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ABSTRACT

The effectofa parallelshearflowand anisotropicinterfacekineticson the onsetofinstabilityduringgrowth

from a supersaturatedsolutionisanalyzed. The model used for anisotropyisbased on the microscopic

pictureof step motion. A shear flow (linearCouette flowor asymptotic suctionprofile)parallelto the

crystal-solutioninterfacein the same directionas the step motion decreasesinterfacestability.A shear

flowcounter to the step motion enhances stabilityand for suf[icientlylargeshear ratesthe interfaceis

absolutelymorphologicallystable.For largewave numbers, the perturbed flowfieldcan be neglectedand

a simpleanalyticapproximation forthe stability-instabilitydemarcationisfound.

INTRODUCTION

During crystalgrowth or solidificationof a binaryalloyfrom a liquidphase,temperature and solute

gradientsare inherentlypresent. In a gravitationalfield,these gradientscam give riseto fluidflowin

the melt. The interactionof fluidflow with the crystal-meltinterface[i,2] plays an important rolein

determining the propertiesof the solidifiedmaterial. Convection in the melt and interfaceinstability

may both produce soluteinhomogeneities.In the absence of fluidflow,the conditionsfor the onset of

morphologicalinstabilityare wellestablished.However, the coupling between morphologicalinstability

and fluidflow can be complicated;interracialinstabilitiesdepend on temperature and solutegradients

which may be stronglyinfluencedby the flowfield.The flow field,in turn,may be influencedby the

morphology of the interface.

Previously,we have carriedout a number of theoreticalinvestigationsrelevantto the experimental

studiesinspaceby J.J.Favierand colleagues(Centred'EtudesNucleairesde Grenoble)and R. Abbaschian

and colleagues(Universityof Florida)utilizingthe MEPHISTO apparatus [3].In the MEPHISTO space

experiments,dilutealloysof tincontainingbismuth (USMP-I & 3) and bismuth containing0.1 at.% tin

(USMP-2) were directionallysolidifiedforgrowth conditionsin thevicinityoftheplanar-cellulartransition.

While tinisfairlyisotropic,bismuth isextremelyanisotropicformingfacetsduringgrowth. We firstdiscuss

recentresultson the morphologicalstabilityofhighlyanisotropicmaterials.

During alloysolidification,a smooth crystal-fluidinterfacemay become unstable,leadingto cellular

or dendriticgrowth. Linear morphologicalstabilitytheory [4,5]describesthe conditionsunder which

the interfacebecomes unstable.The originaltreatmentofmorphologicalstabilityby Mullinsand Sekerka

assumed localequilibriumatthe crystal-meltinterfaceand isotropyofthe crystal-meltsurfacetension;this

isan excellentapproximationformany metalsatlow growth velocities.However, many materials,including

semiconductorsand metalssuch asgalliumand bismuth,grow withfacetsindicatingstronganisotropyand

deviationsfrom localequilibrium.The stabilityoffacetedgrowth has alsobeen reviewed [6].The effectof

anisotropyof surfacetensionand interfacekineticson morphologicalstabilityhas been treatedin a quasi-

staticapproximation to the diffusionfield;kineticanisotropycausestravelingwaves along the crystabmelt
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interface [7]. Yuferev [8] showed that for growth in which the interface is near a singular orientation

Can atomically smooth orientation), there is an enhancement of morphological stability; more detailed

calculations for a binary alloy [9] and for growth into a supersaturated solution [I0] and supercooled melt

[11] have been carried out. Recently, we have considered the effect of shear flows and anisotropic interface

kinetics on the morphological stability of a binary alloy growing from the melt [12].

The motion of elementary steps is the essence of layerwise growth and decrystallization (dissolution,

melting, or evaporation). Step motion has the weU-known tendency for not always proceeding as regular

step trains, i.e., keeping the interstep distance constant and producing homogeneous crystals. Instead,

under a wide range of conditions, the elementary steps cluster into step bunches. In other words, the

interface is morphologically unstable with respect to step bunching. The step bunches trap impurities in

amounts which depend on the local step densities, and therefore the impurity distribution differs from

that formed by regular step trains. As a result, bands enriched or depleted in point-defects appear in

the grown crystal [13]. Step bunches themselves may, in turn, lose their stability and trap inclusions of

solvent. Growth conditions under which these instabilities are less likely typically require experimental

determination; they are not well understood quantitatively and in some cases not even qualitatively. It

is well known, however, that fluid flow in the solution, crystal growth rate, and impurities are of great

importance for the onset of step bunching. This is the motivation for analyzing the effect of flow on step

bunching, i.e., on the morphological stability of vicinal faces in solution and melt growth. If the role of

flow effects is understood, the influence of other factors on crystal quality may be better discerned.

Experiments and theory indicate that a solution flowing above a vicinai face of a crystal can either

enhance or prevent the development of step bunches [6, 14, 15, 16]. In the absence of flow, anisotropic

kinetics arising from the motion of steps on the crystal surface provides an important self-stabilization

mechanism [8, 9, 10, 11].

In this manuscript, we treat the effect of shear flows on the morphological stability of a crystal growing

from solution by a step mechanism at a given constant velocity V. In the absence of flow the self-

stabilization due to anisotropic kinetics has been treated [10] and we employ the same model here. The effect

of flow on morphological stability of stepped surfaces has been treated previously ignoring the perturbed

flow field [15]. We will explore this approximation and show that it is valid for a range of growth conditions.

THEORY

In order to phenomenologically treat anisotropickinetics,we assume that growth is by the motion of

elementary steps, which leads to a macroscopic anisotropic kinetic law. The interface kinetic coefficient

/_(p),defined as the ratio of the solute flux and the deviation (CI - (_e)of the interface concentration CI

from the equilibrium solution concentration _e, isgiven by/_(p) = _,tJPl,P = tanS, where 8 measures

the deviation of the slope of the interface from a singular orientation [6]. If the planar interface is a

singular interface(p = 0), itskineticcoefficientvanishes and in this model there isno growth. In reality,a

singular interfacebecomes macroscopically or locallyvicinaldue to a screw dislocationor a two-dimensional

nucleation mechanism, which generates steps. A locally finitevalue of p at any macroscopic area of

the interface results. The unidirectional step motion introduces anisotropy and we will only consider

perturbations along the direction of the step motion. Further, we assume that the perturbations are

sufficientlysmall that the quantity p does not change sign.

Our sign convention issuch that positivep corresponds to step motion to the left(negative z direction,

see Figure la). If we consider a small sinusoidal perturbation of a planar interface characterized by a

constant positive value of p = _, then regions of the perturbed interface with positive slopes willhave

larger values of p and therefore larger kinetic coefficientsand larger step densities. Thus for the same

supersaturation, regions of the interface with positive slopes willgrow faster than regions with negative

slope;this leads to a translation of the sinusoidalperturbed interfacein the direction of the step motion.
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As previouslydiscussed[9,I0,15,16],both thislateraltranslationofthe sinusoidalinterfaceperturbation

and the lateralflowofliquidcan move a depressionin the interfaceto a solute-enrichedregionof solution

where itcan grow fasterand thus providea stabilizingmechanism.

A shear flowin the oppositedirectionfrom the stepmotion tends to move fluidintothe stepsand is

somewhat equivalentto a fastertranslationofthe perturbationsin a stagnantfluid;therefore,one expects

such a flowto furtherstabilizethe interface.Conversely,a shear flowin the directionofthe step motion

willdestabilizethe interface.Thus, the key physicsbehind the stabilizationor destabilizationisthe phase

shiftbetween the perturbationof the interfaceshape (characterizedby alternationof higher and lower

stepdensityrunning tangentiallyalong the interface)and the concentrationwaves induced by thesestep

bunches (alsotravelingparallelto the interface).This phase shiftisinfluencedby both the motion of the

stepbunches and the solutionflow.

We have carriedout a linearstabilityanalysisforconstantvelocitygrowth in the z-directionintoa

supersaturatedsolution.We solvethe incompressibleNavier-Stokes;equationsforthe fluidvelocityu and

the convection-diffusionequationforsoluteconcentrationC(z, z,t)inthe absence of gravity.We consider

a two-dimensional problem and assume allquantitiesare independent of the coordinateI/- The basic

equationsand boundary conditionsaregiven in references[10]and [12].

For the linearstabilityanalysisofthe base state,the variablesare writtenas the superpositionofthe

base statecomponent and a perturbation.The perturbed quantitiesare Fourieranalyzed in the lateral

directionand exponentialtime-dependenceisassumed, so thatthe perturbed variablesare proportionalto

exp(#t + i/c_z)where cr= ar + {cr_isthe complex temporal growth rate,and k= isthe wavenumber in the

z-direction.The numericalsolutionproceduresused to solvethe resultantdifferentialeigenvalueproblem

have been describedpreviously[12].

RESULTS and DISCUSSION

We have carriedout a seriesofcalculationsusingthe followingparameters:diffusioncoeflicientD =

1.0x 10-Scm2/s, capillaryparameter r = 5.0 × 10-Scm, Co/C, = 5, _ot = 0.1cm/s, u = 0.01cm2/s,

and p = 1 [15],where C, isthe concentrationin the crystal,u isthe kinematicviscosity,and p = ps/pr.

isthe ratioof the crystaland solutiondensitiesPs and pr..Numerical calculationswere carriedout for

unperturbed flowscorrespondingto both linearCouette flow(inwhich the flowvelocityincreaseslinearly

with distancefrom the interfaceand the shearrateisindependentof distance)and the asymptotic suction

profile(inwhich the flowvelocityattainsa constantvaluefarfrom the interfaceand the shearratedecays

exponentially).However, fora givenshearrateS attheinterface,the resultsforboth profilesare essentially

identical.

In Figure2 fori_= 0.01,we plot(solidcurves)the wavenumber k. as a functionofgrowth velocityfr

forar = 0 forvariousshear rates.The resultforzeroshearisthe same as previouslygiven [10],with the

system being stableforlargevelocitiesand largewavenumbers. Stabilityatlargewavenumbers isa resultof

capillaritywhile anisotropickineticsprovidesstabilityat intermediatewavenumbers. Negative shear (flow

in the directionof the step motion) destabilizesthe interface,particularlyat small wavenumbers. The

curve for S = -0.1 s-I has a minimum at small wavenumbers and largevelocities.Below thisminimum

wavenumber the system isunstableforallvelocities.Above thisminimum wavenumber there isa region

of stabilityat intermediatevelocities.Positiveshear (flowoppositeto the directionof the step motion)

stabilizesthe interface.At a shear rateof0.1 s-I, the neutralcurve forms a closedloop with instability

occurringinsidethe loop. Above a shear rateof 0.629 s-i, we have not found any modes with or _ 0

indicatingthatthe system isstableforshearratesgreaterthan thisvalue.FollowingChernov [15],we have

alsosolvedthe stabilityproblem by neglectingthe perturbed flow. The resultsfor the same conditions

are given by the dashed curvesin Figure 2. The dashed curvesare only visiblefor S = -0.1 s-I at low

wavenumbers indicatingthatthe perturbedflowfieldisunimportant at high wavenumbers.
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Since it is a good approximation to neglect the perturbed flow field, the perturbed solute field can

be obtained analytically in terms of Airy functions. For large wavenumbers, the Airy function can be

simpl/fied by using its asymptotic representation, and we can obtain a simplified stability criterion, namely

with

(i)

¢#.,C2
= D(I+ C)' (2)

whereC=
In the absence of capillarity, the above stability criterion can be written simply as

+ slC2k.) > 2_(Dk= + fl._), (3)

where vz = ad/kz is the magnitude of the phase velocity.

To better understand the physics behind the stabilization mechanism, we consider the concentration

field above the perturbed interface within the general framework employed earlier [10, 15]. The perturbed

stepped interface is shown in Figure la, where the numbers 1-3 are used to indicate specific regions of

the perturbed stepped interface. The solution is evidently depleted with respect to the average solute

concentration above regions of the type 1 where the step density (and thus ability of the interface to

incorporate solute) is higher than the average step density (for an unperturbed interface). Conversely,

the solution is enriched above the low step density areas (type 2). The perturbed solute distribution as a

function of z and z is shown schematically in Figure lb; the lowest wavy line is in the immediate vicinity
of the interface.

The amplitude of the concentration waves at a distance z from the interface decreases as z increases.

The typical decay length is .._ k_-1. The decay of the amplitude is depicted by the upper wavy lines in Figure

lb. These concentration waves would be stationary if neither the solution nor the interface pattern moved,

as would be the case for s non-stepped, isotropic rough interface in a stagnant solution. Actually, both

the step bunches and the solution move with respect to the crystal lattice. Therefore, each solution layer

parallel to the interface moves tangentially with respect to the step pattern. Correspondingly, the phase

shift of the concentration wave in each layer increases with z. In Figure lb, each neighboring concentration

wave is shown shifted to the right, following the solution flow relative to the step bunches.

The flow-induced morphological stabilization or destabilization results from the influence of the solution

flow on the phase shift between the concentration waves and the perturbed interface waves. The shift of the

surface concentration maxima, say, points A and B in Figure lb, to the right causes stabilization because

enriched solution (region 2, Figure la) first comes to the interface valleys (region 3) while the depleted

solution (originating from region 1) passes over the interface hills, thus diminishing the perturbation

amplitude.

In summary, a theoretical and numerical analysis that includes perturbations of the hydrodynamic

flow field in addition to the solute field above the perturbed vicinal interface has been carried out. It

is found that the hydrodynamic perturbations are important only at low wave numbers. Ignoring the

flow perturbation, we have found an analytic condition for stability. This condition predicts absolute (not

relative, as in reference [15]) stability with respect to step bunching if the shear rate S is sufficiently large.

The critical shear rate depends on both capillarity and kinetics.
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Figure 1: a) Profile of a periodically perturbed vicinal face with steps moving to the left at phase velocity vz.

The numbers indicate regions with different step densities, b) Surface plot of the perturbed concentration

field. The solid circles show the relative location of the step train with respect to the concentration wave.
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Figure 2: The spatial wavenumbers at which the system is neutrally stable as a function of growth velocity

calculated numerically for _ = 0.01 and shear rates of -0.1, 0.0, 0.001, and 0.1 for the linear Couette

profile. The solid curves are numerical solutions of the complete linear stability equations while the dashed

curves neglect the perturbed flow field.
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