND3D.REINT” file.

BND3D.REINT

Note that this plot is rotated 90° for clarity.

This tutorial begins with the solution file from the “Convert
MPMMB3D File to BND3D File, Run BND3D;* tutorial.

Suppose we try and accomplish this change in one step, by altering
the “BND3D.GUESS” file. The script (“‘BND3D.SCRIPT") is,
simply:

Applied Control Laboratory
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BND3D.GUESS
0

1

0

0

1a-4

1d-10

100
BND3D.SOL

1
BND3D.REINT

Here is the BND3D output to the screen:

BC&°0

FREE FINAL TIME: 1

HOMOTOPY: ©

MU= 1.0000000000000€000

REQ« 0.0COCOO00CO000005COESDD
Ji= 0.00CCO0CCO000C00D00E00
GO= 1.00000000000000000
BETAs= 0 000C0CCCOCODC00D00ESOC
RO= 0.0C00000000000C0000E-00
ROU=z €.COCOCC000CT0CCO00CE-0C
Sa 0.0030CJ00C0C0000000E«00
CD= 0.000000000C00000000E+00
ISP= 0.567309999999998982
THRUST= 0.516%830000002010:4

Als 1.000CCC00CI053B792

El= 0.00030000000C000000E-00
OMEGAI= 0.0000000000G0000000E00
RAIz B9.9999999997066880

I-1= 28.5000C00005010819

AF= 6.60014999841082043

EFs= ©.000C00200000000C0CE+00
OMEGAF=  0.000000000000000000E+00
RAF = 0.000C000000000CC000E-00
I-F= 0.000303C00000009200E-00
NOTE: ANGLES MUST BE IN DEGREES
M= 44

*N=z 2%

t-.o't--'t-'IDttn'!'...lI'O."v'v"'n--'.'n-..""t."-v-t.o"--'n-.-'.v"vv"-

P S RPN I T IR PIRPRIIITTIIVIIIOIIITITICIEITIYIITETSTS

INITIAL DATA

N=25 M=44 MS=10
PRESCRIEED RELATIVE PRECISION .10D-09
MAXIMUY. PERMITTED NUMBER OF ITERATIONS10C

.'t."'.'o-'tt"ttccttv..v".--"'.h"v'-.“---.0.--’"'v-o'ot'v'o"t""-v‘---

STt IIITILIITLIISIIITIIITILERIIIRIIOCRIEIRIVIOETERIEIRTY

IT ABS.ERR. LEVEL1 LEVEL2 LEVEL3 RELAX. NEAX  CONT(M) JCRM (M)

¢} .15D-02 .15D-02 .220-01 .11D+03 0 .35D.C8 .930-02
.15D-02 .15D-02 .22D-01 .11D+03 .000

1 .15D-02 -15D-02 .19D-01 .10D<03 0 .37DeC8 .89D+C2
.15D-02 .150-02 .180-01 .10D+03 .003

2 .15D-02 .15D-02 .46D-01 .11D-03 1 .€7D+08 .89D+02
.16D-02 .18D-02 .22D+00 -13D+03 .02€
.15D-02 .15D-02 .49D-01 .11D+03 .005

3 .15D-02 .15D-02 37D+ 00 .11D+03 0 .37D+0CB .89D+02
.15D-02 .15D-02 .41D+00 -11D+03 .017

4 .15D-02 .15D-02 .90D+01 .46D-03 0 .36D+«08 .E9D+C2
.15D-02 .150-02 .BBD~01 .45D+03 011

5 .15D-02 .15D-02 .13D+02 .62D+03 0 .37D+08 .89D-02
.21D-02 .260-02 .18D+02 .82D-03 .056
14D-02 .18D-C2 .13D-G2 .61D+03 013

€ .14D-02 .15D-02 .18D+02 B1D+03 0 L1704 08 89D-02
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.26D-02 .36D-02 .28D<02 .12D- 04 73
.14D-C2 .15D-02 .17D<02 .78D« 02 .01%
7 L142-02 .15D-C2 .23D-02 .10D-04 ¢ ITI.l8 E3-1:
.31D-02 .44D-C2 .4CD-C2 17D~ 0¢ .02
L14D-02 .14D-02 .22D+02 .10D- 04 .09
] .140-C2 .15D-C2 .28De02 .13D«C4 0 3€0-08 gczez:
€7D-02 .185-01 .90D-C2 40D~ 04 L1464
L13p-02 18D-02 .27D+C2 .12D- 04 .D23
9 -13D-02 .15D-02 LIEDOL .1€D<C4 4] L3BD-CE $I.2;
5¢D-02 .11p-01 .B4D-02 .3ED- G4 .1%%
13D-02 .15D-C2 .34D-02 .15De (4 .03
10 .13D-C2 .18D-02 .4ED~02 .21D+04 [+ LACT-UE Eer-c:
L14Z-00 .302-C1 .22D-053 .70D<C4é L13%
1 .14D-05 .30Dp-0: .30D-C2 .14DeCS 0 .257-CE §IZ-C0
.34D-01 .76D-C1 L6iD-C3 .27D+0% .038
.14D-01 .300-01 .30D-023 .14D-0% .004
{mary lines omitted fer brevity]
62 .15De0C .15D-C2 .280-01 .24De02 ¢ L€2D-CE $t.12
.14D-00 .15D+01 .26D+01 .20D+ 02 0B f
€3 .14D0C .18D.01 L2€D.01 .17D+C3 3 .SEZ-C¢ gezens !
.52D+0: .2ED-02 L10D+0¢ .22D«0€6  1.00C
.142-0¢ .14D-23 .24D-C1 .15D-(2 .0€z
64 .14D=00 .14D-0: .23D+01 .28D«03 4 .6ED-CE L§EZLC2
.1€6D«00C .16D-01 .23D=01 L19D-C .139
6% .16D+0C .16D-02 .25D+01 .23D+03 ¢} 73T 0¢ L9€T-1L
L11De02 .30D<C2 .10D~ 03 =190 3 G- clold
L3180 0C .15D-C2 .22D-01 L1EDe03 L1Ci
6€ -15D- 00 L15D-01 .24D+01 .1BD<03 1 .92D-0¢ LSEZ.C0
.9€D+01 .25D-02 .47D+03 .5BDe0% 1 00C
.17D- 3¢ .15D+01 .22D+01 L145+C3 .05l

Execution was terminated early because BND3D was clearly stuck.
In this type of situation, where BND3D has difficulty, it is often
useful to resort to homotopy.

BND3D has a homotopy loop and is utilized, for this tutorial, with the
following script (supplied as “BND3D
HOMOTOPY/BND3D.SCRIPT*):

BND3ID.GUESS
0

1

1

10

(8)ald]
0.516583D0
0.5673D0
6.6D0

o0Do

0D0

1D

(s)els]

[8)e]¢)

28.5D0

0

1d-4

1d-7

100

BND2ID. SOL
1
BND3D.REINT

To make convergence easier, the tolerance was reduced to 107, Ten
homotopy steps have been suggested and the final semimajor axis is
requested to be 6.6.

The output to the screen is very long for a homotopy run, and is
omitted from the tutorial, however, it may be found in the file
“BND3D HOMOTOPY/screen output.” One the other hand, the
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“BND3D HOMOTOPY/BND3D.REPORT" file indicates how the
homotopy progressed:

1J, KP, v, DU
o . 25 . .9000000D+00 . -.1000000D+00 .
1, 22 -8000000D+00 . -.1000000D+00 |,
L2, 25 . .7000000D+00 , -.1000000D+00 .
3. 30, .6000000D+C0 ., -.1000000D+00 |,
' 13 . .5000000D~00 . -.1000000D+00
s . 19 . .4000000D+00 . -.100600CD+00 |,
6 . 26 . .3000000D+00 ., ~.1000000D+00 .
7. 19 . .2000000D+00 . -.1000600D+00 |,
8, 28 ., .1000000D+00 . -.1000000D+00 |,
9, =4 ., .1387779D-15 , -.1000000D+00 |,
10 , 17 . .75000000-01 , -.2500000D-01 |,
11 , 14 . .50000000-01 , -.2500000D-01 |,
12, 23, .2500000D-01 , -.2500000D-01 .
13, 17 . .1457168D-15 . -.2500000D-01 |,
This indicates that even though ten steps were suggest, thirteen were
required. Iterations failed for the ninth step. BND3D then adjusted
the step size (DU) to one-quarter and continued until completion.
VI1.4. Using MBCM3D

The following samp
(“TutorialsyMBCM

Mu=
Req=
J2=

Goz
Beta=
Ro=
Rous=

8=

Cd= .
1sp= . i3
Thrust=,

Ai= .

ei=

omegai=,

EECCNLNX

L I I )

1
"

EEFEEEE

1

Q
rS
LI I I I ]

GS = . -

I™M= | 100

le input file has been supplied for MBCM3D
3D/MBCM3D.GUESS"):

$
0
3
[
0
0
0
1
0
0
¢}
o
3
2
o}
c
0
0
1
0
o
o]
0
[
¢
¢
9
0

1.000220005002005¢C
€.C00C200z00000000
G.afcescseecenoso
0.00980C000002000
C.
0
c
0
c

CCOCLIC0C02300

-C00CG200C060020
-20000C2C0060000

0C00CC20005C00

HloelofuivieledalelolotobeTs]

06CCO00000000C0
0300CC0003000060
8473C52¢0000000

-023777042CC0000
.0000C00000C0000
.06002C000000000
-000€00000000CC0
-5000000000¢C000

333333333333333

evcdeieh]elsloteleoToteld
-0020000020000¢C8
-00C000CC2000000
-11768C190E73156
-375307893528269

00C200000000000

.309133504323169
-393443660534349
-0C000C000000900
.52700005200006C0
-084150649480784
-070063915270165
-0000000060000000
-531758699754281
-737783173534899
.000000000800000

782111317020586

-0531498€139722¢
-000000000000000
0.
0.
0.
-0.

000C00000000000
65€087795635957
235988651457670
060453092937198
00006C0C0000000

0
0.000000000000000
0.
0
0
0

205432772910901

-0286054:0141037

D0€3519€6699277
0CL001001000500
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note. all angles are in degrees

The MBCM3D iterations, output to the screen (see file
“Tutorials/MBCM3D/screen.output®) follow:

ITERATIONS = 1

X = -0.31176801908732E+01

»y

(2]

0.305:33%0432217E+00
.1527COG0C00000E-01
-00000CCODT0CO0E-D0
.00800C0C00CCO0E-00
020000 C00CO020E-00
.2359B865145767E+00
.00000000000000E+ 00
.€3519€6€993770E-02

.B£3348494474322E-07

-0002C000000000E-00
-3180397B123701E-02
.43751€91R9E021E-C2
.84402672958175E-(3

0000C0000000C0E-CD
.225309953408C06E-03
.2Z740BE97499€CE-04
.575€6Y832495894E-05

jgieRaloNoNoNeNo) o 000000 O

ITERATIONS = 2

F—

C.31C3€5022095448-01
C.3136383425C03E-00
C.15270C0C0OTI000E-01
0.8019B09410€340E-20
0.464E1533€630015E-20
0.3C228171897082E-19
0.23620E59757250E+00
0.24544301628696E-20
0.646566868222166E-C2

C.2491C:07180511E-12

C.580425634654€7E-20
0.BEEE3I230043378E-03
C 7756€52€491424E-C3
O.€5€54CE2352820E-03
0.15E742.9322676E-21
C.3E5C510906133BE-04
0. 3EICETETTII602E-0OF
D.24236E7060E2€3E-05

ITERATIONS = 5

X = -0.31113166253579E-01

F

Cs -0.

THE

0.310097034314240E-C0
0.1827CC0000000CECT
C.S2EZ37€749¢574E-20
C.7928B433660832E-2C
C.757E9120825378E-20
0.235956B54759€71E+00
C.797712342230€4E-17
O €3519253321€92E-02

0.21217202906824E-25

581299987686B2E-20
0.77946793908268E-07
C.7113278B54E212E-07
0.49€51532359394E-07
0.20884E€2ER415BE-20
0.48293€13€35371E-09
0.53403326040145E-11
0.33072221€35954E-10

CALLS OF VFO2AD = 1

0
-0.

0
0
0

0.
-0.
0.

ONDODOOOD

.23750078935283E-01

39344366053425E400

.841506494BC784E-C2

53175B€9975428E«CC
782.11317020%9E-CC
0000000000COCOE-CT
45309293719B00E-02
20543277291090E-0C

.000000000000C0E-CO
.1B7645ECT733063E-02
.0000CCO00OCO00E-2C
.00000000000Z00E-CO
.0000C000000000E-0C
-17313153969645E-03
.231177393€23C278E-04
.906235€5540682E-CE

CALLS OF VFL2AD = 2

0
-0.

0
0
0.
o]
]
0

[N =NoNe]

.2392B6421449ECE-C1

381753212€279B7E-00

.B37€53141956E0E-01
.535965€2155236E-CC

7B2038182439.7E-00

.1223203978€6€95E-19
1205696050444 6BE-03
.20556053313719E+00

.300B41924€5.34E-20
.€2779925262€39E-03
-BB2470B735943¢€E-22
.15493€9€704C00E-19
.211593€5206B15E-19
.29811257119057E- 04
.853257218952€1E-C
L30€74EE3ITBBEDGE-OF

[lines omitted!

CALLS OF VFO2AD = )

O0CDOOOO

COoOO0OO0OO0OO0O0O

.23830B940526€5E-C1
0392731270023 03E-2C
.B3949CE5L4444EE-01
.5334B63I2E9741E-CC
STBZ1113298€574E-C0
.1569520€35546BE-20
.483174€3C073C11E-03
©20543273E853€32E+0C

.89436352481144E-21
-33018123€85169E-06€
. €7254€66€2598€9E-20
.460734029€5487E-20
-B&790043164787E-20
.357737726832825E-09
.1765238€235973E-11
.211670€6B0SEZS3E-1C

PRINTING OF THE LAST ITERATION GIVES THE

VALUES THAT ARE RETURNED BY SUBROUTINE VF{Zan

-~+-SOLUTION CONVERGED--~

X =

0.
0.
-0.
-C.
-C.
s}

-0.3111316€253579E+0
23830894092665E+01
€990E109PV7120E-20
31009703414240E+00
39273127003103E-00
20264578276292E-20

.15270000000C00E-21

1

-0

-C

-0.
J342€72297349158 - ¢

elcluddads] daaeddd

-0

o

-0
-0.
-134455B90936E¢E-21
(1908376409248 78EC2

-0

-C.
L2B4LYETZEC4TISE-CL

-0

ODOD0DOoONON

[]

OCO0O0O0O00O0O0O

L0000CI00000000E-22
Nelsiadidelneldaeld

-700€261807C2€8E- 2
S7377631735368 .00
-19C53149B€.357E-C2
CEHETETTIBEEIEGEELT T
.00000000CCL200E-2C

J2EETS4I0L4L037E-CL

J32BlSEE3320329F-22
-C.

1131%E9E6E047LE-1:

282809720097 01F-17

1E€C2547€622€08E- 1]

S5L3FEZ€334L5
7056746229.2¢1E~

O R

€SEECDLENIINIGE.0L
374628954 083367E-2¢

L1127BEBBIREETSE-C2
.50€0E043CTI465E- 03
L13€E77827€7354E- 22

43ETIT0EIT1652E-22

€3E3.0EC31EIIZE-2¢

LCOCILOO0 2D 0CE-2S
J10192E09¢712
CE9TL0TIEYSEERSE-2D

JQE-10

.€950EL08ETTI20E-20
.2C2B4S"ESTEZSZE-2T

.2073€0BESEDEIZE-0€
.20001796435750E-C"
.32507479€8€216E-0"
-10904EEI264€51E-D6
CB3I2ES2€2E4TELE-D0
LTICS4IT738TECICE-14
.346340237
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oo

B39430B9044448E-01

-7030059073959SE-0)
.55823767494574E-20
-533486322B9741E-00
-73634049255129E+00
.79958433860932E-20
CTIBL11I32986574E-0C
-19C73788066349E+02
-75789120825379E-20
-15€95206359468E-20
.65608762138391E+00
23598854759€71E-00
-459317463073C11E-02
. 62836195106568E-17
-79771334223064E-17
.20543273853€32E+00
.286054€2858627E-01
.63519253321692E-02
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Appendix A GSHOOTs File Format

The input file *” for “GSHOOT” has a specific file format. The file
must consist of exactly 14 lines. The variables read from this file
have a specific order: MU, GO, ISP, THRUST, MO, AO, EO, WO.
AD, ED, WD, TMAX, NGS, and NIX. All variables are of the type
REAL except the last two, NGS and NIX, which are of the type
INTEGER. An example file is listed below.

Mo = 1.0C
Ge = 1.00
Isp = 0.5€¢723
Thrust = 0 S16¢
Mc 10 0IC
ac = 1.00C00
eo = C.poC
wo = 0.00C
ad = 1.28%
ed = 0.219
we = £.000
TV = £ 0CC
NGS = ]10C

NIX = 3

On each line intended to supply a REAL variable, the FORTRAN
FORMAT layout is (1X,A9,F30.15); for INTEGER variables. this
statement is (1X,A9,110). Therefore, each line starts with a blank
space followed by nine characters, all of which are ignored. Only
the numerical data following is used.
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Appendix B The PAT2D and PAT3D File Formats

The PAT2D file format is used by MPMM2D and PAT2D. The
PAT3D file format is only used by MPMM3D. They are called the
PAT formats because all of the information supplied by the PAT2D
format is used by PAT2D; only some of the information is used by
MPMM2D and MPMM3D. Exactly what information is used by
MPMM2D and MPMM3D is described in Chapter IV.

The PAT2D format is represented below:

-

MU
T
GO
1sP
AO
EXO
EYO
AF
EXF
EYF
a

ex
ey
NORB
NODE
SEL
index, x,

* s nsessnna

b

- e e
—

aeseel
"

.. S e
a

L R X V]
L]

LA R X N}
Q

®seemn

- e eeX
a

cSe BV LN
[
<

. e e

1
2,
3
4

esmn3
*eweC
LE X T ¥
LE R T XY
m-enen

- e

a
ex
ey
NIDE
SEL
index, x

won
—

* o w X
—

-ee n
"

- e aC
—

*oeewdl
~

LK R SN
Q

- s e e
a

* "o aio
L]

- % e w s
«Q

L EE LM
- a5 a3
LR B -]
-ase e

- % % %N

- em w0
LE X

1
2
3.
4

a

ex

ey

KC2E

SEL

INDEX, X,
1

LR U R O P

LR A
[ag
LA N B N¥]

LE X ¥
- e nnn
LI ¥ N

LA B WY

2.
3.
4,

where the symbol “#” is used in place of digits. The first eleven
lines give constants for the orbit transfer problem in type REAL.
These have a fixed order: TOL, MU, T, GO, ISP, AO, EXO, EYO, AF,
EXF, and EYF. Their descriptions follow:

TOL .......... THE SOLUTION TOLERANCE

MU ...l THE GRAVITATIONAL CONSTANT FOR THE CENTRAL BCDY

T oo THE THRUST LEVEL OF THE ROCKET MOTOR

GO ........... EARTH'S GRAVITATIONAL ACCELERATION AT SEA-LEVEL
[ONLY USED FOR GET MOTOR FUEL CONSUMPTICN)

ISP .......... SPECIFIC IMPULSE OF ROCKET MOTOR

AO ... INITIAL ORBIT SEMIMAJOR AXIS

EXO .......... INITIAL ORBIT X-COMPONENT ECCENTRICITY

EYO .......... INITIAL ORBIT Y-COMPONENT ECCENTRICITY

AF ........... FINAL ORBIT SEMIMAJOR AXIS

EXF .......... FINAL ORBIT X-COMPONENT ECCENTRICITY

EYF .......... FINAL ORBIT Y-COMPONENT ECCENTRICITY
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Note that these apply to the transfer as a whole, esp. when referring
to the initial and fina) orbits. The FORTRAN FORMAT edit
descriptors for each of these first eleven lines is (1X,A6,E27.20).

The PAT3D format up to this point is identical except that HXO,
HYO, HZO, EXO, EYO, HXF, HYF, HZF, EXF, EYF replace AO,
EXO, EYO, AF, EXF, and EYF. Their descriptions follow:

HXO .......... INITIAL ORBIT X-COMPONENT ANG. MOMENTUM
HYO .......... INITIAL ORBIT Y-COMPONENT ANG. MOMENTUM
HZO .......... INITIAL ORBIT 2-COMPONENT ANG. MOMENTUM
EXO .......... INITIAL ORBIT X~-COMPONENT ECCENTRICITY
EYO .......... INITIAL ORBIT Y-COMPONENT ECCENTRICITY
HXF .......... FINAL ORBIT X-COMPONENT ANG. MOMENTUM
HYF .......... FINAL ORBIT Y-COMPONENT ANG. MOMENTUM
HZF .......... FINAL ORBIT 2-COMPONENT ANG. MOMENTUM
EXF .......... FINAL ORBIT X-COMPONENT ECCENTRICITY
EYF .......... FINAL OREIT Y-COMPONENT ECCENTRICITY

For both PAT2D and PAT3D formats, the next line indicates how
many intermediate transfer orbits there are. The variable NORB
takes on this value. The FORTRAN FORMAT edit descriptors for
this line is (1X,A6,13). This same layout is used for the next two
lines, both also containing INTEGER data. These lines specify
data for the first burn. NODE is how many nodes, not counting the
first one, are to be used for this burn. Specifying a “3” for NODE
indicates that four lines of data will describe the burn.

The line after NODE’s is for SEL. The variable SEL indicates
which method should be used. Note that in the PAT2D
representation above, three different values are given for SEL. A
“1” indicates that the data below is in a multiple-point shooting
format but Direct Collocation with Nonlinear Programming
(DCNLP) should be used in the first attempt to obtain a solution. A
“2” also indicates that the data below is in a multiple-point shooting
format but that multiple-point shooting should be used in the first
attempt to obtain a solution A “3” indicates that the data below is in a
DCNLP format and DCNLP should be used in the first attempt to
obtain a solution. The following table summarizes:

SEL Guess Format Method to try First
1 Multiple Shooting DCNLP
2 Multiple Shooting Multiple Shooting
3 DCNLP DCNLP

No matter what format the data lines will be in, the line following
SEL'’s line has the FORMAT edit descriptors (1X,A). The contents of
this line are ignored.

Note that since MPMM3D cannot accept SEL=3, in PAT2D only
SEL=1 or SEL=2 is acceptable.

The next NODE+1 lines are the guess data for that burn. The
FORMAT edit descriptors are (1X,13,A1,50(D27.20,A1) irrespective
of which guess format is intended. Considering only PAT2D, the
multiple-point shooting format has 18 elements in each line. These
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elements are in the following order: INDEX, X, Y, U V,M LX LY,
LU, LV, LM, TF, G), G2, G3, G4, G5, G6. “INDEX” numbers each
line; the first line represents the initial point for this burn and last
line represents the final point for this burn. The lines for each burn
are evenly spaced. “X, Y, U, V" are the Cartesian components of the
2D position and velocity vectors, respectively. “M” is the mass.
“LX, LY, LU, LV, LM” are the values of the Lagrange multiplier
functions; or costates, A, Ay, and A, respectively. “TF” is the
length of time the burn lasts. “G1, G2, G3” are the constant
Lagrange multipliers, vr, associated with the final boundary
conditions. “G4, G5, G6” are the constant Lagrange multipliers, Vo
associated with the initial boundary conditions.

For PAT3D, the multiple-point shooting format has 26 elements in
each line. These elements are in the following order: INDEX, X, Y,
Z,U,V,W, M, LX, LY, LZ LU, LV, LW, LM, TF, G1, G2, G3, G4, G5,
G6, G7, G8, G9, G10. Their meanings are simple extensions of those
from PAT2D.

The DCNLP format has 9 elements in each line. These elements

are in the following order: INDEX, X,Y, U, Vv, M, TF, L1, L2. All of
these are as described above, except “L1, L2” which are the Cartesian
components in the inertial frame of the thrust direction unit vector.
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