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ABSTRACT

A higher-order composite box beam theory is developed to model rectangular beams
with arbitrary wall thicknesses. The theory, which is based on a refined displacement
field, is a three-dimensional model which approximates the elasticity solution so that the
beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both
inplane and out-of-plane warping are included automatically in the formulation. The model
can accurately capture the transverse shear stresses through the thickness of each wall while
satisfying stress free boundary conditions on the inner and outer surfaces of the beam.

Numerical results are presented for beams with different wall thicknesses and aspect
ratios. The static results are correlated with available experimental data and show excellent
agreement. The dynamic results which are correlated with a general purpose finite element
code show the importance of including inplane and out-of-plane warping deformations in
the formulation.

The developed beam theory is then used to model the load carrying member of a tilt-
rotor blade which has thick-walled sections. A procedure is developed for computing the
aeroelastic stability of the tilt-rotor blade based on the composite box beam model. The
aerodynamic loads are calculated using the classical blade element momentum theory.
Analytical expressions for the lift and drag are obtained based on the blade planform with
corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled
with the structural model to formulate the complete coupled equations of motion for
aeroelastic analyses.

Finally, a multidisciplinary optimization procedure is developed to improve the
aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The objective
functions include the figure of merit in hover and the high speed cruise propulsive
efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as
constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate



the multiobjective function problem and a hybrid approximate analysis is used to reduced
the computational effort. The search direction is determined by the Broyden-Fletcher-
Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values

and show significant improvements in the overall performance of the tilt-rotor blade.
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1. Introduction

The tilt-rotor aircraft has become an increasingly viable concept over the last several
years [1-4]. The goal is to combine the hover performance of a helicopter in take-off and
landing with fixed-wing aircraft like efficiencies in high speed cruise. The aircraft is
similar in appearance to conventional fixed-wing aircraft, however, large diameter rotors
are tip mounted on the wings. These rotors are mounted on pylon assemblies which are
capable of rotation through 90 degrees so that the aircraft can convert between the various

flight regimes (e.g. hover, transition and cruise) required of this aircraft (Figs. 1 - 3).

Fig. 1.2 XV-15 tilt-rotor in transition/conversion mode.

There are many design requirements associated with tilt-rotor performance including a
low disc loading in the hover configuration and the ability to rotate the rotors forward to
achieve cruise speeds up to 450 knots [5]. The problem becomes more complex since in

vertical flight and in hover, a large portion of the rotor is directly over the wing which



2
produces a large downwash effect upon the wing. The downwash effect increases thrust
requirement of the aircraft by approximately 10 - 12 percent [6]. Other problems associated
with this configuration are related to high helical tip Mach numbers (Myip) which represent
a critical performance issue in high speed cruise (350 - 450 knots). Aeroelastic stability is
an important consideration in the design of tilt-rotors. Due to the large thrust requirement
in hover, the prop-rotors have a much greater radius than standard propellers. This
increases the tip speed which in cruise may cause individual blade flutter or a coupled
flexible motion between the rotor, wing and pylon known as whirl flutter. Since civil tilt-
rotors are required to be stable at a 20 percent margin above their dive speed (defined to be
15 percent larger than the cruise speed), this means that the flutter speed must be larger than

621 knots for a tilt-rotor with a cruise speed of 450 knots.

Fig. 1.3 XV-15 in cruise mode.

There are several different techniques which can be used to address these issues. For
example, the tip Mach number can be reduced through rotor tip speed reduction or through
the use of blade sweep which reduces the effective Mach number. Another alternative is to
increase the drag divergence Mach number (Mq4) at the tip to values above Myjp. This can
be accomplished through reductions in the blade thickness. However, each of these
options will adversely affect the hover performance, drive system weight or aeroelastic

stability of the rotor blade. In the helicopter mode, to maintain a high figure of merit in

3



3
hover, the solidity of the blade must be increased since thinner airfoils are used for

maintaining efficiency in cruise.

1.1 Tilt-Rotor Design

Due to the many conflicting requirements imposed on prop-rotor performance between
hover, conversion and airplane mode, the use of formal numerical optimization techniques
is well suited for studying the design trade-offs associated with such aircraft. Although
there has been a significant amount of research performed on the optimization of rotary
wing aircraft, only very few studies have investigated tilt-rotor design issues. Recently,
researchbefforts have been initiated by Chattopadhyay et al. [7-16] to develop formal
optimization techniques to address these issues. In Refs. 7 -9, optimization procedures
were developed to maximize the high speed cruise propulsive efficiency without degrading
the hover figure of merit. An optimization procedure was developed in Ref. 10 to address
the problem of aeroelastic stability of high speed proprotors. In Ref. 11, the drive system
weight was minimized and the associated trade-offs in cruise efficiency were investigated.
The integrated acrodynamic, aeroelastic and structural optimization problem was addressed
in Ref. 12. A purely aerodynamic multiobjective optimization procedure for improved high
speed cruise and hovering performance using planform and airfoil characteristics as design
variables was developed by McCarthy et al. [13]. In Refs. 14 and 15, a two level
decomposition technique was developed by Chattopadhyay et al. for the combined
aerodynamic/structural design of high speed prop-rotor blades. At the upper level, the
aerodynamic performance was improved using continuous optimization techniques. The
structural performance was improved at the lower level using composite ply orientations a
of thin-walled box beam as design variables. More recently, McCarthy and Chattopadhyay
[16], developed a procedure for a combined wing/rotor optimization study of high speed
tilt-rotors. The analysis was based on comprehensive rotorcraft algorithms and design

criteria from both the rotor and the wing were included in the formulation.



1.2 Aeroelastic Stability

Rotor dynamics and aeroelastic response are critical to the design of vertical take-off
and landing and short take-off (V/STOL) aircraft. In 1966, Reed [17] described the basic
phenomenon of propeller whirl flutter instability for V/STOL aircraft. Since this time,
several survey papers have attempted to address the critical issues associated with
aeroelastic stability. In 1976, Kvaternik [18] noted that the blade inplane flexibility can
have a significant effect on the stability of the system. More recently, Friedmann [19]
described the necessary requirements in aeroelastic stability modeling. The significant
potential for aeroelastic tailoring from using composite rotors in a comprehensive
aeroelastic stability analysis was discussed.

There has also been a significant amount of in depth research efforts to investigate the
physics of aeroelastic stability. Edenborough [20] investigated the stability of rotor-pylon
configuration for a tilt-rotor aircraft. It was concluded from the study that stable
rotor/pylon configuration can be designed for high speed operation. The configuration
studied in the paper was modeled analytically up to speeds of 250 knots which was then
validated by experimental data up to a speed of about 195 knots. Kaza [21] investigated the
effect of steady-state coning angle and damping of the flapping hinge of the blades on the
whirl flutter stability boundary. This analytical study was based on one-dimensional beam
analysis. More recently, Johnson [22,23] has identified the modeling requirements to
accurately predict aeroelastic stability. From these studies it was concluded that an accurate
structural representation of the blade is essential to properly model dynamic stability.

Johnson [24] calculated the performance, loads and stability of the XV-135 tilt-rotor and
compared the results to wind-tunnel and flight test measurements to assess the requirements
for additional experimental data and further analytical development. The basic dynamic

problems of advanced rotor system, including aeroelasticity of tilt-rotor blades, was also

L
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investigated by Johnson in Ref. 25. In this study the need for accurate elastic

representation of the blade dynamics was established.

1.3 Aeroelastic Tailoring

Due to the fact that aeroelastic stability is critical in the design of rotary wing aircraft, a
significant amount of research has been performed investigating aeroelastic tailoring for
rotary wing aircraft over the years. The aeroelastic tailoring of composite rotor blades
based on the Classical Laminate Theory (CLT) for a thin-walled cylindrical tube was
investigated by Mansfield and Sobey [26]. A detailed investigation of aeroelastic stability
of helicopter blades was performed by Chopra and Sivaneri [27]. Quasi-steady airloads
were used and the equations of motion were linearized using a small perturbation theory.
The equations of motion were then solved using a finite element technique based on one-
dimensional isotropic beam approach.

The aeroelastic stability of composite helicopter blades was investigated using finite
element techniques by Hong and Chopra [28]. The structural element in the blade was
modeled as a thin-walled composite box beam. Only axial and inplane shear stresses were
included in the formulation. This approach was then modified by the authors to investigate
the stability of a bearingless rotor by modeling the rotor flex beam as an I-beam [29].

Rosen and Rand [30] developed a theory which describes the aeroelastic behavior of
curved helicopter blades for hovering and axial flight. In this approach, the blade was
modeled as a solid, isotropic beam. The control of tilt-rotor flutter was analyzed by Nasu
[31] using a rotor model consisting of a straight, fixed wing, a pylon attached to the wing
tip and a three-bladed rotor. Each rotor blade had two bending degrees of freedom and one
torsional degree of freedom about the elastic axis. Torok and Chopra [32] used a
comprehensive rotor aeroelastic analysis to investigate the stability of a hingeless helicopter
blade. The aeroelastic response and blade loads of a helicopter blade were investigated by

Smith and Chopra [33]. A thin-walled box beam model based on the CLT was used as the
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load carrying member of the blade in this study. Using the same structural model, Smith
[34] perfofmed a parametric study to investigate composite tailoring effects on helicopter
blade vibration and flutter.

The influence of several system design parameters on tilt-rotor aeroelastic stability in
high speed cruise was addressed by Nixon using a parametric study [35]. The study
indicates that the separzition of the beam and torsion frequencies can have a significant
effect on the stability of the beam mode. It was also shown that the rotor thrust level has a
negligible effect on the stability. This study was later enhanced by the author to investigate
possibilities of elastic tailoring using composite rotors [36].

A investigation of aeroelastic stability of an advanced geometry helicopter blade which
includes fuselage dynamic effects included in the formulation was performed by Bir and
Chopra [37]. The aeromechanical stability of bearingless composite helicopter blade in
forward flight was investigated by Tracy and Chopra [38]. Tranéverse shear effects were
included in the formulation although it was assumed that the transverse displacements can
be decoupled into bending terms and shear terms. A further assumption made in the study
is that the transverse shear forces were equal to zero.

Nonlinear, large amplitude aeroelastic behavior of composite rotor blades was
investigated using one-dimensional beam theory by Kim and Dugundji [39]. The nonlinear
equations of motion were solved using a Newton-Raphson technique. Yen [40]
investigated the effects of the blade tip shape on rotor dynamics and aeroelastic response
using a parametric study. Several conflicting requirements were observed including the
fact that the blade weight had to be increased in order to achieve reductions in the vibratory
behavior. The aeroelastic analysis of a fixed wing and a rotating wing in hover were
addressed by Nibbeling and Peters [41] using inflow dynamics and a linear structural
model which included only elastic bending and torsion. The main focus of this study was

inflow dynamics and the structural model was relatively simplistic in nature. Yuan and
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Friedmann [42] used an anisotropic one-dimensional beam model to investigate aeroelastic
stability of swept tip composite helicopter blades. A detailed finite element model was
required to reduce the three-dimensional behavior of the blade to one-dimensional beam like
parameters. Only extensional and transverse shear stresses were included in the
formulation.

The use of composite materials also allows tailoring capabilities which can be used to
improve the rotor structural and dynamic behavior. Structural tailoring using composite
blades has recently been investigated as a means for improving the aeroelastic stability of
rotary wing aircraft [33,35,36,42-44]. Parametric studies have been performed to
investigate composite tailoring in rotary wing applications in Refs. 33, 35, 36 and 42. Of
these, only Refs. 35 and 36 investigate tilt-rotor aircraft. Formal optimization techniques
have been developed by Ganguli and Chopra for the optimization of composite rotor blades
in helicopters [43,44]. In these studies, continuous values for the ply angles were used as
design variables.

Improvements in aeroelastic stability through structural tailoring without consideration
of other requirements such as aerodynamic and structural performance can lead to
unrealistic designs. These criteria can be effectively addressed using multidisciplinary

optimization techniques.

1.4 Structural Modeling

For the tilt-rotor, the combination of the low disk-loading of the prop-rotors and the
high inflow ratio (the ratio of axial velocity to rotor tip speed) make the dynamics and
aeroelastic response of this configuration unique and more complex than that of a
helicopter. It is therefore very important that the issues of individual blade flutter and whirl
flutter be addressed very early in the design process. As noted in the literature, this can be
accomplished by structurally tailoring the rotor for proper stiffness and elastic couplings in

an effort to raise blade frequencies and minimize inplane motions at the rotor hub.
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However, in order to adequately model the dynamics and aeroelasticity of tilt-rotors, it is
essential that an accurate structural model of the rotor be incorporated into the analysis
[23,24]. Since efficient structural modeling of the rotor is key to the overall analysis of the

aircraft, research efforts have been initiated to investigate this issue.

1.4.1 Beam theories: Beam theories associated with isotropic materials have been well

understood for years and these theories tend to predict the structural and dynamic response
quite accurately [45,46]. In recent years, the use of composite materials in rotary wing
applications has increased due to the favorable strength-to-weight characteristics of these
anisotropic materials. However, beam theories for anisotropic materials are not as well
established as they are for isotropic materials. Recently some research has been reported in
deriving composite beam theories [47-80].

A complex finite element methodology capable of modeling anisotropic beams with
arbitrary cross sections was developed by Worndle [47]. The method was based on a fully
three-dimensional finite element theory in which the cross-sectional warping was
superimposed on the assumed displacement field. A comprehensive theory for modeling
anisotropic material was developed by Giavotto et al. [48]. In this methodology, the three-
dimensional behavior of the beam was reduced to one-dimensional beam like parameters
based on a cross-sectional analysis. St. Venant type warping was superimposed on the
assumed displacement field.

Krenk and Gunneskov [49] formulated a theory for pre-twisted turbine blades which
included finite shear flexibility. The pre-twist was accounted for, in this theory, through
the axial derivative of the St. Venant warping function and the shear stresses were
decoupled into torsion and shear contributions. Using this approach, the shear flexibility
could only be approximated in blades with moderate wall thicknesses.

Another beam theory for anisotropic materials was due to Bauchau [50]. Out-of-plane

warping was included in the formulation but the model assumed that each section was

»ay
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infinitely rigid in its own plane, therefore inplane warping was neglected. The out-of-plane
warping was based on so-called “eigenwarping functions” which was an improvement to
the St. Venant warping. Only the axial strain and torsional related shear strain were
included in the formulation. The theory was extended by the author to include the large
displacement analysis of naturally curved and twisted composite beams [51]. Although
shearing deformations and torsion related warping were included in this formulation, it was
assumed that the cross sections do not deform in their own plane. Further, the beam theory
was only derived for thin-walled beams.

The static and dynamic behavior of helicopter blades using a finite element approach
was addressed by Bauchau and Hong [52]. This study represented a first step towards
developing a complete aeroelastic analysis. However, the theory used in this report was
based on the Classical Laminate Theory which is valid only for thin-walled beams.
Bauchau and Hong later developed a nonlinear composite beam theory to model helicopter
rotor blades [53]. The modeling included arbitrarily large displacements and rotations but
assumed small strains. Although warping effects were included, only the axial strain and
the inplane and transverse shear strain appeared in the formulation. Shearing and warping
deformations were investigated by Bauchau et al. [54] for a thin-walled composite
sandwich beam and were compared with experimental data. The study once again assumed
thin-walled sections.

A nonlinear analysis of pre-twisted rods was developed by Rosen et al. [55]. Small
strains were assumed in the formulation. This theory was later extend for modeling the
dynamics of moving and rotating rods [56-57]. Large deformations were included in the
formulation. A finite element model for the analysis of composite box beams was
developed by Stemple [58]. The warping function, in this formulation, was assumed to be
only out-of-plane and it was superimposed upon a displacement field consisting of three

translations and three rotations. The warping was determined based upon a two-
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dimensional cross-sectional analysis. The results from this theory have been shown to be
as accurate as a full three-dimensional solution for thin-walled box beams [59].

Standard means of representing finite rotation in rigid-body kinematics, including
orientation angles, Euler parameter and Rodrigues parameters were reviewed and compared
by Hodges [60]. General kinematical relations for a beam which include moderate
rotations were presented. Hinnant and Hodges [61] used a finite element methodology,
which included geometric nonlinearities, to obtain results for a cantilevered beam with a tip
mass which were compared to experimental values. A nonlinear formulation for the
dynamics of initially curved and twisted beams in a moving frame was presented by
Hodges [62]. Both inplane and out-of-plane St. Venant warping displacements were
assumed. The three-dimensional beam behavior was reduced to one-dimensional beam
parameters and only unrestrained warping effects were included in the formulation.
Rehfield et al. [63] investigated the nonclassical behavior of thin-walled composite beams
with closed cross sections. The nonclassical behavior refers to elastic bending-shear
coupling and restrained torsional warping. A decay length parameter was defined which
approximates the effects of the restrained warping.

Several refined composite beam theories based on the Variational Asymptotical method
[64] have been developed by Hodges et al. [65-70]. The variational asymptotical method is
a mathematical technique by which the three-dimensional analysis of the composite beam
deformation can be split into a linear, two-dimensional cross-sectional analysis and a
nonlinear. one-dimensional analysis. An ordering scheme is required to identify “small”
terms which are then eliminated from the strain energy formulation. The method requires
the energy functional to be expanded in terms of a small parameter and the theory is
therefore truly only valid for thin-walled beams.

An analytical model was developed by Kosmatka [71] for assessing the extension-

bending-torsion coupling effects associated with anisotropic beams having non
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homogeneous irregular cross sections and initial twist. The model was based on beam
theory which reduces the three-dimensional behavior to one-dimensional beam equations
based on a cross-sectional analysis. The vibration analysis of composite turbopropellers
using a nonlinear beam-type finite element approach was studied by Kosmatka and
Friedmann [72]. Constitutive relations were obtained by setting the three stresses within
the cross section equal to zero, thus assuming that the cross section is rigid in its own
plane. In Ref. 73, an analytical model was presented by Kosmatka and Dong for
determining the displacement and stress distributions of the St. Venant extension, bending,
torsion and flexural problem for prismatic, anisotropic beams of arbitrary cross sections.
The problem was reduced to a state of plane stress. However, using this approach a finite
element analysis must be performed for each unique cross section before the beam
equations of motion can be solved. The behavior of a tip-loaded cantilever beam with an
arbitrary cross section was investigated by Kosmatka using a power series solution for the
out-of-plane flexural and torsional warping [74,75]. For complex cross sections, the
warping results represented a best fit approximation to the exact St. Venant warping
function. A beam theory based on a first-order displacement field with superimpbsed
warping functions was used in the formulation which requires a complex two-dimensional
finite element analysis of the cross section.

A theoretical modeling of slender composite rotating beams was developed by Rand
[76,77]. In addition to the classical degrees of fregdom used in this theory, a three-
dimensional warping field was superimposed on the displacement field. The developed
theory is only valid for thin-walled structures. The author extended this theory to include a
nonlinear formulation and a finite difference based numerical solution to investigate the
structural behavior of solid orthotropic beams of arbitrary cross sections [78]. Kalfon and
Rand [79] developed a theory for the nonlinear modeling of thin-walled composite

helicopter blade. Inplane warping was neglected in this formulation.
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A free vibration analysis of composite I-beams with elastic couplings under rotation
was presented by Chandra and Chopra [80]. The developed theory was a linear analysis
based on Vlasov theory. Constrained warping and transverse shear effects were included.
A quasi-analytical method for the evaluation of composite box beams has also been
developed by Smith and Chopra [59]. The cross-sectional analysis in the theory was
performed analytically to reduce the problem to a one-dimensional beam problem which
was solved using the finite element method. The cross-sectional analysis was based on the
Classical Laminate Theory (CLT). The out-of-plane warping used in the formulation was
determined using a contour analysis. Due to the many simplifying assumptions associated
with this theory, this approach must be restricted to use as a preliminary design tool.
Among the theories presented above, the more comprehensive anisotropic theories rely
upon a full three-dimensional finite element solution which can become very computa-
tionally intensive [47,48]. References [49,55-57,60-62,83,74,75,78] address
comprehensive modeling of beams with solid cross sections. All of the closed section
analysis procedures are based on thin-wall assumptions [50-54,58,59,63,65-73,76,77,79]
which is not an adequate assumption when modeling the load carrying structures of tilt-
rotor blades. It must be also be noted that when traditional beam analyses are performed in
which the three-dimensional behavior of the structure is reduced to one-dimensional beam
like parameters [50-54,58,59,63,65-73,76,77,79,80] (e.g. extension and three rotations),
it is necessary to perform the cross-sectional analysis at each unique cross section. In
many of the formulations presented above, this cross-sectional analysis may require several
thousand degrees of freedom. As a result, this type of modeling can become quite complex
and computationally intensive for beams which have arbitrary spanwise distributions.
Further, many assumptions are made about the warping distributions assumed in these

theories. As a result, the beam warping is typically determined in a manner such that the
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average warping over the cross section is equal to zero. This, however, does not satisfy

the condition of stress free boundary conditions on the surfaces of the beam.

1.4.2 Composite plate theories: In all of the previously developed closed-section beam
models, some type of thin-walled assumption is made. However, the composite spar
typically used in tilting prop-rotor configurations, e.g. the Advanced Technology Blades
(ATB’s), have thicker wall sections which makes such models incapable of properly
modeling these beams. Therefore, the need for a more general theory for adequate analysis
of such sections is obvious. A composite box beam theory which can model sections with
arbitrary thicknesses is, of course, more accurate as well as more realistic, since it
eliminates all the uncertainties associated with the aforementioned assumptions.

An objective of the present study is to develop a beam theory in which the three-
dimensional behavior of the composite structure is not reduced to one-dimensional beam
like parameters. By decomposing the beam into the individual walls which make up the
beam, a beam theory is developed in which the solution approximates the exact three-
dimensional elasticity solution. Further, the warping of the beam is determined in a manner
such that the stress free boundary conditions on the inner and the outer surfaces of the
beam will be automatically satisfied. To adequately model thick-walled structures, it is
necessary to utilize an appropriate composite laminate theory in each of the walls. Several
such theories are discussed below.

As a first approximation to a more refined displacement field, first-order shear
correction theories and other approximate techniques have been proposed. A first-order
shear deformation theory (FST) was developed for general anisotropic laminated plates by
Whitney and Pagano [81]. This theory introduces a constant shear correction term and the
displacement field does not satisfy the necessary stress free boundary conditions on the
upper and lower surfaces of the laminate. Despite the approximate nature of the theory,

results for moderately thick plates were found to be more accurate than the Classical
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Laminate Theory (CLT). Reissner [82] developed variational principles for deriving the
plate equations from three-dimensional elasticity based on first-order shear deformation
theories.

A reliable six-node triangle plate/shell element was developed by Kosmatka [83] for the
analysis of laminated composite structures based on the first-order shear deformation
theory. Bhumbla et al. [84] used the first-order shear deformation theory to predict the free
vibration frequencies and mode shapes of spinning laminated composite plates. The results
from the study indicate that the Classical Laminate Theory over predicts the stiffness and
natural frequencies. The authors Jater extended this work to study the buckling speed of
spinning, laminated composite plates offset from the axis of rotation [85].

Rehfield and Valisetty [86,87] formulated a simple theory for the bending and
stretching of homogeneous plates. In this theory the classical assumption that the
transverse normal strain and the two transverse shear strains are set to zero was replaced
with a hypothesis that the statically equivalent stresses obtained from CLT can be used to
estimate the transverse normal strain and transverse shear strains.

The variational asymptotical approach was used by Hodges et al. [88-90] to decompose
the three-dimensional plate problem into a linear through-the-thickness, one-dimensional
analysis to obtain plate elastic constants and a two—dimensional analysis to analyze plate
deformations. Although the possibility of large deflections and rotations was considered,
small strains were assumed in the formulation. The variational asymptotical method
expands the strain energy in Taylor series expansion based on a small parameter, defined to
be the thickness of the plate in this case, and as a result the application of the theory was
confined to thin plates.

It has long been recognized that higher-order theories are adequate for modeling

composite laminates with arbitrary thicknesses. A third-order theory which includes the

transverse normal stress was developed by Lo et al. [91]. The developed general theory
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was compared to exact elasticity equations and showed excellent correlation. However, the
retention of transverse normal shear stress terms introduces a significant amount of
complexity to the formulation. An alternative higher-order composite laminate theory was
developed by Reddy [92] in which the transverse shear effects were included, but the
transverse normal stress was neglected. In this third-order theory, unlike first-order
theofies, the stress free boundary conditions were exactly satisfied on the upper and lower
surfaces of the plate. This relatively simple theory, which has only two additional
unknown functions from the Classical Laminate Theory or the first-order shear deformation
theory, has been shown to be extremely accurate when compared to exact elasticity
solutions for thick plates [93]. In a subsequent review of all third-order, two-dimensional
theories for plates, it was shown by Reddy that all third-order theories developed over the
last two decades are based on the same displacement field [94]. The third-order theory due
to Reddy [92] was coAmpared with a first-order shear deformation theory and the Classical
Laminate Theory. for cross-ply laminates with various boundary conditions, in a study
performed by Khdeir et al. [95]. It was found that the third-order theory out performed
both the first-order theory and the CLT.

Murakami [96] introduced the concept of superimposing a zig-zag linear function upon
a FST to improve the accuracy of inplane responses. The theory was shown to be very
accurate. but 1n this layerwise approach the number of unknown functions was directly
proportional to the number of composite plies. As a result, the technique was
computationally expensive. This work was later extended by Toledano and Murakami [97]
such that the piecewise linear continuous displacements were superimposed upon a
quadratic transverse shear stress distribution. In another study performed by the authors
[98], a zig-zag shape function was superimposed on Legendre polynomials to approximate

the inplane displacement contributions across the plate thickness. Like the original study,
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these theories are dependent on the number of plies and are therefore computationally
expensive.

A similar study was performed by Cho and Parmerter [99,100] in which a higher-order
plate theory for composite laminates was obtained by superimposing a cubic varying
displacement field over a zig-zag linearly varying displacement. In this theory, Heaviside
functions were used to ensure continuity of the transverse shear stresses at the interface
between the laminae. The results, however, were not shown to be more accurate than
traditional third-order theories. Robbins and Reddy [101] developed a procedure for the
modeling of thick composites using a layerwise laminate theory. The resulting layerwise
finite element model used in this theory was capable of computing interlaminar stresses and
other localized effects as accurately as three-dimensional finite element models. However,
the number of degrees of freedom required in this model was approximately the same as a
full three-dimensional finite element model and a result, the layerwise theory was
computationally intensive.

Chattopadhyay and Gu developed a new higher-order laminate theory for the modeling
of delamination buckling of composite plates and shells [102,103]. Delaminations between
layers of composite plates were modeled by jump discontinuity conditions at the
delaminated interfaces. These discontinuities were modeled in both the lower and higher-
order terms of displacements using Heaviside step functions. Excellent correlation with
experimental results was obtained. An exact elasticity solution was presented by
Chattopadhyay and Gu [104] for the buckling of simply supported orthotropic plates. The
solutions presented in the theory indicated that the third-order theory was the most accurate
plate theory with less than eight percent error in all cases, while the Classical Laminate
Theory was the least accurate theory with errors of more than 100 percent for thick

laminates.
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1.4.3 Extension of plate theories for beam modeling: No effort has been reported in using

such higher-order composite plate theories in modeling composite box beams. The reason
being the complexity of the process, especially when pre-twist and tapér are included in the
formulation as they are in the present approach. In the present research, the refined
displacement field of Reddy [92] is used to analyze the individual walls of a composite box
beam. As a result, the developed theory is capable of modeling box beams with arbitrary
wall thicknesses. By decomposing the beam in this manner, the developed theory is an
approximation to the three-dimensional elasticity solution. Therefore, there is no reduction
of the box beam behavior to one-dimensional beam like parameters. Thus, several

simplifying assumptions are avoided.



2. Objectives

The objective of this research is to develop a more general, but computationally
efficient, theory for the adequate analysis of composite box beam sections with moderately
thick walls. A refined higher-order displacement field is used to accurately represent the
transverse shear stress distributions in composite laminates of arbitrary thickness which
represent the box beam walls. The procedure developed is capable of analyzing composite
box beam sections with pre-twist, taper and sweep to model load carrying structural
members used in aerospace applications. Unlike previous beam theories, the present
theory approximates the three-dimensional elasticity solution rather than reducing the beam
properties to one-dimensional quantities. Further, the warping of the cross section in this
theory is determined such that stress free boundary conditions are exactly satisfied on the
inner and the outer surfaces. As a result, the model is capable of accurately describing
thick-walled load-carrying members typically found in tilt-rotor blades such as the
Advanced Technology Blades (ATB) on the XV-15 tiltrotor [102,103]. The developed
beam model is general enough for applications to a wide range of wing and rotor blade
sections.

Next, the box beam model is used to represent the principal load carrying member in a
tilt-rotor blade and an aeroelastic analysis is performed. The aerodynamic loading is
obtained through an analysis based on a two-dimensional blade element momentum theory
[104]. The coupled equations of motion are solved to determine the structural response,
the aeroelastic stability and the aerodynamic performance of the trimmed rotor.

Finally, a formal multidisciplinary optimization procedure is developed to iﬁvestigate
the trade-offs associated with aeroelastic stability, aerodynamic and structural design
requirements of prop-rotors. The optimization procedure developed can be coupled with
other analysis codes being used by the industry allowing trade-off studies to be performed

during both preliminary and detailed design stages of the tilt-rotor aircraft development.
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The objectives of the proposed research are summarized below.

Development and validation of a higher-order composite beam theory capable of
modeling box beams of arbitrary shape and wall thicknesses. The theory is capable

of modeling short aspect ratio beams with pre-twist, taper and sweep.

Development of the coupled aerodynamic and structural equations of motion to

investigate aeroelastic stability and blade structural response.

Development of a multidisciplinary optimization procedure which includes formal
multiobjective formulation technique and an approximate analysis technique based

on hybrid expansions.

Optimization for multiple flight conditions to investigate the effects of composite

tailoring on the overall performance of high speed prop-rotor blades.



3. Composite Structural Modeling

The box beam is modeled using composite laminates to represent the four walls
(Fig. 3.1). Several different coordinate systems are used throughout this paper and are
defined as follows. The global coordinate system (X, Y, Z) is the untwisted coordinate
system located on the axis of rotation (Figs. 3.1 and 3.2). The global, rotated coordinate
system (X', Y’,Z’) represents the coordinate system obtained by rotating the global
coordinate system about the axis of twist by an angle 6(x). In addition, there are three
more coordinate systems defined locally in each wall of the box beam. The local,
untwisted coordinate system of the i-th wall is defined by (xi, yi, zi). The local, twisted
wall coordinate system for the i-th wall which results from the global rotation (8) of the
beam is denoted (x}k, y;‘, z’ik) as depicted in Figs. 3.3 and 3.4. The introduction of sweep
adds complexity to the formulation. For this model, sweep is defined to be in the X"-Y~

plane (Fig. 3.5). The horizontal walls are parallel to this plane and as a result, no

Fig. 3.1 Composite box beam.
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additional coordinate system needs to be introduced for these walls. In the vertical walls,
however, the sweep is normal to the walls and therefore an additional coordinate system
must be introduced. This local, twisted and swept coordinate system is defined by (¥, i,
¢;). (Note that in case of the horizontal walls the coordinate system defined by (Xi, M, )

is identical to the coordinate system defined by (x}k, y;k, z}k).) Detailed explanations of the

transformations between the coordinate systems are presented in Appendix A.

\\ /' \—
axis of rotation

Fig. 3.2 Beam cross section and axis of rotation.

3.1 Refined Displacement Field
A higher-order theory [92] is used to define the displacement field for each wall in the
Jocal, twisted and swept coordinate system (), N, §) as follows. The subscript ‘i’ has

been omitted for convenience throughout the remainder of the study.

) ia(x,
5 (0m,0) = Up (6 + c(—“—ﬁ)’z—“—” wx(x,n>)+ o (1M + L M) (3.12)
) S,
G260 = VoL + c(—%%‘l)+ wy<x,n)j+ oy G+ Ly (6 (3.1b)

W30 = Wo (M) (3.1c)
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Fig. 3.3 Horizontal wall coordinate systems.

where u,. v, and w, represent the displacements at the midplane of each plate and yx and
Yy represent the rotations of the normals to the midplane. The beam warping in each plate
is represented by the functions ¢x, Oy, Yx and Yy. The local wall deformations

(1j, ©a. O3 in the twisted coordinate system are related to local deformations (uy, uz, us)

in the untwisted coordinate system (X, y, z) through the following relationship.

u I 0 0 Uy
Uy ¢ =0 cos® —sinB {ly
u3 O «in® cosB ||z
or
u=T,u (3.2)

where Ty is the transformation matrix between the local, twisted displacements and the
Jocal, untwisted displacements. The local deformations in each of the plates (uj, u, u3)

are related to the global deformations (u, v, w) as follows (Figs. 3.1, 3.3 and 3.4).
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Fig. 3.4 Vertical wall coordinate systems.
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Fig. 3.5 Swept and twisted beam cross section.

3.2 Boundary Conditions

It is necessary to satisfy shear stress free boundary conditions at each free surface of
the beam. This implies that in each wall, the shear stresses must be zero on both the outer
and the inner surfaces. The imposition of these boundary conditions allow some of the
higher-order terms to be determined in terms of some lower-order terms. This procedure,
which is explained next, reduces the number of unknowns in the displacement field (Eqns.

3.1). For each wall, the stress free boundary conditions are stated as

oyt(X, M, § = +h/2)
GT]C(X’ n: C = ih/z) = 07 (35)

0, 3.4)
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where h is the total wall thickness. For composite laminates made up of layers of
orthotropic lamina, the above requirements imply that the corresponding strains must be

zero on these surfaces. That is,

eng(x, M, {=%h/2) = 0, 3.7
where
di; ob
€y ='au—cl+al; = Yy + 2804 +3C2’Yx =0, (3.8)
i, Ju
ent =3%+alr? = \yy+2§¢y+3§2~yy = 0. (3.9)

This yields the following relationships

ox =0, (3.10a)
Tx = —E'E_Q\lfx’ (3.10b)
and

oy = 0, (3.11a)
Yy = —3—;1-2—wy- (3.11b)

Using these conditions (Egns. 3.10 - 3.11), the individual plate displacement fields

(Eqns. 3.1) are now written as

- ow 4 ,
up =Ug +C(_ axo +Wx)_3_h'2—§3q/x’ (3.12a)

- ow 4 3

Uy = Vo +C(— 8110 +Wyj_£§"; Yy, (3.12b)
U3 = w,, (3.12¢)

where the functions ug, Vo, Wo, Wx and Wy represent unknown functions of i and 1.
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3.3 Stress - Strain Relations
Due to the fact that the stress and strain tensors are symmetric there are only six unique
values of these quantities. Therefore, the following notation is used to define the stress and

strain tensors in the local, untwisted coordinate system.

0T (ol (e)T ()T
G2 Oyy € Eyy

y 3 I Oz L and < &3 b= S22 > (3.13a,b)
G4 Oy €4 2ey,
Cs Oxz €5 28y,

156} kay ) €6 ) Lzex)’ J

The stress and strain tensors in fhe local, twisted and swept coordinate system are
expressed similarly. The generalized Hooke’s law is used to relate the stresses and the
strains. Assuming the products of the derivatives of the displacements to be small in the
strain formulation and using Eqn. 3.2, the strains in the local, untwisted coordinate system

are expressed as

r 3 (

€1 0
82 {/’yce - W,yse
g3 V 80+ W ,c0
= <. - . - . (3.14)
€4 V 0+ 7 (s0+W yc6— W ;50
€5 U, +Vs0+W ,cO+VcOO, —%s06y
€6 ] Uy +V,c0-W,s6-Vs008, - W ch 0

In the above expressions, the short hand notations c8 and s@ are used to denote cos® and
sin®, respectively. It is important to note, however, that the displacement equations
(Eqn. 3.1) are written in the local, twisted and swept coordinate system. The relationship
between the derivatives in the local, untwisted coordinate system and the local, twisted and

swept coordinate system are written as

d o 0 + 10
PRl GUALIY - CRPACPEC

a—C, (3.15a)

»
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0 0 d :

— =cosf——sinf0—, 3.15b
a2 R (-10)
%—s1n6%+cosea%; (3.15¢)

Details of the transformation relationship between the coordinate systems are found in

Appendix A. Using Eqns 3.1, 3.14 and 3.15, the strains are written as follows.

4 .3
g = uo,x + C(_WO,XX + WX,X ) —%’Efc WX,X

4
+ {Uo’n + g(—Wo,XT.| + \le’n ) — §.l1_2C3WX’n }(C, - ZO) e,x (3.16a)

_{(-W‘),xn +W",n) : 2 Wxn}[(C o)8xt s ]

4
€ ={v0 +§( Wo T wyn)—gp@wym}cosze

(3.16b)
- ipy(l——ﬁ—gzjcosesme
_ _ A e in?
€3 =1Vo +C ~Wo ,wyn 3h2§wy’" sin“ 0
’ '(3.16¢)
+\uy(1—¥1—§2}coses1n6
_ __4_{;3 7cos0sin 0
€4= Vo +C ~Wo Wy,n P Yy , 2cosOsin
(3.16d)

+wy(1——h—f;2)(cos 0 —sin 9)
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4., (3.16e)
_{ Wo.n + Wy B-z—(; \Ify}(ﬂ Yo)—wo]smeeX
)
—Wo . Wy 78 Yy ¢sin® 2,
= +v,. +{ 2 + + ——i—§3 + 6
€g = uo,11 VO,X WO,XTI WX,T] Wy,X 3h2 Wx’n Wy’x Cos
\px(l fz—gz)sme
4 3 .
- {Vo'*'C( Wo, +\Vy)_5?€ Wy Zowon}sme 0 x
| 3
+|:{V0n+C( WOT]T] Wy,ﬂ) 3h2€ Wyn}(g—zo)
(3.16f)

4 .
- {—Wo,n +yy - _}?CZ\Uy}(n— Y,) - wo:lsme 0 x

4 %
- {_WO,T\ +Yy - FCZWy}COSB Zo

From the above equations, the following relationship between the local strains in the

untwisted and the twisted coordinate systems is obtained.

.l .
g = Tij(eg’ +0,4fi; - 79 ;) (3.17)

where é? is the strain in the local, twisted coordinate system in the absence of pre-twist

and sweep, [L j is the additional strain components due to pre-twist and 6 x is the twist rate.

The additional strain components due to the sweep are denoted d j and the sweep rate is
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zz,x . It must be noted that additional sweep terms appear only in the vertical walls due to
the definition of sweep used in the modeling (see Fig. 3.5). The total strain in the local,
untwisted coordinate system (X, ¥, z) is denoted &; and 'fij is the transformation matrix
between the strains in the local, twisted coordinate system and the strains in the local,

untwisted coordinate system. This transformation matrix is expressed as follows.

1 0 0 0 0 O
0 %0 s20 —c0s0 0 O
- 0 s%0 %0 cOs0 0 O
Ti=10 20050 —2c00 c20-s% 0 O (3-18)
0 O 0 0 cO s
0O O 0 0 -0 0]

the that the transformation matrix for the strains (’i‘ij) is different from the transformation
matrix for the displacements (Tyr). The local inplane strains in the absence of pre-twist or
sweep are derived as follows.

80 =ef + Uk} + 03

89 =e9 +xh + C3 ' (3.19a-c)
82 =2 + Uik + (K

The out of plane strains are expressed similarly as

£ =0,
89 = e + (x5, - (3.19d-)
8 = e§ + 073

The additional strains due to beam pre-twist are as follows

~ 4

iy =+ Guf + Cuf +Cud + Cuf,

flp =f3=H4=0,

fis = ng + Lu + Cu3, (3.20a-f)
~ 3 4,4

fig = ug + Lug + C7ug + Lug + Clug.
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The additional strain components due to the sweep are

{91 = 19? + Czﬁz,

‘62 =0, 53 =0, {9‘4 = 0, ‘65 = 0, (3.21a-t)
B = 0§ + (08,

where the nonzero components of the individual strains are described in Appendix B.

3.4 Energy Formulation
The beam equations of motion are derived using Hamilton’s principle [93] which

assumes the following form.

)
6_[(U—T+we)dt = 0 (3.22)
t
where 8( ) represents the variation of () and U, T and We represent the total beam strain
energy, kinetic energy and external work, respectively. Using variational principles, Eqn.

3.22 may be rewritten in terms of the individual plate quantities as follows.

/N

_[ Y 8U; -3T; +8W,, [dt = 0 (3.23)
g \i=l

where N is the total number of walls (N = 4 for a box beam). The individual strain energy

density (Up) in each plate is calculated as follows.
€

UO = jGidSi (3.24)
0

Using the generalized Hooke’s Law (0 = Qjj€j), Eqn 3.24 is rewritten as
1
U, = ?Z'Qijeigja (3.25)

where repeated indices (i, j = 1, 2, -+, 6) indicate summation and ©j is the strain tensor.

The quantities Qjj denote the full three-dimensional material properties in the local,
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untwisted coordinate system which, for laminates made of orthotropic plies, is represented

as follows.

Q1 Q2 Q3 0 0 Q]
Q Qxn Q3 0 0 Qg

Qi3 Q3 Q3 0 0 Qs
|0 0 0 Qu Qs O
0 0 0 Q4 Q55 O
Q6 Q6 Q6 0 0 Qg

The material properties in terms of the local, untwisted coordinate system (x, y, z) are

(3.26)

written in terms of the material properties in local, twisted and swept coordinate system
(x, M, §) as follows.

Qij = Tmiémni‘nj’ (3.27)
where an represents the material properties in the local, twisted coordinate system. The

total strain energy in the i-th wall (U;) is then written, using Eqns. 3.18 and 3.26 as

follows.
U, = '[UoidV
1" (3.28)
- - * o~ A A~ A oA o . x o~
=5J(8?n + e,xum - Zo,X O )TikTmianTanjl (8?1 + e,xun - Zo,xﬁn)dV
A%

where V indicates integration over the volume of the wall. Due to the orthogonality of the
transformation matrix, T, (’i’ik"i“mi = 8y > Where Oxm is the Kronecker delta) Eqn. 3.28

is simplified as follows.
h/2

1 ~ - * o2\ ~ ~ * S
Ui = EI J.(S(r)n =+ B,Xum - ZO’Xﬁm)an(eg + e,xun - Zo,xﬁm) dCdQ (3.29)
Q-h/2

where dQ is the differential area (dQ = dydn). The strain energy can be rewritten using

Eqns. 3.19-3.21 and 3.29.
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Amn Bmn DPmn Emn Fmm
q Bon Dmn Emn Fron Gmn
U = EJ.B; Dmn Emn Frmn Gmn  Hmn [B,dQ2
Enn Fon Gme Hma Omn (3.30)
' Fon Gmn Hmn Omn P |
= JBQOnB dQ

where m, n = 1, 2, --, 6 and the laminate stiffness matrices (A - P) are defined in each of

the walls as follows.
h/2

(,B,D.EF,GHOP)= [QLLE 0008 (3:31)
~h/2

For composite Jaminates, Q is ply dependent and as a result it is a function of the thickness
coordinate {. Therefore, this matrix cannot be taken out of the integral in Eqn. 3.31. The

vector B, is defined as

B =[(e + K20 x ~ 20, 0%) (K +Hn8x) (Ki+Hn8x —2o )
(3.32)

T
(K?n + u?ne,x) Ufne,x]

The external work due to applied loads and body forces (W) in the i-th wall is written

JX u; dV+jt u;ds ji=12,3 : (3.33)
v

T
where u; is the dlsplacement vector defined as [u1 U, u3] , X1,X,,and X3 are the

J
body forces in the X, Y and Z directions, respectively. Applied surface tractions over the

region of the surface Sare denoted t;, T, and t3, along the respective directions.
The total kinetic energy in the i-th wall is expressed as

jpv v:dV j=1,2,3 (3.34)
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where v; is the velocity vector defined as
au;

vy =—aT+Qf<><ri, (3.35)

it, is the displacement vector, Q is the rotational velocity about the Z axisand rjis a

position vector from the axis of rotation to an arbitrary point in the i-th wall (Fig. 3.6). The
position vector is written as follows.

r=Xol+Yo] + (08, +(n+mMg+ig)ey +(C+8o +ii3)é, (3.36)
where X, and Y,, are the offsets in the global, untwisted coordinate system from the axis of
rotation to the center of twist and 1, and {,, are the local offsets to an arbitrary point on the
wall expressed in terms of the local, twisted and swept axis system. Using Eqgns. 3.35 and
336 and the coordinate transformations defined in Appendix A, the Kinetic energy is

expressed as follows.

S T S A A

v

_ 2(C,+z;";+a3)(n+n2+ﬁz)9n9c+(“+“z+ﬁ2)zgé}

0 i 2 (3.37)
+ ] 04> +2ﬁ2(X+XZ +ﬁ1)£2§ +(X+XZ +ﬁ1) Q%}
£, 2 * . x o \2
- 3~ — 2113(%‘*‘%0 + ul)Qn + (x+xo +u1) Q%} } dav
where the rotational and position vectors (Eqns. 3.35 and 3.36) are rewritten as
r= (x + %0+ 0 e, + (n +T]z +ﬁ2)én +(C+C2 +ﬁ3)éC’ (3.38)
Qk = Qe + Qe (3.39)

and (*) represents a differentiation with respect to time.
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Rotation
Axis

Fig. 3.6 Rotational offsets and position vector.

3.5 Incremental Stiffness Due to Rotation

To properly obtain the natural frequencies of rotating plates and beams, it is necessary
to consider the stiffening effects which arise due to the stresses generated by rotation. This
procedure involves two steps. First the stresses of the beam are calculated for centrifugal
forces only. Then the incremental stiffness due to rotation is computed and is added to the
original stiffness matrix. The procedure for calculating the incremental stiffness matrix is
outlined below.

The additional strain energy due to centrifugal stiffening in each of the walls (Ucf) is
given by [105]
Uet; = %ﬂ“’xzcn +oploy +ag*(oy + on)

\Y% (3.40)
~20y Oy Oyn = 200 Oy ~ ZmeCGXC] dv

where @y, Oy and @ are the rotations about , n,  axes, respectively. It is important to
note that in the above equation, the strains are not included in the forfnulation based on the
assumption that their effects are small compared to the rotations. Equation 3.40 may be

written in matrix notation as follows.
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On ~Oxn Oy ||
1
Usti = J' o) oy o]-0pm ox  —onr fhonpdV (3.41)
\%
~oy ~Ong (0 +0m)] (@
where the stresses oj; are due purely to the centrifugal force in each individual wall. The

rotations are calculated as follows.

X 2{om o
1{0t; Jus
== ——-— A2a-
On AR aXJ (3.42a-c)
2o an)

Using Eqns. 3.12 and 3.42 the rotations are rewritten as

o _ 0w, __1_(1__4_j
X an 2 h2 WY’

ow, 1 4
Wy =— +—|1—— s 3.43a-
n ax 2( hzj\l’x ( a-c)

_1[dvy _duy
“’C'z(ax om )

3.6 Variational Method

The variation of strain energy is written as follows.

3U; = | BQmdByd0 m =126 (3.44)
Q

where the variation of the strain vector B, is expressed as the sum of the variation of the
strain in the untwisted coordinate system, the variation of the strain due to pre-twist and the

variation of the strain associated with sweep as follows.
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80y, = [(8ef, + 8150 x ~ 80z ) (B +BHmO5)

. 4o 1T (3.45)
(82 + 8120, — 802,25 ) (8K +BU30,5) S0 ]
The variation of the potential energy of the applied loads is expressed as
dWe, =ij8ﬁjdV+J.fj6ﬁjd5, ji=1,2,3. (3.46)
A% S

Due the presence of the rotational velocity, the variation of the kinetic energy can be

expressed in terms of four individual components as follows.

OT; = 8Tm; + 08T + 0Tk + OTg (3.47)
where the subscript ‘m’ denotes the component of the kinetic energy that is used to form
the mass matrix. Similarly, the subscripts ‘c’, ‘k” and ‘f* indicate the components that are
used in the formulation of the gyroscopic matrix, the stiffness matrix and the forcing

vector, respectively. The exact form of these variations are as follows.

8T, = J p[ 0,80, + 0,5, + i”i36a3]dv (3.48)
¢

5T, = j o[ (28202, - 20850, Jot; - 26038, + 261053 4V (3.49)
:

8Ty, = j 0 [(Q; +QF )3 + (QFf, - Qi3 |8,
v (3.50)

. N 2+ \sm

- [-Q0:1 +Qnu3)6u3] av

8Ty, = J’p { (Q% + Q% )(X + XZ )51”11 + (Qé(n + nf,) - QnQCCZ)SﬁZ
v (3.51)
+ (—Qnﬂg(n+nz)+£2%§2)8ﬁ3] dv

The quantity 8Tm;, in each wall, is rewritten as
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Ay AJk AJk A%
g i x3} Ay 8 Al 8N a0 k=123 (3.52)

5Tmi _ J~{J
Q

Ay A A ||

where A9, Al and A3 correspond to the zeroth, the first and the third-order components

(in {) of the displacement field, respectively. These quantities are defined as follows.

A =[u, v WO]T
2 = [(_Wo,x +\yx) (—wo,T| +\py) OT (3.53a-c)

4 4 !
A

The density matrices, Arjk , are defined as

h/2
(8%, A, A2, B, &, A5 Ip (RERNNG" (3.54)
-h/2

Although simple closed form expressions cannot be obtained for the remaining components
of the variation of the kinetic energy, they can be computed in a straight forward manner as
discussed later.
The variation of the strain energy due to the centrifugal stiffening in each wall is written
as
U, = jc);rn 3 S, dV, mn=1,2,3 (3.55)
\'

where
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( aWO 1 4 2)
S I L
an 2( hZC z
ow 1 4 .9
Op = 3= ax°+5(1—h—2C )Wx . (3.56)
1f9ve _dug
2L dx on
and
B T
On ~Oyq Oyt
o = |=Oym Oy O | (3.57)
| ~Ox¢ ~Ong (GX+GT1)_

It must be noted that the stresses in Eqn. 3.57 are due to centrifugal forces only which are
determined based on the forces associated with Eqn. 3.51. Therefore, Eqn 3.51 is used
only to determine the steady state stresses due to rotation. After these stresses are
calculated and the incremental stiffnesses are determined, the forcing terms associated with

this equation are no longer included in the formulation.

3.7 Solution Procedure

The solution of the equations of motion is obtained using a two-dimensional finite
element formulation in the local, twisted and swept coordinate system of each individual
plate (3, M, £). A four noded plate element is used to discretize the individual plates of the
beam. This element is C! continuous in the zeroth order displacements (uo, Vo, Wo) and is
Co continuous in the higher order terms (Yx, Wy). As a result, the element contains 11
degrees of freedom per node which are defined in terms of the nodal degree of freedom

vector as follows.

q=|u -

T
~ du, du, v, 9v, ow, 9w,
s s s 9 3 s y T o 5 ) 3.58
[ 0 ax an VO ax an WO aX an X “Vy ( )
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37.1 Continuity conditions: To maintain the continuity of displacements throughout the

entire beam, constraints are imposed at the corners of each individual plate as follows.
lug(m=bp) = Zu(x,n=0)

Wo(m=by) = —2wo(x,n=0) (3.59a-c)
wo(pn=b1) = *vo(x:n=0)

where the preceding superscripts ‘1’ and 2’ denote walls 1 and 2, respectively and by is
the width of wall 1 (Figs. 3.3 and 3.4). It must be noted that these equalities must be
satisfied for all values of 5. Therefore, the partial derivatives of the above equalities, with
respect to ¥, must also be satisfied. To ensure that the angle between the walls remains 90°

after deformation, the following constraints are imposed on the rotations about the -axis.
Mo (M =b1) = W (M =0)

. ) (3.60)
yy(un=by) = “Yy(.n=0)

Similar sets of constraints are derived at each of the four corners of the box beam.

3.7.2 Finite element formulation: The finite element approach is used to solve the

complete beam equations of motion (Eqn. 3.23). Denoting q as the nodal degree of

freedom vector, it is possible to express the strain (Eqn. 3.5) in the following form
~ * —
g = (rij +8 D~ zo,xzij)q ; (3.61)

The partial derivatives of the strain vector with respect to gj are then written as

0¢; * o

-a—q-IT = l“lj + 9,x<1>ij - ZO’X‘:‘ij' (362)
J

Note that quantities T, @ and E can be expanded in terms of { as follows

T =[Fi(j) T ¢ T Fi?]’{l ¢ e C4}

(3.63)
= gellL 2,
o =[‘I’% oj; Of ; ¢%]°{1 ce e C4} (3.64)

1l

Kij'{l <N C4},
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and
5i=[25 =it ¢}
= Lij-{l Cz}.

The rotation terms (®;) may also be expressed as a function of the nodal degrees of

(3.65)

freedom as follows

W; = @ijqj (3.66)
so that

90; _ 0;. (3.67)
aqj

Similarly, the displacement vector u may be written as

ug Suj

iy ¢ =15y f9; (3.68)
a3 Swj

or

such that partial derivatives of the displacements with respect to g; are as follows

% =5j. (3.70)
Note that the displacement matrix can similarly be written in terms of the thickness
coordinate as

Si =[s§} s} s;’}]-{l ¢ §3}

(3.71)
= Mij'{l g C3}-

Using the finite element approach, the coupled (dynamic/aerodynamic) beam equations

of motion are written in matrix form as follows
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Mgt) + Cqt) + Kq(t) = F(t) (3.72)
where M, C and K are the mass, the damping and the stiffness matrices, respectively and
F is the external force vector representing loads corresponding to the beam nodal degrees
of freedom (q). Note that in Eqn. 3.72, the C matrix represents the gyroscopic (Coriolis)
effects and not damping of the system. As a result, the equations of motion as formulated
represent an undamped system. Therefore a proportional damping (two percent) is
assumed in the model to represent the structural damping. The proportional damping is
determined based on the natural frequencies obtained through consideration of the mass and
the stiffness terms only in Eqn. 3.72. These terms are augmented to the C matrix. It must
be noted that additional terms analogous to damping and stiffness terms will be introduced
through aerodynamic loading. These terms are augmented to the appropriates matrices in
Eqn. 3.72 as explained in detail in Chapter 5. The matrices and forcing vector due to the

structural contribution only are expressed as follows.

M= Z J pSTsav |, (3.73)
i=llv
N ~

c=> p[m (swst - susa)-zgc(svs}susE)] av |, (3.74)
i=1| v

K" = i j(ﬂT +6,87 -2z, _')a (3+6,% -7, £)ao
=11 Q

i=1
(3.75)
N
- 2 J.p[QZ (susu +swsw) Q .Qc(swsv +svsw) + QC( usu +5 s'\l;)] dv |,
i=1lv
and the forcing vector is
F = 2 jTurSde + _[TurStds , (3.76)

i=l|v
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N

fr= ) JP<Q%(su{x+xZ}+swCZ)—Qnﬂg(sw{n+n2}+sv§) ~
=1y (3.77)

+ Qg(su{x+x§}+sv{n+n§})>} av .

Note that the matrix C in Eqn 3.75 does not include the proportional damping which can be
determined only after an eigenanalysis of Eqn. 3.72 is performed. The matrix denoted K*
(Eqn. 3.75) corresponds to the stiffness matrix obtained before the addition of the
incremental stiffness due to rotation. Using Eqns 3.75 and 3.76 to determine the stresses

due to beam rotation, the incremental stiffness matrix is calculated as follows.
N
K= ) jeT $edv|, (3.78)
i=l|v
where the stress matrix (¥ ) is determined from the solution to
K*q = fcf (3.79)
The total stiffness matrix (K) used in Eqn 3.72 is now written as a combination of K* and

K.r as follows

K = K" + K¢t (3.80)



4. Composite Beam Results and Validation

The mesh sizes necessary for both individual plate and complete beam analyses are
determined by performing a detailed convergence study. The details of this convergence
study are presented in Appendix C. Next, beam correlations are presented in order to
demonstrate the adequacy of the individual wall elements. Finally, the beam model (both
thin-walled and thick-walled sections) is correlated with available experimental results and
results obtained using a general purpose finite element code. Details of the correlation
study are presented in the following sections. In the following sections, the elemental
mesh size is defined as M x N where M is the number of chordwise elements and N is the
number of spanwise elements. For the beam model, a consistent mesh is used in every
wall and the mesh size presented corresponds to an individual wall. A finite element

representation of a beam with a 10 X 4 mesh is illustrated in Fig. 4.1.

Fig. 4.1 Box beam finite element discretion; 10 X 4 mesh.

4.1 Higher-Order Plate Verification Studies

To demonstrate the importance of including the transverse shear terms in the
formulation for the individual plates and to prove how well the present theory can capture
these effects, results are first presented for individual plates. The accuracy of the plate

theory is established from these validation studies, which are presented below.
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4.1.1 Square, untwisted plate: Results are presenfed for a simply supported square,
orthotropic plate under uniform loading (Fig. 4.2). The material properties of the plate are
listed in Table 4.1. Figures 4.3 and 4.4 present the variations of the normalized center
deflection, the normal axial stress (1) and the transverse shear stress (G5) with plate
thickness. The results of the present theory are compared with the those obtained using an
exact elasticity approach [106]. Note that in Fig 4.4, results using the classical laminate
theory (CLT) are not presented because in case of the axial stress, they are nearly identical
to the results from the higher-order theory and in case of the transverse shear stress, they
are zero. The figures indicate that the higher-order plate theory correlates very well with
the exact elasticity solution [106]. Also, for moderately thick to very thick plates, the
assumption of zero transverse shear stresses in CLT can introduce significant errors

(Fig. 4.4).

Fig. 4.2 Orthotropic square plate with fixed boundary conditions.
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Table 4.1 Summary of orthotropic material properties!0

E; = 20.83 x 106 p.si., Ep = 1.094 x 106 p.s.i.,
Gyy = 6.10 x 106 p.s.i., Gz =3.71 x 106 p.s.i,,

Hiz =044
2OT— © Exact
g |
§: ’ -- CLT
g ';o 154 —— Present
2= ]
L~
T - J
5= §
£2 0
© B, i
S ] —emmTTE—me——— o
5 l|||||||l|l||l||||||
0 5 10 15 20

Width to thickness ratio, a/h

Fig. 4.3 Normalized center deflection of fixed orthotropic square plate under uniform

n
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!

Normalized stress,
ci(h/a)z/qo x 10
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I

distributed load.

o  Exact

—— Present

Os

25
Width to thickness ratio, a/h

Fig. 44 Normalized stresses of fixed orthotropic square plate under uniform distributed

load.
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4.1.2 Plate with twist: From the convergence study it is determined that a 4 X 12 mesh

(665 degrees of freedom) provides converged results and therefore this mesh size is used in
all analyses involving the twisted plates. To validate the accuracy of the higher-order
theory, the results are compared with published results. The first four natural frequencies

for the plate are presented in Table 4.2. The natural frequencies are nondimensionalized as

follows.

hL4
A = o; /PD , (4.1)
D=Eh3/120-v?). (4.2)

The NASTRAN [105] results presented are due to MacBain [107] which uses a mesh size
of 11 X 24 to yield a total of 1265 degrees of freedom. The Rayleigh-Ritz solution is due
to Barton [108] in which an 18 term expansion for the deflection is used. In the table and
following figures ‘F’ is used to denote a flexural or bending mode, ‘T’ is used to denote a
torsional mode and ‘PM;’ is used to indicate the i-th plate mode. From the table it is noted
that although both the NASTRAN and the present approach correlate very well with the

Ritz solution, the present approach is more accurate and requires fewer total degrees of

freedom.
Table 4.2 Nondimensional frequencies of a flat, cantilevered plate
(v =03, L/iw =2.33)
Mode Ritz NASTRAN % Difference®  Present % Difference”
1F 3.47 3.43 -12 3.43 - 1.1
1T 17.10 16.74 -2.1 16.87 -1.3
2F 21.58 21.36 -1.0 21.45 - 0.6
2T 55.00 53.66 -24 54.08 -1.7

* Percent difference from Ritz solution.
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The natural frequencies of the twisted, isotropic pl‘ates over a range of tip twist values,

are presented in Figs. 4.5 - 4.7. In addition to the results obtained using the present
approach, experimental data [107] and results obtained using NASTRAN are also
presented. In these plates, the twist is assumed to vary linearly along the span. Results are
presented for tip twist values of 6 = 0°, 12°, 17°, 23.5°, 30° and 38° to correlate with
available experimental data. In addition, results using the present approach are also
calculated at pre-twist values of 45° and 60° to further examine the trends. From the
figures, excellent correlation is noted in all cases, with a possible exception of the first plate
mode (PM;) for low tip twist values. However, it must be noted that the experimental
value for this particular mode is also not available [107]. Using the present approach, its
value is very close to the third torsional mode (3T, Fig. 4.7). The proximity of these
natural frequencies might explain why it was possible to experimentally determine only one
of these values (3T). This also suggests that the current theory does accurately predict the
natural frequency of this mode and the results obtained using NASTRAN are under
predicted. Overall, the present approach yields more accurate results than NASTRAN.
This is due to the fact the elements used in NASTRAN are based on first-order shear

deformation theories which only approximate the transverse stress.
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Fig. 4.5 Natural frequency as a function of tip twist (modes 1-3).
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Fig. 4.6 Natural frequency as a function of tip twist (modes 4 - 6).
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Fig. 4.7 Natural frequency as a function of tip twist (modes 7 - 10).

4.1.3 Vibration of thick, swept plates: To validate the higher-order theory for thick plates

with sweep, the first eight nondimensionalized frequencies are calculated for several
different plate configurations. The plate geometry is shown in Fig. 4.8 and plates with two
different length-to-width ratios corresponding to a thick plate (a/b = 5) and a very thick
plate (a/b = 2) are investigated. In both cases, three different width-to-thickness ratios
(b/h= 0.5, 1 and 2) are used. The results obtained using the present approach are
compared with two different numerical results which were presented by McGee and Leissa
[109]. The first set of results in Ref. 109 were obtained using a three-dimensional Ritz
solution in which a 6 x 4 x 4 (288 degrees of freedom) mesh was used to discretize the
displacement field. In addition, results were also obtained using NASTRAN solid
elements (CHEXA) for a mesh size of 14 x 14 x 3 (2520 degrees of freedom). It must be

noted that both of these results represent truly converged results. In the present approach,
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a mesh size of only 6 X 4 (269 degrees of freedofn) is used which also represents
converged results. Graphical results for the thick plate (a/b = 5) V\;ith a unit width-to-
thickness ratio (b/h = 1) are presented in Figs. 4.9 - 4.16. The results from the other five

cases are presented in Tables. 4.3 - 4.7.

X

Fig. 4.8 Definitions of swept plate.

The first natural frequency of the thick plate with unit width-to-height ratio is shown in
Fig. 4.9 from which several important observations are made. It is seen that increasing the
sweep angle will increase the natural frequency. Also, all three techniques are in excellent
agreement. The second natural frequency is presented in Fig. 4.10 and indicates that for
zero sweep angle all three approaches are in very good agreement. With increases in the
sweep angle, the natural frequency in case of the Ritz solution increases more rapidly than
the other two techniques. This due to the fact the stress free boundary conditions on the
edges of the plate are exactly satisfied in the Ritz solution. In both the NASTRAN results

and the present approach these boundary conditions are not satisfied. In cases of moderate
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sweep (up to 30°), the difference between the present approach and the Ritz solution is less
than three percent. However, despite the fact that the NASTRAN solution involves an
order of magnitude increase in the total degrees of freedom, the present approach is a better
approximation to the Ritz solution.

Similar trends are observed in the higher-order modes (Figs. 4.11 - 4.16). In particular
it observed that in general the natural frequency increases more dramatically with sweep in
the Ritz solution than with the either the NASTRAN results or the present approach. In
some cases, the natural frequency is slightly over predicted in the present approach for zero
sweep. However, in all cases as the sweep angle increases the results using the present
approach are as good or are better than NASTRAN despite the fact that the number of
degrees of freedom used in NASTRAN is an order of magnitude larger than that used in the
present approach. In addition to the results presented in Figs. 4.9 - 4.16, the results
presented in Tables 4.3 - 4.7, for various plate thicknesses and length-to-width ratios, also
show similar trends. From all of these results, the adequacy of the higher-order theory to

model very thick, swept plates is demonstrated.
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Fig. 4.9 Comparison of the natural frequencies of the first mode for thick, swept plates.
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Fig. 4.10 Comparison of the natural frequencies of the second mode for thick, swept
plates.
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Fig. 4.11 Comparison of the natural frequencies of the third mode for thick, swept plates.
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Fig. 4.12 Comparison of the natural frequencies of the fourth mode for thick, swept
plates.
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Fig. 4.13 Comparison of the natural frequencies of the fifth mode for thick, swept plates.
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Table 4.3 Natural frequency parameters of thick, swept cantilevered plates;

ab=0.5,bh=5
Sweep Angle
Analysis ¢ 15° 30° 45°
Mode 1
Ritz 3.1227 3.2166 3.5501 4.,1425
Present 3.1054 3.2161 3.5459 4.0818
NASTRAN 3.1238 3.2217 3.4885 3.8582
Mode 2
Ritz 4.2261 4.3542 5.0753 7.1414
Present 4.3052 4.4372 4.9293 6.2007
NASTRAN 4.2821 4.4073 49183 6.2958
Mode 3 :
Ritz 6.8552 7.2038 8.2730 10.2007
Present 6.8642 6.9203 6.9706 6.5989
NASTRAN 6.7974 6.8581 6.9365 6.6924
Mode 4
Ritz 8.0642 8.3654 9.3562 11.4351
Present 7.5768 7.7075 8.1924 9.4582
NASTRAN 7.3213 7.4760 8.0192 9.2653
Mode 5
Ritz 12.6494 12.5656 13.3447 16.6312
Present 12.5927 12.1570 11.6274 11.7331
NASTRAN 12.5705 12.0459 11.4246 11.5358
Mode 6
Ritz 12.9342 12.9723 14.7501 18.9970
Present 13.0389 13.1159 13.5085 15.1500
NASTRAN 12.9816 12.3409 12.7782 13.3430
Mode 7
Ritz 13.5239 14.3488 17.1083 22.5717
Present 13.3894 13.6536 14.4809 15.7681
NASTRAN - 13.3094 13.1870 13.5041 14.2523
Mode 8
Ritz 13.9620 14.7390 17.7805 24.5030
Present 13.9822 14.1885 15.2488 16.4272
NASTRAN 14.4315 14.3078 15.1933 16.7757

Ritz solution 6 X 4 X 4 mesh; present solution - 6 X 4 mesh; MSC/NASTRAN CHEXA
values - 14 x 14 x 3 mesh.
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Table 4.4 Natural frequency parameters of thick, swept cantilevered plates;

ab=2,b/h=5
Sweep Angle
Analysis 02 15° 30° 45°
Mode 1
Ritz 3.3397 3.3432 3.0183 2.9961
Present 3.4077 3.4750 3.6810 4.0514
NASTRAN 34114 3.5002 3.7805 4.3144
Mode 2
Ritz 12.4593 12.5382 12.7095 . 11.6690
Present 13.7012 13.9136 13.8973 12.8721
NASTRAN 13.2833 13.5085 13.8810 12.9673
Mode 3
Ritz 14.3907 14.4765 15.4606 16.0299
Present 14.4754 14.3496 14.6975 16.4236
NASTRAN 14.4521 14.3258 14.4257 16.6212
Mode 4
Ritz 19.5960 19.7466 20.6890 23.6116
Present 20.4807 21.2286 - 23.5735 28.1333
NASTRAN 20.3647 21.1291 23.4390 27.4966
Mode 5
Ritz 38.7711 37.5107 35.3326 35.659
Present 43.3142 42.6169 422367 442161
NASTRAN 41.9086 41.6010 42.1593 46.0781
Mode 6
Ritz 52.2825 49.9046 51.9786 64.1992
Present 52.2598 51.1111 49.4186 47.6519
NASTRAN 52.3346 50.6122 48.6333 47.2957
Mode 7
Ritz 52.4692 50.3584 55.3036 68.8087
Present 54.4937 57.2897 59.9279 61.6180
NASTRAN 53.4834 55.9763 59.9545 62.1115
Mode 8
Ritz 54.8140 54.0790 57.9550 71.5920
Present 55.8318 57.3844 64.8321 75.3250
NASTRAN 54.7376 56.9011 62.7143 72.3215

Ritz solution 6 X 4 X 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA
values - 14 X 14 x 3 mesh.
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Table 4.5 Natural frequency parameters of very thick, swept cantilevered plates;

ab=1,bh=2
Sweep Angle
Analysis 0 15° 3 45°
Mode 1
Ritz 2.9463 3.0096 3.3164 3.8412
Present 2.9402 3.0113 3.2317 3.6310
NASTRAN 2.9397 3.0017 3.1809 3.4554
Mode 2
Ritz 44178 4.6232 4.6768 6.5555
Present 4.3996 4.4303 4.4928 4.4518
NASTRAN 4.3957 4.4244 4.4802 4.4421
Mode 3
Ritz 5.1815 5.3635 6.1756 7.6914
Present 5.4081 5.5332 5.9641 6.9015
NASTRAN 5.1470 5.2527 5.6351 6.4876
Mode 4
Ritz 10.5391 9.9399 11.3566 13.3667
Present 10.4674 10.3013 9.9520 9.5993
NASTRAN 10.5200 10.2640 9.8067 9.4300
Mode 5 |
Ritz 10.9792 10.645 13.5265 18.6951
Present 11.4304 11.6097 12.044 12.3342
NASTRAN 10.7864 10.8493 10.9455 10.8145
Mode 6
Ritz 11.7535 11.3436 13.5265 18.6951
Present 11.9244 12.1834 12.7421 13.0822
NASTRAN 11.6626 12.0043 12.6506 13.0694
Mode 7
Ritz 14.4674 12.5292 14.3425 18.9918
Present 15.0781 14.4062 14.3705 15.3392
NASTRAN 14.3273 13.7176 13.6732 14.0382
Mode 8
Ritz 16.1660 14.4180 15.9530 25.3940
Present 15.1308 16.3263 17.8745 18.7010
NASTRAN 14.4794 15.3277 16.5283 16.7953

Ritz solution 6 X 4 X 4 mesh; present solution - 6 X 4 mesh; MSC/NASTRAN CHEXA
values - 14 X 14 x 3 mesh.
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ab=05bh=2
Sweep Angle
Analysis ¢ 15° 30° 45°
Mode 1
Ritz 2.2304 2.2987 2.5790 3.1205
Present 2.2483 2.3041 2.4744 2.6396
NASTRAN 2.2375 2.2757 2.3791 2.5398
Mode 2
Ritz 2.7039 2.8662 3.3293 4.1110
Present 2.7457 2.7681 2.7883 2.7899
NASTRAN 2.6884 2.7535 2.7861 2.6920
Mode 3
Ritz 2.7577 2.8973 3.4345 4.8256
Present 2.7908 2.8774 3.1797 3.8379
NASTRAN 2.7289 2.7675 3.0452 3.4531
Mode 4
Ritz 4.7438 4.8997 5.3477 6.6697
Present 4.6172 4.6900 4.6509 4.6932
NASTRAN 4.2550 4.2921 4.3260 4.3008
Mode 5
Riz 5.0722 5.0376 5.4416 6.8077
Present 5.0371 4.8628 4.9193 5.1200
NASTRAN 5.0096 4.8003 4.5566 4.5895
Mode 6
Ritz 5.5855 5.8947 6.6160 8.1640
Present 5.5929 5.6647 5.5440 5.9195
NASTRAN 5.5375 5.1834 5.0861 5.3187
Mode 7
Ritz 5.5932 5.9298 7.1205 9.7608
Present 5.6144 5.6754 6.0995 6.5709
NASTRAN 5.5698 5.8741 5.9334 5.4364
Mode 8
Ritz 5.8219 6.1000 7.3500 10.0930
Present 5.7794 5.9215 6.4047 6.9770
NASTRAN 5.7046 5.7498 6.1511 6.5378

Ritz solution 6 X 4 X 4 mesh; present solution - 6 x 4 mesh; MSC/NASTRAN CHEXA
values - 14 X 14 X 3 mesh.
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Table 4.7 Natural frequency parameters of very thick, swept cantilevered plates;

ab=2,bh=2
Sweep Angle
Analysis @* 15° 30° 45°
Mode 1
Ritz 3.2545 3.2823 3.2943 3.3134
Present 3.2684 3.3259 3.5032 3.8267
NASTRAN 3.2667 3.3220 3.4865 3.7563
Mode 2
Ritz 5.7869 5.8978 5.9928 6.6404
Present 5.7902 5.7398 5.5589 5.1488
NASTRAN 5.7970 5.7466 5.5692 5.2041
Mode 3 |
Ritz 9.9090 9.8656 10.4693 11.0825
Present 10.5107 10.6933 11.3024 12.5047
NASTRAN 9.9270 10.0899 10.6543 11.8026
Mode 4
Ritz 16.3311 16.3082 17.4151 19.7762
Present 16.8113 17.1731 18.2583 19.0607
NASTRAN 16.4537 16.7024 17.3983 18.3928
Mode 5
Ritz 20.9459 20.9449 21.8063 25.7577
Present 20.9039 20.4445 19.7675 20.0736
NASTRAN 20.9648 20.2626 19.4645 18.9263
Mode 6
Ritz 21.9266 23.563 25.7634 32.3171
Present 22.3327 22.9537 23.9712 24.6472
NASTRAN 21.8993 22.7818 24.0112 24.8581
Mode 7
Ritz 29.5524 28.8472 30.5295 24.1152
Present 31.4764 31.2740 31.3982 33.0256
NASTRAN 29.5814 29.6120 30.1386 31.9981
Mode 8
Ritz 37.2420 30.8320 34.8060 45.4330
Present 39.2395 40.5095 43.6541 40.7105
NASTRAN 37.4149 38.1270 39.7678 41.1186

Ritz solution 6 X 4 x 4 mesh; present solution - 6 X 4 mesh; MSC/NASTRAN CHEXA
values - 14 X 14 X 3 mesh.
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4.2 Static Thin-Walled Beam Verification Study

To validate the developed procedure, correlations are made with available experimental
results on a thin-walled box beam [110] and a previously developed analytical model [59].
The analytical model developed in Ref. 59 is a one-dimensional thin-walled beam model,
based on the Classical Laminate Theory (CLT). In this approach, the out-of-plane warping
effects are determined using on a contour analysis. The details of the beams studied are
presented in Table 4.8. The cross ply and symmetric beams are all subjected to two
different loading conditions, a 1 Ib. bending load at the tip and a 1 Ib.-in. tip moment. The
anti-symmetric beams are subjected to a } Ib. axial load at the tip and a 1 Ib.-in. tip

moment.

42.1 Crossply: The bending slope of the cross ply beam under a 1 Ib. tip bending load is
presented in Fig. 4.17, which compares the experimental data [110], the results of the
quasi-analytical model [59] and the results from the present study. Further, results from a
beam finite element model reported in Ref. 59 are also presented. As mentioned in Ref.
59, this two-dimensional finite element technique is as accurate as a full three-dimensional
finite element model for the particular beams studied in that report. From Fig. 4.17, it is
seen that all three modeling techniques under predict the bending slope of the cross ply
beam. This can possibly be attributed to errors in the experimental results arising from
fiber alignment problems that are typically encountered during fabrication and curing of the
beam. A slight shift from the desired (0° and 90°) ply orientations can introduce additional
coupling terms which will reduce bending stiffnesses, thereby increasing the bending
slope. Overall, there is still good correlation between all three modeling techniques in this
case. The twist angle of the cross ply beam due to a 1 Ib.-in. tip moment is shown in Fig.
4.18. From the figure, excellent correlation is observed for both the quasi-analytical model
[59] and the present approach. To further investigate the possible coupling with slightly

shifted angle plies, the bending slope and elastic twist for the same loading conditions are
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calculated for a “cross ply” [6°/84°]3 beam. From the figures it is seen that both the
bending slope (Fig. 4.19) and the elastic twist (Fig. 4.20) now correlate extremely well

with the experimental results.

Table 4.8 Details of composite beams>%-110

Flanges Webs

Top Bottom Left Right
Cross Ply [0°/90°]3 [0°/90°]3 [0°/90°]3 [0°/90°]3
Symmetric 15° [15°]6 [15°¢ [15°/-15°]3 [15°%/-15°]3
Symmetric 30° [30°]e [30°T¢ [30°/-30°13 [30°/-30°]3
Symmetric 45° [45°]6 [45°]6 [45°/-15°]3 [45°/-45°]3

Anti-symmetric 15° [15°]¢ [-15°¢ [15°T6 [-15°]6
Anti-symmetric 30° [0°/30°]3 [0°/-30°]3 [0°/30°]3 [0°/-30°]3
Anti-symmetric 45° [0°/45°]3 [0°7-45°]3 [0°/45°]3 [0°/-45°]3

Length = 30 in., width = 0.953 in., depth = 0.53 in., ply thickness = 0.005 in, number of plies = 6, wall

thickness = 0.030 in.

Mechanical properties: Ep = 20.59 X 106 p-si., Ey = 142 X 10 p.s.i.,

Gpr=0.89 x 100 p.s.i., v = 0.42. (Cross ply dimensions: width = 2.06 in., depth = 1.025 in.)
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Fig. 4.17 Bending slope of cross ply beam under 1 Ib. tip bending load.
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4.2.2 Symmetric beams: The bending slope of the symmetric 15° beam under a 1 1b. tip

bending load is presented in Fig. 4.21 where good correlation is observed between both

modeling techniques. There are two sets of experimental data presented in this figure (as

well as in the following figures) due to the fact that two separate beams were tested in Ref.

110. The induced twist due to tip bending load is presented in Fig. 4.22, which shows that

the present approach slightly over predicts the twist angle at the tip compared to the quasi-

analytical model of Ref. 59. Overall, both models show good correlation with the

experimental data.
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Fig. 4.22 Bending induced twist of symmetric 15° beam under 1 Ib. tip bending load.
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The bending slope of the symmetric 30° beam is presented in Fig. 4.23. This figure
also shows the results from the beam finite element method presented in Ref. 59. From the
figure it is observed that the quasi-analytical technique slightly under predicts and the
present approach slightly over predicts the bending slope. The beam finite element method
[59] over predicts the slope more significantly than the current approach. Once again, good
correlation exists between all techniques. The induced twist due to bending load is
presented in Fig. 4.24. The quasi-analytical technique again under predicts the response.
The results from the present study correlate extremely well with the experimental data in

this case.
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Fig. 4.23 Bending slope of 30° symmetric beam under 1 Ib. tip bending load.
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Fig. 4.24 Bending induced twist of 30° symmetric beam under 1 1b. tip bending load.

The results from the symmetric 45° beam subjected to a 1 1b. tip bending load are
presented in Figs. 4.25 and 4.26. As shown in Fig. 4.25, the bending slope is slightly
over predicted by the present model although the correlation with experimental data is still
very good. The quasi-analytical technique [59] also correlates well. In case of the induced
twist due to the bending load, the trends are significantly different (Fig. 4.26). The quasi-
analytical method greatly under predicts the twist in this case while the present approach
correlates extremelv well with the experimental data. Further, the results are in excellent
agreement with those predicted by the variational asymptotical approach (VABS) due to
Cesnik et al. [69]. The approach reduces the cross-sectional properties into one-
dimensional beam properties based on an expansion in terms of a small parameter which is
defined to be the beam height divided by the beam length. The theory also includes both

inplane and out-of-plane warping and is well suited for thin-walled box beams.
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Fig. 4.25 Bending slope of [45°]¢ thin-walled beam under 1 Ib. bending load at tip.
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Fig. 426 Bending induced twist of [45°]¢ thin-walled beam under 1 1b. bending load at
tip.

The results from the 1 Ib.-in. tip moment loading case, for all three symmetric beams,
are presented in Figs. 4.27 and 4.28. Since the variation of the response is linear, only the
results at the mid span location (x/R = 0.5) are presented. From Fig. 4.27 it is seen that
there is scattered correlation with the experimental bending slope, but it must be noted that
the actual values of the slope are very small (on the order of 0.0005 rad). In case of the 15°

symmetric beam, all three approaches over predict the slope when compared to the
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experimental values. In case of the symmetric 30° beam, the present approach and the
beam finite element method again over predict the slope, whereas the quasi-analytical
method [59] correlates well with the experimental data. Finally, in case of the symmetric
45° beam, the quasi-analytical method greatly under predicts the slope whereas the beam
finite element method and the present approach correlate very well. Overall, however, all
three techniques show good correlation with the experimental data, particularly when the
actual magnitude of the slope is taken into consideration. The comparisons of the twist
angles are presented in Fig. 4.28. In case of the symmetric 15° beam, all three techniques
slightly over predict the twist angle. However, in case of the symmetric 30° beam and the
symmetric 45° beam, both the present approach and the beam finite element method
correlate extremely well with the experimental data while the quasi-analytical technique

significantly under predicts this behavior.
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Fig. 4.27 Twist at x/R = 0.5 for 1 Ib.-in. tip moment of symmetric beams.
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Fig. 4.28 Bending slope at x/R = 0.5 for 1 Ib-in. tip moment of symmetric beams.

By examining Figs. 4.17 - 4.28, it is observed that the quasi-analytical model of Ref.
59 correlates well with experimental data for the cross ply beam and the 15° symmetric
beam. In case of the 30° symmetric beam, the quasi-analytical model begins to under
predict the behavior. This is particularly evident in Fig. 4.22 which presents the induced
twist due to a 1 Ib. tip bending load. The quasi-analytical method greatly under predicts the
behavior of the symmetric 45° beam in all cases studied with the exception of the bending
slope due to a 1 Ib. tip bending load. It is also observed from these figures that although
the present approach slightly over predicts the beam behavior for lower ply angles, the
technique correlates very well with the experimental data in cases with larger ply
orientations. Further, in cases where the present approach does over predict the behavior
of the beam, compared to the experimental values, the beam finite element method [59]

exhibits similar trends (Figs. 4.17, 4.27 and 4.28).
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4.2.3 Anti-symmetric beams: The results from the three anti-symmetric beams (Table 4.8)
are presented in Figs. 4.29 and 4.30. Since the response is linear, only the results at the
mid span location are presented. As in Figs. 4.27 and 4.28, the actual magnitude of the
twist angle, must be noted in these figures. The twist angle due to a 1 1b.-in. tip moment is
presented in Fig. 4.29. In case of the 15° anti-symmetric beam, the quasi-analytical model,
the beam finite element method and the present approach all correlate very well the
experimental data. For the other two anti-symmetric beams, all three approaches predict
very similar results, slightly under predicting the response compared to the experimental
results. Similar trends are observed in Fig. 4.30 which presents the twist angle for a 1 Ib.
axial tip load. For the anti-symmetric 15° beam all three approaches slightly over predict
the twist. However, all three approaches predict the behavior very well for the anti-
symmetric 30° beam and the anti-symmetric 45° beam.
Overall, both the quasi-analytical model of Ref. 59 and the present approach correlate
well with the experimental data in case of the anti-symmetric beams. Both techniques
predict the same trends for all three beams. The present approach offers small

improvements over the quasi-analytical results for the anti-symmetric 15° beam.
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Fig. 4.29 Twist at x/R = 0.5 for 1 Ib.-in. tip moment of anti-symmetric beams.

EI Experimental

Quasi-Analytical

Bd Beam FEM.
0.15

bl Present

P
e

*

o

e

e

-
..

0.1

()

&
-

XX

5

-
{2

&

(2

0.05 4

(%

v

*

Twist angle x 1000 (rad)

]
MM

KK

V.

! 1
[15°], [0°/30°),  [0°/45°],

‘ Fig. 4.30 Bending slope at x/R = 0.5 for 1 Ib. tip axial load of symmetric beams.



72
4.3 Static Thick-Walled Beams Results

To demonstrate the importance of including transverse shear effects in the beam
formulation, results are now presented for a series of thick-walled beams. Due to the lack
of available experimental data, only numerical results are presented. Two different
composite lay-ups are used which correspond to the symmetric 15° beam and the symmetric
45° beam (Table 4.8). The beams studied have a length-to-width ratio (L/c) of 2.5 and a
width-to-height ratio (c/d) of 2. Since the goal is to investigate the effects of thick-walled
beams, the wall thicknesses used in this study are 0.25 in. resulting in the values of the
width-to-thickness ratio, c/h = 8, in the horizontal walls and the height-to-thickness ratio,
d/h = 4, in the vertical walls. These two beam configurations are subjected to a 100 Ib.
bending load at the tip as well as a 100 Ib.-in. tip moment.

Figure 4.31 presents the elastic twist for the thick-walled 15° symmetric beam subjected
to a tip bending load. From the figure, it is observed that in addition to the fact that the
local twist in the four individual walls is nonlinear, the average twist in each of the four
walls is also nonlinear. This is different from the trends observed in case of the thin-walled
beams where the local twists in the individual walls are nearly identical. In general, the
local values of twist are very close to the average values which are presented in Fig. 4.27.
Thus the average twist is a good representation of the beam twist for thin-walled beams. In
the thick-walled case, however, the local twist differs significantly in the individual walls
and as a results it is difficult to designate a value of “beam twist” for the entire cross
section. Figure 4.31 also shows that the twist in the vertical walls are not equal to each
other, while thé twist in the horizontal walls are equal. This is due to the fact that the ply
angles in the horizontal walls are all +15° (measured in the global, twisted coordinate
system) and the two opposite walls are therefore mirror images of each other in their local

coordinate systems. In the vertical walls, however, the stacking sequence in the opposite

walls differs by a sign change (e.g. £15° in the right wall and ¥15° in the left wall). This



73
nonlinear trend is more observable in Figs. 4.32 and 4.33 which presents the induced twist
of the symmetric 45° beam subjected to a tip bending load. In addition to the results
obtained using the present approach, results obtained using NASTRAN are also presented.
The NASTRAN results are obtained using QUAD4 plate elements which are elements
based on first-order shear deformation theory. From Figs. 4.32 and 4.33, good correlation
is observed between the present approach and NASTRAN in each of the walls. The
nonlinear behavior of the vertical walls is more dominant in this case. The average twist
for both approaches is presented in Fig. 4.34 where the correlation is again noted. In
general, NASTRAN slightly over predicts the results compared to the present approach.
This is due to the fact that only first-order shear deformation effects are included in the

NASTRAN elements (QUADA4) used in this study.
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Fig. 4.31 Bending induced twist of thick-walled 15° beam under 100 Ib. tip bending load.
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Fig. 4.34 Comparison of average bending induced twist of thick-walled 45° beam under
100 Ib. tip bending load

A more complete explanation why the twist varies in each of the individual walls is
presented in Figs. 4.35 - 4.37. Figure 4.35 shows the application of the tip bending load
to the individual walls of the beam. In Fig. 4.36, a schematic diagram of the resulting
displacements for unconnected walls (that is, individual plates) is shown where it is seen
that displacements in the horizontal walls are described by a translation and a rotation. This
is due to the fact that the plies in these walls are all of the same value (e.g. +45°) and
therefore the laminate is unbalanced. Since both the vertical walls comprise balanced
laminates (e.g. +45°), there is no rotation in these walls and the displacement is purely
translational. From Fig. 4.36 it is seen that the rotational displacement of the horizontal
walls restricts the translational motion of the left vertical wall whereas the rotational motion
in the horizontal walls is complimentary to the translational motion of the right wall. Asa
result, the horizontal walls become cambered which in turn induces large shearing stresses

in the vertical walls. This type of bending behavior is shown in Fig. 4.37 which presents
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the midplane deformation (greatly magnified) of the tip cross section for the 45° symmetric
beam subjected to a tip bending load obtained using both the present approach and
NASTRAN. Both techniques show shearing of the vertical walls and the cambering of the
horizontal walls. Careful examination of Fig. 4.37 also reveals that the walls do not remain
perpendicular to each other (at the corners) after deformation in case of the NASTRAN
results. This is due to the fact that no such constraints are imposed in the NASTRAN
formulation. In the present formulation, constraints are imposed on the rotations at the
corners and the walls do remain perpendicular after deformation. This explains the increase
in camber of the horizontal and the decrease in the transverse shear of the vertical walls

when compared to the present results.

f1
f, ; £,
1 1
f3

Fig. 4.35 Schematic of load distribution under tip bending load.

Fig. 4.36 Schematic of individual wall displacements under tip bending load.
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Fig. 4.37 Deformation of cross section at tip due to tip bending load; 45° beam.

The twist angle due to a 100 Ib.-in. tip moment for the 15° symmetric, thick-walled
beam is presented in Fig. 4.38. Similar trends as those obtained with the tip bending load
are observed. In this case, however, the average twist of all four individual walls is very
nearly linear. In comparison, in case of the thin-walled, symmetric 15° beam, the twist
angle due to a 1 1b.-in. tip moment is linear in each of the four walls, except at the tip where
the values are slightly larger for the horizontal walls compared to the vertical walls. The
trends for the thick-walled beams are more observable in Figs. 4.39 and 4.40 which
presents the twist angles of the thick-walled 45° symmetric beam due to a 100 Ib.-in. tip
moment for both the present approach. These figures also present the corresponding
NASTRAN results. A comparison of the average twist using both techniques is presented
in Fig. 4.41. Good correlation is observed from these figures. The small differences are
once again attributed to the fact that QUAD4 elements used in NASTRAN only includes
first-order shear deformation effects and the lack of constraints at the corner rotations in the
NASTRAN formulation.

The results presented above indicate the importance of including transverse shear
effects in the beam formulation. Further, the results also show that in general the twist of a
composite beam is a local quantity which can be defined only locally, at a point. The
definition of the twist at the centroid of a beam (or some other arbitrary point) is an

approximation which in case of thick-walled sections can be erroneous.
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4.4 Dynamic Results
In following sections, dynamic results for several different beam configurations are
presented, including both thin-walled and thick-walled beams. Due to the lack of
experimental data available, the results obtained using the present method are compared
with those obtained using NASTRAN. In case of the composite beams, QUAD4 elements
(first-order shear deformable) are used. In case of the thick-walled isotropic beam, both

CHEXA (solid elements) and QUAD4 elements are used.

4.4.1 Thin-walled beams: The natural frequencies of the first several modes are calculated

using the present approach and NASTRAN. These frequencies which are

nondimensionalized as follows

nLt
M = o P (4.3)

D=E; h%/12(1-v;,2). (4.4)

are presented in Table 4.9. The beam bending and chordwise bending modes are denoted
‘B’ and ‘C’, respectively, the torsional modes are denoted “T” and extension modes are
denoted ‘E’. An element mesh size of 4 x 30 (each plate) is used in the present approach
and since the NASTRAN elements are linear, a mesh size of 12 X 30 is used in each plate.
From Table 4.9, very good correlation is observed between the predicted frequencies
obtained using the present approach and NASTRAN. In general, the natural frequencies
are slightly higher in case of the present model. This is once again due to the fact that a
third-order displacement field is used in the present approach and the NASTRAN elements
use only a first-order displacement field. Further, fairly significant differences observed in
the torsional frequencies, with the present model being more stiff torsionally. The higher
natural frequencies predicted by the present approach (compared NASTRAN results) is due

to the constraints imposed on the corner rotations which are not present in the NASTRAN
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formulation. It must also be noted that the present approach predicts a purely inplane
warping mode which occurs before the fifth chordwise bending mode and the second

torsional mode. This mode is not captured with NASTRAN.

Table 4.9 Natural frequencies of symmetric, thin-walled 45° beam

Frequency Parameter
Present NASTRAN

Modes (4x10mesh)  (QUADA, 12x30 mesh)
B1 27.57 27.05
Cl 47.79 46.98
B2 172.32 169.12
2 29723 292.48
B3 480.13 472.39
3 822.92 812.08
B4 930.75 921.98
I 1458.03 1301.71
BS 1498.28 1514.79
Cc4 1581.34 1570.51
El 1735.09 1718.58

Warp 2363.50 N.A.
cs 2553.36 2568.33
™ 3354.10 3388.66

To demonstrate the effect of inplane and out-of-plane warping on beam dynamic
deformation, several mode shapes are presented for the 45° symmetric composite beam
studied in Ref. 110. Due to the stacking sequence of this composite beam (Table 4.8),
flap-lag coupling is absent. However, both bending-torsion coupling and extension-shear
coupling are present. Further, since the beam consists of only +45° plies, it is extremely
rigid in torsion and the first torsional natural frequency () is 52.8 times the fundamental

natural frequency (o= 18.83 Hz). As a result, there is no warping, either inplane or
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out-of-plane, in the first five beam bending modes (Wps = 54.3 ®1) and in the first four
chordwise bending modes (®¢4.= 57.4 Wo). To illustrate the lack of coupling and/or
warping in the first several modes, the fourth chordwise bending mode is shown in
Fig. 4.42. (In these figures the dots denote the original undeformed shape of the beam.)
However, there exists a purely inplane warping mode which occurs before the second
torsion mode (®y, = 122 ®,). This mode, whose natural frequency is 85.7 times the
fundamental frequency, is illustrated in Fig. 4.43. It must be noted that this warping mode
is not predicted by NASTRAN. The lack of significant out-of-plane warping for this
composite beam is due to its thin-walled construction. Due to the very thin walls, the beam
bending motion is accounted for by pure bending in the horizontal walls and the chordwise
bending motion is accounted for by pure bending in the vertical walls. The bending
motions are much larger than any inplane shear in the walls and as a result there is very

little warping.
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Fig. 4.42 Fourth chordwise bending mode of [45°]¢ thin-walled beam.
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Fig. 4.43 Inplane warping mode of [45°]¢ thin-walled beam.

4.4.2 Pre-twisted thin-walled beams: In addition to the beams studied in Refs. 59 and

110, the frequencies and mode shapes are also presented for the symmetric, 45° beam with
a 30° twist from root to tip. Table 4.10 presents the nondimensionalized frequency
parameters obtained using both the present approach and NASTRAN. From the table it is
seen that there is good correlation between the two approaches, although the present
approach predicts slightly higher values in general. Similar trends as those of the untwisted
beam are noted in this case. The differences are once again attributed to the different
elements being used in the formulation. The current approach models the transverse strains
more accurately than NASTRAN and exactly satisfies the stress free boundary conditions
on the inner and outer surfaces of the beam. As is the case for the untwisted beam, a

purely inplane warping mode is predicted using the present approach. This mode which
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occurs before the second torsion mode (and fourth chordwise mode) is not predicted by
NASTRAN.

Interesting mode shapes for the pre-twisted beam are presented in Figs. 4.44 - 4.46.
Unlike the untwisted beam which displays very little coupling between bending modes, the
pre-twisted beam starts to exhibit coupling between beam bending and chordwise bending
as early as the first two modes (Wp; = ®o and W¢; = 1.56 ®y, Wo = 20.5 Hz). This
coupling is more significant in the second bending modes which are presented in Fig. 4.44
(®p, = 5.79 ®,) and Fig. 4.45 (w¢p = 9.54 ®,) despite the fact that their natural
frequencies are not close to each other. Similar to the untwisted beam, a purely inplane
warping mode exists for the pre-twisted beam with a natural frequency of 77.4 times larger
than the fundamental frequency as shown in Fig. 4.46. This mode which occurs before the

second torsional frequency (my, = 109 @) is again not captured by NASTRAN.



Table 4.10 Natural frequencies of symmetric, thin-walled 45° beam with 30° pre-twist

Frequency Parameter
Present NASTRAN

Modes (4x10mesh)  (QUADA, 12x30 mesh)
B1 30.60 27.10
Cl 47.66 46.64
B2 177.17 170.72
@2 292.07 287.89
B3 485.96 479.92
3 811.72 788.35
B4 941.58 948.29
T1 1410.57 1295.00
B5 148331 1457.52
Cc4 1595.27 1627.26
El 1735.09 1719.61

Warp 2367.11 N.A.
Cs 2731.88 2598.25

T2 3354.22 3341.20
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Fig. 4.45 Second chordwise bending mode of [45°]¢ thin-walled, pre-twisted beam.
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Fig. 4.46 Inplane warping mode of [45°]¢ thin-walled, pre-twisted beam.

4.43 Thick-walled beams: In addition to the beams studied in Refs. 59 and 110, natural

frequencies and mode shapes are also presented for a thicker and shorter version of the
beam with two different sets of material properties. Complete details of the thick-walled
beams studied are listed in Table 4.11. The first set of material properties corresponds to
an isotropic beam. The second beam is made of orthotropic laminae with identical lay-up

and material properties as the symmetric 45° beam listed in Table 4.8.

Table 4.11 Details of moderately thick beam

Length = 10 in., width =2 in., depth=1in,,
ply thickness = 0.0667 in., number of plies = 6,
total wall thickness = 0.4 in.

Isotropic material properties
E =10 x 106 p.s.i., v=03, p =0.1 Iby/in3
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The natural frequency parameters for both the present approach and for NASTRAN
results are presented in Table 4.12. Since this beam has thicker walls, solid elements
(CHEXA) are used to model the beam in NASTRAN. A 12 X 30 X 3 mesh is used for a
total of 17280 degrees of freedom. For comparison purposes, QUADA4 elements (12 x 30
mesh, 4320 degrees of freedom) are also used to calculate the frequencies. A 4 x 10
element mesh is used (1896 degrees of freedom) in the present approach. Good correlation
is again observed between the present approach and NASTRAN CHEXA results although
far fewer degrees of freedom are used in the present approach. The NASTRAN QUAD4
elements also correlate well with both the present approach and the solid (CHEXA)
elements. In general, the solid elements predict slightly higher values of the bending
frequencies and slightly lower values of the torsional and extensional frequencies when
compared to the other two techniques. The present approach predicts slightly higher values
compared to the QUAD4 elements. The differences in the torsional frequencies are again
caused by the lack of rotation constraints at the corners of the beam in both NASTRAN
results. For this beam, as was the case of thin-walled beams, the present approach does
predict warping modes which are not predicted by either of the NASTRAN formulations.
However, these modes occur only after the fifth torsional mode (T5) and as a result they
are not presented in Table 4.12.

In the isotropic beam case, it is seen from Fig. 4.47 that out-of-plane warping is
present as early as in the second chordwise bending mode (®¢, = 10.5 @, o = 313 Hz).
This is due to the presence of inplane shear in the side walls. The third torsional mode
(3 = 34.80,) is presented in Fig. 4.48. A careful examination of this figure shows a
small amount of both inplane and out-of-plane warping. This warping, which represents
somewhat of a three-dimensional camber, is greatest near the node points. The camber

effect is due to the shearing of the cross section.



Table 4.12 Natural frequencies of thick-walled isotropic beam

Frequency Parameter

Prosont NASTRAN  NASTRAN
Modes (CHEXA, (QUAD4,
(4x10mesh)  15.30%3 mesh)  12x30 mesh)
BI 8.27 8.57 8.24
Cl 16.30 16.53 16.24
B2 46.41 49.28 46.28
T 74.29 60.75 61.18
c2 86.73 88.21 86.23
3 114.74 124.02 114.34
El 130.22 126.56 130.04
T 197.03 179.82 178.06
B4 205.08 208.83 196.04
3 216.61 215.51 203.33
T3 288.08 292.11 279.82
BS 289.18 316.45 286.29
& 299.52 345.00 334.98
E 356.81 378.49 367.09
Cs 432.30 488.40 472.97
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To investigate the effect of wall thickness on the Warping of composite beams, natural
frequencies and mode shapes are calculated for a thicker and shorter composite beam with
cross-sectional dimensions that are approximately twice that of the symmetric 45° beam
originally studied in Ref. 110. The length of this beam is one-third the previous beam.
The laminate stacking sequence and material properties are identical to the previous beam
(see Tables 4.8 and 4.11).

The natural frequency comparisons between the present approach and NASTRAN are
presented in Table. 4.13 and show good correlation between the two techniques. It must
be noted that although this beam does represent a thick-walled beam, QUAD4 (plate)
elements are used. This is due to the fact that if solid elements (CHEXA) were used, each
unique lamina would require a separate element. For this simple beam, that would require
a discretization into 6 elements through the thickness of each wall. For more complex
beams, this number would increase making the approach computationally expensive. Also
numerical conditioning is an issue since very thin solid element do not behave very well
[105]. Similar trends as those obtained in the previous three beams are again observed in
this beam. In particular, the present approach predicts slightly higher natural frequencies
for the lower modes and slightly lower natural frequencies for the higher modes compared
to those predicted using NASTRAN. This is again due to the differences in the
displacement field and the constraints on the corner rotations.

As in the previous beam, for the first several modes there is no coupling between the
beam bending, the chordwise bending and the torsional modes. However, for this thicker
beam, a slight out-of-plane warping effect is observed in the first chordwise bending mode
(0¢), whose natural frequency is only 2.10 times larger than the fundamental frequency
(®o = 224 Hz). The second chordwise bending mode (¢, = 13.5 ) is shown in Fig.
4.49. A significant amount of out-of-plane warping is observed in this mode

predominantly due to the shearing in the upper and the lower walls. Figure 4.49 also
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shows that this mode is uncoupled, although its natural frequency is close to the first

torsional mode (®y; = 11.5 ).

Table 4.13 Natural frequencies of thick-walled symmetric 45° beam

Frequency Parameter
Present NASTRAN

Modes (4x10 mesh)  (QUADA4, 12x30 mesh)
B1 2.77 2.70
C1 5.82 5.72
B2 16.67 16.28
T1 31.76 30.25
C2 37.32 31.25
B3 43.85 43.08
El 44.16 43.47
B4 78.42 77.27
C3 79.76 77.48
T 96.48 82.70
BS 102.50 114.11
T3 115.14 117.63
E2 117.29 127.22
C4 125.29 132.64

T4 128.73 145.54
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3-D view

side view

top view

Fig. 4.49 Second chordwise bending mode of [45°]¢ thick-walled beam.

There is, however, a significant amount of coupling between the fourth beam bending
mode (®p, = 28.3 ®,) and the third chordwise bending mode (®¢3 = 28.8 ,). To
illustrate this coupling, the third chordwise bending mode is shown in Fig. 4.50. This
coupling, which is clearly due to the fact that their natural frequencies are very close,
causes a significant amount of both inplane and out-of-plane warping as depicted in Fig.
4.50. Unlike the second chordwise bending mode which remains uncoupled from the
nearby first torsion mode, the third chordwise bending mode is slightly coupled with the

second torsion mode (@, = 34.8 ) as well as with the fourth beam bending mode.
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Fig. 4.50 Third chordwise bending mode of [45°]¢ thick-walled beam.

Finally, to illustrate the importance of inclqding both inplane and out-of-plane warping
in the beam formulation, the second extensional mode (®e, = 42.3 @) is presented in Fig.
4.51. A significant amount of warping in observed in this mode which is slightly coupled
with the third torsion mode (@i = 41.6 ®o) and is largely coupled with the fourth
chordwise bending mode (®c4 = 45.2 ®o). Unlike the previous modes which have
primarily linear warping, both the inplane and the out-of-plane warping in this mode are
nonlinear. Of particular interest is the “necking” effect observed near the cantilevered edge
shown the side view and the nonlinear out-of-plane cross-sectional camber which is
demonstrated in the top view. This three-dimensional warping is a result of the shearing

effects and are significant due to the thick-walled construction of the beam.
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Fig. 4.51 Second extensional mode of [45°]¢ thick-walled beam.
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5. Aerodynamic Modeling

The aerodynamic formulation is based on the two-dimensional compressible
aerodynamic representation developed by Smith [111] and later modified by Talbot [112]
for the formulation of axial flow performance analysis. The modifications by Talbot
include an empirical correction to the two-dimensional stall behavior to represent the high
lift capability demonstrated by rotors and propellers. In the initial study performed by
Smith [111] an empirical fit was performed on NACA 63 and 64 series airfoil families in
order to supply a functional relationship between maximum lift coefficient and sectional
thickness and camber for incompressible flow. Detailed expressions for the coefficients of
lift, drag and pitching moment (cj, ¢4 and cm), which represent the high lift capability of
rotary wings in post stall angle of attack region, are found in Ref. 106. These functional
relationships were later modified by Talbot [112] to model the Advanced Tiltrotor Blades
(ATB) [113,114]. These relationships were then modified by McCarthy et al. [13] to
include blade sweep. ‘A similar algorithm was proposed to model the post stall delay due to
rotation by Corrigan and Schillings [115]. In this study, the formulation is extended to
include blade dynamic effects. The coefficients of lift, drag and the pitching moment,
obtained using this analysis, are presented in Figs. 5.1 - 5.3 for a typical section of the

Advanced Technology Blade over a range of Mach numbers.

5.1 Aerodynamic Loads

The blade element theory used in the algorithm is due to Glauert [116]. In this
formulation, the sectional lift and drag are resolved into elemental thrust and torque for each
section of the blade. The force and momentum equations for thrust and torque assume the

following form.

dT; = dmrp(V., + v; Jv;dr, (5.1

dT, = é—szc(cl cos A —cgsinA)dr, (5.2)
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dQ; = 4nr?p(V., +v; Jurdr, (5.3)

dQ, = %pwzc(cl sin A + cq cos A)rdr, (5.4)

where dT, dQ and dr represent the section thrust, torque and element length, respectively,
V.. is the forward velocity, v; and ur represent the inflow and swirl velocities, respectively
and W is the magnitude of the resultant velocity. The chord length and radial locations are
denoted ¢ and r, respectively and p is the air density. The quantities ¢] and cq represent the

sectional coefficients of lift and drag, respectively.

Coefficient of lift, ¢,

-1.5

LN DAL B LU N,
30 20 -10 O 10 20 30 40 50
Angle of attack (deg)
Fig. 5.1 Sectional lift coefficient distribution; Advanced Technology Blade.
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Fig. 5.2 Sectional drag coefficient distribution; Advanced Technology Blade.

Pitching moment coefficient, ¢ ,
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Fig. 5.3 Sectional pitching moment coefficient distribution; Advanced Technology Blade.
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The subscripts (1) and (2) in Eqns. 5.1 - 5.4 correspond to the momentum and force
equations, respectively, for thrust and torque. This system of equations is then used to

solve for the inflow and swirl velocities by equating the thrust and torque as follows

dTy =dT2, (5.5)

dQi1=dQz . (5.6)
The total inflow angle of the blade section (A, in Egns. 5.2 and 5.4) is defined as

A = A+ As, (5.7)

where A, is the angle of the aerodynamic inflow and Ag is the additional inflow angle
which arises due to the inclusion of blade dynamic effects (Fig. 5.4). The effective inflow

angle due to aerodynamics (A,) is defined as

A, = tan‘l(v“in—ij, (5.8)
Qr -~ ur

where V.. is the forward velocity of the aircraft and Q is the rotational speed of the rotor.

v Direction of advance

Fig. 5.4 Blade element inflow definitions.
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To define the effective structural inflow angle, As, it is first necessary to translate the
blade dynamics from the global, untwisted coordinate system to a coordinate system which
is parallel to the effective aerodynamic inflow angle (Fig. 5.5). This is mathematically
stated as follows.
‘;’b = VpCOosA, +WpsinA,

(5.9)
Wy =—VpsinA, + Wy cosA,

where ‘;’b is the dynamic velocity parallel to the aerodynamic inflow angle and v;vb is the

velocity perpendicular to the inflow angle. The quantities, vy, and Wy, represent the

dynamic effects perpendicular and parallel to the free stream velocity, respectively. These
transverse velocities are defined as
Vp = i"/cos(OLa) - Qsin(oca)

. . _ (5.10)
Wy, = Vsin(0r, ) + Wsin(ot, ) — $Y e

where Y} is the offset between the aerodynamic center of the blade and the axis of twist.

The physical angle of attack of the blade is denoted ¢/, and the cross-sectional velocities
in the global, twisted coordinate system are v and W (Fig. 5.5). The effective

aerodynamic inflow angle is defined as follows.

+ .
sin Aa = ——-——VOOW Ul
(5.11)
cosA, = {r —ur
W

axis of twist

Fig. 5.5 Coordinate systems in blade cross section.



101
where W is the total resultant velocity. Under the assumption that the velocities due to
airflow are much greater than those due to blade dynamics, the total resultant velocity is

written as

wW=W, =W (5.12)
The effective structural inflow angle is then written as follows.

A= 5.13
(= (5.13)

Using Eqns. 5.7 - 5.13, the total inflow angle is expressed as

_ \b(Voo +1)1) + Wb(Qr— uT)

A=A, 3 W . (5.14)
The effective angle of attack (o) for the blade cross section is defined as follows
o =0,+0—A, (5.15)

where @ is the physical angle of attack of the blade and ¢ is the elastic twist due blade

deformations. Using Eqn. 5.14, the effective angle of attack is rewritten as
Vp(Veo +;) _ Wp(Qr—ur)
w2 B w2

v

o= o,-A, + O+ . (5.16)

Acrody nanucs . )
Elastic deformations

In the above equation. the first two terms correspond to the purely aerodynamic effects and
the last three terms represent contributions due to blade elastic deformations. Note that the

steady state angle (04g) is written as

Ogg =0y = Ay +0. (5.17)

5.2 Energy Formulation
To evaluate the external work due to the aecrodynamic loading it is first necessary to

write the equations for lift, drag and pitching moment, per unit area, as follows.
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R Vp(Veo +5)  Wp(Qr—uy)

I = EpW cla[oca—Aa+¢+ W2 - W2 (5.18a)
N ) Vp(Veo +i)  Wp(Qr—ur)

d = —pW cda(aa—Aa+¢+ T w? (5.18b)
1 (Ve +0;) Wp(Qr—u

m = ~2~pw2ccma[aa—Aa+¢+ bl o2 i) _ b(w2 T)j (5.18¢)

The coefficients (cjy, Cdg and Cm) are related to the derivatives of the lift, drag and

moment coefficients (cj, ¢d, cm), respectively as follows.

dc

o, =c1, + _aEI (5.19a)
oc

Cay = Cd, + 55— (5.19b)
ac

Cmy =Cm, + ——a—dnl (5.19¢)

The external work done by the aerodynamic loads is then written as
We=J.(-lw+d v+m)ds (5.20)

S

where §is the blade surface area and w, v and ¢ are the global, untwisted displacements.
From Eqns. 5.18, it must be noted that the aerodynamic forces and moments can be

separated into a steady aerodynamic term (0fa - Aa), @ steady term dependent on the elastic

deflection (¢) and a term associated with blade dynamics (Vy, and wy,). Define the

following parameters

Lo _—__%pwz(c1 cOS 0L, +CqSinaly ), (5.21a)
1 2 .
Dy = EpW (~cysinat, +cqcosay, ), (5.21a)

1 ,
M, = EpWZ cem—LoYhe (5.21a)
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and
1 .
L¢a = —Epwz(cla cosOL, +Cqy smoca), (5.22a)
1 .
Dy, = 2 pWZ(—cla sinot, +Cq,, cosoca), (5.22a)
1 2 ,
Mq’a = EpW CCm, — L% Y, ‘ (5.22a)

Also, it must be noted that at the outer surfaces of the beam ({j = +h/2) the rotation about

the x-axis is defined as
o L[5 27
2lon dC

Using Eqns. 5.10 and 5.18, the external work due to steady aerodynamic terms (We,) and

= %’V‘l: 9% (5.23)
{=h/2 M om

that due to static deflections (W) can now be expressed as follows.

W, = J(aa - Aa)[Lq,\?v + DV + M, %nv-v-]ds, (5.24)
S
oW W, oW oW
W, = | [L% S+ Dag 5T My —éﬁ—a?]ds. (5.25)
S

The external work due to the dynamics loads (Weg) is written using Eqns. 5.10, 5.18, 5 .20

and 5.23 as follows.

oW
plicly (Vsinou+Weosa) +cq,, (Veosa— WsmOL)+ccmOta

(5.26)

X {(\;fcosoc — Wsin a)(Vw + ”oi) - (\;/sin(x + W CcosOL— -aa—-:]y-j(ﬂr — uT)H ds
Using the variational principles, the external work functionals are written as follows.

W, = J'(oca - A, )HL¢ aan (Mq,)}Sw + D¢6vild5 (5.27)
S
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oW & %W
dW. = ||Dy — 8 —1Dy —+2 My —5 0W [dS, 5.28
€g {[ ¢0L an v { ¢(xan ¢(xan2}wj| 5 ( )
0 ay
oL 0 by |[6V :
oW =j" Vo W W W d 2
ea=|[V ¥ ¥ Wq o O {SW} s (5.29)
g by cw
where
1
o0 = 20 [en, (Vo )+, (Qr-ur)] (5302
1 , .
by = 5P Yac[cla sinOp +Cq cosocb](Qr —-uT)
'1' (5.30b)
+ ;pccma[(Vw+ui)cosocb—(Qr—uT)sinocb]
Cw = pY;C[cl cosOly, — Cg sinocb](Qr—uT)
¢ * (5.30¢)

— pcemy|(Veo +0j)siney, +(Qr - ur)cosoy

5.3 Solution Procedure
Equations. 5.27 - 5.29 indicate that the external work from the aerodynamic loads will
yield three separate equations. The first terms are associated with a steady state forcing
vector independent of the displacements, Faero (Eqn. 5.27). There are forcing terms that
are dependent on the displacements (Eqn. 5.28) which will yield a matrix analogous to the
stiffness matrix (Kaero). Finally, there are forcing terms that are dependent on the velocity
of the displacements (Eqn. 5.29) yielding a damping matriX (Caero)-
Denoting the following matrices
v w]"

, 5.31
39 (5.31)

N =

and
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Ny=—— =, (5.32)

where q is the degree of freedom vector defined in Chapter 3, the quantities associated with

the external work due to aerodynamic loads are formulated as follows.

N
Faro= | |[N" T s, (5.33)
i=lj g
N
Koo = 2 _[NT Q, ds|, (5.34)
i=l| s
and
N
- 0 0 -a, by|-
_ T w w
Caero —2 JN [aw bw 0 CW}NT] o (535)
i=l] 5
where
. 0
T =(a, - Aa)[Dq, {Lq, —gﬁ(Mq,)H, (5.36)
~ ~ 2~
m
Q= 5 ) (5.37)
q

The complete aerodynamic/dynamic/structural equations of motion for the coupled system

are now written in the following matrix form

M{g+Cq+Kq=F+ (Faero + Kaero 4 + Caero q), (5.38)

where the quantities within the parentheses correspond to the external work due to
aerodynamic loading and the remaining terms are associated with the structural modeling of

the beam (Eqn. 3.72)
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5.4 Acroelastic Stability
To investigate the aeroelastic stability of the rotor, the natural frequencies of the
complete coupled equations of motion must be determined. By rearranging the terms in

Eqn. 5.38, the equation may be rewritten as follows.

Mgq+ (C_ Caero) q+ (K— Kaero) q=F+Faero (5.39)

The homogeneous portion of Eqn. 5.39 can be rewritten as

Mg+Cq+Kq=0, (5.40)
where

M = M, (5.41)
C = (C-Cup) (5.42)
K = (K-Kup)- (5.43)

It is possible to rewrite Eqn. 5.40, which is a second order equation, as a first order

equation by making the following transformation
{8} = {q} (5.44)
q

Now Eqn. 5.40 is written as

{8} = A} (5.45)

where

A = 0 I 5.46
- [—M“lfi —M‘IC} (5.46)

The characteristic roots of Eqn. 5.40 are now determined by solving for the eigenvalues

of A. It must be noted that the matrix A is neither positive definite, nor symmetric in
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general and as a result, the eigenvalues are complex. If any of the roots of A have a

positive real component, the system will be unstable at the given velocity.

5.5 Correlation

The adequacy of this aerodynamic representation is demonstrated in Figs. 5.6 and 5.7.
This relatively simplistic formulation is shown to correlate very well with measured axial
flow performance of the XV-15 rotor system in both hover and in airplane mode from tests
conducted at the Outdoor Aerodynamic Research Facility (O.A.R.F.) and from flight test
data obtained at NASA Ames Research Center [113,114]. This representation of the rotor,
which is representative of the original design point of the XV-15 tiltrotor, is used as the
baseline, or reference, rotor in this study. Further, as shown in Ref. >13 the results
obtained using this approach are comparable with those obtained by Dadone et al. [5] in
which a more comprehensive Euler based analysis technique was used. Therefore, despite
the relative simplicity, the present approach proves to be quite adequate for modeling prop-

rotor blade aerodynamics.
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Fig. 5.7 Cruise propulsive efficiency correlation.



6. Optimization Problem

The structural, dynamic, aerodynamic and aeroelastic analysis procedures developed
are now integrated to develop a multidisciplinary optimization procedure for investigating
the design trade-offs of high speed prop-rotors. The reference aircraft, used as a baseline
design in the optimization procedure, is a mathematical representation of the XV-15 tilting
proprotor aircraft. The rotor is a three-bladed, gimballed rotor with a 25 foot diameter
[113,114]). A multipoint optimization procedure is developed and design criteria associated
with two flight conditions are addresses simultaneously. The first flight condition
corresponds to hover at sea level and the second flight condition represents high speed
cruise at an altitude of 25,000 feet and a forward speed of 400 knots. This altitude is

typical for tiltrotors operating in high speed cruise.

6.1 Rotor Geometric Modeling
The rotor planform characteristics are defined as follows. The chord (c) and pre-twist

angle (0) are defined to have the following cubic spanwise distributions

c(X)=c¢y +c13€+c2i2 +C3i3, (6.1)
8(X) = 8;(X - 0.75) + 0, (X = 0.75)? +63(X ~ 0.75)°, (6.2)

where X is the nondimensional radial location (X = x/R, R = blade radius). These cubic
distributions are selected to give the optimizer sufficient flexibility since the parameters
which define these distributions are used as design variables. The offset in the twist
distribution (X - 0.75) is used to ensure zero twist at 75 percent span [117]. The blade
thickness-to-chord ratio (t/c) is defined to have a quadratic spanwise distribution to ensure a
monotonic decrease in the thickness from root to tip. This distribution is defined as

follows

t/e(X) = tg + X + 1HX2. (6.3)
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Similarly, the blade is defined to have a quadratic lifting line offset as follows

2

1
Yac(X) = 'z'aoX . (6.4)

The above distribution is chosen to ensure zero offset at the root as well as zero sweep.

The blade sweep (A ) is defined as follows.

A= tan_l(———dyacj (6.5)
dx

or

A= tan_l(a0 X) (6.6)

6.2 Structural Model

The box beam dimensions are assumed to be fixed percentages of the chord length and
airfoil thickness as seen in Fig. 6.1. For the present study, the axis of twist (and rotation)
is assumed to lie at the centroid of the beam. Further, the beam centroid is assumed to be at
the 50 percent chord location.

b(x) = 0.50 ¢(x)
d(x) = 0.80 t(x)

A

Y

c(x)
b(x)

[ =

t(x) d(x)

l v

3

Fig. 6.1 Blade cross section and beam dimensions.
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The two horizontal walls of the box beam are assumed to have identical composite

lay-ups. A stacking sequence of I:{(Bl)3 /(B2)3}3} is used during the optimization.
S

Similarly, the two vertical walls are assumed to have the same lay-ups defined as

I:{(B3 )3 /(B4 )3}31. A total number of 36 plies is used to ensure that the blade is stiff

enough to sustain the large aerodynamic loads generated by the rotor. The angle ply
stacking sequence is selected to investigate the effects of composite ply angles on the

overall aerodynamic/structural/aeroelastic performance of the rotor.

6.3 Objective Functions and Constraints
The optimization problem addresses the simultaneous maximization of both the hover
figure of merit (FM) and the propulsive efficiency in high speed cruise (Nc). These

quantities are defined as follows.

FM = Bi%@—al (6.7)
TV..
Ne = P (6.8)

The following constraints are imposed to ensure efficient structural and aerodynamic
performance. To maintain blade aeroelastic stability, constraints are imposed on the real

part of the stability roots determined from Eqn. 5.39
A 2 -© k=1,2,--, NAERO (6.9)

where @ is the minimum allowable damping, defined to be a small positive number and
NAERO is the number of modes considered.

To prevent material failure, constraints are imposed on the individual ply stresses based
on the Tsai-Wu failure criterion [118]. This criterion assumes that to avoid material failure

the following equations representing a failure surface in the stress-space must be satisfied.

F.c; +F;0;,0;: < 1 iL,j =1,2,-,6) (6.10)
iVi ijYiY]
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where G represents the stresses in the coordinate system defined by the material axes (see
Fig. 6.2). The quantities F; and Fj; are related to tensile and compressive yield strengths of

the material and are defined as follows.

(1 1]
Xt Xc
11
Yr Yc
L = 1 1
FE =41 _ 13 (6.11)
Yr Yc
0
0
L 0
S .
F 0 0 0
XX 12 12
! - 0 0 0
YrYc
YlY 0 0 0
T TYC
F; . (6.12)
gy ~Fs| 0 0O
TYC
1
1
s?

where the quantities X, Y are the yield strengths in both compression (subscript ‘C’) and
tension (subscript ‘T”) and S is the corresponding shear strength. The quantities F12 and

Fo3 are defined as
1
F, = —5\/1:111:22 (6.13)

1
Fy3 = —§F22 (6.14)

This reduces the total number of constraints as constraints on the individual stress (o;) at

each ply level are avoided.
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Fig. 6.2 Composite lamina material axes.

To maintain rotor thrust at acceptable values during optimization, equality constraints

are imposed on the thrust in hover and in cruise. These constraints assume the following

form.
Th = Thyer (6.14)
Tc = Tcref (6.15)

6.4 Design Variables

The design variables that are used during the optimization include the coefficients which
define the spanwise chord and twist distributions (co - €3 and 01 - 03, respectively), the
thickness-to-chord ratio (to - t2) and the blade sweep (ao). The variables which define the
composite lay-up in the individual walls (B1 - Ba) are also used as design variables. It must
be noted that to ensure realistic blade chord and wing thickness distributions (i.e., positive
throughout the span), it is necessary to further impose additional geometric constraints on
these distributions. The minimum allowable nondimensional chord value (c¢/R) is
constrained to be 0.02 and the minimum allowable thickness (t) is constrained to be 0.75
in. Although, the minimum allowable chord values are far too small at the root, due to
constraints on the stresses these chord distribution is never near critical values except at

locations near the tip.



7. Optimization Procedure

The optimization problem addressed in this research is associated with multidisciplinary
coupling and involves multiple design objectives and constraints. The Kreisselmeier-
Steinhauser (K-S) function technique [119] is used to efficiently integrate all of the
objective functions and constraints into a single envelop function. The problem is thus
reduced to an unconstrained optimization problem. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [120] is used to solve the unconstrained nonlinear problem
(NLP). A hybrid approximate analysis technique based on a two-point exponential
expansion technique [121] is coupled with the optimization procedure to reduce the

computational effort. The following sections contain details of the optimization procedure.

7.1 Kreisselmeier-Steinhauser (K-S) Function Approach

Since the optimization problem involves more than one design objective, the objective
function formulation is more complicated. In most of the existing work, the individual
objective functions are combined using weight factors in a linear fashion [43,44,122].
Such methods are judgmental as the answer depends upon the weight factors which are
often hard to justify. Therefore, the problem is formulated using the Kreisselmeier-
Steinhauser (K-S) function approach [119]. Using this function the multiple objective
functions and constraints are transformed into a single envelope function which is then
minimized using unconstrained optimization techniques. The K-S function has been found
to perform extremely well by McCarthy et al. in a variety of rotary wing optimization
problems [9,12-16].

The first step in the K-S function approach involves the transformation of the original
objective functions into reduced objective functions. If the individual objective functions
are to be minimized, these reduced objective functions assume the following form

Fk(®)

Fi(®) ="Fr - 10 -gmax 0. k=1, -, NOBJmin (7.12)
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When the individual objective functions are to be maximized, the reduced objective

functions are as follows

Fi(®
Fr(®) = 1.0- —1151({—) - gmax < 0, k=1, -, NOBJmax (7.1b)
0 .

where Fy represents the value of the original objective function Fy calculated at the
beginning of each cycle and @ is the design variable vector. The quantity gmax is the value
of the largest constraint corresponding to the original constraint vector, gj(®)
(j=1,2, -, NC) and is held constant during each cycle. These reduced objective
functions are analogous to constraints, therefore a new constraint vector fi,(®)
(m=1, 2. - .M where M = NC + NOBJ) is introduced which includes the original
constraints and the constraints introduced through the reduced objective functions (Eqns.
7.1). The design variable vector in this formulation remains unchanged. The new

objective function to be minimized is defined using the K-S function as follows

M
Frs(®) = fma + —}—logeEeﬁ(fm((D)_fmax), (7.2)
P m=1
where frmas Is the largest constraint corrésponding to the new constraint vector fi,(®) and
in general is not equal to gmax. The objective function Fks(®), which represents an
envelope function representing the original objective functions and constraints, can now be
minimized using any unconstrained optimization technique.

The optimization algorithm, based upon this technique, can be explained as follows.
Initially in an infeasible design space, where the original constraints are violated, the
constraints due to the reduced objective functions (Eqgns. 7.1) are satisfied, i.e. gmax 1S
negative. Once the original constraints are satisfied, the constraints due to the reduced
objective functions become violated. When this happens, the optimizer attempts to satisfy
these constraints and in doing so, minimizes (or maximizes) the original objective functions

(Fi). The multiplier p in Eqn. 7.2 is analogous to a draw-down factor where p controls
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the distance from the surface of the K-S objective furiction to the surface of the maximum
constraint function. When p is large, the K-S function closely follows the surface of the
largest constraint function and when p is small, the K-S function includes contributions
from all violated constraints. Additional details can be found in Refs. 93, 94, 97-101.

The K-S function formulation is illustrated for a problem where a single objective
function is to be maximized subject to two constraints using one design variable (Figs. 7.1
and 7.2). An initial design point of X = 7 is used in the example. At this point, both
constraints are satisfied and gmax is therefore negative. As a result, the reduced objective
function is positive and the constraint introduced through Eqgn. 7.1b is violated (Fig. 7.1).
The three constraints of the problem introduced by the original constraints and the reduced
objective function are shown in Fig. 7.2 along with the associated K-S function for three
different values of p. As seen from the figure, for a value of p =1, the K-S function
represents a more composite envelope function which includes contributions from all three
constraints. This is especially evident at locations where the values of two or more
constraints are very similar. For the larger values of p =3 and p = 5, the K-S function
envelope more closely represents only the largest constraint even at locations where the
constraints are similar in value. This simple example demonstrates how larger values of p
“draw down” the K-S function closer to the value of the largest constraint.

The K-S function (Fig. 7.2) is minimized using standard nonlinear, unconstrained
optimization techniques. Once a local minima is reached, a new cycle begins with the
calculation of a new value of gmax and the reformulation of the reduced objective functions
and the K-S function. The process is repeated until either the original objective functions
or the design variable vector converges. Note that it is permissible to allow the value of p
to change from cycle to cycle. This is typically done is a monotonically increasing manner
so that as the optimization proceeds, the K-S function more closely represents only the

largest constraint (or the reduced objective function).
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7.2 Approximate Analysis

The two-point exponential approximation technique [121], which was found to perform
well in other nonlinear optimization problems [8-12, 14-16], is used for the approximation
of the objective functions and the constraints. This technique derives its name from the fact
that the exponent used in the expansion is based upon gradient information from the

previous and current design cycles. The technique is described below.

NDV Pn
BL(@) = F(®,) + E @, ~1.0 Pop IFi (Do) (71.3)
T e D, Clp. 09, '
n=1

where Ie‘k((I)) is the approximation of the original objective function Fy(®,). The
approximate values for the constraints, 8;(®), are similarly calculated. The exponent, py,

is defined below

IF@)| _ 1., JIF(Po)
loge{ 0D, } log‘”{ 0Py | .

loge{®;_ }-loge{®,, }

Pn = (7.4)
where the quantity ®; refers to the design variable vector from the previous iteration and
the quantity @, denotes the current design vector. A similar expression is derived for the
constraint vector. The exponent p can be considered as a “goodness of fit” parameter,
which explicitly determines the trade-offs between traditional and reciprocal Taylor series
based expansions. Therefore, the procedure can also be regarded as a hybrid
approximation technique. It can be seen from Eqn. 7.3 that in the limiting case of py =1,
the expansion is identical to the traditional first order Taylor series and when pp = -1, the
two-point exponential approximation reduces to the reciprocal expansion form. The
exponent is then defined to lie within this interval. Therefore, if the exponent py > 1, it is
set identically equal to one and if p, < -1, it is set equal to -1. From Eqns. 7.3 and 7.4, it

is obvious that many singularity points exist in the use of this method. Therefore, care
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must be taken to avoid such points. In the present study, the linear Taylor series
approximation is used at such singular points.

To ensure the validity of the approximation it is necessary to impose bounds, or “move
limits” on the design variables during the optimization so that the design point remains in
the neighborhood of the original point. These move limits represent a percent change from
the original design variable. The move limits in this study are calculated based on a
variable scheme developed by Thomas et al. [123]. This algorithm adjusts the values of the
move limits based on changes in the maximum violated constraint and also by tracking the

individual move limits to see whether they reach the same upper or lower limit over three
consecutive evaluations. Another important aspect of the scheme developed in Ref. 123 is
the ability to allow design variables to cross over between negative and positive values.

Details of move limit approach are presented in Ref. 123.



8. Optimization Results

The reference rotor used is representation of the XV-15 proprotor which is an advanced
three-bladed gimballed rotor [113,114]. The aerodynamic optimization is performed at a
cruise altitude of 25,000 feet and a forward velocity of 400 knots with a rotational speed of
421 RPM. A vehicle weight of 13,000 Ibs and aircraft lift to drag ratio (L/D) of 8.4 is
assumed. Therefore, the thrust in cruise is constrained to be at 774 Ibs for the two engine
aircraft. In hover, the aircraft is assumed to be operating at sea level conditions with a
rotational speed of 570 RPM and a 12 percent down load effect from the rotor/wing
interaction. The thrust in hover is therefore constrained to be at 7280 Ibs. The blade is
discretized into 10 aerodynamic segments (11 node points) and the composite box beam is
similarly discretized into 10 spanwise elements and 1 chordwise element for a total of 564
degrees of freedom. The composite material used in the structural analysis is carbon-PEEK
AS4/APC2 [124] and the material properties are presented in Table 8.1. A total of 15
design variables are used during the optimization. The optimum design converges in 35

cycles and the results are presented in Table 8.2 and Figs. 8.1-8.6.

Table 8.1 Summary of beam material properties

E, = 19.4 X 106 p.s.i., Ep = 1.29 X 106 p.s.i.,
Gyp = 0.740 X 106 p.s.i., Gy = 0.500 X 106 p.s.i.,
i =0.28, p = 1.80 x 10-3 slug/in3

ply thickness = 0.001 in.

Ultimate Strengths
XT =309 x 103 p.s.i., XC =160 x 103 ps.i.,
YT =11.6 x 103 p.s.i., YC =29.0 x 103 ps.i,,
S =232 x 103 p.s.i.
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From Table 8.2 and Fig. 8.1 it is seen that the hover figure of merit (FM) increases by

3.6 percent and the high speed cruise propulsive efficiency (nax) is significantly improved
(55 percent). It must be noted, however, that the baseline rotor was originally designed for
operation at 300 knots and therefore has a poor cruise efficiency (Max = 0.49) at the
optimization design speed of 400 knots. As a result, the improvement in Tax is much more
significant compared to the increase in the hover figure of merit which has a fairly high
value initially. A complete understanding of the aerodynamic improvements is obtained by

examining the design variable trends.

Table 8.2 Comparison of optimum results

Reference Optimum
Objective Functions
M 0.7691 0.7974
MNax 0.4856 0.7502
Design Variables
Co 0.1094 0.1050
1 -0.09256 -0.09760
c2 0.1575 0.1630
c3 -0.08176 -0.07630
01 (rad.) -0.3455 -0.3443
09 (rad.) 0.7693 0.5817
03 (rad.) -0.1461 -0.1057
to 0.3155 0.2167
t1 -0.3193 -0.2370
1) 0.07517 0.09128
Ao 0.000 -0.05615
B1 (deg.) 0.0 0.0
B> (deg.) 0.0 0.5
B3 (deg.) 0.0 -1.7

B4 (deg.) 0.0 -1.5
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Fig. 8.1 Comparison of optimum results.

The optimum chord distribution is presented in Fig. 8.2 and shows that the chord
distribution over the majority of the blade span is reduced from the baseline values. At the
tip, however, the chord is actually increased. It is important to note that although the area
weighted solidity (G4) is slightly decreased from the reference value (2.8 percent), both the
thrust weichted solidity (o7) and the power weight solidity (op) are not decreased as much
(2.3 percent and 1.8 percent, respectively) as shown in Fig. 8.3. The solidity ratios are

defined as follows.

o; = —, i=A,TorP, (8.1)
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) (8.2)

Cp=l—. (8.3)

o =4—. | (8.4)

In the above equations, ¢ is blade chord and X is the nondimensional radius. The reason
for the reduced chord near the root is due to the fact that in the reference blade this section
produces a significant amount of drag in cruise (Fig. 8.4) without generating any
significant lift (Fig. 8.5). After optimization, it is seen that the drag is significantly reduced
in this region whereas the lift is only slightly affected. In hover, the root section generates
very little lift and drag (Figs. 8.6 and 8.7, respectively) therefore the root chord is reduced
only due to constraints on the stresses. In the absence of the stress constraints, it is likely
that the root chord would be reduced to smaller values. As a result, the optimizer reduces
the chord throughout the blade span, except near the tip. It is interesting to note, that in the
optimum configuration, there is an increase in the chord values from about midspan
towards the tip, resulting in a slight inverse taper. This is due to the fact that this outboard
section represents the working section of the blade. In both hover and in cruise, the

majority of the lift is produced by the outer 25 percent of the blade. By increasing the
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chord in this region of the blade, the optimizer is redistributing the load to a region which is

beneficial to both flight conditions.

Rotor solidity
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—&— Optimum
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0 0.2 04 0.6 0.8 1
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Fig. 8.2 Comparison of chord distributions.
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Fig. 8.3 Comparison of rotor solidity.
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Fig. 8.5 Comparison of high speed cruise sectional lift.
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The optimum and the reference blade thickness distributions are presented in Fig. 8.8.
From the figure it is seen the blade thickness is reduced from the reference values
throughout the entire span, except at the tip. One reason for this reduction is to reduce the
profile drag of the blade by reducing the thickness. Reductions in the profile drag, in turn
improves the aerodynamic performance. A second reason for this reduction is to increase
the drag divergence Mach number (Mgd). This Mach number is defined as the point where
a further increase in Mach number will result in a sharp increase in the drag [111]. In the
reference blade the local Mach numbers near the tip in cruise are very near Mgq. Through
reductions in the blade thickness distributions, the optimizer increases Mgq throughout the
blade and as a result the drag is reduced improving the performance of the rotor. The
constraints imposed on the blade thickness at the tip prevent the optimizer from reducing
the tip thickness below the reference value. Near the tip, these constraints become active

and as a result no further reductions in blade thickness are obtained in this region.

0.4+
—— Reference
£ —&— Optimum
£ 0.3
T
= g
o 0.2
=
2 0.1
O ¥ I 1 I ] I 1 I 1 'I
0 0.2 0.4 0.6 0.8 1

Nondimensional radial location, x/R

Fig. 8.8 Comparison of thickness-to-chord distributions.
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Figure 8.9 presents the twist distributions of both the reference and the optimum rotors
where it is seen that the twist is reduced from root to about midspan of the rotor. These
reductions are due to the fact that the optimizer is attempting to unload this section of the
blade since the drag in the cruise condition is very high for the reference blade (Fig. 8.4).
The effective angle of attack is lower as a result of the reduction in blade twist and this
results in reductions in both lift and drag in the region. This is again due to the fact that the
optimizer is redistributing the lift outboard towards the tip to improve the performance.
Near the tip, the twist distributions are very similar.
50+
—— Reference

d —~&— Optimum

Blade twist, f (deg)
[\
[an]
|

-10 L T T 1
0 0.2 04 0.6 0.8 1
Nondimensional radial location, x/R

Fig. 8.9 Comparison of twist distributions.

The lifting line offset (Yac) and the resulting sweep distribution (JA\) are presented in
Figs. 8.10 and 8.11. These figures indicate that very little sweep is introduced after
optimization and that the blade is swept forward. This can be explained as follows. The
introduction of sweep reduces the effective Mach number which in turn improves the

performance of the high speed cruise propulsive efficiency. However, only a slight
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amount of sweep is introduced (about 3 degrees at the tip) and the reductions in the

effective Mach numbers are not significant. This is due to the fact that in cruise there is a

Jarge nose down moment throughout the blade span. These moments are larger than the

corresponding moments introduced through the lifting distribution and the offset of the

aerodynamic center from the axis of twist. As a result, the blade twists down in cruise.

However, in hover, the moments due to the lifting distribution and the aerodynamic offset
are much larger than the corresponding moments due to the aerodynamic pitching
moments. Therefore the blade twists backward (nose up) in hover. By sweeping the blade
slightly forward, the offset between the lift and the axis of twist is increased and this
reduces the amount of negative twist in cruise which in turn improves the performance.
However, the forward sweep increases the amount of positive twist in hover and as a result
only a slight amount of twist can be allowed without adversely affecting the hover
performance. Further, a significant amount of sweep would increase the bending moments
which would result in increased blade stresses.

1

=
(¥,
I
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Fig. 8.10 Comparison of lifting line distributions.
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Fig. 8.11 Comparison of blade sweep distributions.

The stability roots of the five most critical modes are presented in Figs. 8.12 (hover)
and 8.13 (cruise). The figures show that in both flight conditions the real part of the
stability root is negative for both the reference and optimum rotors assuring that the system
is stable. It is further seen in the figures that an imaginary line drawn through the locus of
roots, originating at the origin, is nearly linear. This is due to the fact that the damping due
to aerodynamics is small. Therefore, the structural damping (assumed to be two percent,
proportional damping) dominates the aerodynamic damping. This is caused by several
factors. First, due to the large loads under which the blade operates (each blade must
generate nearly 2500 Ibs of thrust), the blade must be extremely stiff in order to withstand
the bending stresses. Also, unlike fixed wing aircraft, the aerodynamic loading is not
significantly altered with changes in forward speed due to the fact that the rotor is trimmed

to a constant thrust value.
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The optimum ply angles are presented in Table 8.2. Very little changes are observed
between the reference and the optimum values. This is due to the fact that the stability
constraints are never critical during optimization. Since the ply angles have very little effect
on the aerodynamic performance and the stability roots are never near critical, there is little
change in the ply angles after optimization. Figures 8.14 - 8.21 present the midplane
stresses in the individual walls, at each corner, before and after optimization. These figures
illustrate the increase in the root stresses in each wall for both flight conditions and show
that these stresses are more critical in hover (Figs. 8.14 - 8.17) than in cruise (Figs. 8.18 -
8.21) . The increase in the stresses once again due to the reduction in cross-sectional area
which is caused by the reductions in root chord. Although, the stresses are increased after
optimization, the overall Tsai-Wu criterion is satisfied at each ply level at every corner for
both flight conditions. In the absence of these stress constraints, it is likely that the
optimizer would have further reduced the root chord in order to improve the aerodynamic
performance.

To fully investigate the phenomenon of tilt-rotor aeroelastic stability, the combined
problem of the wing/rotor/pylon assembly of the tilt-rotor aircraft should be investigated.
Further, the use of a more comprehensive aerodynamic analysis, such as panel code, may
be beneficial. If such measures were taken, it is believed the ply angles (particularly in the
aircraft wing) would have played a more significant role on the overall performance and

stability of tilt-rotors.
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9. Concluding Remarks

A new beam theory has been developed to model composite box beams with arbitrary
wall thicknesses. The theory, which is based on higher-order composite laminate theory,
approximates the three-dimensional elasticity solution rather than reducing the cross-
sectional properties to one-dimensional beam properties. Arbitrary spanwise distributions
of blade twist, taper and sweep are included in the formulation. The developed theory
satisfies the stress free boundary conditions on the inner and outer surfaces of the beam.
Both inplane and out-of-plane warping are included in the formulation.

Next a procedure for the aeroelastic stability of prop-rotor blades has been developed.
The aerodynamic loads are based on the classical blade element momentum theory. The
coupled equations of motion are developed which represent a trimmed blade configuration.
Finally, the developed structural, aerodynamic and aeroelastic procedure are integrated
within an optimization procedure to investigate prop-rotor performance in both high speed
cruise and hover. The optimization problem includes multiple objectives and the
Kreisselmeier-Steinhauser (K-S) function is used to formulate the optimization problem.
This function represents an envelope function of all of the objective functions and
constraints and transforms the problem to an unconstrained optimization problem. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to determine the search
direction. The procedure is coupled with a hybrid approximate expansion is used to reduce

the computational effort. The following important observations are made.

1. Very good overall agreement is observed between the static results and available
experimental data for thin-walled beams. The dynamic results correlate well with

NASTRAN using both solid elements and shell elements.

2. For large angle ply laminates (e.g. 45°), the present approach predicts the behavior

very well as shown by the correlation with experimental results. For these
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Jaminates, the present approach represents a significant improvement from a

previously developed quasi-analytical method.

The results from the symmetric beams have better overall correlation than the anti-
symmetric beams. This is due to the fact that magnitude of the twist measured for
the anti-symmetric beam correlation is very small and therefore is more difficult to

determine experimentally.

The effect of transverse shear stresses is critical in case of thick-walled sections.
This introduces large nonlinearities in the twist distribution. Further, the local twist

in the individual walls is not equal as it is in case of thin-walled beams.

The “beam” twist is a local quantity which can only be defined at a point in the
cross section. Arbitrary definition of the twist at a convenient point in the beam

cross-section is inaccurate for thick-walled cross sections.

The modes shapes often display a significant amount of bending-twist coupling
and/or extension-shear coupling. The coupling is more noticeable in beams with

thicker wall sections.

The present beam theory captures the effects of inplane and out-of-plane warping.
For thick-walled beams with low aspect ratios, the warping terms are significant
even at the lower modes. For the thin-walled beams, the inplane warping is more
important than the out-of-plane warping. Results obtained using NASTRAN tend

not to capture the lower warping modes.

The increased warping in beams with thicker walls is due to the presence of
transverse shear stresses through the thickness of the walls which increases with

laminate thickness.
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The multidisciplinary optimization developed yields significant improvements in the
aerodynamic performance without any degradation of the structural response and

aeroelastic stability.

Improvements in the aerodynamic performance are obtained largely through
changes in the blade chord, twist and thickness distribution. By changing the chord
and twist, the load is redistributed to the outboard sections of the blade. Reductions

in the blade thickness reduce the profile drag thereby increasing the performance.

The optimizer does not significantly alter the blade sweep due to the conflicting

requirements between the two flight conditions.

Changes in the ply angles are negligible due to the fact that aeroelastic stability

constraints are never critical to optimization.

Using the current aerodynamic analysis, the aeroelastic stability of prop-rotor
blades is not a significant issue due to the fact blade must be extremely stiff in order
to withstand bending stresses and the fact that the blade is trimmed to a constant
thrust value. A more complete representation of the aircraft, including the
wing/rotor/pylon assembly is recommended in order to better evaluate the

aeroelastic stability of tilt-rotor aircraft.
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The transformation between the untwisted global coordinate system and the rotated

coordinate system is expressed as follows.
X’ 1 0 0 |X
Y'b={0 cos6 sinOKY (AD)
Z’ 0 —sin® cosO|(Z

The two unswept wall coordinate systems are written in terms of the two beam coordinate

systems as
Xj X
yir=1Yi+ Y ts (A2)
VA Zi + Zoi
and
X
¥ 7 7
Yi = Yi + Yoi ’ (A3)
7| |Zi+Zh,

where the global coordinate system (X, Y;, Zj) is written with the subscript ‘i’ to indicate
the fact that Y; is always aligned with the reference (untwisted) width of the individual
walls. Similarly, the rotated coordinate system (X, Y{, Z{) is always aligned such that Yj
is parallel to the rotated width of the individual wall. This notation is adopted so that the
relationship between the global and local coordinate systems can be expressed using only a
single set of equations. The quantities, Yo;, Zo;, Yéi and Z(’)i correspond to distances
from the axis of rotation to the edge of the individual walls within which the wall
coordinate systems are defined. Finally, the relationship between the local, swept and

twisted coordinate system and the local, unswept and twisted coordinate system is written

as
Xi Xg
Nic= Yi ) (A4)
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where z,, 1s the offset between the swept and unswept coordinate systems. Note that in

the horizontal walls (i = 1 and 3), this offset is zero. Using Eqns. Al - A4, the local

wall, twisted coordinate system is written as

Xi 1 0 0 X 0
Mi=|0 cos® sinb [yj=Y, p+e Yo . (AS)
G; 0 -sin® cos8jjz; -7, Zo, + zzi

It must be noted that in the above relationship, both 8 and z:;i are functions of x and vary

along the span. The Jacobian matrix between the local untwisted and local twisted

coordinate systems is then expressed as

T oam ot 90 , 90 oz |

9% 9 9% 1 C-z)2 -m-Y)HE+Ze

ox Jx dx ¢ °)ax ™ 0)8x+ ox

J= 3—7; %3 g% = |0 cosO —sin@ , (A6)
dy on ¢ .
£ — = 0
% % el | sin® b

where the subscript ‘i’ has been omitted for convenience. It is seen from Eqn. A6, that the

determinant of the Jacobian is equal to one.
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Strain definitions
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The zeroth order inplane strains in the absence of pre-twist are defined as follows.

0
el uo,x
0o — ;
ey = Vo n (B1)
0
€5 uo’n + VO>X

The first order inplane strains are
1

Ki “Wox T Vxy
1

Kpp = ~Womm* \yy,n , (B2)
1

Kg —-2WO,Xn + Wyt Wy X

and the third components of the inplane strain are

3
K1 4 WX,X

3
KB = ——s . (B3)
K6 WX,T] + \Vy’x

The zeroth and the second order components of the out-of-plane strains are defined as

follows.

3 v

6(5) \Ijx

K2 v

il _ _42" { y} ®5)
K% h Vx

The additional non-zero inplane strain components due to pre-twist are written as

15 Zguo,n +(N-Y; )(_WO,X +VYy) (56)
(e Z:’VO,TI +(M-Y, H=Won + Wy)+Wo ’

LL% B uO”rl - ZE) (_WO,X‘I’] + Wx,n) (B7)
u16 VO,T] - Z,0 (—wo,nn + Wy,n)
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4 ,
—WO,XT] + WX,T] + h_z_(n - YO)WX

; N (BS)
_WO,T'm + Wy,n + ?(n - Yo)\lfy

' 4 ,
—5ZoVx q
B9)

(4
~—5Wxq

3h2
p . (B10)

L 3h2 wy’n

The non-zero out-of-plane components of the strain due to presence of pre-twist are written

as

Vo - ZoWo . (B11)
Wy (B12)
4
LI (B13)
3h2 WYx

Finally, the nonzero strain terms associated with sweep (which exist only in the vertical

walls) are written as follows.

_WO,X + \Ux (B14)
W, + ¥y
| v
_:%{ x (B15)
he |Vy
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Next, the convergence study is conducted in the natural frequencies and a

nondimensional natural frequency parameter, A;, is used where

/ hL4
7Li=0)i P—‘D—‘, (Cl)

D =Eh3/12(1-v?). (C.2)
The natural frequency parameters, A;, for the first six modes are presented for a range of
mesh sizes in Figs C.2 - C.7. From these figures it is again noted that although
convergence can be achieved with only one or two chordwise elements, often the
converged results are significantly different from the actual results. This is particularly
evident in the third flapping mode (Fig. C.5), the second torsional mode (Fig. C.6) and the
first plate mode (Fig. C.7). For a mesh with three or more chordwise elements,
convergence is achieved very quickly. In general for such chordwise discretizations,
convergence is achieved with 10 - 12 spanwise elements.
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Fig. C.1 Bending slope for 30° twisted, isotropic plate subjected to 1 Ib. tip bending load.
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Fig. C.3 Natural frequency parameter for the second flapping mode; 30° twisted, isotropic
plate.
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Fig. C.7 Natural frequency parameter for the first plate mode; 30° twisted, isotropic plate.
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C.2 Composite, 45° symmetric beam
Convergence tests for the beam are performed for both a static case with a 1 1b. tip
bending load as well as for the first several natural frequencies. The beam used for this
study is a symmetric 45° graphite/epoxy composite beam for which the properties are listed
in Table. C.2. Figures C.8 - C.10 present the static deflections at the tip. It must be noted
that the values presented in these figures represent the average value for the entire cross
section. Since the developed theory does not rely on reducing the beam behavior to one-
dimensional parameters, values of the cross-sectional flap, lag and twist are not explicitly
calculated. However, in case of thin-walled beams, the values in each of the walls are very
close to each other, therefore, in such cases the approximation of the cross—section;ﬂ twist
being equal to average twist of all four walls is valid. It is observed in Figs. C.8 - C.10
that convergence is achieved with approximately 10 spanwise elements. More importantly
it is noted that this convergence is independent of the number of chordwise elements. This
is largely duc to the fact that the beam is decomposed into the individual walls which make
up the beam and as a result, a single chordwise element in each wall results in four

chordwise element for the beam cross section.

Table C.2 Details of symmetric 45° composite beams

Flanges Webs
Top Bottom Left Right
BRI [45°]6 [45°/-15°13 [45°7-45°T5

Muterial Properties
E; = 20.59 x 106 p.s.i., Ep = 1.42 x 10° p.s.i,
GLT =0.89 x 106 p.S.i., VLT = 0.42.

Beam Dimensions
Length = 30 in., width = 0.953 in., depth = 0.53 in.,
ply thickness = 0.005 in, number of plies = 6,
wall thickness = 0.030 in.
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Similar trends are observed in the convergence rates of the natural frequencies which

are presented in Figs. C.11 - C.17. It is seen from these figures that once again
convergence is independent of the number of chordwise elements. For the lower
frequencies, convergence is obtained with approximately 10 spanwise elements. For the
higher frequencies, convergence is a little slower and although the results are not truly

converged with 10 spanwise elements, they are quite close to the converged values.
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Fig. C.8 Flapping displacement for 45° symmetric beam subjected to 1 Ib. tip bending
load.
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Fig. C.10 Elastic twist for 45° symmetric beam subjected to 1 Ib. tip bending load.
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