
Towards the Interoperability of Web, Database, and Mass Storage

Technologies for Petabyte Archives

Reagan Moore, Richard Marciano, Michael Wan,

Tom Sherwin, Richard Frost

San Diego Supercomputer Center

P.O. Box 85608

San Diego, CA 92186-9784

E-mail: {moore, marciano, mwan, sherwint, frost }@sdsc.edu

Phone: 619-534-5073

Fax: 619-534-5152

Abstract

At the San Diego Supercomputer Center, a Massive Data Analysis System (MDAS) is

being developed to support data-intensive applications that manipulate terabyte-sized data

sets. The objective is to support scientific application access to data whether it is located

at a Web site, stored as an object in a database, and/or stored in an archival storage

system. We are developing a suite of demonstration programs which illustrate how Web,

database (DBMS), and archival storage (Mass Storage) technologies can be integrated.

An Application Presentation Interface is being designed that integrates data access to all

of these sources.

We have developed a data movement interface between the Illustra object-relational

database and the NSL UniTree archival storage system running in production mode at the

San Diego Supercomputer Center. With this interface, an Illustra client can transparently
access data on UniTree under the control of the Illustra DBMS server. The current

implementation is based on the creation of a new DBMS storage manager class, and a set

of library functions that allow the manipulation and migration of data stored as Illustra

"large objects".

We have extended this interface to allow a Web client application to control data

movement between its local disk, the Web server, the DBMS Illustra server, and the

UniTree Mass Storage environment. This paper describes some of the current approaches

for Web, DBMS, and Mass Storage interoperability, and presents a framework for

successfully integrating these technologies. This framework is measured against a

representative sample of environmental data extracted from the San Diego Bay

Environmental Data Repository. Practical lessons are drawn and critical research areas

are highlighted.

1. Introduction

A series of projects are being undertaken at the San Diego Supercomputer Center to

develop the software technology that is needed to support data-intensive scientific

431

applications(Moore [1]). Theseprojectsexplore variousaspectsof distributeddata
handling capabilities, including integration of object-relationaldatabasemanagement
systems(ORDBMS) (Moore [2]) with archival storage,developmentof Weband Java
interfacesfor databasesandarchivalstoragesystems,anddevelopmentof astandardAPI
for accessingdatafrom heterogeneoussources.

The ability to manipulatevery largedatasetsandlargecollectionsof datasetsis a chief
goal of the MassiveDataAnalysisSystem(MDAS) project(Moore [3]). Two features
areessentialcomponentsof this system:accessingdatasetsby attributeratherthanUNIX
file name,and transportingvery largedatasetsacrossparallel I/O channels. Object-
relationaldatabasetechnologyis usedto supportqueryby attribute,andarchivalstorage
technologyisusedto supportthird-partyparalleltransferof datasets.TheMDAS project
is integrating these technologiesto createa data handling environmentcapable of
supportingterabyte-sizeddatasets. Large objects that are controlled by the database are

stored in the archive instead of the database local disk. This allows the ORDBMS to

manage collections of data objects which exceed the local database disk capacity. By

using transportable methods for manipulating data objects, it is also possible to minimize

CPU execution constraints. When a query is processed, both the data object and the

transportable method are sent to a system on which the analysis is then done. The data

handling system effectively serves as a data scheduler, moving data and associated

computational methods to available compute resources.

The data-handling system architecture is presented in Figure 1. Three different clients are

shown accessing the system, corresponding to interactive Web-based access, scientific

application access, and DBMS access to support data movement between multiple data

handling systems. The DBMS maintains large objects within the archive and has the

ability to schedule computationally intensive work on various production systems. The

system is designed to support third-party transfer of data from the archive directly to the

requesting system across parallel I/O channels.

To gain insight into issues associated with database/mass-storage integration, we built a

prototype using Illustra (Illustra [4]) as the database engine and NSL UniTree as the mass

storage system. NSL UniTree is a hierarchical archival storage system currently running

in production mode at SDSC. The hardware platform consists of a single IBM RS/6000

99J workstation, a disk cache of 100 GB, two StorageTek tape silos and 8 tape drives

transferring data at rates up to 2.9 MB/s with 1 controller per four drives. The system is

capable of storing up to 20 TB (terabytes) of data. The most recently accessed files are

staged on the large disk cache and the rest are migrated to tape.

A second research prototype has been created through a similar integration of Postgres95

Stonebraker [5, 6]) with NSL UniTree. The database runs on a 17-node IBM SP-2, which

controls a 500-GB IBM Serial Storage Architecture (SSA) Disk Subsystem and a 60-TB

IBM 3494 Tape Library Dataserver using six high-capacity 3590 Magstar tape drives.

This system will be used in collaboration with IBM to develop a Massive Analysis

Testbed that integrates the DB2 Parallel Edition DBMS with the High Performance

432

Storage System (HPSS) mass storage system (Archival Storage Research at SDSC [7]).

Data transfer rates of 300 MB/sec are expected from this system. The nominal design

point for expansion of this testbed is to sustain at least 1 GB/sec data access rate for each

additional terabyte of disk. The design point for data access to tape is 1 GB/sec per 100

terabytes storage capacity.

Prod uction Systems

SMP/VP Cluster

• . . =
= ° . . .
• . . = •

innqqqqlqq|el||l|ww
.
•

Ilaldddddd||l|Ui|mm
. ° . . .

• ,:," • ;,,OII_ *d||mU| i
•
• = . . .

au i|H|| |O|Iqea _a|_

O| ul eHH_ I|_OMO||

° o . .
. ° . .

MPP Print/Visual Media

Web Client

Application Client

DBMS Client

+
Web Server

Interaciive
Network Server

Interactive
DBMS Server

ilu

m

i

DBM$

Hierarchical Storage Systems

emmi m m

ill

see m see

mmm me,
mmm m mm
me mm m

m m m
m
m me m

mm m

Interactive Systems

• I • .=,.,

• • m •

e I a .¢,l.)C-I.-

• • • -':" [.) (" I'"

+

Figure 1: MDAS System Architecture

This paper presents the various software interfaces that have been developed in the

research prototypes. The mass storage interface is described in section 2, the database

interface in section 3, and a Web interface in section 4. A real-world example consisting

of a representative sample of environmental data extracted from the San Diego Bay

Environmental Data Repository is shown in section 5, and concluding remarks and

expanded data access scenarios are given in section 6.

2. Mass Storage interface (MSI)

We have developed a data movement interface between the Illustra object-relational

database and the NSL UniTree archival storage system. With this interface, an Illustra

433

client is able to transparently access data on UniTree through the Illustra server by
sending appropriate queries and commands.

2.1 MSI software features

Metadata describing the data set attributes are stored on the local disk under the database

control. Large objects (data items larger than approximately 8K bytes) are stored in

UniTree through the Illustra/UniTree interface. A large object is a defined data type that

is created using the Illustra DBMS facilities. Large objects stored in UniTree have all the

database properties of any Illustra object, such as transaction rollbacl_, crash recovery,

and multi-user protection. Unreferenced large objects can be removed from the database

by issuing the "vacuum" SQL statement. However, once created they cannot be

overwritten or appended to. Illustra supports a built-in data type for pointing to a large

object, called "large_object". When a user selects a large object from a table, the

returned value is a handle to the large object. The handle is a character string, such as

'1098723987211 ', which is used to define a unique data set within the UniTree system or
the local database disk.

From an Illustra client standpoint, except for the difference in access speed between local

disk and remote archive, "large objects" stored in UniTree behave exactly the same as

other "large objects". A user can use normal queries and commands to perform the

following tasks:

• Store and retrieve large objects between local disk and UniTree.

• Vac, mm unreferenced large objects stored in UniTree.

• "Dump", "restore" and "recover" "large objects" stored in UniTree.

To test the integration, "large object" files stored in UniTree were intentionally deleted

after a "dump". "Restore" and "Recover" were then used to restore the deleted files.

2.2 MSI software implementation

The implementation of the MSI is done by adding a storage type - "UniTree" to the

ORDBMS storage manager. This required creating a set of 35 new UniTree specific

access functions for operating on data sets. Example functions are open, close, read,

write, flush, abort, and synch. The design provides a one-to-one counterpart for each

UniTree access function with the corresponding function for accessing magnetic disk

storage.

434

Similar to the magneticdisk storagetypefunctions,theUniTreeaccessfunctionsdo not
makedirect I/O calls. InsteadtheyperformI/O throughVirtual File Descriptorfunctions
that call the libnsl.a and libnsltree.a UniTree libraries to interact with the UniTree Mass

Storage System. These libraries provide client processes with UNIX-like I/O access

functions as well as functions that are specific to UniTree such as file staging and

migration.

3. Database software interface

User functions have been developed to allow user-level control over the storage location

of the data sets within the integrated database/archival storage system. Note that the data

sets might initially be stored on the user's local disk, then stored as a large object on the

database system disks, or stored in the archival storage system. The responsiveness of the

system typically improves, the closer the cache level is to the user. Hence user control is

needed to optimize access performance.

Three DataBlade functions - myFileToLO(), LocalToUtree0 and UtreeToLocal0 have

been created to provide an easier way for an Illustra user to convert local files to large

objects on UniTree and to migrate objects between UniTree and database file systems. A

DataBlade is a mechanism to extend the Illustra server to manage new data types and

functions on these data types.

The DataBlade terminology comes from the following analogy: just like a general

purpose utility knife can be extended to perform different cutting jobs by inserting

special-purpose blades, so can the Illustra Server be extended to manage new data types

by snapping in the required DataBlade. Basically, these functions use the large_object

manipulation functions of Illustra to move large objects between database magnetic disk

and UniTree.

3.1 Data caching functions

1) myFileToLO (filename, flags, smgr) - used to copy a local disk file to a large object

stored in the archival storage system. This is the same as the FileToLO 0 function that

comes with Illustra with the exception that a parameter - smgr has been added to allow

users to specify the storage type for the large object.
Filename = The name of the file to be converted to large object.

Flags = the location of the file :

0 = the file is on the client machine.

1 = the file is on the server machine.

Smgr = the storage type where you want to store the large object.

0 = local disk.

2 = UniTree.

435

Thereturned value is the LO handle of the newly created object.

2) UtreeToLoeal(large_object) - used to migrate large objects from archival storage to
the database disk.

Large_object = The LO handle of the large object to be migrated.

The returned value is the LO handle of the newly created large object.

3) LoealToUtree(large_objeet) - It is used to migrate large objects from the database

disk to archival storage.

Large_object - the LO handle of the large object to be migrated.

The returned value is the LO handle of the newly created large object.

3.2 Examples

The following script illustrates the use of these three DataBlade functions. One could

interactively enter this script using the msql command shell. The text in bold corresponds

to the system's response. The large object handle value encodes the cache location of the

data set (I2... means that the large object actually resides in the UniTree archival storage

system, and I0... means that it is on the Illustra Server disk). Two data sets are stored in

the system; "fool" on UniTree and "foo2" on database disk. "fool" is then migrated

onto database disk, and "foo2" is migrated into UniTree.

First, create a table named LOTest.

create table LOTest

(

name text,

myLO large_object

);

.... The following command will store the large object in Unitree

insert into LOTest values ('fool',

myFileToLO ('filel', 0, 2));

one row inserted

.... The following command will store the large object to local

disks.

insert into LOTest values ('foo2',

myFileToLO ('file2', 0, 0)) ;

one row inserted

select * from LOTest;

............................

In_-o i_Lo I
............................

436

Ifool II21058261924991

Ifoo2 I_01087986113961
............................

.... The next 2 commands migrate the large objects between the

.... local disk and UniTree.

update LOTest set myLO=UtreeToLocal(myLO) where name='fool';

update LOTest set myLO=LocalToUtree(myLO) where name='foo2';

.... Illustra does not delete the old object automatically,

.... you need to vacuum it.

vacuum from LOTest;

so

4. Web software interface

A Web Server side C-language CGI (Common Gateway Interface) to Illustra was

developed. This program allows the user to build or specify existing SQL queries which

are then passed to the Illustra server. In essence the C interface program is a multi-

purpose program acting as a Web Client program (generating HTML) and also as an

Illustra DBMS client program (connecting remotely to the Illustra Server, issuing SQL

commands, collecting SQL command result sets, disconnecting from Illustra, extracting

information from the result sets and displaying it to the screen). The DBMS client part is

done by linking the code to the libmi, a Illustra C-programming interface library.

Other than the fact that the SQL commands which are sent to the server allow the use of

the new UniTree DataBlade functions, the Web so_ware interface is a standard interface

that one would find in most Web to DBMS integrations.

This section illustrates how one might be able to control this integrated environment on a

simple web example (section 4.1) and concludes with general considerations on how we

dealt with server time-out issues (section 4.2).

4.1 An integrated example

The WEB demo presented here can be executed from the following Web page:

http:/Iwww.sdsc.edu/projectslMassDataAnal/Demo_lllustra+Unitree/

437

Thefollowing explanationsaremeantto serveasanintroductoryguideto this webdemo.

Figure 2: Data Movement Integration demonstration screen

The demo presents the equivalent of a finite state machine. The three states are: Client,

DBMS, and Mass Storage. The demo illustrates data movement between a Client (Web

client, for example), a DBMS and a Mass Storage environment. Tokens representing data

objects are allowed to flow along the connecting arcs and are associated with state boxes.

There are two kinds of data tokens: Metadata and Datasets. A Dataset token is a file in

this demo and can appear in any of the three states. A Metadata token can only appear in

the DBMS state and represents the existence of a non-empty Illustra table. The actual

table contains two fields including a large_object field which is a handle to a large object

stored either in the DBMS state or in the Mass Storage state.

The initial state of the system indicates that a file resides on the client side. Context-

sensitive action buttons allow you to choose the data flow paths of interest. For example,

initially, one could load the file into the DBMS and have the file's final destination be on

the DBMS machine ("Copy to DBMS" ACTION button) or one could load the file into

the DBMS but have its final location be on the Mass Storage file ("Copy to Mass

Storage" ACTION button, as in Figure 2.). In either case a Metadata token would appear

on the DBMS state box, indicating the existence of a non-empty SQL table.

Allowed actions include "Copy", "Delete", and "Restart". Explanations of what was just

carried out appear on the bottom of the diagram as well as detailed instructions of what

the Illustra Metadata table's content is and how this operation was carried out. Features

including a "large object display" section are provided. This allows you to display the

contents of the file object directly from its current location (Client, DBMS, or Mass

438

Storage)directly streamingit to the Webbrowserwindow without evergoing through
any kind of intermediatestorage. This allows you in particular to verify that the file
objecthassuccessfullybeenmigratedto its newdestination.

While thedatamovementwindow is being updated and explanations are being provided,

the operations are carried out behind the scenes in real-time. This demo provides a

window of observation into the integrated "Web-Database-Mass Storage" environment

(Marciano [8]).

4.2 Dealing with time-outs

Time-outs are a delicate issue, given that all three servers (Web, Illustra, UniTree) have

their own default time-out thresholds. For example, an unsatisfied Web request will time

out after a preset amount of time, generating a message warning you that the server you

are trying to connect to might be temporarily unavailable. The following solutions are

first-level attempts at dealing with some of the more obvious time-out problems.

Access of large_objects stored in UniTree may hang for a long time because of the

following two reasons:

1. The UniTree server has died.

2. The large object file has migrated to tape. It could take 10 minutes or more to stage

a file from tape to disk.

There are at least three scenarios that need to be handled:

1) The Illustra server tries to connect to the UniTree server but the UniTree server is not

present. The current UniTree library causes the Illustra server to hang indefinitely or

almost indefinitely.

Our solution is to make the connection request time out in 30 seconds. An error

message is sent to the client when a time-out occurs.

2) The large object file has migrated to tape and it may take 10 minutes or more to

stage the file from tape to disk. This causes the Illustra server to block until the file is

staged.

Our solution is to make the open request time out in 2 minutes. A warning

message is sent to the Illustra client every 30 seconds to inform the user what has

been taking place. When the 120 second time-out is triggered, another error

message is sent to the client before failing.

439

3) The UniTreeserverdieswhentheIllustraserveris doing read/write operation to and
from UniTree. There is a 2 second time-out for read/write in libnsLa. In this case a

regular read/write error message is sent.

5. Environmental Data Testing

This section describes how the example interface in section 3.1 was extended to handle

real-world data on an existing environmental sciences application.

Please refer to the web location "http://www.sdsc.edu/_sdbay" for more information on

the San Diego Bay Project, an environmental data repository which contains chemical,

physical, and biological data for the bay of San Diego and which can be accessed over the

Web through a clickable map of the Bay. Currently, the project uses fiat files and only
emulates a database engine.

The integration effort has involved porting a representative subset of this environmental

data directly to the Illustra database and experimenting with clickable map search

scenarios that allow the data to be displayed over the Web and stored both in the local

store of the Illustra DBMS as well as on the UniTree mass storage store.

An example of a clickable map search interface for the Integrated San Diego Bay

prototype that we are developing is shown in Figure 3. After defining the appropriate

geographic box, an SQL query would be submitted to the Illustra server. The query

would take the user-specified bounding box and intersect it with the list of registered

bounding boxes stored as metadata with each image. The image itself is stored as a large

object that can reside either on the Illustra side or on the NSL UniTree side. To achieve

this result we wrote an Illustra SQL user-defined function (UDF) called GIS_overlap0:

create function GIS_overlap(arrayof(

returns boolean

as external name 'GIS_overlap.so'

language C;

real), arrayof(real))

"Databases such as Illustra provide a special 2D Spatial Data DataBlade with more

efficient "GIS_overlap"-like functions that one could use directly.

The clickable map interface (see Figure 3) allows the viewer to build a running list of

locations of interest in the bay and submit those to the search engine, which returns a list

of environmental files of interest, broken down into those three categories (physical,
chemical, and biological).

Clicking on the file name in RECORD 1 in Figure 4 would display the actual file (see

Figure 5). Note here that the file is directly streamed from NSL UniTree to the Web
browser window.

440

As far as the user is concerned, this is fairly transparent, except when a file has been

totally migrated off to tape, and longer waiting periods occur. This flexible scheme

allows us to choose from a hierarchy where specific data items might reside on the Web

Server's local disk, on the DBMS's disk, or all the way out on the Mass Storage area,

which itself allows pre-caching on the host RS-6000 disk. We are currently evaluating

where to store this environmental data in the storage hierarchy.

Figure 3: Clickable Map Interface

441

Figure 4: SQL query results

442

Figure 5: Sample San Diego Bay Repository environmental data set

6. Expanded data access scenarios

The integration of database, archival storage and Web technology promises to facilitate

the manipulation of large data sets and large collections of data sets. One goal is to

enable data analysis on terabyte-sized data sets retrieved from petabyte archives, at an

access rate of 10 GB/sec. Current supercomputer technology supports a 1 GB/s access

rate to 1 terabyte of disk. For a teraflops supercomputer with 10 TB of disk, data rates on

the order of 10 GB/s will be feasible. This will require, however, support for parallel I/O

streams, and support for striping data sets across multiple peripherals. Fortunately, the

software technology to support third party transport of data sets across parallel I/O

streams is being developed in the HPSS archival storage system (Coyne [9], Watson

[10]). Data redistribution mechanisms for the parallel data streams are being standardized

as part of the MPI-IO (Snir [11, 12]) effort. The expectation is that the initial usage

prototypes described above can be extended to support supercomputer applications that

analyze arbitrarily large data sets.

443

A second goal is to provide ubiquitous access to scientific data sets. Scientific

applications should be able to access data and cache it locally no matter where the data is

originally located. Some of the key requirements of such a system are:

• heterogeneous data sources: Possible sources for data include databases, archives, file

systems, and anonymous FTP servers on the Web. An API is needed that will allow an

application to specify a data source, establish a connection, select a data set based on

requested attributes, and then cache the data set locally.

• parallel I/O: Because of the size and number of data sets that can be accessed tbr

analysis, mechanisms for redistribution of data sets from multiple peripherals onto

parallel compute nodes are needed. The emerging MPI-IO standard will be the foundation

for the API we are constructing.

• distributed computation support: Data sets may be distributed to multiple platforms.

for analysis by methods that are retrieved from ORDBMS. Support for distribution of

computation objects is needed.

• third-party data access: If both data sets and computational methods are distributed to

a remote platform, mechanisms are needed to allow the method to access a temporarily
cached data set.

• third-party authentication: Similarly, methods and data sets need to validate their

interoperation through an authentication mechanism that is independent of the local

operating system.

The end result is a data handling environment where the focus is on moving and caching

data rather than moving and distributing applications. The operating system at each

server or compute platform controls use of the local resources. The data handling

environment provides a higher-level infrastructure that supports remote access,

authentication, and data movement.

An example of this environment is shown in Scenario I. A user makes a request of a

remote system for a particular data set. The process consists of retrieval of an applet

stored on the local disk of the system, which is then used to access an ORDBMS

database. The data object is retrieved from the archive that is linked to the database.

A prototype of this system based on a Java interface to the Postgres95 ORDBMS is being

developed. Interfacing Java to Postgres95 required porting the Postgres95 client interface

444

library to Java. This enables a Web client that has Java capabilities to interact directly

with the Postgres95 DBMS. Part of this work has been inspired by a prototype developed

by John Kelly at the Blackdown site (ftp://substance.blackdown.org / pub / Java / Java-

Postgres95). In particular, we have added support for large objects, a functionality that

was not provided earlier.

User [Application]

SP-2

3. 2. 1.

Postgres95

I

Java Web

Server

I UniTree

Scenario I: Pulling out applets and large object data

An improvement to this architecture is shown in Scenario II. The applet is stored as a

method within the ORDBMS. The request to the Web server results in the extraction of

the applet out of the archival storage system, and its transmission to the remote user. The

applet is then executed on the remote system to access data objects through the

ORDBMS system.

445

User

SP-2

----_[UniTree

Java Web

Server

Scenario II: Pulling out large object applets

A further extension of the system is shown in Scenario lIl. The Web server interface is

directly integrated into the ORDBMS. A request for analysis of a data object results in

both the data object and the associated method being moved to a compute platform. To

provide data privacy, the data set may be encrypted. The encryption key is sent to the

method, thus providing both third-party authentication and mechanisms for controlling

third-party data access.

Cray [_ Key [Workstation

Postgres95

I

Scenario III: Third-party data access and third-party authentication

446

Finally, as shownin Scenario IV, the above capabilities can be implemented directly

within I/O libraries that are used by a scientific application. The application then directly

accesses the remote database/archival storage system to retrieve a data set. Data

subsetting and redistribution can be provided by application of appropriate methods to the

data set on the compute platform which supports the ORDBMS.

Cray]

DB2

I

Scenario IV: Supercomputer analysis of scientific data sets

Acknowledgments

This work was supported in part by DARPA grant F19628-95-C-0194 on Massive Data

Analysis Systems, and in part by the NSF cooperative agreement ASC-8902827 for the

San Diego Supercomputer Center.

References

1. R. W. Moore, "High Performance Data Assimilation," Proceedings of the Committee

on Information and Communications R&D (CIC) of the National Science and

Technology Council, July, 1995.

http ://www.sdsc.edu/Enabling T ech/InfoServers/HP D A.html

447

2. R. W. Moore,"DistributedDatabasePerformance,"SDSCReportGA-A20776,
(December1991).

3. TheDesignof a ParallelDataHandlingSystemfor ScientificDataManagementand
Mining, ReaganW. Moore,RichardFrost,Mike Wan,JoeLopez,RichardMarciano.
Submittedto PDIS,December1996,DaytonaBeach,Florida. http://www.sdsc.edu/

EnablingTech / InfoServers / parallel-mining.html

4. Illustra - Illustra Information Technologies Inc, "Illustra User's Guide",1995.

5. M. Stonebraker et al., "The Implementation of Postgres", [EEE Transactions on

Knowledge and Data Engineering (March 1990).

6. M. Stonebraker and G. Kemnitz, "The POSTGRES Next-Generation Database

Management System," Communications of the ACM, 34 (10), 78-92 (October 1991).

7. Archival Storage Research at SDSC, http://www,sdsc.edu/EnablingTech/archstor.htnll

8. Richard Marciano, "High Performance Computing Web-Based Simulation

Environments", High Performance Computing 96, New Orleans, LA, April 8-11, 1996.

9. R. A. Coyne, H. Itulen, and R. W. Watson, "The tligh Perfbrmance Storage System,"

Proc. Supercomputing 93, Portland, IEEE Computer Society Press (November 1993).

10. R.W. Watson and R.A. Coyne, "The Parallel I/O Architecture of the High-

Performance Storage System (HPSS)", the 1995 IEEE MSS Symposium.

11. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The

Complete Reference. MIT Press, 1995.

12. Marc Snir, Peter Corbett, Dror Feitelson, and Jean-Pierre Prost. Draft Document for

a Parallel MP! IO Library. (Draft document presented for informal consideration in MPI-

2 standardization process), January 14 1994.

448

