NTRS - NASA Technical Reports Server

Back to Results
Spatial and Temporal Scaling of Thermal Infrared Remote Sensing DataAlthough remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.
Document ID
Document Type
Technical Memorandum (TM)
Quattrochi, Dale A. (NASA Marshall Space Flight Center Huntsville, AL United States)
Goel, Narendra S. (Wayne State Univ. Detroit, MI United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1995
Publication Information
Publication: Remote Sensing Reviews
Volume: 12
Subject Category
Earth Resources and Remote Sensing
Report/Patent Number
NAS 1.15:111632
Distribution Limits
Public Use Permitted.

Available Downloads

NameType 19960049681.pdf STI