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Abstract:

I)ynamic mesh adaption on unstructured grids is a powerful tool for efficiently com-

puting unsteady problems to resolve solution features of interest. Unfortunately, this

causes load imbalance among processors on a parallel machine. This paper describes

tile parallel implementation of a tetrahedral mesh adaption scheme and a new global

load balancing method. A heuristic remapping algorithm is presented that assigns par-

titions to processors such that the redistribution cost is minimized. Results indicate

that the parallel performance of the mesh adaption code depends on the nature of the

adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the

mesh is randomly adapted. For large-scale scientifc computations, our load balancing

strategy giw_s almost a sixfold reduction in solver execution times over non-balanced
loads. Furthermore, our heuristic remapper yields processor assignments that are less

than 3% off the optimal solutions but requires only 1% of the computational time.

Keywords:
I,oa(l t)alancing, mesh adaption, unstructured grids, dual graph, processor reassign-

ment, (listributed-memory machines

Introduction

Dynamic mesh adat)tion on unstructured grids is a powerful tool for computing unsteady

three-dimensional problems that require grid modifications to efficiently resolve solution

features. By locally refining and coarsening the mesh to capture flowfield phenomena of

interest, such procedures make standard computational methods more (:()st effective. High]y

localized regions of mesh refinement are required in order to accurately capture shock waves,
contact discontinuities, vortices, and shear layers. This provi(Ds scientists the opportunity to

obtain solutions on a(lapt('(I meshes that are comparable to thos(" oStained on globally-refined

gri(l_ but at a much lower ('()st.

[_nfortunately, the adaptive solution of unsteady l)roblems causes load imbalance among



processorson a parallel machine. This is becausethe computational intensity is not only
time dependent,but also variesspatially over the problem domain. Dynamically balancing
the computational load is, however, very difficult. It requires reliable measurementsof
processorworkloadsand the amount of data movement,aswell asthe minimization of inter-
processorcommunication. Various methodson dynamic load balancinghave beenreported
to date [3,4,6,7,9,10];however,most of them lack a global view of loads acrossprocessors.
A systematicwayof measuringand balancingprocessorloadsis neededfor a method to be
applicableto a variety of realistic applications.

Figure 1 depictsour framework for parallel adaptive flow computation. It consistsof a flow
solver and meshadaptor, with a partitioner and mapper that redistributes the computa-
tional meshwhen necessary.The meshis first partitioned and mappedamongthe available
processors.The flow solver then runs for severaliterations, updating solution variablesthat
are typically storedat the verticesof the mesh. Oncean acceptablesolution isobtained, the
meshadaption procedureis invoked. It targets edgesfor refinementor coarseningbasedon
an error indicator computed from the flow solution. The old meshis then locally adapted,
generatinga new computational mesh. A quick evaluationstep determinesif the new mesh
is sufficiently unbalancedto warrant a repartitioning. If the current partitioning indicates
that it is adequatelyload balanced,control is passedback to the flow solver. Otherwise,a
repartitioning procedureis invokedto divide the newmeshinto subgrids. The newpartitions
are then reassignedto the processorsin a way that minimizesthe cost of data movement.If
the cost of remappingthe data is less than the computational gain that would be achieved
with balancedpartitions, all necessarydata is appropriately redistributed. Otherwise,tile
new partitioning is discardedand the flow calculation continueson the old partitions.
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Figure 1: Overview of our framework for l)arallel adaptive flow computation.

Notice from the framework in Fig. 1 that the computational load is balanced and the runtime
coxnmunication reduced only for the flow solver t)ut not for the mesh adaptor. This is

acceptable since the flow solver is usually several times more expensive. It is also ol)vious

from Fig. 1 that mesh adaption, repartitioning, processor assignment, and remapping arc

critical components of the framework and must be accomplishe(I rapidly an(l efficiently so

as not to cause a significant overhead to the flow computatioil.

1"or parallel adaptive [low computations, tile initial grid must first be partitioned among the



availableprocessors.A goodpartitioner should minimize the total executiontime which is a
function of load balance(computational time) and the interprocessorcommunication time.
It is also important for our framework thal, the partitioning phasebe performed rapidly.
There are severalexcellentheuristic algorithms for solving the NP-hard graph partitioning
problem [15]. Sincemeshpartitioning is not being addressedin this paper, we will assume
that reasonablepartitions for our test meshesare available,and addressthis issuein future
work. For the record, we usedtile multilevel spectral Lanczospartitioning algorithm with
local Kernighan-IJinrefinementfrom the Chaco software package [8].

This paper briefly describes an efficient parallel implementation of a dynamic mesh adap-

tion code which has shown good sequential performance on the C90 when coupled with a

variety of unstructured flow solvers to solve realistic problems in helicopter and fixed-wing

aerodynamics [1,2,5,14]. The parallel version consists of an additional 3,000 lines of C++

code with MPI, allowing portability to any system supporting these languages. This code

is a wrapper around the original mesh adaption program written in C, and requires almost

no changes to the serial version. Only a few lines were added to link it with the parallel

constructs. An object-oriented approach allowed this to be performed in a clean and efficient

manner. Complete details are given in [11].

This paper also describes a new method that has been developed to dynamically balance

the processor workloads with a global view. The load-balancing procedure uses a dual graph

representation of the computational mesh in order to keep the complexity and connectivity

constant during the course of an adaptive computation. It uses heuristic but accurate metrics

to estimate the computational gain and the redistribution cost of having a balanced workload

after each mesh adaption. Even though mesh repartitioning is an inherent component of our

global load balancing scheme, it is not addressed in this paper but will be the focus in
subsequent work. A concise description of the new inertial spectral mesh repartitioning

method applied to small model meshes is given in [13].

Tetrahedral Mesh Adaption

We give a brief description of the tetrahedral mesh adaption scheme; complete details are

given in [1]. The code, called 3D_TAG, has its data structures based on edges that connect
the vertices of a tetrahedral mesh. This means that the elements and boundary faces are

(lefined by their edges rather than by their vertices. These edge-based data structures make

the mesh adaption procednre capable of performing anisotropic refinement and coarsening

that results in a more efficient distribution of grid points.

At each mesh adaption step, tetrahe(tra] elements are targeted for coarsening, refinement, or

no chango by computing an error indicator for each edge. Edges whose error values exceed

a specified upt)er threshold are targete(l for subdivision. Similarly, edges whose error values

lie below another lower threshold are targeted for removal. Only three subdivision types
are allowed for each element and these are shown in Fig. 2. The 1:8 isotropic subdivision

is implemented by adding a new vertex at the mid-point of each of the six edges. The 1:4

an(t 1:2 subdivisions can result either because the edges of a parent tetrahedron are targeted

anisotropically or because they are required to form a valid connectivity for the new mesh.

When an edge is bisecte(I, the solution vector is linearly interpolate(l at the mid-point from

the two points that constitute tim original edge.

Mesh refinement is i)erforme(t I)y first setting a bit flag t.o one for each edge that is targete(1



1:8 1:4 1:2

Figure 2: Three typesof subdivision are permitted for a tetrahedral element.

for subdivision. The edge markings for each element are then combined to form a 6-bit
binary pattern. Elementsare continuouslyupgradedto valid patterns correspondingto the
three allowedsubdivision types shownin Fig. 2 until noneof the patterns showany change.
Oncethis edge-markingis completed,eachelementis independentlysubdivided basedon its
binary pattern.

Mesh coarseningalso uses the edge-markingpatterns. If a chiht element has any edge
marked for coarsening,this elementand its siblings are remow'dand their parent element is
reinstated. The parent edgesand elementsare retained at eachrefinementstep so they do
not haveto be reconstructed. Reinstatedparent elementshavetheir edge-markingpatterns
adjusted to reflect that someedgeshave beencoarsened.The mesh refinement procedure
is then invokedto generatea valid mesh. Note that edgescannot be coarsenedbeyond the
initial mesh.

Pertinent information is maintained for the vertices,elements,edges,and external boundary
facesof the mesh. In addition, eachvertex hasa list of all the edgesthat are incident upon
it. Similarly, each edgehas a list of all the elementsthat share it. These lists eliminate
extensivesearchesand arecrucial to the efficiencyof the overall adaption scheme.

Parallel Implementation

The distributed-memory implementation of the 3D_TAG mesh adaption code consists of
three phases: initialization, execution, and finalization. The initialization and finalization

steps are executed only once for each l)roblem outside the main solution+-+adaption cycle
shown in Fig. 1. The execution step runs a local copy of 31)_TAG on each processor. Good

parallel performance is therefore critical during this phase since it is executed several times

(luring a flow computation.

The initialization phase takes as input the global initial grid and the corresponding parti-

tioning information that places each tetrahedral element in exactly one partition. It then
distributes the global data across the processors, defining a local number for each mesh ob-

ject, and creating the mapping for objects that are shared by multiple processors. Shared

vertices and edges are identified by searching for elements that lie on partition boundaries.

A bit flag is set to distinguish between shared and internal objects. A list of shared pro-

cessors (SPL) is also generated for each shared object. The maximnm additional storage

that is required for the parallel code depends on the numl)er of l)rocessors used and the
fraction of shared objects. For the cases in this paper, this was less than 10_, of the memory



requirementsof the serial version.

The executionphaseruns a copyof 3D_TAGon eachprocessorthat refinesor coarsensits
local region, while maintaining a globally-consistentgrid along partition boundaries. The
first step is to target edgesfor refinementor coarseningbasedon an error indicator for each
edgethat is computedfrom the flow solution. This processresultsin asymmetrical marking
of all sharededgesacrosspartitions becausesharededgeshavethe sameflow and geometry
information regardlessof their processornumber. However,elementshaveto becontinuously
upgradedto oneof the three allowedsubdivisionpatterns shownin Fig. 2. This causessome
propagation of edgesbeing targeted for refinement that could mark local copiesof shared
edgesinconsistently. This is because the local geometry and marking patterns affect the

nature of the propagation. Communication is therefore required after each iteration of tile

propagation process. Every processor sends a list of all the newly-marked local copies of

shared edges to all the other processors in their SPLs. The process may continue for several
iterations, and edge markings could propagate back and forth across partitions.

Figure 3 shows a two-dimensional example of two iterations of the propagation process across

a partition boundary. The process is similar in three dimensions. Processor P0 marks its

local copy of shared edge GEl and communicates that to Pl. Pl then marks its own copy

of GEl, which causes some internal propagation because element marking patterns must be

upgraded to those that are valid. Note that PI marks its third internal edge and its local

copy of shared edge GE2 for refinement during this phase. Information about the shared

edge is then communicated to P0, and the propagation phase terminates. The four original
triangles can now be correctly subdivided into a total of 12 smaller triangles.

, , , _ GEl

:::<ili

--- Shared edge

• Shared mark -- Internal edge

o Internal mark ..... New edge

Figure 3: A two-dimensional example showing communication due to the propagation of

edge markings.

Once all edge markings are complete, each processor executes the mesh adaption (:ode with-
out the need for further communicatiou, since all edges are consistently marked. The only

task remaining is to update the shared edge and vertex information as the mesh is adapted.

This is halMh'd as a post-processing phase.

New edges and vertices that are created during refinement art' assigned share(I l)rocessor
inlk)rmation that (tepends on several factors. Four different cases can occur when new edges
are (:rcate(l:



• If an internal edgeis bisected,the center vertex and all newedgesincident on that vertex
arealsointernal to the partition. Sharedprocessorinformation is not requiredin this case.

• If a shared edge is bisected, its two children and the center vertex inherit its SPL, since

they lie on the same partition boundary.

• If a new edge is created in the interior of an element, it is internal to the partition since

processor boundaries only lie along element faces. Shared processor information is not

required.

• If a new edge is created that lies across an element face, communication is required to
determine whether it is shared or internal. If it is shared, the SPL must be formed.

All the cases are straightforward, except for the last one. If the intersection of the SPLs of

the two end-points of the new edge is null, the edge is internal. Otherwise, communication is

required with the shared processors to determine whether they have a local copy of the edge.
This communication is necessary because no information is stored about the faces of the

tetrahedral elements. An alternate solution would be to incorporate faces as an additional

object into the data structures, and maintaining it through the adaption. However, this does

not compare favorably in terms of memory or CPU time to a single communication at the
end of the refinement procedure.

Figure 4 shows the top view of a tetrahedron in processor P0 that shares two faces with P1.
In P0, the intersection of the SPLs for the end-points of all the three new edges LE1, LE2,

and LE3 yields Pl. However, when P0 communicates this information to P1, P1 will only

have local copies corresponding to LE1 and LE2. Thus, P0 will classify LE1 and LE2 as

shared edges but LE3 as an internal edge.

LEI LE2

[] Shared face with P l

[] Internal face of P0

-- Shared edge with P!

Internal edge of P0

Figure 4:
internal.

LE3

Example showing how a new edge that lies across a face is classified as shared or

The coarsening phase purges the data structures of all edges thai are removed, as well as

their associated vertices, elements, and boundary faces. No new shared processor informa-

tion is generated since no mesh objects are created during this step. Ilowever, objects are

renumbered as a result of compaction and all internal and shared data are updated accord-

ingly. The refinement routine is then invoked to generate a valid mesh from the vertices left

after the coarsening.

It is sometimes necessary to create a single global mesh after one or more adaption steps.
Some post processing tasks, such as visualization, need to processes the whole grid simulta-

neously. Storing a snapshot of a grid for future restarts coulel also require a global view. The

finalization phase accomplishes this task by connecting individual subgrids into one global

mesh. Each local object is first assigned a unique global number. Details of how global num-

bers are assigned are given in [I1]. All processors then update their local data structures



accordingly. Finally, a gather operation is performedby a host processorto concatenatethe
local data structures into a global mesh. The host can then interface the meshdirectly to
the appropriate post-processingmodulewithout having to perform any serial computation.

Dual Graph Representation

The dual graph representation of the initial computational mesh is one of the key features
of this work. Parallel implementation of adaptive flow solvers requires a partitioning of the

computational mesh such that each element belongs to an unique partition. Communication

is required across faces that are shared by adjacent tetrahedral elements residing o11 different

processors, tlence for the purposes of partitioning, we consider the dual of the original

computational mesh. The tetrahedral elements of the computational mesh are the vertices of

the dual graph. An edge exists between two dual graph vertices if the corresponding elements

share a face. A graph partitioning of tile dual thus yields an assignment of tetrahedra to

processors.

Each dual graph vertex has two weights associated with it. The computational weight,

Wcomp, indicates the workload for the corresponding element. The remapping weight, Wre,_,_p,
indicates the cost of moving the element from one processor to another. The weight Wcomp
is set to the number of leaf elements in the refinement tree because only those elements that

have no children participate in tile flow computation. The weight W_m_p, however, is set
to the total number of elements in the refinement tree because all descendants of the root

element must move with it from one partition to another if so required. The connectivity

and t/)comp determine how dual graph vertices should be grouped to form partitions that

minimize the disparity in the partition weights. The Wrem_p determines how partitions should

be assigned to processors such that the cost of data movement is minimized.

Every edge in the dual graph also has a weight that models the runtime communication. This

information is used by the mesh partitioner along with the computational weights of the dual

graph vertices to balance the processor workloads and minimize the runtime communication.

The edge weights are uniform for the test cases in this paper.

The rnost significant advantage of using the dual of the initial computational mesh is that

its coml)lexity and connectivity remains unchanged during the course of an adaptive com-

putation. The t)artitioning and load-balancing times therefore depend only on the initial

I)roblem size and the number of partitions. New grids obtained by adaption are translated

to the two weights, (Ucomp and Wr.m_p, for every element in the initial mesh.

One minor disadvantage of using the dual grid is when the initial computational mesh is

either to() large or too small. For extremely large initial meshes, the partitioning time will

be excessive. This problem can be circumvented by agglomerating groups of elements into

larger superelements. For very small meshes, the quality of the partitions will he bad. One
Call then allow the initial mesh to be adapted one or more times before using the dual graph

for all future adaptions.

Preliminary Evaluation

The preliminary ('valuation ste t) ral)idly determines if the dual graph with a new set of W_omp
should b(, rel)art+itioned. If l)rojecting the new values on the current partitions indicates that

they are ade(tuat('ly load t)alance(1, there is no need to repartition the mesh. In that case,



the flow computation continuesuninterrupted on the current partitions.

A proper metric is required to measure the load imbalance. If Wma x is the sum of the Wcomp

Oil tile most heavily-loaded processor, and Wavg is the average load across all processors, the

average idle time for each processor is (Wmax - W.vg). This is an exact measure of the load
imbalance. The mesh is repartitioned if tile imbalance factor Wm_,x/W_,,g is greater than a
specified threshold.

Similarity Matrix Construction

If the preliminary evaluation phase determines that the dual graph with the new Wcomp is
not adequately load balanced, the mesh is repartitioned to balance the processor workloads.

Any mesh partitioning algorithm can be used here, as long as it quickly delivers partitions

that are reasonably balanced.

Once new partitions are obtained, they must be mapped to the processors such that the

redistribution cost is minimized. We assume that the redistribution cost is proportional to

the volume of data moved. In the simplest case, the number of new partitions is equal to the
number of processors. In our general framework, however, it is possible to have the number

of partitions be an integer multiple F of the number of processors, and then map more than

one partition to a processor. The rationale behind allowing multiple partitions per processor

is that performing data mapping at a finer granularity results in a smMler volume of data

movement at the expense of processor reassignment time. |[owever, the simpler scheme of
setting F to unity suffices for most practical applications.

The first step toward processor reassignment is to compute a similarity measure _' that

indicates how the remapping weights Wrem,p of the new partitions are distributed over the
processors. It is represented as a matrix of P rows and Px F columns, where P is the number

of processors. Each entry S# is the sum of the W_m_p of all the dual graph vertices that are

common between processor i and new partition j. Therefore, the sum of the entries in row i

is the total remapping weight of all the dual graph vertices currently residing on processor i.
A similarity matrix for a remapping of eight partitions on four processors is shown in Fig. 5.
Only the non-zero entries are shown.

New Partitions

©

Figure 5: An example of a similarity matrix 5; for P = 4 and t" = 2. The F largest weights
for each I)rocessor are shade(l.

Processor Reassignment

iX n(,w partition j with the largest value of 5,'ij is called the dominant partition for processor



i. The overhead for data movement from processor i can be minimized by reassigning it

to its dominant partition. To minimize the total data movement for all processors when

F = 1, each processor i must be assigned to an unique partition ji so that the objective

function br = _=_ Sia, is maximized subject to the constraint ji ¢ jm,Vi _ m. In general,

each processor i is assigned to exactly F unique partitions Ji(I),Jit2),...,ji(F) so that the

objective function
P F

= E E
i=l k=l

is maximized subject to

ji(p)#Jm(q), Vi(p)¢m(q); p= 1,2,...,F; q= 1,2,...,F.

Both an optimal and a heuristic greedy algorithm have been implemented for solving this

problem. When F = 1, the problem trivially reduces to solving a maximally weighted

bipartite graph, with P processors and P partitions in each set. An edge of weight 5'0 exists
between vertex i of the first set and vertex j of the second set. If F > 1, the processor

reassignment problem can be reduced to the maximally weighted bipartite graph problem
by duplicating each processor and all of its incident edges F times. Each set of the bipartite

graph then has PxF vertices. After the optimal solution is obtained, the solutions for all F

copies of a processor are combined to form a one-to-F mapping between the processors and

the partitions.

Th(' pseudocode for our heuristic algorithm is as follows:

for (j=O;

for (i=O;

/* initialization */

j<#partitions; j++) partition_map[j] = unassigned;

i<#processors; i++) total_unmapped[i] = #partitions / #processors;

while (there exists an unassigned partition) {

for (i=O; i<#processors; i++) /* mark */

for (k=O; k<total_unmapped[i]; k++)

mark largest entry S[i] [j] such that partition_map[j] == unassigned;

}

foreach (j such that partition_map[j] == unassigned)

if (there exists at least one marked entry in column j) {

find the largest marked entry S[i] [j];

total_unmapped[i]--;

partition_map[j] = assigned; }

/* map */

The heuristic algorithm consists of an initialization step, followed by repeated iterations
of the mark an(t map steps. Initially, all partitions are considered unassigned and each

processor has a (:ounter set to t" that indicates the remaining number of partitions it needs
to be assigned. In the marking phase, each processor that has less then F assigned partitions

marks the necessary number of largest entries in ,q' from the set of unassigned partitions.

The mat)t)ing phase examines all tim available partitions j that have at least one marked

entry. The largest entry 'q'o is chosen and partition j is assigned to I)rocessor i. This results

in partition j t)ecoming unavailal)le and processor i requiring one less partition assignment.

The mark and ma 1)steps are repeated until all partilions are assigned. Applying our heuristic



algorithm to the similarity matrix in Fig. 5 generatesthe new processorassignmentshownin
Fig. 6(a). The optimal assignmentin shownin Fig. 6(b). The valueof the objective function
f" is 2849 for the heuristic algorithm but 2989 for the optimal solution.

New Partitions New Partitions

New Processors New Processors

Figure 6: The similarity matrix S after processor assignment using the (a) heuristic and (b)

optimal algorithms.

We claim that our heuristic algorithm can never give a processor assignment that results in

a data movement cost that is more than twice the optimal cost. Given a similarity matrix S,

the heuristic algorithm initially assigns processor i to partition j such that Sij has the largest
value L in row i and column j. Partition j is then removed from the available list. Assume

that the optimal algorithm maps processor i to partition k and processor l to partition j.

However, the values of Sik and Slj are bounded by L. If, in the' worst case, all partition-to-

processor assignments are chosen incorrectly, the heuristic algorithm gives a solution that is

twice as expensive as the optimal solution.

Cost Calculation

The computational gain due to repartitioning is proportional to the decrease in the toad
imbalance achieved by running the adapted mesh on the new partitions rather than on the

old partitions. Recall from Sec. 5 that the average load imbalance for each processor is given

by (W,,,_. - W_vg). The decrease in load imbalance due to the new partitioning is therefore

(l'Vm°la_- W_,_:), where W,°_, and FVm_w are the sum of the Wcomp on the most heavily-loaded

processor for the old and new partitionings, respectively. If it requires 7]t,r secs to run one

iteration of the flow solver on orw element of the original mesh, and if it is expected that the

next mesh adaption will occur after N_d_,pt solw_r iterations, the total computational gain for

the new partitioning is ][iter./¥adapt(W;_:_lx -- W,n, ew).

The redistribution cost is calculated from the similarity matrix obtained after processor

reassignment. Two machine-dependent parameters are used to calculate the actual cost:

the remote-memory latency time Tl_t and the message setup time T_tup. Tl_t is the time

required for memory-to-memory copying of a word, and applies to every dual grid vertex

that is moved. Ts.t,p is the time required to l)repare message headers, load the message
buffer, and so on, and applies to each set of elements that is moved from one processor to

another. If the flow solver and mesh adaptor require M words of storage per element, and if

C = (_ _. Sia -f) and N are t}w total mmlber of elemeIlts and sets of elements to be moved,

respectively (of. Fig. 7), the total communication overhead for mapping new partitions to

processors is ('MT]_t + NT'_t,,p. Since the quantity ('M is typically much larger than N for

l0



,'ealistic problems, the second term can be neglected.

New Partitions

O

C=1485 N=6

New Processors

Figure 7: Calculating the total redistribution cost from tile similarity matrix £'. Note that

two (not three) sets of elements are moved from old processor 2 because new partitions 0

and 6 are both mapped to new processor 3.

The new partitioning and mapping are accepted if the computational gain is larger than the
redistribution cost:

old •,
_t_.rN_d_pt(l,V°ax - Wm_x) > CMT, at + NTsetup.

The numerical simulation is then interrupted to properly redistribute all the data.

Remapping

The remapping phase is responsible for physically moving the data when it is reassigned to a
different processor. When an element is moved to a different processor, two kinds of overhead

are incurred: communication and computation. The commnnication overhead includes the

cost of packing and unpacking the send and receive buffers, as well as the message setup
time and the remote-memory latency time. The computation cost is the time necessary to

rebuild the internal and shared data structures in a consistent manner.

The remal)ping proce(ture used in the experiments reported in this paper is not fully oper-

ational; howew_r, it does predict the cost with reasonable accuracy. Based on the processor

reassignments, all appropriate mesh objects are sent to their new host processor, accurately

modeling the communication phase. Note that the relationship between the nurnber of ele-
ments moved and the total data volume is not exactly linear. This is due to the mow'meat
of the shared dal, a structures whose size is a flmction of the locations of the old and new

partition boundaries. The shared information accounts for a small percentage of the data

volume, and is the cause of the slight perturbations.

The computation phase in not yet complete, emd data structures are only partially restored
after the dater movement. Since communication accounts for the majority of the remapl)ing

overhead, we expect the simulated remapping time to be within 10% of the fully functional

procedure. The implementation of this phase will be completed shortly.

Results

The i)arallel 31)_TA(; and global load I)alancing procedures have been implemented on an

IBM S!)2 distributed-memory multiprocessor. Both codes are written in (I and ('++, with

11



the parallel activities in MPI for portability. Note that no SP2-specificoptimizations we're
usedto obtain the performanceresults reported in this section.

The computational meshis the one usedto simulatethe acousticsexperimentof Purcell [12]
where a 1/7th scale model of a UH-1H helicopter rotor blade was tested over a range of
subsonicand transonic hover-tip Machnumbers. Numericalresults and a detailed report of
the simulation are given in [14].

Resultsare presentedfor one refinementand one coarseningstep usingthree different edge-
markingstrategies. The first strategy, called Local_l, targeted 5% of the edges for refinement

in a single spherical region of the mesh. The subsequent coarsening phase undid all of

the refinement to restore the initial mesh. The second strategy, called Local_2, refined

35_ of the edges in a single rectangular region of the mesh. Coarsening was performed

within a rectangular subregion. The third strategy, called Random, consisted of randomly

targeting edges for adaption such that the mesh sizes after both refinement and coarsening

were approximately equal to those obtained in tile Local_2 case. These strategies represent,

significantly different scenarios. In general, real edge-marking patterns are expected to lie

somewhere between Local_l and Local_2. Table 1 presents the progression of grid sizes
through the two adaption steps for each marking strategy.

Local_l Local_2 Random

Elements Edges Elements Edges Elements Edges

Initial Mesh 60,968 78,343 60,968 78,343 60,968 78,343
After t/etinement 82,259 104,178 201,543 246,112 201,734 246,949

After (:oarsening 60,968 78,343 100,241 125,651 100,537 126,448

Table 1: l)rogression of grid sizes through refinement and coarsening.

l+'igur( + S illustrates the parallel speedup of the refinement and coarsening phases of the

3I)_rl'A(; code tot" the three edge-tnarking strategies. As expected, Random gives the best
sl)eedu f) p('rh_rnlance as the processor workloads are inherently balanced. Note that our

load balancing scheme only balances the load for the flow solver after the mesh adaption

step is ('onlpleted. The refinement speedup results are the worst for the Local_l case because

a conlpact sl)herical region of the mesh is adapted. All of the work is thus performed by only

a handful of processors. The coarsening results are similar to those of the refinement step
t)e('ause of the algorithmic similarities of the two methods, ih)wever, performance improves

significantly for the Local_l strategy. This is because the processor workloads are better

balanced as coarsening undoes all of the previous refinement. Extensive performance analysis

of the parallel 31)_TAG code is given in [11].

Figure 9 shows how the execution time is spent dnring the retinement and the sut)sequent

load-balancing phases of the Local_l and Local_2 strategies. The repartitioning times are

not shown as it is not the focus of this paper. As mentioned in Sec. 9, the remapping time.

consists of communication and ('omputation ow_rheads. Note that the remapping time ini-

tially increases with the nmnber of processors, t)ut then gra(lually decreases. This is not
entirely unexpecte(t. Even though the total volume of data mow'ment increases with the

mmfi)er of processors, there are actually more processors to share the work. This indicates

that our global load balancing strategy will remain viable on large numbers of l)rocessors as

12
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Figure 8: Speedup of tile parallel mesh adaption code during tile (a) refinement and (b)

coarsening stages.

the remapping phase will not become a bottleneck. The speedup curves in Fig. 8 also show
that the mesh adaption time decreases ks more processors are used. Although tile processor

reassignment time increases with the number of processors used, it remains negligible com-

pared to the adaption and remapping times even for 64 processors. The curves in Fig. 9

are for F = 1 using our heuristic processor reassignment algorithm. Similar results were

obtained for the coarsening phase of the mesh adaption procedure.
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Figure 9: Anatomy of total execution times for the (a) Local_l and (b) Local_2 refinement

strategies.

Figure 10 compares the execution times and the amount of data movement for the Local_2

strategy when using tile optimal and heuristic processor a ssignnmnt algorithms. Four sets
of (:urw_s at'(? shown ill each plot for I" = 1,2, 4, and 8. The optimal method always requires

almost two orders of magnitude more time than our heuristic method, q')1(' execution times

also increase significantly as 1" is increased. This is because the size of the similarity matrix

grows with F. tlowever, the volume of data movement decreases with increasing F. This
confirms our earlier claim that data movemen( can be reduced by mapping at a liner granu-

larity. The relatiw" reduction in data movement, howew'r, is not very significant for our test

13



cases.The results in Fig. 10 illustrate that our heuristic mapper is almost as good as the

optimal algorithm while requiring significantly less time. Similar results were obtained for

tile Local_l and Random edge-marking strategies.
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Figure 10: Comparison of the optimal and heuristic mappers in terms of (a) execution time

and (b) volmne of data movement for the Local_2 refinement strategy.

Figure 11 shows tile relationship between the remapping time and the number of tetrahedral

elements that are moved from one processor to another. Individual data points on the curves

are obtained by varying F. As shown earlier in Fig. 10(b), increasing F reduces the number

of elements moved. Note, however, that the remapping time sometimes increases even when

fewer elements are moved. This is due to the computational requirements of the remapper

as described in Sec. 9. The plots demonstrate that for a given number of processors, there is

a strong correlation between the number of elements moved and the remapping time. This

confirms our two earlier claims. First, a good solution to the similarity matrix reduces the
rernapping times. Second, the total number of elements moved (:an be scaled by a factor

to give a good approximation of the remapping time. This supports our evaluation model

which predicts whether a balanced load is worth the expense of remapping.
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Finally, Fig. 12 illustrates the impact of load balancingon the execution time of the flow
solver. Note that the maximum possibleimprovement is not linear. It can beexplainedas
follows. Supposethat thereare P processors and that each processor has N elements assigned

to it. In the worst case, all N elements on only one processor are isotropically refined (cf.

Fig. 2) using 3D_TAG to generate 8N elements while none of the other elements are refined.

If tile adapted mesh is not load balanced, tile flow solntion would require time proportional to

8N, the most heavily-loaded processor. However, if the mesh were balanced, each processor
8P

would have sN+(e-l)Ut° elements. Thus, load balancing would give an improvement of P+r
over a non-balanced load.
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Figure 12: Comparison of flow solver execution times with and without load.balancing.

Note from Fig. 12 that the Random case gives only a marginal improvement when the pro-

cessor loads are balanced. This is expected because the compntational work is already dis-

tributed uniformly among the processors after the mesh is adapted. LocalA shows the best
improvement with load balancing because a small compact region of the mesh was refined

that led to a severe imbalance among the processors. With 64 processors, the improvement

is almost sixfold. It is important to realize that the results shown in Fig. 12 are for a single

refinement step. With repeated adaption, the gains realized with load balancing inay be

even more significant.

Summary

Fast and efficient dynamic mesh adaption is an important feature of unstructured gri(Is that

makes them especially attractive for unsteady flows. However, mesh adaption (m i)arallel

computers can cause serious load imbalance among the processors. Dynamically I)alancing

the l)rocessor loads at runtime is a complex task.

We have described a distributed-nmmory implementation of an edge-I)ased adaption scheme

that has shown good single-processor performance on the C90. The ('ode is written in C

and (!++ using the MPl message-passing l)ara(ligm, l)erformance results on an SP2 show

a 35.5X st)eedu t) on 64 processors when about 35% of a helicopter rotor mesh containing

more than 60,000 tetrahedral elements anti 78,000 e(Iges is randomly adapted. The sl)eedu p

is reduced to at)out 25.0X due to load imbalance when the same number of edges is refined
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in a singlecompact region of the mesh.

We have also described a new dynamic load balancing scheme that balances the processor

workloads with a global view. The procedure uses a dual graph representation of the com-

putational mesh to keep the complexity and connectivity constant during the course of an

adaptive computation. Each time the computational mesh is adapted, the load balancer is

invoked to determine if the new mesh warrants repartitioning. New partitions obtained by

repartitioning are assigned to processors using a heuristic algorithm that strives to minimize
the amount of data movement.

Results [lave demonstrated that the remapping time decreases with the number of processors,

indicating that our global load balancing strategy will remain viable oil massively-parallel

systems. Although tile processor reassignment time increases as more processors are used, it

remains negligible compared to the adaption and remapping times. Our heuristic remapper
has been shown to yield processor assignments that differ from optimal solutions by less than

3% but requires only 1% of the computational times. Finally, large-scale scientific computa-

tions oil 64 processors of an SP2 show that load balancing gives almost a sixfold reduction

in flow solver execution times over non-balanced loads. With multiple mesh adaptions, the

gains realized with load balancing may be even more significant.
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