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ABSTRACT

An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations
is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess
temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error
has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small
changes in climate.

The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The
algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination
of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield
the deep-layer mean temperature. Three constraints were used in deriving the algorithm: 1) the sum of the
coefficients must be one, 2) the noise of the product is minimized, and 3) the shape of the approximated
averaging kernel is well behaved. Note that a trade-offbetween constraints 2 and 3 is unavoidable.

The algorithm can also be used to combine measurements from a future sensor [i.e., the 20-channel Advanced
Microwave Sounding Unit (AMSU)] to yield the same averaging kernel as that based on an earlier sensor [i.e.,
the 4-channel Microwave Sounding Unit ( MSU )]. This will allow a time series of deep-layer mean temperatures
based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace
the MSU in 1996.

1. Introduction

For long-term monitoring of temperature change,

deep-layer mean temperatures derived directly from

satellite observations of upwelling radiance have an

advantage over traditional operational temperature re-

trievals. The advantage is that unlike operational re-

trieval algorithms (Eyre 1989; Fleming et ai. 1988;

Goldberg et al. 1988; Hayden 1988) an algorithm for

deriving deep-layer temperature directly can be made

independent of a first guess of the ambient temperature

profile. Operational retrievals are dependent on a first

guess because the satellite observations alone do not

have the vertical resolution to yield pointwise temper-

atures, which are needed for forecast models. Unfor-

tunately, the error between the first guess and the true

ambient condition is systematic and, furthermore, the

error cannot be entirely removed by the retrieval pro-

cess ( Thompson and Tripputi 1994 ). Since significant

climate change on a global scale can be on the order

of only tenths of a degree, temperature products in-

dependent of a first guess are a step in the right direc-
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tion. First guess independency provides certainty that

any observed trends in the data are not due to errors

in the first guess, which could very well have its own

interannual variation. Deep-layer mean temperatures

are appropriate for long-term monitoring of temper-

ature trends because nearly all climate models have

indicated that climate changes will occur over deep

layers and not at isolated levels (Mitchell el al. 1990).

The utilization of measurements from the Micro-

wave Sounding Unit (MSU), on board NOAA's op-

erational polar orbiting satellites, has gained much rec-

ognition during the past few years as a measure of deep-

layer mean temperature for long-term monitoring of

climate change (Spencer and Christy 1992a,b, 1993:

Spencer et al. 1990). Because radiance in this spectral

region is extremely linear with respect to temperature,

the observations can be interpreted as deep-layer mean

temperatures for the layer defined by the weighting

function. This is not true for the infrared spectral re-

gion, where temperature and radiance can be very

nonlinear. Microwave observations are usually ex-

pressed in brightness temperature, which can be ob-

tained from radiance using the inverse form of the
Planck function.

The MSU has four channels measuring outgoing ra-

diation at 50.31, 53.73, 54.96, and 57.95 GHz. Channel

1 (50.31 GHz) has a large surface component and is

generally not used for deriving temperature due to un-
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certainty in the surface emissivity. The first MSU was
launched in 1979, and to date, its replacements have
provided nearly complete daily coverage of the earth
by scanning across the orbital track at _+_47.35 degrees
about nadir at approximately 9.47-degree increments.
The MSU's six view angles results in the projection on
the earth of i ! fields of view (FOV) for each scan line.

The weighting functions for channels 2 through 4 at
each of the six view angles are given in Fig. 1. The

highest peaking group of weighting functions is for
MSU channel 4, followed by MSU channels 3 and 2.
The higher peaking weighting functions in each channel
grouping are associated with larger off-nadir angles.

Spencer and Christy (1992a), used MSU channel 2
(53.73 GHz) brightness temperatures, adjusted to na-
dir, to monitor temperature for the layer defined by
the channel 2 weighting function on a 2.5 ° gridpoint
scale with a monthly precision of better than 0.1 °C in
the Tropics and to better than 0.2°C at high latitudes.
These estimates of precision were arrived at through
intersatellite comparisons and in comparisons with ra-
diosondes. They conclude that "the satellite precision
approaches that of individual radiosonde stations in
their ability to measure monthly temperature anom-
alies .... " In terms of monthly, zonally averaged tem-
peratures, they estimate their precision is of the order
of 0.01 °C over a 10-year period.

A deep-layer mean temperature from a single mi-
crowave observation has the equivalent vertical reso-
lution of the channel. Improved vertical resolution can
be obtained by combining different channels. The layer
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is now defined by the averaging kernel, which is simply
derived from a linear combination of the weighting

functions ( using the same coefficients used to combine
the measurements). To remove the stratospheric com-
ponent from MSU channel 2, Spencer and Christy
(1992b) combined channel 2 measurements at different
viewing angles to create a more narrow averaging ker-
nel, shown as the dotted curve in Fig. 1, than the raw
nadir-viewing weighting function. It is interesting to
note that the raw channel 2 time series for the period

1979-90 showed a global warming trend of only
0.015°C per decade, while the combined-angle ap-
proach yielded an increased global warming trend of
0.032°C per decade. By combining different viewing
angles, Spencer was retrieving additional information
that a single channel at a common view angle was un-
able to provide. The only a priori information required
was knowledge of the weighting functions, which for
the MSU is well known and can be derived from a

standard atmosphere. Because the MSU weighting
functions are very weakly dependent on temperature
and moisture, a fixed set of coefficients can be used
globally to derive the deep-layer mean. This is not true
for infrared measurements; their weighting functions
generally have a much greater dependency on the am-
bient atmosphere.

Spencer did not use an algorithm to determine the
coefficients for his lower-troposphere deep-layer mean
temperature. He used trial and error by visual inspec-
tion of the averaging kernel to determine the appro-
priate coefficients. This technique is acceptable when
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considering a very few number of channels or angles.
However, as the number of different channels and view

angles increases, the determination of the coefficients
to yield a desired averaging kernel becomes a formi-
dable task. A quantitative retrieval algorithm is re-
quired to optimally solve for the coefficients. The coef-
ficients need to be optimal in the sense that the derived

averaging kernel is well behaved and that size of the
coefficients are constrained so that the noise of the

product does not become large.
The emphasis of this paper is to present an algorithm

to derive deep-layer mean temperatures from micro-
wave observations within the band 50-60 GHz. The

algorithm, derived in section 2, computes the coeffi-
cients needed to combine a set of channel weighting
functions into a desired deep-layer mean averaging
kernel. The deep-layer mean temperature is obtained
by simply applying the coefficients directly to the ob-
served brightness temperatures. Examples of averaging
kernels from the MSU are given in section 3. We will
also demonstrate that the MSU temperature time series
that Spencer pioneered can be continued with the next
generation of microwave sounders--the 20-channel
Advanced Microwave Sounding Unit (AMSU)
(Fischer 1987). The first AMSU is expected to be
launched in 1996. This will be accomplished by con-
straining the averaging kernel associated with the set
of measurements from the AMSU instrument to be

approximately equal to the averaging kernel associated
with the set of measurements from the MSU instru-
ment.

2. Algorithm

Our algorithm for computing deep-layer mean tem-
peratures and its corresponding averaging kernels is a
specialized adaptation of the Backus-Gilbert theory
discussed in Conrath (1972). The Conrath paper dis-
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FIG. 4. Comparison of the boxcar-derived averaging kernel, based
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averaging kernel (doned curve). Also shown are the coefficients, the

starting and ending levels and pressures of the boxcar function, the

sum of the square of the coefficients, the noise of tile product, the

value of the gamma parameter, the sum of the coefficients, and the

integrated difference between the shape constraint and the derived

averaging kernel.

cusses the trade-off between instrumental noise and

the vertical resolution of the averaging kernel for a given
atmospheric level and set of measurements. The der-
ivation of our algorithm begins with the same basic
definition of the averaging kernel used by Conrath.
However, our approach differs from Conrath with re-
spect to application and constraint. Conrath's con-
straint is to derive coefficients that, when applied to
the weighting functions, attempt to reproduce the ideal
dirac delta function. In other words, he is trying to
obtain the highest-resolution averaging kernel possible,
cognizant of the effects of instrumental noise, for a

particular level in the atmosphere. This approach is
very useful for comparing the resolving power of cur-
rent and future sounders. On the other hand, our con-

straint is to yield coefficients that will reproduce a pre-
specified averaging kernel. Our averaging kernel, unlike
Conrath's, is not associated with a given level. Instead
it is "predesigned" to correspond to a desired deep-
layer mean temperature t_,derived from a linear com-

bination of n measured brightness temperatures 7",.
That is,

O. = cl T1 + • • • + c,, T,,. ( I )

where the c, are the coefficients of the linear combi-
nation.
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a. Algorithm constraints

To optimize the coefficients in ( 1 ) for a given at-
mospheric layer and a given set of channels and viewing
angles, three constraints have been imposed, which now
are explained in detail. The first constraint requires
that the sum of the coefficients is unity. Since tL of( i )
can be interpreted as a weighted average of brightness
temperatures, the weights must be normalized by con-
straining the coefficients to have sum one; that is,

ct + ''' +c.= 1. (2)

Thus, if all n of the T, in ( 1 ) are identical, then (2)
guarantees that tL will have that same value. Since the
7",are normalized so that a constant shift of one degree
in the temperature profile will result in a shift of one
degree in the Ti, this constraint will ensure that tt. has
the same property.

The second constraint addresses the problem that
each of the brightness temperatures used in ( I )carries
with it a measurement error. Let ¢2 be the variance of
the error associated with 7", and let a 2 be the variance
of the total error associated with tt. It is well known

that with independence of the individual errors the re-
lationship between the total error variance and the in-
dividual error variances is given by

= c + ... + (3)

Consequently, to minimize the magnitude of cr2 we
require as a second constraint that the sum of(3) be
a minimum.
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For the third constraint one must determine the

coefficients c, of( 1 ) in such a way that the deep-layer
mean averaging kernel agrees with the desired averaging
kernel as close as possible. The manner in which the
averaging kernel is defined is through the weighting
functions w,(x) associated with the ith channel and
which are the components of the kernel function in
the radiative transfer equation. Thus, the layer over
which tL of( 1 ) is defined is given by the so-called "av-
eraging kernel," given by the linear combination

a(x) = cl w, (x) + • • • + c_ w, (x). (4)

Equation (4) follows directly from ( 1 ). Note that x
can be any monotonic function of the atmospheric
pressure p. The purpose in making w,, a function of x,
instead of p directly, is that by judiciously choosing
the transformation from p to x, one can shape the

weighting function to suit specific needs. It also has
the property that the sum of vvi(x) over the range ofx
is unity. Because of the first constraint, the sum ofa(x)
over the range of x is also unity. The values of the
algorithm-derived averaging kernel represent the true
weights of the contribution of the unknown tempera-
ture profile to t_.

Note that the first two constraints were also used by
Conrath ( the first for a different reason ). It is the third

constraint and how we treat it that provides the major
relevance of this work.

b. Coc[]_cient determination

Determination of the coefficients in the linear com-

bination ( I ) of brightness temperatures, having the
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three properties discussed above, is now considered.
We begin by letting e and T be the vectors of coefficients
and brightness temperatures in ( 1 ), respectively, and
define the n-dimensional vector

u = [l, ..., l]L (5)

where the transpose superscript T is used because all
vectors are assumed to be column vectors. Then ( 1 )
can be written

tl = e T T. (6)

and (2) can be written

u T c = 1. (7)

If we let

O = diag(a_, --., a_) (8)

be an n-dimensional diagonal matrix whose diagonal
elements are those indicated, then (3) can be written

a 2 = c_Dc. (9)

Furthermore, if we let W be a matrix of weighting
functions with dimensions channel (n) by level (j),

then the averaging kernel a(x) of (4) can be written
as the J-dimensional vector

a = wre. (10)

Next, a shape vector b ofj elements (i.e., the desired
averaging kernel) is defined to constrain the shape
of the resulting averaging kernel. The coefficient

vector c is determined in such a way that the shape
of a, given by (10), approximates the shape vector
as closely as possible. To do this, we minimize the
squared distance between the vectors a and b, while
at the same time satisfying the constraint (7) and
minimizing (9).

We now are ready to determine the coefficient vector

c by optimizing our solution with respect to the three
properties just discussed. This is accomplished by first
establishing a cost, or penalty, function F, which in-
corporates all three constraints. In its most general form
the cost function is

F(c) = (WTe --b)TS(WTc - b)

+ vcTDc + 2X( 1 -- uTe), ( 11 )

where X and 3' are Lagrange multipliers and S
is an arbitrary symmetric, positive definite (usu-
ally diagonal) matrix of dimension J × J. Note
that the three terms on the right-hand side of ( 11 )
represent, respectively, the shape constraint of (10)
minus the shape vector b, the error variance con-
straint (9), and the coefficient normalization con-
straint (7).

To find that vector c, which minimizes F, we dif-
ferentiate F with respect to e and equate the result to

zero. This yields

2WS (WTc -- b) + 23"Dc - 2_u = 0, (12)

which implies that

c=(WSW r+TD) _(WSb+_.u), (13)
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where the inverse matrix is well defined because W has
dimensions n × J, with n < J and rank n, and D and

S are positive definite.
One solves for the scalar 9_by multiplying (13) by

u v and using (7) to obtain

;_ = [1 - u_(WSW T + 3"D) -I (WSb)l/

[IIT(WSW T -}- 3'D)-_ u]. (14)

When (14) is applied to ( 13 ), one acquires the desired
coefficient vector c. At this point, all the quantities in
( 13 ) and (14) are known except the scalar 3' and the
matrix S. These two quantities are used to provide the

averaging kernel with the proper shape.

c. Shaping the averaging kernel

Our ability to accurately fit an averaging kernel vec-
tor of (10) to a given shape vector is limited by the
number of channels and viewing angles available to
us. Ultimately, one would like to fit a boxcar function,
since it represents a uniform average of the layer in
question. Unfortunately, the limited number of chan-
nels available to us prevents us from reproducing the
edges of the nonzero portion of the boxcar function as
well as the fiat portion. Generally, the best one can do
is to derive a shape similar to a narrowed weighting
function. Other shapes are easier to fit. For example,
in the next section we will demonstrate the use of

Gaussian functions as well as weighting functions of
different sensors. Note that it is immaterial for climate

and global change studies that the shape of the derived
averaging kernel is not uniform (i.e., flat) over the layer
it defines. All that is required is that its shape be known
with great accuracy and that the layer in question is
well defined (i.e., the boundaries of the layer are clearly
delineated with little or no energy leakage contribution
from outside the boundaries). The algorithm-derived
averaging kernel will display a good deal of "ringing"
if the shape function is too narrow (i.e., the boxcar is
too narrow or, in the case of a Gaussian function, the
value of the standard deviation is too small). Ringing
is the undesirable phenomenon that, instead of having
a fiat zero response outside the nonzero portion of the
shape function, one has a set of rapidly decaying pos-
itive and negative oscillations. There are three mech-
anisms that allow one to control ringing: First, the
shape function being fitted cannot have its width too
narrow; it must have its width at least comparable to
the full width at half maximum (FWHM) of the
weighting functions. The other controlling variables
are the scalar 3"and the matrix S.

The most important thing to realize about 3' and S
is that they play competing roles (i.e., at all times a
trade-off situation exists between them). To see this,

consider separately the limiting cases where these
quantities are set to zero. First, when 3" = 0 in (13)
and (14), the error variance constraint disappears; in
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FIG. 8. Averaging kernels for the adjacent field of view deep-layer

mean temperatures. Plot B shows the nominal averaging kernel ob-

tained by tilting weighting functions associated with either beam po-

sitions 4 and 5 or beam positions 7 and 8 (view angles 3 and 4). Plots

A and C-E show the fit of the averaging kernels based on lhe re-

maining pairing of beam positions to the nominal averaging kernel.

this case the fit to the desired shape is most realistically
(i.e., optimally) determined, subject of course to the
required coefficient normalization constraint. To see
the role of the matrix S in the limiting case 3" = 0,
assume the usual practical situation where S is a di-
agonal matrix. Assigning a relatively large value to the
ith diagonal element of S, will cause the ith point of
the averaging kernel to fit the shape vector better at
the expense of the other points in the fit. This is equiv-
alent to saying that the ith element of the residual vec-
tor WTc - b in ( I 1 ) will be relatively smaller. On the

other hand, if S is set equal to the identity matrix, all
the points will be fitted to the shape vector with equal
weight.

While the shape-vector fit is best when 3' = 0, the
coefficients in the vector c of (13) no longer have a
constraint on their size, and so a2 in (9) can grow
without bound. Conversely, assume the other limiting
case in which S is the matrix having all elements zero
(i.e., S =- 0). In this case, the shape constraint disap-
pears and so the error a 2 of(9) is minimized in ( 1 i ).
If the errors of each element in T are identical, D in

(8) becomes the identity matrix multiplied by a con-
stant and the coefficient for each channel is 1/n. In
other words, each channel has equal weight. But now
there is no control on the shape or size of the averaging
kernel. This also is an untenable situation. Clearly then,
neither S nor 3' can be zero; there must be a trade-off
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between their magnitudes in order to achieve a satis-
factory balance between an acceptable averaging kernel
shape and an acceptable error level in the deep-layer
mean temperature.

The best strategy we found when using a boxcar
constraint is to define S as a diagonal matrix with values
of zero in the nonzero elements of the boxcar and val-
ues of one elsewhere. This will tend to force the aver-

aging kernel to be zero outside the boxcar. For a

Gaussian function, we found that simply defining S to
be the identity matrix produced desirable results. The
reason S is not critical for a Gaussian function is prob-

ably due to the smooth transition to zero from the
Gaussian's maxima. Figure 2 demonstrates the influ-
ence of the "y parameter for fitting a Gaussian shape
constraint (dashed curve) from MSU channels 2, 3,

and 4 weighting functions at all view angles. There are
six averaging kernels for six different values of 3'. The
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(dotted curves) weighting functions.

3' parameter was given a value of unity to produce the
curve with the least Gaussian shape and then reduced
for each of the remaining five permutations by an order
of magnitude. The curve best approximating the
Gaussian used a value of 1.0 × l0 -7 for 3'. Equation
(3) was used to compute the noise of the deep-layer
mean associated with each averaging kernel. In this
study, the noise for all channels is always assumed to
be 0.33 K. The deep-layer mean temperature noise as
a function of y as well as the sample size required to
reduce the noise to 0.1 K are shown in Fig. 3 (since
the noise is assumed to be random, the noise will be

reduced by the square root of the sample size). Clearly,
there is a trade-off between the goodness of fit and the
product noise. The best fit cannot be used because the
noise is too large. The averaging kernel associated with
the lowest noise is too broad. A good compromise is

the averaging kernel associated with a 0.0001 value for
y, because 1 ) the noise is at an acceptable level, 2) the
shape is similar to the shape constraint, and 3) there
is no ringing.

There is no exact recipe to derive the optimum av-
eraging kernel and its associated coefficients. The fol-
lowing is the methodology that we use. First, begin by
selecting a desired width and mean height for the shape
function. By trial and error we found that 0.001 is a
good maximum value for 3'. If ringing occurs, gradually
widen the function until the ringing subsides. Then

fine tune 3' by reducing it until a more desirable shape
of the averaging kernel is achieved. Remember, if 3' is
chosen too small, the elements of the coefficient vector

of(13) will be too large, which will amplify the total
error a: in (9). The user would need to decide an ac-
ceptable error level. Note that if the deep-layer means
are averaged over large temporal and/or spatial do-
mains, then some allowance can be made in the in-

dividual error level since averaging reduces the noise
by the square root of the sample size.

3. Application

In this section, we will demonstrate the use of this
algorithm to derive MSU averaging kernels of deep-
layer mean temperatures that we believe would be op-
timal for climate studies. AMSU averaging kernels will
also be shown; however, the emphasis will be to dem-
onstrate that AMSU measurements can be used to
continue time series based on MSU measurements.

a. MSU averaging kernels

The Spencer and Christy (1992b) averaging kernel
shown in Fig. 1 was produced by combining MSU
channel 2 weighting functions associated with view an-
gles 3 through 6. The Spencer product is widely known
as MSU-2R. The MSU-2R averaging kernel was com-
puted using coefficient values of 2.0 for angles 3 and
4, and -1.5 for angles 5 and 6. The first experiment
with our algorithm was to adjust the size of the boxcar
and the 3' parameter so as to yield an averaging kernel
most similar to the one produced by Spencer. As was
discussed in the previous section, there are not enough
channels to reproduce a boxcar. Of course, for global
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FIG. I I. Actual and AMSU-derived MSU-2R averaging

kernels for surface emissivity of 1.0.

change purposes the averaging kernel does not have to
be a boxcar; all that is necessary is for the averaging
kernel be known. Our averaging kernel is shown along
with Spencer's (dotted curve) in Fig. 4. These averaging
kernels are similar. The difference is that one was de-

termined subjectively and the other quantitatively using
the algorithm of section 2. The numerical values in
the columns labeled msu2, msu3, and msu4 are the
derived coefficients (i.e., the ci). Each channel is as-
sociated with six coefficients, one for each view angle,
beginning with view angle 1 (nadir). Hence, there is a
potential maxima of 18 channels. It is seen that the
only nonzero coefficients are at view angles 3 through
6 for channel 2. Also shown in the figure is the sum of
the square of the coefficients, the noise of the product,
the required sample size to reduce the noise of the
product to 0.1 K, and the integrated difference in de-
grees Kelvin. The integrated difference is scalar product
of the difference between the shape vector and the de-
rived averaging kernel vector and a standard midlati-
rude temperature profile (vector). Note that the shape
constraints and weighting functions used by the algo-
rithm are defined at 100 levels equally spaced in log
pressure.

The advantage of using an algorithm to objectively
determine the coefficients becomes quite clear if instead

of using four measurements to produce an averaging
kernel, all 18 effective channels are considered. For
example, the averaging kernel given by the solid curve
in Fig. 5 was obtained by using all view angles of MSU
channels 2, 3, and 4, and hence all coefficients are non-

zero. This kernel is more desirable for monitoring tem-
perature in the lower troposphere than the other av-
eraging kernels shown in Fig. 4 since there is far less
signal from the surface.

As participants in the NOAA/NASA Pathfinder
program (Ohring and Dodge 1992), we are planning
to construct time series of two types of deep-layer mean
temperatures covering the entire MSU archive. We will
provide additional atmospheric layers to the ones given
by Spencer and colleagues. The first type is referred to
as scan line products, since observations from all view
angles are to be used simultaneously. For the second
type, observations from adjacent FOVs are used. The
remainder of this section is devoted to a discussion of
these two product types.

The scan line products are derived from using
Gaussian shape constraints. There will be a total of six
different deep layers, their averaging kernels are shown
in Fig. 6. The values of the product noise associated
with the six averaging kernels beginning with the high-
est peaking one are 0.89, 1.36, 0.76, 1.13, 0.62, and
0.81 K. Each Gaussian function had a standard devia-

tion of six pressure levels, beginning at pressure level
67 ( 100 mb) and were separated by six levels. The use
of Gaussian curves for the shape vector has the advan-

tage that one can better dictate the location and shape
of the derived averaging kernel. Because of the limited
number of channels on the MSU sounder, averaging
kernels confined solely to the stratosphere cannot be
provided. Note that these averaging kernels are rela-
tively narrow in comparison with the raw weighting
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FIG. 12. Example of nadir Gaussian-derived AMSU averaging

kernels in the troposphere and lower and upper stratosphere.
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functions and could have been centered anywhere in
the troposphere without excessive ringing.

The scan line product's poor horizontal resolution,
which is on the order of 1100 X 150 km 2 (the mean
area of scan line projected on the earth on either side
of nadir), results in relatively poor sampling. To mon-
itor small temperature fluctuations, these products will
need to be averaged over relatively large spatial and
temporal domains to reduce the product noise. One
suggestion is to average over 10° latitude bands and
for time intervals on the order of a month. The sample
size will be about 10 000 (assumes 2 products per scan
line, 220 scan lines per orbit, 14 orbits per day). The
single largest product noise of 1.36 K will be reduced
to a precision of 0.0136 K.

For regional climate monitoring the horizontal res-
olution of the product needs to be much smaller. To
do this we want to derive products that are ideally based

on a single FOV. In other words, I 1 products for the
11 FOVs along the MSU scan line. There are different
ways to do this. To apply the same set of coefficients
to all view angles, the off-nadir measurements need to
be adjusted to look as if they were observed at nadir
(i.e., limb correct the measurements). For example,
one can collect a large ensemble of measurements for
all FOVs and compute regression coefficients using the
measurements observed at a given FOV as the predic-
tors and measurements observed at nadir as the pre-
dictands (Wark 1993). The MSU-2 and MSU-4 time
series given in Spencer and Christy ( 1992a, 1993 ), re-
spectively, were limb corrected.

Our approach is not to use a statistical method to
limb correct, since we believe it is undesirable to adjust
the measurements based on historical data. An attempt

was made to physically limb correct the MSU by using
the algorithm to compute coefficients for combining
weighting functions at a particular off-nadir view angle
to fit the nadir-viewing weighting functions. Unfortu-
nately, this technique did not work well at the larger
view angles. We also tried to compute a different set
of coefficients for each view angle in order to fit a com-
mon averaging kernel. However, a combination based
on only three channels was insufficient to maintain the
same averaging kernel along the scan line. The solution
was to use information from a pair of adjacent FOVs,

which provides a total of six weighting functions to fit
the desired averaging kernel. To better visualize this
approach, the MSU scan line geometry and the adja-
cent FOVs used to yield the ten deep-layer mean tem-
perature products across each scan is given in Fig. 7.
So instead of a two products per scan line, this tech-
nique yields ten products. The nominal averaging ker-
nel (dotted curve) is shown in plot B of Fig. 8. This
averaging kernel was derived from a boxcar constraint
and used weighting functions from view angles 2 and
3, which corresponds either to field of view 4 and 5 or
7 and 8. The nominal averaging kernel was then used
as a shape constraint for other angular combinations
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FIG. I 3. Oaussian-derived AMSU averaging kernels

using channels 4-14 at all view angles.

given in plots A and C-E of Fig. 8. Notice that the fit
is good for all combinations with the exception of the
largest off-nadir angles. However, even though the in-
tegrated difference for that combination is 2.0 degrees
we found that the frequency distribution of each of the
ten products is very similar and they differ only by an
offset. For each of the ten products its mean condition
will be subtracted when the data is analyzed. Hence,
the bias for a given combination is removed.

b. Continuing the MSU time series with AMSU

Nadir-viewing weighting functions for AMSU chan-
nels 4 through 15, along with those from the MSU
(dotted curves), are given in Fig. 9. Note that for
AMSU there is actually no nadir position, the nearest
off-nadir angle is 3.33 degrees. Of utmost concern is
the ability to continue the record of tropospheric tem-
perature trends established with MSU channel 2 and
other linear combinations of the MSU channels. The
AMSU channel that is most similar to MSU channel
2 is AMSU channel 5 (53.596 GHz). However, this
channel is slightly more sensitive to the lower atmo-
sphere and has a larger surface contribution, thereby
producing a different signal. A change in the deep-layer
mean temperature weighting function could conceiv-
ably produce a spurious signal in the time series based
solely on MSU channel 2 and AMSU brightness tem-
peratures.

The question to be answered is can this algorithm
reproduce the MSU channel 2 weighting function from
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the AMSU channel weighting functions? The answer
to this question is yes. In Fig. 10 there are four curves.
The curves to the left are the actual MSU channel 2

(solid curve) and the AMSU reconstructed MSU
channel 2 (dotted curve) for a surface emissivity of
1.0. The other set of curves is for an emissivity of 0.5.

The shape is different because the emissivity enters into
the computation of the weighting functions. Only the
"nadir" AMSU channels 4 through 7 weighting func-
tions were used in deriving the coefficients. The selected
emissivities are the extremes values for the surface

emissivity in the 50-GHz band. The actual and recon-
structed MSU channel 2 weighting functions are vir-
tually identical. It is very important to note that the
coefficients, based on an emissivity of 1.0, were used
for reconstructing the weighting functions for an emis-

sivity of 0.5. In other words, the reconstruction of MSU
channel 2 is insensitive to surface emissivity, which is
very important since the estimation of surface emis-
sivity would add uncertainty to the final product. By
using the appropriate y, the integrated error between
the real and reconstructed MSU channel 2 weighting
function can be forced to be virtually zero. If we did

nothing and simply used AMSU channel 5 to continue
MSU channel 2, there would be a sizable airmass de-
pendent bias. For a summer midlatitude atmosphere,
the bias would be about 5.6 K. The linear combination

of AMSU to yield an equivalent MSU channel 2 mea-
surement is

7m_,2 = -0.0488T_ .... 4 + 0.932T, m_o5

+ 0.20g/amour -- 0.466T, .... 7. (15)

Spencer's MSU-2R product can also be reproduced
from the AMSU. AMSU channels 4 through 8 using
10 angles ranging from 18.66 to 49.55 degrees were
combined to fit the MSU-2R averaging kernel. The
AMSU equivalence of MSU-2R is given in Fig. 11.
The coefficients are obtainable from the author.

Even though the accuracy of fitting AMSU to MSU
appears to be high, the underlying assumption is that
the weighting functions are known exactly. In practice,
we know this is not true. Therefore, in conjunction
with this algorithm, overlap of MSU and AMSU will
be needed to adjust for the component that is left over
after the "known" physics have been accounted for.

The AMSU by itself will be a very important sensor
for monitoring temperature trends throughout the at-
mosphere. Its numerous channels will enable one to
monitor temperature in three important regions of the
atmosphere: the upper and lower stratosphere and the
troposphere. Figure 12 shows examples of AMSU av-
eraging kernels in these three regions. All were derived
from initial Gaussian curves using only nadir mea-
surements. Narrower averaging kernels can be achieved
by utilizing off-nadir measurements. The technique
used to generate the six averaging kernels, shown in
Fig. 6, was applied to AMSU channels 5 through 14

weighting functions at all view angles. The result,
shown in Fig. 13, clearly demonstrates that the ability
to derive these averaging kernels is no longer restricted
to the troposphere. It is also important to mention that

the lowest six averaging kernels in Fig. 13 are virtually
identical to the six averaging kernels shown in Fig. 6.
Therefore, in addition to Spencer's time series of MSU,
we will be able to extend our own time series with
AMSU.

4. Summary

An algorithm for deriving deep-layer mean temper-
atures from microwave sensors has been developed.
The algorithm, in conjunction with the microwave
channels considered in this study, is completely inde-
pendent of a priori information. Independence from
ancillary data is critical for high-precision monitoring
of climate trends, so that any observed trends in the
deep-layer mean temperatures are attributed only to
trends in the sensor's measurements. The algorithm
also has been shown to be capable of combining mea-
surements from next-generation microwave sensors to
reconstruct measurements from current sensors. This

enables one to generate continuous time series of sat-
ellite-derived temperature trends accurately, regardless
of changes in satellite instrumentation.

The next step is to produce the actual MSU time
series from the two types of deep-layer mean temper-
atures we plan to derive as part of the TOVS Pathfinder
project. The first type will yield six different atmo-
spheric deep-layer mean temperatures: their averaging
kernels were shown in Fig. 6. The second type uses
adjacent angular combinations to yield a single at-
mospheric averaging kernel. The important feature of
the second type is that for each adjacent combination,
the averaging kernel along the scan line is preserved
so that limb correcting the measurements can be
avoided.
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