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ABSTRACT

The presence of soot on the fuel side of a diffusion flame results in significant radiative
heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established
between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech’ heat loss
profile. The intensity and width of the loss zone are parametrically varied. The loss zone is
placed at different distances from the Burke-Schumann flame location. The migration of the
temperature and reactivity peaks are examined for a variety of situations. For certain cases the
reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone.
In all cases the temperature and reactivity peaks move toward the fuel side with increased heat
losses. The flame structure; reveals that the primary balance for the energy equation is betwean
the reaction term and the diffusion term. Extinction plots are generated for a vanety of
situations. The heat transfer from the flame to the walls and the radiative fraction is also
investigated, and an analytical correlation formula, derived in a previous study, is shown to
produce excellent predictions of our numerical results when an O(1) numerical multiplicative

constant is employed.



1. INTRODUCTION

The interaction between the structure of a diffusion flame (DF) and the flame radizuon
is quite complex. Soot is formed and oxidized in a diffusion flame as a consequence of a variety
of physical and chemical processes. There are considerable uncertainties in the description of
soot processes in a flame and the soot evolution mechanisms are not completely undersiood.
Hence, the solution of the complex problem of diffusion flame - soot radiation interaction is very
involved. The energy, species and soot volume fraction equations are all coupled and contain
nonlinear source terms. In the present work we investigated the influence of a simple and
contrived heat loss profile on a pure diffusion flame established between two diffusing walls of
fuel and oxidizer.

The influence of heat transfer by radiation on flames has received significant attention
in recent years (1-7]. Thermal radiation from 2 flame can occur from (1) radiation from the
combustion gases at high temperature and (2) radiation from combustion generated particulaies,
i.e., soot. According to the calculations of Grosshandler and Modak [8] for soot volume
fractions greater than 107 soot radiation is dominant. A review of pure diffusion flames without
heat losses 1s presented first. In the following sections we define the problem geomairy,
descnbe the particular form of the heat loss profile used, formulate the conservation equations,
briefly indicate the numerical me(.t.\od used and discuss the results.

In an ordinary diffusion flame the characteristic flow time is much greater than the
characteristic chemical reaction time. This implies that the chemical reaction is much faster than
the transport of species to the flame unless the flame is near or approaching the extinction sizage.

A pure diffusion flame is established when both oxidizer and fuel are transported to the flame



by means of diffusion only. No convective flow is present. Some important characteristics of
pure diffusion flames have been discﬁssed in [9], including an analysis of the detailed naturz of
the temperature and reaction rate profiles. It was observed that the maximum of the reaciion
rate profile usually will not coincide with the temperature profile maxim. The only excepion
is the symmetric flame for which the overall stoichiometric coefficient, ¢(=v YedY o0, equals
unity. This study shows, for a fuel-rich flame, that Z,sZ,sZ, l.e., the peax of the reaction
rate profile  (Z) lies between the Burke-Schumann flame location (Z) and the peak of the
temperature profile  (Z) for fuel nch conditions. For oxidizer-rich conditions, Z <Z <Z,

- It may be argued that in thin-flame limit all diffusion flames are "pure” diffusion flames because
the mixture fraction transfc->rmation discussed in Williams, chap. 3 [10], produces an equation
resembling  T,=|VZ|?w, where |VZ| is the magnitude of the mixture fraction gradient
perpendicular to the flame. However, |VZ| depends strongly on the heat and fluid flow
conditions and in effect introduces a new parameter that must be accounted for in a complete
analysis. Hence, though the value of |VZ | (i.e., [VZ| evaluated at the flame sheet) may
be buried into a suitably redefined Damkdhler number, it must of course be resurrected when
later conducting a full examination of the problem.

Our goal in this work is to describe the response of a diffusion flame, when there is a
zone of radiant soot-generated ene.rgy losses nearby, through the examination of a simplified
model. A previously-generated theoretical correlation will be tested, and we shall, in addition,
attempt to produce practical correlations of the total heat flux from the flame, the total

(conductive plus radiative) energy flux to the surface, the drop in flame temperature duz to

radiant loss, etc. We shall not develop the full correlations here, but we indicate their dominant



behaviors. The complete correlations require numerical examination of all possible cases,

something which was beyond the scope of this study.

2. THE MODEL

Figure | schematically depicts the problem geometry. The fuel wall and the oxidizer
wall are located at x=0 and x=L, respectively. Both walls issue diffusive fluxes of the
respective constituents. A diffusion flame is established between the two walls. A soot layer
1s assumed to exist on the fuel-side of the DF, consistent with experimental observations [11].
The walls have the ambient temperature T,. There is no fuel on the oxidizer wall and no
oxidizer on the fuel wall, -the only possible other species at the walls being an inert element.
The fuel and oxidizer mass fractions at the respective walls are specified to have values Y and
Y50 as shown in Figure 1.

The combustion reaction is assumed to be a global, one-step chemical reaction of the
form F+vO-(1+v)P, where F denotes the fuel and O denotes the oxidizer. Methane is
nominally the fuel under consideration and oxygen is the oxidizing specie, although real
methane-oxygen reactions require of the order of 100 reaction steps and individual property
choices for the separate species. The stoichiometric fuel-oxidizer mass ratio, v, is four for the
methane-oxygen combustion reac.t‘ion. A suitable set of parameter values must be used to
generate a reasonable range of Damkdhler number and flame temperature values. The adiabatic
flame temperature is given by Tf=To+QFYH/[CP(l+¢)], where Q, is the heat release per
unit mass of fuel from the combustion reaction and  C, is the specific heat of the mixture.

The global stoichiometric coefficient, denoted by &, is given by VY. /Y., However, the



use of the above formula produces unrealistically high adiabatic flame temperatures. Thus, the
above equation for 7, was modified to produce a practical and reasonable range of adiabatic
flame temperatures.

A set of realistic hydrocarbon combustion flame temperatures was obtained from the
work of Wichman [12] for the analysis of flame spread over thermoplastics. The idea there was
that the fuel mass fraction cannot reasonably be determined at the surface but a more-or-l2ss
generic flame temperature can still be calculated. This flame temperature varies only with the
free-stream oxidizer mass fraction Y,,. The value of Y., i.e., the fuel mass fraction in
the hypothetical fuel stream for our present calculations was assumed to be 0.85. The oxidizer
~ mass fractions (¥,,) ana the flame temperatures (T/) are tabulated in Table 1.

A fourth order polynomial was fitted to the above data to obtain

T/=486.66+12230.85YOO—25728.64Yéo+25360.02}’éo-9323.0fw (H
Using this expression, we generate points fora  (Y,,,7)  plot.
We calculate  Q, by using the relation QF=(T/—T0)CP(1+¢>)/YFF for T/=2137K,
Y,,=0211, Y.=085 and T7,=298K. The calculated valueof Qp is 11959.43 KJ/kgK.
We now introduce a modified formula for the calculation of the flame temperature,

o )
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Next we calculate the values of the modification factor, AY,,), by using the above expression.

The calculated value of Q, andthe (Y,,7T) data obtained using equation (1) were utilized

for this purpose. The AY,,) data were as follows,



f=1.25exp(-2.99Y,,)+0.33 3
Finally, we use the above expression for  AY,,) 1o calculate T, foranysetof Y,, and Y,
values in equation (2). A plotof T, versus Yy, isshownin Figure 2. The Y values
corresponding to the different curves in the plot range from 0.25 to 1.0. The lowest curve is
for Y..=025. The curves above are for Y.=0.30, 0.35, 0.40, etc. We note that for
Y,,=0.25 and 0.30 the peak flame temperature does not occur at Yp,=1; there is 2 slight
local maximum in the range 0<Y,,<l. For this reason we shall not use these curves.
However, for higher values of Y., we do obtain temperature profiles whose maxima occur
at Y,,=1. These profiles will be used. Also, we note that since we are interested in the effect
of soot radiation on diffusion flames, we are not concerned with low values of Y., which do
not produce significant amounts of soot. Hence, in our analysis, Y., values of 0.30 and
lower are not used with reasonable physical justification.
The parameter values in the work of Tzeng et al. [13] were used in this article. The
important values are shown in Table 2.
Here we write the equations and boundary conditions for conservation of energy and
species. The energy conservation equation is

. . dq
PC,IT, T )= T),+Quo =2, @

with boundary conditions T(x=0)=T, and T(x=L)=7,, where T, Iisthe temperature at the
fuel and oxidizer walls, assumed to be 298 K. Here T'is the temperature, p is the density, CP

is the specific heat of the mixture, A is the thermal conductivity and u is the velocity. The



volumetric radiative heat loss term is  ~-dgq/dx with units Wim®. The heat release due to
combustion is Q, and &, is the reaction rate term. An Arrhenius type expression was
assumed for the one-step irreversible reaction, so the reaction rate is @ =pAY, Y exp-E/RT.
The quantity A denotes the pre-exponential factor. The thermal conductivity is A. The
oxidizer mass fraction equation is

p[YO'+u}’0‘]=(pDO}’O,)x—vd)F, )
with boundary conditions Y, (x=0)=0 and Y_(x=L)=Y,,. Here, D, 1sthe mass diffusivity
of the oxidizer. Similarly the fuel mass fraction equation is

plYe+u¥ )=(pDpY ) -0 (6)
with boundary conditions . Y (x=0)=Y,, and Y[x=L)=0; D, isthe mass diffusivity of the
fuel.

The above equations are now transformed to a mass coordinate system. The transformed

coordinate is Z=1-s/s,, where s=foxpalr and so=foLpdx. We note that Z=1 when x=0
and Z=0 when x=1. The coordinate Z happens to be identical to the mixture fraction coordinate

for our simple problem. The following expressions hold for the above transformation:

ol s 9.8
51_ So((?u)o (pu)x) SOZ((pu)o (pu)) 3z &, (7
and
a|__p 0
— =m—_—— 8
aI ¢ So az‘r ( )

Since we are considering a pure diffusion flame, (pu) _,=(pu) ,=0, i.e., there are no



convective flows from the walls. Application of these operators to the energy and species
equations and assuming p2A, pZDO, pzDF are constant, assuming the Lewis number is
unity and D,=D, and then introducing the nondimensional variables t=(T—T0)/(T/-T0),

Yo Yo/ Yoo  YesYd¥em  s=s/(p,l) gives

1 = Ng d‘jk
;-=__1E+QFDr+—:———, )]
5 5y dZ
1
yo'_=—_;you—¢Dr, (10)
5o
1
Ye=3Yr,, D1, (11)
So

where §0=so/(poL)=folEd’f where p=pf/p, and Xx=x/L. Also, r is the nondimensional
reaction rate and N, is a radiation number [14] evaluated as the ratio of the referance
radiative and conductive fluxes, given by Np=q, J(A,(T,~T)/L). The thermal conduciivity
at the reference condition is denoted by A, The quantity D is the Damkohler number given
by ¢, Jt...... where the reference diffusion time is t,q,=!,2/a0 and the charactenstic chemical
time 1s tchm=1/[AYooexp(—E/RTf)]. The nondimensional quantity g, is given by 995,00

where qg,., is a reference radiative heat flux. The nondimensional heat release, ép 1S
given by QFYFF/[Cp(T/—To)] ar.w.d equals (1+¢) since the adiabatic.ﬂame temperature 1s
defined as T/=TO+QFY;;/[CP(1+¢)]- We note that in the prefactor multiplying the reaction term
of equation (9) we do not utilize the temperature correction discussed previously. In addition,

we have defined t=t/r”/. The nondimensional reaction term, r, is written in the form

r=yoyeexp[-p(1-1)/(1-a(l-1))], whe"re a=1—TJTf and B=Ea/(Rqu)', E is the activation



energy and R, is the universal gas constant. The quantity p is known as the Zeldovich
number.
2.1 Infinite Reaction Rate (IRR) Solutions as Initial Conditions

Equations (9)-(11) are the governing conservation equations for <, y, and y, for
the case of finite rate chemistry. The equations become much simpler when the reaction rate
is infinite. In this case, all fuel reaching the flame surface is consumed instantaneously, and
similarly for the oxidizer. Thus no fuel exists on the oxidizer side and no oxidizer exists on
the fuel side, i.e., y,y.=0 on both sides of the flame. The energy equation can now be
solved in two adjacent domains, the oxidizer side (OsZsZ/) and the fuel side (Z/sZsl) of
the flame. The flame l'ocation is designated by Z, For our simple problem ‘the mass
coordinate Z coincides with the mixture fraction, a conserved scalar: this is a rare special case.
In the absence of radiative losses the steady state energy equation becomes 1,,=0. Since, at
the flame <t =1, the solution of the steady state energy equation (7,,=0, since N =0 and
the reaction term can be excluded) for the infinite reaction rate (IRR) situation gives < =Z/Z/
for OsZst and r=(1—Z)/(1—Z/) for Z/sZsl. Similarly, y, and y, can be solved
for the infinite reaction rate situation and we get yo=(1—Z)-(1—Z/)r for OsZsZ/ and

yF=Z—Z/r for Z/sZsl.
Next, we must evaluate 7:/, the coordinate location of the IRR flame. As mentioned,
Z is the mixture fraction coordinate, defined as Z=(dy +1-y )/(d+1). Attheflame, y, and y:
are both zero so that Zf=1/(¢>+l). With knowledge of Z/,, the nondimenstonal temperature

and species equations can all be determine exactly. The profiles so obtained are used as initial

profiles for the numencal solution of the transient conservation equations (9)-(11).
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2.2 Simple Heat Loss Profile

As shown in Wichman and Ray (14] the simplest model heat loss profile is the “top-hat”
profile used therein. Because of the discontinuous derivatives at the edges of the top-hat profile,
it is not as convenient for numerical reasons as a smooth and continuous heat loss profile. For
primarily this reason, the profile that we shall use here is of the form of a sech® in mixture
fraction space, viz.,

dq 3
—72’3 =sech*(B(Z-Z)). (12)

The location where the ma-ximurn of -dg/dZ occurs is denoted by Z, Figure 3 illustrates
the nature of variation of the heat loss profile in mixture fraction space. We note thai the
maximum value of the profile is unity. We define the Z locations where the value of the
function is 1% of its peak value as the two tails of the function, located respectively at locations
we presently call Z,  and Z,, with Z, <Z,. The maximum of the -dg./dZ profile
occurs at  Zg=(Z,.+Z;.)/2. The width of the loss zone is defined to be AZ,=Z, -Z,. The
separation distance of the loss zone form the location of the ideal Burke-Schumann flame Z,
is givenby A =Zp.~Z, In the subsequent analysis, we shall vary the thickness AZ,, as well
as the separation distance A, m order to study the influence of the loss zone on the flame
structure. The thickness of the loss zone can be chosen by selecting different values of the
parameter B In equation (12).

From equation (9) we note that the radiative loss term is given by (N/s)dg/dZ, and

hence, another important way to modify the loss term is to experiment with the value of its

11



amplitude, N, /s, We can choose different values of Ny, the radiation number. The
quantity 5, given by sy(p,L) is a by-product of the solution and for this reason is
evaluated at each time step.

We recall that for the top-hat profile the integrated heat loss is
fOI(NR/EO)(U(ZR_)-U(ZR,))dZ=NR/§0AZR. In this case the integrated heat loss is given by
so'lfolNRsechZ[B(Z—ZR)]dZ=NR/(B§O)tan}zB(1-ZR)+tanhBZR]. For large B this simplifies to
2NR/§O/B+O(B "7y, showing that the top-hat loss zone thickness AZ, corresponds to 2/8,

or B=2/{AZ, Consequently, in analytical formulae for the top-hat profile (see ref. [14]) we

can substitute for AZ, the value 2/B in order to test their correspondence to the sech’ profile.

3. NUMERICAL SOLUTION

Equations (9), (10) and (11) were numenically solved with a the finite difference scheme.
The nonlinear source terms were linearized using Newton’s method. For each time step,
iterations were used until the sum of normalized residuals became smaller than 1x10®. The
transient conservation equations were integrated to steady state.

We utilize the 1deal gas law to derive a relation between the temperature and density of
the system. We can write pV=(m/§’)RuT where p is the density and R is the gas constant for
the mixture, given by R=RL/P—‘/..- If we assume p R7, to be the constant pressure of the
system, then the introduction of a=1-T /T and <=(T-T)/(T,-T) results in the following

important relation:

l-«

I-a(l-t)

'O|:
1

(13)
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We observe that when the temperature is that of the ambient, i.e., T=T7 =298K, then =0
and p=1, i.e., p=py Al the flame temperature (T/‘) the nondimensional density is
p=l-a and consequently p=(l-a)p,.

Equations (9)-(11) indicate that in order to solve the «t, y, and y, equations, we
need to evaluate s, atevery time step. The quantity s, enters the analysis by virtue of the
coordinate transformation Z=1-s/s,. By differentiating both sides of this relation, we obtain

dZ|dx=-p/s,, since §=fox_5£ and X=x/L. Using the transformation relation betwezn Z

and x, subject to the above mentioned boundary conditions, we get

54= , (14)

and the relation between the x and Z coordinates can be wntten as

[ wpdz
:l:= Z

[laimaz

On obtaining the solutions for <, y, and y, equation (15)is used to transform the solutions
back to the physical coordinate x. Thus, s, can be evaluated once the p distribution is
known. The normalized density p can be related to the t distribution by virtue of equation

(13). Hence, the expression for s, can alternatively be written as

- 1
S.=

° fold2+(a/(1-a))folrd2'.

(16)
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Hence, on obtaining the t profile we can determine the quantity s,, When the temperature
throughout the domain is the same as the ambient temperature T, then t=0 everywhere;
by using equation (16), we obtain 5,=1. If we next assume that the temperature everywhere
in the domain is the adiabatic flame temperature T, then =1 and 5,=(1-a). Since the

minimum and maximum values of temperature are 7T, and T, respectively, the quantity

5, must obey the limits  (1-a)s5,<1.

4. RESULTS AND DISCUSSION
Figure 4 depicts the nondimensional temperature, <, plotted as a function of the

mixture fraction coordinate, Z, for different values of the radiation number, N for the

&
particular parameter values shown in the title of the figure. The oxidizer and fuel mass fractions
at the respective walls are  Y,,=0.6 and Y,..=0.8. In our subsequent analysis we keep the
same set of oxidizer and fuel mass fractions, and vary the location, width and intensity of the
radiative loss zone. The above set of (YY) represents a typical case and is employed
extensively in the following analysis: the qualitative trends for other Y,, and Y., values
are similar. The thickness of the radiative loss zone is 0.04 for all values of N, and the
separation distance of the loss zone from the stoichiometric flame location is zero. We observe
that the flame temperature proﬁle'is uniformly lowered as the value of N, increases. Also,
the flame temperature peak moves toward the fuel wall as the value of N, is increased. The
drop in flame temperature, as well as the shift of the peak, become more prominent for higher

values of N, For a value of N, greater than 383, we do not obtain a steady state

temperature profile, indicating the occurrence of a radiative extinction. This maximum, or upper

14



bound, for N, isthen defined as N

Rowincion 180 N

2esinerion =303 for this case. We also
note from Figure 4 that there is a chénge of slope of the temperature profile in the radiative loss
zone for higher values of N i.e., between Z, and Z;..

Figure 5 shows the nondimensional reaction rate term ((1+¢)Dr) for the same
situation. We observe that the reaction rate profile collapses for increasing N, values. The
reaction rate peak also moves towards the fuel side; this movement becomes more conspicuous
for higher values of N, We notice that the reaction rate profile has managed to move nearly
beyond the rightmost side of the radiation loss zone (indicated by the dashed linesat Z,_  and Z,)
for the highest value of N,

We now focus on .the temperature and species profiles for the situation when N,=383
for the above case, i.e., at the brink of extinction. Figure 6 also shows the temperature and
species profiles for the same flame for an infinite reaction rate. We notice that when N,=383,
the slope of the y, profile is quite different from its IRR counterpart. On the other hand, the
slope of the y, profile follows the IRR y, profile closely until a Z-value of about 0.3, when
1ts slope starts decreasing. This plot therefore demonstrates explicitly the contrast between the
IRR situation and the finite chemistry situation with appreciable radiative losses. The migration
of the peaks of temperature and reactivity profiles is stnking. Also, an abrupt change of the

-

temperature profile seems to take place in the zone of radiative losses, i.e., between Z, and Z, .

We add for emphasis that from the strictly physical viewpoint, the finite-rate solution has
attained a rather extreme form, since the reaction zone has almost completely propagated through
the loss zone. In Figure 6, we see that the loss zone is now on the oxidizer side of the reaction

rate profile. As we shall see, extreme cases like this are not the norm. They are also physically



unrealistic, though mathematically permissible in our simplified model with a prescribed heat
loss function.

We illustrate the details of the flame structure in Figure 7, where we plot the
contributions of the different terms in the energy equation when the steady state condition has
been achieved. The loss term is given by (N}JEO)Jech 2(B(Z-ZR)) and the diffusion term, as
in equation (9), is (I/EDZ)rE. We have already noted from Figure 3 that for N =383 the
reaction rate profile has penetrated through the radiative loss zone. Figure 7 indicates that the
diffusion term recovers the radiative losses almost entirely and the reaction term doesn't
contribute to the diffusion term in such a recovery process. This represents a completely
different physical problerﬁ, when the radiative loss term exists on the oxidizer side of the
primary reaction zone (flame). This result is, as already mentioned, clzarly in conflict with our
hypothesis that the heat losses take place on the fuel side of the flame due to flame-generated
particulates. This occurs because our hypothetical radiative loss profile is simply a prescribed
function in Z, and as such, it does not contain any mechanisms for loss-zone movement as the
temperature and species profiles change, as a real soot zone invariably must.

In order to observe the effect of a thicker loss zone, we now increase AZ, toavalue
of 0.1, see Fig. 8. We notice that the drop in the temperature profile is more significant in this
case and the flame extinguishes al—a lower value of the radiation number, viz., for N,=132.
We use this opportunity to note that (N AZ.) _ is approximately 14.2 for the first case and
13.2 for the second case. As shown in Wichman and Ray {14] for the simple top-hat loss
profile, it appears the extinction results are best correlated with the function N.AZ,, although

the proper method of evaluating AZ, is not as straightforward as our estimate suggests. The
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correct method of evaluating AZ, is discussed later in the article.

Next, we consider the situation when the left-most side of the loss zone is sufficiently
removed from Z, foraflame with Y,,=0.6 and Y .=0.8. The thickness of the loss zone
iIs AZg=0.06 and the separation distance, A, is 0.l in this case. Figure 9 shows that the
flame temperature decreases with increasing N, Here, the movement of the peak
nondimensional flame temperature is not pronounced, though it does move toward the fuel side.
Correspondingly, Figure 10 shows the vaniation of the reaction term, (1+¢)Dr, for increasing
values of N, As mentioned for the preceding cases, therefore, the reaction zone does not
always propagate through the loss zone. A sufficient separation and magnitude of the loss term
appear sufficient to block -the through-transit.

We note that the reaction rate peak is always to the left of the temperature peak, i.e.,

Z<Z,<Z_. Thisis in accordance with the results obtained for pure diffusion flames without
radiative loses [9], as discussed before.

Figure 11 1s an extinction plot for the case when 47,2006 and A=0. Extinciion
values of N, are plotted as a function of Z, the theoretical flame location in the mixture
fraction coordinate. We notice that for a given value of the oxidizer mass fraction at the wall,

(N Q) srincsion  INCTEASES AS Z/ 1s decreased. A decrease in Z/ implies an increase in &,
which, for a given Y, produc;s anincrease in Y~ As Y. increases, the reaction rate
becomes more vigorous and it becomes more difficult to extinguish the flame through radiative
losses. This explains the nature of the curves that we obtain on the extinction plot. Also, for
the same value of Z, 1i.e., for the same value of ¢, a lower value of Y., indicates a

correspondingly smaller value of Y., and hence, the reaction rate also becomes smaller in
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magnitude. Itis then easier to extinguish the flame. This explains why the curves in Figure |1
all shift toward the left for decreasing values of Yoo
Our focus 1s next shifted to some quantities of practical interest. We evaluate the heat
transfer to the wall from flames with the same stoichiometry (Y,,=0.6 and Y =0.8) but
with different thicknesses of the radiative loss zones and for different separation distances A
from Z. Let Qg, denote the heat transferred to the oxidizer wall by the flame per unit
surface area of the wall. We reckon that the oxidizer wall will have a stronger effect on the
flame than the fuel wall owing to the proximity of the flame to the oxidizer wall. The flame
transfers heat to the oxidizer wall by means of both conduction and radiation, and hence,
Qn0=Cr0eons* Qwoen  Where the conduction flux’is Q.. =~A(dT/dx)|,, and the
radiative fluxis Qg 4,405 xfoL(dqR/dr)dx. We assume that half of the radiative losses travel
to each wall: this assumption is reasonable in the thermally-thin limit we consider here. We
can transform the expressions for Q. oy ad Qg ., 0 the Z coordinatz and normalize Q.

by the reference conductive flux AO(T/—TD)/L. The normalized

Quo=(15)d</dZ)| ,+0.5x(1/5)N, fo‘(qu)(da Jd0)dZ. The quanity Q.5 is plotted in
Figure 12. It is apparent that the heat transfer characteristics do not depend strongly on the
separation distance A, and consequently, we see four reasonably distinct groups of curves
corresponding to loss zones of fou‘r- different thicknesses. However, as is evident from the plot,
the separation distance A  does become important for higher values of N, close to
extinction. We will notice that, nearing extinction, the flame attempts to reduce the heat losses
to the wall as much as possible. Also, the value of N, required for extinction is higher when

the heat loss zone is very thin, as intuitively obvious.
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We also plotted 6;,,.050 as a function of the quantity N,(2/B). Figure 13 clearly
shows that the gquantity NR(2/B), which is approximately the valuz of the integral
folNXsechz[B(Z—ZR)]dZ, 1s able to collapse the wall heat transfer data except very near
extinction. Thus, when plotted against N(2/B), éW'OEO does not reveal any appreciable
dependence on either the separation distance A or even the thickness of the loss zone AZ,
The correlation in the straight-line region is given approximately by éw.o,§0~l.9(NR(2/B))+5.3,
which is reasonably accurate until the curves make their final turn toward the abscissa.
Another quantity of practical interest is the radiative fraction yx, given by the ratio
Gaed 9o 1he quantity g, is the integral of the radiative loss term, i.e.,
folNksechz[B(Z—ZR)]dZ and 9. 1S the integrated value of the reaction rate in mixture
fraction space, i.e., fol(1+¢)DrdZ. From Figure 14 we notice that g, ., decreases with
increasing values of N, This happens because with increased intensity of the radiative loss
zone, reaction rate values decrease as already observed in Figures 3 and 10. For thicker loss
zones, the drop in g, Wwith increasing values of N, is more rapid.
We have already noted in section 2.2 that the integral of the radiative loss term profile
1s approximately (NRIEO)(?./B). Hence, it is of interest to plot the total heat release Qo @S
a function of the quantity N (2/B). The result is shown in the Figure 15. Figure 15 indicates
that the quantity N ,(2/B) charac;erizes the total heat release rate very well and the curves for
different loss zone thicknesses virtually collapse on one another except for large values of Nq
close to extinction. The correlation in the linear region is given by Qo= 15.25N(2/B)+168.

The constants in this formula depend on the global stoichiometry.

Figure 16 illustrates the variation of y as a function of N, for different thicknesses
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of the loss zones and for A=0. We observe that x increases with increasing N, fora
flame with a given loss zone thickness. The integrated quantity g, , increases with N,
and, since correspondingly the ¢, ., values decrease, ¥, which is a ratio of the above
quantities, increases. In order to produce a given value of x, a higher value of N, is
required for a flame with a thinner loss zone. Similar to the study of ¢, weplot x as
a function of N.(2/B) in Figure 17. It is clear from the figure that the use of N (2/B)
collapses the data very well except close to extinction. Here, the correlation in the linear
segment 1s  x=0.038N_(2/B), once again, the multiplicative constant must be a function of
global stoichiometry. Figure 18 shows the variation of the drop in flame peak temperature,

At, asafunction ofthe-radiative fraction . Ifwedenotethe maximumtemperatureby <,
then Av, isdefined as 1-t, We recall that the temperature has been normalized in such
a way that the peak nondimensional temperature for the infinite reaction rate situation always
has the value of unity, regardless of the oxidizer and fuel mass fractions. Thus, A<,
represents the drop in peak temperature for finite rate chemistry and radiative loss situation, in
comparison to the IRR situation. Theincrease in Az, with x was almost linear for smaller
values of x, with Ar/=x+0.1 as the correlating function. However the curves for the
difierent loss zone thicknesses diverged from one another for higher values of x.

It has been previously me-r-ltioned (section 2.2) that the results for the sech’ heat loss
profile can be compared with the results of Wichman and Ray [14] for the top-hat profile.
However, the thickness AZ, of the top-hat profile must be chosen to be 2/B, where the value
of B is determined from the choice of the thickness of the sech® profile. For example, when

(AZ)) 1s chosen to be 0.06, the «constant B=99.7 and consequently

sech?
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(AZR)‘OP_M=2/99.7-O.O2. As shown in [14], both analytical and numerical methods werz used
to determine the extinction value of N, for the top-hat profile. Here, we compare analytical
and numerical results for the top-hat profile with the numerical solutions for the sech’ profile.
Figure 19 depicts the extinction N, values plotted as a function of Z, when Y,,=0.7,

(AZp),, ,2=0.06, (AZR)W_,W=O.02 and A=0.1. Thedirection of increasing Y, hasalso
been indicated on the plot. The numerical solutions reveal that the sech’ and the top-hat profiles
produce very similar N, . . values. This indicates that the integrated value of the radiative
loss term is the quantity which determines the extinction N, value. The extinction N,
values obtained by analytical method are quite different from the numerical solution. However,
inspection of the curves dépicted in Figure 19 shows that the ratio of the analytically obtained
values to the numerical solution is very nearly (+1.5%) 3.8 for all the Z, values plotied in
Figure 19, exactly as in [14]. This indicates that a simple modification of the analytical formula
of [14] based on the inclusion of a correction factor should yield close correspondence between

the analytical and numerical results. Thus, we use2
c 1, 4D,Z/(1-Z)
Z[(1-8/2) p (b,B)’

where D isthe Damkohler number defined under Equation (11), b, is the extinction value

(N2 B)], .~

(17

of the reduced Damkohler number (see [14]) and 8=2,.+Z,, which we write as 8-2Z,
afterusing Z, =Z +AZ )2, Z, =Z,-AZ 2. In other words, Z, 1sthe value of the heat loss
zone peak. With C=1/3.8 this formula correlates the numerically-derived data of Fig. 19 within

line width. This multiplicative factor will depend on the global stoichiometry, of course.



5. CONCLUSIONS

We investigated the influence of a simple and hypothetical heat loss zone on a pure
diffusion flame in detail. The loss profile was of the form of a sech’ given by equation (12) and
we varied the intensity and the width of the loss zone to study the diffusion flame response. The
loss zone was postulated to lie always on the fuel side of the ideal Burke-Schumann flame. The
location of the loss zone on the fuel side relative to the ideal flame location Z, was also
varied. In all situations, the increase of the radiation number N, results in a movement of
the flame toward the fuel side. We found that for thin loss zones located close to Z, the
reaction zone may even migrate through the flame to the fuel side of loss zone for significantly
high valuesof N, In suﬁch a situation the loss zone now lies on the oxidizer side of the flame,
contrary to our initial postulate. This happens because our hypothetical loss zone is static and
contains no mechanism for movement. The reaction rate profile, on the other hand, is frez to
move and hence locates itself on the fuel side of the loss zone in certain cases.

Extinction plots were generated for different flames for given loss zone thicknesses

(AZ,) and given separation distances (A). The plots indicated that for a given Y

cor AN

increase in Y., results in higher values of extinction radiation number, N,

Nondimensional heat transfer rates to the oxidizer wall were also investigated. The
results indicated that the separation'distance A did not have a significant influence on the wall
heat transfer characteristics.

The total heat release in the combustion process, ¢,,., Wwas found to decrease with
increasing values of N, and the rate of decrease was quite rapid for thicker loss zones. It was

found that the quantity N.(2/B) characterizes g, very well and the curves for the
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different loss zone thicknesses and separation distances all collapse onto one another except near
extinction. A correlation was produced in the linear region. We expect that the correlation
constants depend upon the flame stoichiometry.

Investigation of the radiative fraction showed that yx increases with increasing values
of N, and the rate of increase is steeper for thicker loss zones. The flame, however,
extinguishes at a larger value of x for loss zones which are relatively thin. The quantity

Nn(2/B) collapses the g, and radiative fraction values very well except near flame
extinction. A linear correlation formula was produced whose coefﬁci‘ents vary with global flame
stoichiometry. The detailed determination of these coefficients will be the subject of a future
work. The decrease in the flame temperature was nearly linear with radiative loss fraction, as
shown in Fig. 18. The linearity, away from near-extinction, of all of these results is very
encouraging for the development of a simplified description of soot radiation in flames. Once
a suitable N, is defined and an estimate is made of the soot layer thickness 2/B in mixture-
fraction space, correlations resembling those of Figs. 13, 15, 17, 18 can be generated for the
important overall heat-transfer quantities. The estimation of the soot-layer thickness will be the
subject of a future work.

Finally, we demonstrated that the extinction formula derived in Ref. {14] could be easily
modified to suit this sech’ model t;y replacing the top-hat loss zone thickness with 2/B for large
B. The hop-hat and sech’ profiles thus modified produce exactly the same N estineion VS 24
curve, see Fig. 19. The correlation with the analytical formula derived in [14] is given by
equation (17) with the new effective loss-zone thickness 2/B. We expect that the multiplicative
empirical constant (here 3.8), will deper;d fairly weakly on the global stoichiometry. Many

cases must be examined in order to determine this dependence.
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NOMENCLATURE

a Constant in asymptotic formulation defined by Eq. (35.1)
a, Planck mean absorption coefficient

A Pre-exponential factor

b Reduced Damkohler number defined by Eq. (35.iii)

b’ Reduced Damkohler number with zero heat losses

¢ O(1) constant in asymptotic formulation, see (Eq. (35.1i)

DD, Damkéhler number; Damkdhler number with no heat losses

D .D, Diiiusion coefficients for oxidizer, fuel

E Activation enefgy

/, Soot volume fraction

h, Specific enthalpy of species i

h Rescaled enthalpy loss, h=p|H(Z, )|

H Enthalpy defect, =Ty +ye-1

H, Enthalpy defect with zero heat losses, H =0

L Combined heat loss; distance between fuel and oxidizer walls

N, Radiation number, see Sec. 2.4

9, Nondimensional radian{energy flux, see (Eq. (1) and above Eq. (2)
Qr Heat release per unit mass of fuel

6; Nondimensional heat release

r Nondimensional reaction term, r=y y2xp[-p(1-t)/[1-a(l-1)]]
R Universal gas constant

. x L
5.5, Mass coordinate, s=f pdx, 55[ pdx



© |

Nondimensional mass coordinate, s, =s/s,

S Redefined dependent variable, S=t-H=1-(y,+y,)
T,T,,TO,TR Temperature (flame, ambient, radiation zone)
u Flow velocity

U,(Z) Heaviside step function

w Reaction term, w=pAY Y exp(-E/RT)

x Spatial coordinate

YoV, Rescaled fuel, oxidizer mass fractions

Y.Y, Fuel, oxidizer mass fractions

z Physical coordinate, Z=1-5, coincides with mixture fraction

ZaZp Ly Z-values at right, left, middle of radiation-loss zone

GREEK
« Enthalpy ratio, «=1-TJT,
p Zeldovich number, B=aE/RT/

AZ, Radiation-loss zone thickness, AZ.=Z, -Z,

€ Small dimensionless parameter

! Rescaled mixture fract'i.on, see above Eq. (31)
5] Sumof Z, and Z,, 8=Z, +Z,

A Thermal conductivity

Nondimensional physical coordinate, £=s

Faal

p Density
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Stefan-Boltzmann constant
Nondimensional temperature, < =(T-T)/(T,~T,)
Global equivalence ratio

Scaled value of S in reaction zone, see above Eq. (31)
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Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure &:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

LIST OF CAPTIONS FOR FIGURES

The problem geometry, including the diffusion flame (DF), the radiation (soot)
zone and the porous diffusive walls at x=0 and x=L. The reactant influx is
purely diffusive.

Flame temperatures via simple correlation. Note that the maximum 7, for
Y =025, 03 occursnear Y,,=0.4: we donot use these curves for this very
reason.

The sech® heat-loss profile showing the separation A betwesn Z, and Z,,
and our (preliminary) definition of AZ, (which we shall subsequently modiry).

Influence of increasing N, on the temperature distribution in a diffusion flame.
Here the flame penetrates the loss zone, which is unrealistic unless oscillziions
occur. When N_>383, 1 crashes everywhere to zero.

Same as Fig. 4 for the reaction rate. Here the migration of the flamz is
immediately obvious.

Profiles of v, y,, ¥, and reaction rate for infinite and finite-rate cases, the
latter just prior to extinction. Note that the y. profile is virtually unchanged
from 1ts IRR value until inside the reaction zone.

The flame structure for Fig. 4 at the brink of extinction.

Influence on temperature field of increasing N, on the same DF as Fig. 4
except the loss zone is 2.5x thicker, AZ =0.1.

Influence of non-zero initial displacement A betwean the loss zone and the DF
(at Zf). Here, the flame does not penetrate the loss zone before extinction.

Same as Fig. 9 for the reaction rate. The right-ward movement in mixiure
fraction space is obvious.

Extinction plot for AZ,=0.06 and zero initial displacement, A=0. Along
each curve, Y., increasesas Z, decreases. The largest Y., valueshave
the highest (Np),, values.

Total heat flux (nondimensional) to the oxidizer wall versus N,

A replot of Fig. 12 with new abscissa Ng(2/B). The correlation of the straight-
line region is (heat flux)=1.9N,(2/B)+5.3.
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Figure

Figure

Figure

Figure

Figure

14:

15:

16:

17:

18:

19:

The total heat flux as a function of N, for various loss-zone thicknesses and
zero displacement, A=0. As N, increases, the integrated reaction rate
decreases monotonically.

Replot of Fig. 14 showing the collapse of the data to a single line except very
near extinction.

Radiant flux fraction versus NR.

A replot of Fig. 16 with abscissa N(2/B) showing collapse of data to a single
curve.

The decrease in flame temperature versus radiant flux fraction shows a linear
functional form that is virtually independent of the loss-zone width, AZ,.

Plotof N, . versus Z, forthe sech’ loss profile and the previously-examined
top-hat loss profile [14]. The close agreement betwezn the numerical solutions
indicates that the correlation with the analytical formula will be outstanding when
the latter formula is multiplied by (3.8)'=0.261.



TABLE 1: FLAME TEMPERATURE VERSUS Y,, DATA

Yoo | 0.211 | 0.233 | 0.247 | 0.276 | 0.329 | 0.432 | 0.533 | 0.727 1.0
T, 2137 | 2230 | 2295 | 2385 | 2515 | 2684 | 2789 | 2919 | 3026
TABLE 2: PARAMTER VYALUES.
Specific heat C, 1.35 JIkgK
Thermal diffusivity o, 1.24x10" m’/s
Fuel-oxidant mass ratio v 4.0
Pre-exponential factor A 5x107 1/s
Activation enzargy E 121,841.7 KJ/kmol
Heat release Q- 11959.43 KJ/KgK




Radiation

——— B S N —

x =0 x=L

(Z=1) (2=0)

Diffusive flux of fuel Diffusive flux of oxidizer

-y

¢

§o—an



4000

3000

- 2000

1000

Increasing Y .

0.6

0.3

1.0

T

~o



1.0

08 r

0.6 r

04

0.0 !

0.0

N
L)



0.04 A=0

0.6 Y,=0.8 AZ,

00~

Y

G.H

.



Y,,=0.6 Y..=0.8 AZ,=0.04 A=0

O O O M
O O <t N oo

O o0 — Nl MM

It

of ol o o ol o

y A Al a.Ad

[ f N '

. .
_ | ;
| S T

o o

terretrte

06

Tt fereictt

2000

500 +

1.0

0.8

[

N



=0

383 AZ,=0.04 &

0.8 N,

00=0.6 Y¢;

Y

Filled symbols
for IRR case

500

2 (1+0)Dr/

e—s y_

—a
G-—9 Yo

1.0

0.8




Y o=0.6 Y=0.8 N,=383 AZ =0.04 A=0

1500.0 ,
5
i —-—-- (1+¢)Dr
! o---- Loss
1000.0 - e{; S Diffusion
%
500.0 - _;i
P ' ‘\
A Zi '/. R ‘
2/ f o
0.0 J e
kY
[ y 7
-500.0 S A ' '
0.0 0.2 0.4 0.6 0.8

1.0



=0.8 AZ,=0.1 A=0

Y,0=0.6 Y.,

0O
o

LL



1.0

Y, o =06Y,. =08AZ,=006A=0.1

N, =0
........... - N, =40

1.0

-

™



0.06 A=0.1

Y 5=0.6 Y =0.8 AZ,

OO O
! OO NOVODO —
O <t 0 — — N
S | R [N T R TR |
o o o o o o ol
2L L L L
BN
b ! ~
_~_

2000.0
1500.0 -
1000.0

500.0 -

1.0

0.8

0.6

I 1O



400.0

300.0 -

0.10

0.30

0.40

FlC 1



Yoo=06Y,. =08

14.0
12.0 ﬂ’\[\) y
7 O
Q
= 10.0 o—>0 AZ, = 0.04
v
= =2 AZ, = 0.06
K G—=a AZ, = 0.08
- 80 —=7 AZ,=0.10
Open Symbols :A=0.0
6.0 Opaque Symbols:A=0.1
L Filled Symbols :A=0.2
4.0 : ' '
0.0 100.0 200.0 300.0 400.0
. N,



Yoo =06Y-_=08

E——a AZ. = 0.08 ,/é;’!%
9] - ] - \
1‘_.0 ; 7AZR:O.IO y = ,.7 \(D

'

8.0 -

Open Symbols: A =0.0
Opaque Symbols: A = 0.1
Filled Symbols: A =0.2

FIG TS



q'l'ul:\l

150 ¢

100 1

50

Yoo =0.6 Y. = 0.8 A=0

¢—>o AZ, = 0.04
A—a AZ, = 0.06
c—=aAZ, =0.08
Y—>y AZ, =0.10

100

200 300

(

-~
.



Y. =06Y.=084=0

200.0

(l'l'ul ul

c— A_Z? =0.04
—i A7, =0.06

c—2 AZ =0.03
¥ A7 =0.10

6.0



0.40

= 0.20

0.10

0.00

Yoo =06Y,. =08 A=0

e—>o AZ, =0.04
——a AZ, = 0.06
a2 AZ, = 0.08

y—v AZ, =0.10

x:qRad/qToul

300.0

400.0



> 0.20

0.10 -

0.00

6.0



=0

_=0.8 4

Y ,=0.6 Y

G 1S



NK, extinction

1200
1000 r
800 1

600 r

00 = 0.7 AZ; = 0.06 ( sech)
AZ =0.02 (top-hat) A= 0.1

— [\Iumerical Solution, top-hat proﬁle
----- Numerical Solution, sech” profile
o——o0 Analytical Result, top-hat profile

35 0.40




