
NASA Contractor Report 196703

/,,I/-- _!'_'C

A New Higher-Order Composite
Theory for Analysis and
Design of High Speed
Tilt-Rotor Blades
Thomas Robert McCarthy

CONTRACT NAG2-771
October 1996

National Aeronautics and
Space Administration



NASA Contractor Report 196703 _,

A New Higher-Order Composite
Theory for Analysis and
Design of High Speed
Tilt-Rotor Blades
Thomas Robert McCarthy

Arizona State University

Department of Mechanical and Aerospace Engineering
P. O. Box 876106

Tempe, AZ 85287-6106

Prepared for
Ames Research Center
CONTRACT NAG2-771
October 1996

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000



ABSTRACT

A higher-order composite box beam theory is developed to model rectangular beams

with arbitrary wail thicknesses. The theory, which is based on a refined displacement

field, is a three-dimensional model which approximates the elasticity solution so that the

beam cross-sectionai properties are not reduced to one-dimensionai beam parameters. Both

inplane and out-of-plane warping are included automatically in the formulation. The model

can accurately capture the transverse shear stresses through the thickness of each wall while

satisfying stress free boundary conditions on the inner and outer surfaces of the beam.

Numerical results are presented for beams with different wail thicknesses and aspect

ratios. The static results are correlated with available experimentai data and show excellent

agreement. The dynamic results which are correlated with a general purpose finite element

code show the importance of including inplane and out-of-plane warping deformations in

the formulation.

The developed beam theory is then used to model the load carrying member of a tilt-

rotor blade which has thick-wailed sections. A procedure is developed for computing the

aeroelastic stability of the tilt-rotor blade based on the composite box beam model. The

aerodynamic loads are calculated using the classical blade element momentum theory.

Analytical expressions for the lift and drag are obtained based on the blade planform with

corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled

with the structural model to formulate the complete coupled equations of motion for

aeroelastic analyses.

Finally, a multidisciplinary optimization procedure is developed to improve the

aerodynamic, structural and aeroelastic performance of the flit-rotor aircraft. The objective

functions include the figure of merit in hover and the high speed cruise propulsive

efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as

constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate
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themultiobjectivefunctionproblemandahybrid approximateanalysisis usedto reduced

the computational effort. The search direction is determined by the Broyden-Fletcher-

Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values

and show significant improvements in the overall performance of the tilt-rotor blade.
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1. Introduction

The tilt-rotor aircraft has become an increasingly viable concept over the last several

years [ 1-4]. The goal is to combine the hover performance of a helicopter in take-off and

landing with fixed-wing aircraft like efficiencies in high speed cruise. The aircraft is

similar in appearance to conventional fixed-wing aircraft, however, large diameter rotors

are tip mounted on the wings. These rotors are mounted on pylon assemblies which are

capable of rotation through 90 degrees so that the aircraft can convert between the various

flight regimes (e.g. hover, transition and cruise) required of this aircraft (Figs. 1 - 3).

Fig. 1.1 XV- 15 tilt-rotor in helicopter mode.

Fig. 1.2 XV-15 tilt-rotor in transition/conversion mode.

There are many design requirements associated with tilt-rotor performance including a

low disc loading in the hover configuration and the ability to rotate the rotors forward to

achieve cruise speeds up to 450 knots [5]. The problem becomes more complex since in

vertical flight and in hover, a large portion of the rotor is directly over the wing which
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produces a large downwash effect upon the wing. The downwash effect increases thrust

requirement of the aircraft by approximately 10 - 12 percent [6]. Other problems associated

with this configuration are related to high helical tip Mach numbers (Mtip) which represent

a critical performance issue in high speed cruise (350 - 450 knots). Aeroelastic stability is

an important consideration in the design of tilt-rotors. Due to the large thrust requirement

in hover, the prop-rotors have a much greater radius than standard propellers. This

increases the tip speed which in cruise may cause individual blade flutter or a coupled

flexible motion between the rotor, wing and pylon known as whirl flutter. Since civil tilt-

rotors are required to be stable at a 20 percent margin above their dive speed (defined to be

15 percent larger than the cruise speed), this means that the flutter speed must be larger than

621 knots for a tilt-rotor with a cruise speed of 450 knots.

 ilii

Fig. 1.3 XV-15 in cruise mode.

There are several different techniques which can be used to address these issues. For

example, the tip Mach number can be reduced through rotor tip speed reduction or through

the use of blade sweep which reduces the effective Mach number. Another alternative is to

increase the drag divergence Mach number (Mdd) at the tip to values above Mtip. This can

be accomplished through reductions in the blade thickness. However, each of these

options will adversely affect the hover performance, drive system weight or aeroelastic

stability of the rotor blade. In the helicopter mode, to maintain a high figure of merit in
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hover, the solidity of the blade must be increasedsincethinner airfoils are used for

maintainingefficiencyin cruise.

1.1 Tilt-Rotor Design

Due to the many conflicting requirements imposed on prop-rotor performance between

hover, conversion and airplane mode, the use of formal numerical optimization techniques

is well suited for studying the design trade-offs associated with such aircraft. Although

there has been a significant amount of research performed on the optimization of rotary

wing aircraft, only very few studies have investigated tilt-rotor design issues. Recently,

research efforts have been initiated by Chattopadhyay et al. [7-16] to develop formal

optimization techniques to address these issues. In Refs. 7 - 9, optimization procedures

were developed to maximize the high speed cruise propulsive efficiency without degrading

the hover figure of merit. An optimization procedure was developed in Ref. 10 to address

the problem of aeroelastic stability of high speed proprotors. In Ref. 11, the drive system

weight was minimized and the associated trade-offs in cruise efficiency were investigated.

The integrated aerodynamic, aeroelastic and structural optimization problem was addressed

in Ref. 12. A purely' aerodynamic multiobjective optimization procedure for improved high

speed cruise and hovering performance using planform and airfoil characteristics as design

variables x_as developed by McCarthy et al. [13]. In Refs. 14 and 15, a two level

decompo,_tion technique was developed by Chattopadhyay et al. for the combined

aerodynamic/structural design of high speed prop-rotor blades. At the upper level, the

aerodynamic performance was improved using continuous optimization techniques. The

structural performance was improved at the lower level using composite ply orientations a

of thin-walled box beam as design variables. More recently, McCarthy and Chattopadhyay

[ 16], developed a procedure for a combined wing/rotor optimization study of high speed

tilt-rotors. The analysis was based on comprehensive rotorcraft algorithms and design

criteria from both the rotor and the wing were included in the formulation.
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1.2 Aeroelastic Stability

Rotor dynamics and aeroelastic response are critical to the design of vertical take-off

and landing and short take-off (WSTOL) aircraft. In 1966, Reed [17] described the basic

phenomenon of propeller whirl flutter instability for V/STOL aircraft. Since this time,

several survey papers have attempted to address the critical issues associated with

aeroelastic stability. In 1976, Kvaternik [18] noted that the blade inplane flexibility can

have a significant effect on the stability of the system. More recently, Friedmann [19]

described the necessary requirements in aeroelastic stability modeling. The significant

potential for aeroelastic tailoring from using composite rotors in a comprehensive

aeroelastic stability analysis was discussed.

There has also been a significant amount of in depth research efforts to investigate the

physics of aeroelastic stability. Edenborough [20] investigated the stability of rotor-pylon

configuration for a tilt-rotor aircraft. It was concluded from the study that stable

rotor/pylon configuration can be designed for high speed operation. The configuration

studied in the paper was modeled analytically up to speeds of 250 knots which was then

validated by experimental data up to a speed of about 195 knots. Kaza [21] investigated the

effect of steady-state coning angle and damping of the flapping hinge of the blades on the

whirl flutter stability boundary. This analytical study was based on one-dimensional beam

analysis. More recently, Johnson [22,23] has identified the modeling requirements to

accurately predict aeroelastic stability. From these studies it was concluded that an accurate

structural representation of the blade is essential to properly model dynamic stability.

Johnson [24] calculated the performance, loads and stability of the XV- 15 tilt-rotor and

compared the results to wind-tunnel and flight test measurements to assess the requirements

for additional experimental data and further analytical development. The basic dynamic

problems of advanced rotor system, including aeroelasticity of tilt-rotor blades, was also



investigated by Johnson in Ref. 25. In this study

representationof thebladedynamicswasestablished.

the need for accurate

5

elastic

1.3 Aeroelastic Tailoring

Due to the fact that aeroelastic stability is critical in the design of rotary wing aircraft, a

significant amount of research has been performed investigating aeroelastic tailoring for

rotary wing aircraft over the years. The aeroelastic tailoring of composite rotor blades

based on the Classical Laminate Theory (CLT) for a thin-walled cylindrical tube was

investigated by Mansfield and Sobey [26]. A detailed investigation of aeroelastic stability

of helicopter blades was performed by Chopra and Sivaneri [27]. Quasi-steady airloads

were used and the equations of motion were linearized using a small perturbation theory.

The equations of motion were then solved using a finite element technique based on one-

dimensional isotropic beam approach.

The aeroelastic stability of composite helicopter blades was investigated using finite

element techniques by Hong and Chopra [28]. The structural element in the blade was

modeled as a thin-walled composite box beam. Only axial and inplane shear stresses were

included in the formulation. This approach was then modified by the authors to investigate

the stability of a bearingless rotor by modeling the rotor flex beam as an I-beam [29].

Rosen and Rand [30] developed a theory which describes the aeroelastic behavior of

curved helicopter blades for hovering and axial flight. In this approach, the blade was

modeled as a solid, isotropic beam. The control of tilt-rotor flutter was analyzed by Nasu

[31] using a rotor model consisting of a straight, fixed wing, a pylon attached to the wing

tip and a three-bladed rotor. Each rotor blade had two bending degrees of freedom and one

torsional degree of freedom about the elastic axis. Torok and Chopra [32] used a

comprehensive rotor aeroelastic analysis to investigate the stability of a hingeless helicopter

blade. The aeroelastic response and blade loads of a helicopter blade were investigated by

Smith and Chopra [33]. A thin-walled box beam model based on the CLT was used as the
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load carryingmemberof thebladein thisstudy. Usingthesamestructuralmodel,Smith

[34] performedaparametricstudyto investigatecompositetailoring effectsonhelicopter

bladevibrationandflutter.

The influenceof severalsystemdesignparametersontilt-rotor aeroelasticstability in

high speedcruise was addressedby Nixon using a parametricstudy [35]. The study

indicatesthat the separationof the beamandtorsion frequenciescanhave a significant

effecton thestabilityof thebeammode. It wasalsoshownthattherotor thrustlevelhasa

negligibleeffectonthestability. This studywaslaterenhancedby theauthorto investigate

possibilitiesof elastictailoringusingcompositerotors[36].

A investigationof aeroelasticstabilityof anadvancedgeometryhelicopterbladewhich

includesfuselagedynamiceffectsincludedin theformulationwasperformedby Bir and

Chopra [37]. The aeromechanicalstability of bearinglesscompositehelicopterbladein

forward flight wasinvestigatedby TracyandChopra[38]. Transversesheareffectswere

includedin theformulationalthoughit wasassumedthatthetransversedisplacementscan

bedecoupledinto bendingtermsandshearterms. A furtherassumptionmadein thestudy

is thatthetransverseshearforceswereequalto zero.

Nonlinear, large amplitude aeroelasticbehavior of composite rotor blades was

investigatedusingone-dimensionalbeamtheoryby Kim andDugundji[39]. Thenonlinear

equations of motion were solved using a Newton-Raphsontechnique. Yen [40]

investigatedtheeffectsof thebladetip shapeon rotor dynamicsandaeroelasticresponse

usinga parametricstudy. Severalconflicting requirementswereobservedincluding the

fact thatthebladeweighthadto beincreasedin orderto achievereductionsin thevibratory

behavior. The aeroelasticanalysisof a fixed wing anda rotating wing in hover were

addressedby Nibbeling and Peters[41] using inflow dynamicsand a linear structural

modelwhich includedonly elasticbendingandtorsion. Themainfocusof this studywas

inflow dynamicsandthe structuralmodelwasrelatively simplistic in nature. Yuan and
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Friedmann[42] usedananisotropicone-dimensionalbeammodelto investigateaeroelastic

stability of swepttip compositehelicopterblades. A detailedfinite elementmodel was

requiredto reducethethree-dimensionalbehaviorof thebladeto one-dimensionalbeamlike

parameters. Only extensional and transverse shear stresseswere included in the

formulation.

Theuseof compositematerialsalsoallowstailoring capabilitieswhichcanbeusedto

improvetherotor structuralanddynamicbehavior. Structuraltailoring usingcomposite

bladeshasrecentlybeeninvestigatedasameansfor improvingtheaeroelasticstability of

rotary wing aircraft [33,35,36,42-44]. Parametric studies have been performed to

investigatecompositetailoring in rotarywing applicationsin Refs.33,35,36and42. Of

these,only Refs.35and36 investigatetilt-rotor aircraft. Formaloptimizationtechniques

havebeendevelopedby GanguliandChoprafor theoptimizationof compositerotorblades

in helicopters[43,44]. In thesestudies,continuousvaluesfor theply angleswereusedas

designvariables.

Improvementsin aeroelasticstabilitythroughstructuraltailoring withoutconsideration

of other requirementssuch as aerodynamicand structural performancecan lead to

unrealisticdesigns. Thesecriteria canbe effectively addressedusingmultidisciplinary

optimizationtechniques.

1.4 Structural Modeling

For the tilt-rotor, the combination of the low disk-loading of the prop-rotors and the

high inflow ratio (the ratio of axial velocity to rotor tip speed) make the dynamics and

aeroelastic response of this configuration unique and more complex than that of a

helicopter. It is therefore very important that the issues of individual blade flutter and whirl

flutter be addressed very early in the design process. As noted in the literature, this can be

accomplished by structurally tailoring the rotor for proper stiffness and elastic couplings in

an effort to raise blade frequencies and minimize inplane motions at the rotor hub.
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However, in order to adequately model the dynamics and aeroelasticity of tilt-rotors, it is

essential that an accurate structural model of the rotor be incorporated into the analysis

[23,24]. Since efficient structural modeling of the rotor is key to the overall analysis of the

aircraft, research efforts have been initiated to investigate this issue.

1.4.1 Beam theories: Beam theories associated with isotropic materials have been well

understood for years and these theories tend to predict the structural and dynamic response

quite accurately [45,46]. In recent years, the use of composite materials in rotary wing

applications has increased due to the favorable strength-to-weight characteristics of these

anisotropic materials. However, beam theories for anisotropic materials are not as well

established as they are for isotropic materials. Recently some research has been reported in

deriving composite beam theories [47-80].

A complex finite element methodology capable of modeling anisotropic beams with

arbitrary cross sections was developed by W6rndle [47]. The method was based on a fully

three-dimensional finite element theory in which the cross-sectional warping was

superimposed on the assumed displacement field. A comprehensive theory for modeling

anisotropic material was developed by Giavotto et al. [48]. In this methodology, the three-

dimensional behavior of the beam was reduced to one-dimensional beam like parameters

based on a cross-sectional analysis. St. Venant type warping was superimposed on the

assumed displacement field.

Krenk and Gunneskov [49] formulated a theory for pre-twisted turbine blades which

included finite shear flexibility. The pre-twist was accounted for, in this theory, through

the axial derivative of the St. Venant warping function and the shear stresses were

decoupled into torsion and shear contributions. Using this approach, the shear flexibility

could only be approximated in blades with moderate wall thicknesses.

Another beam theory for anisotropic materials was due to Bauchau [50]. Out-of-plane

warping was included in the formulation but the model assumed that each section was
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infinitely rigid in its own plane, therefore inplane warping was neglected. The out-of-plane

warping was based on so-called "eigenwarping functions" which was an improvement to

the St. Venant warping. Only the axial strain and torsional related shear strain were

included in the formulation. The theory was extended by the author to include the large

displacement analysis of naturally curved and twisted composite beams [51]. Although

shearing deformations and torsion related warping were included in this formulation, it was

assumed that the cross sections do not deform in their own plane. Further, the beam theory

was only derived for thin-walled beams.

The static and dynamic behavior of helicopter blades using a finite element approach

was addressed by Bauchau and Hong [52]. This study represented a first step towards

developing a complete aeroelastic analysis. However, the theory used in this report was

based on the Classical Laminate Theory which is valid only for thin-walled beams.

Bauchau and Hong later developed a nonlinear composite beam theory to model helicopter

rotor blades [53]. The modeling included arbitrarily large displacements and rotations but

assumed small strains. Although warping effects were included, only the axial strain and

the inplane and transverse shear strain appeared in the formulation. Shearing and warping

deformations were investigated by Bauchau et al. [54] for a thin-walled composite

sandwich beam and were compared with experimental data. The study once again assumed

thin-walled sections.

A nonlinear analysis of pre-twisted rods was developed by Rosen et al. [55]. Small

strains were assumed in the formulation. This theory was later extend for modeling the

dynamics of moving and rotating rods [56-57]. Large deformations were included in the

formulation. A finite element model for the analysis of composite box beams was

developed by Stemple [58]. The warping function, in this formulation, was assumed to be

only out-of-plane and it was superimposed upon a displacement field consisting of three

translations and three rotations. The warping was determined based upon a two-
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dimensionalcross-sectionalanalysis.Theresultsfrom this theoryhavebeenshownto be

asaccurateasafull three-dimensionalsolutionfor thin-walledboxbeams[59].

Standardmeansof representingfinite rotation in rigid-body kinematics,including

orientationangles,EulerparameterandRodriguesparameterswerereviewedandcompared

by Hodges [60]. Generalkinematical relations for a beam which include moderate

rotationswerepresented.HinnantandHodges[61] useda finite elementmethodology,

which includedgeometricnonlinearities,to obtainresultsfor acantileveredbeamwith atip

masswhich were comparedto experimentalvalues. A nonlinear formulation for the

dynamics of initially curved and twistedbeamsin a moving frame waspresentedby

Hodges [62]. Both inplane and out-of-planeSt. Venant warping displacementswere

assumed.The three-dimensional beam behavior was reduced to one-dimensional beam

parameters and only unrestrained warping effects were included in the formulation.

Rehfield et al. [63] investigated the nonclassical behavior of thin-walled composite beams

with closed cross sections. The nonclassical behavior refers to elastic bending-shear

coupling and restrained torsional warping. A decay length parameter was defined which

approximates the effects of the restrained warping.

Several refined composite beam theories based on the Variational Asymptotical method

[64] have bccn developed by Hodges et al. [65-70]. The variational asymptotical method is

a mathematical tcchnique by which the three-dimensional analysis of the composite beam

deformation can bc split into a linear, two-dimensional cross-sectional analysis and a

nonlinear, onc-dimensional analysis. An ordering scheme is required to identify "small"

terms which are then eliminated from the strain energy formulation. The method requires

the energy functional to be expanded in terms of a small parameter and the theory is

therefore truly only valid for thin-walled beams.

An analytical model was developed by Kosmatka [71] for assessing the extension-

bending-torsion coupling effects associated with anisotropic beams having non
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homogeneousirregular crosssectionsandinitial twist. The modelwasbasedon beam

theorywhich reducesthe three-dimensionalbehaviorto one-dimensionalbeamequations

basedon a cross-sectionalanalysis.Thevibrationanalysisof compositeturbopropellers

using a nonlinearbeam-typefinite elementapproachwas studiedby Kosmatkaand

Friedmann[72]. Constitutiverelationswereobtainedby settingthethreestresseswithin

the cross section equal to zero, thus assuming that the cross section is rigid in its own

plane. In Ref. 73, an analytical model was presented by Kosmatka and Dong for

determining the displacement and stress distributions of the St. Venant extension, bending,

torsion and fiexural problem for prismatic, anisotropic beams of arbitrary cross sections.

The problem was reduced to a state of plane stress. However, using this approach a finite

element analysis must be performed for each unique cross section before the beam

equations of motion can be solved. The behavior of a tip-loaded cantilever beam with an

arbitrary cross section was investigated by Kosmatka using a power series solution for the

out-of-plane flexural and torsional warping [74,75]. For complex cross sections, the

warping results represented a best fit approximation to the exact St. Venant warping

function. A beam theory based on a first-order displacement field with superimposed

warping functions was used in the formulation which requires a complex two-dimensional

finite element analysis of the cross section.

A theoretical modeling of slender composite rotating beams was developed by Rand

[76,77]. In addition to the classical degrees of freedom used in this theory, a three-

dimensional warping field was superimposed on the displacement field. The developed

theory is only valid for thin-walled structures. The author extended this theory to include a

nonlinear formulation and a finite difference based numerical solution to investigate the

structural behavior of solid orthotropic beams of arbitrary cross sections [78]. Kalfon and

Rand [79] developed a theory for the nonlinear modeling of thin-walled composite

helicopter blade. Inplane warping was neglected in this formulation.
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A freevibration analysisof compositeI-beamswith elasticcouplingsunderrotation

waspresentedby ChandraandChopra[80]. The developedtheorywasa linearanalysis

basedonVlasovtheory. Constrainedwarpingandtransversesheareffectswereincluded.

A quasi-analyticalmethodfor the evaluationof compositebox beamshasalso been

developedby Smith and Chopra [59]. The cross-sectionalanalysis in the theorywas

performedanalytically to reducetheproblemto aone-dimensionalbeamproblemwhich

wassolvedusingthefinite elementmethod.Thecross-sectionalanalysiswasbasedon the

ClassicalLaminateTheory(CLT). Theout-of-planewarpingusedin theformulationwas

determinedusingacontouranalysis.Dueto themanysimplifying assumptionsassociated

with this theory,thisapproachmustberestrictedto useasapreliminarydesigntool.

Amongthetheoriespresentedabove,themorecomprehensiveanisotropictheoriesrely

upona full three-dimensionalfinite elementsolutionwhich canbecomevery computa-

tionally intensive [47,48]. References [49,55-57,60-62,83,74,75,78] address

comprehensivemodelingof beamswith solid crosssections. All of the closedsection

analysisproceduresarebasedon thin-wall assumptions[50-54,58,59,63,65-73,76,77,79]

which is not anadequateassumptionwhenmodelingtheload carrying structuresof tilt-

rotorblades.It mustbealsobenotedthatwhentraditionalbeamanalysesareperformedin

whichthethree-dimensionalbehaviorof thestructureis reducedto one-dimensionalbeam

like parameters[50-54,58,59,63,65-73,76,77,79,80](e.g.extensionandthreerotations),

it is necessaryto perform thecross-sectionalanalysisat eachuniquecrosssection. In

manyof theformulationspresentedabove,this cross-sectionalanalysismayrequireseveral

thousanddegreesof freedom.As aresult,this typeof modelingcanbecomequitecomplex

and computationally intensive for beamswhich havearbitrary spanwisedistributions.

Further, manyassumptionsaremadeaboutthe warpingdistributions assumedin these

theories. As aresult,thebeamwarpingis typically determinedin a mannersuchthat the
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averagewarpingover thecrosssectionis equalto zero. This, however,doesnot satisfy

theconditionof stressfreeboundaryconditionsonthesurfacesof thebeam.

1.4.2 Composite plate theories: In all of the previously developed closed-section beam

models, some type of thin-walled assumption is made. However, the composite spar

typically used in tilting prop-rotor configurations, e.g. the Advanced Technology Blades

(ATB's), have thicker wall sections which makes such models incapable of properly

modeling these beams. Therefore, the need for a more general theory for adequate analysis

of such sections is obvious. A composite box beam theory which can model sections with

arbitrary thicknesses is, of course, more accurate as well as more realistic, since it

eliminates all the uncertainties associated with the aforementioned assumptions.

An objective of the present study is to develop a beam theory in which the three-

dimensional behavior of the composite structure is not reduced to one-dimensional beam

like parameters. By decomposing the beam into the individual walls which make up the

beam, a beam theory is developed in which the solution approximates the exact three-

dimensional elasticity solution. Further, the warping of the beam is determined in a manner

such that the stress free boundary conditions on the inner and the outer surfaces of the

beam will be automatically satisfied. To adequately model thick-walled structures, it is

necessary to utilize an appropriate composite laminate theory in each of the walls. Several

such theories are discussed below.

As a first approximation to a more refined displacement field, first-order shear

correction theories and other approximate techniques have been proposed. A first-order

shear deformation theory (FST) was developed for general anisotropic laminated plates by

Whitney and Pagano [81]. This theory introduces a constant shear correction term and the

displacement field does not satisfy the necessary stress free boundary conditions on the

upper and lower surfaces of the laminate. Despite the approximate nature of the theory,

results for moderately thick plates were found to be more accurate than the Classical
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LaminateTheory (CLT). Reissner[82] developedvariationalprinciplesfor deriving the

plateequationsfrom three-dimensionalelasticitybasedon first-ordersheardeformation

theories.

A reliablesix-nodetriangleplate/shellelementwasdevelopedby Kosmatka[83] for the

analysisof laminatedcompositestructuresbasedon the first-order sheardeformation

theory. Bhumblaetal. [84] usedthefirst-ordersheardeformationtheoryto predictthefree

vibrationfrequenciesandmodeshapesof spinninglaminatedcompositeplates.Theresults

from thestudyindicatethattheClassicalLaminateTheoryoverpredictsthestiffnessand

natural frequencies.The authorslaterextendedthis work to studythebuckling speedof

spinning,laminatedcompositeplatesoffsetfrom theaxisof rotation[85].

Rehfield and Valisetty [86,87] formulated a simple theory for the bending and

stretching of homogeneousplates. In this theory the classical assumptionthat the

transversenormalstrainandthetwo transverseshearstrainsaresetto zerowasreplaced

with ahypothesisthatthestaticallyequivalentstressesobtainedfrom CLT canbeusedto

estimatethetransversenormalstrainandtransverseshearstrains.

Thevariationalasymptoticalapproachwasusedby Hodgeset al. [88-90]to decompose

thethree-dimensionalplateprobleminto a linear through-the-thickness,one-dimensional

analysisto obtainplateelasticconstantsanda two-dimensionalanalysisto analyzeplate

deformations.Although thepossibility of largedeflectionsandrotationswasconsidered,

small strainswere assumedin the formulation. The variational asymptoticalmethod

expandsthestrainenergyinTaylor seriesexpansionbasedona smallparameter,definedto

be thethicknessof theplatein thiscase,andasa resulttheapplicationof the theorywas

confinedto thinplates.

It has long beenrecognizedthat higher-ordertheoriesare adequatefor modeling

compositelaminateswith arbitrarythicknesses.A third-ordertheorywhich includesthe

transversenormalstresswasdevelopedby Lo et al. [91]. Thedevelopedgeneraltheory
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wascomparedto exactelasticityequationsandshowedexcellentcorrelation.However,the

retention of transversenormal shearstressterms introducesa significant amount of

complexityto theformulation. An alternativehigher-ordercompositelaminatetheorywas

developedby Reddy [92] in which the transversesheareffectswereincluded, but the

transversenormal stresswas neglected. In this third-order theory, unlike first-order

theories,thestressfreeboundaryconditionswereexactlysatisfiedon theupperandlower

surfacesof the plate. This relatively simple theory, which has only two additional

unknownfunctionsfromtheClassicalLaminateTheoryor thefirst-ordersheardeformation

theory, hasbeen shownto be extremely accuratewhen comparedto exact elasticity

solutionsfor thick plates[93]. In asubsequentreviewof all third-order,two-dimensional

theoriesfor plates,it wasshownby Reddythatall third-ordertheoriesdevelopedover the

lasttwo decadesarebasedonthesamedisplacementfield [94]. Thethird-ordertheorydue

to Reddy[92] wascomparedwith afirst-ordersheardeformationtheoryandtheClassical

LaminateTheory. for cross-plylaminateswith variousboundaryconditions,in a study

performedby Khdeir et al. [95]. It was foundthat thethird-ordertheoryout performed

both thefirst-ordertheoryandtheCLT.

Murakami[96] introducedtheconceptof superimposingazig-zaglinearfunctionupon

a FST to improvethe accuracyof inplaneresponses.The theorywasshownto bevery

accurate,but in tin., layerwiseapproachthenumberof unknown functionswasdirectly

proportional to the number of composite plies. As a result, the technique was

computationallyexpensive.Thisworkwaslaterextendedby ToledanoandMurakami[97]

such that the piecewise linear continuous displacementswere superimposedupon a

quadratictransverseshearstressdistribution. In anotherstudyperformedby theauthors

[98], azig-zagshapefunctionwassuperimposedonLegendrepolynomialsto approximate

theinplanedisplacementcontributionsacrosstheplatethickness. Like theoriginalstudy,



16

thesetheoriesare dependenton the numberof plies and arethereforecomputationally

expensive.

A similarstudywasperformedbyChoandParmerter[99,100]in which ahigher-order

plate theory for composite laminateswasobtainedby superimposinga cubic varying

displacementfield overazig-zaglinearlyvaryingdisplacement.In this theory,Heaviside

functionswereusedto ensurecontinuityof thetransverseshearstressesat the interface

betweenthe laminae. The results,however,werenot shownto be moreaccuratethan

traditionalthird-ordertheories. RobbinsandReddy[101] developeda procedurefor the

modelingof thick compositesusingalayerwiselaminatetheory. Theresultinglayerwise

finite elementmodelusedin this theorywascapableof computinginterlaminarstressesand

otherlocalizedeffectsasaccuratelyasthree-dimensionalfinite elementmodels.However,

thenumberof degreesof freedomrequiredin thismodelwasapproximatelythesameasa

full three-dimensionalfinite elementmodel and a result, the layerwise theory was

computationallyintensive.

ChattopadhyayandGu developedanewhigher-orderlaminatetheoryfor themodeling

of delaminationbucklingof compositeplatesandshells[102,103].Delaminationsbetween

layers of composite plates were modeled by jump discontinuity conditions at the

delaminatedinterfaces.Thesediscontinuitiesweremodeledin boththelower andhigher-

order termsof displacementsusingHeavisidestepfunctions. Excellentcorrelationwith

experimental results was obtained. An exact elasticity solution was presentedby

ChattopadhyayandGu [104] for thebucklingof simplysupportedorthotropicplates.The

solutionspresentedin thetheoryindicatedthatthethird-ordertheorywasthemostaccurate

plate theorywith lessthaneight percenterror in all cases,while theClassicalLaminate

Theory was the leastaccuratetheorywith errorsof more than 100 percentfor thick

laminates.
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1.4.3 Extension of plate theories for beam modeling: No effort has been reported in using

such higher-order composite plate theories in modeling composite box beams. The reason

being the complexity of the process, especially when pre-twist and taper are included in the

formulation as they are in the present approach. In the present research, the refined

displacement field of Reddy [92] is used to analyze the individual walls of a composite box

beam. As a result, the developed theory is capable of modeling box beams with arbitrary

wall thicknesses. By decomposing the beam in this manner, the developed theory is an

approximation to the three-dimensional elasticity solution. Therefore, there is no reduction

of the box beam behavior to one-dimensional beam like parameters. Thus, several

simplifying assumptions are avoided.



2. Objectives

The objective of this research is to develop a more general, but computationally

efficient, theory for the adequate analysis of composite box beam sections with moderately

thick walls. A refined higher-order displacement field is used to accurately represent the

transverse shear stress distributions in composite laminates of arbitrary thickness which

represent the box beam walls. The procedure developed is capable of analyzing composite

box beam sections with pre-twist, taper and sweep to model load carrying structural

members used in aerospace applications. Unlike previous beam theories, the present

theory approximates the three-dimensional elasticity solution rather than reducing the beam

properties to one-dimensional quantities. Further, the warping of the cross section in this

theory is determined such that stress free boundary conditions are exactly satisfied on the

inner and the outer surfaces. As a result, the model is capable of accurately describing

thick-walled load-carrying members typically found in tilt-rotor blades such as the

Advanced Technology Blades (ATB) on the XV-15 tiltrotor [102,103]. The developed

beam model is general enough for applications to a wide range of wing and rotor blade

sections.

Next, the box beam model is used to represent the principal load carrying member in a

tilt-rotor blade and an aeroelastic analysis is performed. The aerodynamic loading is

obtained through an analysis based on a two-dimensional blade element momentum theory

[104]. The coupled equations of motion are solved to determine the structural response,

the aeroelastic stability and the aerodynamic performance of the trimmed rotor.

Finally, a formal multidisciplinary optimization procedure is developed to investigate

the trade-offs associated with aeroelastic stability, aerodynamic and structural design

requirements of prop-rotors. The optimization procedure developed can be coupled with

other analysis codes being used by the industry allowing trade-off studies to be performed

during both preliminary and detailed design stages of the tilt-rotor aircraft development.
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Development and validation of a higher-order composite beam theory capable of

modeling box beams of arbitrary shape and wall thicknesses. The theory is capable

of modeling short aspect ratio beams with pre-twist, taper and sweep.

Development of the coupled aerodynamic and structural equations of motion to

investigate aeroelastic stability and blade structural response.

Development of a multidisciplinary optimization procedure which includes formal

multiobjective formulation technique and an approximate analysis technique based

on hybrid expansions.

Optimization for multiple flight conditions to investigate the effects of composite

tailoring on the overall performance of high speed prop-rotor blades.



3. Composite Structural Modeling

The box beam is modeled using composite laminates to represent the four walls

(Fig. 3.1). Several different coordinate systems are used throughout this paper and are

defined as follows. The global coordinate system (X, Y, Z) is the untwisted coordinate

system located on the axis of rotation (Figs. 3.1 and 3.2). The global, rotated coordinate

system (X', Y', Z') represents the coordinate system obtained by rotating the global

coordinate system about the axis of twist by an angle 0(x). In addition, there are three

more coordinate systems defined locally in each wall of the box beam. The local,

untwisted coordinate system of the i-th wall is defined by (xi, Yi, zi). The local, twisted

wall coordinate system for the i-th wall which results from the global rotation (0) of the

beam is denoted (x_, Yi, zi ) as depicted in Figs. 3.3 and 3.4. The introduction of sweep

adds complexity to the formulation. For this model, sweep is defined to be in the X'-Y"

plane (Fig. 3.5). The horizontal walls are parallel to this plane and as a result, no

Z!

y!

X

Fig. 3.1 Composite box beam.
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additionalcoordinatesystemneedsto beintroducedfor thesewalls. In theverticalwalls,

however,the sweepis normalto thewalls andthereforeanadditionalcoordinatesystem

mustbe introduced.This local,twistedandsweptcoordinatesystemis definedby (;_i,rli,

_i). (Notethatin caseof thehorizontalwalls thecoordinatesystemdefinedby (Zi, rli, _i)

is identicalto thecoordinatesystemdefinedby (x1,Yi, z_).) Detailedexplanationsof the

transformationsbetweenthecoordinatesystemsarepresentedin AppendixA.

ll\\

l

I Y' x.
/ /

Z' II , Z I l l_"

/ / I- v
_
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Fig. 3.2 Beam cross section and axis of rotation.

3.1 Refined Displacement Field

A higher-order theory [92] is used to define the displacement field for each wall in the

local, twisted and swept coordinate system (Z, rl, 4) as follows. The subscript 'i' has

been omitted for convenience throughout the remainder of the study.

Ou3(x'Yl) + ll/x(Z, TI)l + _2(_x ()C,TI) + _Tx ()C,TI)
3;( )

Ofi3(X'rl) _-_y(;_,rl)l + g2#y(X, rl) + _]'y (_,n)
an )

Ul()("TI'_)= u°(_"rl) + _/

_2(Z,n,_) = Vo(Z,n) + _/

(3.1a)

(3.1b)

fi3(Z,_) =Wo(Z,_) (3.1c)
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Z

x

Top wall Bottom wall

Fig. 3.3 Horizontal wall coordinate systems.

where Uo. vo and Wo represent the displacements at the midplane of each plate and _x and

gty represent the rotations of the normals to the midplane. The beam warping in each plate

is represented by the functions _x, (_y, Yx and Yy- The local wall deformations

(ill, fi2- fi_ }in the twisted coordinate system are related to local deformations (Ul, u2, u3)

in the untwistcd coordinate system (x, y, z) through the following relationship.

futf o0jill}u, = 0 cos0 -sin0 fi2

u 3 0 sin 0 cos0 U3

or

u = Tutti (3.2)

where Tur is the transformation matrix between the local, twisted displacements and the

local, untwisted displacements. The local deformations in each of the plates (Ul, u2, U3)

are related to the global deformations (u, v, w) as follows (Figs. 3.1, 3.3 and 3.4).
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Fig. 3.4 Vertical wall coordinate systems.
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w(X,Y,Z)

u(X,Y,Z)

v(X,Y,Z)

w(X,Y,Z)

= Ul(x'Y'Z) ]

=-u2(x,y,z)_ V {X,Y(y,z),Z(y,z)}

= -u3(x,y,z) j

= Ul(X,y,z)

=-u3(x,y,z)_ V {X,Y(y,z),Z(y,z)}

= u2(x,y,z) J

= Ul(X,y,z) 1

= Uz(X,y,z)_ V {X,Y(y,z),Z(y,z)}

= u3(x,y,z) j

= Ul(x'Y'Z) 1

= u3(x,y,z)_ V {X,Y(y,z),Z(y,z)}

= -u2(x,y,z) j

wall 1

wall 2

wall 3

wall 4

(3.3a)

(3.3b)

(3.3c)

(3.3d)
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Fig. 3.5 Swept and twisted beam cross section.
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3.2 Boundary Conditions

It is necessary to satisfy shear stress free boundary conditions at each free surface of

the beam. This implies that in each wall, the shear stresses must be zero on both the outer

and the inner surfaces. The imposition of these boundary conditions allow some of the

higher-order terms to be determined in terms of some lower-order terms. This procedure,

which is explained next, reduces the number of unknowns in the displacement field (Eqns.

3.1). For each wall, the stress free boundary conditions are stated as

<_)_(Z,n, _ = +___2)= O, (3.4)

_n;(;6, n, _ = +__2) = o, (3.5)
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where h is the total wall thickness. For composite laminates made up of layers of

orthotropic lamina, the above requirements imply that the corresponding strains must be

zero on these surfaces. That is,

_(_, n, _ = +_h/2) = 0,

_n_(_, n, _ = +_h/2) = 0,

where

0u1 , 3fi3

=--*-g_- = vx + 2;% + 3;27x = o,

Oa2 t 0U3= - _I/y +2_y +3 2Tyr = 0.
O_ On

This yields the following relationships

_x = O,
4

Tx - 3h 2 _x,

and

_)y = 0,
4

(3.6)

(3.7)

(3.8)

(3.9)

(3.10a)

(3.10b)

(3.11 a)

(3.11b)
Ty =- 3---_ll/y "

Using these conditions (Eqns. 3.10 - 3.11), the individual plate displacement fields

(Eqns. 3.1) are now written as

( wo/÷+_x - _3_x, (3.12a)

+4 _0Wo
fi2=V ° ( 0rl + Vy) _ 3_____3_i/y ' (3.12b)

u3 = Wo, (3.12c)

where the functions Uo, Vo, Wo, _x and _ty represent unknown functions of ;_ and 13.



26

3.3 Stress - Strain Relations

Due to the fact that the stress and strain tensors are symmetric there are only six unique

values of these quantities. Therefore, the following notation is used to define the stress and

strain tensors in the local, untwisted coordinate system.

T

I°1l
(Y3

l
_6

T

(_xx 1

(_YY /

O'zz [

(_yz

(3'xz

.(Yxy

and •

"eli T

E2|

E3

E4

E5

,E6

Exx ] T

Eyy

Ezz

= , 2ey z f

2Exz /

2ExyJ

(3.13 a,b)

The stress and strain tensors in the local, twisted and swept coordinate system are

expressed similarly. The generalized Hooke's law is used to relate the stresses and the

strains. Assuming the products of the derivatives of the displacements to be small in the

strain formulation and using Eqn. 3.2, the strains in the local, untwisted coordinate system

are expressed as

E1

E2

E3[
a4

E5

.E6

I i;c0_ ys0
Jre,zS0 + _,zC0

] re,zC0 + re,yS0 + _,yC0 - XV,zS0fi,z + re,xS0 + W,x c0 + re cO 0,x - _ sO 0,x

Ifi,y + re,xC0- _,xS0 - re sO 0,x - _ cO 0,x

,. (3.14)

In the above expressions, the short hand notations cO and sO are used to denote cosO and

sin0, respectively. It is important to note, however, that the displacement equations

(Eqn. 3.1) are written in the local, twisted and swept coordinate system. The relationship

between the derivatives in the local, untwisted coordinate system and the local, twisted and

swept coordinate system are written as

0 - _ +(__Zo)0,x 0 [ * ]_ (3.15a)Ox OZ _- (q-Y°)O'x +Z°'x '
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0__3__= cos 0--_- sin0_, (3.15b)
3y

= sin0 _ + cos 0 0____. (3.15c)

az an ar_

Details of the transformation relationship between the coordinate systems are found in

Appendix A. Using Eqns 3.1, 3.14 and 3.15, the strains are written as follows.

= + _(-Wo,xz + ll/x,z ) - -_- _311/x,zE1 u°'z 3

+{uo 
- -Wo_+_x_,-v__x_

(3.16a)

E2 = {Vo,rl + _(-Wo,rlrl + II/Y,rl ) - 3@2 _3_l/y,rl } cos2 0

- qty(1- h_2)cos0sin0

3.16b)

e3 = {Vo,n + _(-Wo,nn +- _y,n) - 3_--7_3_Y,n } sin20

+ _y(1- h-_2)cosOsinO

(3.16c)

E4= {Vo,n + _(-Wo,nn + II/y,n ) - 3_--7_311/Y,_1 } 2 c°sOsin 0
(3.16d)



_5 =

e 6 =

{Uo,n +Vo,x +_(-2Wo,_ n + II/x,n + lily,z)-- 3@2 _3(/gx,_ q

}cos00x+ + I[/y)- 3-_ Igy ZoWo,rl

--{--Wo,rl +lgy-_2 _211/y}(_--Yo)- WolSin0 0,x

-(-Wo,a q + lily - _2 _211/y }sin 0 Z;,x

+

43  l}cos0

{vo•_(-wo_•_y/_4_3_y_Zowo_}sin00x

  y-  2 y}  -Yo -WolSin00x
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(3.16e)

(3.16f)

-- --Wo,rl +/gy -- COS0 Zo, x

From the above equations, the following relationship between the local strains in the

untwisted and the twisted coordinate systems is obtained.

E i = _i'ij (_ _ + 0,x_tj- Z;,x_j)
(3.17)

~o
where ej is the strain in the local, twisted coordinate system in the absence of pre-twist

and sweep, _tj is the additional strain components due to pre-twist and 0,x is the twist rate.

The additional strain components due to the sweep are denoted _j and the sweep rate is
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Zo,x. It mustbenotedthatadditionalsweeptermsappearonlyin theverticalwallsdueto

thedefinition of sweepusedin themodeling(seeFig. 3.5). Thetotal strainin the local,

untwistedcoordinatesystem(x, y, z) is denoted¢j and _i'ijis thetransformationmatrix

betweenthe strainsin the local, twistedcoordinatesystemandthe strainsin the local,

untwistedcoordinatesystem.

-1 0

0 c2e
0 s2e

Tij= 0 2cese

0 0

0 0

This transformationmatrix is expressedasfollows.

0 0 0 0

s20 -cese 0 0

c2e cese 0 0

-2cOse c20-s2e 0 0

0 0 ce se

0 0 -sO cO

g:_=e_

g:_=e_

Theout

= 0,

g;z_=e_

(3.18)

+ ;2K2,

E_ = e_ + _2K2.

The additional strains due to beam pre-twist are as follows

_tl = g_ + _gl + _2bt2 + _393 + _4[.t4 '

_t2 =_3 = _t4 = 0'

(3.19d-f)

(3.20a-f)

Note that the transformation matrix for the strains (_i'ij) is different from the transformation

matrix for the displacements (Tur)- The local inplane strains in the absence of pre-twist or

sweep are derived as follows.

_ = e_ + _K l + _31_?

+ _1( 1 + _3K3 (3.19a-c)

+ ;K 1 + ;3K3

of plane strains are expressed similarly as



The additional strain components due to the sweep are

O1 = O_ + ;202,

02=0, O3=0, 04=0, 05=0,

06 = O_ + ;202,

where the nonzero components of the individual strains are described in Appendix B.

3O

(3.21a-f)

3.4 Energy Formulation

The beam equations of motion are derived using Hamilton's principle [93] which

assumes the following form.

t2

6l(U-T+We)dt = 0 (3.22)

tl

where 8( ) represents the variation of ( ) and U, T and We represent the total beam strain

energy, kinetic energy and external work, respectively. Using variational principles, Eqn.

3.22 may be rewritten in terms of the individual plate quantities as follows.

t2( N _Wei 1flZ _Ui -STi+ dt = 0 (3.23)

tl k i=l

where N is the total number of walls (N = 4 for a box beam). The individual strain energy

density (Uo) in each plate is calculated as follows.

Uo = fcYidg i (3.24)

0

Using the generalized Hooke's Law (crt = Qijej), Eqn 3.24 is rewritten as

= 1Qij_iej, (3.25)Uo

where repeated indices (i, j = 1, 2, .-., 6) indicate summation and cyi is the strain tensor.

The quantities Qij denote the full three-dimensional material properties in the local,



31

untwistedcoordinatesystemwhich,for laminatesmadeof orthotropicplies,is represented

asfollows.

"Qll

Q12

Q13
QiJ= 0

0

Q16

Q12 Q13 0 0 Q16-

Q22 Q23 0 0 Q26

Q23 Q33 0 0 Q36

0 0 Q44 Q45 0

0 0 Q45 Q55 0

Q26 Q36 0 0 Q66

(3.26)

The materialpropertiesin termsof the local, untwistedcoordinatesystem(x, y, z) are

written in termsof thematerialpropertiesin local, twistedandsweptcoordinatesystem

(Z,rl, 4) asfollows.

Qij = "Fmi0mn _nj, (3.27)

where (_mn represents the material properties in the local, twisted coordinate system. The

total strain energy in the i-th wall (Ui) is then written, using Eqns. 3.18 and 3.26 as

follows.

U i = yUoi dV

v (3.28)

11(~ o + 0,x_tm Z;,x_m)_ik_mi0mn_nj,_jl(_O + 0,x_tn_ z; x_n)dV_-_ E m -
V

where V indicates integration over the volume of the wall. Due to the orthogonality of the
^ ^

transformation matrix, T, (TikTmi = _km, where 5km is the Kronecker delta) Eqn. 3.28

is simplified as follows.

h/2

Ui = 1 1 I(_°+O,x_tm-Z;,xOm)0mn@°n+0,x_tn-Z;xOm)d_d_ (3.29)

f_-h/2

where dr2 is the differential area (dg2 = dzdrl). The strain energy can be rewritten using

Eqns. 3.19-3.21 and 3.29.
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Ui

"Amn Bmn Dmn Emn Fmn"

Bmn Drnn Emn Fmn Gmn

Dmn Emn Finn Gmn Hmn

Emn Frnn Gmn Hmn Ornn

Finn Gmn Hmn Omn Pmn

= lfBTmQmnBnd_

f2

Jindf2

(3.3o)

where m, n = 1, 2, ..-, 6 and the laminate stiffness matrices (A - P) are defined in each of

the walls as follows.

h/2

(A,B,D,E,F,G,H,O,P) = _ t)(1,_, _2, _3,_4, _5, _6, _7, _8)d_ (3.31)

-h/2

For composite laminates, 0 is ply dependent and as a result it is a function of the thickness

coordinate 4. Therefore, this matrix cannot be taken out of the integral in Eqn. 3.31. The

vector Bm is defined as

* Oo , Zo xOm)ji m =[(el0 n +_trn0,x _ZoxL_m) (K1 +_L10,x) (K2 +_L20,x _ * 2

4 T
(K3 + _t30,x)gm0,x]

(3.32)

The external work due to applied loads and body forces (We) in the i-th wall is written

as

I IAWei = _jijdV+ tjujd5 j = 1, 2, 3 (3.33)

V S

where ij is the displacement vector defined as [ill i2 i3] T, _1, X2, and _3 are the

body forces in the X, Y and Z directions, respectively. Applied surface tractions over the

region of the surface S are denoted tl, t2 and t3, along the respective directions.

The total kinetic energy in the i-th wall is expressed as

Ti = llpvjvjdV j=1,2,3

V

(3.34)



where vi is the velocity vector defined as

vi= _-'_- + f2fc X ri,
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(3.35)

ui is the displacement vector, f2 is the rotational velocity about the Z axis and ri is a

position vector from the axis of rotation to an arbitrary point in the i-th wall (Fig. 3.6). The

position vector is written as follows.

r = Xol + YoJ + (;_ + ul)eZ +(ri+ rio + u2)eT1 +(t +to + u3)e;, (3.36)

where Xo and Yo are the offsets in the global, untwisted coordinate system from the axis of

rotation to the center of twist and rio and to are the local offsets to an arbitrary point on the

wall expressed in terms of the local, twisted and swept axis system. Using Eqns. 3.35 and

3.36 and the coordinate transformations defined in Appendix A, the kinetic energy is

expressed as follows.

_ [ r ( ) (,)( ,~)2 2
1 '- "+2_1 t +to + @nrl-2fal 1+1+rio +fi2 n_+ t+to +u3 an

Ti= 2 P "lUl-
V

+//" / (+- 2(t+to+fi3 ri+rio+U2 ff2rlf2_+ ri+TIo+fi2

* i u.- +2_2 1_+1_o+ill f2_ + ;(+9_o +fit

; " - 2_a3 )_+)_o + fil f2rl + 9_+)_o + Ul f_rl dV-4- ; u-;-

where the rotational and position vectors (Eqns. 3.35 and 3.36) are rewritten as

( " )?: ( * ~ )^ (t * ~ )^ (3.38)r= X+7.o+fJl Z+ ri+rio+U2 erl + +to+U3 e_,

nf_ = f2n6 n + f2;6_, (3.39)

and (') represents a differentiation with respect to time.
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Rotation
Axis Z

Yo+ TIo

Fig. 3.6 Rotationaloffsetsandpositionvector.

3.5 Incremental Stiffness Due to Rotation

To properly obtain the natural frequencies of rotating plates and beams, it is necessary

to consider the stiffening effects which arise due to the stresses generated by rotation. This

procedure involves two steps. First the stresses of the beam are calculated for centrifugal

forces only. Then the incremental stiffness due to rotation is computed and is added to the

original stiffness matrix. The procedure for calculating the incremental stiffness matrix is

outlined below.

The additional strain energy due to centrifugal stiffening in each of the walls (Ucf) is

given by [105]

v (3.40)

-2co_o3_GZrl - 2¢o_¢o_r1_ - 2o3_o3_9¢_] dV

where coX, ¢t_ and 034 are the rotations about Z, rl, _ axes, respectively. It is important to

note that in the above equation, the strains are not included in the formulation based on the

assumption that their effects are small compared to the rotations. Equation 3.40 may be

written in matrix notation as follows.
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1![Ucf i = _- co% co_ m_ <5Z -G_ /lcorl _ dV (3.41)

where the stresses (sij are due purely to the centrifugal force in each individual wall. The

rotations are calculated as follows.

mZ = 2 _ an at

1(% aft3) (3.42a-c)t°n = 2 _ at az

l(.aU2 aal]me = 2 _ OZ ari

Using Eqns. 3.12 and 3.42 the rotations are rewritten as

(÷)aw o 1 1- _y,
mZ- arl 2

4

C°n -- OZ

Cox=2C az an)

3.6 Variational Method

The variation of strain energy is written as follows.

f BTQ.mnSflnd_ m, n = 1, 2,-.., 6 (3.44)8Ui

f2

where the variation of the strain vector Bm is expressed as the sum of the variation of the

strain in the untwisted coordinate system, the variation of the strain due to pre-twist and the

variation of the strain associated with sweep as follows.
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5B m =[(Se o +_gOO,x_ o * 5_llmO,x)a_mZo, x) (aKlm +

(3.45)

(_N2 _12e, x 2 * _g30, x) 4 T+ -5_mZo, x) (81_ 3 + 8gm0,x]

The variation of the potential energy of the applied loads is expressed as

= [_jSfijdV + f tjSfijdS, j = 1, 2, 3. (3.46)5We i

V 5

Due the presence of the rotational velocity, the variation of the kinetic energy can be

expressed in terms of four individual components as follows.

8Ti = 5Tmi + 8Tci + 5Tki + 5Tfi (3.47)

where the subscript 'm' denotes the component of the kinetic energy that is used to form

the mass matrix. Similarly, the subscripts 'c', 'k' and 'f' indicate the components that are

used in the formulation of the gyroscopic matrix, the stiffness matrix and the forcing

vector, respectively. The exact form of these variations are as follows.

fp[ ulSa I + u28fi 2 + fi35fi3]dV (3.48)8Tm i

V

_Tci= j'p [ (2fi2f).; - 2_13_rl)Sfil- 2Ul_13fi2 + 2_1_rl8_3] dV (3.49)

V

_T_i--Io[_-_+_)_1_+(_- _3)_
\. (3.50)

• ~ 2 * * -_,=f_I_+ _)(_+_o)_u,+(_(_+_o)_o)_u_
v (3.51)

2 *

The quantity _Tmi, in each wall, is rewritten as



1

L4 4k 4_Jl_J
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j, k = 1, 2, 3 (3.52)

where )_0, _I and )_3 correspond to the zeroth, the first and the third-order components

(in 4) of the displacement field, respectively. These quantities are defined as follows.

)_o =[Uo Vo Wo] T

I 4 4 l T)_3= ___1i x 3h 2 I]/y 0

0] T (3.53a-c)

The density matrices, Ajk, are defined as

h/2

(A0k, A_k, A2k, A3k, A4k, A_k) = _p(1, _, _2, _3, _4, _6)d_ •

-h/2

(3.54)

Although simple closed form expressions cannot be obtained for the remaining components

of the variation of the kinetic energy, they can be computed in a straight forward manner as

discussed later.

The variation of the strain energy due to the centrifugal stiffening in each wall is written

as

8Ucf i = S mT _mn 8f'On dV,

V

m, n = 1, 2, 3 (3.55)

where



0,) m

and

_42

On 2

_42_<+1(1
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(3.56)

o n -oZn -o9_

-oZ_ -Gn; ((s z + Gn

(3.57)

It must be noted that the stresses in Eqn. 3.57 are due to centrifugal forces only which are

determined based on the forces associated with Eqn. 3.51. Therefore, Eqn 3.51 is used

only to determine the steady state stresses due to rotation. After these stresses are

calculated and the incremental stiffnesses are determined, the forcing terms associated with

this equation are no longer included in the formulation.

3.7 Solution Procedure

The solution of the equations of motion is obtained using a two-dimensional finite

element formulation in the local, twisted and swept coordinate system of each individual

plate (Z, ri, 4)- A four noded plate element is used to discretize the individual plates of the

beam. This element is C 1 continuous in the zeroth order displacements (Uo, Vo, Wo) and is

C ° continuous in the higher order terms (_x, _y). As a result, the element contains 11

degrees of freedom per node which are defined in terms of the nodal degree of freedom

vector as follows.

au ° aUo aVo= u°' o"Z' Oq' v°' az

aV ° aw ° aw ° _T

, Wo, , ,ll/x, Igyj (3.58)' an a_ an
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3.7.1 Continuity conditions: To maintain the continuity of displacements throughout the

entire beam, constraints are imposed at the comers of each individual plate as follows.

luo(Z,r I = bl) = 2Uo(Z,_ I = 0)

1Vo(Z,l"l = bl) = -2Wo (Z, rl = 0) (3.59a-c)

lwo(Z,/q = bl) = 2Vo(Z, _ =0)

where the preceding superscripts '1' and '2' denote walls 1 and 2, respectively and bl is

the width of wall 1 (Figs. 3.3 and 3.4). It must be noted that these equalities must be

satisfied for all values of Z- Therefore, the partial derivatives of the above equalities, with

respect to Z, must also be satisfied. To ensure that the angle between the walls remains 90 °

after deformation, the following constraints are imposed on the rotations about the z-axis.

lwo,rl(Z,/q = bl) = 2Wo,rl(Z," q = 0)
(3.60)

l_y(Z,r I=bl) = 21gy(Z," q=0)

Similar sets of constraints are derived at each of the four comers of the box beam.

3.7.2 Finite element formulation: The finite element approach is used to solve the

complete beam equations of motion (Eqn. 3.23). Denoting q as the nodal degree of

freedom vector, it is possible to express the strain (Eqn. 3.5) in the following form

( *-_i = vii + O,x¢ij _ z,. ,_ii]qi. (3.61)
_A zJ] o

The partial derivatives of the strain vector with respect to qj are then written as

* - (3.62)0Ei -- Fij + 0,x*ij Z _.".---- -- O 1.1
Oqj ,x

Note that quantities F, * and E can be expanded in terms of 4 as follows

r'ij =[Fi_ F_ I-i2 Fi] Ii4]o{1 442 43 44} (3.63)

= Bijo{1 4 42 43 44},

o 2 03 .4].{1 442 43*ij =[*ij *]j *ij _4} (3.64)

= tPt.ij°{ 1 4 42 43 _4},



and

4O

_=[___].{1_2} _365_
_-_.{1_2}

The rotation terms (0)i) may also be expressed as a function of the nodal degrees of

(3.66)

freedom as follows

¢oi = Oijqj

so that

_03i
= ®ij. (3.67)

,.,,tj

Similarly, the displacement vector u may be written as

(3.68)[suj1_2=lsv_Iqj
a3 lSwjj

or

fii = Sijqj (3.69)

such that partial derivatives of the displacements with respect to qj are as follows

0fi_.__L= Sij. (3.70)
0qj

Note that the displacement matrix can similarly be written in terms of the thickness

coordinate as

Sij =[S_ S_j $3],{1

= Mij.{1 _ _3}.

_3}
(3.71)

Using the finite element approach, the coupled (dynamic/aerodynamic) beam equations

of motion are written in matrix form as follows
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M_i(t) + C_l(t) + K q(t) = F(t) (3.72)

where M, C and K are the mass, the damping and the stiffness matrices, respectively and

F is the external force vector representing loads corresponding to the beam nodal degrees

of freedom (q). Note that in Eqn. 3.72, the C matrix represents the gyroscopic (Coriolis)

effects and not damping of the system. As a result, the equations of motion as formulated

represent an undamped system. Therefore a proportional damping (two percent) is

assumed in the model to represent the structural damping. The proportional damping is

determined based on the natural frequencies obtained through consideration of the mass and

the stiffness terms only in Eqn. 3.72. These terms are augmented to the C matrix. It must

be noted that additional terms analogous to damping and stiffness terms will be introduced

through aerodynamic loading. These terms are augmented to the appropriates matrices in

Eqn. 3.72 as explained in detail in Chapter 5. The matrices and forcing vector due to the

structural contribution only are expressed as follows.

1M = psTsdv , (3.73)

i=a kv J

C = p 2f_rl(SwSu T -SuSTw)- 2a_(Sv sT -SuSv T dV, (3.74)

K*= B T+0,xRT-zo,x LT Q B+O,xR-Z*o,x Ldf2

_ •   (SuS u+SvSv•SuSuSwSw)-    (swsv

and the forcing vector is

F = rS_dV + rStd5 ,

i=l kv

(3.75)

(3.76)
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(3.77)

+o (s++ + av
Note that the matrix C in Eqn 3.75 does not include the proportional damping which can be

determined only after an eigenanalysis of Eqn. 3.72 is performed. The matrix denoted K*

(Eqn. 3.75) corresponds to the stiffness matrix obtained before the addition of the

incremental stiffness due to rotation. Using Eqns 3.75 and 3.76 to determine the stresses

due to beam rotation, the incremental stiffness matrix is calculated as follows.

(3.78)

where the stress matrix (Z) is determined from the solution to

K* q = fcf (3.79)

The total stiffness matrix (K) used in Eqn 3.72 is now written as a combination of K* and

Kcf as follows

K = K* + Kcf. (3.80)



4. Composite Beam Results and Validation

The mesh sizes necessary for both individual plate and complete beam analyses are

determined by performing a detailed convergence study. The details of this convergence

study are presented in Appendix C. Next, beam correlations are presented in order to

demonstrate the adequacy of the individual wall elements. Finally, the beam model (both

thin-walled and thick-walled sections) is correlated with available experimental results and

results obtained using a general purpose finite element code. Details of the correlation

study are presented in the following sections. In the following sections, the elemental

mesh size is defined as M x N where M is the number of chordwise elements and N is the

number of spanwise elements. For the beam model, a consistent mesh is used in every

wall and the mesh size presented corresponds to an individual wall. A finite element

representation of a beam with a 10 x 4 mesh is illustrated in Fig. 4.1.

Fig. 4.1 Box beam finite element discretion; 10 x 4 mesh.

4.1 Higher-Order Plate Verification Studies

To demonstrate the importance of including the transverse shear terms in the

formulation for the individual plates and to prove how well the present theory can capture

these effects, results are first presented for individual plates. The accuracy of the plate

theory is established from these validation studies, which are presented below.
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4.1.1 Square, untwisted plate: Results are presented for a simply Supported square,

orthotropic plate under uniform loading (Fig. 4.2). The material properties of the plate are

listed in Table 4.1. Figures 4.3 and 4.4 present the variations of the normalized center

deflection, the normal axial stress ((_1) and the transverse shear stress (_5) with plate

thickness. The results of the present theory are compared with the those obtained using an

exact elasticity approach [106]. Note that in Fig 4.4, results using the classical laminate

theory (CLT) are not presented because in case of the axial stress, they are nearly identical

to the results from the higher-order theory and in case of the transverse shear stress, they

are zero. The figures indicate that the higher-order plate theory correlates very well with

the exact elasticity solution [106]. Also, for moderately thick to very thick plates, the

assumption of zero transverse shear Stresses in CLT can introduce significant errors

(Fig. 4.4).

l
a

1111 1111111111!x
.s2

Y

X

Fig. 4.20rthotropic square plate with fixed boundary conditions.
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E1 = 20.83 × 106 p.s.i., E2 = 1.094 × 106 p.s.i.,

G12 = 6.10 × 106 p.s.i., G13 = 3.71 × 106 p.s.i.,

_12 = 0.44
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Fig. 4.4 Normalized stresses of fixed orthotropic square plate under uniform distributed

load.
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4.1.2 Plate with twist: From the convergence study it is determined that a 4 x 12 mesh

(665 degrees of freedom) provides converged results and therefore this mesh size is used in

all analyses involving the twisted plates. To validate the accuracy of the higher-order

theory, the results are compared with published results. The first four natural frequencies

for the plate are presented in Table 4.2. The natural frequencies are nondimensionalized as

follows.

03 _hL4 (4.1)
_i = i_ '

D = E h3/12(1_ v2). (4.2)

The NASTRAN [105] results presented are due to MacBain [107] which uses a mesh size

of 11 x 24 to yield a total of 1265 degrees of freedom. The Rayleigh-Ritz solution is due

to Barton [108] in which an 18 term expansion for the deflection is used. In the table and

following figures 'F' is used to denote a flexural or bending mode, 'T' is used to denote a

torsional mode and 'PMi' is used to indicate the i-th plate mode. From the table it is noted

that although both the NASTRAN and the present approach correlate very well with the

Ritz solution, the present approach is more accurate and requires fewer total degrees of

freedom.

Table 4.2 Nondimensional frequencies of a flat, cantilevered plate

(v = 0.3, L/w = 2.33)

Mode Ritz NASTRAN % Difference* Present % Difference*

1F 3.47 3.43 - 1.2 3.43 - 1.1

IT 17.10 16.74 - 2.1 16.87 - 1.3

2F 21.58 21.36 - 1.0 21.45 - 0.6

2T 55.00 53.66 - 2.4 54.08 1.7

* Percent difference from Ritz solution.
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Thenaturalfrequenciesof thetwisted,isotropicplatesoverarangeof tip twist values,

are presentedin Figs. 4.5 - 4.7. In addition to the resultsobtainedusing the present

approach,experimental data [107] and results obtained using NASTRAN are also

presented.In theseplates,thetwist is assumedto Varylinearlyalongthespan.Resultsare

presentedfor tip twist valuesof 0T= 0°, 12°, 17°, 23.5°, 30° and38° to correlatewith

available experimentaldata. In addition, resultsusing the presentapproachare also

calculatedat pre-twist valuesof 45° and 60° to further examinethe trends. From the

figures,excellentcorrelationisnotedin all cases,with apossibleexceptionof thefirst plate

mode (PM1) for low tip twist values. However,it mustbe notedthat the experimental

valuefor this particularmodeis alsonot available[107]. Usingthepresentapproach,its

value is very closeto the third torsionalmode(3T, Fig. 4.7). The proximity of these

naturalfrequenciesmightexplainwhy it waspossibleto experimentallydetermineonly one

of thesevalues(3T). This alsosuggeststhatthecurrenttheorydoesaccuratelypredictthe

natural frequencyof this mode and the resultsobtainedusing NASTRAN are under

predicted. Overall, thepresentapproachyieldsmoreaccurateresultsthanNASTRAN.

This is due to the fact the elementsusedin NASTRAN arebasedon first-order shear

deformationtheorieswhichonly approximatethetransversestress.
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Fig. 4.5 Natural frequency as a function of tip twist (modes 1-3).
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Fig. 4.6 Natural frequency as a function of tip twist (modes 4 - 6).
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Fig. 4.7 Natural frequency as a function of tip twist (modes 7 - 10).

4.1.3 Vibration of thick, swept plates: To validate the higher-order theory for thick plates

with sweep, the first eight nondimensionalized frequencies are calculated for several

different plate configurations. The plate geometry is shown in Fig. 4.8 and plates with two

different length-to-width ratios corresponding to a thick plate (a/b = 5) and a very thick

plate (a/b = 2) are investigated. In both cases, three different width-to-thickness ratios

(b/h-- 0.5, 1 and 2) are used. The results obtained using the present approach are

compared with two different numerical results which were presented by McGee and Leissa

[109]. The first set of results in Ref. 109 were obtained using a three-dimensional Ritz

solution in which a 6 x 4 x 4 (288 degrees of freedom) mesh was used to discretize the

displacement field. In addition, results were also obtained using NASTRAN solid

elements (CHEXA) for a mesh size of 14 x 14 x 3 (2520 degrees of freedom). It must be

noted that both of these results represent truly converged results. In the present approach,
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a meshsize of only 6 x 4 (269 degreesof freedom) is used which also represents

convergedresults. Graphicalresultsfor the thick plate (aft9= 5) with a unit width-to-

thicknessratio (b/h= 1)arepresentedin Figs.4.9 - 4.16. Theresultsfrom the otherfive

casesarepresentedin Tables.4.3 - 4.7.

T
2 a

Fig. 4.8 Definitions of swept plate.

The first natural frequency of the thick plate with unit width-to-height ratio is shown in

Fig. 4.9 from which several important observations are made. It is seen that increasing the

sweep angle will increase the natural frequency. Also, all three techniques are in excellent

agreement. The second natural frequency is presented in Fig. 4.10 and indicates that for

zero sweep angle all three approaches are in very good agreement. With increases in the

sweep angle, the natural frequency in case of the Ritz solution increases more rapidly than

the other two techniques. This due to the fact the stress free boundary conditions on the

edges of the plate are exactly satisfied in the Ritz solution. In both the NASTRAN results

and the present approach these boundary conditions are not satisfied. In cases of moderate
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sweep(upto 30°),thedifferencebetweenthepresentapproachandtheRitz solutionis less

than threepercent. However,despitethe fact that the NASTRAN solution involvesan

orderof magnitudeincreasein thetotaldegreesof freedom,thepresentapproachisabetter

approximationto theRitz solution.

Similar trendsareobservedin thehigher-ordermodes(Figs.4.11- 4.16). In particular

it observedthatin generalthenaturalfrequencyincreasesmoredramaticallywith sweepin

theRitz solutionthanwith the eithertheNASTRANresultsor thepresentapproach.In

somecases,thenaturalfrequencyis slightlyoverpredictedin thepresentapproachfor zero

sweep. However,in all casesasthesweepangleincreasestheresultsusingthepresent

approachareasgoodor arebetterthanNASTRAN despitethe fact that thenumberof

degreesof freedomusedinNASTRANis anorderof magnitudelargerthanthatusedin the

presentapproach. In addition to the resultspresentedin Figs. 4.9 - 4.16, the results

presentedin Tables4.3 - 4.7,for variousplatethicknessesandlength-to-widthratios,also

showsimilar trends. Fromall of theseresults,theadequacyof thehigher-ordertheoryto

modelvery thick, sweptplatesis demonstrated.
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Fig. 4.9 Comparison of the natural frequencies of the first mode for thick, swept plates.
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Table 4.3 Natural frequency parameters of thick, swept cantilevered plates;

afo = 0.5, b/h = 5

Sweep Angle

Analysis 0' 15° 30 ° 45°

Mode 1
Ritz 3.1227 3.2166 3.5501 4.1425

Present 3.1054 3.2161 3.5459 4.0818
NASTRAN 3.1238 3.2217 3.4885 3.8582

Mode 2
Ritz 4.2261 4.3542 5.0753 7.1414

Present 4.3052 4.4372 4.9293 6.2007
NASTRAN 4.2821 4.4073 4.9183 6.2958

Mode 3
Ritz 6.8552 7.2038 8.2730 10.2007

Present 6.8642 6.9203 6.9706 6.5989
NASTRAN 6.7974 6.8581 6.9365 6.6924

Mode 4
Ritz 8.0642 8.3654 9.3562 11.4351

Present 7.5768 7.7075 8.1924 9.4582
NASTRAN 7.3213 7.4760 8.0192 9.2653

Mode 5
Ritz 12.6494 12.5656 13.3447 16.6312

Present 12.5927 12.1570 11.6274 11.7331
NASTRAN 12.5705 12.0459 11.4246 11.5358

Mode 6
Ritz 12.9342 12.9723 14.7501 18.9970

Present 13.0389 13.1159 13.5085 15.1500
NASTRAN 12.9816 12.3409 12.7782 13.3430

Mode 7
Ritz 13.5239 14.3488 17.1083 22.5717

Present 13.3894 13.6536 14.4809 15.7681
NASTRAN 13.3094 13.1870 13.5041 14.2523

Mode 8
Ritz 13.9620 14.7390 17.7805 24.5030

Present 13.9822 14.1885 15.2488 16.4272
NASTRAN 14.4315 14.3078 15.1933 16.7757

Ritz solution 6 x 4 x 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA

values - 14 x 14 × 3 mesh.
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Table4.4 Naturalfrequencyparametersof thick, sweptcantileveredplates;
afo= 2, b/h = 5

SweepAngle
Analysis 0° 15° 30° 45°

Mode 1
Ritz 3.3397 3.3432 3.0183 2.9961

Present 3.4077 3.4750 3.6810 4.0514
NASTRAN 3.4114 3.5002 3.7805 4.3144

Mode 2
Ritz 12.4593 12.5382 12.7095 11.6690

Present 13.7012 13.9136 13.8973 12.8721
NASTRAN 13.2833 13.5085 13.8810 12.9673

Mode 3
Ritz 14.3907 14.4765 15.4606 16.0299

Present 14.4754 14.3496 14.6975 16.4236
NASTRAN 14.4521 14.3258 14.4257 16.6212

Mode 4
Ritz 19.5960 19.7466 20.6890 23.6116

Present 20.4807 21.2286 23.5735 28.1333
NASTRAN 20.3647 21.1291 23.4390 27.4966

Mode 5
Ritz 38.7711 37.5107 35.3326 35.659

Present 43.3142 42.6169 42.2367 44.2161

NASTRAN 41.9086 41.6010 42.1593 46.0781

Mode 6
Ritz 52.2825 49.9046 51.9786 64.1992

Present 52.2598 51.1111 49.4186 47.6519
NASTRAN 52.3346 50.6122 48.6333 47.2957

Mode7
Ritz 52.4692 50.3584 55.3036 68.8087

Present 54.4937 57.2897 59.9279 61.6180
NASTRAN 53.4834 55.9763 59.9545 62.1115

Mode8
Ritz 54.8140 54.0790 57.9550 71.5920

Present 55.8318 57.3844 64.8321 75.3250
NASTRAN 54.7376 56.9011 62.7143 72.3215

Ritz solution 6 x 4 x 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA

values - 14 x 14 x 3 mesh.
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Table4.5 Naturalfrequencyparametersof very thick,sweptcantileveredplates;
a/b= 1,b/h= 2

SweepAngle
Analysis tY 15° 30° 45°

Mode 1
Ritz 2.9463 3.0096 3.3164 3.8412

Present 2.9402 3.0113 3.2317 3.6310
NASTRAN 2.9397 3.0017 3.1809 3.4554

Mode 2
Ritz 4.4178 4.6232 4.6768 6.5555

Present 4.3996 4.4303 4.4928 4.4518
NASTRAN 4.3957 4.4244 4.4802 4.4421

Mode 3
Ritz 5.1815 5.3635 6.1756 7.6914

Present 5.4081 5.5332 5.9641 6.9015
NASTRAN 5.1470 5.2527 5.6351 6.4876

Mode 4
Ritz 10.5391 9.9399 11.3566 13.3667

Present 10.4674 10.3013 9.9520 9.5993
NASTRAN 10.5200 10.2640 9.8067 9.4300

Mode5
Ri_ 10.9792 10.645 13.5265 18.6951

Present 11.4304 11.6097 12.044 12.3342
NASTRAN 10.7864 10.8493 10.9455 10.8145

Mode 6
Ritz 11.7535 11.3436 13.5265 18.6951

Present 11.9244 12.1834 12.7421 13.0822
NASTRAN 11.6626 12.0043 12.6506 13.0694

Mode 7
Ritz 14.4674 12.5292 14.3425 18.9918

Present 15.0781 14.4062 14.3705 15.3392
NASTRAN 14.3273 13.7176 13.6732 14.0382

Mode 8
Ritz 16.1660 14.4180 15.9530 25.3940

Present 15.1308 16.3263 17.8745 18.7010
NASTRAN 14.4794 15.3277 16.5283 16.7953

Ritz solution 6 x 4 x 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA
values - 14 x 14 x 3 mesh.
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Table4.6 Naturalfrequencyparametersof very thick,sweptcantileveredplates;
a/b= 0.5,b/h = 2

SweepAngle
Analysis 0° 15° 30° 45"

Mode 1
Ritz 2.2304 2.2987 2.5790 3.1205

Present 2.2483 2.3041 2.4744 2.6396
NASTRAN 2.2375 2.2757 2.3791 2.5398

Mode 2
Ritz 2.7039 2.8662 3.3293 4.1110

Present 2.7457 2.7681 2.7883 2.7899
NASTRAN 2.6884 2.7535 2.7861 2.6920

Mode 3
Ritz 2.7577 2.8973 3.4345 4.8256

Present 2.7908 2.8774 3.1797 3.8379
NASTRAN 2.7289 2.7675 3.0452 3.4531

Mode 4
Ritz 4.7438 4.8997 5.3477 6.6697

Present 4.6172 4.6900 4.6509 4.6932

NASTRAN 4.2550 4.2921 4.3260 4.3008

Mode 5
Ritz 5.0722 5.0376 5.4416 6.8077

Present 5.0371 4.8628 4.9193 5.1200
NASTRAN 5.0096 4.8003 4.5566 4.5895

Mode 6
Ritz 5.5855 5.8947 6.6160 8.1640

Present 5.5929 5.6647 5.5440 5.9195
NASTRAN 5.5375 5.1834 5.0861 5.3187

Mode 7
Ritz 5.5932 5.9298 7.1205 9.7608

Present 5.6144 5.6754 6.0995 6.5709
NASTRAN 5.5698 5.8741 5.9334 5.4364

Mode 8
Ritz 5.8219 6.1000 7.3500 10.0930

Present 5.7794 5.9215 6.4047 6.9770
NASTRAN 5.7046 5.7498 6.1511 6.5378

Ritz solution 6 x 4 x 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA

values - 14 x 14 x 3 mesh.
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Table4.7 Naturalfrequencyparametersof verythick, sweptcantileveredplates;
afo= 2, b/h= 2

SweepAngle
Analysis 0° 15° 30° 45°

Mode 1
Ritz 3.2545 3.2823 3.2943 3.3134

Present 3.2684 3.3259 3.5032 3.8267
NASTRAN 3.2667 3.3220 3.4865 3.7563

Mode 2
Ritz 5.7869 5.8978 5.9928 6.6404

Present 5.7902 5.7398 5.5589 5.1488
NASTRAN 5.7970 5.7466 5.5692 5.2041

Mode3
Ritz 9.9090 9.8656 10.4693 11.0825

Present 10.5107 10.6933 11.3024 12.5047
NASTRAN 9.9270 10.0899 10.6543 11.8026

Mode4
Ritz 16.3311 16.3082 17.4151 19.7762

Present 16.8113 17.1731 18.2583 19.0607
NASTRAN 16.4537 16.7024 17.3983 18.3928

Mode 5
Ritz 20.9459 20.9449 21.8063 25.7577

Present 20.9039 20.4445 19.7675 20.0736
NASTRAN 20.9648 20.2626 19.4645 18.9263

Mode 6
Ritz 21.9266 23.563 25.7634 32.3171

Present 22.3327 22.9537 23.9712 24.6472
NASTRAN 21.8993 22.7818 24.0112 24.8581

Mode7
Ritz 29.5524 28.8472 30.5295 24.1152

Present 31.4764 31.2740 31.3982 33.0256
NASTRAN 29.5814 29.6120 30.1386 31.9981

Mode 8
Ritz 37.2420 30.8320 34.8060 45.4330

Present 39.2395 40.5095 43.6541 40.7105
NASTRAN 37.4149 38.1270 39.7678 41.1186

Ritz solution 6 x 4 x 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA

values - 14 x 14 x 3 mesh.
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4.2 Static Thin-Walled Beam Verification Study

To validate the developed procedure, correlations are made with available experimental

results on a thin-walled box beam [110] and a previously developed analytical model [59].

The analytical model developed in Ref. 59 is a one-dimensional thin-walled beam model,

based on the Classical Laminate Theory (CLT). In this approach, the out-of-plane warping

effects are determined using on a contour analysis. The details of the beams studied are

presented in Table 4.8. The cross ply and symmetric beams are all subjected to two

different loading conditions, a 1 lb. bending load at the tip and a 1 lb.-in, tip moment. The

anti-symmetric beams are subjected to a t lb. axial load at the tip and a 1 lb.-in, tip

moment.

4.2.1 Cross ply: The bending slope of the cross ply beam under a 1 lb. tip bending load is

presented in Fig. 4.17, which compares the experimental data [110], the results of the

quasi-analytical model [59] and the results from the present study. Further, results from a

beam finite element model reported in Ref. 59 are also presented. As mentioned in Ref.

59, this two-dimensional finite element technique is as accurate as a full three-dimensional

finite element model for the particular beams studied in that report. From Fig. 4.17, it is

seen that all three modeling techniques under predict the bending slope of the cross ply

beam. This can possibly be attributed to errors in the experimental results arising from

fiber alignment problems that are typically encountered during fabrication and curing of the

beam. A slight shift from the desired (0 ° and 90 °) ply orientations can introduce additional

coupling terms which will reduce bending stiffnesses, thereby increasing the bending

slope. Overall, there is still good correlation between all three modeling techniques in this

case. The twist angle of the cross ply beam due to a 1 lb.-in, tip moment is shown in Fig.

4.18. From the figure, excellent correlation is observed for both the quasi-analytical model

[59] and the present approach. To further investigate the possible coupling with slightly

shifted angle plies, the bending slope and elastic twist for the same loading conditions are
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calculatedfor a "cross ply" [6°/84°]3 beam. From the figures it is seenthat both the

bendingslope(Fig. 4.19)andthe elastictwist (Fig. 4.20)now correlateextremelywell

with theexperimentalresults.

Table4.8 Detailsof compositebeams59,1lO

Flanges Webs
Top Bottom Left Right

CrossPly [0°/90°]3 [0°/90°]3 [0°/90°]3 [0°/90°]3

Symmetric15° [15°]6 [15°]6 [15°/-15°]3 [15°/-15°]3

Symmetric30° [30°]6 [30°]6 [30°/-30°]3 [30°/-30°]3

Symmetric45°. [45°]6 [45°]6 [45%15°]3 [45°/-45°]3

Anti-symmetric15° [15°]6 [-15°]6 [15°]6 [-15°]6

Anti-symmetric30° [0°/30°]3 [0°/-30°]3 [0°/30°]3 [0°/-30°]3

Anti-symmetric45° [0°/45°]3 [0°/-45°]3 [0°/45°]3 [0°/-45°]3

Length = 30 in., width = 0.953 in., depth = 0.53 in., ply thickness = 0.005 in, number of plies = 6, wall
thickness = 0.030 in. Mechanical properties: EL = 20.59 × 106 p.s.i., ET = 1.42 × 106 p.s.i.,

GUT = 0.89 × 106 p.s.i., VET = 0.42. (Cross ply dimensions: width = 2.06 in., depth = 1.025 in.)
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Fig. 4.18 Twist angle of cross ply beam under 1 lb.-in, tip moment.
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4.2.2 Symmetric beams: The bending slope of the symmetric 15 ° beam under a 1 lb. tip

bending load is presented in Fig. 4.21 where good correlation is observed between both

modeling techniques. There are two sets of experimental data presented in this figure (as

well as in the following figures) due to the fact that two separate beams were tested in Ref.

110. The induced twist due to tip bending load is presented in Fig. 4.22, which shows that

the present approach slightly over predicts the twist angle at the tip compared to the quasi-

analytical model of Ref. 59. Overall, both models show good correlation with the

experimental data.
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Fig. 4.21 Bending slope of symmetric 15 ° beam under 1 lb. tip bending load.
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Fig. 4.22 Bending induced twist of symmetric 15 ° beam under 1 lb. tip bending load.
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Thebendingslopeof the symmetric30° beamis presentedin Fig. 4.23. This figure

alsoshowstheresultsfrom thebeamfiniteelementmethodpresentedin Ref.59. Fromthe

figure it is observedthat the quasi-analyticaltechniqueslightly underpredictsand the

presentapproachslightly overpredictsthebendingslope.Thebeamfinite elementmethod

[59] overpredictstheslopemoresignificantlythanthecurrentapproach.Onceagain,good

correlation exists betweenall techniques. The induced twist due to bending load is

presentedin Fig. 4.24. The quasi-analyticaltechniqueagainunderpredictstheresponse.

Theresultsfrom thepresentstudycorrelateextremelywell with theexperimentaldatain

this case.
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Fig. 4.23 Bending slope of 30 ° symmetric beam under 1 lb. tip bending load.
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Bending induced twist of 30 ° symmetric beam under 1 lb. tip bending load.

The results from the symmetric 45 ° beam subjected to a 1 lb. tip bending load are

presented in Figs. 4.25 and 4.26. As shown in Fig. 4.25, the bending slope is slightly

over predicted by the present model although the correlation with experimental data is still

very good. The quasi-analytical technique [59] also correlates well. In case of the induced

twist due to thc bending load, the trends are significantly different (Fig. 4.26). The quasi-

analytical method greatly under predicts the twist in this case while the present approach

correlates extremely well with the experimental data. Further, the results are in excellent

agreement _vith those predicted by the variational asymptotical approach (VABS) due to

Cesnik et al. [69]. The approach reduces the cross-sectional properties into one-

dimensional beam properties based on an expansion in terms of a small parameter which is

defined to be the beam height divided by the beam length. The theory also includes both

inplane and out-of-plane warping and is well suited for thin-walled box beams.



67

0.0750-
A Experimental

_0.0500

•_ 0.0250

0.0000

.... Quasi-Analytical

Present

0 10 20 30

Spanwise coordinate, x (in)

Fig. 4.25 Bending slope of [45°]6 thin-walled beam under 1 lb. bending load at tip.
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Fig. 4.26 Bending induced twist of [45°]6 thin-walled beam under 1 lb. bending load at

tip.

The results from the 1 lb.-in, tip moment loading case, for all three symmetric beams,

are presented in Figs. 4.27 and 4.28. Since the variation of the response is linear, only the

results at the mid span location (x/R = 0.5) are presented. From Fig. 4.27 it is seen that

there is scattered correlation with the experimental bending slope, but it must be noted that

the actual values of the slope are very small (on the order of 0.0005 rad). In case of the 15 °

symmetric beam, all three approaches over predict the slope when compared to the
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experimentalvalues. In caseof the symmetric30" beam,thepresentapproachand the

beam finite elementmethodagainover predictthe slope,whereasthe quasi-analytical

method[59] correlateswell with theexperimentaldata. Finally, in caseof the symmetric

45° beam,the quasi-analyticalmethodgreatlyunderpredictstheslopewhereasthebeam

finite elementmethodandthepresentapproachcorrelateverywell. Overall,however,all

threetechniquesshowgoodcorrelationwith theexperimentaldata,particularly whenthe

actualmagnitudeof the slopeis takeninto consideration.The comparisonsof the twist

anglesarepresentedin Fig. 4.28. In caseof thesymmetric15° beam,all threetechniques

slightly overpredictthetwist angle. However,in caseof thesymmetric30° beamandthe

symmetric45° beam,both the presentapproachandthe beamfinite elementmethod

correlateextremelywell with theexperimentaldatawhile the quasi-analyticaltechnique
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Fig. 4.27 Twist at x/R = 0.5 for 1 lb.-in, tip moment of symmetric beams.

significantly under predicts this behavior.
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Fig. 4.28
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By examining Figs. 4.17 - 4.28, it is observed that the quasi-analytical model of Ref.

59 correlates well with experimental data for the cross ply beam and the 15 ° symmetric

beam. In case of the 30 ° symmetric beam, the quasi-analytical model begins to under

predict the behavior. This is particularly evident in Fig. 4.22 which presents the induced

twist due to a 1 lb. tip bending load. The quasi-analytical method greatly under predicts the

behavior of the symmetric 45 ° beam in all cases studied with the exception of the bending

slope due to a 1 lb. tip bending load. It is also observed from these figures that although

the present approach slightly over predicts the beam behavior for lower ply angles, the

technique correlates very well with the experimental data in cases with larger ply

orientations. Further, in cases where the present approach does over predict the behavior

of the beam, compared to the experimental values, the beam finite element method [59]

exhibits similar trends (Figs. 4.17, 4.27 and 4.28).



70

4.2.3 Anti-symmetric beams: The results from the three anti-symmetric beams (Table 4.8)

are presented in Figs. 4.29 and 4.30. Since the response is linear, only the results at the

mid span location are presented. As in Figs. 4.27 and 4.28, the actual magnitude of the

twist angle, must be noted in these figures. The twist angle due to a 1 lb.-in, tip moment is

presented in Fig. 4.29. In case of the 15" anti-symmetric beam, the quasi-analytical model,

the beam finite element method and the present approach all correlate very well the

experimental data. For the other two anti-symmetric beams, all three approaches predict

very similar results, slightly under predicting the response compared to the experimental

results. Similar trends are observed in Fig. 4.30 which presents the twist angle for a 1 lb.

axial tip load. For the anti-symmetric 15 ° beam all three approaches slightly over predict

the twist. However, all three approaches predict the behavior very well for the anti-

symmetric 30 ° beam and the anti-symmetric 45 ° beam.

Overall, both the quasi-analytical model of Ref. 59 and the present approach correlate

well with the experimental data in case of the anti-symmetric beams. Both techniques

predict the same trends for all three beams. The present approach offers small

improvements over the quasi-analytical results for the anti-symmetric 15° beam.
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4.3 Static Thick-Walled Beams Results

To demonstrate the importance of including transverse shear effects in the beam

formulation, results are now presented for a series of thick-walled beams. Due to the lack

of available experimental data, only numerical results are presented. Two different

composite lay-ups are used which correspond to the symmetric 15 ° beam and the symmetric

45 ° beam (Table 4.8). The beams studied have a length-to-width ratio (L/c) of 2.5 and a

width-to-height ratio (c/d) of 2. Since the goal is to investigate the effects of thick-walled

beams, the wall thicknesses used in this study are 0.25 in. resulting in the values of the

width-to-thickness ratio, c/h = 8, in the horizontal walls and the height-to-thickness ratio,

d/h = 4, in the vertical walls. These two beam configurations are subjected to a 100 lb.

bending load at the tip as well as a 100 lb.-in, tip moment.

Figure 4.31 presents the elastic twist for the thick-walled 15 ° symmetric beam subjected

to a tip bending load. From the figure, it is observed that in addition to the fact that the

local twist in the four individual walls is nonlinear, the average twist in each of the four

walls is also nonlinear. This is different from the trends observed in case of the thin-walled

beams where the local twists in the individual walls are nearly identical. In general, the

local values of twist are very close to the average values which are presented in Fig. 4.27.

Thus the average twist is a good representation of the beam twist for thin-walled beams. In

the thick-walled case, however, the local twist differs significantly in the individual walls

and as a results it is difficult to designate a value of "beam twist" for the entire cross

section. Figure 4.31 also shows that the twist in the vertical walls are not equal to each

other, while the twist in the horizontal walls are equal. This is due to the fact that the ply

angles in the horizontal walls are all +15 ° (measured in the global, twisted coordinate

system) and the two opposite walls are therefore mirror images of each other in their local

coordinate systems. In the vertical walls, however, the stacking sequence in the opposite

walls differs by a sign change (e.g. +15 ° in the right wall and -y-15° in the left wall). This
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nonlineartrendis moreobservablein Figs.4.32and4.33whichpresentsthe inducedtwist

of the symmetric45° beamsubjectedto a tip bendingload. In addition to the results

obtainedusingthepresentapproach,resultsobtainedusingNASTRANarealsopresented.

The NASTRAN resultsareobtainedusing QUAD4 plateelementswhich areelements

basedonfirst-order sheardeformationtheory. FromFigs.4.32and4.33,goodcorrelation

is observedbetweenthe presentapproachand NASTRAN in eachof the walls. The

nonlinearbehaviorof theverticalwalls is moredominantin thiscase.The averagetwist

for both approachesis presentedin Fig. 4.34wherethe correlationis againnoted. In

general,NASTRAN slightly overpredictstheresultscomparedto thepresentapproach.

This is dueto thefact that only first-order sheardeformationeffectsareincludedin the

NASTRANelements(QUAD4)usedin this study.
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Fig. 4.31 Bending induced twist of thick-walled 15 ° beam under 100 lb. tip bending load.
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A more complete explanation why the twist varies in each of the individual walls is

presented in Figs. 4.35 - 4.37. Figure 4.35 shows the application of the tip bending load

to the individual walls of the beam. In Fig. 4.36, a schematic diagram of the resulting

displacements for unconnected walls (that is, individual plates) is shown where it is seen

that displacements in the horizontal walls are described by a translation and a rotation. This

is due to the fact that the plies in these walls are all of the same value (e.g. +45 ° ) and

therefore the laminate is unbalanced. Since both the vertical walls comprise balanced

laminates (e.g. +45°), there is no rotation in these walls and the displacement is purely

translational. From Fig. 4.36 it is seen that the rotational displacement of the horizontal

walls restricts the translational motion of the left vertical wall whereas the rotational motion

in the horizontal walls is complimentary to the translational motion of the right wall. As a

result, the horizontal walls become cambered which in turn induces large shearing stresses

in the vertical walls. This type of bending behavior is shown in Fig. 4.37 which presents
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themidplanedeformation(greatlymagnified)of thetip crosssectionfor the45° symmetric

beam subjectedto a tip bending load obtainedusing both the presentapproachand

NASTRAN. Bothtechniquesshowshearingof theverticalwallsandthecamberingof the

horizontalwalls. Carefulexaminationof Fig.4.37alsorevealsthatthewallsdonotremain

perpendicularto eachother (atthe comers)after deformationin caseof theNASTRAN

results. This is dueto the fact that no suchconstraintsareimposedin the NASTRAN

formulation. In thepresentformulation,constraintsare imposedon the rotationsat the

comersandthewallsdo remainperpendicularafterdeformation.Thisexplainsthe increase

in camberof the horizontalandthe decreasein thetransverseshearof the vertical walls

whencomparedto thepresentresults.
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Fig. 4.35 Schematic of load distribution under tip bending load.
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Fig. 4.36 Schematic of individual wall displacements under tip bending load.



... , _ Present

i, .-'" .... NASTRAN

,,

Fig. 4.37 Deformation of cross section at tip due to tip bending load; 45 ° beam.

77

The twist angle due to a 100 lb.-in, tip moment for the 15 ° symmetric, thick-walled

beam is presented in Fig. 4.38. Similar trends as those obtained with the tip bending load

are observed. In this case, however, the average twist of all four individual walls is very

nearly linear. In comparison, in case of the thin-walled, symmetric 15 ° beam, the twist

angle due to a 1 lb.-in, tip moment is linear in each of the four walls, except at the tip where

the values are slightly larger for the horizontal walls compared to the vertical walls. The

trends for the thick-walled beams are more observable in Figs. 4.39 and 4.40 which

presents the twist angles of the thick-walled 45 ° symmetric beam due to a 100 lb.-in, tip

moment for both the present approach. These figures also present the corresponding

NASTRAN results. A comparison of the average twist using both techniques is presented

in Fig. 4.41. Good correlation is observed from these figures. The small differences are

once again attributed to the fact that QUAD4 elements used in NASTRAN only includes

first-order shear deformation effects and the lack of constraints at the comer rotations in the

NASTRAN formulation.

The results presented above indicate the importance of including transverse shear

effects in the beam formulation. Further, the results also show that in general the twist of a

composite beam is a local quantity which can be defined only locally, at a point. The

definition of the twist at the centroid of a beam (or some other arbitrary point) is an

approximation which in case of thick-walled sections can be erroneous.
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Fig. 4.38 Twist of thick-walled 15 ° beam under 100 lb.-in, tip moment.
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4.4 Dynamic Results

In following sections, dynamic results for several different beam configurations are

presented, including both thin-walled and thick-walled beams. Due to the lack of

experimental data available, the results obtained using the present method are compared

with those obtained using NASTRAN. In case of the composite beams, QUAD4 elements

(first-order shear deformable) are used. In case of the thick-walled isotropic beam, both

CHEXA (solid elements) and QUAD4 elements are used.

4.4.1

using the present approach and NASTRAN.

nondimensionalized as follows

_ hL4
Li = i_ ,

D=E 1 h3/12(l-v122).

Thin-walled beams: The natural frequencies of the first several modes are calculated

These frequencies which are

(4.3)

(4.4)

are presented in Table 4.9. The beam bending and chordwise bending modes are denoted

'B' and 'C', respectively, the torsional modes are denoted 'T' and extension modes are

denoted 'E'. An element mesh size of 4 x 30 (each plate) is used in the present approach

and since the NASTRAN elements are linear, a mesh size of 12 x 30 is used in each plate.

From Table 4.9, very good correlation is observed between the predicted frequencies

obtained using the present approach and NASTRAN. In general, the natural frequencies

are slightly higher in case of the present model. This is once again due to the fact that a

third-order displacement field is used in the present approach and the NASTRAN elements

use only a first-order displacement field. Further, fairly significant differences observed in

the torsional frequencies, with the present model being more stiff torsionally. The higher

natural frequencies predicted by the present approach (compared NASTRAN results) is due

to the constraints imposed on the comer rotations which are not present in the NASTRAN
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formulation. It must also benotedthat thepresentapproachpredictsa purely inplane

warping mode which occursbeforethe fifth chordwisebendingmode andthe second

torsionalmode.Thismodeis notcapturedwith NASTRAN.

Table4.9 Naturalfrequenciesof symmetric,thin-walled45° beam

Modes

FrequencyParameter
Present NASTRAN

(4x10mesh) (QUAD4, 12x30mesh)

B1 27.57 27.05

C1 47.79 46.98

B2 172.32 169.12

C2 297.23 292.48

B3 480.13 472.39

C3 822.92 812.08

B4 930.75 921.98

T1 1458.03 1301.71

B5 1498.28 1514.79

C4 1581.34 1570.51

E1 1735.09 1718.58

Warp 2363.50 N.A.
C5 2553.36 2568.33
T2 3354.10 3388.66

To demonstratethe effect of inplaneand out-of-plane warping on beamdynamic

deformation,severalmodeshapesarepresentedfor the45° symmetriccompositebeam

studiedin Ref. 110. Due to the stackingsequenceof this compositebeam(Table 4.8),

flap-lagcouplingis absent.However,bothbending-torsioncouplingandextension-shear

couplingarepresent.Further,sincethebeamconsistsof only +45 ° plies, it is extremely

rigid in torsion and the first torsional natural frequency (cot1) is 52.8 times the fundamental

natural frequency (coo- 18.83 Hz). As a result, there is no warping, either inplane or



82

out-of-plane,in the first five beambendingmodes(0)b5= 54.3o)1)andin the first four

chordwise bending modes (0)c4.=57.40)o). To illustrate the lack of coupling and/or

warping in the first severalmodes,the fourth chordwisebending mode is shown in

Fig. 4.42. (In thesefiguresthedotsdenotethe originalundeformedshapeof thebeam.)

However, thereexistsa purely inplanewarping modewhich occursbefore the second

torsion mode (0)t2= 122COo).This mode,whosenatural frequencyis 85.7 times the

fundamentalfrequency,is illustratedin Fig.4.43. It mustbenotedthatthis warpingmode

is not predictedby NASTRAN. The lack of significant out-of-planewarping for this

compositebeamis dueto its thin-walledconstruction.Dueto theverythin walls,thebeam

bendingmotionis accountedfor bypurebendingin thehorizontalwalls andthechordwise

bendingmotion is accountedfor by pure bendingin the vertical walls. The bending

motionsaremuch larger thanany inplaneshearin thewalls andasa resultthereis very

little warping.
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Fig. 4.42 Fourth chordwise bending mode of [45°]6 thin-walled beam.
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Fig. 4.43 Inplane warping mode of [45°]6 thin-walled beam.

4.4.2 Pre-twisted thin-walled beams: In addition to the beams studied in Refs. 59 and

110, the frequencies and mode shapes are also presented for the symmetric, 45 ° beam with

a 30 ° twist from root to tip. Table 4.10 presents the nondimensionalized frequency

parameters obtained using both the present approach and NASTRAN. From the table it is

seen that there is good correlation between the two approaches, although the present

approach predicts slightly higher values in general. Similar trends as those of the untwisted

beam are noted in this case. The differences are once again attributed to the different

elements being used in the formulation. The current approach models the transverse strains

more accurately than NASTRAN and exactly satisfies the stress free boundary conditions

on the inner and outer surfaces of the beam. As is the case for the untwisted beam, a

purely inplane warping mode is predicted using the present approach. This mode which
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occurs before the second torsion mode (and fourth chordwise mode) is not predicted by

NASTRAN.

Interesting mode shapes for the pre-twisted beam are presented in Figs. 4.44 - 4.46.

Unlike the untwisted beam which displays very little coupling between bending modes, the

pre-twisted beam starts to exhibit coupling between beam bending and chordwise bending

as early as the first two modes (rob1 =mo and cocl = 1.56 too, mo= 20.5 Hz). This

coupling is more significant in the second bending modes which are presented in Fig. 4.44

(cob2 -- 5.79 coo) and Fig. 4.45 (coc2 - 9.54 coo) despite the fact that their natural

frequencies are not close to each other. Similar to the untwisted beam, a purely inplane

warping mode exists for the pre-twisted beam with a natural frequency of 77.4 times larger

than the fundamental frequency as shown in Fig. 4.46. This mode which occurs before the

second torsional frequency (cot2 = 109 coo) is again not captured by NASTRAN.
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Table4.10 Naturalfrequenciesof symmetric,thin-walled45° beamwith 30"pre-twist

Modes

FrequencyParameter
Present NASTRAN

(4x10mesh) (QUAD4,12x30mesh)

B1 30.60 27.10

C1 47.66 46.64

B2 177.17 170.72

C2 292.07 287.89
B3 485.96 479.92

C3 811.72 788.35

B4 941.58 948.29

T1 1410.57 1295.00

B5 1483.31 1457.52

C4 1595.27 1627.26

E1 1735.09 1719.61

Warp 2367.11 N.A.
C5 2731.88 2598.25
T2 3354.22 3341.20
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Fig. 4.44 Second beam bending mode of [45°]6 thin-walled, pre-twisted beam.
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Fig. 4.45 Second chordwise bending mode of [45°]6 thin-walled, pre-twisted beam.
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Fig. 4.46 Inplane warping mode of [45°]6 thin-walled, pre-twisted beam.

4.4.3 Thick-walled beams: In addition to the beams studied in Refs. 59 and 110, natural

frequencies and mode shapes are also presented for a thicker and shorter version of the

beam with two different sets of material properties. Complete details of the thick-walled

beams studied are listed in Table 4.11. The first set of material properties corresponds to

an isotropic beam. The second beam is made of orthotropic laminae with identical lay-up

and material properties as the symmetric 45 ° beam listed in Table 4.8.

Table 4.11 Details of moderately thick beam

Length = 10 in., width = 2 in., depth = 1 in.,

ply thickness = 0.0667 in., number of plies = 6,
total wall thickness = 0.4 in.

Isotropic material properties

E = 10 x 106 p.s.i., v = 0.3, p = 0.1 lbm/in 3
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The natural frequency parameters for both the present approach and for NASTRAN

results are presented in Table 4.12. Since this beam has thicker walls, solid elements

(CHEXA) are used to model the beam in NASTRAN. A 12 x 30 x 3 mesh is used for a

total of 17280 degrees of freedom. For comparison purposes, QUAD4 elements (12 x 30

mesh, 4320 degrees of freedom) are also used to calculate the frequencies. A 4 x 10

element mesh is used (1896 degrees of freedom) in the present approach. Good correlation

is again observed between the present approach and NASTRAN CHEXA results although

far fewer degrees of freedom are used in the present approach. The NASTRAN QUAD4

elements also correlate well with both the present approach and the solid (CHEXA)

elements. In general, the solid elements predict slightly higher values of the bending

frequencies and slightly lower values of the torsional and extensional frequencies when

compared to the other two techniques. The present approach predicts slightly higher values

compared to the QUAD4 elements. The differences in the torsional frequencies are again

caused by the lack of rotation constraints at the corners of the beam in both NASTRAN

results. For this beam, as was the case of thin-walled beams, the present approach does

predict warping modes which are not predicted by either of the NASTRAN formulations.

However, these modes occur only after the fifth torsional mode (T5) and as a result they

are not presented in Table 4.12.

In the isotropic beam case, it is seen from Fig. 4.47 that out-of-plane warping is

present as early as in the second chordwise bending mode (coc2 -- 10.5 coo, coo = 313 Hz).

This is due to the presence of inplane shear in the side walls. The third torsional mode

(cot3 = 34.8coo) is presented in Fig. 4.48. A careful examination of this figure shows a

small amount of both inplane and out-of-plane warping. This warping, which represents

somewhat of a three-dimensional camber, is greatest near the node points. The camber

effect is due to the shearing of the cross section.
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Table4.12 Naturalfrequenciesof thick-walledisotropicbeam

FrequencyParameter
NASTRAN

Modes Present (CHEXA,
(4x10mesh) 12x30x3mesh)

NASTRAN
(QUAD4,

12x30mesh)

B 1 8.27 8.57 8.24

C1 16.30 16.53 16.24

B2 46.41 49.28 46.28

T1 74.29 60.75 61.18

C2 86.73 88.21 86.23

B3 114.74 124.02 114.34

E1 130.22 126.56 130.04

T2 197.03 179.82 178.06

B4 205.08 208.83 196.04

C3 216.61 215.51 203.33

T3 288.08 292.11 279.82

B5 289.18 316.45 286.29

('4 299.52 345.00 334.98

E2 356.81 378.49 367.09

C5 432.30 488.40 472.97
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To investigate the effect of wall thickness on the warping of composite beams, natural

frequencies and mode shapes are calculated for a thicker and shorter composite beam with

cross-sectional dimensions that are approximately twice that of the symmetric 45 ° beam

originally studied in Ref. 110. The length of this beam is one-third the previous beam.

The laminate stacking sequence and material properties are identical to the previous beam

(see Tables 4.8 and 4.11).

The natural frequency comparisons between the present approach and NASTRAN are

presented in Table. 4.13 and show good correlation between the two techniques. It must

be noted that although this beam does represent a thick-walled beam, QUAD4 (plate)

elements are used. This is due to the fact that if solid elements (CHEXA) were used, each

unique lamina would require a separate element. For this simple beam, that would require

a discretization into 6 elements through the thickness of each wall. For more complex

beams, this number would increase making the approach computationally expensive. Also

numerical conditioning is an issue since very thin solid element do not behave very well

[105]. Similar trends as those obtained in the previous three beams are again observed in

this beam. In particular, the present approach predicts slightly higher natural frequencies

for the lower modes and slightly lower natural frequencies for the higher modes compared

to those predicted using NASTRAN. This is again due to the differences in the

displacement field and the constraints on the comer rotations.

As in the previous beam, for the first several modes there is no coupling between the

beam bending, the chordwise bending and the torsional modes. However, for this thicker

beam, a slight out-of-plane warping effect is observed in the first chordwise bending mode

(COCO, whose natural frequency is only 2.10 times larger than the fundamental frequency

(¢0o = 224 Hz). The second chordwise bending mode (mc2 = 13.5 ¢Oo) is shown in Fig.

4.49. A significant amount of out-of-plane warping is observed in this mode

predominantly due to the shearing in the upper and the lower walls. Figure 4.49 also
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showsthat this mode is uncoupled,althoughits natural frequencyis close to the first

torsionalmode(O_tl= 11.5COo).

Table4.13 Naturalfrequenciesof thick-walledsymmetric45° beam

Modes

FrequencyParameter
Present NASTRAN

(4x10mesh) (QUAD4, 12x30mesh)

B1 2.77 2.70

C1 5.82 5.72

B2 16.67 16.28

T1 31.76 30.25

C2 37.32 31.25

B3 43.85 43.08

E1 44.16 43.47

B4 78.42 77.27

C3 79.76 77.48

T2 96.48 82.70

B5 102.50 114.11

T3 115.14 117.63

E2 117.29 127.22

C4 125.29 132.64

T4 128.73 145.54
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Fig. 4.49 Second chordwise bending mode of [45°]6 thick-walled beam.

There is, however, a significant amount of coupling between the fourth beam bending

mode (03b4 = 28.3 03o) and the third chordwise bending mode (03c3 = 28.8 03o)- To

illustrate this coupling, the third chordwise bending mode is shown in Fig. 4.50. This

coupling, which is clearly due to the fact that their natural frequencies are very close,

causes a significant amount of both inplane and out-of-plane warping as depicted in Fig.

4.50. Unlike the second chordwise bending mode which remains uncoupled from the

nearby first torsion mode, the third chordwise bending mode is slightly coupled with the

second torsion mode (03t2 = 34.8 030) as well as with the fourth beam bending mode.
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Fig. 4.50 Third chordwise bending mode of [45°]6 thick-walled beam.

Finally, to illustrate the importance of including both inplane and out-of-plane warping

in the beam formulation, the second extensional mode (coe2 = 42.3 COo)is presented in Fig.

4.51. A significant amount of warping in observed in this mode which is slightly coupled

with the third torsion mode (COt3 = 41.6 COo) and is largely coupled with the fourth

chordwise bending mode (COc4 = 45.2 030). Unlike the previous modes which have

primarily linear warping, both the inplane and the out-of-plane warping in this mode are

nonlinear. Of particular interest is the "necking" effect observed near the cantilevered edge

shown the side view and the nonlinear out-of-plane cross-sectional camber which is

demonstrated in the top view. This three-dimensional warping is a result of the shearing

effects and are significant due to the thick-walled construction of the beam.
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Fig. 4.51 Second extensional mode of [45°]6 thick-wailed beam.



5. Aerodynamic Modeling

The aerodynamic formulation is based on the two-dimensional compressible

aerodynamic representation developed by Smith [111 ] and later modified by Talbot [112]

for the formulation of axial flow performance analysis. The modifications by Talbot

include an empirical correction to the two-dimensional stall behavior to represent the high

lift capability demonstrated by rotors and propellers. In the initial study performed by

Smith [111] an empirical fit was performed on NACA 63 and 64 series airfoil families in

order to supply a functional relationship between maximum lift coefficient and sectional

thickness and camber for incompressible flow. Detailed expressions for the coefficients of

lift, drag and pitching moment (Cl, Cd and Cm), which represent the high lift capability of

rotary wings in post stall angle of attack region, are found in Ref. 106. These functional

relationships were later modified by Talbot [112] to model the Advanced Tiltrotor Blades

(ATB) [113,114]. These relationships were then modified by McCarthy et al. [13] to

include blade sweep. A similar algorithm was proposed to model the post stall delay due to

rotation by Corrigan and Schillings [115]. In this study, the formulation is extended to

include blade dynamic effects. The coefficients of lift, drag and the pitching moment,

obtained using this analysis, are presented in Figs. 5.1 - 5.3 for a typical section of the

Advanced Technology Blade over a range of Mach numbers.

5.1 Aerodynamic Loads

The blade element theory used in the algorithm is due to Glauert [116]. In this

formulation, the sectional lift and drag are resolved into elemental thrust and torque for each

section of the blade. The force and momentum equations for thrust and torque assume the

following form.

dT 1 = 4rcrp(Voo + 13i)_0idr , (5.1)

= Z1pW2C(Cl cosA- c d sinA)dr, (5.2)dT 2
Z
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dQ 1 = 4gr29(V_ + _i)UTdr, (5.3)

de2 = lpw2c(cl sinA + Cd cosA)rdr, (5.4)

where dT, dQ and dr represent the section thrust, torque and element length, respectively,

V_ is the forward velocity, vi and Uwrepresent the inflow and swirl velocities, respectively

and W is the magnitude of the resultant velocity. The chord length and radial locations are

denoted c and r, respectively and p is the air density. The quantities Cl and Cd represent the

sectional coefficients of lift and drag, respectively.

Fig. 5.1
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Fig. 5.3
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The subscripts (1) and (2) in Eqns. 5.1 - 5.4 correspond to the momentum and force

equations, respectively, for thrust and torque. This system of equations is then used to

solve for the inflow and swirl velocities by equating the thrust and torque as follows

dT1 = dT2, (5.5)

dQl= dQ2. (5.6)

The total inflow angle of the blade section (A, in Eqns. 5.2 and 5.4) is defined as

A = Aa + As, (5.7)

where Aa is the angle of the aerodynamic inflow and As is the additional inflow angle

which arises due to the inclusion of blade dynamic effects (Fig. 5.4). The effective inflow

angle due to aerodynamics (Aa) is defined as

Aa = tan-l(Voo_+ x)i/ (5.8)_, t)r - u T '

where Voo is the forward velocity of the aircraft and fl is the rotational speed of the rotor.

v b

_b

Direction of advance

U T

....... Aa,:¸" aj ,v+ i--
Ws"-,_ b

Fig. 5.4 Blade element inflow definitions.
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To definetheeffectivestructuralinflow angle,As,it is first necessaryto translatethe

bladedynamicsfrom theglobal,untwistedcoordinatesystemto acoordinatesystemwhich

is parallel to the effective aerodynamicinflow angle(Fig. 5.5). This is mathematically

statedasfollows.

vb = _rbCOSAa+wbsinAa

Wb = - 9bsinAa+ VCbcosAa
(5.9)

where _b is thedynamicvelocityparallelto theaerodynamicinflow angleand wb is the

velocity perpendicularto the inflow angle. The quantities,_'b and Wb, representthe

dynamiceffectsperpendicularandparallelto thefreestreamvelocity,respectively.These

transversevelocitiesaredefinedas

Vb= _¢c°s(Ota)- _ sin(CZa)

Wb= _sin(CZa)+ qesin(O_a) - _)Yac"'

(5.10)

where Yac is the offset between the aerodynamic center of the blade and the axis of twist.

The physical angle of attack of the blade is denoted _a and the cross-sectional velocities

in the global, twisted coordinate system are v and _ (Fig. 5.5). The effective

aerodynamic inflow angle is defined as follows.

Voo + _oi
sin A a =

W

f2r - u T

c°sAa - W

(5.11)

W. / ] "_ , "'._....

D/I * ..>
axis of twist _ ,-i- =, "_"

Z, W

Fig. 5.5 Coordinate systems in blade cross section.
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where W is the total resultant velocity. Under the assumption that the velocities due to

airflow are much greater than those due to blade dynamics, the total resultant velocity is

written as

W _=_W a _--W s (5.12)

The effective structural inflow angle is then written as follows.

Z

A s = w___b-b
W

(5.13)

Using Eqns. 5.7 - 5.13, the total inflow angle is expressed as

i'b(Vo_ +_)i) *b(f_r-uT)
, (5.14)

A = A a - W2 W2

The effective angle of attack (cz) for the blade cross section is defined as follows

a = Ota+o-A, (5.15)

where c_a is the physical angle of attack of the blade and _ is the elastic twist due blade

deformation.,. [!sing Eqn. 5.14, the effective angle of attack is rewritten as

_rb(V,,_ + Ui) *b(ff2r- UT) (5.16)
= Cta-'\a + (_"_ W 2 W 2

Acrod> nanuc_ Elastic deformations

In the aboxc equation, the first two terms correspond to the purely aerodynamic effects and

the last three tcrm._ represent contributions due to blade elastic deformations. Note that the

steady statc anglc IC_ss) is written as

ass = c% - A a + 0. (5.17)

5.2 Energy Formulation

To evaluate the external work due to the aerodynamic loading it is first necessary to

write the equations for lift, drag and pitching moment, per unit area, as follows.
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I lpw2 ( _rb(V°° + X)i)@b(f2r- UT) / (5.18a)= Cla (_a - Aa + q_+ W 2 W 2

Vb(V-o+Ui) @b(_r-uT)_d = lpw2 Cdcc 0_a-A a +_+ W2 - -_ ) (5.18b)

1 ( Xrb(V"° + a)i) feb(_2r- UT)) (5.18C)m = pW 2 c Cma 0Ca -- A a + _ "_ Wi - W2

The coefficients (Cla, Cdc_ and Cmc_) are related to the derivatives of the lift, drag and

moment coefficients (Cl, Cd, Cm), respectively as follows.

0c---L1 (5.19a)
Clc_ = Cl° + _0_

0Cd (5.19b)
Cde_ =Cdo + _

3Cm (5.19C)
Cma = Cm° +" 0---_--

The external work done by the aerodynamic loads is then written as

We = I(-I w+d v+m ¢) dS

5

(5.20)

where 5 is the blade surface area and w, v and _) are the global, untwisted displacements.

From Eqns. 5.18, it must be noted that the aerodynamic forces and moments can be

separated into a steady aerodynamic term (Ota - Aa), a steady term dependent on the elastic

deflection (_) and a term associated with blade dynamics (_?b and feb). Define the

following parameters

1 pW2(Cl c°S°Ca + Cd sinaa) 'L00 = --_
(5.21a)

D_ = lpw2(-Cl sinOCa + c d cosO_a),
(5.21a)

•
M_b = 9W 2 c cm - LcYac, (5.21a)



and

L_oa= -lpw2(cla cos(z a + Cda sinaa ),

Dca = lpw2(-Cla sinC_a + Cda COSaa ),

Mca = 1 9W 2 c Cma -L¢a Yac"
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(5.22a)

(5.22a)

(5.22a)

Also, it must be noted that at the outer surfaces of the beam (_i = +h/2) the rotation about

the ;(-axis is defined as

(_ = 01] _=h/2 0rl _!

Using Eqns. 5.10 and 5.18, the external work due to steady aerodynamic terms (Wea) and

that due to static deflections (Wes) can now be expressed as follows.

5

0_'_+D*__ V+M*_0nWes = Lea Oq
d5. (5.25)

The external work due to the dynamics loads (Wed) is written using Eqns. 5.10, 5.18, 5.20

and 5.23 as follows.

1 (_rsin o_+ _coso_) + Cda (_¢cos[z_ _sinot) + c Cma
We d = -_ P Cla

5 (5.26)

_0_ _r_ ua-

Using the variational principles, the external work functionals are written as follows.

_Wea = _ (O_a_ Aa)I{L¢ - 0-_ (M¢)}Sq¢ + D¢8_,ld5, (5.27)

5



0rl _ ,_ 0rl 2 M_c _ 8@ d5,

0awi{} wed bw= - w 0 8"7v d5

bw Cw
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(5.28)

(5.29)

where

1

a w = -_p [Clc_(V_, + a)i)+ Cda (_'2r - UT) ]

b W

1

: 2 9 Yac[Clc_SinOtb +Cde_COS_b](_r-uT)

1 V i ) cosO_ b -(ar - u T)sin _b ]+ --p c Cmc_[(V_ +
'3

C W = O Yac[Clc_ COSO_b-Cd_ sinlxb](f_r--uT)

- pc Cmu[(V_ +a3i)sino % +(f_r-uT)cos%]

(5.30a)

(5.30b)

(5.30c)

5.3 Solution Procedure

Equation,. 5.27 - 5.29 indicate that the external work from the aerodynamic loads will

yield thrcc separate equations. The first terms are associated with a steady state forcing

vector independent of the displacements, Faero (Eqn. 5.27). There are forcing terms that

are dependent on the displacements (Eqn. 5.28) which will yield a matrix analogous to the

stiffness mamx t Kaero). Finally, there are forcing terms that are dependent on the velocity

of the displacements (Eqn. 5.29) yielding a damping matrix (Caero).

Denoting the following matrices

l_l- a[_ _]T (5.31)

aq '

and
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Sn:@ % ,_ %]T (5.32)
_q

where q is the degree of freedom vector defined in Chapter 3, the quantities associated with

the external work due to aerodynamic loads are formulated as follows.

(5.33)

(5.34)

and

Eo 1Caero = 1_T 0 -a w iqrl d5
a w b w 0 c w

(5.35)

where

D,_ - D,_n *_-VJ] (5.37)
Q1 = 0q

The complete aerodynamic/dynamic/structural equations of motion for the coupled system

are now written in the following matrix form

M q + C 4 + K q = F + (Faero + Kaero q + Caero cl), (5.38)

where the quantities within the parentheses correspond to the external work due to

aerodynamic loading and the remaining terms are associated with the structural modeling of

the beam (Eqn. 3.72)
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completecoupledequationsof motionmustbe determined.

Eqn.5.38,theequationmayberewrittenasfollows.

M ci + (C- Caero) Cl + (K- Kaero) q = F + Faero

The homogeneous portion of Eqn. 5.39 can be rewritten as

1_ ii + C/1 + I_ q = 0,

where
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Aeroelastic Stability

To investigate the aeroelastic stability of the rotor, the natural frequencies of the

By rearranging the terms in

(5.39)

(5.40)

1VI = M, (5.41)

= (C_ Caero) ' (5.42)

: (K- Kaero ). (5.43)

It is possible to rewrite Eqn. 5.40, which is a second order equation, as a first order

equation by making the following transformation

{8} = {_}. (5.44)

Now Eqn. 5.40 is written as

{8} = A {8} (5.45)

where

A

0 I
(5.46)

The characteristic roots of Eqn. 5.40 are now determined by solving for the eigenvalues

of A. It must be noted that the matrix A is neither positive definite, nor symmetric in
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generaland asa result, the eigenvaluesarecomplex. If anyof the roots of A have a

positiverealcomponent,thesystemwill beunstableatthegivenvelocity.

5.5 Correlation

The adequacy of this aerodynamic representation is demonstrated in Figs. 5.6 and 5.7.

This relatively simplistic formulation is shown to correlate very well with measured axial

flow performance of the XV-15 rotor system in both hover and in airplane mode from tests

conducted at the Outdoor Aerodynamic Research Facility (O.A.R.F.) and from flight test

data obtained at NASA Ames Research Center [ 113,114]. This representation of the rotor,

which is representative of the original design point of the XV-15 tiltrotor, is used as the

baseline, or reference, rotor in this study. Further, as shown in Ref. 13 the results

obtained using this approach are comparable with those obtained by Dadone et al. [5] in

which a more comprehensive Euler based analysis technique was used. Therefore, despite

the relative simplicity, the present approach proves to be quite adequate for modeling prop-

rotor blade aerodynamics.
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6. Optimization Problem

The structural, dynamic, aerodynamic and aeroelastic analysis procedures developed

are now integrated to develop a multidisciplinary optimization procedure for investigating

the design trade-offs of high speed prop-rotors. The reference aircraft, used as a baseline

design in the optimization procedure, is a mathematical representation of the XV- 15 tilting

proprotor aircraft. The rotor is a three-bladed, gimballed rotor with a 25 foot diameter

[113,114]. A multipoint optimization procedure is developed and design criteria associated

with two flight conditions are addresses simultaneously. The first flight condition

corresponds to hover at sea level and the second flight condition represents high speed

cruise at an altitude of 25,000 feet and a forward speed of 400 knots. This altitude is

typical for tiltrotors operating in high speed cruise.

6.1 Rotor Geometric Modeling

The rotor planform characteristics are defined as follows. The chord (c) and pre-twist

angle (0) are defined to have the following cubic spanwise distributions

c(x) = c o +ClX+C2 _2 +c3 N3,

0(N) = 01(N - 0.75) + 02(_ - 0.75) 2 + 03(g - 0.75) 3,

(6.1)

(6.2)

where _ is the nondimensional radial location (g = x/R, R = blade radius). These cubic

distributions are selected to give the optimizer sufficient flexibility since the parameters

which define these distributions are used as design variables. The offset in the twist

distribution (_ - 0.75) is used to ensure zero twist at 75 percent span [117]. The blade

thickness-to-chord ratio (t/c) is defined to have a quadratic spanwise distribution to ensure a

monotonic decrease in the thickness from root to tip. This distribution is defined as

follows

t/c(g) = t o + tlX + t2 _2. (6.3)
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Similarly, the blade is defined to have a quadratic lifting line offset as follows

= 1 ao_2" (6.4)Yac (_)

The above distribution is chosen to ensure zero offset at the root as well as zero sweep.

The blade sweep (A) is defined as follows.

tan /
or

= tan -l(a o x) (6.6)

6.2 Structural Model

The box beam dimensions are assumed to be fixed percentages of the chord length and

airfoil thickness as seen in Fig. 6.1. For the present study, the axis of twist (and rotation)

is assumed to lie at the centroid of the beam. Further, the beam centroid is assumed to be at

the 50 percent chord location.

T
t(x) d(x)

b(x) = O.SOc(x)

d(x) = 0.80 t(x)

c(x)

b(x)

::::::::::::::::::::

Fig. 6.1 Blade cross section and beam dimensions.
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The two horizontal walls of the box beam are assumed to have identical composite

11isuse durio opti zationlay-ups. A stacking sequence of 131)3/(92)3 3 s

Similarly, the two vertical walls are assumed to have the same lay-ups defined as

[{(_3)3/([_4)3}3Js. A total number of 36 plies is used to ensure that the blade is stiff

enough to sustain the large aerodynamic loads generated by the rotor. The angle ply

stacking sequence is selected to investigate the effects of composite ply angles on the

overall aerodynamic/stmctural/aeroelastic performance of the rotor.

6.3 Objective Functions and Constraints

The optimization problem addresses the simultaneous maximization of both the hover

Thesefigure of merit (FM) and the propulsive efficiency in high speed cruise (Zlc).

quantities are defined as follows.

Pideal (6.7)
FM= -_

TV_ (6.8)
qc- p

The following constraints are imposed to ensure efficient structural and aerodynamic

performance. To maintain blade aeroelastic stability, constraints are imposed on the real

part of the stability roots determined from Eqn. 5.39

_,k -> -(B k = 1, 2, ---, NAERO (6.9)

where N is the minimum allowable damping, defined to be a small positive number and

NAERO is the number of modes considered.

To prevent material failure, constraints are imposed on the individual ply stresses based

on the Tsai-Wu failure criterion [118]. This criterion assumes that to avoid material failure

the following equations representing a failure surface in the stress-space must be satisfied.

FicY i + Fij(Yicy j _< 1 (i, j = 1, 2, ..., 6) (6.10)
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where cYirepresents the stresses in the coordinate system defined by the material axes (see

Fig. 6.2). The quantities Fi and Fij are related to tensile and compressive yield strengths of

the material and are defined as follows.

Fi

1 1

XT XC
1 1

YT YC
1 1

YT YC
0

0

0

(6.11)

XTX C
F12

1

YTYc

sym.

F12

1

YTYc

0

0

0

2 1/Y Yc

0

0

0

0

0

0 0

1

7 o
1

S2

(6.12)

where the quantities X, Y are the yield strengths in both compression (subscript 'C') and

tension (subscript 'T') and S is the corresponding shear strength. The quantities F12 and

F23 are defined as

t ._-7F22 (6.13)
F12 - 2

1

F23 - 2 F22 (6.14)

This reduces the total number of constraints as constraints on the individual stress (cYi) at

each ply level are avoided.



113

%
1 (Yl

Fig. 6.2 Composite lamina material axes.

To maintain rotor thrust at acceptable values during optimization, equality constraints

are imposed on the thrust in hover and in cruise. These constraints assume the following

form.

Th = Thref

Tc = Tcref

(6.14)

(6.15)

6.4 Design Variables

The design variables that are used during the optimization include the coefficients which

define the spanwise chord and twist distributions (co - c3 and 01 - 03, respectively), the

thickness-to-chord ratio (to - t2) and the blade sweep (ao). The variables which define the

composite lay-up in the individual walls (151 - 154) are also used as design variables. It must

be noted that to ensure realistic blade chord and wing thickness distributions (i.e., positive

throughout the span), it is necessary to further impose additional geometric constraints on

these distributions. The minimum allowable nondimensional chord value (c/R) is

constrained to be 0.02 and the minimum allowable thickness (t) is constrained to be 0.75

in. Although, the minimum allowable chord values are far too small at the root, due to

constraints on the stresses these chord distribution is never near critical values except at

locations near the tip.



7. Optimization Procedure

The optimization problem addressed in this research is associated with multidisciplinary

coupling and involves multiple design objectives and constraints. The Kreisselmeier-

Steinhauser (K-S) function technique [119] is used to efficiently integrate all of the

objective functions and constraints into a single envelop function. The problem is thus

reduced to an unconstrained optimization problem. The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [120] is used to solve the unconstrained nonlinear problem

(NLP). A hybrid approximate analysis technique based on a two-point exponential

expansion technique [121] is coupled with the optimization procedure to reduce the

computational effort. The following sections contain details of the optimization procedure.

7.1 Kreisselmeier-Steinhauser (K-S) Function Approach

Since the optimization problem involves more than one design objective, the objective

function formulation is more complicated. In most of the existing work, the individual

objective functions are combined using weight factors in a linear fashion [43,44,122].

Such methods are judgmental as the answer depends upon the weight factors which are

often hard to justify. Therefore, the problem is formulated using the Kreisselmeier-

Steinhauser (K-S) function approach [119]. Using this function the multiple objective

functions and constraints are transformed into a single envelope function which is then

minimized using unconstrained optimization techniques. The K-S function has been found

to perform extremely well by McCarthy et al. in a variety of rotary wing optimization

problems [9,12-16].

The first step in the K-S function approach involves the transformation of the original

objective functions into reduced objective functions. If the individual objective functions

are to be minimized, these reduced objective functions assume the following form

* Fk(_P) 1.0 - gmax -< 0. k = 1, ..., NOBJmin (7.1a)
Fk((I))- Fko
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When the individual objective functions are to be maximized, the reducedobjective

functionsareasfollows

• Fk(O)
Fk(_) = 1.0- gmax < 0, k = 1, ..-, NOBJmax (7.1b)

Fko

where Fko represents the value of the original objective function Fk calculated at the

beginning of each cycle and • is the design variable vector. The quantity gmax is the value

of the largest constraint corresponding to the original constraint vector, gj(qb)

(j = 1, 2, .-. , NC) and is held constant during each cycle. These reduced objective

functions are analogous to constraints, therefore a new constraint vector fro(O)

(m = 1, 2..-.. M where M = NC + NOB J) is introduced which includes the original

constraints and the constraints introduced through the reduced objective functions (Eqns.

7.1). The design variable vector in this formulation remains unchanged. The new

objective function to be minimized is defined using the K-S function as follows

M
1, _ _(fm(_b)-fmax)

FKS(O) = fmax + _lOge 2..., e , (7.2)
m=l

where fmax _" the largest constraint corresponding to the new constraint vector fm(_) and

in general is not equal to gmax- The objective function FKS(_), which represents an

envelope function representing the original objective functions and constraints, can now be

minimizcd u_m_z any unconstrained optimization technique.

The opumization algorithm, based upon this technique, can be explained as follows.

Initially in an infeasible design space, where the original constraints are violated, the

constraints due to the reduced objective functions (Eqns. 7.1) are satisfied, i.e. gmax is

negative. Once the original constraints are satisfied, the constraints due to the reduced

objective functions become violated. When this happens, the optimizer attempts to satisfy

these constraints and in doing so, minimizes (or maximizes) the original objective functions

(Fk). The multiplier _) in Eqn. 7.2 is analogous to a draw-down factor where _ controls
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thedistancefrom the surfaceof theK-S objectivefunctionto the surfaceof themaximum

constraintfunction. When_ is large,theK-S functionclosely follows thesurfaceof the

largestconstraintfunction andwhen _ is small, the K-S function includescontributions

from all violatedconstraints.Additionaldetailscanbefoundin Refs.93,94,97-101.

The K-S function formulation is illustrated for a problemwhere a single objective

functionis to bemaximizedsubjectto two constraintsusingonedesignvariable(Figs.7.1

and7.2). An initial designpoint of X = 7 is usedin theexample. At this point, both

constraintsaresatisfiedandgmaxis thereforenegative.As aresult,thereducedobjective

functionis positive andtheconstraintintroducedthroughEqn.7.lb is violated (Fig. 7.1).

Thethreeconstraintsof theproblemintroducedby theoriginalconstraintsandthereduced

objectivefunction areshownin Fig. 7.2 alongwith theassociatedK-S function for three

different valuesof _. As seenfrom the figure, for a valueof _ =1, the K-S function

representsamorecompositeenvelopefunctionwhich includescontributionsfrom all three

constraints. This is especiallyevident at locations wherethe valuesof two or more

constraintsarevery similar. For the largervaluesof _ -- 3 and _ - 5, the K-S function

envelopemorecloselyrepresentsonly the largestconstraintevenat locationswherethe

constraintsaresimilar in value. Thissimpleexampledemonstrateshow largervaluesof

"draw down" theK-S functioncloserto thevalueof thelargestconstraint.

The K-S function (Fig. 7.2) is minimized using standardnonlinear,unconstrained

optimization techniques.Oncea local minima is reached,a new cyclebeginswith the

calculationof anewvalueof gmaxandthereformulationof thereducedobjectivefunctions

andtheK-S function. Theprocessis repeateduntil eithertheoriginal objectivefunctions

or thedesignvariablevectorconverges.Notethatit ispermissibleto allow thevalueof

to changefrom cycleto cycle. This is typicallydoneis amonotonicallyincreasingmanner

so that asthe optimizationproceeds,the K-S function moreclosely representsonly the

largestconstraint(or thereducedobjectivefunction).
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7.2 Approximate Analysis

The two-point exponential approximation technique [121], which was found to perform

well in other nonlinear optimization problems [8-12, 14-16], is used for the approximation

of the objective functions and the constraints. This technique derives its name from the fact

that the exponent used in the expansion is based upon gradient information from the

previous and current design cycles. The technique is described below.

I/(I)n/pnL\ (I)on) I t_°n _Fk (alp°)l_k(qb) = Fk(qbo)+ [[ -1.0 Pn O(I)n (7.3)

n=l

where i_k(qb) is the approximation of the original objective function Fk(qbo). The

approximate values for the constraints, _j(qb), are similarly calculated. The exponent, Pn,

is defined below

l°ge _n J l°ge_" _--_--n-nJ_
Pn = I--1.0 (7.4)

loge{qbln }- lOge{qbOn }

where the quantity qb1 refers to the design variable vector from the previous iteration and

the quantity @o denotes the current design vector. A similar expression is derived for the

constraint vector. The exponent Pn can be considered as a "goodness of fit" parameter,

which explicitly determines the trade-offs between traditional and reciprocal Taylor series

based expansions. Therefore, the procedure can also be regarded as a hybrid

approximation technique. It can be seen from Eqn. 7.3 that in the limiting case of Pn = 1,

the expansion is identical to the traditional first order Taylor series and when Pn = -1, the

two-point exponential approximation reduces to the reciprocal expansion form. The

exponent is then defined to lie within this interval. Therefore, if the exponent Pn > 1, it is

set identically equal to one and if Pn < -1, it is set equal to -1. From Eqns. 7.3 and 7.4, it

is obvious that many singularity points exist in the use of this method. Therefore, care



must be taken to avoid suchpoints. In the present

approximationisusedat suchsingularpoints.
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study, the linear Taylor series

To ensurethevalidity of theapproximationit isnecessaryto imposebounds,or "move

limits" on thedesignvariablesduringtheoptimizationsothatthedesignpoint remainsin

theneighborhoodof theoriginalpoint. Thesemovelimits representapercentchange from

the original design variable. The move limits in this study are calculated based on a

variable scheme developed by Thomas et al. [123]. This algorithm adjusts the values of the

move limits based on changes in the maximum violated constraint and also by tracking the

individual move limits to see whether they reach the same upper or lower limit over three

consecutive evaluations. Another important aspect of the scheme developed in Ref. 123 is

the ability to allow design variables to cross over between negative and positive values.

Details of move limit approach are presented in Ref. 123.



8. Optimization Results

The reference rotor used is representation of the XV- 15 proprotor which is an advanced

three-bladed gimballed rotor [113,114]. The aerodynamic optimization is performed at a

cruise altitude of 25,000 feet and a forward velocity of 400 knots with a rotational speed of

421 RPM. A vehicle weight of 13,000 lbs and aircraft lift to drag ratio (L/D) of 8.4 is

assumed. Therefore, the thrust in cruise is constrained to be at 774 lbs for the two engine

aircraft. In hover, the aircraft is assumed to be operating at sea level conditions with a

rotational speed of 570 RPM and a 12 percent down load effect from the rotor/wing

interaction. The thrust in hover is therefore constrained to be at 7280 lbs. The blade is

discretized into 10 aerodynamic segments (11 node points) and the composite box beam is

similarly discretized into 10 spanwise elements and 1 chordwise element for a total of 564

degrees of freedom. The composite material used in the structural analysis is carbon-PEEK

AS4/APC2 [124] and the material properties are presented in Table 8.1. A total of 15

design variables are used during the optimization. The optimum design converges in 35

cycles and the results are presented in Table 8.2 and Figs. 8.1 - 8.6.

Table 8.1 Summary of beam material properties

E1 = 19.4 x 106 p.s.i., E; = 1.29 x 106 p.s.i.,

G12 = 0.740 x 106 p.s.i., G13 = 0.500 × 106 p.s.i.,

g12 = 0.28, p = 1.80 x 10 -3 slug/in 3

ply thickness = 0.001 in.

Ultimate Strengths

X T = 309 x 103 p.s.i., X C = 160 x 103 p.s.i.,

yT = 11.6 x 10 3 p.s.i., yc = 29.0 x 103 p.s.i.,

S = 23.2 x 103 p.s.i.
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FromTable8.2andFig. 8.1 it is seenthatthehoverfigureof merit (FM) increasesby

3.6percentandthehighspeedcruisepropulsiveefficiency(rlax)is significantlyimproved

(55percent).It mustbenoted,however,thatthebaselinerotorwasoriginally designedfor

operation at 300 knots and thereforehas a poor cruiseefficiency (flax = 0.49)at the

optimizationdesignspeedof 400knots. As aresult,the improvementin Tlaxismuchmore

significantcomparedto the increasein thehoverfigure of merit which hasa fairly high

valueinitially. A completeunderstandingof theaerodynamicimprovementsis obtainedby

examiningthedesignvariabletrends.

Table8.2 Comparisonof optimumresults

Reference Optimum

Objective Functions
FM 0.7691 0.7974

flax 0.4856 0.7502

Design Variables
Co 0.1094 0.1050

Cl -0.09256 -0.09760

c2 0.1575 0.1630

c3 -0.08176 -0.07630

01 (rad.) -0.3455 -0.3443

02 (rad.) 0.7693 0.5817

03 (rad.) -0.1461 -0.1057

to 0.3155 0.2167

tl -0.3193 -0.2370

t2 0.07517 0.09128

ao 0.000 -0.05615

_1 (deg.) 0.0 0.0

132 (deg.) 0.0 0.5

133 (deg.) 0.0 - 1.7

134 (deg.) 0.0 -1.5
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Fig. 8.1 Comparison of optimum results.

55%

The optimum chord distribution is presented in Fig. 8.2 and shows that the chord

distribution over the majority of the blade span is reduced from the baseline values. At the

tip, hov, ever. the chord is actually increased. It is important to note that although the area

weighted ._ollditv IC_A)is slightly decreased from the reference value (2.8 percent), both the

thrust weighted solidity (efT) and the power weight solidity (Cyp)are not decreased as much

(2.3 percent and 1.8 percent, respectively) as shown in Fig. 8.3. The solidity ratios are

defined as follows.

b gi
(Yi = --, i = A, T or P, (8.1)

rcR

where
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1

c_ d_

0
1

_ d_

0

(8.2)

CT m

1

c_ 2 d2

0
1

N2 dg

0

(8.3)

1

cx 3 d2

0
1

_3 d_

0

(8.4)

In the above equations, c is blade chord and _ is the nondimensional radius. The reason

for the reduced chord near the root is due to the fact that in the reference blade this section

produces a significant amount of drag in cruise (Fig. 8.4) without generating any

significant lift (Fig. 8.5). After optimization, it is seen that the drag is significantly reduced

in this region whereas the lift is only slightly affected. In hover, the root section generates

very little lift and drag (Figs. 8.6 and 8.7, respectively) therefore the root chord is reduced

only due to constraints on the stresses. In the absence of the stress constraints, it is likely

that the root chord would be reduced to smaller values. As a result, the optimizer reduces

the chord throughout the blade span, except near the tip. It is interesting to note, that in the

optimum configuration, there is an increase in the chord values from about midspan

towards the tip, resulting in a slight inverse taper. This is due to the fact that this outboard

section represents the working section of the blade. In both hover and in cruise, the

majority of the lift is produced by the outer 25 percent of the blade. By increasing the
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chord in this region of the blade, the optimizer is redistributing the load to a region which is

beneficial to both flight conditions.
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Fig. 8.3 Comparison of rotor solidity.
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Theoptimumandthereferencebladethicknessdistributionsarepresentedin Fig. 8.8.

From the figure it is seenthe blade thicknessis reducedfrom the referencevalues

throughouttheentirespan,exceptatthetip. Onereasonfor thisreductionis to reducethe

profile dragof thebladeby reducingthethickness.Reductionsin theprofile drag,in turn

improvestheaerodynamicperformance.A secondreasonfor thisreductionis to increase

thedragdivergenceMachnumber(Mdd).ThisMachnumberis definedasthepoint where

afurther increasein Machnumberwill resultin asharpincreasein thedrag [111]. In the

referencebladethelocalMachnumbersnearthetip in cruiseareverynearMdd. Through

reductionsin thebladethicknessdistributions,theoptimizerincreasesMddthroughoutthe

bladeand asa result thedrag is reducedimproving the performanceof the rotor. The

constraintsimposedon thebladethicknessatthetip preventtheoptimizer from reducing

thetip thicknessbelowthereferencevalue. Near the tip, these constraints become active

and as a result no further reductions in blade thickness are obtained in this region.

Reference

Optimum

0 0.2 0.4 0.6 0.8

Nondimensional radial location, x/R

Fig. 8.8 Comparison of thickness-to-chord distributions.
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Figure8.9presentsthetwist distributionsof both thereferenceandtheoptimumrotors

where it is seenthatthe twist is reducedfrom root to aboutmidspanof therotor. These

reductionsaredueto thefact that theoptimizeris attemptingto unloadthis sectionof the

bladesincethedragin thecruiseconditionis very highfor thereferenceblade(Fig. 8.4).

The effectiveangleof attackis lower asa result of thereductionin bladetwist andthis

resultsin reductionsin bothlift anddragin theregion. This is againdueto thefactthatthe

optimizer is redistributingthe lift outboardtowardsthetip to improvethe performance.

Nearthetip, thetwist distributionsareverysimilar.

Reference

Optimum

0 0.2 0.4 0.6 0.8

Nondimensional radial location, x/R

Fig. 8.9 Comparison of twist distributions.

The lifting line offset (Yac) and the resulting sweep distribution (A) are presented in

Figs. 8.10 and 8.11. These figures indicate that very little sweep is introduced after

optimization and that the blade is swept forward. This can be explained as follows. The

introduction of sweep reduces the effective Mach number which in turn improves the

performance of the high speed cruise propulsive efficiency. However, only a slight
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amount of sweepis introduced(about 3 degreesat the tip) andthe reductionsin the

effectiveMachnumbersarenotsignificant. This is dueto thefact thatin cruisethereis a

largenosedownmomentthroughoutthebladespan. Thesemomentsarelargerthan the

correspondingmomentsintroducedthroughthe lifting distributionand theoffset of the

aerodynamiccenterfrom theaxisof twist. As a result,thebladetwists down in cruise.

However,in hover,themomentsdueto thelifting distributionandtheaerodynamicoffset

are much larger than the correspondingmomentsdue to the aerodynamicpitching

moments.Thereforethebladetwistsbackward(noseup) in hover.By sweepingtheblade

slightly forward, the offsetbetweenthe lift and the axis of twist is increasedand this

reducesthe amountof negativetwist in cruisewhich in turn improvestheperformance.

However,theforwardsweepincreasestheamountof positivetwistin hoverandasaresult

only a slight amount of twist can be allowed without adverselyaffecting the hover

performance.Further,asignificantamountof sweepwould increasethebendingmoments

which would resultin increasedbladestresses.

-1--

= 05

0"

t_

.=.
0.5-o_

Reference

Optimum

1 , i ' i ' i _ i '

0 0.2 0.4 0.6 0.8

Nondirnensional radial location, x/R

Fig. 8.10 Comparison of lifting line distributions.
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The stability roots of the five most critical modes are presented in Figs. 8.12 (hover)

and 8.13 (cruise). The figures show that in both flight conditions the real part of the

stability root is negative for both the reference and optimum rotors assuring that the system

is stable. It is further seen in the figures that an imaginary line drawn through the locus of

roots, originating at the origin, is nearly linear. This is due to the fact that the damping due

to aerodynamics is small. Therefore, the structural damping (assumed to be two percent,

proportional damping) dominates the aerodynamic damping. This is caused by several

factors. First, due to the large loads under which the blade operates (each blade must

generate nearly 2500 Ibs of thrust), the blade must be extremely stiff in order to withstand

the bending stresses. Also, unlike fixed wing aircraft, the aerodynamic loading is not

significantly altered with changes in forward speed due to the fact that the rotor is trimmed

to a constant thrust value.
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Fig. 8.13
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The optimumply anglesarepresentedin Table8.2. Very little changesareobserved

betweenthereferenceandtheoptimumvalues. This is dueto thefact that the stability

constraintsarenevercriticalduringoptimization.Sincetheply angleshavevery little effect

on theaerodynamicperformanceandthestabilityrootsarenevernearcritical, thereis little

changein the ply anglesafter optimization. Figures8.14 - 8.21presentthe midplane

stressesin the individualwalls,at eachcomer,beforeandafteroptimization.Thesefigures

illustratethe increasein theroot stressesin eachwall for both flight conditionsandshow

that thesestressesaremorecritical in hover(Figs.8.14- 8.17)thanin cruise(Figs.8.18-

8.21). Theincreasein thestressesonceagaindueto thereductionin cross-sectionalarea

which is causedby thereductionsin rootchord. Although,thestressesareincreasedafter

optimization,theoverallTsai-Wucriterionis satisfiedateachply level ateverycomerfor

both flight conditions. In the absenceof thesestressconstraints,it is likely that the

optimizerwould havefurtherreducedtherootchordin orderto improvetheaerodynamic

performance.

To fully investigatethephenomenonof tilt-rotor aeroelasticstability, the combined

problemof thewing/rotor/pylonassemblyof thetilt-rotor aircraftshouldbe investigated.

Further,theuseof amorecomprehensiveaerodynamicanalysis,suchaspanelcode,may

bebeneficial. If suchmeasuresweretaken,it is believedtheply angles(particularlyin the

aircraft wing) wouldhaveplayeda moresignificantrole on theoverall performanceand

stabilityof tilt-rotors.
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9. Concluding Remarks

A new beam theory has been developed to model composite box beams with arbitrary

wall thicknesses. The theory, which is based on higher-order composite laminate theory,

approximates the three-dimensional elasticity solution rather than reducing the cross-

sectional properties to one-dimensional beam properties. Arbitrary spanwise distributions

of blade twist, taper and sweep are included in the formulation. The developed theory

satisfies the stress free boundary conditions on the inner and outer surfaces of the beam,

Both inplane and out-of-plane warping are included in the formulation.

Next a procedure for the aeroelastic stability of prop-rotor blades has been developed.

The aerodynamic loads are based on the classical blade element momentum theory. The

coupled equations of motion are developed which represent a trimmed blade configuration.

Finally, the developed structural, aerodynamic and aeroelastic procedure are integrated

within an optimization procedure to investigate prop-rotor performance in both high speed

cruise and hover. The optimization problem includes multiple objectives and the

Kreisselmeier-Steinhauser (K-S) function is used to formulate the optimization problem.

This function represents an envelope function of all of the objective functions and

constraints and transforms the problem to an unconstrained optimization problem. The

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to determine the search

direction. The procedure is coupled with a hybrid approximate expansion is used to reduce

the computational effort. The following important observations are made.

. Very good overall agreement is observed between the static results and available

experimental data for thin-walled beams. The dynamic results correlate well with

NASTRAN using both solid elements and shell elements.

. For large angle ply laminates (e.g. 45°), the present approach predicts the behavior

very well as shown by the correlation with experimental results. For these



laminates, the presentapproachrepresents

previouslydevelopedquasi-analyticalmethod.
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a significant improvement from a

° The results from the symmetric beams have better overall correlation than the anti-

symmetric beams. This is due to the fact that magnitude of the twist measured for

the anti-symmetric beam correlation is very small and therefore is more difficult to

determine experimentally.

° The effect of transverse shear stresses is critical in case of thick-walled sections.

This introduces large nonlinearities in the twist distribution. Further, the local twist

in the individual walls is not equal as it is in case of thin-walled beams.

5_ The "beam" twist is a local quantity which can only be defined at a point in the

cross section. Arbitrary definition of the twist at a convenient point in the beam

cross-section is inaccurate for thick-walled cross sections.

° The modes shapes often display a significant amount of bending-twist coupling

and/or extension-shear coupling. The coupling is more noticeable in beams with

thicker wall sections.

. The present beam theory captures the effects of inplane and out-of-plane warping.

For thick-walled beams with low aspect ratios, the warping terms are significant

even at the lower modes. For the thin-walled beams, the inplane warping is more

important than the out-of-plane warping. Results obtained using NASTRAN tend

not to capture the lower warping modes.

. The increased warping in beams with thicker walls is due to the presence of

transverse shear stresses through the thickness of the walls which increases with

laminate thickness.
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The multidisciplinary optimization developed yields significant improvements in the

aerodynamic performance without any degradation of the structural response and

aeroelastic stability.

10. Improvements in the aerodynamic performance are obtained largely through

changes in the blade chord, twist and thickness distribution. By changing the chord

and twist, the load is redistributed to the outboard sections of the blade. Reductions

in the blade thickness reduce the profile drag thereby increasing the performance.

11. The optimizer does not significantly alter the blade sweep due to the conflicting

requirements between the two flight conditions.

12. Changes in the ply angles are negligible due to the fact that aeroelastic stability

constraints are never critical to optimization.

13. Using the current aerodynamic analysis, the aeroelastic stability of prop-rotor

blades is not a significant issue due to the fact blade must be extremely stiff in order

to withstand bending stresses and the fact that the blade is trimmed to a constant

thrust value. A more complete representation of the aircraft, including the

wing/rotor/pylon assembly is recommended in order to better evaluate the

aeroelastic stability of tilt-rotor aircraft.
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The transformation between the untwisted global coordinate system and the rotated

coordinate system is expressed as follows.

txtli0Y' = cos0 sin0 Y (A1)

Z' -sinO cosOJLZ j

The two unswept wall coordinate systems are written in terms of the two beam coordinate

systems as

{xi] t Xi l
Yi = Yi+Yoi , (12)

z i Zi + Zo i J

and

Yi_ ,v', v' (13)='l 1i - _°i '

[Z i J [Z_ + Zoi

where the global coordinate system (Xi, Yi, Zi) is written with the subscript 'i' to indicate

the fact that Yi is always aligned with the reference (untwisted) width of the individual

walls. Similarly, the rotated coordinate system (X_, Y_, Z_) is always aligned such that Y_

is parallel to the rotated width of the individual wall. This notation is adopted so that the

relationship between the global and local coordinate systems can be expressed using only a

single set of equations. The quantities, Yoi, Zoi, Y' and Z' correspond to distancesoi oi

from the axis of rotation to the edge of the individual walls within which the wall

coordinate systems are defined. Finally, the relationship between the local, swept and

twisted coordinate system and the local, unswept and twisted coordinate system is written

as

f)_i) xi (14)
rli = Yi * ,

_i zl-Zo i
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where Zoi is the offset between the swept and unswept coordinate systems. Note that in

the horizontal walls (i = 1 and 3), this offset is zero. Using Eqns. A1 - A4, the local

wall, twisted coordinate system is written as

{ i}[i0.i01 Xiyi= cosO sinO - Woi + Woi ..

gi -sine cos0J_zi - Zoi j [Zoi + Zoi j

It must be noted that in the above relationship, both 0 and zoi

(A5)

are functions of x and vary

along the span. The Jacobian matrix between the local untwisted and local twisted

coordinate systems is then expressed as

-az an
ax ax ax

a = a__Z__Zarl a_____ =
ay ay ay

ax on
az az az

, aO , aO + az o*-
1 (_- Zo)_x x -U1- Yo) _-Tx a---7-

0 cos 0 - sin e

0 sinO cosO

(A6)

where the subscript T has been omitted for convenience. It is seen from Eqn. A6, that the

determinant of the Jacobian is equal to one.
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The zeroth order inplane strains in the absence of pre-twist are defined as follows.

e_ l = Vo,rl

e_ J Uo,q + Vo,)_

(B 1)

The first order inplane strains are

-Wo_z + Vxz 1
/

-w°,rlrl + _Y,rl l'

-2Wo,)cr 1 + _x,q + WY,)cJ

(B2)

and the third components of the inplane strain are

3h 2

/]/x,_

4

/t/y,r 1 _.

/l/x,r 1+ _ty,z

(B3)

The zeroth and the second order components of the out-of-plane strains are defined as

follows.

{;'xt
{1<2} - 4f_Y }1<:2 h 2 lit x

(B4)

(B5)

The additional non-zero inplane strain components due to pre-twist are written as

Zouo,rl + (1] - Yo)(-Wo,)_ + _x) }
[Zovo, n + (11- Yo)(-wo,n + _y) + Wo

Uo,n - Zo (-Wo,z n
Vo,r1 Zo (-Wo,rlq

+_x,n)l,

+ 14ty,r I)j

(B6)

(B7)



• 4 l-Wo,)cq + _I/x,rl + _-(rl - Yo)_x

-Wo,rlr I + _y,rl + _2 (rl- Yo)_yl '

1

= 4 ,L 3J13 Zo y l

[4 l

[_t_J t- 3--_/lty,rl J
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(B8)

(B9)

(B10)

The non-zero out-of-plane components of the strain due to presence of pre-twist are written

as

g_ = Vo_ Zowo,n ' (Bll)

g_ = _x, (B12)

4 (B13)_3 = _3__,_'

Finally, the nonzero strain terms associated with sweep (which exist only in the vertical

walls) are written as follows.

f_:l I Wo,_+_'xl
_3_J [--Wo,TI + II/y j

{_2_ 4 {/ltx }
_J h 2 _y

(B14)

(B15)
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Next, the convergence study is conducted in the natural frequencies and a

nondimensional natural frequency parameter, )_i, is used where

co/;hL4
_i = i_-_ ,

(C.1)

D = Eh3/12(1- v2). (C.2)

The natural frequency parameters, )q, for the first six modes are presented for a range of

mesh sizes in Figs C.2 - C.7. From these figures it is again noted that although

convergence can be achieved with only one or two chordwise elements, often the

converged results are significantly different from the actual results. This is particularly

evident in the third flapping mode (Fig. C.5), the second torsional mode (Fig. C.6) and the

first plate mode (Fig. C.7). For a mesh with three or more chordwise elements,

convergence is achieved very quickly. In general for such chordwise discretizations,

convergence is achieved with 10 - 12 spanwise elements.

1.24 -

c_____ 1.23

"_ 1.22 /
---0-- M=2

_. ---N-- M=3

"_ 1.21
_ M=4

...

1.20"

T V

1.19 ' ' ' i ' ' ' I ' ' ' I ' ' ' I
0 4 8 12 16

Number of spanwise elements (N)

Fig. C.1 Bending slope for 30 ° twisted, isotropic plate subjected to 1 lb. tip bending load.
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C.2 Composite, 45 ° symmetric beam

Convergence tests for the beam are performed for both a static case with a 1 lb. tip

bending load as well as for the first several natural frequencies. The beam used for this

study is a symmetric 45 ° graphite/epoxy composite beam for which the properties are listed

in Table. C.2. Figures C.8 - C. 10 present the static deflections at the tip. It must be noted

that the values presented in these figures represent the average value for the entire cross

section. Since the developed theory does not rely on reducing the beam behavior to one-

dimensional parameters, values of the cross-sectional flap, lag and twist are not explicitly

calculated. However, in case of thin-walled beams, the values in each of the walls are very

close to each other, therefore, in such cases the approximation of the cross-sectional twist

being equal to average twist of all four wails is valid. It is observed in Figs. C.8 - C.10

that convergence is achieved with approximately 10 spanwise elements. More importantly

it is noted that this convergence is independent of the number of chordwise elements. This

is largely duc to the fact that the beam is decomposed into the individual walls which make

up the beam and as a result, a single chordwise element in each wall results in four

chordwisc clement for the beam cross section.

Table C.2 Details of symmetric 45 ° composite beams

Flanges Webs

Top Bottom Left Right
145=16 [45°]6 [45°/-15°]3 [45°/-45°]3

Material Properties
EL = 20.59 X 106 p.s.i., ET = 1.42 x 106 p.s.i.,

GLT = 0.89 X 106 p.s.i., VLT = 0.42.

Beam Dimensions

Length = 30 in., width = 0.953 in., depth = 0.53 in.,
ply thickness = 0.005 in, number of plies = 6,

wall thickness = 0.030 in.

i
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Similar trendsareobservedin theconvergenceratesof thenaturalfrequencieswhich

are presentedin Figs. C.11 - C.17. It is seen from these figures that once again

convergenceis independentof the number of chordwise elements. For the lower

frequencies,convergenceis obtainedwith approximately10spanwiseelements.For the

higher frequencies,convergenceis a little slowerandalthoughthe resultsarenot truly

convergedwith 10spanwiseelements,theyarequitecloseto theconvergedvalues.
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load.
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