Laser light scattered by molecules or particles in a flow contains significant information about properties of the flow. Two major scattering regimes are Mie scattering \((d/\lambda \sim 1)\) and Rayleigh scattering \((d/\lambda < < 1)\), where \(d\) is the diameter of the scatterer and \(\lambda\) is the wavelength of the incident laser light. While Mie scattering is used to obtain only velocity information, Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Over the years, Mie scattering based measurement techniques such as laser Doppler velocimetry (LDV), to measure flow velocity at a single-point, and phase Doppler particle analyzer (PDPA), to measure both velocity and the size of the scatterer, have been developed and are now routinely used in many laboratories. Further, until very recently, Rayleigh scattering based measurement techniques were only used for density or concentration measurements. However, absorption filter based diagnostic techniques, that were introduced by Miles et al. (1990) in Rayleigh scattering regime and by Komine et al. (1991) in Mie scattering regime, have started a new era in flow visualizations, simultaneous velocity and thermodynamics measurements, and planar velocity measurements.

For the past several years, we have actively been pursuing absorption filter based flow diagnostics for flow visualizations, planar velocity measurements, and simultaneous velocity and thermodynamic properties measurements. We have used both Mie scattering and Rayleigh scattering for visualizations in mixing layers (Elliott et al., 1992 and 1995), boundary layers (Samimy et al., 1994 and Arnette et al., 1995), and jets (Reeder, 1994 and Reeder et al., 1995).

In a planar velocimetry technique that we call filtered planar velocimetry (FPV), we have modified the optically thick iodine filter profile of Miles et al. (1990) and used it in the pressure-
broaden regime. This technique provides filter tuning to accommodate measurements in a wide range of velocity applications. We initially used this technique for single-component planar velocity measurements (filtered planar velocimetry, FPV) in mixing layers (Elliott, 1993 and Elliott et al., 1994) and very recently used for two-component planar velocity measurements in boundary layers (Arnette, 1995). We are currently working to advance the technique to full three-component planar velocity measurements.

Measuring velocity and thermodynamics properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of Doppler shift, but also the spectral profile of the Rayleigh scattering signal. These measurements require scanning of the laser (for mean value measurements only), multiple observation/scattering angles, or several absorption filters. Miles et al. (1992) have used the first scheme, and Shirley and Winter (1993) have shown the feasibility of the second scheme. We have modified and advanced the technique developed by Shirley and Winter. Using multiple observation angles, we have made simultaneous measurements of one-component velocity and thermodynamics properties in a supersonic jet (Elliott and Samimy, 1995 a & b). Presently, we are extending the technique for simultaneous measurements of all three-component of velocity and thermodynamics properties.

ACKNOWLEDGEMENTS

The research has been supported by NASA Lewis Research Center (NAG3-764 & NAG3-1502), AFOSR (F49620-94-1-0074), and DoD(F49620-95-1-0127).

REFERENCES

OUTLINE OF PRESENTATION

O ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS
 O Filtered Rayleigh Scattering (FRS)
 O Filtered Planar Velocimetry (FPV/PDV/DGV)
 O Filtered Angularly Resolved Rayleigh Scattering (FARRS)

O ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS AT AODL
 O FPV in Compressible Mixing Layers and Supersonic Boundary Layers
 O FARRS in Supersonic Jets

O CURRENT ACTIVITIES AND NEAR FUTURE PLANS

ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS

O FILTERED PLANAR VELOCIMETRY (FPV)
 O The Scattering Medium
 ▶ Particles(d ~ 50 nm)

 O The Light Source
 ▶ Injection Seeded Pulsed Nd:YAG Laser @ λ = 532 nm

 O The Molecular Filter
 ▶ Optically Thick & Pressure Broadened (Tuning Capability for the Velocity Range)

 O The Recording Devices
 ▶ Scientific Grade ICCD Cameras
ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS

○ FILTERED PLANAR VELOCIMETRY (FPV)
 ○ FPV Results in Compressible Mixing Layers & Comparison with LDV Results
 ○ Uncertainty Assessment
 ○ FPV Results in Supersonic Boundary Layers & Comparison with LDV Results

FPV RESULTS IN COMPRESSIBLE MIXING LAYERS
WITH $M_c = 0.86$ ($M_1 = 3$ & $M_2 = 0.5$)
TWO-CAMERA/ONE-COMPONENT VELOCITY
Laser and Camera Arrangement

Prism

Spherical Lens

Cylindrical Lens

Laser sheet

Reference Camera

Velocity Discriminating Camera

Filter

Camera #1
Pulse Generator

Camera #1
Controller

486

Camera #1

Camera #2
Pulse Generator

Camera #2
Controller

486

Camera #2

Nd:YAG Laser
Reference and Velocity Images

$M_c = 0.86$, oblique view
Normalized Streamwise Velocity
\(M_e = 0.86 \)

\[
\frac{U-U_2}{\langle U \rangle - U_2}
\]

Uncertainty for Filtered Planar Velocimetry

<table>
<thead>
<tr>
<th>Sources of Error</th>
<th>Maximum % error in Vel.: (M_e = 0.51)</th>
<th>Maximum % error in Vel.: (M_e = 0.86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma)</td>
<td>1.17</td>
<td>1.70</td>
</tr>
<tr>
<td>(I_0)</td>
<td>1.20</td>
<td>1.70</td>
</tr>
<tr>
<td>(\phi_D)</td>
<td>1.74</td>
<td>0</td>
</tr>
<tr>
<td>(\gamma_D)</td>
<td>0</td>
<td>0.87</td>
</tr>
<tr>
<td>(\theta_D)</td>
<td>2.46</td>
<td>0.87</td>
</tr>
<tr>
<td>(b_\lambda)</td>
<td>6.17</td>
<td>5.41</td>
</tr>
</tbody>
</table>
FPV RESULTS IN SUPersonic Boundary Layers
With $M_\infty = 3$
Three-camera/two-component Velocity

![Diagram showing setup of three cameras and two-component velocity measurement system.]

- ICCD (camera 1)
- ICCD (camera 2)
- ICCD (reference)
- Molecular Filter
- Laser sheet
- Flow
ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS

- FILTERED ANGULARLY RESOLVED RAYLEIGH SCATTERING (FARRS)
 - The Scattering Medium
 - Air Molecules
 - The Light Source
 - Injection Seeded Pulsed Nd:YAG Laser @ $\lambda = 532$ nm
 - The Molecular Filter
 - Optically Thick Filter
 - The Recording Devices
 - Scientific Grade ICCD Cameras
ABSORPTION FILTER BASED OPTICAL DIAGNOSTICS

- FILTERED ANGULARLY RESOLVED RAYLEIGH SCATTERING (FARRS)
 - Experimental Procedure for One-Component Velocity and Thermodynamics Properties Measurements
 - Results in Supersonic Jets & Comparison with Theoretical Results
 - Uncertainty Assessment
 - Current Activities on Three-Component Velocity and Thermodynamics Properties Measurements in Supersonic Jets

Filtered Angularly-Resolved Rayleigh Scattering (FARRS)
Image Processing

Image without Filter

Image with Filter

Normalized Image
Case 4

$\frac{I}{I_0}$ vs $\frac{\rho}{\rho_{\text{atm}}}$

- $T = 100\text{ K}$
- $T = 150\text{ K}$
- $T = 200\text{ K}$
- $T = 250\text{ K}$
- $T = 300\text{ K}$

$U = 0\text{ m/s}$
- $U = 100\text{ m/s}$
- $U = 200\text{ m/s}$
- $U = 300\text{ m/s}$
- $U = 400\text{ m/s}$
- $U = 500\text{ m/s}$
- $U = 600\text{ m/s}$
RESULTS IN SUPERSONIC JETS & COMPARISON WITH THEORETICAL RESULTS
FULLY EXPANDED $M = 1, 1.5, & 2$
UNDEREXPANDED $M = 2 @ 2.15 & 2.3$

Run Conditions for Perfectly Expanded and Underexpanded Axisymmetric Jet

<table>
<thead>
<tr>
<th>Case</th>
<th>M_e</th>
<th>T_0 [K]</th>
<th>P_0 [kPa]</th>
<th>U [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>288</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>288</td>
<td>191.8</td>
<td>308.4</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>288</td>
<td>372.0</td>
<td>420.8</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
<td>288</td>
<td>793.0</td>
<td>507.1</td>
</tr>
<tr>
<td>5</td>
<td>2.15</td>
<td>288</td>
<td>1002.0</td>
<td>507.1</td>
</tr>
<tr>
<td>6</td>
<td>2.30</td>
<td>288</td>
<td>1266.9</td>
<td>507.1</td>
</tr>
</tbody>
</table>
Intensity Profiles
Perfectly Expanded Jet

![Graph showing intensity profiles for different Mach numbers (M = 0.0, M = 1.0, M = 1.5, M = 2.0) and angle (degrees). The graph compares experimental data points with theoretical predictions.](image)
Density

\begin{figure}
\centering
\includegraphics[width=\textwidth]{density_graph}
\caption{Density vs. Mach number. The solid dots represent the theoretical predictions, while the open triangles represent the experimental data.}
\end{figure}

Temperature

\begin{figure}
\centering
\includegraphics[width=\textwidth]{temperature_graph}
\caption{Temperature vs. Mach number. The solid dots represent the theoretical predictions, while the open triangles represent the experimental data.}
\end{figure}
Uncertainty for velocity and thermodynamic properties.

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Maximum Error in U %</th>
<th>Maximum Error in T %</th>
<th>Maximum Error in ρ %</th>
<th>Maximum Error in P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.5</td>
<td>1.2</td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>a</td>
<td>0.07</td>
<td>0.01</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>ρ</td>
<td>3.1</td>
<td>0.44</td>
<td>-</td>
<td>3.6</td>
</tr>
<tr>
<td>f₀</td>
<td>9.5</td>
<td>5.63</td>
<td>-</td>
<td>5.6</td>
</tr>
<tr>
<td>A_i</td>
<td>1.3</td>
<td>0.60</td>
<td>-</td>
<td>0.55</td>
</tr>
<tr>
<td>Total</td>
<td>9.7</td>
<td>5.7</td>
<td>4.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>

CURRENT ACTIVITIES

- Extending FPV to Three-Camera Configuration for Simultaneous Measurements of all Three Components of Instantaneous Velocity on a Plane
- Extending FPV to Three-Camera Configuration for Simultaneous Measurements of all Three Components of Instantaneous Velocity and Thermodynamics Properties on a Point
- Improving Accuracy and Robustness of the Techniques

NEAR FUTURE PLANS

- To Advance FRS & FPV to Real-Time Visualizations and Measurements