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Abst:ract: 

The capabili~y :0 accurat:ely and rapidly predict: aircraft: stabilit:y 

aerl vat:ives using one comprehensive ana lysis tool h as been creat:ed. The 

PREDAVOR :001 has t:he f ollowing capabi_ities : rapid est:imat:ion of 

st:abi lity derivatives using a vort:ex lat:tice method, calculation of a 

longit:udinal handling qualities metric , and inherent methodology to 

optimize a given aircraft configuration for longitudinal handling 

qualities, including an intuitive graphical interface. The PREDAVOR 

tool may be applied to both subsonic and supersonic designs, as well as 

conventional and unconventional , symmetric and asymmetric 

configurat:ions. The workstation-based tool uses as its model a three-

dimensional model of the configuration generated using a computer aided 

design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 

23 and the North American XB- 70 Valkyrie . 
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Introduct:o~ and ?roblem Summary 

JU5-:':ficat:ion 

Traditionally, aircraft have 8een designed ana built using a " aesign 

by disc1pline " approach. Each discipline, such as propulsion, strucLures, 

or aerodynamics, was optimized ~ndependently wit h minimal input f~om the 

other disciplines . Only after the aircraft design was fully determined 

were such disciplines ashandling a nalys is and economics considered. (Figure 

1.1 ) . Recently , however , advances in both technology and sophisticated 

analysis t'ools have s pawned growing interrelationships and 

inLerdependencies within the various aerospace disciplines . For example , 

the use of composites links the disciplines of SL~uctures , a erodynamics , 

and controls together , 3nd the e=fect of each of these upon the oLher must 

be considered during prelimina ry design and analysis . Thes e new 

interdependencies and interrela t ionships have led LO a new era in the 

aerospace industry, that of concur ~e nt engineering (CE) [l ). Aerospace 

companies are moving towards a n approa ch such as that shown in Fi gur e 1 . 2, 

in which there is considerabl e i nte r pl a y between the discipl i nes much 

earlier in the de sign p r ocess. 

I 
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Figure 1.1 

_ I "Design by Di s cipline" Aircraft Des ign Approa c h 
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The advent of CE h a s led to the need for intuitive graphical design 

~ools capable of multi d isciplinary analysis . One such tool is ACSYNT 

( AirCra:~ SYNThesis ) , a workstation based modular optimization tool, the 

product of a government and industry in s titute that is administered by 

Virglnia Polytechnic Uni versi t y l2j • The necessity of preliminary design 

~ools such as ACSYNT is evident when considering the following. Although a 

~elatively small fraction of life cycle costs are spent during the 

prelimina~y design phase of aircraft , mistakes and misjudgments during this 

phase can prove costly , and sometimes financially disastrous, to fix at 

later dates . If potential problems could be identified ea~lier in the 

design process , substantial time and money could be saved. Tools are 

therefore needed that model not only all of the disciplines themselves, but 

predict and establish the inte r relationships of these disciplines . One 

such discipline not t r aditiona lly considered during the preliminary design 

phase of aircraft is the h a ndling qualities a nd flight characteristics of 

the aircraft. 

Fi gu re 1. 2 

Concurrent Eng i n e ering Airc r a f t Design Appr oac h 

I 
----------" 
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S~uaying ~he effects of handling quali~~es during the preliminary 

deslgn phase has three primary advan~ages: reauc~ ion in cost, time, and 

complexity . The first consideration is cost. If an airplane has been 

oesigned to optimize its handling qualities, its inherent dynamics will 

mlnlmize the risk and sophistication (complexity ) of its control system , 

~hus minimizing its cost. Concurrently , sens itivity studies conducted at 

the preliminary design phase of the aircraft could be used later in the 

development and testing process to study and understand an y changes needed 

to the control system of the aircraft. This saves considerable time in the 

redesign phase of the aircraft , which is traditionally a very costly part 

of the program. Finally , if an analysis tool exists to examine the 

nandling qualities of an aircraft at the preli~inary design stage, data 

:rom this tool could be used in conjunction with other tools , such as a 

fllght simulator , as a learning tool . In this way, both students of 

aeronautical engineering and industry engineers can get a rapid assessment 

0: both the handling qualities of the aircraft itself, as well as how 

changes to the handling qualities affect other aspects of the design. 

Statement of Problem 

A tool, then , needs to be developed that is capable of predicting, 

analyzing, and optimizing the handling qualities and flight characteristics 

of an aircraft, including good estimations of its stability derivatives. 

Traditionally, empirical methods such as those found in USAF DATCOM[3) are 

used to predict these stability derivatives. Due to the empirical nature 

of these methods , reasonable accuracy is achieved for conventional designs. 

Yet the method considerably degrades when applied to asymmetrical or non-

conventional designs. Since many of today's modern aircraft explore the 

concepts of unconventional and asymmetric flight, a method of analyzing 

them is a necessity. Recent advances in computing power have made the use 

of certain computational methods feasible. Vortex lattice methods are 
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capable of generating data tha~ ~ay be used to calculate these s~abili-y 

deriva~ives _ This method , in addi~ion to being able to analyze 

asymmetrical and non- conventiona~ designs, is also capable of providing 

da~a ~o calcula~e some deriva~ives ~hat methods such as DATCOM are 

incapable 0: generating even :o~ co~ventional des~gns _ These include ~he 

conLrol de~~va~ives of Lhe alrc~a=L _ Tab:e ~ _ : co pares ~he capaD~~ities 

of differen~ methods LO predicL ce~Laln derivatl ves_ 

Table 1_1 

A Comparison of the Capabilities of Other Methods to Predict 
Specific Ai rcraf~ St ability De~ivatives 

Derivati ves VORLAX/ PREDAVOR ACSYN.£ DATCOM 
C X X X 

C 0 
X X X 

C rln' 
X X X 

CLo X X 

C, " X X 

Cn X X X 

Cn o X X 

Cn - X X 

C[)o X 

Cn X X 

CM X X 

C X X X 

C 0 rl n ' 
X X X 

CMo X X 

CM X X 

CMT X 

C""To X 

CT X 

C T " , 
X 

CI (3 X X 

CI p X X 

CI r X X 

Cn (3 X X 

Cn p X X 

Cn r X X 

Cvj3 X X 

Cy p X X 

Cv r X 

All Contro l X 

----- ,-----~ 
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Whe~ consi de ri ng th e ha ndling q u a lities of an a ircra ft , a s uitable 

me~~~c c : analysis need s ~ o be s elecLed . Se ve r al meLrics we re consideyed , 

S UCh as =~ asslca Neal - Sml~h cr i ~er i a , modern Neal - Smith , Lhe bandwidt h 

CY~ ter~a, a:1d ~he Cont r o _ An t icipation Parameter (CAP ) [ 4 , . The CAP 

paramete~ was chosen f o r its eas e of u s e , it s intuitive na tu r e , a nd its 

ability ~o be re adily incorpora ted i n to the a nalysis c ode . I t was also 

used to _alidate the opt i mi z a tion s che me . The fr amework es t a bli s hed wiLh 

the CAP ,:Jaramete r makes the future i n cor pora t i on o f more s ophistica ted 

meLrics :eas~bl e . 

Fi r- a l l y , a good a nal ysi s tool must be fa st , ea s y to u se, and readily 

undersL oo j . In addition , it must provide in s ight to u s ers a b ouL Lhe 

effecLs c : =heir de s i gn deci s ions upon the flight cha r a ct er i s tic s of their 

airc r afL. A wo r ks t a t i o n - based t ool offers many a dvantages. Fi rs t , a 

works t a tion can provide t h e compu ta t i onal power necessary f o r suffic ient 

a nalysis . I n addi t i on , t h e operating envi r o nment of a wo r ks t at i on a llows 

u s er - frie:1dly and in f ormati v e graphi ca l in t erfa c es (GUI 's ) to be crea ted . 

The ?REDAVOR ana l ysis t o o l was thu s created and links t he rapid 

es tima tion of s t ab i l i ty der ivatives wit h the automatic calculation of the 

CAP parame t e r . I t does this b y combining existing analysis tool s with new 

code in o~de r to c r eate a c onsistent methodo logy fo r the analysis of 

. J a irc ra ft a nd their f l ight characteristics . The PREDAVOR methodology was 

tested a nd c omparisons we re ma de between the deri vatives generated by t h e 

J met hod a nd empirically g e nerated data , as well as some flight test data . 

The Lear J et Model 23 a ircraft was analyzed for optimization with respect 

to wing a spect ratio a nd horizontal tail longitudinal distance . In order 

I to valida t e the method f o r supers onic flight conditions, stability 
I 

-.J derivati ves for the Nor th American XB- 7Q we re generat e d for both subsonic 

IJ a nd s upersonic c onditions . 

J 
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CHAPTER 2 

Existing Software Used in Development of PREDAVOR 

The PREDAVOR methodology uses as its foundation the capabilities of 

several existing ~ools . The input and outpu~ 0: these ~ools are then 

linked ~oge~her with new code to produce an overall methodology. 

The advantages and disadvantages of using existing code, rather than 

developing completely new code , were examined carefully when planning the 

PREDAVOR framework . Using existing tools eliminated the need to duplicate 

effort. It makes little sense to write code to perform a task when such a 

code already exists. In addition, it can be assumed that an existing code 

is further along in its validation process, and thus more robust. The 

chief disadvantage to using several different codes is linking the codes 

together in a cohesive manner. Different codes imply different input and 

output format, different programming languages , and potentially different 

operating environments . 

In this particular case, two primary codes were heavily in use prior 

to ~he project development . The decision was made to use these codes as 

the foundation for PREDAVOR, and to link the software packages together 

using new code. 

ACSYNT 

The ACSYNT aircraft design code is used to generate the wireframe 

model used in the PREDAVOR analysis . The workstation-based ACSYNT 

(AirCraft SYNThesis) is modular in design. Each discipline, such as 

aerodynamics, weights, or economics, is contained in an individual module, 

and these modules are linked together through an analysis package. The 

code is capable of analyzing a wide variety of aircraft including civil and 

military aircraft, fighters , bombers , and transports. The modular 

components of ACSYNT allow analysis of a single discipline, or the modules 

can be combined in order to evaluate the integrated results{l). Currently, 

6 
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ACS~t,,! ::.s adm ' is"Cered by Virgin':'a ?oly"Cechnic lJniversity i ~ ) . Original:y, 

nowever, ACSYNT was developed by NASA hffies Research Center for concep"Cual 

deslgn s"Cudies of advanced aircra="C and is still heavily in use today. 

The real power of ACSYNT lies ~n i s non-linear optimization code. 

This methodology allows the vehicle to be optimized for a particular 

oo:ec"Cive :unC"ClOr. or =unc"Cions ( su~h as gross "Cakeoff weight ) , given 

var~ous restralnts . In order for ~he non-linear optimization code "[0 be as 

realistic and feasib l e as possible, it is important for all of the 

components of the syn"[hesis process to be modeled correctly. For "[his 

reason, the modules in ACSYNT are parameter driven with equations derived 

from theory as opposed to table look-up methods (3; . It is future goal of 

this project to use this optimization package to automate the handling 

qualities optimization scheme. 

The version of ACSYNT currently being used in the PREDAVOR project 

includes a CAD interface written entirely in the three-dimensional graphics 

standard PHIGS (Programmer's Hierarchical Interactive Graphics System) [ ~ J . 

This CAD package allows a model of the aircraft to be rapidly constructed 

using component templates (see Figure 2 . 1.) Once the model is completed, 

it may be easily transferred into a file format that can be used by the 

other codes in the PREDAVOR methodology . 

VORLAX 

PREDAVOR uses a vortex lattice method called VORLAX to generate the 

forces and moments on the model that are used to calculate the stability 

derivatives . Variations of t he basic vortex lattice method are currently 

being used to analyze both planar and non-planar aircraft configurations. 

The beauty of the vortex lattice method lies in the simplicity of its 

numerical technique as well as its high degree of accuracy (within the 

limi ts of the basic theory) [ 5 ! . 
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: igu re 2. 1 . 

ACSYNT Screen and Model with Wing Template 

Basic Vor:ex Lattice Theory 

The basic vortex lattice me hod involves superimposing a finite 

number of horseshoe vortices of different strengths rn on to the surface of 

the model. Consider , for examp e , pa r t of a finite wing shown in Figure 

2 . 2. A horseshoe vortex (abcd) of strength rn is placed upon a 

representative trapezoidal panel. The velocity induced at an arbitrary 

point P(x,y) by this single horseshoe vortex can be calculated using the 

SioL-Savart: Law : 

Vortex Rlament 
of strength r '\ 

, / 

r dI x r 
dV 

41r Irr p 

dV 
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Ir. order to analyze an aircraft (or any other shape ) , the entire 

surface is replaced with a series of representative trapezoids (Figure 

2 .3 ) . A horseshoe vortex is then placed on each trapezoid. The total 

induced velocity at point P(x , y) may again be found using Biot - Savart. By 

applying the flow tangency condition to all control points, a system of 

slmultaneous equation may be obtained and solved for the unknown 

circulations ( r r. ' s ) i 6 ] • These , in turn, directly correspond to the forces 

and moments acting upon the model. 

. F'(x.y) 

."' e 

d 

Figure 2.2 

Schematic of a Single Horseshoe Vortex 

Source: Anderson , J. D. Fundamentals of Aerodynamics. New York : McGraw
Hill, 1991 . 

Figure 2 . 3 

Trapezoidal Half - Model of Aircraft 

9 
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~~~houg~ vortex ~a~~ice methods are cu ~rently being used and have 

p~oveo ~o be prac icai and versat ile tools, most analysis has been largely 

st.:bsonlc. The applicabi_ity of tne basic techniques of vortex lattice 

theory to supersonic flow has been _argely ignored i7 ; . VORLAX, developed by 

Lockheed in 1977 , is applicable to both subsonic and supersonic flight 

CGr.ai::lons. ~he supersonic capabili~y is justified as follows. Assume 

tha~ t~e discrete vc~tex lattice app~oximates the vorticity on the surface 

The mathematical representation of this includes an integ~al 

tha~ has a residual term of the velocity field. Using this residual term 

correctly by including it in the resulting velocity field generated by the 

vortex lines , allows the calculation , and thus applicability, for 

supersonic flow lSl . 

In addition, the VORLAX method ~ncludes special techniques for 

simulatlng the thickness of lifting surfaces using a double (bi-planar) 

vortex lattice layer. VORLAX is also capable of analyzing fusiform bodies 

by arranging a vortex grid on a series of concentric cylindrical surfaces . 

These concepts are all illustrated in Figure 2.4 which shows a generalized 

vortex lattice model of a wing - body configuration. 

Horreshoe Free Legs 

\\ 
I '. I / 

Figure 2 . 4 

'; '/ 
/ 

Generalized Vortex Lattice Model of Wing-Body Configuration 

Source: Recreated from Miranda , L . R., a nd R.D. Elliot and W. M. Baker. 
"NASA CR-2865 A Generalized Vortex Lattice Method for Subsonic and 
Supersonic Flow Applications, " NAS11 - 12972 . Dec . 1977. 

I 
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:r. ~rder LO fac~liLaLe Lhe ~~~~e~ complex inpu~ LO VORLAX , NASA Ames 

has developed a grapr.ical pre-pro~ess~r to Lhe code, called VORVIEW [9, . The 

lnp~L LO VORLAX had consisted of lengLhy files that numerically defined ~he 

coordinaLes of each L~apezold, as we~~ as oLher required informaLion for 

ana~ysis , There was no visual feedjack of ~he model being analyzed , and 

cha~ges LO the model were manual a~c Ledious, 

VORVIEW , on the other hand , uses as its input the wireframe geometry 

generated by ACSYNT (Figure 5) , This file, together with a data file 

containing flight conditions, is used to launch VORVIEW, The wireframe 

model may then be "sliced" from wi~g Lip to wing Lip , and subdivided into 

trapezoids, Instead of defining each trapezoid numerically , as the input 

LO VORLAX requires, VORVIEW allows the trapezoids to be created graphically 

and the manual input file to VORLP~ created automatically. 

Figure 2.5 

Wire frame Model Generated by ACSYNT and used by VORVIEW 

I 
I 
I 
I 

~ 
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Wh~le VORVIEW does a nice job slicing the model in the planform view , 

it does ~ot currently posses the capability to create ve rtical surfaces 

automat ically . These panels can , however, be created by hand. Figure 2.6 

shows a sliced and subdivided VORVIEW model . 

A:~er the model has been sliced and subdivided, VORVIEW transforms 

~he ja:~ ana runs VORLAX . The OUtput ~s shown both graphically as a Cp 

distric~~ion (Figure 2 . 7 ) and numerica:ly as forces and moments in an 

output :::':'le. 

Figure 2 . 6 

Sliced and Subdivided VORVIEW Model 

<1 .220 

4 . 643 

-0 . 002 

Figure 2 . 7 

VORVIEW Output Showing Cp Distribut ion 
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CHAPTER 3 

The PREDAVOR Code 

Methodology Bef o re PREDAVOR 

Al~hough rat her tedious, the tools of the previous sect ion cou l d 

be used in succession to generate the stability derivatives of a given 

mode~. The meLhodology would be as follows: 

CreaLe a model using ACSYNT . 

2 . EdiL the input file for iniLial flight conditions. 

3 . Run VORVIEW/VORLAX . 

s. Manua lly parse out the resu l - ing forces and moments from the 

output file. 

5. Edit the input file to contain a perturbation of the flight 

condiLions . ( For example , change a = 8 deg to a = 2 deg. ) 

6. Re - run VORVI EW /VORLAX . 

Manually parse out the new results. 

5 . Manuall y calculate the stability derivative from the results 

of both runs. 

9. Edit the input file to undo he perturbation. 

10 . RepeaL steps 1 - 9 for each deri vaLive. 

In order to generate a complete set of derivatives, the 

VORVI EW /VORLAX combination would need to be run once at unperturbed 

conditions , and once for each perturbation needed (alph3, beta, pitch 

rate, yaw rate, roll rate , control surface deflections, and change in 

forward velocity. The results of each of these runs must be parsed, and 

each deri v aLive calculated by hand . Thus , to generate a standard set of 

derivatives, many runs of VORVIEW/VORLAX must be made and many sets of 

manual calculations performed. The entire process must be repeated if 

analysis is needed at a different flighL condition. 

While iL is certainly possible to generate sets of stability 

13 
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derivatives in Lhe above manner, it is not practical. PREDAVOR was 

designed LO aULomaLe Lhis process. This has several advantages. The 

:irst is Lhe eliminaLion of tedious hand calculations involving multiple 

ru~s 0: Lhe code , rna ual manipulatlon of ~he input files, parsing large 

OULPUt f~les, manual axes transformatlo~s , and the calculations of Lhe 

stability derivatives hemselves . Secondly, accuracy may be improved 

through the elimination of many sources of human error. Thirdly, time 

is saved through multiple autonomous runs of the VORLAX code. And 

finally, by automating this process, it is possible to one day 

incorporate the PREDAVOR methodology into a mathematical optimizaLion 

scheme, such as COPES/CONMIN associated with the ACSYNT package ,l . . 

PREDAVOR Architecture 

fig 3.1 illustrates the overall PREDAVOR architecture . The first 

step is the creation of the three- dimensional wireframe model using the 

CAD package in ACSYNT. Next , generic flight conditions and a few basic 

geometric parameters are added to the VORVIEW input file . The graphical 

pre - processor VORVIEW is then used. 

VORVIEW's current capabilities allow the user to slice the 

planform view of the aircraft from wing tip to wing tip. In order to 

calculate the latera l derivatives, however, a model of the vertical 

surfaces needs to be included. These vertical panels may be created 

manually by editing a supplementary file that includes the geometric 

slice data. The user simply adds the X, y, and Z locations of each of 

the four points of the trapezoid to be created to the file. VORVIEW 

allows the newly created trapezoid to be vi ewed graphically. Figure 3.2 

shows a three-view of a model created in this manner. 

Once a satisfactory slice model is created, VORVIEW is run once to 

create the appropriate input file to VORLAX . Once this file is created, 

PREDAVOR edits it automatically, allowing multiple runs of VORLAX to be 

performed independently of VORVIEW. 
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Figure 3.1 

PREDAVOR Code Architecture 

J Figure 3 . 2 

VORLAX Model with Manually Created Vertical Panels 
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At :~~s ?oint the user may add control surfaces to the aircraft. 

Thls ~s aone via a control s urface menu in VORVIE~. A planform of the 

sl~ced a~rcra:t is shown, and con::rol surfaces added by clicking on ::he 

appropr~a::e ?anel . Control surface type , per cen:: chord length , and 

deflection angle are all inputs. The control surface part of VORVIEW 

was modif~ed to allow separate input files to be created for each 

control surface (Figure 3 . 3) . A toggle button allows the user to choose 

between elevc.::or , aileron, and "other ". The control surface is created 

using a po~n:: and click technique, and the user presses the "SET INPUT" 

button to create the new control surface input file. Because the 

control surface process in VORVIEW works only from a pl anform view , 

rudders may not be creat ed explicitly in this manner . The "other " 

option was created to anticipate VORVIEW ' s future ability to create 

vertical panels automatically. Until then, the user simply creates a 

deflected rudder manually, using the method described earlier to create 

vertical panels by hand . The derivative may be calculated using the 

steps outlined at the beginning of this chapter. 

The next step for the user is to edit the PREDAVOR input file to 

include the proper flight conditions, baseline flight variable values, 

and perturbed conditions . This flight conditions file , together with 

the input file(s) created by VORVIEW , are used to run the PREDAVOR code. 

PREDAVOR makes multiple runs through VORLAX, changing its input 

file automatically to reflect the necessary perturbations. PREDAVOR 

sifts through the rather large output data files and parses out the 

necessary data. The stability derivatives are calculated, along with 

the dimensional derivatives, and the handling qualities parameter CAP. 

Options exist to calculate the downwash due to the horizontal tail, and 

to perform the transformation from wind axes to body axes. 

PREDAVOR may be used in a manual handling qualities optimization 

scheme . Geometric changes to the model may be made, and the process to 
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~h~s po~~: repeat ed. A flag in :he ?REDAVOR input files allows al~ 

ha~cl~n~ qualiti es data to be concatenated to a slngle =lle , until :he 

f~ag ~s changed . The CAP graphical i~terface then uses :his informatlon 

tc crea:e a CAP plot and presents it :0 the user , allowi.g them to 

ldenti=y handling qualities trends and optimize their aircra=t 0 :he 

rest.;~::s. 

~ 
I 1 

J t , 
=-

" 1 

< 

J 

I Figure 3.3 

VORVI EW Screen Shot Showing Addition of Control Surfaces 

I;:ou: FLes 

J The goal of project PREDAVOR is to rapidly estimate stability 

derivatives using g i ven existing tools . Automating as much of the 

J 
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process as possible aids in obtaining this goal. An intuitive, 

comprehensive input file is therefore logical. The PREDAVOR input file 

is called aircraft. edit. The format is line-delineated, with one data 

per line. The value of the variable is the first entry on the line, 

followed by a brief name and explanation for the variable (the name and 

explanation serves only to aid the user in the creation of the file). 

The unperturbed variables are identified by a 0, as in alphaO and betaO. 

Similarly, the perturbed values are followed by l's (alphal and betal ) . 

Flight condition data is included, as well as moments of inertia. 

Output Files 

There are two primary output files for PREDAVOR. The first is 

called STABDATA. The file was designed to be an intuitive snapshot 

presentation of both input and output data, presented in an easy to 

understand format. Stability derivatives are presented in matrix form 

rather than listed. 

The second primary output file is a repeat of the data presented 

in what is called a SAD format. As discussed in Chapter 4, the PREDAVOR 

project is part of a larger project at Cal Poly called PANGLOSS. This 

project is comprised of several interactive analysis tools. An attempt 

by the PANGLOSS team is being made to define a standard aircraft data 

file, referred to as a SAD file. Each SAD file is comprised of data 

corresponding to a unique flight condition. The multiple SAD files 

created by varying flight conditions, for a single aircraft, is called a 

SAD book. A SAD book, containing an entire envelope of data for a 

single aircraft, thus lends itself well to table lookup schemes inherent 

in such tools as flight simulators. The STABDATA file is output 

automatically, and the SAD file format will be added as soon as a format 

decision is reached by the PANGLOSS team. 
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doth ACSYNT and VORVIEW were designed to operate on Silicon 

Graphics (SGI ) workstations, optimally running IRIX version 4.0.2 . 

2.9 

. l\CS~t~: ~s wri::ten mostly i;; FORTRAN , while VOR lEW is primarl.ly written 

1n ANSI C. Both, however, have graphical interfaces that are compatible 

witn the SGI's. PREDAVOR , in order to ensure compatibility, was written 

in ANSI C and runs on the SGI workstations . 

It must be noted, however, that the only part of the PREDAVOR 

process that requires graphical, workstation abilities is the creation 

of the model and the initial run of VORVI EW . Once these steps are 

completed, a user may download the necessary files to any system that is 

ca~able of running compiled C code. The rest of the process and the 

analysis may then be completed on the new system. 

PREDAVOR Calculations 

In addition to editing input files , performing multiple VORLAX 

runs, and parsing output data, PREDAVOR performs internal calculations 

to generate the stability derivatives , the dimensional derivatives, and 

axes transformations. 

Stability Derivative Calculation 

The output of VORLAX contains the total forces and moments upon 

the analyzed model. These forces and moments are in turn used to 

calculate the non-dimensional stabil ity deri vat ives of the model at that 

flight condition . Usually , stabilit y derivative data, such as flight 

test data, wind tunnel resul ts , and theoretical computations, are given 

in non-dimensional stabil it y derivatives . This fac ilitates comparison 

of aerodynamic characteristics of different aircraft as well as those of 

the same aircraft at d ifferent flight conditions 121. The stability 

derivatives generated by PREDAVOR are thus of the non-dimensional form . 

An example of a stability derivative calculation is as follows. 

Each derivative is non -dimens ionalized as appropriate . 
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Dimensional Derivative Calculation 
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In order to calculate the handling qualities parameter CAP, some 

dimensional derivatives are needed. Dimensional stability derivatives 

are used when determining the analytic transfer function of the model. 

They directly correspond to the coefficients of the differential 

equations that describe the dynamics of the model [3J . It is these 

dynamics that the CAP parameter interprets into a useful metric of 

aircraft performance. 

The dimensional derivatives are calculated according to the 

definitions shown in Table 3.1. It is assumed Cdo = O. The moments of 

inertia were provided in the input file aircraft. edit. 

Drag Considerations 

It is important to note that, due to the limitations of the vortex 

lattice method, only aerodynamic (induced) drag can be estimated. 

Therefore, a good estimation of Cdo must be obtained using other 

methods. 

Axes System 

In order to ensure appropriate comparisons between sets of 

stability derivatives, it is necessary to look at them in a common axes 

system. Choice of axes system ' often depends on the method and location 

of data generation. VORLAX uses a non-conventional axes system, shown 

in Figure 3.4. Anticipating the average user to be familiar with the 

more conventional axes system used in aircraft analysis, PREDAVOR 

internally corrects for the change in systems. Thus both the input and 

the output of the code are in traditional coordinates. These 

coordinates correspond to the body axes, and PREDAVOR has been designed 



to give its output in the body axes. The transformation from wind axes 

to body axes is given below: 

Body Wind 

[ -m] [ cos( a) cos.8) costa) sin(a) -Sin(a)rCD. ] 
+CY. - sin(.8) cos(.8) o +CYw 

-CLo. sin(a) cos(.8) sine a) sin(.8) costa) -CL-

[ Ct'] 
[cos(a) cos.8) cos(a)sin(a) 

-sin(al C,w] 
Cm. - sin(JJ) cos(.8) o Cmw 

Cn. sine a) cos(.8) sine a) sin(.8) costa) Cnw 

Table 3.1 Dimensional Derivative Definitions 

Longitudinal Dimensional Derivatives 

Xu 
-(CD. + 2CDO )QS 

muO 

Zu 
-(CLu + 2C LO )QS 

muO 

Z = -(CLa + 2Coo )QS 
w 

muO 

Z = a UoZw 

Zq 
c 

-C -QSlm 
Zq 2u 

0 

Mu 
C (QSC) 

mu I 
Uo y 

Mw 
C (QSC) 

mu of 
U Y 

Ma = uoMw 

C 
Z& = - C &-QS I (uom) 

w Za 2uo 
Z& = UOZ& 

a w 

c QSc 
Mw = C & ---

rna 2uo uOly 

Ma = uOM& 
w 

21 



Table 3 . 1, continued 

Lateral Dimensional Derivatives 

QSb
2
Cnp (5. 1) 

I , 

Y, 
QSbC __ yr (ft / s) N r 2muo 

QSb2C-nr (5.1) 

2I,uo 

L, QSb
2

C'r (5·') 
2Ixuo 

Ylia = QSCylia (ft I 52) 

m 

L = QSbC'lia 
liasl I 

x 

N = QSbCna
a-

I , 

L = QSbC'a-
a-

I , 

Source: Nelson , Robert C. 
York: McGraw-Hill, 1989. 

Flight Stability and Automatic Control. 
127, 166. 

y 

22 

New 

Non-traditional Axes System used in VORLAX Traditional Axes System used in PREDAVOR 

Figure 3 . 4 

Axes Systems Used i he PREDAVOR Project 
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Handling Qualities 

In order to validate the handling qualities optimization scheme, 

it was determined that a single baseline metric was necessary. Several 

metrics were considered, including classic Neal Smith analysis, 

bandwidth and time delay, Nichols chart analysis, and control 

anticipation parameter (CAP ) . The CAP metric was chosen for several 

reasons. First, a longitudinal metric was thought to be most 

appropriate . Pitch control, both as a primary control axis and as an 

indirect way of controlling flight path, has long been identified as a 

vital component of flying qualities [4). The CAP parameter is readily 

calculated using available information. The only additional information 

that needs to be supplied that is not inherent to the VORLAX analysis is 

the moments of inertia of the model. In addition , the CAP parameter can 

be calculated internally. Several of the other metrics have calculation 

schemes that require intensive calculations. These calculations could 

be performed quite readily using existing packages such as Matlab or 

Program CC. This would, however, necessitate yet another interface 

between pieces of code. Using an easily calculated metric such as CAP 

reduces both complexity and computational time. Finally, the CAP metric 

is very intuitive in nature. An easy to understand metric aids in using 

PREDAVOR as an educational tool. The primary disadvantage to using the 

CAP parameter is its non-applicability to unconventional aircraft. 

The control anticipation parameter is defined as the ratio of the 

initial pitching acceleration to steady-state normal acceleration, and 

can be represented by ooSp2/ (n/a), as shown in Figure 3 . 5 . Although there 

are several interpretations of CAP, the one used in PREDAVOR is the 

maneuvering stability margin interpretation. Because n/a is 

proportional to CLa, and OO~2 to Cma, OO~2 /(n/a) can be recognized as 

being related to static margin , Cma/CLa [5) . It therefore may be 
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calculated as a function of stability derivatives, dimensional 

derivatives, and moments of inertia: 

m 2 = -qSc C (Cma + SCp C ) 
sp I La C 4 mq 

y La m 

CAP 
2 

msp = -c W (C rna + gcp C ) 
(nl a) Iy C

La 
4(W IS) mq 

The CAP parameter is plotted against the damping ratio, S, and the 

point plotted on a graph with empirically defined regions for Levell, 

Level 2, and Level 3 handling qualities boundaries. PREDAVOR uses the 

CAP plot corresponding to the Category B Flight Phase. 

The CAP metric was used as a baseline metric in order to test the 

handling qualities optimization scheme. Once the proof of concept of 

the scheme has been verified, other metrics may be considered for future 

incorporation. The PREDAVOR code was written· to establish the basic 

framework of the scheme, and additions and enhancements of the code 

should be encouraged. 

co(log scale) -> 

CAP 
M"n/a 

Q) 2 ... 

co", 
u= M"n/a I 

. 5' + 21;co",S + co",' so:: 
Odb 

, 
co", 

n/a 

Figure 3 .5 

Stability Margin Interpretation of CAP Parameter 

M"n/a , 
co", 

Source: Dept. of Defense. Military Standard Flying Qualities of Piloted 
Aircraft. MIL-STD-1797A. 30 Jan. 1990. 172-175. 
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CHAPTER 4 

The PANGLOSS Project 

The PREDAVOR methodology is part of a larger framework called the 

PANGLOSS Project . The goal of PANGLOSS is to provide students with 

accurate yet intuitive tools that would allow them to rapidly analyze 

and understand aircraft stability , control , and handling qualities . 

PANGLOSS is an ongoing project at Cal Poly and team members consist 

mostly of graduate students designing analysis tools to be used at the 

undergraduate level. 

One major branch of PANGLOSS is comprised of three projects that 

are designed to work together in a seamless methodology . PREDAVOR is an 

important part of this branch . The framework of this branch is shown in 

Figure 4 . 1 . In the upper left hand corner a burgeoning aerospace des~gn 

engineer conceives of an aircraft design . First they models their 

aircraft and obtain stability derivatives as well as a first cut 

handling qualities analysis from PREDAVOR . Next , they can analy ze ' and 

manipulate this data using the intuitive graphical interface SAVIo 

Finally, they can input this new data , gained from PREDAVOR and SAVI, 

into a workstation-based simulator called RADIAN. In this way, the 

designer can very rapidly conceive of a des ign , analyze it , and actually 

fly his design , all in a ma tte r of hours. 

Q L _ 
~ MoOeI AIrcraft 

~( "'-- PREDAVOR 
Cole S'obliTv Denllolrlles 
Handing QuoI~IElS 

Figure 4 . 1 

PANGLOSS Project Overview 
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Project PREDAVOR is deal with ex~ens~vely i~ Chapter 3 of this 

documenL. The followlng secLio~s briefly summar~=e and highlighL 

Projects SAVI and RADIAN. 

SAVI 

Proj eCL SAVI [lj wa s conceived as a wa y LO give designers direct 

access to simulator data in an easy to understand =ormat . Most 

simulators use Lable look- up me~hoas. These tables consist of thousands 

of daLa poinLs . If the aircraf ~ des · gner wishes ~o analyze or 

manipulate any of this daLo, .e must stop he sim~ ator , identify the 

daLa poinLs he wishes to change , an edit the files using a standard text 

editor. The data must then be rel oa ded inLo the simulator and the 

slmulator started. SAVI al lows Lhe designer access ~o the table 

information in intuitive graphical interfaces . figure 4 . 2 shows the 

SAVI control window and Figures 4 . 3 and 4 . 4 show a 2- D and 3- D plot . 

The 3- D plot may be rot a t e d for b e tter viewing . 

File Edit Plot Edit 3D !:!.elp 

View: 

COO 
CLO 
CMO 
~ 
DCDlEF 
DCLCAN 
DCLLEF 
DCLTEL 
DCLTER 
DCMCAN 

/ 
As a function .of J ALPHA1 C I 
Where: i DECAN 1& - 70 

And as a function of: I DECAN C I 
where: IALPHA11= 90 

Fixing the yalues of: 

iMACHI & 0 

Figure 4 . 2 

SAV I Control Window 

Once vi ewed , t he region s o f d a ta of interes t may t hen be i sola t ed 

using point a nd c lick me t hods. Dat a can be changed by c lic king a n d 

d ragging on a d a t a poin t or by enter ing a ne w value . Al l data i s 
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accesse~ ai~ect~y into s~mu~aLo~ memory so these changes can be mace 

while ~~e Slmu aLor is act ive . The aircraft in the slmu~aLor 

immedia:el y reacts with the new dynamics . 

s.;::::::: contai.ns the :0 ~ovli.;)g features : 

- ~d:t:ng algo~ithms :o~ one or more points in 2 - ~ and 3 - D pars . 

- :~pu~ :~om data :ile O~ d~recL In erface wi.~h si.mula~ion me~ory 

3ased on generic C a~d X- windows for portaoility 

- =~~lemented with Mot~f Ibraries for consistent look and feel 

~ostscript output for hard copy of plots 

- ~~ML on - line user ' s manual 

- ~~rect interface to simulation memory 

Figure 4.3 

SAVI Two - Dimensional Plot Window 
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/ 

/ 
/ r 

Figure 4.4 

SAVI Three- Dimensional Plot Window 

RADIAN 

Project RADIAN i "! consists of the development of a workstation-

based flight simulator that will have the following features: 

- Six degrees of freedom simulator. 

- Full non-linear equations of motion. 

- Workstation-based , flight stick or mouse. 

- Performance evaluation consisting of an "up and away" task and a 

landing task. 

- Visual representation of model on screen . 

The simulator will use data generated by PREDAVOR and SAVIo 

RADIAN contains two performance evaluation situations that allows 

the designer to qualitatively evaluate the aircraft dynamics . The up 

and away task, shown in Figure 4 . 5, consists of a floating cross with a 

light on one end. The light changes locations on the cross in a random 

J 
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fa5;:2..0r .. The: ?oa: :~e ?~:o: ~s :~ ?o~~: :ne aircra~t nose dlrec~ly 

a"C :ne ::.gh"C. The ~~lo: gains 0 scs~e tr.o: correspo~ds :0 his success . 

The a lgorl:hm :or :~~s :eature is s: ~ _ _ ~r. progress . The second "Cask ~s 

"(he landing task, S~8Wr. in Figur e ~ . 6 . Tne pilot lands the aircraf"( and 

gains a score nasec on , among otner ~arian':'es , the ra~e of descent a: 

"(ouchdown. T~e pi:2: ~s a~ded by a ver::.sa : slope indicator in :he form 

of " "Ce:ephone: poles" . K~en :he po~es are ':'e vel . :he alrcraft is on :ne 

flight pa:h . 

Figure 4.5 

RADIAN Up and Away Simulator Task 

1 

J 
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Figure 4 . 6 

RADIAN Landing Simulator Task 

Future Work 

At the time of this writing , Projects PREDAVOR and SAVI are 

completed and working in a stand- alone fashion. The RADIAN simulator is 

still under construction . Wh e n finished , the three independent codes 

need to be integrated into a seamless methodology and tested thoroughly 

for robustness of method. Other PANGLOSS projects include Matlab-based 

packages for investigating handling qualities of aircraft , and a PC -

based code to take aircraft geometry and determine state space matrices . 
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Tes~ln~ and Results 

In order to val idate the ?REDAVOR methodology , test cases were 

conducted . For the subsonic case , a Lear Jet Model 23 was used , and for 

the supersonlc case , the North l-_ erican XB- ~ O Valkyrie was selected. 

Both models were chosen because stability de::-i vati ve data as well as 

geometric data was readily avai~able . In aadi tion , a basic handling 

qualities analysis was conducted . 

Subsonic Case - Lear Jet Model 23 

PREDAVOR was applied to a conventional subsonic aircraft , the Lear 

Jet Model 23 . This T- tail aircra:t features :uselage mounted engines as 

well as fuel tip tanks . The aircraft model , shown in Figure 5.1, was 

created using ACSYNT. The aircraft was analyzed at the flight 

conditions shown in Tab le 5 . 1. 

Figure 5.1 

Wireframe Model o f Lear Jet Model 23 

The planform model of the aircraft was "sliced" automatically 

using the VORVI EW interface to create the ana lysis panels. Vertical 

panels were created by hand . The slice mode l i s shown in Figure 5 . 2. 

31 
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Table 5 .1 - Flight Conditions for Lear Jet Model 23 

Flight Condition Crui se Max . Weight 

Altit:ude (ft) 40,000 

Air Density (slugs/ . 000588 

Speed (fps ) 677 (M- O. 7 ) 

Init:ial At:t i t:ude (deg ) 2 . 7 

Geometry a n d Inertias 

Wlng Area ( ft- ) 231 . 7 7 

Wing Span ( ft ) 34 .1 

Wing Ge o . Chord ( ft ) 7 . 03 

Weight: (lbs ) 13,000 

Iy'xt' (slug ft- ) 28,000 

I yyc ( s l ug ft:- ) 18 , 800 

I :ze (slug ft" ) 47,000 

I xz b (slug ft-) 1 , 300 

I 
J 

Figur e 5 . 2 - Sliced Rep resent a tion of Lear Jet Model 23 

The model of the Lear Jet was the n a nalyzed u s ing 150 wing tip to 

I 

-1 
wing tip slices and 1500 subpolygons . The re s ulting stability 

derivatives are shown in Table 5 . 2 . The de rivatives were compared to 

J those generated using empirical methods for the same aircraft at the 

given flight conditions fli . Included in the table are relative 

J 
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lmpor~ance of the derivatives :: ' . The es~imated accuracy using ~he 

emplrlcal method is given in order to facilitate a comparison . 

Table 5 . 2- S ability Derivati ves of Lear Jet Model 2 

Longitudinal Stability Derivatives 

Derivat~ves VORLAX Emp. Da ta Importance * Est . Pred. 

CL 0 . 2594 0 . 4100 

C:. a 5 . 50 5.84 10 ±5 % 

C" a OOt 2 . 98 2 . 20 4 ±40 % 

CL q 9 . 93 4 . 70 3 ±20 % 

C:. " 8 . 37 0 . 40 5 ±20 % 

CD 0 . 0261 0.0335 

Cc a - 0 . 3723 0 . 3000 5 ±10 % 

Cr u - 0 . 0644 0 . 1040 6 ±20 % 

C~ - 0 . 0247 0 . 00 

CM • - 0 . 5701 - 0 . 6400 10 ±1 0 !i; 

CM a dot - 4 . 9660 - 6.700 7 ±4 0 % 

eM q - 16 . 55 - 15.50 9 ±2 0 % 

CM " 
- 1 . 7991 0 . 050 8 ±2 0 % 

Lateral Stability Derivatives 

Derivatives VORLAX Emp Data Importanc e * Es t . Pred . 

el b - 0 . 3849 - 0 . 1100 10 ±20 % 

·1 
" 

Cl P - 0.4818 - 0 .4500 10 ±15 % 

Cl r 0 .2 2 5 2 0 . 1600 7 ±40% 

Cn b 0 .5999 0.1270 10 ±15 % 

Cn p - 0 . 0797 - 0.0080 8 ±90 % 

Cn r - 0 .5475 - 0.2000 9 ±25 % 

Cy b -2 . 4666 - 0 . 7300 7 ±20% 

Cy P 0 .1759 0 . 0000 4 ±50 % 

Cy r 1 . 356 7 0 . 4000 4 ±30 % 

*Relatlve Importance , 1 0=Ma]or , 5=Ml nor , O=Negllglble, Roskam 

J 

J 



The vortex lattice method did a good job predicting the 

longitudinal derivatives. CLa and CL (a dot ) were predicted satisfactorily, 

as was CMa , , CM (a dot) ' and CMq. CLq was significantly overpredicted. The 

fo rward perturbation derivatives were not predicted well. The 

derivatives based on drag are difficult to compare because the vortex 

lattice method, by nature, only predicts induced drag effects. A good 

estimation of Coo is needed to accurately predict the drag derivatives. 

The lateral derivatives, in general, were predicted well, with beta 

derivatives consistently predicted high. 

Supersonic Case- North American XB-70 

34 

In order to validate the code's capability to analyze supersonic 

configurations, a test case of the North American Valkyrie XB-70 was 

conducted. This aircraft was a canard delta wing aircraft designed as a 

strategic bomber in the 1960's. The wireframe model of the XB-70 is 

shown in Figure 5.3. The sliced model, generated in the same manner as 

the Lear Jet model, is shown in Figure 5.4, and the test case flight 

condition is given in Table 5.3. 

Figure 5.3 

Wire frame Model of the XB-70 
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Figure 5 . 4 

Slice Model of the XB-7 0 

Tabl e 5 . 3- Flight Conditions for the XB- 70 

Flight Condition Cruise Max. Weight 

Alti tude (f1: ) 60 , 000 

Air Density (slugs / . 0002237 

Speed (fps ) 2420 (M=2.S) 

In itial Attitude (deg ) 4 . 4 

Geometry and Inertias 

Wi ng Area ( ft- ) 6297 . 8 

Wing Span ( ft ) 105 

Wing Geo. Ch o rd (f t ) 78 . 53 

Weight (lbs) 13 , 000 

Ixxb (slug ft-) .1 8E7 

I yyb (slug ft-) . 10E8 

I zzo (s lug ft-) .22l E8 

The stability derivatives for the XB-70 were calculated and are 

tabulated in Table 5.4. The derivatives for the most part agree with 

data from various sources , including flight test data (3) • Of the 

important deriva tives, Cl~ and Cn~ are again overpredicted, but still 
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we~l wl~hin tolerable ~ange. This agreement illustrates the vortex 

:;'a~::::'ce c:ode ' s ability "to analyze supersonic configura"tions. In both 

::ne so..:osonic and supersonlc case, i"t was found tha"t "this method is 

ex"t~e e~y sensi"tive ::0 "the placement of the center of g~avity. Handllng 

qua:~::es analysis s howed that the XB - 70 is a Level 1 aircraft a t both 

::he subsonic and supersonic conditions tested . Optimization studies are 

In p.::-og.::-ess. 

Table 5.4 - Stability Derivatives of the X8- 70 

Longitudinal Stability Derivatives 

Derivatives VORLA){ Data** Importance * 
C:. 0 . 08 0 . 091 

C:. a l. 13 l. 50 10 

C:. ;, o,,~ - 4 

C:. g 0 . 7 0 9 3 

CL " 
- 1.88 5 

Cr -

C::, ;, - 5 

CD c 0 . 0002 6 
CM -

CM a - 0 . 155 - 0 .14 10 

CM a dot 0.017 0 . 0 7 

CM q - 0 . 565 - 0 . 4 9 

CM U 0.469 8 

Lateral Stability Derivatives 

Derivatives VORLA){ Data** Importance * 
Cl b 0.005 0 . 013 10 

Cl P - .065 - 0 . 07 10 

Cl r - 0 . 049 - 0 . 015 7 

Cn b 0 . 097 0 . 05 10 

Cn p - 0.048 - 0. 075 8 

Cn r - 0.089 - 0 . 36 9 

Cy b - 0 . 23 - 0 . 36 7 

Cy P 0 . 11 4 

cy r 0 .2 0 4 

*Rela~ive Impor~ance, lO=Maj or , 5=Minor , O=Negligible , Roskam 

**Source: Heffley , R. K, and W.F. Jewell. "NASA CR 2144 Aircraft 
Handling Qual ities," December 1972. 
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OptimizaLion of Wing and Horizontal Tail 

The opLimization s cheme was applied LO the geometry of the Lear 

Jet Model 23 by varying horizontal tail location and aspecL ratio . 

Results are shown in Figure 5 . 5 . Fir s t , the longitudinal location of 

~he horizonLal Lail was changed . Point 5 on the graph locates the 

aCLual posLion of Lhe horizonLal tail. The tail was then moved forward 

and aft in 3 foot increments . At its original location , the Lear Jet is 

a Levell aircraft to Category B tasks . As the tail is moved fore , the 

aircraft moves away from the Level 1 space , with both CAP and S 

increasing. As the tail approaches the moment center of the aircraft, 

the handling qualities stay solidly Le vel _. 

CAP 

-1 

9 

10 

5 

2 

1 

sec -2 
. S 

.2 

.1 

.05 

.02 

. 01 
.1 .2 

LEVEL 2 

LEVEL 1 

J 3 _ 

7 

-2 

.5 1 2 

-4 

x Hor izontal 'rail 
inqaft 

0 

IIIOV 

Aspect Ratio 
winq, same of 

are a 

5 

D&mpl.ng Ratio, ~ 

CATEGORY B FLIGHT PHASES 

Figu re 5. 5 

CA P Graph fo r Lear J et Model 23 
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Nex::, the aspect ratlO was varied, keeping constant wlng area a:lO 

2.~lowing the wingspan to change. The points on the CAP graph are 

:lumbered wlth the value of the aspect ratio. There is no clear 

::-elaLionship between varying aspect ratio and the flying qualities of 

::he aircra:::. Aspect raLio' s 2,3 , and 5 seem to form an increasing 

paLh, yeL aspect raLio of 4 is clearly an anomaly, as is aspect raLio 7 . 

This type of analysis would be useful when aspect ratio is used as a 

:::onstraint on the preliminary design . It would only be necessary to 

ensure thaL the aspect ratio given provides a Levell aircraft. 

In both cases, the analysis was extremely sensitive to center of 

gravity location, more so than with the stability derivatives. Because 

of this sensitivity, this tool is recommended for use in identifying 

trends, rather than to force the optimization to a specific CAP value . 
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CHAPTER 6 

Conclusior.s and RecommendaLloDs 

A com~rehensive worksLaLion-based tool to facilitate the 

opL~mizaLion of aircraft for handling qualities was designed and 

lmplemenLed. PREDAVOR rapidly calculates stabiliLY and dimensional 

der~vaLlves given a three d~menslonal model of ar. a~rcraft . It then 

eStimaLes tDe handling qua~it~es metrlC control antlcipaLion paramete~ 

(CAP ) and plots iL via a graphical interface on a CAP ploL. In this way 

it allows Lhe user to rapidly assess aircraft geometry changes and 

identify trends as they pertain to handling qualities. The aircraft may 

then be optimized for these qualities. 

In general, both the longitudinal and lateral derivatives were 

The inherent vorl ax lattice method has been shown to be extremely 

sensitive to center of gravity location , as is the CAP calculation. This 

sensitivity must be noted b y the user in order to use the tool 

effectively. The stability derivatives predicted are well within 

Lolerable ranges for such estimations . 

Further research will include the possible implementation of this 

scheme into an existing optimization and aircraft design package, such 

as NASA's ACSYNT, in order to allow multidisciplinary optimization, 

including handling qualities, of aircraft during the preliminary design 

stage . 
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