NASA-CR-202390 AR

Research Institute for Advanced Computer Science
NASA Ames Research Center

Aerodynamic Shape Optimization of
Supersonic Aircraft Configurations via an
Adjoint Formulation on Parallel Computers

James Reuther, Juan Jose Alonso, Mark J. Rimlinger and Antony Jameson

RIACS Technical Report 96.17 September 1996

Presented at the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, September 1996,
AlAA paper 96-4045

Aerodynamic Shape Optimization of
Supersonic Aircraft Configurations via an
Adjoint Formulation on Parallel Computers

James Reuther, Juan Jose Alonso, Mark J. Rimlinger and Antony Jameson

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was sponsored by NASA under contract NAS 2-13721 between NASA and the Universities
Space Research Association (USRA).

Aerodynamic Shape Optimization of
Supersonic Aircraft Configurations via an Adjoint Formulation
on Distributed Memory Parallel Computers

J. Reuther*
Research Institute for Advanced Computer Science
NASA Ames Research Center, MS 227-6
Moffett Field, California 94035, U.S.A.

J. J. Alonso!
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey 08544, U.S.A.

M. J. Rimlinger?

Simco

NASA Ames Research Canter, MS 227-6
Moffett Field, California 94035, U.S.A.

A. Jameson!
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey 08544, U.S.A.

ABSTRACT

This work describes the application of a control theory-based aero-
dynamic shape optimization method to the problem of supersonic
aircraft design. The design process is greatly accelerated through
the use of both control theory and a parallel implementation on dis-
tributed memory computers. Control theory is employed to derive
the adjoint differential equations whose solution allows for the evalu-
ation of design gradient information at a fraction of the computational
cost required by previous design methods (13, 12, 44, 38]. The re-
sulting problem is then implemented on parallel distributed memory
architectures using a domain decomposition approach, an optimized
communication schedule, and the MPI (Message Passing Interface)
Standard for portability and efficiency. The final result achieves very
rapid aerodynamic design based on higher order computational fluid
dynamics methods (CFD).

In our earlier studies, the serial implementation of this design
method [19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9] was shown to be
effective for the optimization of airfoils, wings, wing-bodies, and
complex aircraft configurations using both the potential equation
and the Euler equations[39, 25]. In our most recent paper, the Euler
method was extended to treat complete aircraft configurations via a

*Student Member AIAA

TStudent Member AIAA

#Student Member AIAA

$James S. McDonnell Distinguished University Professor of Acrospace Engineering,
AlAA Fellow

°Copyrigh! © 1996 by the American Institute of Acronautics and Astronautics, Inc.
All rights reserved

new multiblock implementation. Furthermore, during the same con-
ference, we also presented preliminary results demonstrating that this
basic methodology could be ported to distributed memory parallel
computing architectures [24]. In this paper, our concern will be to
demonstrate that the combined power of these new technologies can
be used routinely in an industrial design environment by applying it
to the case study of the design of typical supersonic transport con-
figurations. A particular difficulty of this test case is posed by the
propulsion/airframe integration.

INTRODUCTION

To realize the potential of CFD to’ produce superior designs, there
is a need not only for accurate aerodynamic prediction algorithms,
but also for design methods capable of creating new optimum con-
figurations. Yet, while flow analysis has matured to the extent that
Navier-Stokes calculations are routinely carried out over very com-
plex configurations, CFD-based design techniques are just beginning
to treat moderately complex three-dimensional configurations.
Existing CFD analysis methods have previously been used to treat
the design problem by coupling them with numerical optimization
methods [13, 12, 44, 38]). The essence of these methods, which
incur heavy computational expense, is very simple: a numerical
optimization procedure is used to extremize a chosen aerodynamic
figure of menit which is evaluated by the given CFD code. The con-
figuration is systematically modified through user specified design
variables. Most of these optimization procedures require the evalu-
ation of the gradient of the cost function with respect to the specified

design variables. The simplest of the methods to obtain these neces-
sary gradients is the finite difference method. In this technique, the
gradient components are obtained by independently perturbing each
design variable with a finite step, calculating the corresponding value
of the objective function using CFD analysis, and forming the ratio
of the differences. The gradient is used by the numerical optimiza-
tion algorithm to calculate a search direction using steepest descent,
conjugate gradient, or quasi-Newton techniques. After finding the
minimum or maximum of the objective function along the search
direction, the entire process is repeated until the gradient approaches
zero and further improvement is not possible.

The finite difference-based optimization strategy is computation-
ally expensive because the flow must be repeatedly calculated for
perturbations in every design vanable. Nevertheless, it is attractive
when compared with other traditional design strategies such as in-
verse methods, since it permits any choice of the aerodynamic figure
of ment. The use of numerical optimization for transonic aerody-
namic shape design was pioneered by Hicks, Murman and Vander-
plaats [13]. They applied the method to two-dimensional profile
design governed by the potential flow equation. The method was
quickly extended to wing design by Hicks and Henne [12]. Later,
in the work of Reuther, Cliff, Hicks and Van Dam, this method was
successfully used for the design of supersonic wing-body transport
configurations [38). However all of these cases, which were confined
to finite difference gradients on serial computer architectures, were
limited in their geometric complexity simply due to computational
expense. For example, the designs presented in [38] were limited to
wing-body configurations. Yet it is well known that optimum perfor-
mance (especially for supersonic configurations) will require highly
tuned nacelle/airframe integrations. It was not possible to include
nacelle/airframe considerations into the design problem outlined in
[38] since the required number of mesh points, which more than
doubles with the inclusion of nacelles, could not be afforded.

In the last few years, alternative methods for obtaining design
sensitivities have been developed which greatly reduce the compu-
tational cost of optimization. References [1, 2, 3, 5, 4, 7, 8, 6, 32,
29, 16, 35, 30, 28, 34, 47, 31, 36, 37, 49, 15, 33, 14] present a
partial list of recent works in this developing area of research. An
exhaustive report on the various approaches to the problem and their
advantages and disadvantages is given by the first author in [45].
The most promising of these approaches is the adjoint formulation
whereby the sensitivity of some objective function with respect to an
arbitrary number of design variables is obtained with the equivalent
of only one additional flow calculation. Here, the solution of the
adjoint system (using the same mature techniques as perfected for
the flow equations) enables each gradient element to be calculated
very cheaply, meaning the number of design variables is essentially
eliminated as a constraining factor. Moreover, the adjoint solu-
tion (and to a lesser extent the accompanying flow solution) need
not be highly converged to be useful, in significant contrast to the
highly-converged flow solutions which are crucial to accurate finite
difference gradients [45].

In spite of the large decrease in computational cost provided by
the adjoint formulation of the design problem, the aerodynamic op-
timization of a complete configuration still remains a formidable
computational task. The advent of reliable and efficient parallel
computers using distributed memory is a key enabling technology
to decrease the turnaround time of these design calculations to the

point where configurations can be optimized almost in real time.

The work presented in this paper combines these two ingredi-
ents (adjoint formulations and parallel implementations) to produce
a robust, accurate, and efficient method that can be used for the de-
sign of supersonic aircraft including the effects of airframe/nacelle
integration.

FORMULATION OF THE ADJOINT EQUATIONS

The aerodynamic properties which define the cost function [are
functions of the flow field variables, w, and the physical location of
the boundary, which may be represented by the function F. That is,

I =1{wF)
and a change in F results in a change

o7 al”

[= — —_
1) " bw 4+ 5F o F 1)
in the cost function. The governing equation R and its first variation
express the interdependence of w and F within the flow field domain

D:

BR 3R

Introducing a Lagrange multiplier v, we have

aIr BIE r (1OR oR
8= Grtut SR F -y ([ﬁ]"“’*[ﬁ]”)

alT . [OR alT . (AR
{m‘“' 5 }“’*“{ﬁ“” 5] o7

Choosing ¥ to satisfy the adjoint equation

|

5] v=5 @

the first term is eliminated, and we find that the desired gradient
given by

r_0IT r[OR

" =57 " [57] @
is only a function of F. Since (4) is independent of §w, the gradient
of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow field evaluations.
The main cost is in solving the adjoint equation (3). In general, the
adjoint problem is about as complex as a flow solution. Therefore,
when the numberof design vanables is larger than 2, it becomes com-
pelling to take advantage of the cost differential between one adjoint
solution and the large number of flow field evaluations required to
determine the gradient by finite differences. Once equation (4) is
obtained, G can be provided to a variety of numerical optimization
algorithms to obtain an improved design.

MULTIBLOCK FLOW SOLUTION

In order to extend the methods presented in our earlier three-
dimensional work to the treatment of complete aircraft configura-
tions, the single-block flow solver used in [21, 40, 42] must be
replaced. As with the single-block solver, the more general flow

solver must meet fundamental requirements of accuracy, efficiency,
and robust convergence to be employed in an automated design
environment. High accuracy is required since the predicted im-
provements in the design realized by the method can only be as good
as the accuracy of the flow analysis. Efficiency of the flow solver
1s also critical since the optimization of the design will generally
require the computation of many flow solutions or other solutions
of comparable complexity. Finally, robust convergence is also of
significant importance since the main benefit of aerodynamic opti-
mization is in obtaining the last few percentage points in improved
efficiency. The solutions must be converged well enough that the
noise in the figure of ment, say drag at a fixed lift, is well below
the level of realizable improvement. The desirable ability to com-
pare adjoint-based gradients with finite differencing as a check also
requires highly-converged flow solutions.

In our three-dimensional single-block applications, the FLO87
code wnitten by the fourth author readily met all of the above crite-
na. FLO87 achieves fast convergence with the aid of multigridding
and residual smoothing. It is normally easy to obtain solutions that
converge to machine accuracy. The challenge in the present work
was to meet these strict requirements within the framework of a
multiblock flow solver. The use of a multiblock approach is a first
step towards the treatment of more complex configurations. How-
ever, the multiblock strategy presented here is not the only viable
approach. Other altematives such as unstructured mesh solvers are
also currently under investigation.

The general strategy in developing the multiblock flow solver is
to construct and update a halo of cells around each block such that
the flow solution inside each block is transparent to the block bound-
anes. This task requires establishing the size and location of halo
cells adjacent to block boundarnies and loading the halo cell values
with appropriate flow field data at the appropriate times. To accom-
plish this task, a two-level halo i1s constructed around each block.
The requirement of this double halo results from the necessity of
preserving a complete stencil of calculated fluxes entering and leav-
ing each cell in the entire domain without regard to block boundaries.
This ensures that the conservative flow solution algorithm is fully
maintained. Since both the convective and the dissipative fluxes
are calculated at the cell faces (boundaries of the control volumes),
all six neighboring cells are necessary, thus requiring the existence
of a single level halo for each block in the multiblock calculation.
The dissipative fluxes are composed of a blend of first and third or-
der differences corresponding to terms that mimic second and fourth
denivatives of the flow quantities [26]. For the third order differences
at the boundary faces of each cell for all blocks, the presence of the
twelve neighboring cells (two adjacent to each face) is required. For
each cell within a block, Figure 1 shows the neighboring cells that are
required for the calculation of convective and dissipative fluxes. For
each block, some of these cells will lie directly next to an interblock
boundary, in which case, the values of the flow variables residing in
a different block will be necessary to calculate the convective and
dissipative fluxes. Halo cells on the external boundary of the entire
computational domain are constructed and updated by extrapolation
and reflection, depending on the kind of boundary condition ap-
plied. Once the halo configuration is set up for each block, standard
methods for spatial discretization and time integration (including ar-
tificial dissipation, implicit residual averaging, and multigndding)
are employed to compute the flow solution within each individual

lst Level Halo 2rd Level Halo

Janective Stencil Dissipative Sacil

Figure 1: Convective and Dissipative Discretization
Stencils.

block.

The strategy for a complete flow solution proceeds as follows:
First, the blocks that comprise the flow field mesh are read from an
external file. Then, the double halo configuration is established, for
each individual block, by inserting into halo cell locations values for
gnd metrics, etc., taken from the interior cells of adjacent blocks.
For the coarse grids required in the multigrid procedure, the process
is repeated with coarse grid halo cells defined by the internal cells
of adjacent coarse grid blocks. For block faces that lie on solid,
symmetry, or far field boundaries, standard single-block techniques
are used to define the halo cells. As an example, consider the simple
4-block gnd depicted in Figure 3. The halo cells for block I will be
obtained from the intenal cells of blocks II, ITI, and IV, and from
solid or far field boundary techniques for the faces not adjacent to
other blocks. Coarse grids are computed in the usual fashion, by
aggregating groups of eight cells and then repeating the above halo
cell process. Once the halo configuration is complete for the fine and
all coarse gnids, the flow solution commences.

The system of equations solved here as well as the solution strategy
follows that presented in many earlier works [26, 18, 17]. The three-
dimensional Euler equations may be written as

%—l: gzi: =0 in D, (&)}
where it is convenient to denote the Cartesian coordinates and ve-
locity components by z), z2, z3 and w1, u2, u3, and w and f; are
defined as

p iy
P puul + pba
w= pu2 , fi= puuz + pbya 6)
pu3 puu3 + pba
pE puH

where §,; is the Kronecker delta. Also,

p=G-Dp{E-5 ()}, ™

and
pH = pE + p, ®)

where « is the ratio of the specific heats. Consider a transformation
to coordinates £, &3, £3 where

Ky = [a"] , J=det(K), K '= [95—] .

3_5, dz,
Introduce scaled contravariant velocity components as
Ui =Qiyu,
where
Q=JK"
The Euler equations can now be written as
oW 3F, .
—_— 4t = =0 9
5+ 7%, n D, 9
with
(o 3 (pU.)
) pUiuwi + Qup
W =Jq pu2 ? FleUJfJ=< pU.u2+Q.2p
pu3 pUiuz + Qiap
. pE) \ pUiH

(10)

For the multiblock case, the above notation applies to each block
in tum. The flow is thus determined as the steady-state solution to
equation (9) in all blocks subject to the flow tangency conditions on
all solid boundary faces of all blocks:

Uy,=0 onall Bs (an

where 7 is 1, 2, or 3 depending on the direction that is normal
to the face Bs where a solid surface is assumed to exist. At the
far field boundary faces, Br, freestream conditions are specified
for incoming waves, while outgoing waves are determined by the
solution.

The time integration scheme follows that used in the sin gle-block
strategy [26]. The solution proceeds by performing the cell flux
balance, updating the flow variables, and smoothing the residuals, at
each stage of the time stepping scheme and each level of the multignd
cycle. The main difference in the integration strategy is the need to
loop over all blocks during each stage of the integration process. The
use of the double-halo configuration permits standard single-block
subroutines to be used, without modification, for the computation of
the flow field within each individual block. This includes the single-
block subroutines for convective and dissipative flux discretization,
multistage time stepping, and multigrid convergence acceleration.

The only difference between the integration strategies is in the
implementation of the implicit residual averaging technique. In the
single-block solution strategy, a tridiagonal system of equations 1s
set up and solved using flow information from the entire grid. Thus,
each residual is replaced by an average of itself and the residuals of
the entire grid. In the multiblock strategy, the support for the implicit
residual smoothing is reduced to the extent of each block, in order

to eliminate the need to solve large tridiagonal systems spanning the
blocks, which would incur a penalty in communication costs and
may not even be defined. This change has no effect on the final
converged solution, and in the present application has not led to any
significant reduction in the rate of convergence.

THE ADJOINT FORMULATION FOR THE EULER EQUA-
TIONS

The application of control theory to aerodynamic design problems
is illustrated by treating the case of three-dimensional design, using
the Euler equations discussed above as the mathematical model for
compressible flow. In our previous work, the illustrative problem
most often used specified the cost function as a measure of the differ-
ence between the current and some desired pressure distribution. In
the case of transonic flows over conventional commercial transport
wings this aerodynamic figure of merit proves to be very effective
since the tailoring of these pressure distributions to achieve close to
optimum performance is well understood by most aerodynamicists.
However, for the case of supersonic design of three-dimensional
configurations, the specification of pressure distributions that will
determine near optimum performance is a considerably more chal-
lenging problem. Thus the development here will focus on the more
salient problem for supersonic design: drag minimization at a fixed
lift.

I = Cp
Cacosa+ Cysing

1

= / Cp (Szcos a + Sy sin) déide,,
Sref B
s

where S and S, are projected surface areas, Sref 1s the reference
area, and d¢; and d¢; are the two coordinate indices that define the
plane of the face in question. Note that the integral in the final
expression above is carried out over all solid boundary faces. The
design problem is now treated as a control problem where the control
function is the geometry shape, which is to be chosen to minimize
1, subject to the constraints defined by the flow equations (5-10). A
variation in the shape will cause a variation dp in the pressure and
consequently a vanation in the cost function

61 = 5C 4 cosa + §C'y sin a

{-Casina + Cncosa} ba

+
0 .
+ { Ca cosa+aCN sina ¢ da
da oo
where 8C 4 and §C'y are variations due to changes in the design
parameters with « fixed. To treat the interesting problem of practical

design, drag must be minimized at a fixed lift coefficient. Thus an
additional constraint is given by

6CL =0,
which gives

bCncosa — 6C4sina

{-Cnsina — Cacosa) bo

{BCN cosa — 9Ca sina p b =0
da do -

Combining these two expressions to eliminate o gives

81 =8C4cosa + 8Cx sina
+Q {5CNcosa - 8Ca sina} ,
(12)

where Q is given by
a8C ac .
—_ =A N
(CL + FA cosa + =5 Slnar)

(CD + %‘{icosa - %A sin a)

Since p depends on w through the equation of state (7-8), the varia-
tion §p can be determined from the variation §w. If a fixed computa-
tional domain is used, the variations in the shape result in variations
in the mapping denvatives. Define the Jacobian matrices

a2

= 5e’ Ci=QiA,. (13)

Then the equation for dw in the steady state becomes

3]
56-‘-(5F-) =0,

where
§F, = Ciéw +6(Q.;) f,-

Now, multiplying by a vector co-state variable v, assuming the result
is differentiable, and integrating by parts over the entire domain,

——6&F) d¢, = | (nip” 8F)dg,, (14)
b\ % B

where n; are components of a unit vector normal to the boundary.
The variation in the cost function can also be expressed in terms of
6p after (12) and (14) are summed to give,

1
§1 = —// §p{(Szcosa + Sysina)
1
1'7Mgosref Bs

+Q (Sycosa - S, sina) } déidés

1
+ C 6Srcosa 4+ 85y sina
Sref //BS ¥ {(!)

+0 (b'Sy cosa — 85y sin cx) } déydés

31le _ T
- ——6F | de, + | (awT8F) de,. (15)
p \ % B

On the solid surfaces B, 3 = iz = 0. It follows from equation
(11) that
(0) (0 3
Q'ﬂ&p s (in)
8Fy = Quép ¢ +pS 6(Qm) on any Bs.
Q"l3ép) (Qn])
. 0 J . 0)
(16)

Suppose now that ¢ is the steady-state solution of the adjoint

equation

% — :,TZ_Z: =0 inD. 17
At internal block boundanes, the face integrals cancel from the ad-
jacent blocks. At the far field the choice of the adjoint boundary
conditions depends on whether the flow is subsonic or supersonic.
For subsonic flow, so long as the outer domain is very far from the

configuration of interest, we may set
Pi—s =0 onall Bpg.

If, however, the flow is subsonic and the boundary is fairly close,
then far field faces may be set by ;s = 0 for incoming waves,
while outgoing waves are determined by the solution. It is noted
that the waves in the adjoint problem propagate in the opposite
direction to those in the flow problem due to the transpose in equation
(17). For supersonic flows, the choice of boundary conditions at the
outer domain can be developed from physical intuition as well as
mathematical analysis. For a given geometry, say a wing, a change
in the surface at any particular point, P, will incur changes in the
flow field and hence the performance in the region defined by the
Mach cone originating at P. Similarly, it is possible to determine
the region over which surface changes affect the flow condition at a
given point. This region would also form a cone that would point
exactly in the opposite direction of the Mach cone, depending on
local conditions. It is the solution of this reverse problem that the
adjoint represents. The contribution to, say, drag at a given point is
influenced by changes to the surface at all points within the reverse
cone. The correct supersonic far field boundary conditions for the
adjoint equation that are consistent with this reversed character are:

Pi-s = 0 attheexit
Y1-s extrapolated from the interior at the inflow boundary.

Then if the coordinate transformation is such that & (JK") 15 neg-
ligible in the far field, the last integral in (15) reduces to

_/ v 6 F, deidés. (18)
Bs

Thus by letting ¢ satisfy the boundary conditions,

(dlen\ + ¥3Qn2 + ¥aQp) = Q onall Bs, (19)
where

1
%7Mgosref
+Q (Sy cosa — Sz sin 0’) } 1

Q { (S, cosa + Sy sin a)

we find after integrating by parts again that
1 .
§1 = fer/'/a C,,{(Jb;cosa+5bysma)
s
+Q (68y cos a - 85 sin) } dé1déa
3
+ / W= (6Q.,1,) des (20)
p %

which is independent of w.

MULTIBLOCK MESH VARIATIONS AND DESIGN VARI-
ABLES

In order to construct 61 in equation (20), the variation in the metric
terms must be obtained in each block. One way to accomplish this is
to use finite differences to calculate the necessary information. This
approach avoids the use of multiple flow solutions to determine the
gradient, but it unfortunately still requires the mesh generator to be
used repeatedly. The number of mesh generations required is propor-
tional to the number of design variables. The inherent difficulty in
the approach is two-fold. First, for complicated three-dimensional
configurations, elliptic or hyperbolic partial differential equations
must often be solved iteratively in order to obtain acceptably smooth
meshes. These iterative mesh generation procedures are often com-
putationally expensive. In the worst case they approach the cost of
the flow solution process. Thus the use of finite difference meth-
ods for obtaining metric variations in combination with an iterative
mesh generator leads to computational costs which strongly hinge on
the number of design variables, despite the use of an adjoint solver
to eliminate the flow variable variations. Second, multiblock mesh
generation is by no means a trivial task. In fact no method currently
exists that allows this to be accomplished as a completely automatic
process for complex three-dimensional configurations.

In our earlier works [40, 39, 25, 19, 20, 21], two methods have
been explored which avoid these difficulties. In the first method,
a completely analytic mapping procedure was used for the mesh
generation. This technique is not only fully automatic and results in
smooth consistent meshes, but it also allows for complete elimination
of finite difference information for the mesh metric terms. Since
the mapping function fully determines the entire mesh based on the
surface shape, this analytic relationship may be directly differentiated
in order to obtain the required information without considering a
finite step. An analytic mapping method requires the geometry
topology to be built directly into the formulation, and only works for
simple configurations. Nevertheless, within these limitations it has
proven to be highly effective {19, 20, 21].

The second method that we have explored is the use of an analytic
mesh perturbation technique. In this approach, a high quality mesh
appropriate for the flow solver is first generated by any available
procedure prior to the start of the design. In examples to be shown
later, these meshes were created using the Gridgen software devel-
oped by Pointwise Inc.[46]. This initial mesh becomes the basis for
all subsequent meshes which are developed by analytical perturba-
tions. In the method that was previously developed for wing-body
configurations it had been assumed that only one surface, say the
wing, was perturbed during a design case. This permitted the use of
a very simple algebraic mesh perturbation algorithm. New meshes
are created by moving all the mesh points on an index line projecting
from the surface by an amount which is attenuated as the arc length
from the surface increases. If the outer boundary of the grid domain
i1s held constant the modification to the grid has the form

z:lew - z:)l::l + Sold (z?‘cw — Itjll) (21)
where z, represents the volume grid points, z ., represents the surface
grid points and S represents the arc length along the radial mesh line
measured from the outer domain, normalized so that § = 1 at the
inner surface. Unfortunately this simple logic breaks down in the
case where multiple faces sharing common edges are allowed to

move. Thus n order to use analytic mesh perturbations for the
treatment of the more general problem where multiple faces of a
given block may be simultaneously deformed, equation (21) had to
be modified in a way that resembles transfinite interpolation (TFI)
{48]. Unlike TFI, where there is no prior knowledge of the interior
mesh, the perturbation algorithm developed here (WARP3D) does
make use of the relative interior point distributions in the initial mesh.

The WARP3D algorithm has been modified from that presented
in reference [43] and is now a three stage procedure. The first
stage shifts the intenal mesh points to produce an interim block that
is determined entirely by the new locations of the 8 comer points
defining the block. Corresponding to the motion of each corner point,
each interior point is shifted by a displacement proportional to one
minus the normalized distance along the index lines away from that
comer point. The second stage corrects the perturbations resulting
from the first stage by determining the distance each of the 12 edges
of the stage | block needs to be moved to attain the desired edge
locations. These perturbations are then also incorporated into the
volume mesh points through a weighting scheme that is proportional
to the relationship of an individual edge point motion and the volume
point in question. Finally with both comer and edge point motion
accounted for, the third stage checks the perturbation of each point
in all six faces relative to the position of the corresponding point
in the stage 2 block. If the perturbation of the domain involves
a simple translation of all boundary points, the relative changes
from stages 2 and 3 will be zero and all the perturbation will be
accomplished by stage 1. If, however, face points are perturbed
relative to the reference block, then these changes are propagated
to the interior points through relative arc length-based perturbations
along projecting index lines. In general all 3 stages are required.
The idea of WARP3D is to use an initial mesh with good guality
attributes as a starting point, and then systematically perturb this
mesh in a manner such that the original grid quality is maintained,
without the need for expensive elliptic smoothing.

Since our current flow solver and design algorithm assume a point-
to-point match between blocks, each block may be independently
perturbed by WARP3D, provided that perturbed surfaces are treated
continuously across block boundaries. The entire method of creating
anew mesh is given by the following algorithm.

1. Allfaces that are directly affected by the design variables (active
faces) are explicitly perturbed.

2. All edges that touch an active face, either in the same block or
in an adjacent block, are implicitly perturbed by (21).

3. All inactive faces that either include an implicitly perturbed
edge or abut to an active face are implicitly perturbed by a
quasi-3D form of WARP3D.

4. WARP3D is used on each block that has one or more explicitly
or implicitly perturbed faces to determine the adjusted interior
points.

Note that much of the mesh, especially away from the surfaces, will
not require mesh perturbations and thus may remain fixed through
the entire design process. Close to the surfaces, many blocks will
either contain an active face or touch a block which contains an
active face, either by an edge or by a comer. As the design variations
affect the active faces, the above scheme ensures that the entire mesh

will remain attached along block boundaries. Added complexity is
needed to accomplish step (2) since the connectivity of the various
edges and cormners must be indicated somehow. Currently, a list of
master edges and master comners is determined as a preprocessing
step. During the design calculation, these lists are updated and
transferred to all connected edges and comners as the mesh is moved.

Since this mesh perturbation algorithm is analytic it is possible
to work out the analytical variations in the metric terms required
for equation (20). This approach was followed in reference [40].
However since the mesh perturbation algorithm that was used in
the current paper was significantly more complex, and it was dis-
covered that the computational cost of repeatedly using the block
perturbation algorithm was minimal, finite differences were used to
calculate §Q,, instead of denving the exact analytical relationships.
Even in cases with hundreds of design variables, the computational
cost of repeatedly re-evaluating 8Q,; for all necessary blocks is
still nsignificant compared with the cost of a single flow solution.
The conclusion is that the analytical mesh perturbation algorithm,
WARP3D, unlike an elliptical mesh generation method, is efficient
to the extent that the cost of remeshing can be neglected.

It remains to choose a set of design variables which smoothly
modifies the original shape, say b,. The gradient can then be defined
with respect to these design variables as

61

Q(b.) = 6_b|"

(22)
where 6/ is calculated by (20) and each term b; is independently
perturbed by a finite step. Therefore, to construct G, a basis space of
independent perturbation functions b;, ¢ = 1,2,..., n (n =number
of design vanables) must be chosen to allow for the needed freedom
of the design space. In this work, design variables were chosen as a
setof Hicks-Henne functions simply for their ease of implementation
and their proven reliability. The form of the Hicks-Henne functions
which were initially proposed in Reference [12] is given by:

log(.5) €2
b(z) = [sin (nm)] , 0<z<l1 (23)

Here t; locates the maximum of the bump in the range 0 < z <
1 at £ = t;, since the maximum occurs when z* = '5, where
a =log ’5/ log t1,0r alog t; = log % The parameter ¢; controls the
width of the bump. To generalize the application of the Hicks-Henne
functions, which have traditionally been used for the modification of
airfoil sections where the z in equation (23) refers to the chordwise
position, they are applied directly to a parameterized (i, 9) surface
which may be composed of one or more faces in different blocks.
The parameterization may be accomplished in many ways. For this
study, the wing is designed by projecting all surface points to be
perturbed onto a plane and normalizing by the planform outline.
Thus the Hicks-Henne shape functions may be applied as functions
in either the @, o, or both directions. The design code is further
structured so that these variables may be applied to any subset of
the parametric surface. Alternatives are provided such that these
variables may be linearly lofted in the second direction as opposed
to Hicks-Henne functions in both directions. All of these options
may be prescribed at the input level, leading to a highly versatile
design code in which one or more faces in the multiblock domain
may be perturbed by the design variables. To enforce geometric
constraints, each design vanable may be activated on more than one

face. For example, if the thickness of a wing is to be preserved and
the upper and lower halves of the wing are in separate blocks, then
the design varniables need to be applied at the proper locations with
the proper weights and on the appropniate faces in both blocks such
that thickness does not change while both surfaces are allowed to be
modified.

DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-
TATION

The main strategies that are used to accomplish the parallelization of
the design code are: a domain decomposition model,a SPMD (Single
Program Multiple Data) strategy, and the MPI (Message Passing
Interface) Library for message passing. The choice of message
passing library was determined by the requirement that the resulting
code be portable to different parallel computing platforms as well as
to homogeneous and heterogeneous networks of workstations.

As one can see from the previous sections, obtaining the desired
parallelization by domain decomposition entails the treatment of four
separate parts: the solution of the flow equations, the solution of the
adjoint equations, the calculation of the mesh perturbations, and the
calculation of the gradient integral formulas. No attempt is made
to parallelize the quasi-Newton optimization algorithm. It is thus
assumed in this construct that the determination of the step sizes and
search directions provided by the optimization algorithm is com-
putationally insignificant when compared with the other elements
necessary during the design.

Since the flow and adjoint equations are to be solved using ex-
actly the same efficient numerical techniques, the same paralleliza-
tion techniques used for the flow equations apply to the solution of
the adjoint equations. Therefore, all details of the parallel imple-
mentation corresponding to these first two parts of the program will
be explained with reference only to the flow equations. Further-
more, since the mesh perturbation algorithm WARP3D also works
on a block-by-block basis, the communication necessary to main-
tain mesh consistency can also be addressed by the same domain
decomposition strategies that are used for the state and costate fields.

The subdomains of the flow solution resident on each processor are
divided along the block boundaries such th