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ABSTRACT

We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelera-
tions (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The
residual acceleration field is modeled as a narrow band noise, characterized by three independent parame-
ters: intensity <g2>‘ dominant angular frequency €. and characteristic correlation time 7. Realistic values
for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission,
as recorded by the SAMS instruments. We then use the model to address the random motion of a sohd
particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the
effect of g-jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion con-
trolled coarsening evaluated. We conclude that g-jitter will not be significant in the experiment *( ‘oarsening
of solid-liquid mixtures™ 1o be conducted in microgravity. Finally, modifications to the location of onset
of instability in systems driven by a random force are discussed by extending the standard reduction to
the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are
briefly discussed.

STOCHASTIC MODEL OF G-JITTER

We have introduced a stochastic model [1] to describe in quantitative detail the effect of the high fre-
quency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion
[2. 3, 4]. Each Cartesian component of the residual acceleration field §(¢) is modeled as a narrow band
noise characterized by three independent parameters: its intensity < g° >, a dominant frequency . and
a characteristic spectral width 71 Specifically, ¢(!) is a Gaussian random process, of zero mean, and
autocorrelation

< gty >=< g* > I cos [t - 1) (1)
The power spectrum for this antocorrelation function is,
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Fach realization of narrow band noise can be viewed as a temporal sequence of periodic functions of angular
frequency € with amplitude and phase that remain constant only for a finite amount of time (7 on average).
At random intervals. new values of the amplitude and phase are drawn from preseribed distributions. This
model is based on the following mechanism underlying the residual acceleration field: one particular natural
frequency of vibration of the spacecraft structure () is excited by some mechanical disturbance inside
the spacecraft. the excitation being of random amplitude and taking place at a sequence of unknown (and
essentially random) instants of tine.

From a theoretical standpoint. narrow band noise provides a convenient way of interpolating between
monochromatic noise (akin to more traditional studies involving a deterministic and periodic gravitational
field). and white noise (in which no frequency component is preferred). In the limit 7 — Owith D =< ¢? > 7
finite, narrow band noise reduces to white noise of intensity [2: whereas, for 7 — ~x with < g° > finite,
monochromatic noise is recovered.

In order to ascertain the validity of this model. and to determine the values of the parameters defining
the noisc, we have analyzed actual g-jitter data collected during the SL-J mission (SAMS-258). and studied
in detail the time series of head A between MET 0017 and ME'T 0023, or roughly six hours. First. a scaling
analysis has been performed to determine the existence of deterministic or stochastic components in the
time series. Figure 1 shows the power spectrum of g-jitter calealated over a window of size N and then
averaged over the six-honr period (the values of ¢ are sampled at 250 Hz). With the normalization of the
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Figure 1: Left, power spectrum as a function of frequency for a six-hour interval during the SL-J mission.
The various curves shown correspond to spectra calculated over the window of indicated size. Right, intensity
versus window size for a few selected frequencies.

spectrum used, the power spectrum of a deterministic time series ought to be independent of N, whereas
for a stochastic signal, it should decay as 1/N when the window size is much larger than the correlation
time 7. Figure 1 (right) shows the dependence of the power of a selected set of frequencies as a function
of the window size, displaying its scaling with N. During this period of six hours, there appears to be a
monochromatic contribution at 17 Hz with an amplitude \/< g2 > = 3.56 x 10~ %gg, where gg is the intensity
of the gravitational field on the Earth’s surface. There are two additional components that have a finite
correlation time: For the component at 22 Hz we estimate /< g2 > = 3.06 x 10~ g and 7 = 1.09 s, whereas
for 44 Hz we find, \/< g2 > =5.20 x 107%gg and 7 = 0.91 5. As an estimate of the white noise background,
we obtain from the slope of the intensity of the 8 Hz component versus N the value D = 8.61 x 10~ %em?/s3.

RANDOM MOTION OF BUOYANT PARTICLES; COARSENING OF SOLID-LIQUID
MIXTURES

We study here the motion of a particle suspended in an incompressible fluid of different density, when the
fluid is subjected to an effective acceleration field like the one described above. This type of motion has been
termed inertial random walk because of the similarity with Brownian motion [5]. The difference, of course,
is that the random motion of the particle is not due to thermally induced collisions with the molecules of
the fluid, but results from an effective random buoyant force acting on the particle. The asymptotic mean
squared velocity of a particle subjected to narrow band noise is found to be,

(v?)_ = Ap*(g*) (v + 1) ’
= [+ )+

where Ap = (pp— ps)/Pp, 7 = 971/ 2p, R?, with n the shear viscosity of the fluid, p, and p; the density of the
particle and fluid respectively, and R the radius of the particle. The particle undergoes diffusive motion (the
mean squared displacement is proportional to time), with an effective diffusion coefficient that is proportional
to the intensity of the fluctuating acceleration. On the other hand, if the acceleration field were periodic in
time (deterministic case), the mean squared displacement of the particle would remain bounded.

We have also performed an asymptotic analysis away from the deterministic limit (7 — o) to illustrate
the emergence of diffusive behavior as the correlation time becomes finite. We have found an effective
diffusion coefficient given by,

_Apt<gi>y Q2 42\ 1 2
Deff-———(72+92)2 2+7—2+§-2' ;+0(T )
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Therefore, from a measure of the autocorrelation function of the particle displacement, it should be
possible in principle to determine independently the parameters that define g-jitter. Knowledge of this sort
could conceivably lead to the construction of an instrument that would complement the data set provided
by accelerometers.

A residual acceleration field can produce a number of deleterious effects on otherwise purely diffusive
controlled coarsening. We have focussed on two such effects: random motion of the suspended particles
induced by the effective (random) buoyant force and the concomitant increase in the likelihood of particle
coalescence, and additional flow in the fluid phase caused by g-jitter and its effect on solute mass transport.
Numerical estimates have been obtained for a solid-liquid mixture of Sn-rich particles in a Pb-Sn eutectic
liquid, the system that will be used in a forthcoming microgravity experiment [6, 7].

Neglecting inter-particle interactions, precipitate particles will execute a random motion of the type
described above. For the case of monochromatic noise (fixed frequency and random phase), the average
quadratic displacement of each particle remains bounded. For values of the parameters appropriate for a a
Pb-Sn eutectic liquid and the conditions of the planned microgravity experiment, ¥ = 260s~!, and by using
the amplitude of the 17 Hz component of the power spectrum, we find that max {< r? >} ~ 10~8cm?, and
hence negligible. At the other extreme, we find that for white noise the mean squared displacement after five
hours is < z2 > (t = 5 hr.) = 8.85 x 10=%cm or V< 22 > =~ 30um. Clearly the average square displacement
induced by the white noise component of the residual acceleration field is much larger than that induced by
the monochromatic component, but it is still about one half of the expected average particle size at the end
of the coarsening experiment. Therefore Brownian motion induced by g-jitter will not lead to appreciable
motion of the precipitate particles relative to their size.

Estimating the effect of g-jitter on mass transport in the fluid phase is far more complex. In the limit
of Stokes flow and non-interacting solid particles, (the former is appropriate for the size of the coarsening
particles involved), g-jitter induced flow acts to renormalize the solute diffusivity. We find an effective
diffusion coefficient given by, \

A:QD, (3)
where Ap is the relative difference in density between the liquid and solid phases, and D, is the solute
diffusivity. We find that

Desy = Dy +

Ap*D

D, - 5x 107°% « 1, (4)

and therefore negligible.

Finally, the effect of particle-particle interaction can be estimated in the overdamped limit. We find that
although it would be asymptotically dominant in the limit of large particles (or long coarsening times), the
interaction terms also remain small within the range of coarsening times to be explored in the experiment.

CENTER MANIFOLD REDUCTION FOR STOCHASTICALLY DRIVEN SYSTEMS

The onset of oscillatory instabilities in stochastically driven systems is also being studied. The approach
that we follow applies to systems consisting of a “slow™ variable u coupled to one (or more) “fast” variable(s) v
[8]. In the classical deterministic case, one simplifies the dynamics of the problem close to onset of instability
through the adiabatic elimination of the fast variable. The stochastic analog of this reduction scheme consists
in assuming a probability distribution of the form P(u,v,t) = P(u,t)é(v — v,(u)), with v = v,(u) is the
center manifold of the associated deterministic problem (in the weak noise limit). The resulting Fokker-
Planck equation is then integrated over v, yielding an equation for P(u,t). Using this procedure, a generic
system of the form

, u _ a 0 u flu,v) ki, kyo u
O [ v } - [ 0 =X ] [ v ] + [ g{u,v) ] +€(!)[ kor koo v (5)
where A, a > 0, and kj; are known constants, reduces to the Fokker-Planck equation,

NPty = = f(au+ flu, vo(u))Plu, )]+ D [(kiu+ kiavg(u)) (6)
(ki1 4 2k120u v, ()Y P(u, t) — kya(koyu + kosve(u)) Pu, t)
+(k1u +lslv_,vu(u))?(')u[’(u,{]].
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The value a = 0 corresponds to the deterministic threshold, while the functions f(u,v) and g(u,v) involve
terms of the form u®v® (a + b > 2). The random process £(t) is assumed to be Gaussian and white, of zero
mean and intensity 2D ({£(1)E(t')) = 2Ds(t — t')).

As an illustration of the procedure, consider the Van der Pol oscillator

82z = ax — v,z — az®, (7)

with the driving force having a stochastic component (i.e, a — o +£(t)), 7 is a constant damping coefficient
and a > 0 a nonlinear coupling constant. The problem can be mapped to Eq. (5) by first defining y = diz
and then letting ¥ = r + y/v and v = —y/7 [8]. Assuming u, D << 1, the resulting Fokker-Planck equation
yields the stationary distribution

P(u):j'\flul‘z'*’ebI exp(—%uz), (8)

which is normalizable as long as a > D/v. The theory thus predicts a shift in the threshold from a = 0 to
a = D/~. This result agrees with that obtained by Liicke [9] by other methods, but contradicts earlier work
of Knobloch and Wiesenfeld. The probability density can either be unimodal (a > 2D/, Fig. 2 (left) or
monotone with an infinite peak at zero (D/y < a < 2D/~ Fig. 2 (right).
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Figure 2: Probability density distribution for the Van der Pol oscillator with noise intensity D = 0.01(o =
v =1)

The procedure can also be used to study the influence of fluctuations on time-modulated oscillatory
convection. The left and right traveling waves appearing at large Rayleigh numbers have been modeled by a
set of equations for their amplitude (r or y) and phase difference () [10]. Tn the parameter regime in which
both waves have equal amplitude (thus corresponding to the emergence of standing waves), the system of
equations can be shown to reduce to

a [14 ] _ [aR—}-,/b?_a? 0 :l [,1]_{»[ %ﬁA*%—a,ﬂA ] (9)
fle ] T 0 26T —a? || ¢ AT+ 0,07 )
close to onset. In Eq. (9), A = r +y, § = x — arcsin(a;/b) and the ather quantities are constant parameters
entering the model. The effect of fluctuations in the Rayleigh number can then be studied by letting
ag — ar + &(t). The center manifold approach predicts changes in the various moments of A, but no shift
in the position of the threshold for this instability. This has been verified numerically, as shown in Fig. 3.
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Figure 3: Standing Wave bifurcation in time-modulated oscillatory convection.

CONCLUSIONS

A stochastic model of the residual acceleration environment onboard spacecraft has been introduced. It
provides a realistic description of the various contributions to the acceleration environment, as exemplified
by the power spectrum recorded during the SL-J mission. During the time window analyzed, the signal has a
deterministic component at 17 Hz (with a correlation time longer than 65 s), two other major components at
22 and 44 Hz that can be modeled as narrow band noise of short correlation time (of the order of one second),
and a significant white noise background. Since the stochastic model used can smoothly interpolate between
the deterministic and white noise limits, it represents a useful tool for numerical analysis and statistical
predictions concerning the effect of g-jitter on a number of phenomena.

In particular, we have briefly discussed our results concerning three different situations. First, random
displacements of buoyant particles result in diffusive motion that could be used in passive accelerometer
devices to have an independent measurement of g-jitter intensity. This random motion and the concomitant
fluid flow have been estimated in connection with the experiment “Coarsening of solid-liquid mixtures”.
The effect of g-jitter has been shown to be of the same order as ordinary Brownian motion and therefore
negligible, except possibly for experiments of long duration (over ten hours). Finally, the effect of noise on
the onset of oscillatory instabilities, such as in double diffusive convection, is being examined by extending
the classical center manifold reduction to the stochastic case. Two examples are briefly discussed that exhibit
the main qualitative features of the phenomenon, with particular emphasis being paid to possible shifts in
the instability point relative to the deterministic (noiseless) case.
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