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INTRODUCTION

Identification of systems, in most laboratory environments, is performed using

spectrum analyzers and a skilled group of engineers and technicians. Classical

identification of linear systems for model verification and control design is commonly

performed using concepts from spectral analysis. The speed of computers and

implementation of fast Fourier transforms algorithms have facilitated manipulation of

large sets of data. Once data is acquired, frequency response functions are

manipulated to obtain information about the tested system. In many cases, knowledge

of the fundamental frequencies of the system is enough information but there are

times when mathematical models of the system input/output are needed. Our goal is

to provide the user with a convenient and simple to use package to analyzed data

given in terms of frequency responses and/or spectral matrices.

Linear time-invariant systems are completely characterized by their impulse

response functions or in the case of discrete-time analysis by their pulse responses. If

the only information about the system is given in terms of a set of pulse responses,

this information must be converted into a compact parametric form for use in

analyses. Curve fitting algorithms have been used extensively for this purpose, where

a particular model structure is selected and the parameters are evaluated by

minimizing the error between the model and estimated pulse responses. A two step

approach for the identification of state space models is used in this work. First,

frequency data in the form of frequency responses and/or spectral matrices are fitted

with a model in matrix polynomial form, and second, smoothed pulse responses

computed from the polynomial parameters are used with realization theory for order

determination and a state-space realization. One advantage of this approach is the

ability to recover state space models from sections of a transfer function with

minimum window distortions. Another advantage is the ability to concatenate

frequency response functions obtained from multiple tests to recover a single state

space model. Cases with different frequency resolution are combined easily.



System identification in general requires knowledge about the system and
algorithmsbeingused.Thealgorithmsincorporatedin this packagearenodifferent.
Manyparametersarefixed to makeit convenientfor thecasualuserto obtainresults

quickly, however,selectedparametersmay not be adequatefor all possiblecases.

Exploring thedifferent algorithmsandunderstandingtheir limitations will help the
usergetthemostoutof thispackage.Figure1showsasimplediagramwith dataflow
and main function calls. All intermediatecalls are automatedin the functions

okid..fqm and okid_asf. The casual user is encourage to use one of these two

functions.

Frequency Response and/or Spectral Matrices

_ arx_fqmod,arx_fqml

Parameters for Matrix Fraction Description (MFD) Model 1

__._mfd2ss

Construct Observable Canonical Form

_i, arxstable

Stabilization of MFD Model

_I eradc

Realization of System Matrices and Order ]Determination

okid_fqm
okid_asf

Fig. 1 Road map for identification of state space models from frequency response data



SUBROUTINE LIST

ARXSTABLE 4

Computes a stable state space model from an unstable discrete time model.

ARX_FQMOD 7

Computes the left matrix fraction description model given a frequency response
function.

INVGZ 9

Computes a pulse response function from a given frequency response.

FRFM 11

Plots a given frequency response function with that obtained from a state space model.

FRF2SS 14

Identification of a state space model from a frequency response function.

MFD2SS 16

Constructs a state space observable canonical model from a matrix fraction description
model.

OKI D_ASF 18

Identification of a state space model from a given set of spectral matrices.

OKID_FQM 23

Identification of a state space model from a frequency response function.

STAB 27

Computes a stable state space model given a desired characteristic polynomial and the
unstable portion of the frequency response. Supporting function for arxstable.



arxstable

Purpose:

Computes a stable state space model from an unstable discrete time model.

Synopsis:

[A,B, C,D] =arxstable(Ao,Bo, Co, DoJ,,dt, P)

Description:

When identifying models from experimental data using parametric approaches,

unstable modes appear quite often. This function computes a stable model from an

unstable model [Ao, Bo, Co, Do] such that their frequency responses are similar. For

the unstable system, the frequency response compared is that of the anti-causal

system. The model is separated into stable and unstable sub-systems. The unstable

sub-system poles are inverted and assigned to the new stabilized model. Unstable

poles are assumed to appear in pairs and the desired characteristic polynomial is

given by

e(z)=I-II1--z-'lll-Lz -l
Ji=l k zi Jk zi

where z_ and zi are unstable pole pairs. A stable representation of the unstable sub-

system is written as
K(z)

Gd(Z) --
p(Z)

Since Gd(Z ) and p(z) are both known, a least squares problem is formulated to

determine the polynomial matrix K(z). With the solution for K(z) one can realized a

stable state space model for the unstable part and the append it to the stable portion of

the identified model.

The input parameters are the unstable state space model [Ao, Bo, Co, Do], a frequency

vectorf in units of Hertz, sample time is defined by dt, and the parameter P when

multiplied by the number of outputs equals the maximum system order.



Algorithm:

See Ref. 1.

Example:

load cemdata

[ntot,junk]=size(YU_cross);
r=l;
m=l;
%

% Skipping frequency points
%

Vs=[l:64];
Gz=Y_frf(Vs,1);f=fhz(Vs);

[ntot,jj]=size(Gz);
dt=l/(2*f(ntot));
P=20;
[Az,Bz] =arx_fqmod(Gz,f, dt,r,m,P);
[A,B,C,D]=mfd2ss(Az,Bz);
disp(' Unstable Discrete Eigenvalues')
disp(abs(eig(A)))
[As,Bs,Cs,Ds]=arxstable(A,B,C,D,f, dt,P);
[Gz_id]=frfm(As,Bs,Cs,Ds,Gz,f, dt,ntot,1);

% Compute MFD Model
% Construct Canonical Form

% Poles of unstable model

% Stable State Space Model
% Compare solution

Unstable Discrete Eigenvalues
1.1539e+00
1.1539e+00
1.0678e+00
1.0678e+00
9.7717e-01
9.7717e-01
9.9158e-01
9.9158e-01
1.1182e+00
1.1182e+00
8.3122e-01
8.3122e-01
4.8006e-01
1.0923e+00
1.0923e+00
9.9254e-01
9.9254e-01
8.4916e-01
8.4916e-01
9.8934e-01

No. of eigenvalues: 20
No. of unstable eigenvalues: 8
No. of real unstable poles: 0
No. of complex unstable poles: 8
Computing Stabilizing Part: Order should be =< 8
ERADC is used now.

The Hankel matrix size for ERADC is 18 by 194.



MaximumHankelsingularvalue= 5.900084e-01
Minimum Hankelsingularvalue= 2.68423le-07

Damping(%) Freq(HZ) ModeSV
4.8630e+00 8.9103e-01 3.5471e-01
4.8630e+00 8.9103e-01 3.5471e-01
5.0898e+00 1.2759e+004.2925e-01
5.0898e+00 1.2759e+004.2925e-01
3.7805e+00 1.6341e+006.5384e-01
3.7805e+00 1.6341e+006.5384e-01
2.7379e+00 1.6924e+00 1.O000e+00
2.7379e+00 1.6924e+00 1.0000e+00

Time(min) to reconstructFRF0.005983
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Reference:

1) Chen, C.-W., Juang J.-N., and Lee, G., "Stable State Space System Identification

from Frequency Domain Data," Proceedings of the first IEEE Regional Conference

on Aerospace Control Systems, CA., May 25-27, 1993.
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arx_fqmod

Purpose:

Computes the left matrix fraction description model given a frequency response

function.

Synopsis:

[Az, Bz]=arx_fqmod( Gz,f dr, r,m,P);

Description:

The function estimates the denominator and numerator matrix of a frequency

response function Gz. A left matrix fraction description Gz = A -_(z)B(z) is used to

represent the system. The subroutine input matrix Gz contains the system frequency

response stacked columnwise. For example, a system with r inputs and m outputs has

Gz constructed as follows

g,,(tO0) L gm,(O)0) glz(tOo) L gm2(O)0) L g,,(O)0) T, gm,(O)0) ]
H/Gz: M H M H H H L H H

g,l(O):) T, g,,,(O_/) g,2(O):) L gm2(O.)f) L g,,(fO/) T, gmr((Df)J

where the starting frequency is 0% and the final frequency is w:. A corresponding

frequency vector is definedf with units of Hertz, sample time is defined by dt, and

the parameter P is the order of the matrix polynomial. The outputs Az and Bz are the

parameters of matrix fraction description A(z) and B(z), where

A(z ) = I + Ajz-1+L Apz -p

B(z ) : 80 + +r, %z-"

andAz=-[A, A 2 L Ap]r,Bz=[B 0 B 1 L Bp]r. Both evenly spaced and

unevenly spaced frequency response functions can be analyzed.

Algorithm:

A linear least squares problem is formulated, see Ref. 1, and solved using singular

value decomposition.
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Example:
load cemdata

[ntot,junk]=size(YU_cross);
r=l; m=l;
%

% Skipping frequency points
%

Vs=[1:64 65:2:640];
Gz=Y_frf(Vs, 1);f=fhz(Vs);
[ntot,jj]=size(Gz);
dt=l/(2*f(ntot)); P=20;
[Az,Bz]=arx_fqmod(Gz,f, dt,r,m,P);
Az =2.6818e-01

9.0337e-02
7.8337e-01

-2.4974e-01
3.9861e-01

-5.4586e-01
-3.7194e-01
-1.1294e-01
2.6211e-01

-2.7183e-01
4.4990e-03
5.7088e-01
1.6681e-01
8.4620e-02

-6.1663e-02
-4.7101e-01
-4.3275e-01
-2.2067e-03
6.2649e-01
2.0486e-01

Bz = 2.1243e+00
- 1.7012e+00
5.6716e-04

- 1.6684e+00
1.0146e+00

-2.3422e-01
3.5209e-01
5.6924e-01
2.0307e-01

-9.6461e-02
-8.5128e-02
5.0896e-01
-9.931 le-01
-3.6706e-02

-1.7887e-01
-6.0550e-01
2.0412e-01
8.8424e-01
1.0726e+00

-4.7213e-01
-8.0487e-01



inv_z

Purpose:

Computes a pulse response function from a given frequency response.

Synopsis:

H=invgz(Gz, m, dt);

Description:

Given a frequency response function in the matrix Gz, stacked as described in the

function arx_fqmod, the routine computes a pulse response using iffr Before calling

/fit one must append a mirror image of the frequency response in accordance with the

/fit function format. The parameter m corresponds to the number of outputs and dt is

the sample time in seconds. Output matrix H is stacked by columns.

Algorithm:

MATLAB/fit function is called to compute the pulse response.

Example:

The example loads data from the file cemdata and proceeds to compute the pulse

response using invgz. Also shown is the magnitude plot of the frequency response

being converted and a plot of the corresponding pulse response.

load cemdata

[ntot,junk]=size(YU_cross);
r=l;
m=l;
Vs=[1:640];
Gz=Y_frf(Vs, 1);f=fhz(Vs);

[ntot,jj]=size(Gz);
dt=l/(2*f(ntot));
subplot(211),semilogy(f, abs(Gz))
xlabel('Frequency (Hz)')
ylabel('Mag. ')
H=invgz(Gz,m,dt);
ntot=ntot*2-1;
TIME=dt* [0:ntot- 1 ]';

subplot(212),plot(TIME,H)
xlabel('Time (sec)')
ylabel('Pulse')
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frfm

Purpose:

Plots a given frequency response function with that obtained from a state space

model.

Synopsis:

[Gz_id]=frfm(A,B, C,D, Gz_,dt, np,flag);

Description:

This function plots the frequency response of the system given in the discrete state

space model [A,B,C,D] versus Gz. The subroutine input parameters are the frequency

vector fin units of Hertz, sample time is defined by dt, number of frequency points to

plot np, and the parameter flag turns on/off plotting for batch jobs. On output, the

frequency response function computed from [A,B,C,D] is returned in the variable

Gz_id.

Algorithm:

MATLAB freqresp function is called to compute the frequency response function for

the state space model.

Example:

The example loads data from the file cemdata and proceeds to compute the state

space model using the function okid_fqm. Results from this analysis are then plotted

using frfm.

load cemdata

[ntot,j unk]=size(YU cros s);
r=l;
m=l;
%

% Skipping frequency points
%

Vs=[1:64 65:2:640];
Gz=Y_frf(Vs, 1);f=fhz(Vs);

[ntot,jj]=size(Gz);
dt= 1/(2*f(ntot));

11



P=20;
[A,B,C,D,Az,Bz]=okid_fqm(r,f,dt,Gz,'batch',P);
[Gz_id]=frfm(A,B,C,D,Gz,f,dt,ntot,1);

batch
Total numberof samplepoints= 352
Numberof inputs= 1
Numberof outputs= 1
Correspondingsamplingrate= 39.87Hz
Numberof desiredMarkovparameters= 81
No. of eigenvalues:20
Time(min) to computeARX parameters0.1486
ERADCis usednow.
TheHankelmatrix sizefor ERADC is 20by 60.
MaximumHankelsingularvalue= 1.366719e+02
Minimum Hankelsingularvalue= 2.714249e-03

Damping(%) Freq(HZ) ModeSV
1.00_e+02 4.9299e-02 5.7064e-02
4.9193e+00 1.8667e+017.6341e-02
4.9193e+00 1.8667e+017.6341e-02
3.2112e+00 1.3633e+018.0297e-02
3.2112e+00 1.3633e+018.0297e-02
3.2082e+01 2.1045e+01 1.0955e-01
3.9617e-01 1.0185e+012.6634e-01
3.9617e-01 1.0185e+012.6634e-01
7.1932e-01 1.6213e+012.7279e-01
7.1932e-01 1.6213e+012.7279e-01
2.9492e-01 6.1385e+00 6.2107e-01
2.9492e-01 6.1385e+00 6.2107e-01
4.3469e-01 1.3983e+016.2689e-01
4.3469e-01 1.3983e+016.2689e-01
2.9853e-01 8.7272e+00 7.1157e-01
2.9853e-01 8.7272e+00 7.1157e-01
2.0720e-01 1.7783e+008.1915e-01
2.0720e-01 1.7783e+008.1915e-01
2.4028e-01 3.0515e+00 1.0000e+00
2.4028e-01 3.0515e+00 1.0000e+00

Time (min) to computethesystemmodel0.03212
Time (min) to reconstructFRF0.02942
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frf2ss

Purpose:

Identification of a state space model from a frequency response function.

Synopsis:

[A,B, C,D, dt]=frf2ss( Gz, df, m, norder, npeaks)

Description:

This routine computes the inverse Fourier Transform of a given frequency response

function to determine the system pulse response. Realization theory is used to

compute a state space model from a given pulse response. Order determination can be

performed interactively after examining the singular values of the Hankel matrix

and/or fixed using the input parameter norder. The subroutine input parameters are

the frequency response function Gz (stacked by columns), frequency resolution df,

number of outputs m, desired state space model order norder, and an estimated

number of observed peaks in the frequency response function npeaks. When the

system order is not known a priori, the parameter npeaks is used to set the

dimensions of the Hankel matrix and the system order must be selected interactively.

However, if norder is not zero the realized system order is equal to norder.

Algorithm:

Matlab routine ifft is used in conjunction with the SOCIT routine eradc.

Example:
load cemdata

[ntot,junk]=size(YU_cross);
f=fhz;

df=fhz(2)-fhz(1);
P=20;m=l;

Gz=Y_frf(1:640,1);
[A,B,C,D,dt]=frf2ss(Gz,df, m,P*m,5);
ERADC is used now.

The Hankel matrix size for ERADC is 20 by 60.
Maximum Hankel singular value = 5.645725e+01
Minimum Hankel singular value = 1.762175e-02

Damping(%) Freq(HZ) Mode SV
1.0000e+02 1.5350e-01 6.0815e-02
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mfd2ss

Purpose:

Constructs a state space observable canonical model from a matrix fraction

description model.

Synopsis:

[A,B, C,D]=mfd2ss(Az,Bz)

Description:

Given the discrete time matrix fraction description representation of the form

(I + Ajz-I+L Apz-P)y(k)= (B 0 + B_Z-I+L Bpz-P)u(k)

where z-ly(k) = y(k - 1), the observable canonical representation is easily written as

6 4 44 64 4 48 6 4 4 _4 48

[xp(k + 1)J 0 L I -A, xp(k) A,B o - B,

x_(k)]
./x_(k)/

c F,(k)J D

On output, the state space matrices are constructed as shown above and the input

parameters are arranged as follows

Example:
Az =

-1 -4
-3 -5

Az = -[ A_ A 2 L Ap ]r A_.e R _×_

Bz=[B 0 n 1 S np] T BiER m×r

16



-6 -9
-7 -8

Bz=
1 1
3 6
7 9

[A,B,C,D]=mfd2ss(Az,Bz)
A=

0 0 -6 -7
0 0 -9 -8
1 0 -1 -3
0 1 -4 -5

B=
6
8
1
3

C=
0 0 -1 0
0 0 0 -1

D=
1
1

17



okid_asf

Purpose:

Identification of a state space model from a given set of spectral matrices.

Synopsis:

[A,B, C,D, Az, Bz]=oldd_asf(r,f, dt, Gz, _Puu, _Pyu, O ,desp, P, iop)

Description:

State space identification is performed in two phases. First, a matrix fraction

description (MFD) model is computed based on experimentally determined spectral

matrices. Second, a minimum order state space model is realized using the MFD

model parameters. An outline of the approach is as follows.

Given the input/output auto and cross spectral matrices, the system frequency

response function can be computed two different ways;

Approach 1: Oy,,(k) = G(e j°'_)O,,,(k)

Approach 2: _y(k) -- G(e j'°_)_w(k)

where a solution using approach 1 produces a lower bound estimate of the frequency

response function and approach 2 yields an upper bound. Notice that the equations

are written in terms of spectral densities. Benefits of estimating the frequency

response functions using the spectral densities are reported in Ref. 1. A

representation of the frequency response function is given as follows

where

G(zk ) = A(Zk )-l B(z_ )

A(zk ) = I + AlZ_ 1+L Apz_ p

B(Z k ) : e 0 -.[- BlZk I JrL epZi p

18



and Zk = e j'°' , Ai _ gm×m, ni C_R=×r,and the parameter P is the assumed order of the

corresponding matrix polynomials. Substituting the above representation into the

equations in approach 1 and 2, and multiplying both sides of the resulting equation

by A(Zk ) yields a linear least squares estimation problem. The estimated matrix

polynomials are used to construct an observable canonical state space model. A

minimum order model is obtained via realization theory. On output, the minimum

order realized system is returned in [A,B, C,D] and the polynomial parameters are

returned in Az and Bz. The subroutine input parameters are the number of inputs r, the

frequency response vectorf in units of Hertz, sample time is defined by dt, estimated

frequency response Gz (used only for plotting), spectral matrices Ouu, Oyu and Oyy, a

string variable with a test description, matrix fraction polynomial matrix order P, and

iop is a parameter that when set to 1 forces the least squares solution to use approach

1 only.

For multi-input multi-output systems the spectral densities and frequency response

function are stacked by columns. For example, a system with 3 outputs and 2 inputs is

stacked as follows

#y,.,(c0,) _r,_ (c0,)

%u,(Co_) ¢y2_(o_,)

epy,_,(COl) e_r,_ (col)

{/}Y2Ul ((-/)2) (/}y2_ (('02)

Fi

[ ¢_y,o,(co,) %=, (co,)

smc_d

¢_,.,(c0,) ¢%=(oa_) e&._(o),)• . ¢),,_(w,) ]

I_y3ul((-l'}2)lv_(/}YlU2(°)2){J_y2_(o-)2){/}y,u2(O)2)]

The number of rows in the stacked spectral matrix and frequency vector equals the

number of frequency response points included in the analysis. One can skip frequency

points in areas where the frequency response is dense. When skipping frequency

values the frequency vector and corresponding spectral matrices should be decimated

in the same way.
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Stability of the matrix polynomial representation is not guaranteed. A stabilizing

procedure is included based on the work presented in Ref. 2 that automatically

computes a stable solution from the unstable model.

Algorithm:

Least squares solution using singular value decomposition for the polynomial

matrices.

Example:

This example uses data from a testbed located at NASA Langley. A file named

cemdata contains experimental data for 2-inputs and 8-outputs. Only the fn'st

input/output pair is used in this example.

load cemdata

[ntot,junk]=size(YU_cross);
f=fhz;
df=fhz(2)-fhz(1);
fny=f(ntot);

dt=l/(2*fny);
r=l; m=l;

SUU=zeros(ntot,r*r); SYY=zeros(ntot,m*m);
%

% Data from Testbed is incomplete
% Fill in missing info with zeros
%

IM= 1;

Vyy=[];Vyu=[];Vuu=[];
Vyy=[ 1:m+l :m'm]; Vuu=[ 1:r+ 1:r*r];
IM=[l:m];
IR= 1;

for j= 1:r
tm=IM+8*(j- 1);
Vyu=[Vyu tm];

end

Gz=Y_frf(:,Vyu);
SYU=conj (YU_cross(:,Vyu));
SYY=[];
SUU(:,Vuu)=U_auto(:, 1 :r);
%

% Skipping frequency points
%

Vs=[ 1:64 65:2:640];

SUU=SUU(Vs,:);SYU=SYU(Vs,:);
Gz=Gz(Vs,:);f=fhz(Vs);

[ntot,jj]=size(Gz);
dt= 1/(2*f(ntot));
L=[1 :ntot]';

20



P=20;
[A 1 ,B 1 ,C 1 ,D 1 ,Az 1 ,B z 1]=okid_asf(r,f, dt,Gz,SUU,SYU,SYY,'OKIDASF ',P, 1);
OKIDASF

Total number of sample points = 352
Number of inputs = 1
Number of outputs = 1

Corresponding sampling rate = 39.87 Hz
Number of desired Markov parameters = 81
Have you run OKID with the same data & P before (l=yes,0=no) ?:= 0
Time (min) to compute ARX parameters 0.1156
No. of eigenvalues: 20
No. of unstable eigenvalues: 1
All unstable poles are real and are discarded
ERADC is used now.

The Hankel matrix size for ERADC is 20 by 60.

Maximum Hankel singular value = 6.428376e+01
Minimum Hankel singular value = 1.998350e- 14
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The HSV plot allows you to determine a desired model size.
Besides, further modal reduction may also be desired.
See the option of this function.
Desired Model Order (See HSV plot) (0=stop)=: 20
Model Describes 100 (%) of Test Data
Number of Modes Wanted (See MSV plot) =: 20

Damping(%) Freq(HZ) Mode SV
1.3819e+00 1.9935e+01 8.8491e-08
4.8210e+00 1.3266e+01 4.5866e-02
4.8210e+00 1.3266e+01 4.5866e-02
6.8664e+01 2.7418e+01 8.9802e-02
1.0000e+02 2.0803e-02 9.3621e-02
2.5822e+00 1.9939e+01 1.3214e-01
6.8636e-01 1.6200e+01 2.1888e-01

6.8636e-01 1.6200e+01 2.1888e-01
1.8313e-01 1.0212e+01 3.5822e-01
1.8313e-01 1.0212e+01 3.5822e-01
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4.9892e-01 1.3989e+015.2464e-01
4.9892e-01 1.3989e+015.2464e-01
2.9777e-01 6.1372e+00 7.0425e-01
2.9777e-01 6.1372e+00 7.0425e-01
2.5933e-01 1.7743e+007.7608e-01
2.5933e-01 1.7743e+007.7608e-01
3.3540e-01 8.7337e+00 7.7728e-01
3.3540e-01 8.7337e+00 7.7728e-01
3.0906e-01 3.0536e+00 1.0000e+00
3.0906e-01 3.0536e+00 1.0000e+00

DesiredModelOrder(SeeHSV plot) (0=stop)=:0
Time (min) to computethesystemmodel0.517
CompareRecons.FRF andRealFRF (l=yes,0=no)?:= 1
Time (min) to reconstructFRF0.0298
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See also:

arx_fqml,mfd2ss,arx stable,frf2ss

References:

1) Horta, L.G. and Juang, J-N," Frequency Domain System Identification Methods:

Matrix Fraction Description Approach," Proceedings of the 1993 Guidance,

Navigation, and Control Conference, Monterey, CA, Paper No. 93-3839.

2) Chen, C.-W., Juang J.-N., and Lee, G., "Stable State Space System Identification

from Frequency Domain Data," Proceedings of the first IEEE Regional Conference

on Aerospace Control Systems, CA., May 25-27, 1993.
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okid_fqm

Purpose:

Identification of a state space model from a frequency response function.

Synopsis:

[A,B, C,D, Az, Bz]=okid_fqm(r,f, dt, Gz, desc, P);

Description:

Identification of state space models from a frequency response function is divided

into two steps: First, a matrix fraction description (MFD) is fitted to the frequency

response function. Second, a minimum order state space model is realized based on

the MFD parameters. The procedure is outlined as follows.

Given an experimentally determined frequency response function, a model

representation in terms of matrix polynomials is the following

where

G(zk ) = A(Zk )-1B(Zk )

A(Zk ) = I + AIZk Iq-T, ApZ_ p

B(Z,) = B o + B,Z-/'+L Bpzk"

and zk = e j_°_, Ai • R"×m, Bi • R"×r, and the parameter P is the assumed order of the

corresponding matrix polynomials. Multiplying both sides of the first equation

by A(zk ) yields a linear least squares estimation problem. The estimated matrix

polynomials are used to construct an observable canonical state space model. A

minimum order model is obtained subsequently via realization theory. On output, the

minimum order realized system is returned in [A,B, C,D] and the polynomial

parameters are returned in Az and Bz. The subroutine input parameters are the

number of inputs r, the frequency response vectorf in units of Hertz, sample time is

defined by dr, estimated frequency response Gz, a string variable desc with a test

description, and the number of terms in the matrix polynomial representation P. The

number of rows in the frequency response matrix and corresponding frequency vector

determines the number of frequency response points included in the analysis. One can
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skip frequencypointsin areaswherethefrequencyresponseis dense.Whenskipping
frequencypointsthefrequencyvectorandcorrespondingspectralmatricesshouldbe

decimatedin thesameway. Formulti-inputmulti-outputsystemsthematrix Gz is

stacked by columns. An example for proper stacking is shown in okid_asf. For more

details, see algorithm discussion in Ref. 1.

Stability of the matrix polynomial representation is not guaranteed. A stabilizing

procedure is included based on the work presented in Ref. 2 that automatically

computes a stable solution from the unstable model.

Approach:

First, a least squares solution for MFD parameters is obtained using singular value

decomposition. The MFD model provides the system pulse response used with the

function eradc to recover a minimum order state space model.

Example:
load cemdata

[ntot,junk]=size(YU_cross);
f=fhz;
df=fhz(2)-fhz(1);

fny=f(ntot);
r=l;
m=l;
%

% Select columns from frequency responses
%

IM= 1;
Vyu=[];
IM=[1 :m];

forj=l:r
tm=IM+8*(j-1);
Vyu=[Vyu tm];

end

Gz=Y_frf(:,Vyu);
%

% Skipping frequency points
%

Vs=[1:64 65:2:640];
Gz--Gz(Vs,:);f=fhz(Vs);
[ntot,jj ]=size(Gz);
dt=l/(2*f(ntot));
P=20;

[A,B,C,D,Az,Bz]=okid_fqm(r,f, dt,Gz,' OKIDFQM',P);

OKIDFQM

Total number of sample points = 352
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Number of inputs = 1
Number of outputs = 1
Corresponding sampling rate = 39.87 Hz
Number of desired Markov parameters = 81

Have you run OKID with the same data & P before (l=yes,0=no) ?:= 0

No. of eigenvalues: 20
Time (min) to compute ARX parameters 0.149

ERADC is used now.

The Hankel matrix size for ERADC is 20 by 60.
Maximum Hankel singular value = 1.366719e+02
Minimum Hankel singular value = 2.714249e-03
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The HSV plot allows you to determine a desired model size.
Besides, further modal reduction may also be desired.

See the option of this function.
Desired Model Order (See HSV plot) (0=stop)=: 20
Model Describes 100 (%) of Test Data
Number of Modes Wanted (See MSV plot) =: 20

Damping(%) Freq(HZ) Mode SV
1.0000e+02 4.9299e-02 5.7064e-02
4.9193e+00 1.8667e+01 7.6341e-02
4.9193e+00 1.8667e+01 7.6341e-02
3.2112e+00 1.3633e+01 8.0297e-02
3.2112e+00 1.3633e+01 8.0297e-02
3.2082e+01 2.1045e+01 1.0955e-01
3.9617e-01 1.0185e+01 2.6634e-01
3.9617e-01 1.0185e+01 2.6634e-01
7.1932e-01 1.6213e+01 2.7279e-01
7.1932e-01 1.6213e+01 2.7279e-01
2.9492e-01 6.1385e+00 6.2107e-01
2.9492e-01 6.1385e+00 6.2107e-01
4.3469e-0! 1.3983e+01 6.2689e-01

4.3469e-01 1.3983e+01 6.2689e-01
2.9853e-01 8.7272e+00 7.1157e-01
2.9853e-01 8.7272e+00 7.1157e-01
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2.0720e-01 1.7783e+00 8.1915e-01
2.0720e-01 1.7783e+00 8.1915e-01
2.4028e-01 3.0515e+00 1.0000e+00
2.4028e-01 3.0515e+00 1.0000e+00

Desired Model Order (See HSV plot) (0=stop)=: 0
Time (min) to compute the system model 0.2922
Compare Recons. FRF and Real FRF (l=yes,0=no) ?:= 1
Time (min) to reconstruct FRF 0.03077
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See also:

arx_fqmod,okid_asf, arxstable,frf2ss

References:

1) Chen, C.-W., Juang J.-N., and Lee, G., " Frequency Domain State-Space System

Identification," NASA Technical Memorandum, 107659, July 1992.

2) Chen, C.-W., Juang J.-N., and Lee, G., "Stable State Space System Identification

from Frequency Domain Data," Proceedings of the first IEEE Regional Conference

on Aerospace Control Systems, CA., May 25-27, 1993.

26



stab

Purpose:

Computes a stable state space model given a desired characteristic polynomial and the

unstable portion of the frequency response. Supporting function for arxstable.

Synopsis:

[A,B, C,D, Gzns,pulse ]=stab( Gzn,pns, r,m,f, dt, P)

Description:

This function is used by arxstable to determine a stable state space representation of

the unstable portion of a frequency response. The input parameters are the unstable

frequency response Gzn, the desired stable characteristic polynomial pns, number of

inputs r, number of outputs m, frequency vectorf in units of Hertz, sample time dt,

and the parameter P when multiplied by m equals the system order.

Algorithm:

See Ref. 1

Example:

See function arxstable

Reference:

1) Chen, C.-W., Juang J.-N., and Lee, G., "Stable State Space System Identification

from Frequency Domain Data," Proceedings of the first IEEE Regional Conference

on Aerospace Control Systems, CA., May 25-27, 1993.
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