
PERFORMANCE COMPARISON OF A MATRIX SOLVER

ON A HETEROGENEOUS NETWORK

USING TWO IMPLEMENTATIONS OF MPI:

MPICH AND LAM

BY:

Jennifer Phillips

MENTOR:
Jerrold M. Housner

RESEARCH AND TECHNOLOGY GROUP
STRUC'Hm_ DIVISION

Computational Structures Branch

589

ABSTRACT

Two of the current and most popular implementations of the Message-Passing Standard,
MPI, were contrasted: MPICH by Argonne National Laboratory, and LAM by the Ohio
Supercompter Center at Ohio State University. A parallel skyline matrix solver was adapted to be
run in a heterogeneous environment using MPI. The Message-Passing Interface Forum was held in

May 1994 which lead to a specification of library functions that implement the message-passing
model of parallel communication. LAM, which creates it's own environment, is more robust in a
highly heterogeneous network. MPICH uses the environment native to the machine architecture.

While neither of these free-ware implementations provides the performance of native message-
passing or vendor's implementations, MPICH begins to approach that performance on the SP-2.
The machines used in this study were: IBM RS6000, 3 Sun4, SGI, and the IBM SP-2. Each

machine is unique and a few machines required specific modifications during the installation. When
installed correctly, both implementations worked well with only minor problems.

INTRODUCTION

With the current downsizing and new philosophy of "faster, better, cheaper" companies can
no longer afford large powerful machines like the CRAY, yet they still require the computing power
provided by such systems. The current direction of the computational sciences is to utilize the

power of the machines already in use by engineers. Workstations have given engineers powerful
and accurate tools with which to which to design aircraft such as the Boeing 777. These same
machines are also giving engineers the ability to perform the large scale computations which were
previously done on large machines.

A single workstation could spend days slowly grinding though a large computation, but
with the use of parallel communications, many workstations can be linked together and provide the
power of a single large computer. This concept has lead to many types communication software
facilitating the production of massively parallel machines. The most common types of
communication are MPL, the message passing library for the IBM machines, and ParaUel Virtual

Machine or PVM which was designed as a message passing library for heterogeneous networks.
PVM has recently been used in a parallelized Navier-Stokes CFD code at McDonnell Douglas. With
the success and development of such software, a decision was made to standardize the
communication protocol.

In May 1994, the first conference was held to create a new standard for message passing.
This forum produced the Message-Passing Interface Standard [Ref. 1] or MPI-1. The best

attributes of the existing message passing libraries were assessed and combined. MPI- 1 is currently
a standard by which to create message passing libraries. It in itself is not software; it is left to the

implementors to write the code. While this standard currently contains message passing information
and control, I/O is being considered for MPI-2, and dynamic process control (e.g. MPI_Spawn) is
still under controversy. The beauty of the standard is that programs written in MPI can be used on
any architecture and with any implementation.

There are cun'ently about five implementations of MPI freely available (see resource list).
The two most common and best supported are MPICH and LAM. These two implementations will
be prof'fled and contrasted in the following. The machines used in this study were:

590

• IBM RS6000

• (3) Sun 4

• SGI Indigo

• IBM SP-2

These machines were accessed from a Macintosh I_x using MacX.

IMPLEMENTATIONS

Both implementations require the use of the remote shell command, 'rsh,' and thus require

all machines in the available network, including the root machine, to appear in the .rhosts file of the
user.

LAM VERSION 5.2

The Ohio Supercomputer Center's implementation, Local Area Multicomputer or LAM
(which is a subset of the greater Trollius system), creates a similar environment to PVM. LAM is a
message passing library with it's own environment. LAM's implementation of MPI amounts to a
separate set of libraries that interact with LAM's environment. To run an MPI program in LAM it
needs to be compiled with a FORTRAN/C compile script provided by Ohio State. The environment
must then be set up by "starting the engine" or running the LAM deamon on all the machines in the
desired network.

OPERATION

Once the engine is running LAM is fairly simple to use. However, for heterogeneous
networks the executable must lie in the user's path. The program is run with a command line

execution that includes the script executable (mpirun), options, the nodes which it will be run on,
and the program executable. The program name is assumed to be the same on all machines. There
is no way to easily deal with different executable names or paths. For a heterogeneous environment
any I/O to the program must have a specified path name or be located in the directory from which

LAM was booted. (For the root computer this will be the directory from which 'lamboot' was
run. For other computers in the network, it is the user's home directory.)

INSTALLATION

The installation is pretty straightforward as laid out in the Installation Guide [Ref. 2]. An
environment variable must be set up to define the location of the executables and this location must
then be placed in the user's path. This location is different from the location of the source code,
since the source code may be eliminated once LAM is properly built. The last thing required before

running the 'make' is linking the 'config' file to the proper architecture configuration file.
The only problem encountered during the installation was the necessary addition of the '-

Bstatic' option to the C compiler (cc) and the FORTRAN compiler (f77) in the 'config' file on
'sunny.larc.nasa.gov' (Sun4) and 'csmsun.larc.nasa.gov' (Sun4). These machines require this
option as a result of a problem with their shared libraries.

591

Fora permanent network installation LAM should be installed in the path/usr/Iocal/lam or
lusrllocalllam5.2 etc. In order to do this, the TROLLIUSHOME environment variable must be

set to this path as well as the home variable in the config file. Once set, run:
make install

and the source directory may be deleted.

MPICH VERSION 1.0.10

MPICH uses an environment already installed on the machine which gives rise to it's
chameleon nature and the CH in it's name. MPICH relies on the environment already created on
various machines, such as p4 on workstation and MPL/EUI on IBM machines. Argonne National
Laboratory has created libraries to make MPI take advantage of the native message passing routines
already on the computers. To run a MPI program with MPICH an appended makefile (created by
MPICH) is required to initialize certain environment variables.

@ OPERATION

MPICH is also fairly easy to run. It also uses a script executable (mpirun) followed by
options and the program executable. MPICH does not require the listing of nodes/computers to be

run on in the command line, however it does require the '-np' option at a minimum to specify the
number of processes. When enlisted, MPICH looks for all the machines with the same architecture

as the root computer (these are listed in a file in MPICH) and the processes are dispersed among
them. In order to run on a heterogeneous network, the process file or procgroup (PI####) needs to
be created by the user. This process file contains the computer's network name, the number of
processes assigned to that computer and the full path name of the executable, as well as the user's

login name on heterogeneous machines. Since the full path name of the program is specified, the
program names and paths may vary on other machines without being placed in the user's path.

A generic procgroup file was created containing all of the machine names available; unused
machines were then commented out as necessary for each machine.

_ INSTALLATION

Installation of MPICH is also fairly simple; see the MPICH Installation Guide [Ref. 3].

MPICH supplies a configuration script, configure, that can be run with or without flags that

specify options such as the architecture, device and C compiler used. This configure script creates
the makefiles, which simply need to be built. The following variations were made for the
workstations used. The IBM RS6000, borg-07, is a stand alone workstation and does not contain

the MPL/EUI libraries, thus the device and communications protocol used were p4. On the SP-2,

the configure was unable to successfully use the mpCC or C++ compiler, so the -ee=mpcc option
was used to specify the C compiler. This had no effect to subsequent programs since MPICH is
written in C and the sparse solver is written in FORTRAN. Finally, the two Sun4 workstations,
sunny and csmsun, required a modification to their configuration files. MPICH requires use of the
shared libraries on these Suns so the static or non-shared library option was not successful (i.e.

configure -cc="cc -Bstatic" -fc="f77 -Bstatic"). An additional library reference is needed for

the shared libraries. There is no specific flag to specify the libraries for the configure file, therefore
the script was directly modified and the shared libraries were added to the primary list of parameters

(i.e. LIBS=-lc. 1.8.1 and -Ic. 1.9.1, respectively for sunny and csmsun). In addition, subsequent
makefiles required this option as well.

592

For a permanent network installation MPICH should be installed in the path/usr/Iocal/mpi

or lusdlocallmpi-1.0.10 etc. This installation is performed by the following command:
make install PREFIX=lusrllocallmpi-1.0.10

In -s lusrllocallmpi-1.0.10 lusrllocallmpi

THE SPARSE SOLVER

The matrix solver used for this study was a vectorized skyline sparse solver written by
Majdi A. Baddourah. This particular solver has been tested in various forms including PVM and
MPL on the SP-2. For pervious benchmarks and performance see the Computational Structures
Branch Web page (see resource list).

Since MPI's subroutines are similar to existing parallel communicators, few changes had to
be made to the solver. For example, the standard send FORTRAN syntax is provided below for the
native message-passing library of the IBM machines (MPL), Parallel Virtual Machine (PVM), and
MPI.

MP_SEND(outgoing_message, msg_length(bytes), destination, data_type)
PVMFINITSEND(encoding, error_code)
PVMFPACK(outgoing_message, first_element#, msg_length(items), stride, error_code)
PVMFSEND(task identifier of destination_process, msg_tag, error_code)
MPI_SEND(outgoing_message, msg_length(items), data_type, destination, msg_tag,

comminucatior, error_code)

MPI is a combination and reordering of the other two, allowing the simplicity of MPL with the
heterogeneous capability of PVM. The main program was edited to reflect MPI's initialization and
finalize routines; MPI_Init() _, MPI_Comrn_Rank02, MPI_Comm_Size03, and MPI_Finalize04.
All other communication references were dealt with as subroutines. One other change was made to

the factorization and back solving subroutines. MPL requests the number of bytes being sent while
MPI requires the number of items, thus variables such as 'nbyt' were essentially divided by the
number of bytes per item to reflect the number of items only.

The send subroutine was modified to use the standard MPI send, MPI_Send() 5. Other
options for different types of sending routines were considered, but deemed unnecessary. One of
these possibilities was a synchronous send, which will not complete until not only the message
buffer is safe to be reused but also the matching receive has been posted. The standard send is a
blocking send, where the send will not complete until the message buffer is able to be reused. This
standard send was also the fastest send, especially for large messages. This modification was a
little tricky since the send and receive subroutine were called for both integer and real data types.
MPL accepts a range of numbers to specify a certain data type, e.g. the integers 1 to 100000
represent real numbers and larger integers represent integers. The original data type was used as the
message tag and then changed to an MPI data type, e.g.]VIPI_Real 6 . Using this message tag will
also prevent mismatches in send and receive pairs.

i MPI Standard page 196 line 20

2 MPI Standard page 142 line 5

3 MPI Standard page 141 line 28

4 MPI Standard page 196 line 34

5 MPI Standard page 16 line 26

6 MPI Standard page 17 line 12

MPI_INIT(ierror)

MPI_COMM_RANK(commincator, rank, ierror)

MPI_COMM_SIZE(comrnincator, size, ierror)

MPI_FINALZE(ierror)

MPI_SEND(buffer, nelements, datatype, destination, tag, comunicator)
Fortran: REAL

593

The global sum subroutine was modified to make use of MPI_Allreduce0 7, which not only
performs a user defined function but also sends the result to all of the machines in the network.

Here, the user def'med function, vector addition, was slightly modified to the form expected by
MPI. This modification only involved reordering the arguments.

The two communication ring subroutines, integer and real data types, were initially modified
to use the MPI_Sendrecv0 s routine. MPI_Sendrecv0 will send and receive the same buffered

!nformation in either direction, which should prevent deadlock. Deadlock occurs when one machine

Is attempting to send and the receiving machine is also attempting to send, thus not allowing the
completion of either send call. Unfortunately, this created problems and was abandoned.

Finally, the subroutine used for timing the program, or profiling, was changed from a C
subroutine using gettimeofday0 to MPI_Wtime0". MPI_Wtime0 returns wall-clock time in
seconds similar to gettimeofday0.

The makef'iles for the solver are generally straight forward, the header information for both

LAM and MPICH was either copied or generated by the software. Initially, the makefiles were not
finding the MPI library, this was temporary fixed by editing the environmental variable LIB_PATH

to reflect the location of librnpi.a. This is not necessary, however, if the makefiles are created with

the correct path for each MPI implementation. Also, LAM 5.2's include file for FORTRAN,

tapir.h, was originally written in C, this facilitated the need for extra lines in the makef'ile, i.e. the

preprocessor epp was required of all files containing the include file. This was subsequently
changed after an inquiry to the implementors of LAM. This change may now be included as a patch
and will most likely appear in the next version to be released.

PERFORMANCE TESTING

There have been previous studies in the performance of MPI as compared to other parallel
libraries. "Performance Comparison of MPL, MPI, and PVMe" [Ref. 4] compared the performance
of PVMe, MPICH, MPI-F, and MPL. As expected MPL performed the best, but IBM's vendor's
version of MPI, MPI-F, practically matched MPL performance. The free-ware version of MPI,
MPICH, was a close second followed by PVMe. Also, "Some early performance results with MPI

on the IBM SPI" [Ref. 5] found MPI-F to closely match MPL and MPICH followed closely
behind.

The solver was run for various combinations of processors using LAM and the p4
directories in MPICH. The SP-2 was used as the primary control machine, since it was the original
source of the solver's program with MPL. For each matrix tested, the solver was run on the SP-2

using, MPL, MPICH, and LAM for two to six processors or nodes. In addition various other
combinations of machines were used for each of the matrices up to the entire network of all six

machines available. The matrices tested were a simple beam consisting of 24 equations, a test
matrix of 840 equations, a plate with a hole in it with 1,802 equations and a model of the High
Speed Civil Transport with 16,152 equations.

As a basis for a comparison, all four matrices were run on the SP-2 and compared in Figure
1. The send time in the factorization is compared for the solver running with MPL, MPICH using
the native MPL, MPICH using p4, and LAM. The SP-2 was tested with p4 because, for this
particular network p4 interacted the most consistently with the other machines. Figure 1 shows
MPICH with MPL a close second to MPL itself.

7MPI Standard page 122 line 14

s MPI Standard page 57 line 4

9MPI Standard page 195 line 19

MPI_ALLREDUCE(sendbuffer, recvbuffer, nelelments, datatype, operation,
comunicator)

MPI_SENDRECV(sendbuffer, sendnelements, sendtype, destination, sendtag,

recvbuffer, recvnelements, recvtype, source, recvtag, comincator, status)
FUNCTION MPI_WTIME0

594

Figure 1. Send Times on Poseidon

13MPL

m MPICH

(MPL)
[] MPICH

(P4)
[] LAM

Please note the graph is not to scale and is a bit skewed. Figure 1 does not yet suggest salability as
all graphs are climbing through the increase in number of equations, however, it has been shown
that MPICH using native libraries will become as scaleable as the native libraries themselves.

Figure 2 demonstrates the total factor time for the SP-2 as well as an average of many other
heterogeneous configurations. This figure demonstrates the increase in communication time in the

heterogeneous network. This is primarily due to the relative speeds and memory of each machine as
the time varies with the number of processors and not with the degree of heterogeneity.

Figure 2. Factor Times for 1802

Equations

[] MPL *

[] MPICH *

(MPL) _
[] MPICH *

(P4)
• MPICH _ i

[] LAM * i

• LAM

The largest peak stems form a largely heterogeneous network using MPICH and p4. This curve
drops off quickly because this network could not handle larger matrices thus, the last data points are
for the SP-2 alone and not an average of many networks.

As mentioned above, the time is dependent on the individual machine and thus the over all
time can vary great depending on the machines in the network. Figure 3 shows the send, receive,
and compute time for the 840 equations. The general trends are for send time to decrease with an

increasing number of nodes which can be explained by the decreasing message size. The compute
time also decreases with increasing nodes, which was expected since the relative work load is

595

decreasing. Finally, the receive time increases dramatically. This is mostly likely due to down time
waiting for other machines in the network.

Figure 3. SEND/RECV/COMP

Times for 840 Equations with

MPICH im avg send

25 _ [] avg recv

F-

Number of Processors

Q
a)

v

0

E
I
F-

Figure 4.
Times for

80-

60

40

20

0
O4

Number

SEND/RECV/COMP

840 Equations with
LAM

[] avg send

[] avg recv

12avg comp

The large peaks represent very heterogeneous networks, i.e. at least three different architectures,

and usually contain a Sun. It is also interesting to note that the order of networks configurations is
the same in both Figure 3 and 4. Figure 4 lacks the large peaks found in Figure 3, but the overall

.time is much greater. The length of the send and receive times was also dependent on the degree on
laeterogeneity and the speed of the machine being sent to or receive from. The compute time
remained relatively constant per machine, differences resulting from load on the machine. For large
matrices, i.e. the high speed civil transport, LAM's performance begins to approach MPICH's
performance using p4, however, neither approaches MPICH using native message-passing.

CONCLUSIONS

The choice of implementation should be based on user preferences, i.e. what type of control
the user is more comfortable with and the importance of time and performance. LAM is more
robust in a heterogeneous environment than MPICH, however, MPICH provides much better
performance than LAM. LAM may also allow dynamic process control in the future which is not

available with MPICH. For a semi-homogeneous environment, e.g. cluster of IBM RS6000's,
MPICH using the native message-passing would be the best choice. For a program developer on a
heterogeneous network, LAM offers the most ease of control and stability.

Further testing with larger matrices should be done. This, however, should not be done on

the local Suns, since they do not provide the hardware necessary to efficiently run them. A similar
performance to that of the SP-2 should be attainable on the IBM RS6000 cluster. In addition,

optimization can be done to further increase the performance of the solver using MPI. The X
windows interfaces, e.g. MPE and Xmpi, provide an aide to this task.

596

RESOURCES

REFERENCES

[1] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. Computer
Science Dept. Technical Report CS-94-230, University of Tennessee, Knoxville,
Tennessee, 5 May 1994.

[2]

[31

[4]

GDB. LAM for Fortran Programers. (LAM Installation Guide) Ohio Supercomputer Center,
The Ohio State University, July 20, 1994
Ohio LAM version 5.2

Patrick Bridges, Nathan Doss, William Gropp, Edward Karrels, Ewing Lusk, Anthony
Skjellum. User's Guide to MPICH, a Portable Implementation of MPI. (Installation Guide
to MPICH) Argonne National Laboratory, 5 May 1995.
MPICH version 1.0.10

Bill Saphir and Sam Fineberg. Performance Comparison of MPL, MPI, and PVMe. NAS
Scientific Consulting Group, 21 October 1995.

[5]

[6]

William Gropp and Ewing Lusk. Some early performance results with MPI on the IBM SP1
- EARLY DRAFT. Argonne National Laboratory, 5 June 1995.

Ed Karrels and Ewing Lusk. Performance Analysis of MPI Programs. Argonne National
Laboratory, (1995).

[7] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. M1T Press, 1994.

FTP SITES

MPICH source code
CHIMP source code
LAM source code

Test Code repository

MAILING LISTS

mpi-bugs @mcs. anl.gov

trollius@tbag.osc.edu

mpi-comm@cs.utk.edu

info.mcs.anl.gov/pub/mpi/mpich.tar.Z
ftp.epcc.ed.ac.uk/pub/chimp/release/chimp.tar.Z
tbag. osc. edu/pub/1 am/lam5 2. tar. Z

info.mcs.anl.gov/pub/mpi-test

MPICH bugs and information (William Gropp)

LAM bugs and information (Raja Doaud)

the MPI Forum discussion list

597

NEWS GROUP

comp.parallel.mpi MPI newsgroup

WWWEB PAGES

Message-Passing Interface

http://WWW.ERC.MsState.Edu/mpi/
MS State's MPI resource web page

The MPI Resource Center Oak Ridge National Laboratory's MPI resource web page
http://www.epm.oml.gov/-walker/mpi/index.html

Message Passing Interface Argonne National Laboratory's MPI resource web page
http://www.mcs.anl.gov:80/mpi/

Papers Related to MPI MPI Paper's from Oak Ridge's page
http://www.epm.oml.gov/~walker/mpi/papers.html

LAM - MPI Network Parallel Computing
http://www.osc.edu/lam.html#MPI

Ohio State's MPI/LAM information page

The LAM companion to "'Using MPI..." Center for Information Science Research,
Australia National Lab's MPI/I_AM tutorial

ftp://cisr.anu.edu.au/pub/papers/meglicki/mpi/tutoriaYmpi/mpi.html

Getting Started with MPI on LAM Ohio State's MPI/LAM installation & boot-up tutorial
http://www.osc.edu/Lam/lam/tutorial.html

MPICH Home Page Argonne National Lab's MPICH information page
http://www.mcs.anl.gov/mpi/mpich/index.htm

Web pages for MPI and MPE Argonne National Lab's MPI (MPE) man pages
http://www.mcs.anl.gov/Projects/mpi/www/index.html

Computational Structures Branch

http://olaf.larc.nasa.gov/
Benchmarks for matrix solvers on various platforms

598

